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Abstract

We develop a computational algorithm for finite thickness photonic crystals and apply it to pho-
tonic crystal slabs and artificial opals. The algorithm is not limited to solving only photonic
crystals but can be applied to any electromagnetic problem, which is periodic in a plane and has
a finite thickness in the perpendicular direction. An application in cylindrical coordinates is also
presented. The method is based on the diagonalized form of Maxwell’s equations, in which one
spatial direction is distinguished and isolated. We show that this formulation is especially suitable
for problems, which are periodic along two and non-periodic along the third axis. The fields are
expanded in a combination of several bases, planewaves in the transversal plane, finite differences
and eigenvectors in the perpendicular direction. The method is applied to both eigenmode and
excitation problems. Furthermore, we develop an efficient scheme for computing the reflection of
arbitrarily shaped and polarised beams from the surface of a periodic media. A great emphasis
is laid on accuracy and efficiency. The resulting equations are solved using iterative techniques
together with problem adapted, operator level preconditioners. Finally, we compare the computa-
tions to measurement results obtained from artificial opals.
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Notations used in this book

We use the following conventions throughout this book. Other conventions are frequently used in
the attached publications but their meaning is made clear in the context.

A Calligraph font, a differential operator or operator matrix.

∂x Partial derivation operator with respect to x.

Ψ Uppercase Greek letter, a hypervector whose elements may be functions, components
of physical vectors or algebraic vectors of expansion coefficients for those.�

k Lower case font with an arrow on top. A physical vector, such as a wave vector or a
lattice vector.

kx The x-directional component of the physical vector
�
k.

A Upper case bold font, matrix. Especially, if A is differential (matrix) operator, then A
is its discretized representation.

diag
�
A � Diagonal elements of A.

I An eye matrix.

e Lower case bold font, an algebraic vector. Especially, a vector of expansion coeffi-
cients.

en An individual element of a coefficient vector e.�
ux A dimensionless unit vector in the direction x.

f � i � If f
�
z � is a function of z, then f � i � denotes f evaluated at zi.

j The imaginary unit.

O
��� � An asymptotic bound
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1 Introduction

Modern electronics has become a part of our everyday life but few people stop to think that this is
only possible because quantum mechanics was developed during the last century. To understand
how a microprocessor works is subject to understanding how electrons behave in crystalline semi-
conductor materials. Within the realm of classical physics, where electrons are considered to be
solid particles, this is impossible but in 1920’s Louis de Broglie suggested that electrons could
also be treated as waves [1], the so called probability waves. These are not waves in a common
sense because instead of describing the particle itself, they describe probabilities where and when
the particle might be found. In any case, waves are the only way to explain the interaction of
electrons with the periodic lattice of atoms in semiconductors. Especially, the concepts of bands
and bandgaps, which are behind the inventions like diodes and semiconductor lasers, become
understandable when the wave picture is used.

Since light has been known to have the wave property long before electrons, it is reasonable to ask
if optical crystals exist as well and whether they would resemble their atomic counterparts. The
answer is yes, optical crystals, or photonic crystals as they are more often called, do indeed exist
and light has the most unusual behaviour in them. Unlike semiconductors, where the electrons
interact with the periodic potential produced by the lattice of atoms (and other electrons, to be
precise), photonic crystals are based on the periodic variation of the refractive index.

To get an example of a photonic crystal, consider a simple and well known structure called a
quarter wave stack, which is made by piling two dielectric layers of different widths and refractive
indices periodically on top of each other [2]. Light incident on the stack will reflect according
to Snell’s law from each of the dielectric interfaces but if the wavelength of light happens to be
four times longer than the optical thickness of each layer, then all the reflected waves have the
same phase and add coherently. The consequence is that the reflectance of the stack will approach
100% for resonant wavelengths, even if the reflectance of an individual interface is low. The anti-
resonant wavelengths, on the other hand, behave in the opposite way and are not reflected by the
stack at all. In fact, it is not only the resonant wavelength but a whole range of wavelengths,
denoted the photonic bandgap, which are completely reflected by the stack. The quarter wave
stack is often used as a wavelength selective, high quality mirror but it has one problem: if the
light is not incident perpendicularly, the optical thicknesses of the layers change and the bandgap
occurs for different wavelengths. Something more advanced, which can account for the direction
of the light, is obviously needed.

In 1990, Ho et al � [3] theoretically predicted that it is possibly to create a three dimensional lattice
of dielectric “atoms” such that for a certain wavelength range, there will be an optical bandgap for
all directions simultaneously. This phenomenon, referred to as a complete photonic bandgap, is
probably the most interesting of all the peculiar effects that a photonic crystal may have on light.
To give an example of applications, consider a photonic crystal with one “atom” removed from
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an otherwise perfect lattice. In suitable circumstances, it may happen that light whose wavelength
is in the bandgap, can exist around the missing “atom” but nowhere else in the crystal. In other
words, light gets trapped because it simply cannot go anywhere else. The point-defect concept
has been used to create minuscule lasers [4] and it has also very interesting applications in basic
research [5]. A similar phenomenon has also been used for making waveguides: if a whole row of
“atoms” is removed or disturbed, a certain wavelength of light may be allowed to propagate along
the channel so created but not escape it [6]. The attraction is that photonic crystal waveguides
have a potential of guiding light around sharp bends without loss, something which is beyond the
capabilities of traditional dielectric waveguides.

There are some widely known examples of photonic crystals in the nature, even though not many
people are aware of the underlying crystalline features. Most notably, the gemstone opal, which
is produced by geological processes in the core of earth, is actually a cubic close packed (CCP)
lattice of silica spheres [7]. The iridescent colors of opals are a result of a coherent scattering
from the optical structure, as opposed to conventional colors, which are usually produced by the
atomic properties of materials. Quite recently it has been discovered that there are also numerous
examples of photonic crystals in biology [8, 9]. The glittering colors in some birds and butterflies
are produced by a subwavelength microstructure and similar effects are also found in many other
species in flora and fauna. Common examples include some hummingbird and peacock species.
Some insects have even adopted an opposite strategy and use photonic crystal effects to produce
anti-reflection coatings for camouflage [10].

The recent interest in photonic crystals can be largely addressed to the advances in the manufac-
turing technology, which has allowed scientists to create and investigate artificial photonic crystals
in laboratories (see e.g � [11,12] and references therein). However, the fabrication technique is still
very difficult and a lot of work remains to be done before the process becomes routine. In order to
get an impression of the challenges, consider a photonic crystal tuned to operate at a near infrared
wavelength 1550 nm, which is often used in telecommunication applications. According to the
band diagram presented in Ref. [13], the distance between the neighbouring “atoms” should be
550 nm. The separation between two distinct details 190 nm and the fabrication tolerances still
much less. Undoubtedly, it is not a trivial task to make such a structure.

1.1 Different kinds of photonic crystals

Several methods for making three dimensional (3D) crystals have been tried during the past years.
Examples of these are the Yablonovite [13], the woodpile structure [14, 15] and crystals made
by micro-machining [16]. Unfortunately, none of these produce really satisfying results or are too
complicated to be applied in a large scale. A much simpler approach is to take advantage of the self
organizing property of dielectric spheres in a suspension and create artificial opals [17–19]. This
method has indeed resulted in some very good quality crystals (see e.g. paper IV) but the problem
is that introducing purposeful defects, which actually make the photonic crystals interesting, is
very challenging.

The difficulty in making 3D crystals has lead scientists to consider easier alternatives, some of
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Figure 1.1: A schematic representation of different types of photonic crystals. a) A quarter wave
stack or a 1D photonic crystal, which is composed by stacking infinitely large but finite thickness
layers of top of each other. b) A 2D crystal made of a lattice of infinitely long dielectric rods. c) A
3D crystal, which is periodic along all three coordinate axes. d) A photonic crystal slab consisting
of a periodic lattice of air holes embedded in a thin dielectric slab.

which are shown in Fig. 1.1. The simplest of them is a two dimensional (2D) photonic crystal
(see e.g. [20] and references therein), which is periodic only along two axes and is assumed to be
constant and infinite along the third. As long as the whole world is considered two dimensional,
the 2D crystals have very similar theoretical properties with the 3D crystals. Unfortunately, we
live in a three dimensional world and problems will arise since there is nothing to prevent the light
from scattering in the vertical direction. This leads to a shift in the bandgap, quite as it happens in
the quarter wave stack.

The third candidate and the main topic of this work is a photonic crystal slab [21–23], which builds
on the ideas of 2D crystals but offers a way to control the vertical scattering1 . A photonic crystal
slab is essentially a 2D crystal, which is embedded in a thin dielectric slab, surrounded by lower
refractive index material on both sides. The purpose of the slab is to act as a traditional dielectric
waveguide and thereby discretize the optical mode spectrum in the perpendicular direction. This

1Many authors do not separate between 2D crystals and photonic crystal slabs but confusingly call them both 2D
photonic crystals. Since they are inherently different things, we will distinguish between the two.
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gives means to analyse, control and limit the vertical scattering but unfortunately, not prevent it
completely. Particularly, the realization of a lossless point defect is impossible because there will
always be coupling to the vacuum states in the claddings. Photonic crystal slabs are similar to
2D crystals in many respects but there are also some significant differences. The optical fields do
not (generally) split to pure polarisations as they do in two dimensional systems and the scattering
mechanism is also quite different. However, photonic crystal slabs show many properties one
would expect in real crystals and the fact that they can be manufactured relatively easily, makes
them attractive candidates for several applications in photonics.

1.2 Computational methods for photonic crystals

A host of different algorithms for simulating photonic crystals have been developed. Perhaps the
most common of these is the planewave method (PWM), in which one expands the optical fields
in terms of planewaves and then minimizes some functional in order to find the eigenstates of
the crystal [3]. While this method is very powerful, it also has some drawbacks. The planewave
basis tacitly implies the geometry to be periodic, which is fine for 2D and 3D crystals but is
very cumbersome for finite thickness structures, such as the photonic crystal slab. The planewave
method can be applied for analysing the guided modes in slab problems if the slab is surrounded
by a thick layer of empty space. Then it does not matter whether the geometry is periodic or
not because the adjacent slabs are so far away from each other that the optical fields in them are
decoupled anyway (the so called supercell method [24]). This procedure is, however, not very
efficient because one ends up simulating a vast area of empty space, where nothing interesting
happens.

A quite different approach is the Finite-Difference Time-Domain (FDTD) method [25], which
does not use the time harmonic assumption and is therefore well adapted to dynamic and transient
problems [26]. Photonic bands can also be computed by simulating the evolution of some, possibly
random, initial field and then Fourier transforming the resulting time series [27]. However, this
process is not guaranteed to find all the eigenfrequencies and the extraction of the eigenfunctions
requires a new simulation for each one of them. In problems where eigenfrequencies are not
the main issue, such as waveguide bends [28] or cavity losses [29], FDTD is often the preferred
choice.

An appealing method for solving photonic crystal slab problems is the transfer matrix method
(TMM), which has a great number of different implementations. A common factor in all of them
is that a matrix, which relates the fields on one boundary to those on another is somehow created.
The fields can be expanded in terms of finite differences or finite elements [30], planewaves [31],
eigenvectors [32] or even in some other basis. The advantages include that one can relatively
easily compute dispersion relations and reflection or transmission coefficients of the structure.
This approach is also suitable for frequency dependent dielectrics. The problem with most TMM
implementations is that they are known to suffer from numerical instabilities [32].

Yet another promising technique for photonic crystal computations is the multiple scattering
method, which is very versatile and can be applied on 2D [33, 34] and 3D [35] crystals, both
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infinitely large and finite sized. The idea is to expand the scattering matrix of individual scatterers
in terms of spherical (3D) or cylindrical (2D) harmonics and then compute the scattering matrix
of the whole crystal using the Graf’s addition theorem. Computation can be done very efficiently
provided that the scattering matrices of the lattice elements are known analytically, which is the
case for spherical and cylindrical particles. The multiple scattering method requires all particles,
no matter what their shape is, to be enclosed by non-overlapping spheres (3D) or circles (2D). This
means that the properties of e.g. a closed packed lattice of elliptical particles cannot be solved.

In this work, we develop a method for finite thickness photonics crystals, including but not limited
to photonic crystal slabs. The method is related to both the planewave method and the transfer
matrix method but has its own unique features, which make it particularly efficient on a class of
problems that are periodic along two axes and non-periodic along the third. Our approach is to
divide the slab into thin layers and expand the fields in them using planewaves. The planewave ex-
pansions on adjacent layers are then related to each other using finite differences in Fourier space.
Above and below the slab, we expand the fields in terms of homogeneous-medium eigenvectors,
which can be computed analytically. Finally, an equation from which the fields can be solved is
created by applying interface conditions between the three domains. Our strategy is to discretize
and solve the optical field explicitly inside the whole volume of the slab, as opposed to most trans-
fer matrix methods where the unknowns inside the slab are eliminated and only the fields on the
interfaces enter the final equation. Our approach leads to a matrix, which is much bigger than in
TMM but on the other hand, it is very sparse and can be constructed with little computational ef-
fort. Efficient preconditioners will also be developed allowing the resulting matrix equation to be
solved quickly using iterative techniques. We also briefly consider two possible implementations
of the transfer matrix method but find them to be inefficient and unstable. Finally, our approach is
applied to 2D and 3D slabs and to one dimensionally periodic problems, which are expressed in
cylindrical coordinates.

1.3 Overview of text

The aim of this text is to give a unified representation of the publications included in this thesis.
The focus is mainly on theoretical and numerical considerations, but the accuracy of the developed
method is also verified by a comparison to measurement data from artificial opals. On selected
topics, we give more detailed information than was possible to include in the articles. We will
also review some previously unpublished but unfruitful efforts so that others can learn from our
mistakes.

The text is organized as follows: We begin by defining some basic concepts necessary for under-
standing photonic crystals in chapter 2. Chapter 3 is devoted to analysing the diagonalized form
of the Maxwell’s equations and a computational algorithm based on the findings is developed in
chapter 4. A modification of the algorithm for cylindrical coordinates is discussed in chapter 5.
In chapters 6 and 7 we concentrate on numerical techniques for solving the related equations effi-
ciently. The method is verified with a comparison to measurement data in chapter 8. Finally, the
discussion is summarized in chapter 9 and a future outlook is given in chapter 10.
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2 Basic concepts

In this chapter, we discuss and define some basic concepts that are necessary for understanding
the remainder of the text.

2.1 A generalized photonic crystal slab

Conventionally, slabs in optics are considered to be thin and homogeneous dielectric layers, which
are often used for guiding light. A photonic crystal slab is a modification of a conventional slab, in
which the dielectric function is made periodic in the plane of the slab but is assumed to be homoge-
neous throughout the slab thickness. In this work, we consider generalized photonic crystal slabs,
where the dielectric function is also allowed to vary along the slab thickness. Mathematically, the
geometry is defined by

ε
� �
r � z ��� ���� εa � z � h

εb
� �
r � z ��� 0 � z � h
εc � z � 0

� (2.1)

where εa and εc are constants and εb satisfies the periodicity relation εb
� �
r � �a � z ��� εb

� �
r � z � for

any vector
�
a � m

�
a1 � n

�
a2, with m and n being integers. The lattice vectors

�
a1 and

�
a2 obey the

following relations: i)
�
a1
� �
uz � �a2

� �
uz � 0 (both lattice vectors lie on xy-plane) and ii)

�
a1 � �a2 �� �0

(lattice vectors are not zero vectors or parallel to each other).

We will also briefly discuss problems where either εa or εb or both satisfy the following require-
ments: i) ε

� �
r � �a � z �
� ε

� �
r � z � (share the periodicity with the slab) and ii) ∂zε � 0 (are invariant in

the z-direction).

2.2 Bands and bandgaps

In homogeneous-space, the wave vector
�
k and the angular frequency ω of the radiation are related

through a simple dispersion relation

ω � c 
εr ! �k ! � (2.2)

where c is the vacuum speed of light and εr is the relative dielectric constant of the underlying
medium. If the dielectric constant is replaced by a periodic function

εr
� �
r �"� εr

� �
r � �a ��� (2.3)
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Figure 2.1: Dispersion diagram of TE-polarised modes in a corrugated waveguide [37]. The period
of the waveguide along the x-direction is a, thickness is 0 � 7a, the corrugation length is 0 � 5a and
the slab is assumed to be infinitely thick in the y-direction. The relative dielectric constant in the
slab is ε � 13, the material in the corrugation and above and below the slab is air.

where
�
r is the position vector and

�
a � n1

�
a1 � n2

�
a2 � n3

�
a3 is any lattice vector, the dispersion

relation obtains the form
ω � f

� �
k ��� (2.4)

where f is some function determined by the details of εr
� �
r � . Based on the general knowledge of

periodic systems (particularly quantum mechanics, see e.g � [36]), we can draw a few conclusions
on f : i) It is periodic, f

� �
k � �g �#� f

� �
k � , where

�
g � m1

�
g1 � m2

�
g2 � m3

�
g3, with m1, m2 and m3 being

integers, is some reciprocal lattice vector related to the real space lattice by the equation�
g1 � 2π

�
a2 � �a3�

a1
�$� �

a2 � �a3 � (2.5)

and cyclic permutations. ii) It may have several solutions ωn corresponding to the same wave
vector (and its periodic counterparts) and iii) each solution ωn is continuous and differentiable in�
k.

In the remainder of this text, functions ωn
� �
k � are called bands. Furthermore, a plot of all or some

bands is called a band diagram. A band diagram is typically limited to the first irreducible Brillouin
zone, i.e. for the smallest set of different values of

�
k for which ω

� �
k � is not degenerate based on

translation, rotation or inversion symmetry of the lattice. An example of a band diagram is shown
in Fig. 2.1.

Given a suitable dielectric function εr
� �
r � , it may happen that the mapping

�
k � �

f % 1 � ω � does not
exist for real valued ω and

�
k on some interval ω &('ωlow � ωhigh ) . This interval is called the photonic

bandgap.
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2.3 Diagonalized form

Let us distinguish one direction in space and denote it
�
v. The plane perpendicular to

�
v is called S.

A differential equation is said to be diagonalized with respect to
�
v [38], if it is written in the form

LSΨS � ∂ *vΨS � (2.6)

where LS is a linear differential operator operating on S and ∂ *v is a derivative operator in the
direction of

�
v. The vector field ΨS includes those components of the underlying physical vector

field, which are tangential to S. In the following, we refer to ΨS as the transversal field and assume
it to be at least piecewise differentiable on S and in

�
v.

The diagonalized form in Eq. (2.6) has a number of distinct properties:

1. If the transversal field ΨS is known on some plane S, its normal derivative can be
computed using LS.

2. Interface conditions on S enter automatically into Eq. (2.6) because only the transver-
sal field components are included in ΨS.

3. If ΨS is known to an arbitrary precision on a domain where it is n-times differentiable,
then its normal derivatives can be computed up to the nth order using Eq. (2.6). To
show this, apply LS to both sides of Eq. (2.6) and interchange the order of ∂ *v and
LS on the right hand side to give LSLSΨS � ∂ *v � LSΨS � . Denote L2

S � LSLS and
substitute Eq. (2.6) to the right hand side, which gives L 2

S ΨS � ∂2*vΨS. A simple proof
by induction shows that L n

S ΨS � ∂n*vΨS.

4. If ΨS is known to an arbitrary precision on some plane S and the space is homo-
geneous in

�
v, we can compute the field on any parallel plane S � ∆ using a Taylor

expansion

ΨS + ∆ � ∑
n

∆n

n!
Ln

S ΨS � (2.7)

5. If the space has a discontinuity on some plane S � ∆, we can use Eq. (2.7) for comput-
ing the transversal field on S � ∆ , δ. The fields on S � ∆ � δ are then obtained from
the interface condition

lim
δ - 0

ΨS + ∆ + δ , ΨS + ∆ % δ � ρ � (2.8)

where ρ is the source on S � ∆. Eqs. (2.7) and (2.8) show that if ΨS is known on some
plane S, the transversal fields are uniquely determined everywhere in space.

6. The normal field components not included in ΨS are redundant and can be computed
once ΨS is known. This will be demonstrated for Maxwell’s equations in the next
section.

As we shall see, these properties can be utilized to produce extremely efficient computational
formulas.
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3 Properties of Maxwell’s equations

3.1 Diagonalization of Maxwell’s equations

The derivation of the diagonalized form is given in detail in papers I (two dimensional case) and
II (three dimensional case) but for the sake of completeness, we repeat the essential steps here.
We start our analysis by introducing the Maxwell’s curl equations in a region with no charge or
current:

∇ � �e � , µ∂t

�
h � (3.1)

∇ � �h � ε∂t
�
e � (3.2)

where
�
e is the electric field and

�
h the magnetic. Throughout this book, we will assume harmonic

time dependency of the form f
�
t �/. exp

� , jωt � such that the time derivative operator ∂t evaluates
to a multiplication with

� , jω � . The explicit notation of the time dependency is suppressed in all
equations.

The curl operator can be written as

∇ � � ∂xN1 � ∂yN2 � ∂zN3 � (3.3)

where Ni, i � 1 � 2 � 3, are 3 � 3 matrices given in Eqs. (3.4)-(3.6),

N1 �102 0 0 0
0 0 , 1
0 1 0

34 � (3.4)

N2 � 02 0 0 1
0 0 0, 1 0 0

34 � (3.5)

N3 � 02 0 , 1 0
1 0 0
0 0 0

34 � (3.6)

Substituting Eq. (3.3) into Eqs. (3.1) and (3.2) yields�
∂xN1 � ∂yN2 � ∂zN3 � �e � jωµ

�
h � (3.7)�

∂xN1 � ∂yN2 � ∂zN3 � �h � , jωε
�
e � (3.8)
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The z-diagonalized form can be obtained by selecting the four (out of the total six) equations
where the coefficient for ∂z are non-zero and eliminating ez and hz using the two remaining equa-
tions. After rearranging the terms and writing the system in a matrix form, we get the desired
diagonalized equation 5

0 A
B 0 6 0772 ex

ey

hx

hy

39884 � ∂z
0772 ex

ey

hx

hy

39884 � (3.9)

where 0 is a 2 � 2 zero matrix and the 2 � 2 differential operators A and B are given by

A � 072 ∂x
1

jωε ∂y , ∂x
1

jωε ∂x � jωµ

∂y
1

jωε∂y , jωµ , ∂y
1

jωε ∂x

3984 � (3.10)

B � 072 , ∂x
1

jωµ ∂y ∂x
1

jωµ ∂x , jωε, ∂y
1

jωµ∂y � jωε ∂y
1

jωµ∂x

3984 � (3.11)

Once the transversal field is known, we can use the two remaining equations in Eq. (3.8) to solve
the normal components from 5

ez

hz 6 � C 0772 ex

ey

hx

hy

39884 � (3.12)

where the operator C is given by

C � 072 0 0 1
jωε ∂y , 1

jωε ∂x, 1
jωµ ∂y

1
jωµ ∂x 0 0

3984 � (3.13)

3.2 Eigenvalues and vectors

At this point, we will assume homogeneous and infinite space with no absorption or gain, i.e. ε
and µ are real valued constants, and attempt to solve Eq. (3.9) in the Fourier domain. The trial
function is given by

Φ
� �
r � z ���;: d

�
k

4π2 Ψ
� �
k � exp < j

�
k
� �
r � λz =>� (3.14)

where the position vector
�
r and the wave vector

�
k are perpendicular to z-axis and Ψ �?

ex ey hx hy @ T is a hyper vector whose components are functions of
�
k. Substituting
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Eq. (3.14) into Eq. (3.9) and equating the integrands gives5
0 A
B 0 6 0772 ex

ey

hx

hy

39884 � λ 0772 ex

ey

hx

hy

39884 � (3.15)

where A and B are given in Eqs. (3.16) and (3.17), respectively,

A � 072 , kxky

jωε
k2

x
jωε � jωµ, k2

y

jωε , jωµ kykx

jωε

3984 � (3.16)

B � 072 kxky

jωµ , k2
x

jωµ , jωε

k2
y

jωµ � jωε , kxky

jωµ

3984 � (3.17)

Here, the parameters kx and ky originate from the evaluation of the spatial derivatives in the Fourier
domain and are given by kx � �k � �ux and ky � �k � �uy, respectively.

The eigenvectors and eigenvalues of Eq. (3.15) can be solved analytically by a straightforward
calculation. There are two doubly degenerate eigenvalues

λ �;A w �BADC k2
x � k2

y , ω2εµ �;A C ! �k ! 2 , ω2εµ � (3.18)

and the corresponding four eigenvectors are given by

Ψ1
λ �

077777777772
λ

0

kxky

jωµ

k2
y % ω2εµ

jωµ

3988888888884 � Ψ2
λ � 07777777772

0

λ, k2
x % ω2εµ

jωµ, kxky

jωµ

398888888884 � (3.19)

The eigenvalue λ is a multivalued function of
�
k with a zero crossing at ! �k ! � ω

 
εµ. For ! �k ! �ω

 
εµ, the eigenvalue is real, corresponding to an evanescent wave in the z-direction and for! �k ! � ω

 
εµ, the eigenvalue is imaginary, corresponding to a propagating wave. The branch of

the eigenvalue should be selected based on the boundary conditions of a particular problem. The
possible choices and consequent behaviours are listed in table 3.1.

The choice of the eigenvectors in Eq. (3.19) is not unique because any linear combination of eigen-
vectors corresponding to the same eigenvalue is also an eigenvector. In paper IV, we constructed
the eigenvectors differently in order to simplify some orthogonality conditions. Furthermore, we
redefined the z-dependency to be of form f

�
z �E. exp

�
jλz � , which made the discussion of propa-

gating waves simpler.
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Table 3.1: The behaviour of the fields for different branches of the eigenvalue.

! �k ! � ω
 

εµ ! �k ! � ω
 

εµ

+ λ � C ! �k ! 2 , ω2εµ
Evanescent wave, which
decays into z �F, ∞.

λ � j C ω2εµ , ! �k ! 2Propagating wave with wave
vector in the upper half
plane.

- λ �F, C ! �k ! 2 , ω2εµ
Evanescent wave, which
decays into z � ∞.

λ �G, j C ω2εµ , ! �k ! 2Propagating wave with wave
vector in the lower half
plane.

3.3 Solving the slab modes in terms of eigenvectors

In order to gain a qualitative understanding of the photonic crystal slab modes, we will first analyse
the modes in a conventional slab waveguide.

Assume that the dielectric function is a function of z only

ε
�
z �"� ���� εa � z � 0

εb � 0 � z � h
εc � z H h

� (3.20)

where εb � εa � εc. Our purpose is to expand the fields in terms of the eigenvectors in each region
separately and then require the continuity of the transversal field components at the interfaces. Op-
tical modes correspond to those 'ω � �k ) -points, for which the continuity conditions can be satisfied.

To simplify the analysis, we will make the following assumptions: i) The dielectric function is
symmetric, i.e. εa � εc and ii) the fields do not change in the y-direction, i.e. ∂y � ky � 0. iii) The
previous condition splits the Maxwell’s equations into two independent polarisations and we will
only consider the one, which has ex � ez � 0. An obvious consequence is that the coefficients for
the eigenvectors Ψ1

w and Ψ1% w must be zero, because otherwise the requirement ex � 0 cannot be
satisfied.

For a given kx, we can identify different ranges of ω, based on whether the eigenvectors in different
regions are propagating or evanescent.

The first range is ω � kx I  εbµ, in which the eigenvectors in all three regions are evanescent. Due
to Sommerfeld’s radiation condition, we have to discard all eigenvectors growing into the infinity
and solutions must then be expressible in terms of four eigenvectors only: one in regions a and c
and two in region b. Requiring the continuity of the transversal field components ey and hx on the
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interfaces at z � 0 and z � h, leads to a homogeneous equation system

aΨ2% wa
exp

� , wah �J, b1Ψ2% wb
exp

� , wbh �J, b2Ψ2
wb

exp
�
wbh �K� 0

b1Ψ2% wb
� b2Ψ2

wb
, cΨ2

wa
� 0

� (3.21)

where the correct sign of the eigenvalue is already taken into account and hence, wa and wb are both
assumed to be real and positive. Eq. (3.21) may have non-trivial solutions for coefficients a, b1,
b2 and c only if the determinant of the coefficient matrix vanishes. A straightforward calculation
shows that zeros of the determinant can be found at the solutions of�

wa , wb � 2 � � wa � wb � 2 exp
�
2hwb �L� (3.22)

According to the assumption, both wa and wb are positive and real, which means that the right
hand side is always larger than the left. Hence, no optical modes exist for ω � kx I  εbµ.

The second range is kx I  εbµ � ω � kx I  εaµ, in which the eigenvectors are propagating in region
b but evanescent in regions a and c. According to Sommerfeld’s radiation condition, we again
have to discard half of the eigenvectors in regions a and c. The zeros of Eq. (3.22) still correspond
to the optical modes but now wb is positive imaginary. It is well known that in this frequency
range, Eq. (3.22) has at least one but may have more solutions and therefore we will omit the
proof (see e.g. [39]). However, there is one remark we would like to make: In regions a and c,
the z-component of the Poynting vector

�
p � �e � �h is purely imaginary, and thus, there is no energy

transfer in the direction of z. Consequently, energy may propagate along the slab but not escape it,
which verifies that all existing modes are bound.

The third range is ω � kx I  εaµ, in which the eigenvectors are propagating in all three regions.
Now we can adopt one of the following interpretations: i) None of the eigenvectors in regions a
or c decay in infinity and therefore, we discard them all. ii) None of the eigenvectors in regions a
or c explode in infinity either and therefore we include them all. In the first case, it can be easily
shown that the interface conditions cannot be satisfied with only the two remaining eigenvectors in
region b and consequently, there can be no modes. The second choice leads to a total of six usable
eigenvectors but only four equations emerging from the interface conditions. Hence, solutions
may be found for any 'ω � �k ) -point if two of the coefficients are fixed arbitrarily.

We summarize these results in terms of an example. Assume for a moment that Ξ in

Ξ
�
h � ω2

�
h (3.23)

is the Helmholtz operator for the particular geometry described in Eq. (3.20) and
�
h denotes the

magnetic field in all space (that is, in regions a, b and c). Then, the spectrum of the eigenvalues of
Ξ i) vanishes for ω � ! �k ! I  εbµ, ii) is discrete for ! �k ! I  εbµ � ω � ! �k ! I  εaµ where bound modes
can exist and iii) is continuous for ω � ! �k ! I  εaµ, where the modes are not bound to the slab. The
relation

ωll � ! �k !M
max

�
εa � εc � µ (3.24)

is called a light line. All modes with ω � ωll have to be bound as there are no propagating states
in the cladding.
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4 Algorithm for photonic crystal slabs

Our aim is to develop a computational formula for the generalized photonic crystal slab defined
in Eq. (2.1). We will assume all dielectrics to be isotropic and linear but generally frequency
dependent and complex valued. For practical reasons, magnetic permeability µ is assumed to be
constant but this requirement can be relaxed easily.

Our strategy is to expand the x- and y-dependency of the fields using planewaves. The z-
dependency of the fields will be expanded in terms of finite differences inside the slab and in
terms of homogeneous-medium eigenvectors in the claddings. Finally, a system matrix is cre-
ated by requiring the continuity of the tangential fields on the interfaces between the slab and the
claddings.

4.1 Planewave expansion

Our starting point is the planewave expansion in two dimensions

Ψ
� �
r � z ��� ∑

n
Ψn
�
z � exp N j � �gn � �k � � �r OE� (4.1)

where Ψn is a hypervector whose elements are still unspecified z , dependent coefficients for the
transversal field components ex, ey, hx and hy and the summation extends over some truncated set
of the reciprocal lattice vectors

�
gn. The coefficient

�
k deserves a little bit more attention: According

to Floquet’s theorem, a differential equation with a periodic potential has a solution of a form

f
� �
r �/� exp

�
j
�
k
� �
r � u � �r ��� (4.2)

where u
� �
r � shares periodicity with the lattice and exp

�
j
�
k
� �
r � is a phase factor. Therefore,

�
k specifies

the phase change as the wave propagates from one unit cell to next or equivalently, imposes the
Bloch periodic boundary condition.

4.2 Finite difference discretization

Inside the slab, we discretize the fields on a finite number of planes defined by z � z � i � � i∆,
where ∆ is the finite difference step length. The electric fields at planes z � i + 0 P 5 � � � i � 0 � 5 � ∆ and
z � i % 0 P 5 � � � i , 0 � 5 � ∆ can be related to each other using a first order finite difference scheme

∂ze
�
z � ! z Q z R i S � e � i + 0 P 5 � , e � i % 0 P 5 �

∆
� (4.3)
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where either ex or ey may be substituted in place of e. Adopting a notation
�
e � ?

ex ey @ T , we
can write a vector identity �

e � i + 0 P 5 � � �e � i % 0 P 5 � � ∆
�
∂z
�
e � � i � � (4.4)

Given the knowledge of
�
h � i � � N h � i �x h � i �y O T

, the required derivative can be computed from�
∂z
�
e � � i � � A � i � �h � i � � (4.5)

where A is defined in Eq. (3.10) and the superscript
�
i � indicates that the material parameters

should be evaluated at z � i∆.

In order to turn Eq. (4.4) into a useful numerical formula, we need to introduce the field expansion
given in Eq. (4.1) and create a discrete representation of A . Since this derivation is rather lengthy
and will be substituted with a more efficient procedure in the final algorithm to be discussed in
chapter 6, we will only describe the steps qualitatively. The complete derivation, albeit only in the
2D case, is given in publication I.

1. Divide Eq. (4.4) into separate equations for ex and ey and focus on ex.

2. Substitute the planewave expansion for ex, hx and hy.

3. Multiply both sides with exp 'T, j
� �
gm � �k � � �r ) for each m &U' 0 � N , 1 ) , where N is the

number of planewaves in the truncated basis. This gives N equations for the N expan-
sion coefficients.

4. Evaluate the positional derivatives and integrate both sides over one unit cell of the
lattice in order to eliminate the

�
r-dependency. On the right hand side, one needs to use

the differentiation rule for products and partial integration so that the spatial function ε
does not have to be differentiated explicitly. Integrals not involving ε can be evaluated
using the orthogonality of the planewaves. The rest of the integrals can be evaluated
numerically using the Fast Fourier Transform (FFT).

5. Perform similar steps on the other equation for ey.

The result of this procedure is a linear equation system for the planewave coefficients of the fields.
The discrete version of A is a 2N � 2N matrix, whose elements depend in a complicated way on the
dielectric function evaluated at z � i∆ and Fourier space representations of the spatial derivatives.

Performing similar manipulations on the equation where
�
e and

�
h are interchanged, we get two

matrix equations
e � i + 0 P 5 � � e � i % 0 P 5 � � ∆A � i � h � i � � (4.6)

h � i + 1 � � h � i � � ∆B � i + 0 P 5 � e � i + 0 P 5 � � (4.7)

where A and B are the discrete versions of A and B , respectively and

h � i � � N h � i �x V 0 �W�X� h � i �x V N % 1 h � i �y V 0 �X�Y� h � i �y V N % 1 O T � (4.8)
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contains the planewave coefficients for the magnetic field defined at z � i∆ and similarly for the
other vectors involved.

Eqs. (4.6) and (4.7) form a coupled system. Once the h � i � and e � i % 0 P 5 � are known for some value of
i, they can be computed for any value of i. Obviously, we need to start somewhere and therefore
we will next turn our attention to the boundary conditions in the claddings.

4.3 Eigenvector expansion in the claddings

We will expand the fields in the claddings in terms of the eigenvectors of the diagonalized form
given in Eq. (3.9). We first consider claddings where the dielectric function shares periodicity with
the slab and then give an analytic formula for the eigenvectors in the special case of homogeneous
claddings.

Because the dielectric function is periodic, the eigenvectors can once again be expanded in terms
of planewaves

Ψ
� �
r � z �"� ∑

n
Ψn exp N j � �gn � �k � � �r � λz O � (4.9)

where Ψn is a coefficient for the transversal fields and the exponential z-dependency is introduced
because the eigenvalue we are looking for is the propagation constant in the z-direction. The
eigenvectors can be computed numerically as follows: i) substitute the planewave expansion of
Eq. (4.9) into the diagonalized form, ii) create discrete representations of all the differential op-
erators along the guidelines given in the preceding section and iii) solve the resulting algebraic
eigenvalue equation for the 4N eigenvalues and eigenvectors.

The general expression of the fields is then given by

Ψ
� �
r � z �"� 4N % 1

∑
l Q 0

γl exp
�
λlz � N % 1

∑
n Q 0

Ψl V n exp N j � �gn � �k � � �r O � (4.10)

where Ψl V n is the nth coefficient for the lth eigenvector, λl is the corresponding eigenvalue and γl

is a scalar weight factor.

The general expression can be greatly simplified if the material parameters ε and µ do not vary
in space. To see why this happens, substitute the planewave expansion given in Eq. (4.9) into the
diagonalized form in order to get

L ∑
n

Ψn exp N j � �gn � �k � � �r O � λ∑
n

Ψn exp N j � �gn � �k � � �r O � (4.11)

Evaluate the positional derivatives in L using the property that all the parameters are position
independent and therefore commute with the derivatives. This gives

∑
n

LnΨn exp N j � �gn � �k � � �r O � λ∑
n

Ψn exp N j � �gn � �k � � �r O � (4.12)
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Figure 4.1: The discretization scheme. The planewave expansion of the electric field on light
coloured planes is related to the planewave expansion of the magnetic field on the dark coloured
planes using finite differences. The eigenvector expansions for z � 0 and z � h act as boundary
conditions and are used for terminating the finite difference grid.

where Ln is a 4 � 4 matrix. Multiply both sides with exp 'T, j
� �
gm � �k � � �r ) for each m &U' 0 � N , 1 ) ,

integrate over the unit cell and use the orthogonality of the harmonic functions to get

LnΨn � λΨn � (4.13)

The orthogonality of the basis set thus decoupled the general 4N � 4N algebraic eigenvalue equa-
tion into N independent 4 � 4 eigenvalue equations. Furthermore, each of these N equations is
equivalent with the eigenvalue equation given in Eq. (3.15), which we have already solved. The
implication on Eq. (4.10) is that the summation over l extends now only over the four eigenvectors
for each planewave n. Further simplifications are possible by noting that eigenvectors growing
into infinity do not satisfy the Sommerfeld’s radiation condition and should be discarded. This
leaves us with an expansion of a form

Ψ
� �
r � z �"� N % 1

∑
n Q 0

exp N j � �gn � �k � � �r � λnz Ogf αnΨ1
n � βnΨ2

n h � (4.14)

where Ψ1
n and Ψ2

n are the eigenvectors given in Eq. (3.19), corresponding to the planar wave vector� �
gn � �k � and αn and βn are their scalar weight coefficients. The sign of the eigenvalue λn should

be chosen according to the discussion in section 3.2. The discretization scheme is illustrated in
Fig. 4.1.

The eigenvector expansion given in Eq. (4.10) can also be used for describing the fields in the
slab, provided that the slab is homogeneous in z or can be divided into thinner slabs which are.
The advantage over the finite difference scheme is that the z-dependency for each eigenvector
is analytically known and we can, in principle, expand the fields in the whole slab using only
the 4N eigenvectors. This appears to give tremendous savings compared to the finite difference
scheme where we need 4N variables for each thin layer of thickness ∆. Unfortunately, eigenvector
expansion is not as efficient as it seems because all the 4N eigenvectors have to be computed
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numerically. Since N typically varies between 200 and 2000, this is a daunting task for today’s
computers.

Expanding the fields in terms of the eigenvectors both in the slab and in the claddings is actually
a variant of the transfer matrix method. In the course of this work, we essayed this in 2D and 3D
coordinates. The 2D version gave reasonable results but the 3D version was orders of magnitude
slower than the finite difference scheme and was therefore soon discarded. Furthermore, the trans-
fer matrix method is not numerically stable since both the decaying and increasing eigenvectors
are included, which causes round-off errors in thick slabs [32].

4.4 Matching the interface conditions

The finite difference grid provides us with the value of the electric field at z �i, 0 � 5∆ and mag-
netic field at z � 0. The grid can be terminated to an open boundary condition by relating these
two together using the homogeneous-medium eigenvectors. Four sets of boundary conditions are
needed but we will only discuss one of them at z � 0 as the other three can be derived in a very
similar fashion. The treatment is simplified by the decoupling property of the planewaves in a
homogeneous medium, which allows us to treat each planewave

� �
gn � �k � independently.

For a given n, the field coefficients in the lower cladding (z � 0) are given by

Ψ %n � z �"�jf αnΨ1 %n � βnΨ2 %n h exp f λ %n z h � (4.15)

where the minus sign is used to indicate the lower half space. For brevity, we will omit the minus
sign and the index n from the notation in the following discussion. Particularly, we have

hx
�
z �"�kf αΨ1 ' 3 ) � βΨ2 ' 3 ) h exp

�
λz �l� (4.16)

where the number three in the square brackets denotes the third component of the eigenvector. A
careful inspection of the definition of the eigenvectors in Eq. (3.19) reveals that ex

�
0 �m� λα and

ey
�
0 ��� λβ and therefore we can write

λhx
�
0 ��� ex

�
0 � Ψ1 ' 3 ) � ey

�
0 � Ψ2 ' 3 ) � (4.17)

This is almost the desired boundary condition equation, except that the finite difference discretiza-
tion gives us electric fields at z � � i � 0 � 5 � ∆ for integer values of i. This problem is solved by
noting that we know the functional form of z-dependency and therefore obtain

λhx
�
0 �"�kf ex

� , 0 � 5∆ � Ψ1 ' 3 ) � ey
� , 0 � 5∆ � Ψ2 ' 3 ) h exp

�
0 � 5∆λ �l� (4.18)

Finally, adopting the notation of discrete fields and reintroducing the planewave index n, we get< e �T% 0 P 5 �
x V n Ψ1 %n ' 3 ) � e �T% 0 P 5 �

y V n Ψ2 %n ' 3 ) = exp f 0 � 5∆λ %n h , λ %n h � 0 �x V n � 0 � (4.19)

Proceeding in a similar fashion, the remaining three boundary conditions can be constructed.
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4.5 Putting it all together

In the previous sections we developed a method for relating the electric and magnetic field coeffi-
cients to each other in the slab using a finite difference grid and boundary conditions for terminat-
ing the grid at the interfaces of the slab. The whole problem can now be collected into one equation
by discretizing operators A and B on each discrete plane z � i � within the slab and computing the
eigenvectors and eigenvalues in the claddings. This leads to a homogeneous equation system

M
�
ω � �k � ε � µ � f � 0 � (4.20)

where M contains all the discrete operators and boundary conditions and f contains all the field
coefficients. There are 2

�
2I � 1 � N unknowns, since the two components of the magnetic fields

are discretized on I planes and electric field components on
�
I � 1 � planes and each of the field

components is expanded in terms of N planewaves. Eigenmodes of the photonic crystal slab
correspond to those 'ω � �k ) -pairs, for which Eq. (4.20) has non-trivial solutions, or equivalently,
M
�
ω � �k � is singular.

We also investigated an alternative way of formulating the eigenproblem, which is theoretically
appealing but was found to be numerically unstable and inefficient. The algorithm is briefly ex-
plained below:

1. Take the planewave coefficients of the electric field in the lower cladding, e �T% 0 P 5 � , to
be the unknown vector.

2. Compute the planewave coefficients of the magnetic field in the lower cladding from
h � 0 � � Cle �T% 0 P 5 � , where Cl is a matrix constructed from the homogeneous-medium
eigenvectors as described in section 4.4.

3. Compute electric and magnetic fields recursively from e � i + 0 P 5 � � e � i % 0 P 5 � � ∆A � i � h � i �
and h � i + 1 � � h � i � � ∆B � i � e � i + 0 P 5 � , respectively, until one ends up with two equations
e � I + 0 P 5 � � Gee �T% 0 P 5 � and h � I � � Ghe �n% 0 P 5 � , where h � zI � I∆ is the thickness of the
slab and Ge and Gh are 2N � 2N matrices.

4. Use the eigenvectors in the upper cladding to get ẽ � I + 0 P 5 � � Cuh � I � . Equate the two
candidates for the electric field at z � � I � 0 � 5 � ∆ to get

M̃e �T% 0 P 5 � � � Ge , CuGh � e �T% 0 P 5 � � 0 � (4.21)

The eigenmodes of the slab system are again found at the singular points of M̃, which now has a
dimension of only 2N � 2N. Even though the resulting system matrix is very small compared to
the system matrix in Eq. (4.20), there are a number of undesired properties: i) The construction of
M̃ is very tedious as it requires many multiplications between full matrices of size 2N � 2N. ii) M̃
is a full matrix and Eq. (4.21) is nearly impossible to solve using iterative solvers. Therefore, the
efficient operator level techniques to be discussed in section 6 cannot used. iii) Finally, the process
of constructing M̃ is not numerically stable, which was also observed by Pendry et al. [30]. The
instability is related to the presence of the exponentially growing and decaying eigenvectors within
the slab, even though they are not explicitly considered in the finite difference formalism.
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5 Algorithm for cylindrical coordinates

In this section, we consider problems which are periodic only along the z-axis and non-periodic
on the transversal plane. Our strategy is to use cylindrical coordinates and diagonalize Maxwell’s
equations along the radial direction. The introduction of cylindrical coordinates automatically
makes the geometry periodic along the angular direction φ and hence, we can expand the transver-
sal fields on discrete cylindrical surfaces r � i � � i∆ in terms of planewaves1 . The planewave ex-
pansions on adjacent cylindrical surfaces are again related through finite differences. Examples of
problems where this approach is suitable include a Bragg fiber and especially, a Bragg fiber which
does not possess a complete cylindrical symmetry.

We start by introducing the curl operator in cylindrical coordinates

∇ � �f � 1
r oooooo

�
ur r

�
uφ

�
uz

∂r ∂φ ∂z

fr r fφ rz
oooooo
� (5.1)

where
�
ur,

�
uφ and

�
uz are the unit vectors in radial, angular and z-direction, respectively. Substi-

tuting Eq. (5.1) into Maxwell’s curl equations and proceeding along the guidelines depicted in
section 3.1, results in an equation of the following form:

L
�
∂z � ∂φ � ε � µ � 0772 ez

reφ
hz

rhφ

39884 � ∂r
0772 ez

reφ
hz

rhφ

39884 � (5.2)

This is not the radially diagonalized form yet because the r-dependency is still explicit. However,
a simple variable substitution r fφ prqfφ for both eφ and hφ is sufficient to bring Eq. (5.2) into the
proper diagonalized form.

The field expansion is similar to the Cartesian coordinate system: for a constant r � i � � i∆, the fields
are expressed as

Ψ � i � � φ � z ��� ∑
m V n Ψ � i �m V n exp

5
j2πmφ � j s 2πn

Lz
� k t z 6 � (5.3)

where Ψ � N ez qeφ hz qhφ O T
is a hypervector of the transversal field components and k im-

plements the Bloch periodic boundary condition in the z-direction. There is no Bloch term in
the angular direction as a translation over the periodicity interval 2π returns to the same point

1Completely non-periodic problems could be solved using a similar procedure in spherical coordinates but this remains
a topic of future research.
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Figure 5.1: The discretization scheme in cylindrical coordinates. Electric field is expanded in
terms of planewaves on the light coloured cylindrical surfaces and magnetic on the dark. The
fields on adjacent surfaces are related through finite differences and outside the outermost surface,
the fields are expanded in terms of eigenvectors. The geometry is assumed to be periodic in the
z-direction.

and hence, the fields cannot experience a phase shift. Please note that problems which are ho-
mogeneous in z, such as optical fibers, can be solved by expanding the fields using only a single
planewave in the z-direction [40].

The implementation of finite differences is as before: The radial derivative of the electric fields is
completely determined by the magnetic fields and vice versa and the fields can be discretized in
an interlaced grid as illustrated in Fig. 5.1.

5.1 Boundary conditions in cylindrical coordinates

The boundary conditions in cylindrical coordinates are more complicated than in Cartesian but the
basic principles still apply: We need four sets of boundary conditions in order to terminate the
finite difference grid.

The outer boundary is similar to the Cartesian slab boundary: we can analytically solve the four
eigenvectors and eigenvalues of Eq. (5.2), select the two which decay for r p ∞ and relate the
electric and magnetic fields to each other in a way discussed in section 4.3. The eigenfunctions in
cylindrical coordinates, which are given in publication III, are composed of Hankel functions and
their derivatives.

The remaining two boundary conditions are applied around the center axis of the cylinder, i.e. in
the vicinity of r � 0. The first one them is very simple. We set qhφ � 0 at r � 0, which is possible
because any vector with one endpoint in the origin is a position vector and can be expressed in
terms of

�
ur only. This claim is actually already implied in the variable substitution qhφ � rhφ,
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because if qhφ did not vanish in the origin, hφ would obtain infinite values which is clearly not
physical.

It would be tempting to use similar reasoning for qeφ as well. However, in the finite difference grid,

electric fields are defined at r � � i � 0 � 5 � ∆, which means that the coefficients qe � 0 �φ are not easily
available. Therefore we use Faraday’s law in integral form, given in Eq. (5.4), for relating the
coefficient vectors qe � 0 P 5 �φ and h � 0 �z to each other,u

L

�
e
�
d
�
l �;:

S
jωµ
�
h
�
d
�
S � (5.4)

Here, L is a closed path which we choose to coincide with r � 0 � 5∆ such that the scalar product can

be easily evaluated using the coefficients qe � 0 P 5 �φ . An approximation to the surface integral over S on

the right hand side can be computed using the coefficients h � 0 �z , which are also present in the finite
difference grid. Equations for individual coefficients can be obtained by substituting the relevant
field expansions into Eq. (5.4), performing the integrals and then applying the orthogonality of the
basis functions.
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6 Solving the equation system

Whether we are working in 2D or 3D Cartesian coordinates or cylindrical coordinates, collecting
all the finite difference equations and boundary conditions into one matrix and all the field expan-
sion coefficients into one vector, results in an equation system of the form given in Eq. (4.20). To
make the discussion more explicit, we write Eq. (4.20) out in more detail for the 3D Cartesian
coordinate system

0777777777772
Cl

1 Cl
2

I ∆B � 0 � , I
I ∆A � 0 P 5 � , I� � �� �v��v� �

I ∆B � I � , I
Cu

1 Cu
2

39888888888884
0777777777772

e �T% 0 P 5 �
h � 0 �
e � 0 P 5 ����
h � I �

e � I + 0 P 5 �

39888888888884 � 0 � (6.1)

Here, A � i � and B � i � are the discrete representations of A and B on a plane z � i∆. Submatrices Cu
m

(Cl
m), where the superindex u (l) denotes the upper (lower) boundary of the slab, implement the

boundary conditions as discussed in section section 4.3.

Non-trivial solutions to the system equation may exist only if the system matrix M is singular or
equivalently, its determinant vanishes. There are a number of methods for testing matrix singular-
ity and we will discuss some approaches tried in this work.

6.1 Solving the bands

Whatever the measure of singularity we use, our strategy for finding the bands is to fix the Bloch
vector

�
k and then vary ω until a singular point of M is found. Obviously, the efficiency of the

searching algorithm is very important because computing the measure of singularity is always
tedious for big matrices. Our preferred strategy is to step ω at an adaptive interval until a sin-
gular point is bracketed and then switch to the Golden section search [41] in order to iterate the
point sharply. This approach was used with little modifications for all geometries and coordinate
systems. Paper I discusses the issue in more depth.

The most straightforward way of estimating matrix singularity, computing its determinant, is often
criticized because determinants lack an absolute scale. This means that a nearly singular matrix
may have a very big determinant (and vice versa) and the singularity cannot be detected if the
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determinant is not exactly zero, which is rarely the case in numerical computation. In our appli-
cation, however, the determinant can be successfully used since we search for local minima by
varying a parameter such that the absolute value is insignificant. The bands of a 2D slab were
computed using the determinant and the performance was found to be satisfactory [37]. In order
to avoid numerical overflow, we performed a LU -decomposition on the system matrix and added
the logarithms of the diagonal elements instead of multiplying them together.

Another measure for singularity of a matrix is its 2-norm condition number (or its inverse), i.e. the
ratio of its largest and smallest singular values. This approach was also tested on the 2D Cartesian
system but the accuracy was not very good because the objective function f *k � ω ��� 1 I cond

�
M*k � ω �w�

was noisy and its minima were difficult to distinguish. This was the case, at least, when the
singular values were solved using standard computational tools, such as the Lapack-library [42].
The explanation for this behaviour was not explored further because computing singular values is
computationally more expensive than computing determinants anyway.

Yet another measure for singularity is the magnitude of the smallest eigenvalue of a matrix. This
can be justified as follows: Assume for a moment that M has an eigenvalue zero. Then, the system
Mf � λf has a solution for λ � 0. Obviously, the eigenvector corresponding to the eigenvalue
λ � 0 is also a solution to the homogeneous equation Mf � 0. This approach was discarded for
same reasons as the singular value decomposition: it was noisy and computationally expensive.

For 3D Cartesian and cylindrical coordinates, M becomes very large and a direct factorization of
any kind is often too expensive. Therefore, we developed a scheme for determining the matrix
singularity from the solution of an ordinary equation

Mf � s � (6.2)

where s is some force term. In the following sections we will discuss how to give s a physically
meaningful content but first we concentrate on finding the eigenmodes of the slab problem, i.e.
the singular points of M, based on the properties of f.

Assume that i) M approaches singularity and therefore has an eigenvalue close to 0 and ii) s is an
excitation with suitable properties to be defined below. Then, it can be shown that the solution f
approaches to an eigenvector of M, corresponding to the eigenvalue 0. Furthermore, the Euclidean
norm !n! f !n! 2 approaches infinity. The formal proof to this theorem is given in paper II and some
related information in Ref. [43].

The practical value of the above theorem is that using the value !n! f !n! 2 (or inverse) as a measure of
singularity, we can avoid the direct factorization of M and solve Eq. (6.2) using efficient iterative
techniques to be discussed in section 7. Almost any choice of s will do. Only if s is algebraically
orthogonal to the eigenvector corresponding to the eigenvalue 0, the above theorem fails.

6.2 Current excitations

One of the great features of the diagonalized form is that only the transversal field components
enter the formulation, which makes it particularly easy to implement various kinds of interface
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conditions. In this section, we will show how to incorporate surface currents into the discrete
system equation given in Eq. (6.2).

In the presence of a surface current, the transversal magnetic field experiences a jump discontinuity
given by �

u x � � �h + y y , �h % y y �/� �j y y � (6.3)

where
�
h + y y (

�
h % y y ) is the transversal magnetic field immediately above (below) the surface,

�
u x is a

unit vector in the direction of surface normal and
�
j
y y

is the surface current per unit length. Since�
u x has a length of unity and

�
u x and

�
h
y y

are orthogonal by definition, Eq. (6.3) can be inverted to
read �

h + y y , �h % y y �G, �u x � �j y y � (6.4)

Next, consider the transversal magnetic field on two closely spaced surfaces z � z0 � δ and z �
z0 , δ, and expand the fields in two Taylor series:�

h
y y s z0 � δ � ∆

2
t � ∞

∑
n Q 0

1
n!
s ∆

2
t n < ∂n

z

�
h
y y �

z ��= ooo z Q z0 + δ
� (6.5)�

h y y s z0 , δ , ∆
2
tz� ∞

∑
n Q 0

1
n!
s�, ∆

2
t n < ∂n

z

�
h y y � z ��= ooo z Q z0 % δ

� (6.6)

Keeping only the terms up to n � 1 and subtracting Eq. (6.6) from Eq. (6.5) yields�
h
y y s z0 � δ � ∆

2
t , �h y y s z0 , δ , ∆

2
t ��

h
y y �

z0 � δ �J, �h y y � z0 , δ �{� ∆
2

�
h | y y � z0 � δ �l� ∆

2

�
h | y y � z0 , δ ��� (6.7)

where the prime denotes a derivative with respect to z. Letting δ p 0 and using Eq. (6.4), gives�
h
y y s z0 � ∆

2
t}, �h y y s z0 , ∆

2
t~�G, �uS � �j y y � ∆

�
h | y y � z0 ��� (6.8)

Introducing the planewave expansion and rewriting this equation in the notation used in Eq. (6.1),
gives

h � i � � ∆B � i + 0 P 5 � e � i + 0 P 5 � , h � i + 1 � � j � i + 0 P 5 � � (6.9)

where j � i + 0 P 5 � �F' , j � i + 0 P 5 �
y j � i + 0 P 5 �

x ) T is a vector composed of the planewave coefficients for the
y- and x- components of the surface current on the plane z � � i � 0 � 5 � ∆.

This result confirms that current excitations yield no modification on the system matrix in Eq. (6.1),
as the only difference is the force term on the right hand side. Obviously, a similar procedure
is equally applicable to 2D Cartesian and cylindrical coordinates. It should be noted, though,
that expanding the surface current in the planewave basis implies the Bloch periodic boundary
condition automatically. This means that the surface current term

�
j actually implements a phased

array of currents.
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6.3 Scattering problems

We next turn our attention to computing the fields in the presence of an incident field. We will
express the incident field in terms of the homogeneous-medium eigenvectors and then incorporate
them to the boundary condition equations. As an example, we will show how to do this for a wave
propagating from z �G, ∞ towards the slab boundary at z � 0.

The homogeneity of the medium and the orthogonality of the harmonic basis allow us to consider
each planewave coefficient independently. Hence, for a given planewave with the planar wave
vector

� �
gn � �k � the incident field can be written as

Ψ +n � z �"�jf αnΨ1 +
n � βnΨ2 +

n h exp f λ +n z h � (6.10)

where the eigenvectors Ψ1
n and Ψ2

n are defined in Eq. (3.19) and αn and βn are scalar weight
coefficients. The superindex “ � ” indicates that the eigenvalue λ should be chosen such that energy
flows towards the slab.

Next we focus on the boundary condition Eq. (4.19), which is reviewed here for convenience,N e �T% 0 P 5 �
x V n Ψ1 %n ' 3 ) � e �T% 0 P 5 �

y V n Ψ2 %n ' 3 ) O exp f 0 � 5∆λ %n h , λ %n h � 0 � %x V n � 0 � (6.11)

Observe carefully that the variable h � 0 � %x V n represents the x-directional component of the magnetic

field of the outgoing eigenvectors. However, in the system equation given in Eq. (6.1), h � 0 �x V n is taken
to be the total x-component of the magnetic field. In the absence of the incident field, these are
naturally the same thing. Since we now assume an incident field to be present, we must distinguish
between the two and write h � 0 �x V n � h � 0 � %x V n � h � 0 ��+x V n . Solving for h � 0 � %x V n and substituting into Eq. (6.11)
gives N e �T% 0 P 5 �

x V n Ψ1 %n ' 3 ) � e �n% 0 P 5 �
yV n Ψ2 %n ' 3 ) O exp

�
0 � 5∆λn �J, λ %n h � 0 �x V n �G, λ %n h � 0 ��+x V n � (6.12)

The form in Eq. (6.12) differs from Eq. (6.11) only in its right hand side and can therefore be
directly substituted into the system equation. Obviously, a similar treatment can be given to the
other boundary condition equation concerning hy.

We still need to tie the electric field part of the incident field to the system equation. Consider the
second row of Eq. (6.1), which reads

e �T% 0 P 5 � � ∆B � 0 � h � 0 � , e � 0 P 5 � � 0 � (6.13)

The situation is now opposite to the previous boundary condition we just derived: e �T% 0 P 5 � in
Eq. (6.13) should represent the total electric field on plane z �i, 0 � 5∆ but only the outgoing part
is present in the system equation in Eq. (6.1). Hence, we substitute e �T% 0 P 5 � � e �T% 0 P 5 � %�� e �T% 0 P 5 ��+ to
get

e �T% 0 P 5 � % � ∆B � 0 � h � 0 � , e � 0 P 5 � �G, e �T% 0 P 5 ��+ � (6.14)

which again differs only in its right hand side from the second row of Eq. (6.1).

When formulating the incident field, any two components of h � 0 ��+x V n , h � 0 ��+x V n , e �T% 0 P 5 ��+
x V n or e �T% 0 P 5 ��+

y V n
can be chosen freely. The remaining two are determined by the eigenvector expansion given in
Eq. (6.10).
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7 Iterative techniques

Most iterative solvers try to solve Mf � s by improving a trial vector q f at each iteration until the
error function !n!Mq f , s !n! 2 is smaller than some given tolerance. A noteworthy property is that
the solvers usually do not need to know the details of M since they operate directly on the matrix
vector product Mq f. In our particular case this means that the discretization of the various operators,
as discussed in section 4.2, is not needed because we can apply them on q f directly on the operator
level.

As an example, we show how to apply ∂x
�
1 I jωε � ∂y on a h � i �x , which is a length-N subvector of q f.

1. Apply the y-derivative by multiplying each term h � i �x V n with
� �
gn � �k � � �uy.

2. Inverse Fourier transform the result in order to obtain a real space representation.
Multiply the result with the discrete values of

�
1 I jωε � . Notice that both ε and the

result of the previous step are in real space so that the product requires only O
�
N �

operations.

3. Fourier transform the previous result and apply the remaining derivative by multiply-
ing each term with

� �
gn � �k � � �ux.

Performing similarly with all the operators in the diagonalized form, on all finite difference planes
z � i∆, and applying the boundary conditions and the unity side diagonals of Eq. (6.1), one can
construct Mq f without ever actually writing out M.

The computationally most intensive part in applying individual differential operators is the Fourier
transform pair, which, when evaluated using FFT, requires O

�
N lnN � operations. The operation

count for computing Mq f is then determined by O
�
IN lnN � , where I is the number of finite differ-

ence planes in the system. We assume that the internal computation done by the iterative solver
and preconditioning (to be discussed below) do not require more than O

�
IN lnN � operations and

that P iterations are required for obtaining the desired resolution. Then the total operation count for
solving the system becomes O

�
PIN lnN � . Finally, by noting that the total number of unknowns,

U � 2
�
2I � 1 � N, is proportional to IN, we get the scaling to be O

�
PU lnN � .

This should be compared with the operation count for solving the system directly. The system ma-
trix M is a banded matrix with U rows and bandwidth 4N. Therefore, just writing it out explicitly
scales as O

�
UN � . Using a banded version of LU -decomposition, the operation count for solving

such a system scales as O
�
UN2 � [44]. To put these in a right proportion, consider some typical

numerical values I � 32 and N � 322 � 1024. Then U � 133120 and storing M in a banded ma-
trix storage format requires memory for 545 million complex numbers1. Since P typically varies

1Using double precision arithmetic this corresponds to 8.1 Gb of computer memory.
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between 10 and 1000, it follows that the iterative scheme is two to four orders of magnitude more
efficient than the direct scheme. Obviously, the iterative scheme is almost always advisable.

Our preferred choice for the iterative solver algorithm is the Transpose-Free Quasi-Minimal Resid-
ual method (TFQMR) [45]. There are also many other possibilities, such as the Conjugate Gradient
on the Normal Equations (CGNE) [46], Generalized Minimal Residual method (GMRES) [47] or
other versions of QMR [48,49], but TFQMR has some advantages that make it favourable for our
purposes: i) it applies to non-Hermitian and non-symmetric matrices, ii) it poses no requirements
on the definitiveness of the matrix, iii) it can be applied on singular systems, iv) it is less likely to
stagnate than, e.g. GMRES and v) it does not require a multiplication with the transpose of the
matrix.

7.1 Preconditioning

An unfortunate property of iterative solvers is that fast convergence may only be expected for ma-
trices with favorable spectral properties [50]. What these properties are, depends on the particular
solver but quite often convergence is rapid if the spectral condition number κ2 � λmax I λmin is
small. Here, λmax is an algebraic eigenvalue of the matrix with the largest magnitude and λmin the
smallest.

The purpose of preconditioning is to turn the system Mf � s into another system Ny � c, which
has more favorable spectral properties and can therefore be solved with less iterations. Generally,
the linear transformation can be written asf M % 1

1 MM % 1
2 h f M2f | h � M % 1

1

�
s , Mf0 �L� (7.1)

where N � M % 1
1 MM % 1

2 , y � M2f | and c � M % 1
1

�
s , Mf0 � . M1 is called the left preconditioner ma-

trix, M2 the right preconditioner matrix and f0 is an initial guess to the unpreconditioned system.
Once the solution y of the preconditioned system is known, the solution to the original system can
be recovered from f � f0 � M % 1

2 y. The preconditioner matrices should usually be chosen such that
i) M % 1

1 MM % 1
2 approximates an identity matrix as well as possible and ii) M % 1

1 and M % 1
2 can be

computed with little effort. Unfortunately, there are no general rules on how to achieve this. There
are a number of standard approaches (see e.g. [50] and references therein) but the most efficient
preconditioners are often problem specific.

7.2 The Jacobi preconditioner

In the course of this work, we experimented with several different preconditioners. The first and
the most simple one is to set M1 � diag

�
M � and M2 � I, the so-called Jacobi preconditioner [50].

This preconditioner can be expected to work reasonably well for diagonally dominant matrices
but unfortunately, the convergence for matrices arising from our algorithm was found to be utterly
poor. For most cases, myriads of iterations were required and convergence could not be obtained
in a reasonable amount of time.
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7.3 The auxiliary problem preconditioner

The second effort was to set M1 � I and construct M2 as a system matrix of a related but simpler
problem. We used a geometry in which ∂xqε � i � � ∂yqε � i � � 0 and qε � i � � � 1 I S ��� S d

�
rε � i � � �r � , where S

is the area of the unit cell. That is, the simpler problem is constructed by averaging the original
ε on each discrete z=constant layer. Because qε is not a function of x or y, the discretization of
the four operators in both A and B , defined in Eqs. (3.10) and (3.11), leads to diagonal matrices.
Consequently, M2 has non-zero elements only on the main diagonal and four subdiagonals and
is amenable to be factorized directly in a relatively short time. An explicit inverse of M2 is not
needed because the desired quantity x � M % 1

2 q f can be computed by solving M2x � q f using an
LU -decomposition of M2. The LU -coefficients can be reused in successive iterations and thus,
only have to be computed once for each different M to be solved.

There is one more advantage to be noticed: since qε does not depend on the transversal coordinates,
the field expansion coefficients corresponding to different planewaves are decoupled. Hence, in-
stead of factorizing a full matrix with 2

�
2I � 1 � N rows, it suffices to factorize N matrices with

2
�
2I � 1 � rows. The inverse relation M2x � q f can then be solved in N independent steps using the

N sets of LU -coefficients.

We conclude the analysis of the auxiliary problem preconditioner (APP) to a few remarks: i) If
the original problem has the property ∂xε � i � � ∂yε � i � � 0 for all i, then the preconditioner exactly
solves the problem and no iterations are needed. ii) We can expect good convergence if ε varies
only moderately on the transverse plane. This can be understood from the fact that if ε is relatively
smooth, its Fourier transform has the most significant components near the zero frequency and
MM % 1

2 becomes a nearly diagonal matrix. iii) The performance of APP is poor for the so-called
supercell problems [24], in which a new unit cell is constructed from many replicas of the orig-
inal unit cell together with one different unit cell2. The reason is that since ε is nearly periodic
inside the new unit cell, it’s Fourier transform is also nearly periodic and there will be significant
contributions at high spatial frequencies, which this preconditioner completely fails to consider.

7.4 The block diagonal preconditioner

The block diagonal preconditioner is inspired by the fact that the diagonal elements of the matrix
operators A and B can be inverted analytically in the sense that K % 1K f � f for a suitable differ-
entiable and Bloch periodic function f . As an example, consider the operator A11 � ∂x

�
1 I jωε � ∂y

whose inverse is A % 1
11 � Iy

�
jωε � Ix. Here, Ix V y is an integral operator with respect to x or y, which in

Fourier domain is simply an algebraic inverse of the corresponding derivative operator. The block
diagonal preconditioner M1 is thus constructed by inserting the discrete versions of the afore men-
tioned operators to the corresponding places where they appear in the system matrix M. Once
again, M1 never has to be constructed or inverted explicitly because the inverse operators can be
applied directly at the operator level, as discussed above.

2The supercell method is frequently used for solving defect problems.
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The application of M % 1
1 exactly diagonalizes the main block diagonal of M but unfortunately,

leaves significant contributions elsewhere. Therefore, it is easy to understand that this precondi-
tioner does not perform particularly well on its own but should preferably be used in combination
with the auxiliary problem preconditioner. The reason why the convergence for M % 1

1 M is still
significantly better than for Jacobi preconditioner or M alone is not completely understood and
we can only give a qualitative explanation: The convolution of the spatial derivatives and the di-
electric function in Fourier space leads to matrices whose elements grow with the distance from
the main diagonal. The convolution of the integral operators and the dielectric function behave
in the opposite way and we believe that multiplying these together leads to a matrix with more
favourable spectral properties.

Sometimes it may happen that either
� �
gn � �k � � �ux � 0 or

� �
gn � �k � � �uy � 0 for some

�
gn, in which

case M1 has zero rows or columns and M % 1
1 cannot be computed. Fortunately, there is a simple

remedy to this problem: the choice of the coordinate axes is arbitrary and we can usually select
another coordinate system in which M1 behaves well. A rotation about the z-axis will change the
mathematical description of the problem but not the underlying physics. In practice, the rotation
is very easy to implement as nearly all quantities are expanded in terms of the reciprocal lattice
vectors and the only place where we have to consider x or y explicitly is in evaluating the spatial
derivatives. Hence, it suffices to rotate

� �
gn � �k � so that its projections on x- and y-axis obtain

suitable numerical values. An incurable singularity occurs when
�
k � �0 (the Γ-point) and both

projections are simultaneously zero for n � 0. In this case, M1 is singular in all coordinate systems
which can be obtained by a rotation about the z-axis and the block diagonal preconditioner is not
applicable.

7.5 The two-sided preconditioner

The most efficient preconditioner studied in this work is the two-sided preconditioner, which con-
sists of both the auxiliary and the block diagonal preconditioners.

In the two-sided preconditioner, M2 is defined as before but M1 should multiplied by diag % 1 � M �
because the diagonal elements of M are already inverted by the application of M % 1

2 . In all cases
we encountered the two-sided preconditioner required less iterations than the APP alone3 and
quite often the reduction was as much as 50%. Because the application of the block diagonal
preconditioner is computationally cheap, the two-sided preconditioner gives the best numerical
performance for most problems.

Quantitative analysis of the iterative solver is fairly difficult because the performance depends very
strongly on the spectral condition number of the preconditioned matrix M % 1

1 MM % 1
2 , which in turn

depends in a complicated way on
�
k, ω, the spatial characteristics of the dielectric function ε and

the expansion basis size. Generally, we can say that i) problems, where ε is not a function of the
transversal coordinates, one application of the APP-preconditioner exactly solves the equation and

3Except near the Γ-point where M1 is nearly singular and the block diagonal preconditioner should not be used
anyway.
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the iteration count is one. ii) Problems, in which ε varies only moderately on the transversal plane,
can often be solved with 10 to 100 iterations while iii) problems with strong transversal variation,
e.g. semiconductors and air, typically require 30 to 400 iterations. iv) Supercell problems with
high refractive index contrast are particularly hard to solve using the suggested preconditioning
scheme. Especially, if ω is above the light line, thousands of iterations may be required4 .

4It is not currently understood why convergence is slower if ω is above the light line.
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8 Artificial opals

Artificial opals are 3D photonic crystals, which are made using self-assembly of microspheres in a
suspension [51]. Several techniques have been proposed, such as the sedimentation process [52] or
vertical deposition of the microspheres [53]. The microspheres can either be organic or inorganic,
most notably, they are often made of silica, poly(methyl methacrylate) (also known as PMMA and
Plexiglas) or polystyrene (latex). Some common techniques for making the monodispersive mi-
crospheres are reviewed by Bardosova et al. in [52]. Under favorable conditions, the microspheres
will crystallize in a face centered cubic (FCC) lattice, although a hexagonal close packing lattice
or a mixture of the two is also possible [54]. Artificial opals made this way do not usually possess
a complete photonic bandgap because the refractive index contrast and the porosity of the crystal
are not sufficient. Therefore, opals are sometimes inverted by filling the interstices with a suitable
high refractive index material, e.g. some semiconductor, and finally removing the original opal by
etching [55]. An illustration of an opal composed of polystyrene microspheres, which is analysed
in publication IV, is shown in Fig. 8.1.

While opals are sometimes considered as real 3D crystals, they must have a finite thickness in
a physical world. Therefore, they can be treated as a special case of a photonic crystal slab: the
(111)-surface of the FCC-crystal forms a triangular lattice while the lattice characteristics along the
perpendicular [111]-direction can be accounted for in the discretization of the dielectric function
ε
�
x � y � z � .

8.1 Reflection of beams from opals

In section 6.3, we discussed the computation of the fields in the presence of an incident field
excitation. We expanded both the incident and reflected fields in terms of the reciprocal lattice
vectors and in doing so, we tacitly implied the Bloch periodic boundary condition with respect
to the lattice periodicity. Because Bloch periodic incident fields are not very common in the real
world, we need an improved procedure for computing the reflection of arbitrarily shaped beams.
A straightforward approach is to create a supercell and expand the fields in terms of the new
reciprocal lattice vectors. The incident field is still periodic but if the supercell is large enough,
the adjacent beams appear uncoupled. The downside is that simulating a very large supercell
also requires a very large planewave basis, which is undesirable from a computational point of
view. To overcome this difficulty, we use a scheme for expanding any incident beam in terms of
Bloch periodic functions, each of which can be solved independently. Here, we present the basic
principles of the algorithm and refer the reader to paper IV for more details.

If all the materials are linear, i.e. their properties do not depend on the optical intensity, then the
Maxwell’s equations are also linear. This means that if Ψ1 is the field produced by source σ1 and
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Figure 8.1: A scanning electron microscopy image of an artificial opal composed of polystyrene
spheres on a gallium-arsenide substrate. The sample and the image were prepared by M. Mattila.

Ψ2 similarly for σ2, then σ1 � σ2 produces the field Ψ1 � Ψ2. More generally, if an operator Gn is
defined such that Ψn � Gnσn, then

Ψ � ∑
n

Ψn � ∑
n

Gnσn � (8.1)

This result shows that the incident field can be divided into individually solvable components and
the total field is then obtained simply by adding the individual results.

In order to utilize this property, we expand the incident beam as

Ψinc � �r � z ��� ∑
m
f c1

mΨinc V 1
m � c2

mΨinc V 2
m h exp < j

�
km
� �
r � λinc

m z =�� (8.2)

where Ψinc V 1
m and Ψinc V 2

m are the homogeneous-medium eigenvectors and c1
m and c2

m are scalar coef-
ficients used to determine the shape, size and polarisation of the beam. The sign of the eigenvalue
λinc

m should naturally be chosen such that the optical power flows towards the photonic crystal. The
superindex “inc” is used to distinguish the incident field from the reflected to be discussed next.
The difference between Eq. (8.2) and other field expansions discussed in this work is that none of
the expansion vectors

�
km is required to be a multiple of the reciprocal lattice vectors. This means

that Ψinc � �r � z � is not related to the symmetry of the underlying photonic crystal in any way.
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Hence, in order to solve the total reflection we should solve the reflection of

Ψinc V i
m
� �
r � z �"� ci

mΨinc V i
m exp < j

�
km
� �
r � λinc

m z = i � 1 � 2 � (8.3)

for each m and both i � 1 � 2 and then add the results. The field in Eq. (8.3) is an ordinary planewave
whose reflection was already discussed in section 6.3. The only difference is that there we assumed�
km to be a vector in the first Brillouin zone but this requirement is easily relaxed by using

�
km ��

k Vm � �gn, where
�
gn is some reciprocal lattice vector and

�
k Vm is a vector inside the first Brillouin zone.

For simplicity, we will limit
�
km to the first Brillouin zone in the following discussion.

The total reflected field can now be written as

Ψrefl � �r � z ��� ∑
m

2

∑
i Q 1

ci
mΦi

m exp < j
�
km
� �
r = � (8.4)

where Φi
m, defined in Eq. (8.5), is a lattice periodic part of the reflection induced by the eigenvector

Ψinc V i
m ,

Φi
m
� �
r � z �
� ∑

n
exp f j �gn

� �
r � λrefl

m V nz h 2

∑
i Q 1

ai
m V nΨrefl V i

m V n � (8.5)

Here, Ψrefl V i
m V n , i � 1 � 2 � is the outward propagating eigenvector corresponding to the planar wave vec-

tor
� �
km � �gn � and ai

m V n is a scalar coefficient determined from the solution of the system equation.
Qualitatively, summing over m means summing over different incident angles while summing over
n means summing over different Bragg scattering orders.

From Eq. (8.4), it is evident that the coefficients ci
m, defining the incident beam, and the lattice

periodic reflection functions Φi
m are independent. This means that once the functions Φi

m are com-
puted, the reflection of different incident beams can be computed simply by selecting a different
set of coefficients ci

m. In paper IV we take this one step further and develop a formula for comput-
ing the reflectance using the coefficients ci

m and ai
m V n only. However, repeating that formula here

would be meaningless since it was derived under a different normalization of the eigenvectors.

A few remarks are in place: i) Since the reflection of each planewave in the expansion given in
Eq. (8.2) is solved independently, the total computation time is defined by the total number of
those planewaves. For the expansion of highly localized beams, more planewaves are needed
and the total computation time scales accordingly. For less localized beams the opposite is true.
Hence, the computation time is inversely proportional to the beam width. ii) The ratio of c1

m and
c2

m defines the polarisation of the planewave. Therefore, if it is known in advance that only a
certain polarisation is of concern, one can solve the periodic reflection functions Φm directly for
the predetermined linear combination of eigenvectors

�
c1

mΨinc V 1
m � c2

mΨinc V 2
m � , thus saving a factor

of 2 in the computation time. iii) We have solely considered the reflected field here but solving the
system equation automatically gives the field expansion for the transmitted field as well. Hence,
the computation of the transmittance is a trivial extension to the procedure described above.
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Figure 8.2: The simulated and measured reflection spectra from an opal made from PMMA
spheres on a silicon substrate. The diameter of the spheres was 268 nm. Numerical aperture
(NA) of 0.55 corresponds to a 3µm and NA 0.3 to a 15µm spot size, respectively.

8.2 Comparison to experimental results

The computational method was verified by comparing the simulations with measurement data
obtained from opal photonic crystals. The opal samples considered here, PMMA microspheres
[56] on silicon substrates, were prepared by F. Jonsson. The reflectance spectra from these were
measured by S. Arpiainen using a NanoSpec III spectrophotometer equipped with a microscope.
Two magnification settings of the microscope were used, 50x and 10x, corresponding to spot sizes
3µm and 15µm, respectively.

The incident light was unpolarised and therefore we computed the reflection spectra for e- and
h-polarisations1 separately and then took an average. Because the ratio of c1

m and c2
m is fixed for a

given polarisation as discussed above, we will here after refer to that combination using only one
coefficient, cm.

The numerical aperture of the illuminating optics was larger than that of the collecting optics,
meaning that there were more planewave components in the incident beam than could be mea-
sured. Therefore we used the following simple rule for the expansion coefficients: cm � 1 if

1e-polarisation has electric field parallel to the surface and correspondingly for h-polarisation and magnetic field.
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the wave with the wave vector
� �
km � λrefl

m
�
uz � is collected by the optics and cm � 0 otherwise. In

real space, this corresponds to a sinc-function. We also computed the reflection of beams with
Gaussian profiles but the results did not match the measurements equally well.

The symmetry of the underlying lattice can be taken advantage of when computing the reflection
functions Φm. An FCC-lattice has a six fold rotation symmetry about the [111]-direction (which
coincides with the z-axis), so that if M planewaves are used to expand the incident field, only M I 6
of those have to be solved explicitly. When solving for the functions Φm, we made an interesting
discovery: If the incident planewave is sufficiently perpendicular to the crystal surface, then the
reflection coefficient of intensity Rm is primarily a function of ! �km ! and the direction of

�
km has only

a minor effect. In publication IV we analysed this phenomenon more rigorously and developed
criteria when it can be applied. Here it suffices to say that the theory is valid in our particular case.
The fortunate consequence is that we only need to sample

�
km along a line (instead of a surface)

in the Fourier space as the other orientations can then be deduced from the assumed continuous
rotational symmetry.

In the simulation, we used a basis of 16 � 16 planewaves and 16 finite difference planes per sphere
diameter. Since the sample had 18 monolayers of PMMA spheres, this resulted in a system with
243200 unknowns. The incident beam was expanded in terms of 40 planewaves and the spectra
was computed in 75 points. The comparison between the simulation and the measurement is
shown in Fig. 8.2. The match is very encouraging, especially for the smaller spot size. The
difference between the simulated and measured reflection intensity most likely stems from the
sample quality. This is indicated by the fact that using a smaller spot size in the measurement leads
to higher reflectance, while the simulation behaves in the opposite way. Especially, intuitively and
according to the simulation, a plane wave excitation should lead to the best reflection whereas in
reality, it often leads to the worst. This indicates that the samples are not very uniform over a large
area and it becomes ever more important to be able to study their properties using narrow beams.
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9 Discussion

We have developed a computational method for solving a class of electromagnetic problems,
which are periodic along two axes and non-periodic along the third. The focus has been on pho-
tonic crystals and especially, on photonic crystal slabs, but the method is applicable to any problem
satisfying the required periodicity conditions. We applied the method in 2D and 3D Cartesian co-
ordinates and in cylindrical coordinates.

The developed method is based on the diagonalized form of Maxwell’s equations, in which one
dimension in space is distinguished and isolated. We saw that the diagonalized form allows the
development of efficient computational algorithms and that the knowledge of the transversal field
on some transversal plane uniquely defines the fields, including the perpendicular components,
everywhere in space.

Due to the translation symmetry of the problems, we expanded the fields on the transversal plane
using planewaves. This was very convenient for many reasons: i) the evaluation of the positional
derivatives is very efficient in Fourier space, ii) the Bloch periodic boundary condition can be
easily implemented and iii) the open space boundary condition can be composed in terms of an-
alytically solvable eigenvectors. In the perpendicular direction, we used finite differences, which
are well adapted to the diagonalized form and do not require the geometry to be periodic.

We considered both eigenmode and excitation problems. The eigenmodes were found at the singu-
lar points of the system matrix, which we searched by varying ω while keeping the crystal vector

�
k

constant. The field response to different excitations was obtained as a solution of the same system
equation corresponding to an appropriate right hand side.

A great emphasis was laid on the computational performance. The system equation was solved
using iterative techniques and efficient problem specific preconditioners were developed. We also
introduced a scheme for determining the matrix singularity from the field response to an arbitrary
excitation. This enabled us to search for the singularities of the system matrix using iterative
techniques.

Finally, we developed a method for computing field responses to arbitrarily shaped and sized
beams in the framework of Bloch periodic boundary conditions. The computational effort was
shown to scale linearly with the number of the planewaves used for expanding the incident beam.
We compared the computed reflectance spectra to those measured from artificial opals and found
the agreement to be particularly good.
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10 Outlook

Photonic crystals will undoubtedly have a significant role in the future of optics and optical com-
munications but there are plenty of challenges to overcome. One dimensional crystals are already
routinely used in devices such as dispersion compensating optical fibers and vertical cavity surface
emitting lasers (VCSEL) but 2D and 3D crystals are much rarer in practice. There is, however,
at least one success story already: a 2D photonic crystal is used to tailor the dispersion proper-
ties and reduce nonlinearities and losses in a photonic crystal fiber (PCF) [57]. Another promising
application for 2D and slab photonic crystals, which is currently maturing in laboratories, is a pho-
tonic crystal light emitting diode (PCLED), where the crystal features are used for controlling the
spontaneous emission of photons and increasing the extraction efficiency of light [58, 59]. Three
dimensional crystals are further from commercialization because they are so difficult to fabricate.

One goal in photonic crystal research is to create an integrated optical circuit. If the fabrication
technology develops sufficiently, then 3D crystals are the best candidates for this purpose because
in theory, they enable completely lossless microcavities and waveguide bends. Such development
is not, however, likely to happen in the near future, if ever. In the mean while, the best alter-
natives are photonic crystal slabs, which can be manufactured using existing integrated circuit
(IC) technology. Whatever technology is going to dominate, one of the main difficulties will be
the great mode mismatch between a standard single mode fiber and photonic crystal waveguides,
complicating the coupling of light to and from the photonic crystal circuit.

The modelling of photonic crystals must also develop before an integrated optical circuit can be-
come reality. Existing algorithms are probably good enough for geometries, which can be treated
in terms of a single unit cell (or a supercell of a feasible size) but for complete circuits with three
dimensional features and coupled resonators something new is needed. Photonic crystals rely on
interference effects and it may happen that the whole circuit has to be treated as a single entity,
which means that the computational task becomes prohibitively large. An interesting approach for
modelling nonperiodic crystal geometries is to develop a set of localized basis functions designed
for the perfect lattice and then expand the field in the disturbed lattice in terms of them [60–63].
Functions in this class are often referred to as Wannier functions, owing to the developer of a
similar concept in solid state physics [64]. It remains to be seen whether the localized function
basis is the future of photonic crystal computations. So far the published work, to the author’s best
knowledge, has only treated purely 2D structures and unpublished work done by the author has
shown that extending the Wannier function concept to crystals where radiation is possible (i.e. the
photonic crystal slabs), is not straightforward and may turn out to be impossible.

The author is confident that if the problems in the manufacturing can be overcome, then so can the
problems in computation. Maybe it will be Wannier functions, maybe a combination of several
techniques or perhaps something completely different but one thing is certain: any question can
be answered but the accuracy may vary.
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