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1. Introduction 

1.1. Background 

When the 11th General Conference on Weights and Measures (Conférence 

Générale des Poids et Mesures, CGPM) in 1960 adopted the International System 

of Units (Système International d'Unités, SI) [1], the development of photometric 

and radiometric quantities was not progressing very rapidly. At that time, people 

in this field had already abandoned standard candles, flames and incandescent 

filament standards [2]. The first well-defined standard source in use, developed in 

1948, was based on the luminance of a well-defined Planckian blackbody radiator 

at the temperature of freezing platinum [3]. Such a device, however, was difficult 

to use and expensive. Therefore, not very many national metrology institutes 

(NMIs) acquired it. 

It was not until 1979, when the definition of the candela, unit of luminous 

intensity Iv, was re-defined by the 16th CGPM [4]. The new definition made it 

possible to realize photometric and radiometric quantities by constructing cost-

efficient detectors with known responsivity, potentially allowing more precise 

measurements also for NMIs with smaller budgets. The uncertainty related to 

detector characterization decreased and went below the uncertainties associated 

with the blackbodies due to the development of the cryogenic radiometer [5, 6, 7] 

and the trap detector [8]. 

Nowadays many NMIs around the world are using detector-based methods in 

their realizations of the photometric and radiometric quantities [9, 10, 11, 12, 13, 

14, 15 16, 17, 18, 19, 20, 21]. However, detector-based realizations do not obviate 

standard lamps, since reliable light sources are always needed in practical 

calibrations. Standard lamps are also used for maintenance purposes. Periodic 

calibrations of a group of standard lamps provide information about the long-term 

stability of the realized unit. 

International intercomparisons between NMIs are arranged for all applicable 

quantities. Reason for such comparisons is to check that each participating NMI is 
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capable of measuring certain quantities within claimed uncertainties. Comparisons 

can be bilateral or trilateral [22, 23], or even worldwide where approximately 

10-20 NMIs take part. Such large comparisons are usually key comparisons [24] 

arranged by the Consultative Committee for Photometry and Radiometry (Comité 

Consultatif de Photométrie et Radiométrie, CCPR) and the International Bureau 

of Weights and Measures (Bureau International des Poids et Mesures, BIPM). 

The first light-emitting diode (LED) emitted red light and was developed in 1962 

by Nick Holonyak Jr. working at the Advanced Semiconductor Laboratory of the 

General Electric Co [25]. The invention of the red LED was followed by the 

development of green [26] and yellow [27] LEDs in the early 1970’s. They were 

used in small displays and for indication purposes. It was not until during the 

1990’s, when the first blue [28] and white [29] LEDs were developed. This was a 

start for the solid-state lighting. As efficiency (the ratio between light output and 

consumed electric power, lm/W) of the white LEDs has improved, they have 

become a strong challenger for incandescent lamps. LEDs of various colors are 

nowadays used in large displays, traffic lights and signs, advertising signs and in 

decorative lighting, just to name a few applications. 

From the photometric and radiometric point of view, LEDs are much more 

difficult light sources to characterize and measure than incandescent lamps. LEDs 

have usually narrow spectral features and their light output is limited to a small 

solid angle [30]. International Commission on Illumination (Commission 

Internationale de l'Eclairage, CIE) is working to improve the existing standards 

[31] for LED measurements [32, 33]. The unique properties of the LEDs set 

additional requirements for the detector characterization. In order to measure 

precisely the amount of light emitted by the LED, the spectral responsivity of a 

photometer or radiometer has to be measured [34]. It is also absolutely necessary 

to measure the emission spectrum of the LED. 

Commercial illuminance meters (luxmeters) are often used in applications where 

the light coming from a wide angle needs to be measured. A white diffuser in 

front of the detector inside the measuring head is an easy way to improve the 

angular responsivity. When such a meter is calibrated, the calibration distance is 
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typically measured from the outermost surface of the diffuser. The actual distance 

reference plane might be inside the diffuser and the calibration will be erroneous 

[35]. Since the manufacturers usually do not give any information concerning the 

reference plane offset, it has to be measured separately for each type of diffuser. 

1.2. Progress in this work 

The units of luminous intensity, illuminance and spectral irradiance were 

successfully realized at the Helsinki University of Technology (TKK) [14, 17, 36] 

before the research work in this thesis was started in 1999. These realizations 

provided traceability to subsequent realizations of photometric and radiometric 

quantities, luminance and spectral radiance [Publ. I], which are introduced in 

Chapter 2. Today, the realization of spectral radiance provides traceability for 

computer and mobile phone thin-film-transistor (TFT) display characterization 

measurements. To ensure proper readability of such displays, the accuracy and 

reliability of these measurements are very important. 

Chapter 2 also includes the description of the realization of luminous flux, which 

is a very essential photometric quantity for the lighting industry. The development 

work for the realization began already in 1997 [37]. Preliminary studies showed 

that, instead of miniature lamps, high-intensity LEDs can be used as light sources 

in the sphere characterization. The measurement set-up, based on 1.65-m 

integrating sphere, was constructed and first test measurements were conducted to 

show that the sphere system works as expected [Publ. II]. During the next years, 

the measurement set-up was further improved and the realization of the unit of 

luminous flux was finalized in 2004 [Publ. III]. The long-lasting, determined work 

to build a Finnish national standard for luminous flux resulted in a measurement 

system which has one of the lowest measurement uncertainties (0.47 %) in the 

world. The leading NMIs, National Institute of Standards and Technology 

(NIST, USA), National Physical Laboratory (NPL, UK) and Physikalisch-

Technische Bundesanstalt (PTB, Germany) have earlier reported corresponding 

uncertainties of 0.53 %, 0.35 % and 0.60 %, respectively, in their trilateral 

intercomparison [23]. The results of the comparison measurements agreed within 

these uncertainties. 
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An overview of international intercomparisons included in this thesis is provided 

in Chapter 3. TKK and NIST arranged a bilateral comparison for illuminance 

responsivity and luminous flux in 2000 [Publ. IV]. Results showed that 

measurements of both quantities were in excellent agreement, having differences 

less than 0.1 %. Similar results were obtained from the test measurements with 

Swedish National Testing and Research Institute (SP) when their luminous flux 

lamps, traceable to calibration at BIPM in 2001, were measured at the TKK in 

2003 [Publ. III]. Average difference less than 0.2 % was observed, providing 

further confidence in the low measurement uncertainty of the unit of luminous 

flux at the TKK. 

A commercial photometer measuring a light source based on light-emitting diodes 

was brought to TKK for illuminance responsivity calibration in 2002. Because 

LED-based sources are difficult to measure even with laboratory-grade 

equipment, it was considered necessary to compare two different calibration 

methods [Publ. V] using both lamps and LEDs as light sources. The problems 

with LEDs as compared to incandescent lamps and the calibration methods 

themselves are described in Chapter 4. Issues like measurement geometry, light 

source characteristics and later upgrading of the measurement system were used 

as criteria to evaluate which method had more advantages. A discussion about the 

reasons why a particular method was found better is also included in Chapter 4. 

From photometric devices, commercial illuminance meters (luxmeters) are most 

often brought for calibration at TKK. With a few exceptions, these meters are 

equipped with diffusers to widen the measurement angle and improve the cosine 

response. During the calibration, the outermost surface of the diffuser is placed to 

the same distance from the light source as the reference detector at each 

illuminance level. Since the illuminance changes with distance, it was seen 

important to study, how far inside the diffuser the actual distance reference plane 

is [Publ. VI], because that has a direct influence on the results of the calibration. 

As described in Chapter 5, luxmeters with diffusers of three different shapes were 

tested by measuring illuminances at several distances from a standard lamp and 

comparing the results with a reference detector without a diffuser. The distance 
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reference planes were determined for each diffuser and correction factors were 

calculated to mathematically shift the reference planes to the right locations. As a 

result, the systematic calibration errors up to 2 % due to diffuser reference planes 

disappeared. Only statistical variations of the order of 0.2 % remained, improving 

the calibration accuracy by an order of magnitude. 
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2. Realizations of the units 

Basically detector-based realization is a development process to construct, 

characterize and maintain a stable detector for a certain unit of measurement. The 

realized unit must be traceable to a base unit of the SI system either directly or 

through previously realized units. At TKK the primary standard for photometric 

measurements is a reference photometer consisting of a trap detector, a 

temperature-controlled V(λ) filter and a precision aperture [17]. All of the 

components can be characterized separately [38, 39, 40]. The realization must also 

include thorough and reliable uncertainty analysis, which is compiled by 

following certain guidelines [41, 42]. The square root of the sum of squares of the 

individual uncertainty components is multiplied by a coverage factor k to obtain a 

relative expanded uncertainty value. The most commonly used coverage factor, 

k = 2, means that the “real” value is inside the expanded uncertainty limits with 

95 % probability1. 

2.1. Luminance and spectral radiance 

Luminance Lv is the photometric counterpart of spectral radiance Le(λ), which is 

defined as the radiant power per unit area, unit solid angle and wavelength 

interval (W⋅m-2⋅sr-1⋅nm-1). Luminance describes the brightness of a surface as seen 

by a human eye. As luminance and spectral radiance are source-related quantities, 

they do not depend on the measurement distance. Luminance and spectral 

radiance are linked by 

λλλ d)()(
nm830

nm360
m VLKL ev ∫= , (1) 

where V(λ) is a spectral luminous efficiency function for photopic vision 

standardized by the CIE. The V(λ) function describes the responsivity of a human 

eye in daylight conditions [43]. Maximum spectral luminous efficacy of radiation 

                                                 

1 All expanded uncertainty values in this thesis use a coverage factor k = 2. 
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for photopic vision Km is a scaling factor providing a link between radiometric 

and photometric quantities and has the value of 683 lm/W [43]. 

The TKK realizations of luminance and spectral radiance are based on an 

integrating-sphere source having a diameter of 30 cm. Light from the external 

lamps enters the sphere and after numerous reflections from the high-reflectance 

coating (Spectraflect , [44]) inside the sphere, uniform intensity distribution at the 

output precision aperture is produced. The luminous intensity of the sphere output 

is measured using the TKK reference photometer [17]. It is calibrated on regular 

basis for optical power using several laser wavelengths with a cryogenic 

radiometer [18], which provides traceability to the SI base unit of electric current, 

ampere (A) via electric power.  

Because the measurement distance is relatively short (800 mm) as compared to 

the aperture diameters, a correction for the physical distance is needed. The 

effective measurement distance Deff can be calculated as 

22
2

2
1eff drrD ++= , (2) 

where r1 is the radius of the sphere aperture (8 mm), r2 is the radius of the detector 

aperture (1.5 mm) and d is the physical distance between the apertures [45]. 

Luminous intensity Iv is derived from the measured illuminance Ev and the 

effective measurement distance. Since luminance is defined as the luminous 

intensity per unit area (cd m-2), it can be obtained as 

A
DEL v

v

2
eff⋅

= , (3) 

where A is the area of the sphere aperture. 

The uniformity of the light at the output of the sphere is very important but 

finding a suitable measuring device for this purpose with adequate resolution is 

almost impossible. Even with the best CCD-cameras it would be difficult to 

distinguish the non-uniformity of the light at the sphere output from the non-

uniformity of the CCD-matrix of the camera. Fortunately, the light path through 
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the aperture is reversible and uniformity can be measured in an alternative way. 

The two light sources were removed from the sphere and large-area photodiodes 

were put into their places. The uniformity was measured by scanning the output of 

the sphere with a laser beam and the currents from the photodiodes were recorded. 

As a result, the spatial uniformity of the sphere aperture was determined [Publ. I]. 

Spectral radiance can be measured directly by using a radiance meter. In order to 

calibrate a radiance meter, a source with known spectral radiance is needed. At 

TKK, the spectral radiance of an integrating sphere source is obtained from the 

measured luminance by taking advantage of the link between the two quantities as 

presented in Eq. (1). The only additional procedure is that the relative spectral 

irradiance of the sphere source has to be measured by a calibrated 

spectroradiometer. Using Eq. (1) a luminance value using the measured spectrum 

is calculated and compared against the measured luminance to obtain a 

normalization factor 

cv

mv

L
L

n
,

,= , (4) 

where Lv,m is the measured luminance and Lv,c is the calculated luminance. 

Spectral radiance is then obtained by multiplying each spectral component with 

the normalization factor [Publ. I]. 

Typical measurement set-up for luminance and spectral radiance measurements is 

presented in Figure 1. 
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Figure 1. The measurement set-up for luminance and spectral radiance 

measurements. The alignment laser is removed from the rail when luminance or 

spectral radiance is measured. 

Devices are aligned to the same optical axis with a two-beam alignment laser. The 

baffle between the integrating sphere and the detectors is used to prevent stray 

light. Photocurrent from the photometer is taken to a current-to-voltage converter, 

which works as a transimpedance amplifier. Resulting output voltage is recorded 

using a digital voltage meter. 

The measuring ranges of the units of luminance and spectral radiance at the TKK 

are 250 – 40000 cd⋅m-2 and 0.0001 – 1 W⋅m-2⋅sr-1⋅nm-1, respectively. According to 

the uncertainty analysis presented in [Publ. I], the relative expanded uncertainty of 

the realization of the unit of luminance is 0.36 %. For the unit of spectral radiance, 

the relative expanded uncertainty varies between 0.60 % and 2.50 % in the 

wavelength region from 360 nm to 830 nm. During this thesis work, there have 

not been any international intercomparisons for luminance or spectral radiance. 

Nevertheless, these quantities have been accepted to the Calibration and 

Measurement Capabilities (CMC) database maintained by the BIPM [46], due to 

the comparison evidence of luminous intensity [22], illuminance responsivity [47] 

and spectral irradiance [48]. 
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2.2. Luminous flux 

Luminous flux (unit: lumen, lm) is a photometric quantity that describes the total 

optical power of a light source as seen by the human eye. Typically, a 60-W white 

incandescent lamp produces about 700 lm. Traditionally luminous flux primary 

standard lamps have been calibrated using a goniophotometer [20, 49, 50, 51], 

where an illuminance standard photometer is precisely moved around the lamp at 

a known distance. Illuminance values Ev(ε,η) are measured over the solid angle 

Ω = 4π and integrated. The luminous flux Φv is calculated as 

∫ ∫=
π π

ηεεηε
0

2

0

2 dd)sin(),(vv ErΦ , (5) 

where r is the measurement distance, ε is the polar angle and η is the azimuthal 

angle of spherical coordinates. 

In addition to luminous flux, the method also gives the spatial intensity 

distribution of the lamp, which is clearly an advantage. However, this kind of 

measurement set-up requires a large facility and accurate positioning devices. 

Additionally, an integrating sphere has to be used, if secondary standard lamps are 

calibrated using the primary lamps as reference standards. 

An alternative absolute measurement method to goniophotometric method that 

uses only a large integrating sphere was developed at the NIST in 1995 

[21, 52, 53]. The method was successfully tested by calibrating luminous flux 

standard lamps using both methods in Istituto Elettrotecnico Nazionale (IEN, 

Italy) in 1996 [54]. Despite the promising results, the IEN still calibrates luminous 

flux standard lamps only with a goniophotometer. A couple of years later, the 

BIPM conducted experiments to calibrate luminous flux standard lamps in 

collaboration with the NIST with extended measurement set-up [55]. 

Unfortunately, the development work discontinued as the photometric and 

radiometric section of the BIPM was shut down in 2004. Therefore, the TKK is 

the second NMI in the world that has fully implemented a setup for luminous flux 
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measurements based on the absolute integrating sphere method [Publ. II, 

Publ. III]. 

The absolute integrating sphere method is based on an external lamp to produce a 

reference flux which is compared to the luminous flux of the lamp inside the 

sphere. The measurement set-up at the TKK is presented in Figure 2. The 

measuring range of the set-up is 10-10000 lm. 

 

Figure 2. The luminous flux measurement set-up. F1 and F2 are photometers, and 

B1 and B2 are baffles [Publ. III]. 

The sphere has the same coating material at the inner surfaces as the 

luminance/spectral radiance sphere. The external source (1-kW FEL type lamp 

operated at a correlated color temperature of 2856 K) produces illuminance Ev at 

the precision aperture plane. The illuminance is measured with the standard 

photometer F1. Reference luminous flux Φext can be calculated as 

AEΦ v=ext , (6) 

where A is the area of the aperture. 
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When the photometer F1 is removed, the reference luminous flux produces signal 

yext from the photometer F2 attached to the sphere wall. When the internal source 

(Osram Wi40/G GLOBE operated at a correlated color temperature of 2750 K and 

producing about 2200 lm) is operated, another signal yint is recorded from the 

photometer F2. Luminous flux of the internal source is then obtained as 

ext
ext

int
int Φ

y
y

fΦ ⋅= , (7) 

where f is a correction factor from the measurement system characterization. 

There are overall six characterization measurements, each of which contributes to 

the correction factor. These measurements are discussed in detail in Refs. [21, 52, 

Publ. III]. One of the characterization measurements is particularly interesting, 

because it requires that the reflectivity of the inner surface of the sphere is 

spatially scanned. Instead of using a miniature incandescent lamp as a scanner 

light source, a novel design at the TKK incorporates a high-intensity LED with a 

small achromatic lens, making the scanner smaller and lighter [Publ. II, Publ III]. 

Tests with lamps having significantly different intensity distributions were 

conducted by the NIST and the PTB in order to evaluate the related measurement 

errors [56]. Since the additional uncertainty caused by the non-uniformity of the 

intensity distribution was found to be negligible, the characterization 

measurement to determine the spatial correction for the lamp inside the sphere can 

be accounted for by a corresponding uncertainty component of the correction 

factor of unity. If extreme accuracy is required, the spatial intensity distribution of 

the lamp can be measured using goniophotometric methods. 

The characterizations are time-consuming, but the actual luminous-flux 

measurement is fast and reliable. With optimized measurement procedure, the 

measurement time of one lamp is reduced to 15 minutes, including the lamp 

stabilization time of 10 minutes. 

Expanded uncertainty for the unit of luminous flux is estimated to be 0.47 % 

[Publ. III], which is among the lowest values reported in the world. The validity 



 

24 

of the uncertainty estimate has been tested by international comparisons and test 

measurements with NIST (USA) and SP (Sweden) [Publ III, Publ. IV]. 
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3. International intercomparisons 

Each NMI develops new and maintains existing units of measurement. Since there 

is no such thing as “absolute truth”, the measurement results always include some 

uncertainty. The only way to verify that the given uncertainty is correct is to 

compare results of measurements of lamps or detectors with other NMIs. Largest 

photometric and radiometric comparisons are world-wide key comparisons 

initiated by the CCPR. Most common international intercomparisons are small, 

having two or three participating NMIs. TKK has taken part in a number of large 

and small photometric and radiometric comparisons [22, 48, 57, 58, Publ. III, 

Publ. IV]. As a proof of success in these comparisons, all quantities maintained by 

the TKK have been accepted, with claimed uncertainties, to the CMC database of 

the BIPM [46]. 

3.1. Illuminance responsivity comparison with NIST (USA) 

The illuminance responsivity scales were compared at TKK in 2000 using the 

4.5-m optical bench with accurate length scale and stable light source (Osram 

Wi41/G) operated at the correlated color temperature of 2856 K. The illuminance 

values were measured with two NIST photometers (LMT P15 FOT, calibrated for 

illuminance responsivity before and after the transportation to Finland), and TKK 

reference photometer with distances of 2.085, 2.585 and 3.085 m from the lamp. 

The photocurrents were amplified with a current-to-voltage converter and 

recorded using a digital voltage meter. The relative expanded uncertainties of the 

NIST and TKK illuminance units were 0.39 % and 0.18 %, respectively [15, 17]. 

Taking into account the short-term drifts of the photometers and the uncertainty 

components related to the comparison measurements, the relative expanded 

uncertainty of the agreement of the units was estimated to be 0.47 % [Publ. IV]. 

The difference between the measured illuminance responsivities was well within 

the uncertainty, being only 0.08 % on the average [Publ. IV]. Such small 

difference and measurement uncertainty show that the measurement capabilities at 

the TKK are excellent in the field of photometry. 
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3.2. Luminous flux comparison with NIST (USA) 

After the illuminance responsivity comparison, the luminous flux units were 

compared using the TKK 1.65-m absolute integrating sphere set-up described in 

Figure 2. Traceability from the unit of luminous intensity came via a commercial 

standard photometer (PRC TH15) calibrated with the reference photometer during 

the illuminance responsivity comparison. Four NIST luminous flux standard 

lamps (Osram Wi40/G GLOBE, calibrated for luminous flux before and after the 

transportation to Finland) were measured twice, on consecutive days, and the 

results were averaged. At the time of the comparison, the relative expanded 

uncertainties of the units of luminous flux at the NIST and the TKK were 0.62 % 

and 0.78 %, respectively. Taking into account additional uncertainty components 

(calibration and stability of the transfer lamps, calibration of NIST lamps at TKK) 

the relative expanded uncertainty of the agreement of the units was estimated to 

be 1.01 % [Publ. IV]. The average difference of the measured luminous flux 

values for four lamps was only 0.06 % [Publ. IV]. For a completely new 

realization of a unit this is a remarkable result, indicating the good quality of 

photometric research at the TKK. 

3.3. Luminous flux comparison with SP (Sweden) 

The luminous flux unit maintained at the TKK was compared again in 2003. By 

then, the measurement set-up was already completed with a new lamp holder 

[Publ. III] and revised relative expanded uncertainty estimate of 0.47 % was 

established. Two luminous flux standard lamps (GEC Hirst) from SP (Sweden) 

were measured using the TKK integrating sphere. The lamps had been calibrated 

by BIPM in 2001 with a relative expanded uncertainty of 1.0 %. The relative 

expanded uncertainty of the agreement of units including the measurement related 

uncertainty components was estimated to be 1.10 %. The average difference of the 

measured luminous flux values between TKK and BIPM was 0.16 % [Publ. III] 

indicating a very good agreement between these units and giving further 

confidence for the claimed uncertainty of the TKK luminous flux unit. 
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4. Light-emitting diodes and challenges in photometer 

calibration 

In the early years of photometry, the light was emitted by flames and glowing 

filaments [2] having continuous spectral distributions for which straightforward 

measurement methods can be applied. Problems began to appear after the first 

commercial fluorescent lamp was developed in the late 1930’s and patented in 

1941 [59]. Discharge lamps became more and more popular in general lighting 

applications because of their lower power consumption and longer life-time as 

compared to incandescent lamps. Concerning the field of photometry, however, 

they had a major drawback: the light spectrum was not only continuous but it also 

had spectral lines. A photometer calibrated with an incandescent lamp would give 

erroneous results for these kinds of lamps; errors up to several per cent would be 

obtained depending on the spectrum of the discharge lamp and the quality of the 

V(λ) filter. Even worse problems may appear with the new LED light sources. 

4.1. LED properties and correction for spectral mismatch 

A single LED does not emit much light and to increase the luminous intensity of 

an LED, the light is often restricted to a small solid angle with an integrated lens. 

For applications where large intensities, comparable to those achieved by 

incandescent lamps are needed, a cluster of LEDs with external lenses or 

reflectors can be used. However, these kinds of light sources are far from standard 

lamps traditionally used as light sources in photometric measurements. Large 

LED clusters do not even behave as point sources anymore, making measurement 

geometries more challenging and application of fundamental optical radiation 

laws much harder. 

Unlike incandescent and discharge lamps, LEDs are quasi-monochromatic light 

sources. The emission spectrum of a single-color LED is similar to 

monochromatic laser radiation, but widened. The width of the spectrum between 

the wavelengths where the intensity has dropped by 50 % from the peak value is a 

measure of the monochromaticity of the light and commonly referred to as full 

width at half maximum (FWHM). With single-color LEDs the FWHM –values 
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are typically between 20-50 nm which makes the quality of the V(λ) filter within 

that particular spectral region a key issue. White LEDs are a bit easier to measure, 

because they emit light throughout the visible wavelength region. With LEDs, 

white light is quite easily achieved by adding yellow phosphor to a blue LED that 

has peak emission wavelength around 470 nm [60].  The blue light excites the 

phosphor which emits broadband radiation in the yellow wavelength region. 

Mixing of the blue and the yellow color produces “blueish” white. 

Figure 3 shows the spectral power distributions of four LEDs of different color 

accompanied with the spectrum of the CIE standard illuminant A and the V(λ) 

curve. It can be seen that, e.g. with the red LED, a photometer with a V(λ) filter 

having a small deviation from the theoretical V(λ) curve around 630 nm relative to 

its peak value may result in a large measurement error. 

 

Figure 3. Spectral power distributions of four LEDs shown with the V(λ) curve 

and the spectrum of the CIE standard illuminant A. 

Correction can be applied if the relative spectral responsivity of the photometer 

and the relative spectral power distribution of the light source are known. A 

spectral mismatch correction factor F for the photometer can be calculated [61] as 
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where SA(λ) is the relative spectral power distribution of the CIE standard 

illuminant A used for the absolute calibration, St(λ) is the relative spectral power 

distribution of the source to be measured and srel(λ) is the relative spectral 

responsivity of the photometer. 

Despite the obvious drawbacks concerning the properties of LEDs, they do have 

many advantages: they are nowadays widely used in applications where low 

energy consumption, robust structure and long maintenance interval are 

important. One such application is a maritime beacon either on a floating device at 

the sea or on a fixed structure at the harbor. 

4.2. Photometer calibration methods 

The recommendations on various aspects concerning maritime navigation, 

including photometry of signal lights, are given by the International Association 

of Marine Aids to Navigation and Lighthouse Authorities (IALA). The LED buoy 

lantern used as a signaling beacon should have the right color with adequate and 

horizontally uniform luminous intensity. The IALA recommends two alternative 

methods for photometer calibration when LED sources are measured [62]. A 

commercial photometer used for on-line testing of manufactured LED lanterns 

was calibrated at TKK with both methods following IALA guidelines [Publ. V]. 

4.2.1. Calibration using incandescent light source 

The commercial photometer (later referred as photometer) was calibrated for 

illuminance responsivity with the TKK reference photometer using a luminous 

intensity standard lamp (operated at 2856 K) as a light source. 

Since the spectra of the LED lanterns were different from the spectrum of the 

lamp used for absolute calibration, the spectral mismatch correction factors were 

calculated for the photometer. For this purpose, the relative spectral responsivity 

of the photometer was measured with the TKK reference spectrophotometer 
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[63, 64]. Additionally, the relative spectral power distributions of the lanterns 

were required. They were measured with a calibrated spectroradiometer and are 

those presented in Figure 3. 

The final correction factors for the photometer, one for each lantern, were 

obtained by multiplying the corresponding spectral mismatch correction factors 

with the correction factor from the absolute illuminance responsivity calibration. 

4.2.2. Calibration using LED-based light source 

Instead of using a standard lamp, the photometer was calibrated with the TKK 

reference photometer using the four LED lanterns as light sources. The relative 

spectral power distributions of the lanterns were needed to calculate the spectral 

mismatch correction factors for the reference photometer whose relative spectral 

responsivity was already known and presented in Figure 4. 

 

Figure 4. Relative spectral responsivity of the reference photometer (crosses) as 

compared with the V(λ) curve (solid line). Open circles represent the difference 

between the two curves. 
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The final correction factors for the photometer were obtained by dividing the 

color-corrected illuminance values measured by the TKK reference photometer 

with the illuminance values measured by the photometer. 

4.3. Evaluation of the calibration methods 

Although problems with light sources that have either narrow spectra or are 

spatially limited were of general knowledge in the field of photometry, to my 

knowledge this was the first time when a thorough investigation of different 

photometer calibration methods has been reported in the literature [Publ. V]. 

The differences between the correction factors for white, green, red and yellow 

lanterns were 0.002, 0.006, -0.010 and 0.004, respectively. The consistency 

between the correction factors obtained with different methods was good and 

within uncertainties (relative expanded uncertainties were 0.9 % and 1.0 %) 

[Publ. V]. Surprisingly, the lantern with red LEDs had negative difference due to 

a larger correction factor with the latter calibration method. Further studies with 

that particular lantern included measurements of vertical spatial intensity with 

three different lateral angles. It was found out that the optical and mechanical axes 

were not always the same. This leads to problems with photometers which have 

apertures of different sizes. When such photometers measure a narrow intensity 

peak, there will inevitably be differences in measured illuminance values, because 

the photometers measure different amounts of light. This does not occur with 

standard lamps, which act as point sources and have uniform far-field intensity 

distributions. 

Since both calibration methods gave similar results, further evaluation was based 

on more practical matters. The spectral power distributions of the LED lanterns 

are measured in any case to obtain spectral mismatch correction factors for the 

photometers. The first method (with a standard lamp as a light source) is more 

laborious because of the relative measurement of the spectral responsivity of the 

commercial photometer. The absolute level of the calibration is achieved with a 

standard lamp which is a reliable and easy light source to use. If LEDs with new 

colors are taken into use, only their relative spectral power distributions need to be 
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measured to calculate new spectral mismatch correction factors. The second 

calibration method is simpler and the time required for the calibration is relatively 

short, but in the situation described above, both the lantern and the photometer 

would have to be brought for calibration. In addition, a light source based on 

LEDs was found not to be a very good standard source due to the spectral and 

spatial properties. 

As a conclusion of the evaluation process, the first calibration method was 

eventually considered to be a better choice. It does require more measurements 

when the photometer is calibrated for the first time, but the absolute illuminance 

responsivity measurement is more reliable in every way. Future upgrades that may 

include implementation of completely new LED colors or modification of existing 

colors with slightly different spectra are easier because only the spectra of the 

LED lanterns need to be measured. Also the maintenance of the absolute 

measurement level is easy due to the accurate and reliable illuminance 

responsivity calibration with a standard lamp. 
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5. Calibration errors caused by diffusers 

Commercial photometers (also called as luxmeters, because they measure 

illuminance whose unit is ‘lux’) are manufactured by various companies and 

widely used in lighting design, photography, occupational health care and 

corresponding applications. The luxmeters have large measuring ranges 

(> 200 000 lx) and reasonable accuracies of a few per cent, depending on the type 

of the silicon photodiode detector and the quality of the filter in front of it. 

The professional photometers used by the NMIs usually have open apertures 

which limit the measurement solid angle and define precisely the distance 

reference plane of the photometer. A luxmeter, however, is often equipped with a 

white diffuser in front of the detector-filter package to improve the angular 

responsivity (cosine response) and to widen the measurement solid angle. Diffuser 

material is usually white plastic or opal glass. This thesis includes the first 

reported study [Publ. VI] in the world to systematically determine the magnitude 

of the measurement error caused by the diffuser. 

5.1. Displacement of the distance reference plane of the diffuser 

In order to improve the cosine response, the commercial luxmeters usually have 

dome-shaped diffusers. For special purposes other shapes, such as cylindrical 

diffusers, are also available. The cost for the improved cosine response is the shift 

of the distance reference plane to an unknown location [35]. This leads to errors in 

illuminance responsivity calibrations, where for simplicity the reference plane is 

typically assumed to be at the outermost surface of the diffuser. Let us consider a 

situation where the distance reference plane is 5 mm inside the diffuser and the 

calibration takes place at a distance of 500 mm from the lamp having luminous 

intensity of 300 cd. The reference illuminance measured at 500 mm is 1200 lx. 

The photometer under calibration measures illuminance of 1176 lx at the distance 

of 505 mm introducing a systematic error of 2 % in the calibration. 
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5.2. Inverse-square law and the lamp reference plane 

The first step was to make sure that the effective position of the lamp filament can 

be reliably measured, because otherwise the distance offset measurements would 

be meaningless. The standard lamp was operated several times and the 

illuminance was measured at different distances from the reference plane of the 

lamp (front surface of a removable alignment mirror in front of the lamp) with the 

reference photometer and three standard photometers equipped with 8-mm open 

apertures (HUT-1 and HUT-2) and a planar Teflon diffuser of the same size 

(LM-1) [Publ. VI]. The luminous intensity of the lamp was determined by 

applying the inverse square law to the measured illuminance values according to 

equation 

( )2
PS dddIE vv ∆+∆+= , (9) 

where Ev is the measured illuminance, Iv is the luminous intensity of the lamp, d is 

the distance between the selected reference planes of the source and the 

photometer, ∆dS is the distance offset of the source, and ∆dP is the distance offset 

of the photometer. 

The reference photometer had a known distance reference (aperture) plane and 

therefore ∆dP was zero. Using the least-squares method, fitting parameters ∆dS 

and Iv were determined. The distance offset of the source was measured 17 times 

with variable combinations of photometers and found to be quite repeatable, being 

on the average 79.6 mm behind the alignment mirror and having a standard 

deviation of 0.4 mm. Values measured with standard photometers were in good 

agreement, indicating that even the planar diffuser had zero distance offset. 

However, deviations up to 1.4 mm for ∆dS were measured with the same 

photometer. It is possible that the filament moves between consecutive lamp 

burns. For this reason it was decided to re-measure ∆dS every time the lamp was 

operated. 
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5.3. Diffuser reference planes 

The magnitude of the displacement of the distance reference plane, or distance 

offset of the photometer ∆dP, was studied on an optical bench. Two commercial 

luxmeters equipped with three different diffusers were compared with a standard 

photometer to find out how large errors in calibration the diffusers inflict. The 

luxmeters were compared with a standard photometer (HUT-2) having an open 

aperture. The images and schematic drawings of the diffusers are presented in 

Figure 5. Dimensions of the diffusers in the drawings are presented in Table 1. 

Figure 5. Images and schematic drawings of the investigated diffusers. 

Illuminance values were measured at six distances (500 - 1500 mm) from the 

front surface of the alignment mirror. Data analysis was carried out for each 

detector using Eq. (9). The least-squares fitting was done by varying the 

parameter ∆dS + ∆dP, which includes the distance offsets for both the detectors 

and the lamp. Distance offset ∆dP for HUT-2 was known to be zero from the 

previous measurements with the reference photometer. Therefore the lamp offset 

∆dS can be accounted for by subtracting the results for HUT-2 from the results for 

the tested photometers. The obtained distance offsets are presented in Table 1. 
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Table 1. Measured distance offsets ∆dP of the reference planes of the diffusers. 

Diffusers are denoted as in Figure 5. Uncertainties are calculated as the standard 

deviations of the mean from 3-4 measurements for each diffuser. 

Diffuser  (a) (b) (c) 

D 24.3 16.0 30.0 

L 8.0 7.1 15.0 Dimensions 
[mm] 

W - - 26.1 

Offset ∆dP (mm)  5.0 ± 0.5 7.8 ± 0.3 8.5 ± 0.7 
 

It was also found interesting to investigate, whether it is possible to derive the 

distance offset from the physical dimensions of the diffuser or not. Assuming that 

each infinitesimal surface element of the diffuser contributes to the photometer 

signal an amount proportional to the cross-sectional area of that element and its 

illuminance, a mathematical model can be applied based on the shape of the 

diffuser [Publ. VI]. However, the results showed clearly that the distance offsets 

have to be measured; they can not be determined from the geometrical measures 

of the diffusers. The calculated offsets were several millimeters smaller than the 

measured ones, indicating that the measured distance offset is likely to be affected 

by the diffuser material, together with both the internal and the external structure 

of the photometer head. 

5.4. Correction for erroneous illuminance responsivity calibration 

In all three diffusers, the reference plane according to which the inverse square 

law holds was found to be several millimeters behind the outermost surface of the 

diffuser. This is a very significant finding, because at short distances the distance 

offsets cause severe problems: at the distance of 500 mm the errors in illuminance 

responsivity calibrations for diffusers (a)-(c) with the distance offsets presented in 

Table 1 are 2.0 %, 3.1 % and 3.4 %, respectively. All these values exceed the 

typical 1.0 % uncertainty for routine illuminance responsivity calibrations at the 

TKK. 
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When the distance reference planes have been determined, the erroneous 

measurement results can be very easily corrected. The standard photometer 

providing the reference value can be virtually moved to the reference plane of the 

diffuser and new reference illuminance value, based on the inverse square law, 

can be calculated and compared to the reading of the luxmeter. This way, 

systematic errors of 2.0 % in photometer calibration can be reduced to statistical 

variations of the order of 0.2 % [Publ. VI]. 

From the international point of view, the importance of these results for the field 

of photometry is obvious. Such a study that shows how serious the problem is and 

in how straightforward way it can be accounted for has not been reported before. 

There is no doubt that NMIs worldwide will have to pay attention to this matter  
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6. Conclusions 

In this thesis, new national measurement standards for the realizations of the units 

of luminance, spectral radiance and luminous flux are presented. All the 

realizations are based on characterized detectors. 

The realizations of the units of luminance and spectral radiance are based on the 

integrating sphere light source, the reference photometer and the 

spectroradiometer. The measuring ranges of luminance and spectral radiance are 

250 – 40000 cd⋅m-2 and 0.0001 – 1 W⋅m-2⋅sr-1⋅nm-1, respectively. 

The realization of the unit of luminous flux is based on the absolute integrating 

sphere method, utilizing a 1.65-m integrating sphere, two photometers and an 

external light source. The measurement facility at the TKK is one of the two 

permanent and operational installations of this kind in the world. The measuring 

range of luminous flux is 10 – 10000 lm. 

The uncertainty analyses are carried out for the realized units. The relative 

expanded uncertainties for the unit of luminance and luminous flux are 0.36 % 

and 0.47 %, respectively. The uncertainty of spectral radiance is wavelength 

dependent and presented in [Publ. I]. The claimed relative expanded uncertainty 

of luminous flux is one of the lowest values ever reported, and its validity has 

been verified by international intercomparison measurements with the NIST 

(USA) and the SP (Sweden). All measurement capabilities presented in this thesis 

have been peer reviewed and accepted to the CMC database maintained by the 

BIPM. 

The semiconductor technology advances rapidly and the solid-state lighting 

becomes more common and cost-efficient. This brings challenges for the modern 

photometry, because the spectral and spatial properties of light-emitting diodes 

are completely different from those of incandescent lamps. In order to gain further 

knowledge of the photometry with LED-based light sources, the TKK made 

collaboration with Sabik Oy, a company which produces maritime light-emitting 

diode buoy lanterns. In the resulting publication, which still seems to be the only 
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one in the world where this subject is thoroughly discussed, the TKK evaluated 

two methods to calibrate a commercial photometer that measures LED sources. 

Deeper understanding of the problems and advantages in photometry concerning 

LED sources gives Sabik Oy competitive advantage in the worldwide markets of 

maritime signaling devices. 

Commercial luxmeters usually have dome-shaped or cylindrical diffusers to 

improve their angular responsivity. The TKK was the first NMI in the world to 

publish a scientific article that brought up the huge errors the diffusers may cause 

in illuminance responsivity calibrations. A correction method based on the inverse 

square law was developed for the luxmeter calibrations, reducing the systematic 

errors of several per cent to small random variations. Even though the problem 

and the solution are based on the very basics of photometry, it was a pleasure to 

see that important and significant issues still exist even on the basic level and that 

they can be investigated without tremendous financial investments on measuring 

equipment. This finding will inevitably raise discussion about the illuminance 

responsivity calibration procedures of the NMIs, possibly even changing them. 

Meanwhile, the TKK has extended this research to spectroradiometry, where the 

diffuser-induced errors in irradiance responsivity calibrations may have equally 

significant effects in global solar UV measurements. 
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