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Abstract

This thesis deals with Cellular Nonlinear Network (CNN) analog parallel processor

networks and their implementations in current video coding standards. The target

applications are low-power video encoders within 3rd generation mobile terminals.

The video codecs of such mobile terminals are defined by either the MPEG-4/H.263

or H.264 video standard. All of these standards are based on the block-based hybrid

approach. As block-based motion estimation (ME) is responsible for most of the

power consumption of such hybrid video encoders, this thesis deals mostly with low-

power ME implementations.

Low-power solutions are introduced at both the algorithmic and hardware levels.

On the algorithmic level, the introduced implementations are derived from a segmen-

tation algorithm, which has previously been partly realized. The first introduced algo-

rithm reduces the computational complexity of ME within an object-based MPEG-4

encoder. The use of this algorithm enables a 60% drop in the power consumption of

Full Search ME. The second algorithm calculates a near-optimal block-size partition

for H.264 motion estimation. With this algorithm, the use of computationally complex

Lagrange optimization in H.264 ME is not required. The third algorithm reduces the

shape bit-rate of an object-based MPEG-4 encoder.

On the hardware level a CNN-type ME architecture is introduced. The architecture

includes connections and circuitry to fully realize block-based ME. The analog ME

implemented with this architecture is capable of lower power than comparable digital

realizations. A 9x9 test chip has also been realized. Additionally implemented is

a digital predictive ME realization that takes advantage of the introduced partition

algorithm. Although the IC layout of the ME algorithm was drawn, the design was

verified as an FPGA.

Keywords: Motion Estimation, Cellular Neural/Nonlinear Networks, MPEG-4,

H.264, Parallel Processing
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Chapter 1

Introduction

1.1 Motivation

Current mobile phones incorporate megapixel-sized cameras. Although these camera

sizes would allow the capture of near-HD (High Definition) video, phones incorpo-

rating such cameras encode video with a very small picture size. For example the

Nokia 6630 3G mobile phone, which contains a 1280 x 960 pixel camera, encodes

only QCIF-sized (144 x 176 pixels) video.

There are two main reasons for this small frame size: the power consumption of

the video encoding and available memory. Of these, power consumption is dominant.

In the example phone, the video encoding consumes roughly 2.5 times more power

than a 3G phone call. In the near future, technology scaling will enable the integra-

tion of more memory into the mobile terminals, thus solving the encoding memory

dilemma. However, any reduction in power consumption due to technology scaling

will be offset by the need to enlarge the frame size of the video. To achieve acceptable

playback quality with larger displays, such as Standard Definition (SD) television, the

frame size would have to be in the range of VGA (Video Graphics Array, 640 x 480

pixels) or SVGA (Super VGA, 800 x 600 pixels). This would also enable the stor-

age of the video on a remote server, thus effectively realizing a video camera with a

memory size limited only such a remote server.

In addition to the small frame size, future video standards will achieve better com-

pression with higher-complexity encoding. An example of this can be seen in the

latest standard H.264, which is significantly more complex than previous standards.

Thus, with conventional digital implementations in the near future, higher-complexity

video encoders, and the demand for larger frame sizes, will offset any gains in power

consumption due to technology scaling. Such critical demands can only be fulfilled

by novel hardware architectures.



2 Introduction

1.1.1 Video Coding Requirements in Mobile Terminals

Video coding is used in a wide range of different applications. On the high end of

the application range is the broadcast or storage of standard-definition (SD) or high-

definition (HD) television. The broadcast medium could be a cable or satellite net-

work and the storage medium a digital video disc (DVD). The low end consists of

video telephony applications sent over low bit-rate channels. Depending on the target

application, the requirements for a video encoder differ vastly.

For video encoders in mobile terminals, the theoretical data bandwidth upper lim-

its are 384 kbit/s for 2.5G (GSM-GPRS, GSM-EDGE) systems and 2 Mbit/s for 3G

(UMTS) systems. The current frame sizes used for streaming are QCIF (Quarter Com-

mon Intermediate Format, 176X144 pixels) or CIF (352X288 pixels). The current data

bandwidth already enables the transmission of VGA-sized video. The theoretical data

bandwidth limit of 3G networks enables even larger frame-sizes.

Three major service categories for video transmission from mobile terminals exist

[1]:

1) Base station to mobile video packet-switched streaming services (PPS)

[2] or multimedia broadcast/multicast services (MBMS) [3].

2) Multimedia messaging service (MMS) containing video [4].

3) Video telephony and conferencing with packet-switched conversational

services (PCS) [5].

Of these, 1) does not require any encoding in the mobile terminal; in 2), the coded

video is stored locally before transmission. Thus, in both of these cases, the encoding

does not have any real-time constraints.

For the conversational services of 3), the maximum end-to-end delay cannot be

more than 250ms [6]. This delay includes encoding, transmission, and decoding. In

encoding, the delay constraint prohibits the use of future reference frames, as this

would induce extra delay. The delay constraint also places demand on the error-

resiliency tools on the encoder. Error-resilient video coding is outside the scope of

this thesis.

Video coding algorithms are characterized by very high computational complexity.

The high computational complexity combined with real-time and low-power require-

ments is difficult to realize. Block-based motion estimation (ME) is the main source

of compression from the first video coding standard MPEG-1 up to the current stan-

dards MPEG-4 and H.264. As the other compression techniques of these standards

can be efficiently implemented with conventional digital realizations, and as motion

estimation is also the main source of an encoder’s power consumption (up to 80%), it

is reasonable to concentrate the novel architecture research on motion estimation.
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From the criteria above the objectives of this research can now be collected to-

gether:

1. Real-time operation with 25-30 fps (PAL/NTSC).

2. NTSC SD frame size (640x480).

3. Lower power consumption than comparable digital realizations.

4. Maximum end-to-end delay of 250ms.

1.1.2 Related Work

Several full conventional audio-video codecs have been presented. In [7], a 29 mW

CIF (288 x 352 pixels) 15fps MPEG-4 Simple Profile Level 1 (SP@L1) video codec

is presented. The codec uses an external frame buffer, dedicated module architectures

and a fast search motion estimation algorithm. In [8], a 120mW VGA 30fps MPEG-4

SP@L4a is presented. The codec uses an eDRAM frame buffer, dedicated module

architectures, and a fast search motion estimation algorithm. The codec also decodes

H.264 Baseline profile Level 1.2 (BP@L1.2) At the present H.264 is implemented

only in HD applications, such as [9], and videoconferencing applications, such as [10],

neither of which are low-power applications.

In recent years, few separate ME realizations have been presented. Current ME

realizations are embedded within full audio-video codecs such as the ones described

above. Comparing the presented work to such implementations is difficult due to

the fact that little specific information (such as power consumption) on the ME part

is available. In [11], a 0.4mW (QCIF@15fps, 0.85MHz) / 2.5 mW (CIF@30fps,

6.75MHz) motion estimation IC using a gradient search algorithm is presented. The

IC has a 1.0V power supply and is implemented with 0.18µm technology. As the de-

sign does not incorporate frame memory the stated power consumption figures do not

include the data transfer between the frame memory and local search area memories.

In [11], it is also estimated that the power consumption of a Full Search QCIF@15fps

ME IC would be in the range of 20mW. In [12], a 16.2mW QCIF@15fps motion

estimation IC using pixel wordlength truncation is presented. The IC has a 20MHz

clock frequency (the operating voltage is not stated) and is implemented with 0.18

µm technology. The design incorporates frame memories whose portion of the power

consumption is 11.7mW. In [13], a 1920x1080 HDTV@30fps ME core is presented.

The ME core is designed for a power supply of 1.0V and a clock frequency of 81MHz

and is implemented with 0.13µm technology. The estimated power consumption is

65mW without frame memories.

For H.264 [14] presents a 720x480 SVGA@30fps systolic array design that in-

corporates Full Search for the seven different block sizes of H.264. With 0.35 µm
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technology and a clock frequency of 67 MHz (the operating voltage is not stated)

the design has a simulated power consumption of 737 mW without frame memories.

In [15], a QCIF@15fps implementation using variable block-size Full Search is pre-

sented. With 0.13 µm technology, a clock frequency of 6.7 MHz, and an operating

voltage of 1.2V the design has a simulated power consumption of 9.1 mW without

frame memories. Both of these variable block-size ME implementations operate by

computing the distortion measure values for the smallest block size and then com-

bining these values to form the distortion measures for the larger block sizes. Also,

neither of these designs comments on the choice of the optimal block size.

1.1.2.1 Cellular Nonlinear Networks in Video Coding Applications

On the algorithmic level, the Cellular Nonlinear Network (CNN) paradigm is ex-

tremely well suited to video coding applications due to its parallel nature, that enables

assigning a single processor to each pixel in a frame. If the output of a CNN is to

be used as the input to a video codec, the inaccuracies inherent in analog computa-

tion must be taken into account. The peak signal-to-noise ratio (PSNR) (Eq. 2.18)

of an Intra coded image should be over 30 dB. The accuracy of analog computation

is usually only 6-7 bits with realistic transistor sizes [16]. A small amount of analog

noise can easily deteriorate the PSNR of an image to under 30 dB, giving possible

commercial CNN video applications an inferior starting point in comparison to digital

video applications, especially in large picture size applications. For low bit-rate ap-

plications with a small picture size, such as the upcoming mobile video applications,

the criterion above is less rigid. Some noise is added due to the quality of the current

mobile lens and sensor array combinations, which can mask a part of the noise added

by the analog inaccuracies. Even in this case, the effect of the inaccuracies inherent in

analog CNN computation cannot be overly stressed.

To avoid the analog inaccuracies, the CNN can be used as an auxiliary processor,

as is suggested in this thesis (Fig. 1.1). Then the original digital frame is stored in

a non-volatile memory and referenced with the output of the CNN computation (i.e.

segmentation or motion estimation). In this case, as the original frame is used as the

input to a video codec, the analog inaccuracies do not degrade the video compression.

Several CNN motion estimation approaches have been suggested but they tend to

be algorithmic implementations ( [17], [18]) or they are not block-based ( [19], [20]).

In all these CNN ME cases the effect of the analog inaccuracies on the motion esti-

mation result has not been taken into account. Digital CNN, such as [16], eliminates

the inaccuracy problem but has the disadvantage of a large silicon area compared to

extremely efficient existing VLSI ME implementations.

When discussing motion estimation implementations (and ME in general) it is
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important to differentiate between block-based motion estimation and computer vision

(e.g. visual motion). The former is an integral part of all current video standards. The

concept of block-based ME is to find the best match between two or more blocks of

data. On the other hand, computer vision [21] applications try to find the true motion

or optical flow in a video sequence. This is achieved with a bank of spatio-temporal

filters with different spatial and temporal tunings. Due to the required length of these

filters, the use of optical flow is not feasible in video coding applications. CNN is

extremely well suited for these computer vision applications [22] but, as is stated

above, such applications are not very well suited for block-base ME.

For the segmentation used only in MPEG-4 Core profile applications, CNN is

extremely well suited [23], [17], but the advancement of the Core profile has been

slowed by the absence of segmentation algorithms that are reliable with various types

of video content.

1.1.2.2 Motion Estimation with Analog Circuits

Block-based analog motion estimation has been considered previously in [24]. Also,

in [25], another analog ME realization has been designed simultaneously and indepen-

dently of this work. In both of these designs, although the computation, memory, and

data transfer are analog, the architectures resemble conventional digital ME proces-

sors (shown in Fig. 2.7). This is in contrast to this work which is an inter-connected

analog parallel processor architecture. In both [24] and [25], only the picture qual-

ity results are presented which, without presenting the effect on bit-rate, is not fully

meaningful and makes comparison difficult.

Additionally, the effect of error in the ME distortion measure has been studied

in [26] and [27].

1.2 Research Contribution

The basis for the work was the CNN segmentation chip [28] developed at the ECDL by

Professor Ari Paasio. The chip realizes the black-and-white part of the segmentation

algorithm introduced in [29]. This thesis researches the feasibility of using the de-

signed chip or similar implementations in current video coding standards. The target

of this research is low-power block-based motion estimation. Methods of achieving

the low power are introduced on both the algorithmic and hardware design levels.

The basic principle of the research is portrayed in Fig. 1.1 where two different

methods are shown. The first (analog ME) portrays a stand-alone analog motion esti-

mator. This approach is the objective of the hardware design, where a CNN-type cell

for analog ME is developed. The effect of the unidealities inherent in analog computa-
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Encoder

VLC
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FrameSensor

ME DCT
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Analog ME

Figure 1.1 Basic principle of the suggested approach.

tion on the motion estimation result are also researched. The second method (auxiliary

computation) portrays a method of sending additional data to the conventional ME

engine. This data enables lower computational complexity and thus lower power con-

sumption for the ME engine. This approach is the objective of the algorithmic design

where the segmentation algorithm of [29] is examined and two different low-power

motion estimation implementations are developed. Both of these implementations

transmit auxiliary information to a conventional motion estimation realization. This

auxiliary information enables a reduction in the computational complexity of conven-

tional motion estimation engines.

The material published in [30] through [37] is included within this thesis. The

author bears the main responsibility for the research included within these publica-

tions, with the exception of [33], where the author was responsible for mainly the

algorithmic-level design. The A/D- and D/A-converters used in [35] and [43] were

designed by Prof. Ari Paasio. The layout of the converters was designed by Asko

Kananen M.Sc. Mr. Kananen also designed the layout of a single cell in [35] and [43].

The quadratic circuits used in [36] were originally designed by Dr. Mika Laiho and

modified by the author. Publications [38] through [44] are also relevant to this thesis.

The author again bears the main responsibility for the research included within these

publications, with the exception of [40] where the motivation behind the research was

partly due to [39]. The measurement results in Chapter 7 are based on the measure-

ment results of [45]. These measurements were conducted by Mr. Kananen.
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1.3 Organization of the Thesis

The thesis is divided into eight chapters. Chapters 2 and 3 describe the basic theory

of the thesis. Chapter 2 describes the main features of current video standards. Only

the features within the parts of the standards (MPEG-4 Simple and Core profiles,

H.264 Baseline profile) that are relevant to this work are described. Also described in

Chapter 2 is the compression theory behind these standards. Although this thesis deals

solely with motion estimation, the other compression methods (DCT, VLC) are also

reviewed since the analysis of the results is not meaningful without an understanding

of all of the used compression methods. Reviewing the compression theory is also

relevant since the MPEG-4 and H.264 encoders used in Chapters 5 through 8 are fully

designed in the course of this research as opposed to using publicly available codecs

such as [46]. Chapter 3 describes briefly the basic CNN theory.

Chapters 4 [30] and 5 [31], [32] depict novel methods of combining CNN algo-

rithms with block-based motion estimation. These chapters introduce algorithms that

reduce the motion estimation computational complexity of MPEG-4 and H.264, re-

spectively. Chapter 5 also describes a digital motion estimation implementation [33]

that utilizes the algorithm presented in the same chapter. A layout of the digital im-

plementation is also drawn. As the chip has not been realized, test measurements have

been carried out on an FPGA.

Chapter 6 [34] introduces CNN templates which reduce the bit-rate of the shape

information of an MPEG-4 Core profile encoder.

Chapter 7 [35], [36], [37] introduces a novel 3rd-neighborhood connection for

CNN or CNN-type arrays. Also introduced is an account of how analog block-based

motion estimation can be realized with this connection and simple logic. Although

the analog ME is introduced here in context with MPEG-4, the AME can be utilized

with all codecs that incorporate ME. Further analyzed are the different error sources

in an analog motion estimation implementation and their effect on the rate-distortion

of video coders using such motion estimation. An analog motion estimation test chip

partly based on these results is also introduced.
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Chapter 2

Video Coding Standards

Overview

2.1 Generalized Video Coding

All of the major video coding standards (H.261 [47], MPEG-1 [48], MPEG-2 [49]

(H.262), MPEG-4 [50] (H.263 [51]), H.264 [52]) and commercial video codecs such

as XviD [53], DivX [54], and Windows Media Video 9 [55] are based on block-based

hybrid video coding [56], as shown in Fig. 2.1. The coding is a hybrid of exploiting

spatial redundancy with transform coding and temporal redundancy with inter-frame

prediction. Other coding architectures, such as the block-based motion-compensated

wavelet codec MC-EZBC [57], exist, but have not become common.

2.1.1 Basic Video Coder

The input video frame is first partitioned into 16x16 or smaller samples (macroblocks)

which are then coded. In intra mode, the macroblocks are coded without reference to

other frames. The intra coding is achieved by, first, transform coding (Chap. 2.2.2),

then quantizing the transformed coefficients (Chap. 2.2.3) and entropy coding (Chap.

2.2.1) of the quantized symbols. In the inter mode, the prediction error (Chap. 2.2.4)

between the current block and a reference block corresponding to the best predictor in

another frame is coded with the intra coding techniques. With each inter coded block,

a displacement vector (motion vector) is also transmitted. The motion vector refers to

the position of the reference block. Depending on the standard, the intra/inter decision

can be at the macroblock level. The common terms used in context with the intra/inter

decision are I-frame (intra), P-frame (inter, one MV) and B-frame (inter, bi-predictive

ME).
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Figure 2.1 Block diagram of a generalized hybrid transform motion prediction encoder
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Figure 2.2 Block diagram of a generalized hybrid transform motion prediction decoder

The advantage of this particular hybrid approach is that motion estimation, which

can take up to 80% of computational power [58], does not have to be performed at the

decoder. A generalized decoder is shown in Fig. 2.2.

2.2 Video Compression Theory

As the human visual system perceives brightness and color information separately,

current digital video standards use the YUV color model which includes a luminance

component (Y) and two color difference or chrominance components (Cb or U) and

(Cr or V). In this model, Y represents brightness (gray-scale information) and Cb and

Cr represent the extent to which the color deviates from gray towards blue and red,

respectively. An additional advantage of decoupling the color information is that the

human visual system is less sensitive to changes in color information than changes in

luminance [59], meaning that the color information can be represented with a smaller

bandwidth.

A digital image is represented by a two-dimensional frame of picture elements

(pixels or pels). The most-used picture format is the 4:2:0 format [60], where both

chrominance components are subsampled by 2 in the vertical and horizontal direc-

tions.
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Real video sequences exhibit redundancy both spatially and temporally. Spatial

redundancy is most evident in smooth surfaces with low spatial frequencies. In such

areas, the correlation of adjacent parts of the image is strong. Temporally the re-

dundancy is most evident when no change happens in the video sequence. In cur-

rent video standards, the redundancy is taken advantage of with three basic coding

methods: entropy coding (Variable Length Coding), transform coding, and motion

estimation/compensation. Entropy coding and transform coding reduce the spatial re-

dundancy, while motion estimation/compensation reduces the temporal redundancy.

Compression is also achieved by taking advantage of the perceptual characteristics of

human vision. Thus, the loss introduced by compression may not be detectable to the

viewer.

2.2.1 Variable Length Coding

Entropy coders, such Huffman coders [61], arithmetic coders [62], and Golomb coders

[63] are commonly called Variable Length Coders (VLC). VLC coders try to minimize

the average length of a symbol group. This is achieved by mapping the group of

symbols to codewords. The length of each codeword is inversely dependent on the

probability of the symbol the codeword represents. A codeword table is achieved by

coding the symbol with the highest probability with the smallest number of bits, the

symbol with the second lowest probability with the second lowest number of bits, and

so on. None of the shorter codewords may form the prefix of a longer codeword. The

efficiency of the coding is bound to the accuracy of the probability table. Below is a

short summary of various VLC methods used in current video standards.

2.2.1.1 Run-Length Coding

In practice, the VLC is achieved with run-length coding (RLC), which maps a block of

coefficients into a vector of three value format symbols. Many different scans to map

the block into a vector exist [64]p.159. The three value format is such that the first

value represents the actual level (LEVEL) of the current coefficient, the second value

represents the number of zero-level coefficients (RUN) before the current coefficient

and the third value indicates the last non-zero level coefficient (LAST). The RLC

tables exist for the most common of these last-run-level combinations. An example

of such a RLC table is shown in Table 2.1 [50]. The advantage of combined scanning

and RLC is that the blocks produced by hybrid predictive transform coding frequently

contain a large number of zeros that are situated in the higher spatial frequencies. The

scan maps such blocks into vectors containing long runs of zeros at the end of the

vector. Such vectors can be coded efficiently with RLC.



12 Video Coding Standards Overview

VLC CODE LAST RUN LEVEL
10s 0 0 1

1111s 0 0 3
010101s 0 0 6
0010111s 0 0 9

00011111s 0 0 10
0111s 1 0 1

000011001s 0 11 1
00000000101s 1 0 6

001111s 1 1 1

Table 2.1 Part of the intra VLC table for luminance and chrominance (s = sign bit) [50].

2.2.1.2 Context-Based Adaptive VLC

Context-Based Adaptive VLC (CAVLC) [65], [66] adapts the RLC tables according

to neighboring blocks and the number of high-frequency coefficients having the value
�

1 (T1). The number of T1s and non-zero coefficients are first coded with one of four

RLC tables. The levels of the non-zero coefficients are then coded with seven different

RLC tables. The RLC tables are designed for different coefficient value levels. The

first-used table is chosen according to the number of coefficients and high frequency

T1s. The tables are then adaptively incremented according to the current coefficient.

2.2.1.3 Exponential Golomb Coding

Exponential Golomb (Exp-Golomb) [67] codes take on the form [K zeros][1][K-bit

DATA] where K=0,1,2, ����� and DATA is a binary representation of an unsigned integer.

An example of Exp-Golomb codes is shown in Table 2.2 [52]. Exp-Golomb codes

are decodable with output data = 2K+ int(DATA) -1, where int(DATA) is the integer

corresponding to the binary string.

Input Data Exp-Golomb Code
0 1
1 010
2 011
3 00100
4 00101
5 00110

Table 2.2 Example of Exp-Golomb codes [52].

2.2.1.4 Context-Based Arithmetic Encoding

Context-Based Arithmetic Encoding (CAE) [68] is used to encode binary symbols.

CAE takes advantage of the correlation of previously coded symbols. In CAE, a
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context number of a pixel is computed according to the neighborhood of the pixel in

either the same frame or the reference frame. This context number is then used to

drive an arithmetic encoder [62] so that the probability of the symbol is computed

according to the context number.

In the arithmetic coding process, the original input probability interval [0,1) is di-

vided according to the input symbol’s corresponding probability. The new probability

interval is again divided according to the next input symbol’s corresponding probabil-

ity. A single output symbol is received after the whole data set has been inputed.

2.2.1.5 Context-Based Adaptive Arithmetic Encoding

Context-Based Adaptive Arithmetic Encoding (CABAC) [69] uses a two-stage VLC

encoder. The input symbols are first coded with a basic VLC-type encoder. The indi-

vidual bins (i.e. the individual bits of the VLC encoded symbol) are further encoded

with a binary arithmetic coder. The arithmetic encoder adaptively uses several context

models that store the following symbol’s probability.

2.2.2 Transform Coding

In transform coding, the used transform maps the image into another domain, such as

the frequency domain. The advantage of transform coding is that the transform decor-

relates the image, and therefore the image can be represented with a smaller number

of bits [70]. Due to its compression efficiency and efficient hardware realization [64]

the Discrete Cosine Transform (DCT) has been chosen as the transform of almost all

video coding implementations. The block size is 8x8 due to the trade-off between

memory requirements and compression efficiency [59]p.380, [72].

2.2.2.1 Discrete Cosine Transform

The NxM 2-D DCT is expressed as

ykl
� c

�
k � c

�
l �

4

M � 1

∑
i � 0

N � 1

∑
j � 0

xi j cos

� �
2i � 1 � kπ

2M � cos

� �
2 j � 1 � lπ

2N � (2.1)

where k = 0,1,...,M, l = 0,1,...,N and

c
�
k � � c

�
l � ��� 1�

2
i f k � l � 0

1 otherwise
� (2.2)

After the transformation the energy of the image is packed into the upper left hand

corner of the block. The DC-coefficient is the upper left hand coefficient and the AC-

coefficients span the rest of the block. The waveforms of the 8x8 DCT basis functions
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Figure 2.3 The 8X8 2-D DCT basis functions

are shown in Fig. 2.3. The 2-D NxM inverse DCT (IDCT) is defined as

xi j
� N � 1

∑
k � 0

M � 1

∑
l � 0

c
�
k � c

�
l �

4
ykl cos

� �
2i � 1 � kπ

2N � cos

� �
2 j � 1 � lπ

2M � � (2.3)

2.2.2.2 Compression Capability and Transform Length

If video sources were strictly stationary processes, the decorrelation capability, and

thus compression of the DCT, would depend linearly on the length of the DCT [59]p.380.

As video sources are not strictly stationary [73]p.979, a smaller transform length can

locally achieve greater compression. Also, the subjective effects (artifacts) described

in Chap. 2.2.5 can vary for transforms of unequal size, making a smaller transform

less visually annoying.

2.2.2.3 4x4 DCT Approximation

To reduce the computational complexity of the 8x8 DCT in [74], a 4x4 integer approx-

imation of the 4x4 DCT has been introduced. The approximation reduces the 32-bit
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arithmetic required by the DCT to 16-bit arithmetic. The 4x4 DCT approximation is

Y � Tf XT t
f
�

E (2.4)

where

Tf �
������ 1 1 1 1

2 1 � 1 � 2

1 � 1 � 1 1

1 � 2 2 � 1

������� � (2.5)
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� ����� � (2.6)

a � 1
2

� b �	� 2
5

� and
�

refers to scalar multiplication. The correction term E can be

incorporated into the quantization process (Chap. 2.2.3). The PSNR penalty for the

approximation is less than 0.01 dB [74].

H.264 (Chap. 2.5) also introduces an 8x8 approximation similar to the 4x4 approx-

imation, but the use of this transform is only standardized for the Fidelity Range Ex-

tension (FRext) profile (Chap. 2.3.1) [105]. The computational complexity of FRext

is beyond the capabilities of mobile encoders and thus beyond the scope of this thesis.

2.2.3 Quantization

Transform coding in itself is lossless if the transformed coefficients are decoded with-

out error. To achieve lossy coding the transformed coefficient are quantized. Generic

quantization reduces entropy by mapping several input levels into a single output level,

and is expressed as [64]p.81

zkl
� round

�
ykl

qkl � ��
 ykl
�� qkl

2 �
qkl � � k � l � 0 � 1 ������� � N � M (2.7)

where NxM is the block size and
�

depends on the sign of ykl . The quantization

coefficient qkl can be constant for the whole transformed block or a matrix of the same

size as the transformed block. Quantization matrices can be used to take advantage of

the sensitivity of the human visual system in the quantization operation [64].

2.2.4 Motion Estimation

The Intra coding techniques of 2.2.1 and 2.2.2 can be improved by predictive coding.

In basic predictive coders, a prediction of the current pixel is made from previously
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coded information. Intra-field prediction uses pixels in the horizontal direction from

the same line and/or from previous lines. In the static areas of consecutive frames, the

temporal correlation could be predicted by taking the predictor from the same pixel

position of one or more previous frames, but this model would be inefficient for real

scenes with motion.

The motion in a video sequence can be defined with the following model�
x

y ��� ��� �
s � cosθ � s � sinθ
s � sinθ s � cosθ � �

x

y � � �
dx

dy � (2.8)

where s defines the scaling ratio, θ the rotation angle, and (dx,dy) the translation

vector. In addition to the motion, the illumination can be spatially and temporally

changing and occlusion can hide and uncover areas. A prediction algorithm that would

cover all of these possibilities would be computationally exhaustive. Also, as the

motion parameters have to be sent as an overhead to the decoder, there is a trade-off

between motion model complexity and motion parameter overhead. As the coding

techniques of Chaps. 2.2.1 and 2.2.2 enable very efficient coding of the prediction

error the prediction algorithm can be simplified by the following assumptions:� The motion is constant within an NxM block� The motion is translational� The illumination is spatially and temporally uniform

With these restrictions block-based motion estimation (ME) can be used. Not fulfilling

these restrictions leads to degraded prediction results.

2.2.4.1 Block-Based Motion Estimation

Block-based motion estimation is a search scheme that tries to find the best predictor

for an NxM block of the current frame. The predictor is searched within a prede-

fined area of one or more previous or future frames. The predictor with the minimum

distortion D is chosen as predictor

�
MVx � MVy � � min � dx � dy 	�
 r D

�
dx � dy � (2.9)

where (dx,dy) is the current predictor candidate, r the search area, and the position of

the best predictor is described with a motion vector (MV). Fig. 2.4 describes the basic

principle of block-based ME. The temporal prediction signal can then be expressed as

e
�
x � y � t � � Iy

�
x � y � t � � Iy

�
x � dx � y � dy � t � n � (2.10)
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Figure 2.4 Block-based motion estimation.

where (x,y) is the size of the block, Iy(t) is the current frame, Iy(t-n) is the reference

frame and a positive n points to a past frame and a negative n points to a future frame.

The operation of Eq. 2.10 is commonly referred to as Motion Compensation (MC),

although the terms “estimation” and “compensation” are often interchanged.

In motion estimation, multiple options are available for the distortion measure and

the search scheme. In most implementations, the search is only carried out on the

luminance information and the luminance MV is then used also for the chrominance.

Separate searches on chrominance are only made when the objective is very high

quality video.

Integer MVs restrict the motion to the spatial sampling intervals of the image.

However, due to the spatial aliasing caused by real motion, a better prediction result

can possibly be achieved by using fractional length MVs. In [75], the coding ad-

vantages of 1/2-pixel-, 1/4-pixel- and 1/8-pixel-accuracy MVs are investigated. Also

investigated is the effect of three different interpolation filters used in creating the

inter-pixel positions. It was found that 1/8-pixel accuracy over 1/4-pixel accuracy

does not give significant results and that Wiener filtering gives results superior to Sinc

and bilinear filtering.

Predicting the MV over several frames gives additional gain [76].
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2.2.4.2 Distortion Measure

The distortion measure (also called “matching criterion”, “distance criterion”, “dis-

parity measure”, and “cost function”) indicates the best match block. In predicting

real motion, the problem would be to find the maximum cross-correlation

CCF
�
dx � dy � � ∑x

�
N � 1

i � x ∑y
�

M � 1
j � y cur

�
i � j � re f

�
i � dx � j � dy �� ∑x

�
N � 1

i � x ∑y
�

M � 1
j � y cur2

�
i � j � � ∑x

�
N � 1

i � x ∑y
�

M � 1
j � y re f 2

�
i � dx � j � dy �

(2.11)

between the reference block and the current block [58]p.30, [56], where NxM is the

block size, and (x,y) the top-left pixel of the block. In [56], it was found that, when

block size is small and when the translation is not pure, the accuracy of the correlation

function is poor. This is due to the fact that the restrictions on motion estimation

(page 16) are rarely fully fulfilled, making the optimal distortion measure input-data

dependent. This means that different types of video (texture, real motion, etc.) have

different optimal distortion measures. From here on, in this thesis, the term “sub-

optimal distortion measure” refers to a sub-optimal result with a wide range of varying

input data.

As the implementation of the cross-correlation function suffers from computa-

tional complexity the most-used distortion measure in practical implementations is

DN
�
dx � dy ���

x0 � M � 1 � y0 � N � 1

∑
i 	 x0 � j 	 y0



re f

�
i � dx � j � dy �� cur

�
i � j � 
 p � (2.12)

The most common values for p are p=1 (Sum of Absolute Differences, SAD) and

p=2 (Sum of Squared Differences, SSD). Although the SSD gives the better result,

in digital implementations, the SAD is more common, due to its more efficient im-

plementation. A large number of other distance measures have been proposed in the

literature, of which a non-exhaustive list is presented below. Many of the references

combine more than one method for computational complexity reduction. The distance

measures can be grouped.

In distance criterion estimation, the calculation of the distance criterion is modi-

fied in a way that reduces the amount of computation needed. In [77], the distance

criterion computation is stopped when the value is above a threshold. This is com-

monly referred to as early-thresholding. The thresholding can also be achieved pixel-

wise [78]. In [79], the distance criterion is only partially computed. In [80], the pixels

included in the computation are included with a reduced word-length. In [81], only

the maximum value of the difference block is used for the motion vector choice.

In block modification, the reference and/or current blocks are modified in a way

that reduces the amount of computation needed. In [79], the blocks are subsampled so

that only a part of the pixels are taken into account. In [82], the blocks are filtered and
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compared with the original to achieve 1-bit pixels.

In feature matching the original 2-D data is transformed into a 1-D projection.

When the projection data has a higher entropy than the original data the computation

load is reduced. In [83], an NxN block is reduced into two Nx1 vectors by computing

the 1-D mean in the horizontal and vertical directions. These two vectors are then

used for the distance criterion computation. In [84], the DC component of the block

and a reduced word-length phase indicator are used as the feature.

In hierarchical (multi-resolution) estimation the distance criterion computation is

carried out at several levels. In [85], the search is carried out at three levels, where

the upper level is subsampled by averaging from the lower level. The coarse MV at

the higher level is then used as a starting point for the lower-level search. In [86], the

subsampling is carried out with a lattice that takes edges into account.

2.2.4.3 Search Algorithm

The optimum solution to the problem of finding the block with the minimum distortion

would be an exhaustive search of the search area [-r,r-1]. Such a search algorithm is

called the Full Search (FS). The search area does not need to be square; furthermore a

rectangular search area can exploit the fact that the magnitude of real-motion vectors

is larger in the horizontal direction [87].

With an [-r,r-1] search area and an NxM frame size, the distortion measure of the

FS algorithm needs to be computed 2r � 2r �N �M times. To lessen the computational

burden, and speed-up the motion estimation, the search area can be subsampled. Such

fast search algorithms assume that the distortion measure increases monotonically

away from the point of the minimum distortion. When this assumption does not hold,

as is often the case with real video, the fast search algorithm may be trapped in a

local minimum. A popular search area subsampling algorithm is Three Step Search

(TSS) [88], where the distance measure is calculated in three stages. In the first stage,

the distortion measure is computed at the point (0,0) and at eight points along the

perimeter of the search area [-7,7]. The subsequent search stages then compute eight

additional distortion measure points from the perimeter of the search areas, [-2,2] and

[-1,1], respectively. The best match of the previous stage is always used as the center

of the subsequent stage. TSS drops the number of search steps to 25, but has the

disadvantage of having the maximum motion vector range of
�

10.

Gradient-based methods remove the motion vector length restriction to take advan-

tage of the center-based motion vector distribution of natural video sequences. In [89],

an unrestricted diamond search pattern is introduced. The first stage of the search is

composed of a nine point
�

2 range diamond. This diamond search is repeated until

the best match is at the search center. The diamond search patterns overlap so that the
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subsequent diamonds need only five or three distortion-measure computations. When

the best match of the first stage is found, the search is once more refined with a four

point
�

1 range diamond. The advantage of this method is that the motion vector

length is not restricted, but the computational complexity can become large if the start

of the search is far from the best match.

When using fractional-pixel accuracy, the most common method is to first make an

integer accuracy search and refine the integer search result with a sub-pixel accuracy

search [58].

2.2.4.4 Predictive Motion Estimation

The spatial-temporal correlation of natural video sequences that is taken advantage of

in transform coding (Chap2.2.2) can also be taken advantage of in motion estimation.

The motion vector field commonly exhibits the same correlation. Thus already-coded

MVs can be used as starting points for the current search. An additional advantage

of predictive ME is that, as already coded MVs are used as the center of the current

search, the variance of the MV field is reduced. This is an advantage when the MVs

are differentially coded (Chap. 2).

In [90], two previously coded MVs from the same frame, and two MVs from the

previous frame, are used in predicting the current MV. The distortion measure from

these predictors is computed and the MV with the lowest distortion is then chosen as

the starting point for the search. The search algorithm can then be thought of as a small

refinement of the starting point by computing additional distortion points around the

candidate. In [91], the median of three MVs in the current frame and the collocated

block in the previous frame are used in predicting the current MV. The predictors

are also used to determine an early search termination threshold and a threshold that

controls the size of the search range.

2.2.4.5 Motion Vector Adaptive Search Technique (MVFAST)

As an example of a predictive gradient-based algorithm Motion Vector Adaptive Search

Technique (MVFAST) [92] is examined. In the MPEG-4 optimized reference soft-

ware [93], MVFAST and Predictive MVFAST (PMVFAST) [94] are used instead of

Full Search. MVFAST is also used in verifying the results of Chap. 4.

In MVFAST, three earlier MVs of blocks arranged according to Fig. 2.9 are first

analyzed. The city-block length, defined by li
� � xi
� � � yi

� � i ��� 1 � 2 � 3 � , is first com-

puted for the three MVs. The city-block lengths are then compared and the maximum

value of these three is chosen as the reference motion vector threshold Lα. By defin-

ing two additional thresholds L1 and L2 the Motion Activity of the current block is
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b)a)

Figure 2.5 Gradient-search patterns. a) Small diamond b) Large diamond

defined by

Motion Activity �
��� �� Low � Lα � L1

Medium � L1 � Lα � L2

High Lα � L2

� (2.13)

For generic sequences MPEG-4 suggests L1=1 and L2=2. The found motion activity

has an affect on the search center and search strategy of the search.

The search center for MVFAST is chosen as (0,0) if the motion activity is low or

medium, otherwise the search center is the location pointed by the MV of the three

candidate MVs that gives the minimum SAD. If the motion activity is low or high,

a small diamond search is chosen as the search strategy, otherwise a large diamond

search is chosen.

In small diamond search, all the SADs of the points indicated by Fig. 2.5a are

searched. If the center point yields the minimum SAD, the search stops, otherwise

the point of the minimum SAD is chosen as the center point for a new small diamond

search.

In large diamond search, the SADs of the points indicated by Fig. 2.5b are

searched. If the center point does not yield the minimum SAD, the point of the min-

imum SAD is chosen as the new large diamond search center. If the minimum SAD

indicated by the large diamond search is at the center a small diamond search is ex-

ecuted with the center point at the point indicated by the minimum SAD of the large

diamond search.

The thresholds L1 and L2 introduce a possibility of modifying the search strategy,

depending on the motion of video sequence. The range for L1 and L2 is from -1 to

the search range. If the sequence has low motion (i.e. the absolute values of the MVs

are small), the optimum values for L1 and L2 are high. High values for L1 and L2

have the effect of raising the proportional part of low motion activity. Low values for

L1 and L2 correspondingly raise the proportional part of the high motion activity. A

large difference between L1 and L2 raises the proportional part of the medium motion

activity.
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2.2.4.6 Rate-Distortion Optimized Motion Estimation

Rate-Distortion (R/D) Optimized Motion Estimation takes into account the actual cost

of coding the block. In addition to the distortion measure, R/D optimization takes into

account the overhead needed for the residual data. In this way, the number of bits in

the bitstream needed to code the prediction is minimized.

The most widely accepted approach to R/D optimization are Lagrangian tech-

niques. For the symbol group s1,s2,...,sN that can be coded with one of the coding

options I1,I2,...,IN the Lagrangian cost function can be computed with [95]

J
�
sk � Ik

�
λ � � D

�
sk � Ik � � λ � R �

sk � Ik � � (2.14)

where D is the distortion, R the rate, and λ �
0 is the Lagrange parameter. The mini-

mum of J
�
sk � Ik

�
λ � gives the optimum coding result.

2.2.4.7 Transform Domain Motion Estimation

To reduce computational complexity the motion estimation can be made in the trans-

form domain. In [96], pseudophases are used to indicate the shift of DCT transformed

signals. The amount of shift indicates the movement. The Discrete Sine Transform

(DST) is needed in computing the pseudophases; this increases the computational

complexity. In [97], the ME is made in the Hadamard transform domain.

ykl
� 1

N

N � 1

∑
i � 0

N � 1

∑
j � 0

xi j
� � 1 � ∑n � 1

m
� bm � i 	 bm � k 	 � bm � j 	 bm � l 	 	 � (2.15)

where x is the input, y the output, and bm
�
i � is the m:th bit of the binary representation

of i. The advantage of the Hadamard transform is that its coefficients are
�

1. In [98],

the Hadamard transform is used in Lagrange optimization. The distortion term in Eq.

2.14 is replaced by the SAD of the Hadamard transformed block. The Hadamard

transform approximates the frequency characteristics of Eq. 2.6 and subsequently

reflects the expected reconstruction quality, rather than the amount of prediction error.

2.2.4.8 Other Motion Estimation Techniques

In bi-predictive ME, two motion vectors are transmitted for each block [99]. Tradi-

tionally, one of these MVs has pointed to a future frame and the other to a past frame;

the reference block is an average of the blocks pointed to the MVs. This has advan-

tages in cases of smooth motion, where bi-predictive ME is, in effect, interpolation

between the future and past frames. In H.264 (Chap. 2.5), the concept of bi-predictive

ME has been generalized. Any of the motion estimation methods of Chap2.2.4 can be
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used in deriving the reference blocks.

In global ME, a single MV is predicted for the entire frame [100]. Global ME is

most efficient in cases of camera motion, such as pan. In some profiles of MPEG-4

(Chap. 2.4), global motion parameters are transmitted for the segmented background.

Several video standards allow the MV to point partly or fully outside the reference

frame. This is advantageous in cases where an object has partly moved outside the

frame. In such cases, the pixels outside the frame are interpolated from the frame

using standardized methods.

2.2.4.9 Comments on the Translational Block-Based Motion Estimation Model

A full search algorithm should take into account all the points (and sub-pixel points,

if applicable) within a search area. When comparing such an FS algorithm to a search

area subsampling ME algorithm, to make the comparison valid, the search area of the

fast algorithm needs to be the same as the search area of the FS algorithm. Then,

for a given block, exploring all the possibilities will always lead to a lower (or equal)

estimation result than exploring just a few possibilities. For example, many gradient-

based methods do not restrict the search area; this can lead to a better estimation result

being found outside the search area of the FS.

A restriction to the statement above is the unideality of the matching criterion. As

an ideal matching criterion is input-data dependent, conventional matching criteria are

almost always unideal. Thus, with an unideal matching criterion, an inferior motion

estimation result can have a superior rate-distortion. For example, small savings in

texture bits can lead to a high number of MV bits if the amplitude of the MV is

large and does not correlate with neighboring MVs. The closer the matching criterion

reflects the actual coding cost, the better the motion estimation algorithm using this

matching criterion performs in terms of rate-distortion.

Even if the matching criterion is optimal and a full search is conducted, a superior

result can be achieved by taking into account the global effect of the motion vector.

As motion vectors are coded differentially (Chap. 2.4, Chap. 2.5), motion vector field

smoothness has a significant impact on the total bit-rate. For example, sequences with

a homogeneous background will result in chaotic motion vector fields.

2.2.4.10 Motion Estimator Hardware Design Aspects

A low-power silicon VLSI motion estimator is a trade-off between optimizing the

power consumption of the search engine (including the distortion computation and

choice of MV) and the power consumption of the memory accesses. In CMOS cir-
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Figure 2.6 Generic architecture of a VLSI video encoder.

cuits, the largest source of power consumption is the dynamic power consumption

Pd
� αP

� CL
� V 2

dd
� f � (2.16)

where αP is the switching activity of the circuit, Vdd the power supply voltage and f

the clock frequency of the circuit. With 0.13µm and smaller technologies, the leakage

power consumption and short-circuit power consumption are also issues, although

these cannot be influenced when designing with a vendor library, as is the usual case.

Most important in minimizing the power consumption of the memory is minimizing

the data bandwidth of the memory [58], as the power consumption of memory is

defined by

Pmem
� Pstatic

���
BWr

�
BWw � � CL

� V2
dd � (2.17)

where BWr and BWw are the bandwidths of the read and write operations, respectively,

and Pstatic is the static power consumption of the memory.

Full Search motion estimation consists of a large number of simple arithmetic

operations (i.e. � re f 	 i 
 dx � j 
 dy �� cur 	 i � j ��� for SAD, Eq. 2.12) and a large amount

of regular data accesses. Due to this large amount of data, the architectures of VLSI

video encoders and hardware accelerators resemble closely the generic architectures

shown in Fig. 2.6 and Fig. 2.7, respectively. In such architectures, the distortion

computation of FS can typically be implemented using regular 1-D or 2-D systolic

arrays [101].

With search area subsampling and predictive ME algorithms, both the number

of arithmetic operations and memory accesses are reduced with the cost of irregular

memory access, low hardware utilization, and sequential procedures with data depen-

dence that cannot be parallelized. This is especially true with ME algorithms where

the data used in the next arithmetic operation is not known before the result of the

current arithmetic operation is clear. Irregular memory access complicates the design

of the memory in the encoder especially the design of the Address Generation Unit

(AGU). Thus, the benefits of search-area subsampling algorithms at the algorithmic

level are usually larger than those from the architectural level.
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Figure 2.7 Generic architecture of a VLSI motion estimation accelerator.

2.2.5 Quality Measures

The distortion of an image is usually expressed with the peak signal-to-noise ratio

(PSNR). For 8-bit images, PSNR is defined by

PSNR � 10log

�
2552

1
N � M ∑N

m � 1 ∑M
m � 1

�
sm � n � �sm � n � 2 � (2.18)

where s is the original image and
�
s is the coded image.

PSNR does not fully correlate with the perceived subjective quality of the video.

The correlation is high if the coding errors are evenly spread within each frame and

the PSNR does not significantly change within the time span of a few frames. This

means that locally concentrated errors are more visible than the PSNR value of the

frame would suggest, and that significant PSNR drops (˜10dB) can be undetected if

they last only one or two fames.

Several measures for subjective quality have been developed but none have be-

come wide-spread. PSNR is usually complemented by a panel rating of the subjective

quality. In such cases, the most common terms expressing subjective quality include:

Blurriness i.e. the blurring of detail equivalent to a 2D low-pass effect.

Ringing distortions near edges equivalent to a 2D high-pass effect.

Blocking i.e. a blocky appearance in parts of the frame due to block-based coding.

Mosquitoing error in moving edges - these can appear blurry and/or flickering due to

the combined effect of motion estimation and quantization.
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2.3 Scope of Video Coding Standards

In the major video coding standards, only the decoder and the bitstream syntax are

defined by the standard. The scope of the standards is shown within the generalized

video coding and transfer process in shown Fig. 2.8.

The video coding and transfer process consists of optional pre-processing, the en-

coding process, the transfer or storage medium, the decoding process and the optional

post-processing. The pre-processing might consist of picture quality enhancement

techniques or spatial redundancy reduction. Possible post-processing includes format

conversion or error recovery.

When only the decoder and bitstream are standardized every conformant decoder

will produce the same result when decoding an error-free conformant bitstream. The

result of this is that the options left in decoder design are limited. In encoder de-

sign, the only restriction is that the encoder has to produce a valid bitstream and a

conformant encoder is not a guarantee of picture coding quality. The encoder can

then be designed flexibly by emphasizing, depending on the application, compression

efficiency, computational power, or other issues.

2.3.1 Profiles and Levels

Different applications typically require different functionalities (compression efficiency,

compression delay, error resiliency) and different levels of complexity. To manage the

large number of coding tools included in the standards, and to make the standards

more attractive to varying types of applications, the standards are split into profiles

that are further split into levels. The concept of profiles and levels is employed to

define a set of conformance points, each targeting a specific class of applications. A

profile defines the set of coding tools that the decoder compliant to that profile must

support. A level places constraints on certain key parameters of the bitstream, such as

the picture resolution and bit-rate.

The third generation partnership project (3GPP) has included MPEG-4 Simple

Profile Level 0b, H.263 Profile 3 Level 45 and H.264 (AVC) Baseline Profile Level 1b

into its multimedia specifications [102], so only these standards will be dealt in detail

in this thesis.

2.4 MPEG-4

MPEG-4 standardizes coding methods for many types of audiovisual data. MPEG-

4 incorporates standardized ways to represent various media objects. These objects

include aural, visual or audiovisual content which can be natural or synthetic in origin.
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Figure 2.8 The scope of most video coding standards is outlined: The standards define the
syntax of the bitstream and the decoding process of this bitstream.

The spatial coding in MPEG-4 uses the 8x8 DCT (Chap. 2.2.2), two different

scalar quantization methods, and VLC coding with improved MPEG-2 RLC (Chap.

2.2.1) tables. The first quantization method is an encoder-defined weighted 8x8 quan-

tization matrix that is sent to the decoder. The number of possible different weighted

quantization matrices depends on the used profile. The second quantization method is

assigning the same quantization coefficient for each AC coefficient in the macroblock.

For intra frames, the actual quantization coefficient is computed with the nonlinear

scale

quant
�
i � j � � sign

�
y
�
i � j � � �

�
16 ��� y � i � j � ����� w

�
i � j ���

Qp
(2.19)

where Qp is the quantization parameter ranging from 1 to 31, w(i,j) is the optional

quantization matrix and // signifies division with round-to-nearest. If the weighted

matrix is not used, w(i,j)=16 for all i,j.

With DCT transformed blocks of real video, the amplitude of DC coefficient is

typically a magnitude higher than the amplitude of the AC coefficients. To take this

into account, the DC coefficient is divided according to Table 2.3. For inter frames,

both the DC and AC coefficients are divided with Eq. 2.19 except that 2Qp is used in

the denominator. Three different scans exist for the VLC coding.

Value of Qp

1-4 5-8 9-24 25-31
Luminance 8 2Qp Qp+8 2Qp-16

Chrominance 8 ( Qp+13)/2 Qp-6

Table 2.3 MPEG-4 DC coefficient division

Motion estimation in MPEG-4 is based on 16x16 or 8x8 blocks; the accuracy

of the motion vectors can be up to quarter-pixel, depending on the profile and level.

Motion vectors are allowed to point outside the reference frame and are encoded dif-

ferentially with
Px � y � Median

�
MV1x � y � MV 2x � y � MV 3x � y �

MV Dx � y � MVx � v � Px � y
(2.20)

where the positions of MV1, MV2, MV3 are as shown in Fig. 2.9 and the labels
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Figure 2.9 Motion vector predictors

x,y correspond to each other. Bi-directive ME (B-frames) allows two motion vectors

where one MV points to the previous frame and one to the future frame. B-frames

cannot be used as reference frames. MPEG-4 also has the possibility of using skip

modes for each macroblock. For a skipped macroblock, no motion vector or trans-

form coefficients are sent, meaning the decoder copies the macroblock from the same

position in the previous frame. In the syntax, a skip mode is indicated with a single bit

(sometimes referred as the COD bit or the "not coded" bit), that reduces the indication

of the motion vector and texture data to this single bit.

Of the various profiles had been defined for MPEG-4 Visual [103], for concise

expression, only the following are reviewed in this thesis: Simple, Advanced Simple,

Advanced Real-Time Simple, Simple Scalable and Core. The Simple profile incor-

porates the tools needed for error resilient coding of rectangular-shaped video and it

includes all features mentioned above, with the exception of the weighted quantization

matrices and quarter-pixel accuracy motion vectors. The Simple Scalable adds tempo-

ral and spatial scalability of video objects and is used for applications offering multiple

levels of quantity over multiple bit-rates. The Advanced Simple adds weighted quanti-

zation matrices, quarter-pixel accuracy motion vectors, B-frames, global motion com-

Visual Profile Level Typical visual Max. number Max. bit-rate
session size of objects (kbit/s)

Simple L0 QCIF 1 64
Simple L3 CIF 4 384

Advanced Simple L1 QCIF 4 64
Simple Scalable L1 CIF 4 128

Adv. Real-Time Simple L1 QCIF 4 64
Adv. Real-Time Simple L4 CIF 16 2000

Core L1 QCIF 4 384
Core L2 CIF 16 2000

Table 2.4 The main attributes of MPEG-4 visual profiles suited for mobile applications (Simple
profile levels L1 and L2, Advanced Simple levels L2 and L3, Advanced Real-Time Simple
levels L2 and L3, and Simple Scalable level L2 not shown).
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Figure 2.10 Segmentation example: a) Original frame b) Segmented object c) Binary alpha
plane.

pensation and special tools for the efficient coding of interlaced video. The Advanced

Real-Time Simple profile provides advanced error-resilient coding by defining the use

of a back channel [104]. The Core profile adds coding of arbitrary shaped video ob-

jects for content-based applications. The main feature attributes of these profiles are

collected in Table 2.4.

2.4.1 MPEG-4 Core Profile

If the content-based functionalities of MPEG-4 are to be used, the encoder also has

to include shape segmentation. The main advantage of the content-based approach is

that the bandwidth can be allocated to the video objects that are most important to the

visual quality. In Fig. 2.10a and b, the person in the foreground is segmented from the

background. In this case, the bandwidth and computational power of the encoder can

be dedicated to the person while the background can be sent only once.

In the Core profile, the Video Object (VO) defines the entity to be coded. The VO

can be a segmented natural object or a synthetic one. As a video sequence quantized

in time is composed of frames, a VO consists of Video Object Planes (VOP). Without

the content-based functionalities, a VOP consists of the whole frame. The frame in

Fig 2.10 would be coded as two VOPs: one, the foreground person shown in white

in Fig 2.10c, and, the other, the background shown in black in Fig 2.10c. A static

background in MPEG-4 is referred to as a sprite. MPEG-4 has standardized tools for

the modification of a sprite with 8 global motion parameters. The pixels belonging to

the VOs are defined with the binary alpha plane, which is composed of Binary Alpha

Blocks (BAB). An example of binary alpha plane is shown in Fig. 2.10c. The BABs

can be either transparent (not included in the object), opaque (included in the object)

or border-BABs. A BAB can be coded in several ways: transparent, opaque, intra-
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CAE (Chap. 2.2.1.4) and shape motion compensation with or without inter-CAE. The

subsampling of shape is also allowed.

2.4.2 H.263

Baseline profile H.263 [51] is the starting point for the MPEG-4 natural video coding

methods, which means that a compliant MPEG-4 decoder is able to decode a valid

Baseline H.263 bitstream. The baseline profile provides the minimal capability that

all decoders must support. H.263 has eight annexes (annexes A-G) that add additional

coding options, for example 8x8 block-size motion estimation. H.263+ and H.263++

are later versions of H.263, which add several coding options, most of which are

included in H.264 (Chap. 2.5).

2.5 H.264

ITU-T H.264 / MPEG-4 Part 10 Advanced Video Coding (H.264/AVC) [52] is the

latest international video coding standard; this currently offers the best ratio between

video quality and bit-rate (rate-distortion). The block diagram of an H.264 encoder is

shown in Fig. 2.11.

Intra blocks in H.264 are predicted in a way similar to motion estimation predic-

tion. The predictor candidates are computed with 4 16x16 modes or 9 4x4 modes.

The modes correspond to the spatial direction of the predictor candidate. Transform

coding in H.264 is achieved with the 4x4 DCT approximation (Chap. 2.2.2.3). In cer-

tain cases, all the luminance DC coefficients of the 4x4 transformed blocks are further

transformed with the 4x4 Hadamard transform [59]

H4x4
�
������ 1 1 1 1

1 � 1 1 � 1

1 1 � 1 � 1

1 � 1 � 1 1

������� � (2.21)

For chrominance, the 2x2 Hadamard transform is used. To remove the “dead zone”

effect of previous MPEG quantization H.264 uses a quantization parameter QPH � 264

ranging from 1 to 52. The dead zone effect arises from the fact that the quantiza-

tion step sizes are relatively larger when the quantization step is small (QP=1 �
QP=2), as opposed to the relatively small step sizes when the quantization step is

large (QP=31 � QP=32). The quantization step Qstep is chosen from the vector

qv
� �

0 � 625 0 � 6875 0 � 8125 0 � 875 1 1 � 125 1 � 25 � according to QPH � 264 � First, qv2 is gen-
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Figure 2.11 Block diagram of an H.264 encoder.

erated with

qv2
� �

0 � 625 0 � 6875 0 � 8125 0 � 875 1 1 � 125 1 � 25 � � 2 �
QPH � 264

6 � � (2.22)

where
���

is rounding with truncation towards zero. Second, Qstep is chosen from qv2

with

Qstep
� qv2

�
rem

�
QPH � 264

6 � � 1 � � (2.23)

where rem is the remainder after division. From Eq. 2.22 and Eq. 2.23 it can be seen

that the quantization step doubles for every increment of 6 in QPH � 264. QPH � 264 can be

changed for each macroblock separately.

Depending on the profile entropy coding is achieved with CAVLC (Chap. 2.2.1.2)

for the transform coefficients and Exp-Golomb (Chap. 2.2.1.3) for other data elements

or with CABAC (Chap. 2.2.1.5) and Exp-Golomb coding. CABAC can increase

compression efficiency by roughly 10% relative to the CAVLC mode [105], although

CABAC is significantly more computationally complex. Due to this computational

complexity CABAC will not be used in mobile architectures in the near future.

Motion estimation in H.264 uses seven different block sizes; these are shown in

Fig. 2.12 and the accuracy of the motion vectors can be up to quarter-pixel. The

maximum number of used past or future reference frames is 15; the MVs can be

weighted. The motion vector prediction is computed as shown in Fig. 2.9 and Eq.

2.20, except that the size of the current block or sub-block determines the neighboring

blocks. This means that the neighboring blocks can reside within the same macroblock

as the current block. Also, if MV3 of Fig. 2.9 is unavailable, MV4 is used instead. Bi-

directional prediction is generalized so that both reference blocks can be in the past or
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Figure 2.12 H.264 motion estimation partitions

future and both motion vectors are weighted. Unlike previous standards, bi-predicted

blocks can also be used as reference. H.264 skip modes are similar to MPEG-4, except

that the motion vector used is Px � y from Eq. 2.20, as opposed to the zero motion

vector. Bi-predicted blocks also have two direct modes where the motion vector of

the respective block is derived with scaling from spatial neighbors or temporally co-

located blocks.

As is shown in Fig. 2.11, H.264 has an in-loop adaptive de-blocking filter. De-

blocking filters have been used to reduce the block border gradient, which accounts

for the blocking effect (Chap. 2.2.5) in the post-processing operations shown in Fig.

2.8. The de-blocking filter affects up to three pixels on either side of the border of 4x4

sub-blocks to reduce the gradient between adjacent blocks. The filter also reduces the

prediction residual. The strength of the filter depends upon the compression mode of

a macroblock (Intra or Inter), the quantization parameter, motion vector, and the pixel

values of the original image. The encoder can also adjust the overall strength of the

filter.

H.264 has three original profiles: Baseline, Main and Extended. In addition to

these, four Fidelity Range Extension (FRext) [105] profiles are also defined. Of these,

Baseline is used in mobile communication. From the basic coding tools the Baseline

profile excludes bi-directional prediction. Among other features, the Extended profile

includes advanced error resiliency tools, which might make it attractive for mobile

use. H.264 defines 16 levels tied mainly to the picture size and frame rate. Level 1b

was added in the FRext amendment, primarily to address the expressed needs of some

3G wireless environments. A sample of different levels is shown in Table 2.5.

The H.264 FRext amendment also adds the possibility of sending alpha channel

information [106], which could open the possibility of using segmentation implemen-

tations (Chap. 3.3) in H.264 encoders. However, the FRext profiles are too computa-

tionally intensive for mobile applications.
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Level Typical frame Typical frame Max. compressed Max. number of
size rate bit-rate (kbps) reference frames

1 QCIF 15 64 4
1b QCIF 15 128 4
1.1 QCIF 30 192 9

CIF 7.5 192 2
1.2 CIF 15 384 6
1.3 CIF 30 768 6
2 CIF 30 2000 6

Table 2.5 The main attributes of H.264 profiles suited for mobile applications (Levels 2.1
through 5.1 not shown).
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Chapter 3

Analog Parallel Processor

Theory

3.1 Parallel Signal Processing

Various media-processing operations, especially video processing, are defined by a

large demand for computational power. The operations in video encoding can be

divided into a small number of groups:

- Stream-oriented operations, such as VLC (Chap. 2.2.1) and syntax gen-

eration.

- Macroblock-local and macroblock neighborhood operations, such as DCT

/ IDCT (Chap. 2.2.2) and filtering.

- Regional operations, which are composed only of motion estimation

(Chap. 2.2.4).

Combining these operations results in a widely varying number of arithmetic and

transfer instructions and data widths, making the mapping of the whole video cod-

ing operation onto a single processor platform difficult.

The computational power demand of video encoding is mainly made up of a large

number of relatively simple operations of DCT, and, especially, ME, that are per-

formed on substantial amounts of data. Also, the processing usually demands little

global data reuse. The substantial amount of data stems from the large number of

pixels in video frames.

Therefore, as opposed to general-purpose processors, which mainly operate se-

rially, the most efficient type of processors for video operations are the ones that
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parallelize the data operations. This parallelization can be grouped into three main

categories:

Instruction-Level Parallelism Superscalar processors, such as Very Long Instruc-

tion Word (VLIW) processors, execute multiple instructions from a single in-

struction stream simultaneously. The instruction-level parallelism of video ap-

plications is exploited in many VLIW DSPs, such as [107].

Thread-Level Parallelism Multiple Instruction Multiple Data (MIMD) processors

exploit data parallelism by executing multiple instruction streams simultane-

ously [108]. These separate instruction streams may be, for example, executed

by separate processor cores within a single architecture [109].

Data-Level Parallelism Single Instruction Multiple Data (SIMD) processors, such

as vector processors [110], store the data in vector register files. The same in-

struction is then executed on these arrays of data.

Many processor architectures combine different forms of parallelism. In all paral-

lelization cases, the most significant issue is the intelligent and efficient division of

the computation instructions to the processors.

3.1.1 Array Processing

In array processing, multiple processors are arranged into an array and are usually

interconnected. Many examples of array processors exist; these can either be either

analog [111] or digital [109]. As the processor array can be designed to have the same

size and structure as the video frame (i.e. one processor per pixel and interconnec-

tions enabling specific data transfer), a processor array is a prime candidate for video

applications.

The Cellular Nonlinear Network (CNN) [112] paradigm is an analog parallel pro-

cessing theory. The hardware CNN realizations, such as the CNN Universal Machine

(CNNUM) [113], are theoretically capable of very high computational speeds com-

bined with a low power consumption [114]. However, the implementation of a general

purpose CNN is usually difficult and inefficient [115], leading to realizations that are

no longer CNN in the strict sense.
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3.2 Cellular Neural/Nonlinear Networks

The Cellular Neural/Nonlinear Network [112] achieves data parallelism with a paral-

lel array of locally connected processors. The processors are customarily referred to

as cells. If the connections (weights) between the cells are defined by a learning op-

eration, the network is called a cellular neural network. Otherwise, the term “cellular

nonlinear network” is used.

3.2.1 CNN Definitions

The cells are usually connected rectangularly as a two-dimensional grid. The interac-

tions within the grid are defined by the cell’s neighborhood and the number of con-

nections from each cell. The neighborhood of the cell defines the distance of the

furthermost connections. Examples of 1- and 2-neighborhoods are shown in Fig. 3.1.

A rectangular neighborhood is not the only option, but the neighborhood can also be,

for example, hexagonal.

The cell need not be connected to all of the cells within the current neighborhood.

Fig. 3.2 shows the most common 4-connected and 8-connected 1-neighborhoods, but

other connection patters also exist. Also, the connectivity pattern can vary with each

neighborhood. Depending on the application the cells on the edge of the array can

require specific conditions which have to be implemented with specific border cells.

An example of such connections is shown in Fig. 3.2 where the border cells are

marked with dashed lines.

(a) (b)

Figure 3.1 a) 1-neighborhood, b) 2-neighborhood. The gray cells depict the cells that are
connected to the black cell.
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(a) (b)

Figure 3.2 a) 4-connected 1-neighborhood, b) 8-connected 1-neighborhood.

3.2.2 Continuous-Time CNN

The state of a cell depends on the inputs and outputs of the cells connected to it. In

the original CNN model [112], this state can be expressed with

dxi � j
dt
� � xi � j � ∑

Ck � l � Nr � i � j 	 A �
i � j;k � l � yk � l � ∑

Ck � l � Nr � i � j 	 B �
i � j;k � l � uk � l � z (3.1)

where xi � j is the cell state, ui � j is the cell input and yi � j is the cell output. A and

B are the feedback and feed-forward coefficients, respectively. These coefficients

represent the weights in the connections between the cell Ck � l and the cell Ci � j . Nr
�
i � j �

is the neighborhood of the cell Ci � j and z sets the operating point of the cell. The

modification of the coefficient weights A, B and z achieve the different operations of

the network. The output of the cell is a piecewise linear sigmoid that is shown in Fig.

3.3. The output is obtained with the equation

yi � j
� 1

2

���� xi � j � 1
�� � �� xi � j � 1

�� �
� (3.2)

If the feedback and feedforward coefficients are space invariant the coefficients have

the same values for each cell in a network. In the case of a 1-neighborhood, the

coefficients are expressed as

A �
��� A � 1 � � 1 A0 � � 1 A1 � � 1

A � 1 � 0 A0 � 0 A0 � 1

A � 1 � 1 A0 � 1 A1 � 1

���� B �
��� B � 1 � � 1 B0 � � 1 B1 � � 1

B � 1 � 0 B0 � 0 B0 � 1

B � 1 � 1 B0 � 1 B1 � 1

���� (3.3)

so the coefficients can be expressed with only 19 terms, which include the term z from

Eq. 3.1. In such a case, the coefficients A and B are called “cloning templates” and
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Figure 3.3 CNN cell output function.

the term z is called the bias template. A and B can also be polynomial functions [116].

3.2.3 Extensions to the original CNN model

An extension to the functionalities of CNN is the CNN Universal Machine (CN-

NUM) [113]. In addition to the connections of a regular CNN cell, a CNNUM cell

contains program registers, switch configuration registers, boolean logic, control logic

and analog and digital memory. A CNNUM cell enables the use of several templates

and programmability in the network.

In Full Signal Range CNN (FSRCNN) [117], the cell state is limited between the

range [-1,1], making the cell state and the cell output equivalent, with the result that

the whole state swing can be reserved for this range. Also the � xi � j term in Eq. 3.1

can be realized with [A0 � 0 - 1].

In positive range high gain CNN [118], the output function of Eq. 3.2 is changed

to

yi � j �
�

0 � x � � ε
1 � x � ε

0 � ε � 1 (3.4)

making the cell input and output binary. The templates in positive range high gain

CNN remain continuous. Binary cell outputs do not permit gray-scale operations, but

the analog design is simplified and reliability is increased.

A Discrete-Time CNN (DTCNN) [119] has continuous inputs and connection

weights and a bipolar output. A DTCNN can be realized digitally or with an ana-

log discrete time implementation.

3.2.4 Digital Emulated CNN

The advantages of a digital CNN architecture realization are increased processing ac-

curacy and digital data storage. However, as the cell size increases, the largest possible
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Figure 3.4 B-template realization: Linear non-propagative cell.

network size decreases. Also the computational speed decreases and power consump-

tion increases. In [122], a digital emulated CNNUM is introduced. In [16], a gray-

scale multiplier-free digital CNN for spatial filtering is introduced.

3.2.5 Example of a CNN Cell Realization

In practice, the A- and B-templates of Eq. 3.3 can be realized with current mirrors.

Figure 3.4 shows the linear non-propagative cell [115], which realizes the B-template.

Mmem operates as the analog memory of the cell, the current mirror of M1 and M3-

M10 conducts the input current to the neighboring cells. The mirror ratio of M1/M2

realizes the coefficient B0 � 0 and the ratios of M1/M3 through M1/M10 realize the other

coefficients B � 1 � � 1 through B1 � 1. The drain of M12 acts as the summing node for the

output currents of the neighboring cells.

Fig. 3.5 shows the realization of a linear resistive grid [120] that can realize an

A-template [121]. The coefficients A � 1 � � 1 through A1 � 1 are realized with the mirror

ratios of M1/M2 and M4/M6-M13. The input of the linear resistive grid is usually

the output of the B-template realization. Both of these circuits require unipolar input

currents; with bipolar currents, extra circuitry is required [120].

The implementation of a CNN or CNNUM for a specific task can be very ineffi-

cient. A more efficient method in realizing hardware with the same functionality can

often be achieved by dividing the specific processing tasks into separate categories

implemented with dedicated hardware arrays [115]. The resulting processor arrays no

longer necessarily realize Eq. 3.1, because, for many tasks, there exist more suitable

hardware realizations.
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Figure 3.5 A-template realization: Resistive network cell.

3.3 CNN Application Example: Shape Segmentation

As an example of CNN applications, a shape segmentation algorithm [29] is reviewed.

This algorithm, outlined in Fig. 3.6, together with the realization of the algorithm’s’

B/W part [28], is the basis for the algorithms introduced in Chap. 4 and Chap. 5.

The segmentation algorithm extracts the shapes from the luminance component (I in

Fig. 3.6) of the video sequence. The names of the various steps of the algorithm are

from [29]. With modifications, this algorithm is suitable for MPEG-4 Core profile

(Chap. 2.4.1) encoders.

The first step of the algorithm (Edge-Enhancing Low-Pass Filtering) is a filter that

preserves the high-frequency contours of the frame while filtering out high-frequency

noise. The contours are detected with a first order gradient operator. The output of

this step (L) is formed by adding high-pass and low-pass filtered filtered versions of

the frame. The high pass filter is applied to only the parts of the frame indicated by

the gradient operator. In the original algorithm, two types of motion are defined: mo-

tion between frames Ii and Ii � 3 and motion between successive frames. The motion

between frames Ii and Ii � 3 is used in extracting the object borders. The motion be-

tween the successive frames is used in defining regions that are to be updated every

frame, i.e. intra coded. In Fig. 3.6, Motion Detection
�
MD � finds the motion between

frames Ii and Ii � 3 and Remarkable-Feature Extraction
�
RF � finds the motion between

two consecutive frames. In both steps, the order of the input frames can be changed.

An externally controlled threshold (th) regulates the found Motion and Remarkable-

Features. The threshold controls how many pixels are included in the output area.

The Remarkable-Features and the low-pass filtered frame are combined in the step

Intra-Frame Segmentation
�
S � � This step performs the motion analysis of the frame

and thus indicates the areas for intra coding. Finally, Intra-Frame Segmentation com-

bines the Motion Detection and Intra-Frame Segmentation results to produce the areas
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Figure 3.6 The CNN segmentation algorithm of [29]. Also indicated are the gray-scale and
BW parts of the algorithm.

for inter coding and the final segmented object. Each part of the algorithm has several

steps with multiple A- and B-templates. The Remarkable-Features and Intra-Frame

Segmentation parts of the algorithm are used in Chap. 4 and Chap. 5 and are therefore

described more closely below. For the exact steps and specific templates of the various

parts of the algorithm the reader should see [29].

Remarkable-Feature Extraction, shown in Fig. 3.7a, first calculates the difference

between frames Ii and Ii � 1 � The absolute value of the difference frame is then thresh-

olded with the threshold th into a binary image. The threshold controls the number

of pixels that are included in the binary image. A too-small th can lead to under-

segmentation1. This binary image contains several small shapes. These small shapes

are not homogeneous but contain holes. First the holes have to be filled with the Hole

Filler template. Then the several small shapes are combined with erosion and dila-

tion operations so that the number of shapes is decreased. The erosion shrinks and

dilation enlarges the binary shape. The erosion and dilation operations simplify the

frame. Finally, the simplified frame is compared with the output of the hole filler

template. This is achieved with the Restoration template. The effect of this step is the

removal of shapes deemed too small. All of the templates used in Remarkable-Feature

Extraction, are originally presented in [123].

The original function of Intra-Frame Segmentation, shown in Fig. 3.7b, is to in-

dicate which parts of the frame should be intra coded. This could be achieved by

marking these parts as separate objects in MPEG-4 Core profile (Chap. 2.4.1) or

designating them into independent slice groups of H.264 (Chap. 2.5). The first step
1In [29] th was set to a constant value of 8 for all sequences. This is due to the fact that the input video

sequences were video conferencing (i.e. “Head & Shoulders”) type of material. For other types of video
sequences th has to be varied. As the optimal th is for other types of sequences is not discussed in [29] th
was set subjectively for the sequences used in this thesis.
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Figure 3.7 Detailed parts of the segmentation algorithm of [29]. a) Remarkable-Features b)
Intra-Frame segmentation

of Intra-Frame Segmentation is gray-scale edge detection with a first order deriva-

tive operator. The binary lines indicated by the gradient operator are then thinned

with the Skeletonization template [124]. This skeleton is then combined with the

Remarkable-Feature result with an OR-operation. Lines that do not belong to the

Remarkable-Features are removed with the Insignificant Line Removal template [29].

Small objects are then merged with larger neighbors with the Hole Filler and Restora-

tion templates. Finally, the edges of the remaining objects are detected with a binary

edge detection template [125] and simplified with the Skeletonization template.

3.3.1 Implementation of the Shape Segmentation Algorithm with

Dedicated Hardware

The segmentation algorithm of [29] can be implemented more efficiently by dividing

the tasks into gray-scale and black-and-white operations. A QCIF resolution B/W chip

realized in [28] is capable of achieving the B/W tasks of the segmentation algorithm

and is able to segment up to 1000 frames/s. With lower frame rates, the processor array
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part of the chip can be turned off when it is idle, lowering the power consumption to

0.46 mW@30fps [115]. The core size of the B/W processor is 3.2 X 2.6 mm2, and the

whole processor approximately 15 mm2, when implemented with 0.25µm technology.

The rest of the necessary circuitry that needs to be implemented in order to realize

the considered algorithm is reported in [115]. A 64 � 16 test chip of the gray-scale part

of the algorithm is realized in [126] with 0.18µm technology. The size of the array was

950µm X 450µm. From the measurement results it can be calculated that the power

consumption of the gray-scale part is below 5 mW with CIF@30fps. This power

consumption figure also includes the absolute value and thresholding operations of

Remarkable-Features and Motion Detection.



Chapter 4

Motion Estimation

Computational Complexity

Reduction

4.1 Description of Test Environment

4.1.1 Description of Video Sequences

Four QCIF-sized video sequences [127] have been used in this thesis. The sequences

Carphone, Foreman and Silent Voice depict possible video telephony situations. The

sequence News depicts a typical news cast with two news anchors and a picture be-

hind them. The first frames of each sequence is shown in Fig. 4.1. The content of

each sequence is described in Table 4.1 [127], [87]. Simple Motion refers to slow mo-

tion of the moving objects. Complex motion refers to faster motion and/or occlusion

and appearing objects. The input and output frame-rates are 30fps for all the video

sequences in this thesis. All sequences were 100 frames in length.

4.1.2 Implemented Encoders

As the purpose of this research was to study various motion estimation methods and

their effect on picture quality and bit-rate, only the various parts of the general en-

coder shown in Fig. 2.1 (ME, MC, DCT, IDCT Q, Q � 1, and VLC) were implemented

in Matlab. An additional reason for this was that the presented methods have little

effect on the other parts of a full encoder such as rate-control and the CPU. The main

consequence of this approach is that the syntax generation was left outside the scope
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(a) (b)

(c) (d)

Figure 4.1 First frames of video sequences used in this thesis. a) Carphone b) Foreman c)
News d) Silent Voice

of this thesis. Thus, only the payload bits (i.e. bits output from the VLC of each

respective standard) are used in the results. The quantization parameter Qp was used

as the variable to control the number of these output bits. The coding sequence was

IPPP... and Qp was constant for the whole sequence. The output bits are referred to as

“Coded Bits” in the results. As the transform and VLC are specific to each standard,

the “Coded Bits” are interchangeable only within boundaries of the each respective

standard. The “Coded Bits” can be proportioned to results in literature with a multi-

plication factor of 0.31. Most results in literature include the syntax bits, which has to

be taken into account in possible comparisons. The above applies to all results in this

thesis.

In all simulations, only integer motion vectors were used and MVs were not al-

lowed to point outside frame boundaries. In all H.264 simulations, the deblocking

filter was turned off and no macroblock-level decisions were made.

1Sequence length = 100, frame rate = 30 fps.



4.2 Application Target 47

Spatial Simple Complex Camera
Detail Motion Motion Pan

Carphone Low/Medium X X -
Foreman Medium/High X - X

News Low X X -
Silent Voice Low X - -

Table 4.1 Description of test sequences [127], [87].

4.2 Application Target

The MPEG-4 Core profile (Chap. 2.4.1) enables object-based coding. A Core profile

encoder may also have to be able to carry out frame-based Simple profile coding.

Frame-based coding is needed when, for instance, the object-based functionalities are

not used or the target decoder has only Simple profile capabilities.

It is shown in this chapter that an object-based Core profile encoder can have

advantages in frame-based Simple profile encoding. The intermediate results of the

CNN segmentation algorithm (Chap. 3.3) can be used in computational complexity

reduction of motion estimation. The CNN intermediate results indicate areas of mo-

tion within a frame. The areas without motion can be then used to stop the motion

estimation (early thresholding) or to indicate MPEG-4 skip modes. All block-based

motion estimation algorithms can benefit from this knowledge.

Several algorithms, such as [128] and [129], that combine segmentation and block-

based ME, have been presented. However, these algorithms do not comment on early

thresholding or skip modes, as is done here. Also, as stated in Chap. 1.1.2.1, no

CNN or CNN-type algorithms or implementations exist that comment on block-based

motion estimation.

4.3 The Use of Shape Segmentation Intermediate Re-

sults in Motion Estimation

The Remarkable part of the segmentation algorithm of Chap. 3.3 indicates the areas

containing motion within a frame. The structure of the segmentation algorithm is illus-

trated in Fig. 4.2. This motion information can be used to determine the valid search

areas for motion estimation, regardless of whether the video encoding is object-based

or frame-based. All the ME algorithms of Chap. 2.2.4.3 benefit from the knowledge

of areas with motion. Thus, all the types of motion estimation algorithms of Chap.

2.2.4.3 can be modified to benefit from the method introduced in this chapter. With

respect to the output bit-rate, the effect of coding only areas with motion is similar to

using a high quantization parameter Qp value for areas without motion and using a
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Figure 4.2 Outline of the structure of the original segmentation algorithm (Chap. 3.3) [29] and
the modifications that can be used with frame-based coding (Chap. 6). Also indicated are the
gray-scale and BW parts of the algorithm. The symbols are explained in Chap. 3.3.

lower Qp value for areas with motion. With the knowledge of areas with motion the

ME algorithm can be made to ignore blocks without motion.

Results from the Remarkable part of the algorithm can be seen in Fig. 4.3, where

the areas in white indicate motion. In practice, the block of Remarkable data corre-

sponding to the current block is checked whether the Remarkable block contains any

motion (white) pixels. This operation can be achieved with various methods such as

a counter or with sequential or parallel OR operations. If no motion pixels are found,

the ME is signaled not to perform a search on this block. Thus, this method corre-

sponds to early thresholding (Chap. 2.2.4.2). The no-motion information can also be

implemented to indicate the macroblocks on which MPEG-4 skip modes (Chap. 2.4)

should be used. For a skipped macroblock, no motion vector or transform coefficients

are sent. Thus, in addition to ME, neither the DCT nor VLC have to be performed

on the skipped blocks. The skip mode is conventionally determined with either early-

thresholding or rate-distortion optimized algorithms (Chap. 2.2.4.6).

With high motion, a large part of the overall frame is included in the found motion.

This usually implies camera panning or a changed scene. By setting an appropriate

threshold, such events can be detected.

The motion was tested with two types of ME algorithms. FS was chosen as the
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(a) (b)

(c) (d)

Figure 4.3 Example of the CNN segmentation algorithm intermediate results. The areas with
motion are indicated with white. a) Carphone b) Foreman c) News d) Silent Voice

optimal algorithm. Motion Vector Adaptive Search Technique (MVFAST) [92] was

chosen as an example of a gradient-based ME algorithm.

4.4 Experimental Results

The segmentation algorithm was integrated into a Simple profile MPEG-4 encoder in

Matlab software. The search area was set to [-15,16] and skip modes were enabled.

The Remarkable results were compared to conventional Full Search motion estima-

tion. The used values for Qp were 2, 4, 8, 12, 16, 20, 26 and 31. The rest of the test

environment is described in Chap. 4.1.2. As the optimal th (Chap. 3.3) for various

types of video sequences is not discussed in [29], th was set subjectively for each

sequence. Another possibility would be modifying a conventional rate-control algo-

rithm to adjust th according to the rate-control parameters. As the rate-control was not

implemented this possibility is not considered further.

The Remarkable results of the segmentation algorithm were calculated in two
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Figure 4.4 Difference between I-ref and P-ref. The arrows imply the frames from which the
found motion was calculated.

ways: First, the reference frame from which the motion was calculated was the I-

frame. The results from the Remarkable part of the algorithm are thus between the

current frame and the I-frame. This is referred to as I-ref in the results. Second, the

reference frame from which the results from the Remarkable part of the algorithm mo-

tion were calculated was a frame preceding the current frame. The number of frames

between the current and reference frame was varied. This is referred to as P-ref in the

results. The number of frames between the current and reference frame is also shown

in the results. Fig. 4.4 shows the difference between I-ref and P-ref. The original

frames were used as the input to the segmentation algorithm.

4.4.1 Effect of uncoded regions in PSNR values

Due to the unidealities of sensor arrays, all natural video sequences contain random

noise [130], [131]. This random noise has a constant component and a time-variant

component. For static pixels, the difference in the same pixel of sequential frames is

characterized by their variance σ2. The random noise can only be preserved by using

a very low Qp in the video coding application. In large display applications, such as

HDTV, regions without this noise appear to stay unnaturally stationary. In QCIF or

CIF-sized mobile applications, the lack of this noise has very little or no subjective

difference.

The segmentation algorithm filters out random noise, and thus finds only the re-

gions of true motion. The regions without motion are then either skipped or, in the

case of early thresholding, no prediction error is sent. When the PSNR values are cal-

culated from these uncoded areas of the decoded frames , the imperceptible difference

arising from the noise forces the PSNR value to an upper limit. So even if no quan-

tization was used and the regions of true motion were coded without error (assuming

negligible error from the DCT), the PSNR value for the frame could not exceed the

upper limit. The upper-limit value depends on the amount of motion and the variance

of the noise in the sequence; an exact value cannot be calculated without knowing the

noise distribution. This effect is proportional to the number of skipped blocks and
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early thresholding when the picture quality is high (PSNR
��

35 dB). In lower picture

quality with higher Qp � the difference blocks are quantized to zero, thereby having the

same effect as a skipped block or early termination.

4.4.2 Simulation Results

The simulation results for the sequences Carphone, News, Foreman, and Silent Voice,

are shown in Figs. 4.5, 4.6, 4.7 and 4.8, respectively. In these figures, the rate-

distortion values and the average number of computed SAD values are shown in the

upper and lower graphs, respectively. Both results are shown for each value of Qp � In

the graphs, the term “No Segmentation” refers to frame-based coding, e.g. no shape

information is used. In the legend, thI and thP correspond to the value of th of I- and

P-frames, respectively. Also, frP corresponds to the number of frames between the

two input frames of the Remarkable part of the algorithm.

From the figures, it can be seen that using the intermediate results of the segmen-

tation algorithm yields considerable savings in coded bits. From the analysis of the

PSNR graphs, it would seem that the video quality reduction is unacceptably high es-

pecially for the lower values of Qp. Although there is a considerable drop in coded

bits the PSNR values can have up to an 8dB reduction for Qp=2. This PSNR reduction

is the upper PSNR boundary due to the difference in random noise (Chap. 4.4.1) in

different frames and is concentrated in the uncoded areas of the frame. As the random

noise has a negligible effect on the subjective quality of a coded sequence, no artifacts

can be seen and the subjective quality of the low Qp I-ref/P-ref coded sequences is

equal to the sequences coded without segmentation information. As an example, the

exact rate-distortion values for four middle and low bit-rate Qp have been collected in

Table 4.2. The slight improvement in PSNR that can be seen in the higher Qp values

is also caused by the random noise (Chap. 4.4.1) in the uncoded areas. The subjective

quality in the Qp=20 sequences is equal to the sequences coded without segmentation

information.

From the results, it can be seen that the use of the intermediate results has the

greatest advantage with video sequences where the movement is in a small area such

as Silent Voice, where the movement is confined to the person. With sequences of

high motion, such as the camera motion of Foreman, the advantages are reduced.

With sequences with motion in extremely small but subjectively important areas, such

as the faces in the sequence News, the threshold th has to be set with care to avoid a

large error in subjectively important areas. In practice, when this algorithm is used,

this means that the Remarkable part has to be execute once with a low th (th=2 or

th=3) even if the segmentation only requires a higher th.

The average number of computed Sum of Absolute Differences (SAD) for each



52 Motion Estimation Computational Complexity Reduction

Full Search
PSNR (dB) Coded Bits (kbps)

Qp=12 Qp=20 Qp=26 Qp=31 Qp=12 Qp=20 Qp=26 Qp=31
Carphone -0.82 -0.25 -0.07 0.00 -62.9 -26.1 -17.5 -12.1

News -0.37 0.04 0.09 0.11 -61.9 -30.4 -20.0 -16.8
Foreman -0.21 0.02 0.05 0.10 -94.6 -47.3 -30.1 -23.1

Silent -0.21 0.05 0.10 0.14 -47.0 -22.0 -14.8 -11.1
MVFAST

PSNR (dB) Coded Bits (kbps)
Qp=12 Qp=20 Qp=26 Qp=31 Qp=12 Qp=20 Qp=26 Qp=31

Carphone -0.63 -0.04 0.19 0.21 -105.6 -53.6 -41.8 -31.5
News -0.24 0.16 0.19 0.30 -80.4 -41.3 -33.3 -38.0

Foreman -0.17 -0.00 0.11 0.19 -118.0 -51.9 -46.0 -36.6
Silent -0.14 0.12 0.18 0.27 -61.8 -30.4 -22.0 -17.9

Table 4.2 Exact differences in rate-distortion between frame-based coding (“No Shape”) and
P-ref for Qp=12, Qp=20, Qp=26 and Qp=31.

value of Qp is shown in the lower graphs of Figs. 4.5, 4.6, 4.7 and 4.8. The reduction in

the number of SADs is inversely proportional to the amount of motion in the sequence.

When using MVFAST the number of SADs stays more constant with I-ref/P-ref than

when the sequences are coded without the segmentation intermediate results. This

can be especially seen for the sequence News in Fig. 4.6 and to a lesser extent for

the sequences Carphone (Fig. 4.5) and Silent (Fig. 4.8). This can be of use when

designing hardware for MVFAST-type motion estimation, as the foreknowledge of

the constant number SADs leads to smaller computational complexity overhead for

the hardware. However, before the design of such hardware, the phenomenon would

have to be verified with a statistically wide range of video sequences.

From the results, it can be concluded that computing the motion with a single

reference frame, as is the case in the I-ref results, has applications only in extremely

low-power encoders where I-ref could be used in, for example, a coding scheme where

the motion compensation of more than one frame refers to the same reference frame.

Such a method would still offer coding advances over the intra coding used in current

mobile coders intended for MMS (Multimedia Messaging Services) applications. For

encoders capable of inter coding the reference frame has to be varied as in the P-ref

results.

4.5 Effect of the Algorithm on Power Consumption of

Motion Estimation

The effect of this algorithm on the power consumption of motion estimation depends

on several factors. First, the algorithm has an advantage only in real-time codecs
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which include object-based and frame-based coding and pre-processing with segmen-

tation. An example could be a transmission system with a Core profile transmitter

codec and a Simple profile receiver. In such cases, the algorithm’s advantages emerge

with frame-based encoding.

The actual power savings depend on what type of motion estimation algorithm

is used and how this algorithm is realized in hardware. Exact power consumption

reduction figures would require the implementation of specific realizations. Presented

below are estimates on two different ME realizations.

The first example could be Full Search implemented on a 1-D or 2-D systolic ar-

ray [101]. Such an implementation has a very regular architecture with only local

connections and little control circuitry. Adding the presented algorithm to such an

implementation would decrease the power consumption but would require additional

control overhead. For the macroblocks with motion (as indicated by the Remarkable

data) both the 1-bit Remarkable data and the 8-bit pixel values have to be transferred

into local memory. Also, for these macroblocks, an OR-operation has to be performed

on the Remarkable data in addition to the SAD of the pixel values in the search area.

For the macroblocks without motion only the 1-bit Remarkable data has to be trans-

ferred into local memory and only the OR-operation has to be performed.

By defining B f as the total number of macroblocks in a frame and Bw as the

number of macroblocks without motion, the power consumption reduction ratio with

and without the Remarkable data can be defined as

power ratio � Bw � ow � �
B f � Bw � � �

ow � om �
B f � om

(4.1)

where the parameters om and ow are defined separately for the number of computa-

tional operations and the amount transferred data. In om and ow � the subindex m refers

to the macroblocks with motion and subindex w refers to the macroblocks without

motion. By additionally defining

ρ � Bw

B f
(4.2)

and

ϖ � ow

om
� (4.3)

the reduction ratio can be simplified to

power ratio � 1 � ρ � ϖ � (4.4)

As with om and ow � this ratio is also defined separately for the number of computational

operations and the amount of transferred data. The power consumption is then derived
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with

Pa
� power ratio � Po (4.5)

where Pa is the power consumption with the presented algorithm and Po without the

presented algorithm. This simplification is based on the assumption that, for both the

computation and data transfer, the power consumption of the Remarkable data and

pixel data does not correlate.

From the Remarkable data of QCIF-sized Carphone, Foreman, News, and Silent,

for 16x16 blocks, the average ρ � 0 � 48 � For the data transfer2 ϖ � 1
�
9 and for the

computational complexity3 ϖ � 1
� � �

2r � 1 � � 3 � 8 ��� 0 where N2 is the block size and

r the search area. Thus, the reduction ratio for the data transfer is 0.63 and for the

SAD computation 0.52. For larger image sizes the reduction ratios would be higher

as the macroblocks can be better adapted to the Remarkable data.

In [132], a 280 mW CIF@30fps MPEG-4 codec using FS is presented. The power

consumption of the codec’s motion estimation is 30 mW4. From [12] it can be es-

timated that the data transfer in FS ME is in the range of 70% of the total power

consumption. Using this memory power consumption percentage, the total reduction

ratio is 0.60 and the ME power consumption of [132] would drop to 18 mW by using

the presented method.

Another example could be an ASIC implementation of a ME algorithm, such as

PMVFAST [94], which already includes many separate power consumption reduction

methods. The PMVFAST algorithm incorporates a predictor set of 6 MVs and various

early thresholds. The power savings of merging such a ME algorithm with the pre-

sented algorithm would be generated from the simplification of the control circuitry.

As parts, such as early thresholds, of PMVFAST and the presented algorithm overlap,

the control circuitry of the ME algorithm could be simplified.

In [11], a 0.4 mW ME realization is presented. The realization incorporates a

predictive gradient search algorithm. The algorithm of [11] computes a minimum of

8 SADs5 for the blocks where the best predictor indicates the minimum SAD value.

By using this value for all macroblocks, which is a conservative estimate, ϖ � 1
� �

8 �
3 � 8 � � 0 � 005 for the SAD computation. For the data transfer ϖ is unchanged. With

these values, the total reduction ratio remains at 0.60 and the power consumption

of [11] would drop to 0.24 mW.

The power consumption of the required parts of the segmentation algorithm is an-

alyzed in Chap. 5.4.1. The analysis also applies here, although the presented method

2Assuming all data is reused and thus fetched from memory only once.
3No. of operations for a block without motion �� N2(1-bit OR). No. of operations for a block with

motion �� (2r+1) � 3 �N2 (8-bit SAD).
4Estimated from a graph.
5Four predictors plus four points around the best predictor.
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is intended for use in implementations where segmentation is used as a pre-processing

step.



56 Motion Estimation Computational Complexity Reduction

0 0.5 1 1.5 2 2.5

x 10
6

26

28

30

32

34

36

38

40

42

44

Coded Bits

P
S

N
R

    Carphone thI=8 thP=3 frP=3

I−ref, Full
I−ref, MVFAST
P−ref, Full
P−ref, MVFAST
No Shape, Full
No Shape, MVFAST

0 10 20 30 40

800

1000

1200

1400

1600

1800

2000

Qp

N
o

. o
f 

S
A

D
s

MVFAST

I−ref
P−ref
No Shape

0 10 20 30 40

6.5

7

7.5

8

8.5

9
x 10

4

Qp

N
o

. o
f 

S
A

D
s

Full Search

I−ref
P−ref
No Shape

Figure 4.5 Carphone rate-distortion and number of SAD graphs with varying values of Qp

(The subjective quality of the video sequence differs from the quality presented by the PSNR
values, chap. 4.4.1)
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Figure 4.6 News rate-distortion and number of SAD graphs with varying values of Qp (The
subjective quality of the video sequence differs from the quality presented by the PSNR values,
chap. 4.4.1)
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Chapter 5

Algorithm for H.264 Motion

Estimation Partitions

5.1 Application Target

A part of the increased compression efficiency of H.264 (Chap. 2.5) is due to the

seven different block sizes that can be used in H.264 ME. These block sizes, which

are shown in Fig. 2.12, range from 16x16 to 4x4. The basic concept behind variable

block-size ME is that smaller block sizes are more efficient in areas of spatial de-

tail, and at the same time, larger block sizes are more efficient in homogeneous areas.

When all of these sizes are used for motion estimation in H.264, the number of opera-

tions increases to NxMx(2W+1)2, where M is the number of block types, N the num-

ber of reference frames and
�

W the search area. With a single block type and refer-

ence frame the number of operations is (2W+1)2
� Even though the distortion measure

values for the smaller blocks can be reused for the larger blocks, the number of oper-

ations is computationally prohibitive for mobile terminals. Thus the first low-power

hardware implementations of H.264 are likely to use only 16x16 block sizes. The

optimum block size is determined with Lagrange optimization (Chap. 2.2.4.6) [95]

J
�
sk � Ik

�
λ � � D

�
sk � Ik � � λMotion � R �

sk � Ik � (5.1)

where

λMotion
� � 0 � 85 � 2 QPH � 264 � 12

3 � (5.2)

As can be seen from Eq. 5.2 and is shown in Fig. 5.1, the optimum partition depends

on QPH � 264. Fig. 5.1 shows the block-size distribution of frame 2 of the sequences

Foreman and News for QPH � 264 = [1, 24, 50]. Also shown is the proportional distribu-
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Figure 5.1 Distribution of block sizes subject to Qp (top row), close-ups (middle row), and
proportional distribution (bottom row). a) Foreman. b) News

tion e.g. the size of the area covered by the various block sizes.

A method of determining the ME partition with the intermediate results of the seg-

mentation algorithm of Chapter 3.3 is presented in this chapter with a view to decreas-

ing the computational power requirements of the H.264 encoder. Also determined are

skipped blocks and the early termination of motion estimation.
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Figure 5.2 Outlined is the structure of the original segmentation algorithm (Chap. 3.3) [29].
Also indicated are the gray-scale and BW parts of the algorithm. The symbols are explained in
Chap. 3.3.

No CNN or CNN-type algorithms or implementations exist that comment on vari-

able block-size ME. Several conventional variable block-size estimation algorithms

for H.264 have been presented. In [133], the correlation of previously computed block

sizes is taken into account in predicting the partition. In [134], the partition is esti-

mated from the MVs of 4x4 blocks. In the presented method, no search is needed in

determining the partition.

5.2 Partition Algorithm

The partition algorithm has two versions, an earlier version (Chap. 5.2.1) and a later

version (Chap. 5.2.2). As in Chap. 4, both methods use the intermediate results of the

segmentation algorithm described in Chap. 3.3 [29]. The segmentation algorithm is

shown in Fig. 5.2. Partition method 1 uses the results of the Remarkable part of the

algorithm with three different thresholds (th). Partition method 2 uses the Remarkable

and Intra-Frame Segmentation parts of the algorithm.

5.2.1 Partition Method 1

In Fig. 5.3, the results of Remarkable for frame 13 of the sequences Foreman and

News are shown. The white area of Fig. 5.3 indicates the region of active motion.

To attain the variable block sizes within the regions of motion, the method suggested

here performs the Remarkable part of the algorithm three times with the value of th

increased on every pass. In segmentation applications, a high th would lead to under
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segmentation, but here the high th reveals the contours within a larger region of active

motion. The pseudo code for the operation is shown below

if(not(previously assigned))

count(block size)

if(all 0)

assign(skip / early)

if(all 1)

assign(MVblock size)

else

block size = block size -1

where block size = [16x16,16x8, ����� ,4x4] and the “count” operation counts the number

of white (active motion) pixels in the current macroblock (block size = 16x16) or sub-

block. Naturally, for the 4x4 block size, the MV is assigned in all cases except if(all

0).

The pseudo-code operation is repeated for each Remarkable frame. Thus, the

block sizes are achieved by first assigning block sizes to the highest th frame, then as-

signing block sizes to the areas where the second highest th frame is, and so forth. In

Fig. 5.3, the top row (th=9) dictates the first pass of block sizes. Secondly, the middle

row (th=6) dictates the block sizes of the second pass. The block sizes from the first

pass are kept unchanged on the second pass. The bottom row dictates the final block

sizes (th=3). On the third pass, both the previous block sizes are kept unchanged. The

number of pixels with active motion within each block determines the macroblock

and sub-block sizes. This can be achieved with, for example, an OR operation. The

bottom row of Fig. 5.3 shows the partition result. The 16x16 blocks without motion

are assigned skip modes. As skip mode is available only for 16x16 blocks, early ter-

mination is indicated for 8x8 and 4x4 blocks. Due to the large computational power of

local processor arrays (Chap. 3.3.1) performing the Remarkable part of the algorithm

three times increases negligibly the power consumption of the processor array. With

multiple reference frames, this method could be implemented on successive frames.

This method does not comment on the Intra/Inter decision.

5.2.2 Partition Method 2

The partition method uses two components of the original segmentation algorithm.

The results from the Remarkable part of the algorithm are used to indicate the active

regions of motion as in partition method 1. Here, only a single th value is used. The

Intra-frame segmentation results are used to indicate the edges within the frame. The
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(a) (b)

Figure 5.3 Remarkable results. Top row th=9. Middle row th=6. Bottom row th=3 and partition
result 1. a) Foreman b) News.

pseudo code for the Intra-frame segmentation frame is

count(block size = 4x4)

if(not(all 0))

assign(MV4x4)

For the Remarkable frame the operation is the same as in partition method 1.

Thus, in this partition method, the block-size is assigned in two steps: 1) The

smallest block sizes are assigned to the image gradients indicated by intra-frame seg-

mentation. An example of image gradients is shown in Fig. 5.4a. The first step does
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not assign block sizes on the areas of the image without gradients. 2) The active re-

gions of the image (shown in Fig. 5.4b) are assigned the largest possible block sizes

that do not conflict with the assignments from the first step. An example of the par-

titioning result is shown in Fig. 5.4c. Skip modes and early termination thresholds

are assigned as in partition method 1. These regions are shown shaded in gray in Fig.

5.4d.

5.3 Experimental Results

The segmentation algorithm was integrated into a Baseline H.264 encoder in Matlab

software. The search algorithm was Full Search with a search area of [-15,16], skip

modes were enabled, and the deblocking filter was turned off. The algorithms were

simulated both with and without skipped blocks and early termination. Full Search

Lagrange optimization and ME using only 16x16 blocks were used as reference. The

16x16 ME represents a typical low-power mobile terminal case. The used values for

QPH � 264 were 10, 22, 28, 33, 38, and 50. The rest of the test environment is described

in Chap. 4.1.2.

5.3.1 Comparison of the Methods

The partition method 1 rate-distortion results for the QCIF-sized sequences Foreman

and News are shown in Fig. 5.8 and Fig. 5.9, respectively. The rate-distortion results

for method 2 are shown in Fig. 5.10 and Fig. 5.11, respectively. Table 5.1 shows the

average percentage of macroblocks and sub-blocks for both sequences. In Fig. 5.12,

the proportional distribution of each block size is shown. From Fig. 5.12 the average

area covered by each block size can be seen.

The effect of skipped blocks and early thresholding on high PSNR values, which

is explained in Chap. 4.4.1, can also be seen in the R/D results of these sequences.

The PSNR values for the low QPH � 264 sequences coded with skip modes are again sig-

nificantly lower but, as is explained in Chap. 4.4.1, this has little subjective meaning,

especially with small frame sizes such as QCIF or CIF. For high QPH � 264 � the skip

block sequences are objectively comparable to the Lagrange results for both video se-

quences. As the implementation target is low bit-rate applications, the higher QPH � 264

values are the most important.

When skip modes are not used with Foreman, for QPH � 264 values of 10, 22, and

28, it can be seen that there is a slight drop in PSNR and a slight increase in Coded

Bits and, thus, a slight drop in performance. For the QPH � 264 values of 33, 38, and 50

there is a increase both in PSNR and Coded Bits. Thus, the conclusion can be made

that both methods achieve comparable R/D performance with high values of QPH � 264.
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(a) (b)

Figure 5.4 Top row: 1st step; Gradients. Second row: 2nd step; regions indicating motion.
Third row: Partition result. Bottom row: Skipped blocks and early termination blocks shaded
in gray. a) Foreman frame 11. b) News frame 96.
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Foreman
Lagrange Method 1 Method 2

Ave. QP=10 QP=38
16x16 (Skip) 4.30 0.46 10.43 1.71 (54.91) 1.48 (53.74)
16x8 0.24 0.01 0.85 0.14 0.00
8x16 0.18 0.00 0.64 0.16 0.00
8x8 (ET) 4.39 3.76 5.75 7.25 (58.78) 7.80 (57.38)
8x4 3.44 0.66 7.30 1.46 0.00
4x8 3.73 1.55 6.75 1.18 0.00
4x4 (ET) 83.72 93.56 68.28 88.11 (6.24) 90.72 (19.03)

News
Lagrange Method 1 Method 2

Ave. QP=10 QP=38
16x16 (Skip) 26.65 11.24 41.55 19.11 (99.11) 17.45 (98.32)
16x8 0.17 0.02 0.35 0.17 0.00
8x16 0.14 0.01 0.27 0.12 0.00
8x8 (ET) 6.97 10.54 4.29 7.59 (88.74) 9.78 (88.19)
8x4 2.37 0.82 3.90 2.02 0.07
4x8 1.84 1.01 2.51 0.51 0.01
4x4 (ET) 61.87 76.36 47.13 70.47 (10.13) 72.70 (24.66)

Table 5.1 Percentage of sub-block partition averaged over 100 frames. The numbers in braces
are the skip and Early Termination (ET) percentages of their respective block sizes.

With News, for all values of QPH � 264 except 50, there is a slight drop in PSNR and a

slight increase in Coded Bits and, thus, a slight drop in performance. For News, the

conclusion can be thus made that there is a slight overall drop in performance.

However, both methods outperform the 16x16 ME for both sequences and all

QPH � 264 when the subjective effect of background random noise is taken into con-

sideration. This is significant, considering the target application.

From Table 5.1 and Fig. 5.12 it can be seen that, for both methods, the statisti-

cal distribution of the block-size partition resembles more the low QPH � 264 Lagrange

partition than the high QPH � 264 partition. Although the statistical distribution does not

reveal any resemblance between the various partitions, the comparability of the R/D

results would seem to indicate that the partitions also resemble one another. Exact par-

tition resemblance analysis would require the development of a suitable resemblance

metric. Also, the knowledge of the fact that various block-size partitions can have sim-

ilar performance in terms of R/D could be used to derive a fast Lagrange algorithm

similar to motion estimation early thresholding.

From the R/D figures the conclusion could be made that the partition methods are

equal. But, as method 2 uses two frames of data as opposed to the three frames of

method 1, the final conclusion that method 2 outperforms method 1 can be drawn.
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5.4 Effect of the Algorithm on Power Consumption

The motion estimation power consumption analysis of Chap. 4.5 is also valid for this

algorithm. This algorithm of this chapter indicates the same data as the algorithm of

Chap. 4 with the addition of the indication of variable block sizes. Thus, the power

consumption benefits of this algorithm can be assumed to be larger when similar com-

parisons of Chap. 4.5 are made. Again, exact power consumption reduction figures

would require the implementation of specific realizations.

In [137], a FS variable block-size ME architecture is introduced. In the architec-

ture, the SAD values of 4x4 blocks are first computed. These SAD values are then

united to form the SAD values for the larger blocks. The MVs corresponding to these

SAD values would then be passed on to a Lagrange stage which is not implemented.

The compare stage takes 18.5 � 103 gates out of a total of 154 � 103 gates. By using the

presented method, the compare stage could be left out of the realization resulting in a

12% percent reduction in gates. Assuming that all the stages in the realization have

the same switching activity (Eq. 2.16), the reduction in the number of gates translates

straight to reduction in power consumption.

With partition method 1, from Carphone, Foreman, News, and Silent, the average

ratio between 4x4 blocks with and without motion is ρ � 0 � 58 (Eq. 4.2). In this

algorithm, three frames of binary data are transferred making ϖ � 1
�
3 (Eq. 4.3) for

the data transfer. Thus, the reduction ratio (Eq. 4.4) for the data transfer is 1 � ρ � ϖ �
0 � 75 � As the OR-operation has to be performed on all three binary frames, for the

SAD computation, ϖ � 3
� � �

2r � 1 ��� 3 � 8 � � 0 where r is the search area. Thus, for

the SAD computation, the reduction ratio is 0 � 75 � �
1 � 0 � 12 � � 0 � 66 � Using the power

consumption percentages of Chap. 4.5 (70% data transfer, 30% SAD computation)

and Eq. 4.5 the total reduction ratio is 0.73.

In addition to this power consumption reduction, the Lagrange stage would also

be left out resulting in additional savings. In the Lagrange stage the VLC of each

MV corresponding to each subblock has to be performed. For power consumption

reduction figures in this case, encoder complexity analysis would have to be performed

as is done for the decoder in [138]. Such an analysis is outside the scope of this thesis.

5.4.1 Power Consumption of the Algorithm with Dedicated CNN

Implementing all the separate parts of the segmentation algorithm of [29] just to

achieve the benefits of the algorithm of this chapter is not feasible. Thus, only the rel-

evant parts of [29] (Low-pass filtering, Remarkable, and Intra-Frame Segmentation)

would be included in such an ME implementation. Additionally, the simplification of

these relevant parts should also be investigated.
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Template Time Template Usage
Remarkable Intra-Frame Seg.

Hole Filler 60 ns 1 1
Erosion 11 ns 1 0
Dilation 11 ns 1 0

Restoration 0.9 µs 1 1
Skeletonization 22 µs 0 2

OR 100 ns 0 1
Line Removal 2 µs 0 1

Binary Edge Detection 100 ns 0 1

Table 5.2 Computation times of binary templates with VDD=1.2V [139], [140].

The first logical simplification choice would be the low-pass filter operation. The

gray scale operations of Remarkable (absolute value and threshold) can be imple-

mented with cell logic. Thus, without the low-pass operation, the only remaining

gray scale operation would be the edge detection of Intra-Frame Segmentation. With

only the gradient operation the power consumption of the gray scale implementation

of [126] would drop to under 1 mW (CIF@30fps). The rest of the algorithm could

be implemented with binary templates. Having only binary operations would make

possible a realization that could be incorporated with the motion estimation imple-

mentation of Chap. 7.

Instead of using positive-range high-gain CNN [28], to achieve lower power con-

sumption, the relevant binary parts of the segmentation algorithm could be realized

with the techniques presented in [139]. In the positive-range high-gain CNN, the mul-

tiplier coefficients are programmable positive and/or negative real numbers whereas

in the binary CNN model of [139], the multiplier coefficients are one-bit values. The

binary CNN model enables a compact and fast realization. An improved version of

the binary CNN model is presented in [140]. As is shown in [140], all the templates

of [29] can be implemented with the binary CNN model.

The computation times of the required binary templates, acquired from the mea-

surement data of [139]1, are shown in Table 5.2. The values of Table 5.2 are based

on an CIF-sized frame. From the values of Table 5.2, the total computation time for

the binary templates is 48 µs. From [139], the measured power consumption is 9

µW/cell. Thus, with Eq. 7.12 and CIF@30fps, the total power consumption for the

binary templates is 1.3 mW (VDD=1.2V)2.

For the cell logic, from Table 7.5, it can be seen that the computation time is 200

1The actual computation times of [139] are longer due to the required inversion between templates. With
the improvements presented in [140] the inversions are no longer required. Thus, the computation times
presented here are without the inversions.

2The chip of [139] was also simulated with VDD=0.6V, where the power consumption would have
dropped approximately with a factor of 1/8. As measurement of the chip was not possible with this operating
voltage, the associated power consumption values are not used here.
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ns and thus the power consumption is 22 µW (VDD=2.5V, CIF@30fps. By adding the

power consumption of the gray scale part, the total required power is below 2.3 mW

without the low-pass operation and below 6.3 mW with the low-pass operation.

5.5 Gradient-Based Motion Estimation Realization

A gradient-based digital ME realization was also designed to work in conjunction

with the partition methods presented in this chapter. The realization computes the

ME result on the variable block sizes indicated by the algorithm. To achieve low

power, MV prediction and search-area subsampling were used to aggressively reduce

the clock frequency of the implementation.

5.5.1 Hardware-Based ME Design Aspects

5.5.1.1 Search Pattern Analysis

With search-area subsampling algorithms, the size of the local memory shown in Fig.

2.7 limits the size of the search pattern that can be used. Although with most common

search patterns, which are shown in Fig. 5.5 [141], [92], some or most of the data

in the local memory can be reused. For this the movement of the pattern requires

that either: 1) The data that is not stored in the local memory and is required by

the pattern is fetched from the frame memory or 2) all possible pattern movement

locations are fetched into the local memory. In the first case, the time to fetch the

data must be taken into account in the worst-case delay calculations. The second case

leads to unnecessary data fetches and thus higher power consumption. After reviewing

popular search patterns the range [-2,2] was selected as a good trade-off, so a 8x8

parallel memory bandwidth for the 4x4 reference block must be implemented. Such

a memory bandwidth allows the computation of a search pattern where the farthest

points are a maximum distance of [-2,2] from the search center.

The matching criterion computation block in Fig. 2.7 usually is composed of sev-

eral single pixel or block-matching criterion computation engines that are pipelined.

The number of pipelines limits the number of search points that can be computed

in one clock cycle. Of these patterns, shown in Fig. 5.5, the small diamond has 5

computation points, whereas the others have 9. If the small diamond would be com-

bined with any of these large patterns, the large pattern would dictate the number of

pipelines. The small diamond would use only five of these nine pipelines, thus lead-

ing to inefficient pipeline use. Therefore, the small square was chosen as the small

pattern. As can seen in Fig. 5.5, the small and large square patterns have only one

common search point, but the small square and large diamond would have three com-

mon points. Thus, the large square was chosen as the other pattern. The largest pattern
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Small Square

Large Square

Small Diamond

Large Diamond

Figure 5.5 The referred search patterns.

in [141] was not considered because the number of computation points was too large

for the selected number of pipelines.

5.5.1.2 Predictor Calculation

Although H.264 allows reference frame distances of up to 15 frames, the memory size

limitations of mobile applications restrict the use of only the previous frame as the

reference frame. Of the motion vector predictors presented in [141] and [92], the fol-

lowing were found to be suitable for single reference frame hardware implementation:� Median. The median of the vectors MV1 through MV4 in Fig. 2.9� Zero. The vector of co-located position in the reference frame� Spatial. The four vectors MV1 through MV4 in Fig. 2.9� 4 Adjacent temporal. The four vectors of positions
�

1x,
�

1y in the reference

frame� Previous best. The chosen vector from the predictor set of the co-located posi-

tion in the reference frame

As this implementation is able to calculate all points in a search pattern in the same

number of clock cycles as it calculates only one point (Chap. 5.5.2.2), it is possible to

refine each prediction vector using a search pattern. All vectors are refined with the

small square pattern. Also, the predictor-based pattern selection scheme (Eq. 2.13)

from [92] is implemented in this algorithm, which decides the start search pattern

based on the city-block length of MV1 through MV4 in Fig. 2.9.

5.5.1.3 Hop Counter

Instead of the search area size restriction of conventional ME, here the search area

is limited by the number of hops (i.e. the number of times the pattern moves) the

pattern can make. One advantage of this is that, with a conventional search range
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restriction, the worst-case number of hops is close to r2 � where the search range is

[-(r-1),r]3, complicating the worst-case hardware design. Another advantage is that

the number of hops is limited within a frame and not within the current search. This

is best illustrated with the following example: In a search where the number of hops

is limited to ten, the first block of the search takes two hops and the second three. The

third search can now take (10-2)+(10-3)+10 =25 hops, making the effective search

range
�

50. The saved hops cannot be transferred to to the following frame, due to

real-time constraints. This kind of search range adaptivity has not been presented

previously. Due to the center-based distribution of motion vectors [87], this method is

most advantageous in occlusion and appearance cases.

5.5.2 Implementation Solutions

5.5.2.1 Processing Element

There are nine separate processing element (PE) matrices that compute the SAD val-

ues. Each matrix is composed of 4x4 processor elements. One processor element

computes
�
a � b

�
. To simplify the implementation, the actual PE is implemented as

max
�
a � b � � NOT

�
min

�
a � b � � � 1 (5.3)

where a,b are in 2’s complement format.

5.5.2.2 Pipeline Architecture

The pipeline architecture was chosen so that one pattern could be computed in one

clock cycle. The variable block size does not have a significant effect on the distortion

computation, as all the distortion values of the larger sizes can be composed of the 4x4

sub-block distortion values. As there are 9 points in the large pattern, 9 pipelines were

needed. One search pattern for a 4x4 block is calculated in 4 clock cycles. For larger

blocks, only 1 cycle is added for each 4x4 block the larger block contains, because

they can subsequently be calculated in the pipelines during a clock cycle. Therefore

an 8x4 block takes 5 clock cycles. Search patterns cannot be calculated each cycle

because the results of the previous search pattern must be ready before it is known in

what direction the pattern must be moved.

The pixel data is spread from the 8x8 memory output to 9 pipelines based on the

shape of the search pattern. As the small pattern needs only a 6x6 memory bandwidth,

the usage percentage of the memory is more inefficient than with the large pattern. The

advantage of the architecture is that the separate blocks within the 8x8 area are partly

3With natural images the chance of the pattern moving through the whole search area is highly unlikely.
With increased entropy cases, such as noisy images, the pattern may still traverse a long distance.
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Large Square

Position 1,1

Position 0,0

Position 2,2

SAD Pipeline 1

SAD Pipeline 2

SAD Pipeline 9

(a)

Small Square

Position 1,1

Position 0,0

Position 2,2

SAD Pipeline 1

SAD Pipeline 2

SAD Pipeline 9

(b)

Figure 5.6 Pipeline data spreading example. a) Large square pattern. b) Small square pattern.
For simplicity, only positions [-2,-2], [0,0], [2,2] and [-1,-1], [0,0], [1,1] shown in a) and b),
respectively.

collocated. All of the collocated pixels are reused, and thus fetched from memory only

once. This is illustrated in Fig. 5.6, for simplicity, only three positions are shown. The

SAD values for the larger blocks are summed up after the pipeline stage.

5.5.2.3 Memory Architecture

The architecture of the local memory, shown in Fig. 2.7, was also considered, although

the memory was not implemented on chip. The memory is split into 64 memory blocks

and each memory block has a 1-pixel bandwidth. The pixels are spread with modulo

8 into the memory blocks in such a manner that pixels 1,8,16,... are in the first block

and pixels 2,9,17,... are in the second block and so on. This spreading is performed in
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0,1

-1,1

x0,y0

0,2

-2,2

85.5% 76.6%

56.6%75.0%

Unchanged addresses

Previous 8x8 block

Current 8x8 block

Figure 5.7 As the search pattern moves, many of the memory addresses remain unchanged.
Position (0,0) is the start of the current search.

2 dimensions. Thus, first memory block holds the pixels of picture coordinates

�
0 � 0 � � �

0 � 8 � ������� � �
0 � 56 �

...�
56 � 0 � � �

56 � 8 � ����� � �
56 � 56 �

(5.4)

and the final memory block holds

�
7 � 7 � � �

7 � 15 � ������� � �
7 � 63 �

...�
63 � 7 � � �

63 � 7 � ����� � �
63 � 63 �

� (5.5)

Each of these memory blocks has a unique address bus. This enables the fetching

of each pixel separately. Only four different addresses are needed for the operation,

however. When the search pattern moves, because it can only move a maximum of

two pixels, many of the memory addresses remain unchanged, as is shown in Fig. 5.7.

Because the address changes were minimized, the parallel memory architecture does

not output the data in linear form. Therefore, after being fetched from the memory the

8x8 data array must be 2-dimensionally rotated before it is ready for use.

5.5.3 Simulation Results

The algorithm was simulated in Baseline H.264 with Maxhops=10 (SA
�

20) in H.264

against FS (SA � �
32). QPH � 264 was set at 10, 20, 28, 30, and 38. The rest of the test
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PSNR Bit-Rate (%)
Foreman 1-100 0.420 3.61

Foreman 151-250 0.233 3.25
News 1-100 0.034 0.27

Table 5.3 Collected average rate-distortion results.

environment is described in Chap. 4.1.2. The used partition algorithm is described in

Chap. 5.2.2.

The rate-distortion graphs for Foreman 1-100, 151-200 and News 1-100 are shown

in Fig. 5.13 a), b), and c), respectively. The average results are also collected in

Table5.3. For News, the presented algorithm can be thought of as having comparable

performance. For Foreman, there is a slight drop in R/D performance.

5.5.4 Realizations

The target speed of the application was chosen as CIF@30fps. The chip was designed

in 0.18µm CMOS and realized, due to financial restrictions, with a Altera Cyclone

EP1C20 / Stratix S80 measurement board / FPGA chip combination. The measure-

ments were conducted with the FPGA only. These measurements

5.5.4.1 Integrated Chip

The worst case performance for a CIF image with 396 macro-blocks, containing 16

4x4 blocks, and with 10 hops, is 4 � 10 � 16 � 396 � 253440 clock cycles per frame. For

real-time at 30 frames per second, 7 � 61MHz is the required clock rate. For a 30 fps

VGA-sized image with 1200 macro-blocks, the respective figure is 23.04MHz. The

number of hops can also be used to decrease the required clock rate in, for example,

low-battery situations.

The size of the layout is 2.8 µm2 � the layout is routing restricted. The routing

restriction is mainly due to the rotation of the data. The layout is shown in Appendix

A.

5.5.4.2 FPGA

The high memory bandwidth of the integrated chip could not be implemented on the

64 memory blocks of the Altera EP1C20. Thus, only the distortion measure compu-

tation could be measured. The measurements verified the simulation results of Chap.

5.5.3. The maximum measured clock frequency was 20.66 MHz.
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Figure 5.8 Partition method 1 Foreman rate-distortion graphs (top graph) and close-ups of low
bit-rate values (bottom graph) with varying values of QPH � 264 (The subjective quality of the
video sequence differs from the quality presented by the PSNR values, Chap. 4.4.1).
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Figure 5.9 Partition method 1 News rate-distortion graphs (top graph) and close-ups of low
bit-rate values (bottom graph) with varying values of QPH � 264 (The subjective quality of the
video sequence differs from the quality presented by the PSNR values, Chap. 4.4.1).
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Figure 5.10 Partition method 2 Foreman rate-distortion graphs (top graph) and close-ups of
low bit-rate values (bottom graph) with varying values of QPH � 264 (The subjective quality of
the video sequence differs from the quality presented by the PSNR values, Chap. 4.4.1).
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Figure 5.11 Partition method 2 News rate-distortion graphs (top graph) and close-ups of low
bit-rate values (bottom graph) with varying values of QPH � 264 (The subjective quality of the
video sequence differs from the quality presented by the PSNR values, Chap. 4.4.1).
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Figure 5.12 Proportional distribution of block sizes. a) Foreman. b) News
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Figure 5.13 Rate-distortion graphs. a) Foreman 1-100. b) Foreman 151-250. c) News 1-100.



Chapter 6

CNN Border Smoothing

Templates for MPEG-4 Shape

Bit-Rate Reduction

6.1 Application Target

The shape of a Video Object (VO) in MPEG-4 (Chap. 2.4.1) [50] is indicated by the

binary alpha plane. Depending on the segmentation algorithm an exact binary alpha

plane may have irregular borders. In object-based MPEG-4, these borders, indicated

by border Binary Alpha Blocks (BAB), are coded with the CAE algorithm (Chap.

2.2.1.4) [68]. If the border-BABs are irregular, the efficiency of the CAE algorithm is

reduced. The reduction in efficiency is due to that when the borders are not smooth;

the prediction of the current shape pixel is inefficient. Inefficient shape coding corre-

spondingly raises the VO’s shape bit rate.

6.2 Smoothing Templates

To smooth the borders, the three following templates 1 were developed

A1
� ��� 1 1 1

1 0 1

1 1 1

���� � B1
� ��� 0 0 0

0 8 0

0 0 0

���� � z1
� � 6 � 5 (6.1)

1In video coding terminology, white pixels belong to an object, while, in CNN terminology black pixels
are treated as belonging to the object.



84 CNN Border Smoothing Templates for MPEG-4 Shape Bit-Rate Reduction
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Black -> White
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White -> Black

(b)

Figure 6.1 a) Effect of template 6.1 b) Combined effect of templates 6.2 and 6.3

A2
� 0 � B2

� ��� 0 1 0

1 0 1

0 1 0

� �� � z2
� � 0 � 5 (6.2)

A3
� 0 � B3

� ��� 0 1 0

1 3 1

0 1 0

���� � z3
� � 4 � 5 (6.3)

The templates are designed for the positive-range high-gain CNN model which is

introduced in [28].

The first template (Eq. 6.1) changes a black pixel to white if seven of the eight

surrounding pixels are white. This template has the effect of filling up black one-

pixel-wide paths. The effect of this template is illustrated in Fig. 6.1a.

The second template (Eq. 6.2) removes eight-connectivity. The third (Eq. 6.3)

changes a white pixel to black if three of its surrounding pixels in the horizontal or

vertical direction are white. The first and third templates combine to remove single

white pixels from otherwise straight borders. The combined effect of this template is

illustrated in Fig. 6.1b. The actual implementation order of the templates is [2,1,3].

As the CNN implementation considered here [114] is able to process in the range

of 103 fps, the addition of three templates results in a negligible increase in overall

computational complexity.

6.3 Simulation Results

To validate the effect of the templates, the results from the Remarkable part of the

segmentation algorithm of Chap. 3.3 [29] were used instead of the final segmentation

results. As can be seen in the left-hand frames of Fig. 6.2 and Fig. 6.3, the Remarkable

borders are much more jagged than what the final segmentation borders would be.

Thus, when adding the smoothing templates, the effect on the results will be more
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Carphone frame 96 Orig. Carphone frame 96 CNN Carphone frame 96 Small

Figure 6.2 Remarkable Chap. 3.3 [29] results from the sequence Carphone. Left frame:
Remarkable result. Middle frame: Effect of templates 6.1, 6.2, and 6.3. Right frame: Effect of
small block removal.

News frame 8 Orig. News frame 8 CNN. News frame 8 Small

Figure 6.3 Remarkable Chap. 3.3 [29] results from the sequence News. Left frame: Remark-
able result. Middle frame: Effect of templates 6.1, 6.2, and 6.3. Right frame: Effect of small
block removal.

pronounced. The effect of the templates on the Remarkable results is shown in the

middle frames of Fig. 6.2 and Fig. 6.3.

In [142], it is shown that the motion of boundary blocks correlates with the opaque

blocks near the boundary block. This correlation is dependent on the used segmenta-

tion. If the correlation exists, the motion vectors for the boundary blocks can be used

as starting points for the nearby opaque blocks. Irregularly shaped borders also lead

to boundary MBs that contain only a few pixels that belong to the VOP. The motion

vectors associated with these boundary MBs tend to be very large and the correlation

of adjacent motion vectors can be small. As the motion vectors are coded differen-

tially, large uncorrelated motion vectors are coded with a higher number of bits. A

study of boundary block motion vectors revealed that boundary blocks that have only

a small number of opaque pixels tend to have large motion vectors. As such blocks do

not have a large effect on the picture quality blocks with 25 or less opaque pixels were

transformed entirely to transparent blocks. The small block changes are shown in the

rightmost frames of Fig. 6.2 and Fig. 6.3.

The segmentation algorithm was integrated into an object-based Core profile MPEG-

4 encoder in Matlab software. The rest of the test environment is described in Chap.

4.1.2. The PSNR values for the sequences Carphone and News are shown in Fig. 6.4a
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and Fig. 6.5a, respectively. The Remarkable shapes with th=3 were used instead of the

final segmentation result. The shape bit-rate after intra-CAE for the same sequences

is shown in Fig. 6.4b and Fig. 6.5b, respectively. From the figures it can be seen that

the implemented templates decrease the shape bit-rate of an MPEG-4 encoder without

appreciable reduction in coded video quality.
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Figure 6.4 PSNR (a) and shape bit-rate (b) of Carphone frames 1-128
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Figure 6.5 PSNR (a) and shape bit-rate (b) of News frames 1-128



Chapter 7

Analog Block-Based Motion

Estimation

7.1 Application Target

Chapter 1 states that the power consumption problem of video encoders of mobile

terminals will not be solved in the near future with conventional digital hardware

solutions. Motion estimation can take up to 80% of the power consumption of a video

encoder [58]. For small frame sizes, such as QCIF, the power consumption of ME

can be decreased sufficiently with algorithmic solutions, which are revived in Chap.

2.2.4.3 and Chap. 2.2.4.4. However, for larger frame sizes, fundamentally different

hardware solutions are needed.

Due to the low-power possibilities of analog CNN-type parallel processor solu-

tions, they can be used as building blocks for a low-power ME realization. Such an

analog ME (AME) realization is presented in this chapter. Although the simulations

of this chapter are performed with an MPEG-4 codec, the AME can be utilized with

all codecs that incorporate 8x8 block-size ME.

From a purely implementation aspect, the most beneficial solution would be to

implement the AME array in connection with the image sensor array, as is done in

[143] and [144], and shown in Fig. 7.1a. However, in some cases, the computational

part in the pixel processor may raise the pixel cell size to the extent that the image

sensor quality is degraded. Also, with large image sensor sizes, even if a single pixel

processor is feasible, the realization of the full sensor array may not be economically

feasible. In such cases, the AME will have to be implemented as a separate array.

The separate array can then possibly be implemented in a more compact form. For

example, one possibility would be for one dimension of the array to be the same as
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Figure 7.1 Principle of suggested analog motion estimation. a) AME in connection with the
image sensor. b) Separate AME core A / D = analog / digital data transfer.

the image sensor dimension and the other dimension would be specified by the search

range (i.e. a 352x32 or 288x32 array for CIF-sized sensor and a [-15,16] search range).

This kind of an implementation would require more memory, as each cell would have

to store more than one pixel of reference data.

For a separate AME array to be feasible the data transfer between the computa-

tional array and the image sensor has to be analog. Otherwise, an excess D/A conver-

sion would be needed; this would negate much of the low-power advantage. This re-

stricts the implementation possibilities of the AME to such that enable efficient analog
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data transfer. This principle is depicted in Fig. 7.1b. The analog data transfer require-

ment impedes a separate chip realization for the AME. The analog data transfer can

efficiently be attained when, for example, the AME array is integrated on-chip with

the image sensor. Otherwise, the AME and sensor can be packaged together [145], as

is the case in System-on-Chip (SOC), Multichip Module (MCM), System-in-Package

(SIP), and System-on-Package (SOP) realizations.

The disadvantages of AME arise from the inaccuracies inherent in all analog com-

putation. The inaccuracies are mainly due to device mismatch. In the case of ME,

the inaccuracies manifest themselves in two ways: 1) Inaccuracy in the computation

of the matching criterion. 2) Inaccuracy in the transmission and storage of the refer-

ence frame data. Both cases may lead to an inferior ME result, thus deteriorating the

rate-distortion.

As is reviewed in chapters 1.1.2.1 and 1.1.2.2, the use of inter-connected analog

parallel processors, such as CNN, for block-based ME is novel to this thesis.

7.2 Analog Block-Based Motion Estimation

Motion estimation consists of three basic operations (Eq. 2.12):

1. Shift of reference pixel (reference block) data re f
�
i2 � j2 � � re f

�
i � dx � j � dy � .

2. The operation


re f

�
i2 � j2 �� cur

�
i � j � 
 (SAD) or

�
re f

�
i2 � j2 � � cur

�
i � j � � 2 (SSD).

3. Averaging the data over the current block ∑x0 � M � 1 � y0 � N � 1
i 	 x0 � j 	 y0

�

With CNN or CNN-type circuits a single shift of operation 1) can be achieved with

the B-template

Bsh
� ��� b � 1 � � 1 b � 1 � 0 b � 1 � 1

b0 � � 1 0 b0 � 1

b1 � � 1 b1 � 0 b1 � 1

���� (7.1)

where bi � m � j � n=1, bi
�� m � j

�� n=0, and (m,n) is the direction of the current shift. For

operation 2) dedicated circuits are needed in the cell logic. For a 1-neighborhood

operation 3) is achieved with the template

Bave
� 1

9
� ��� 1 1 1

1 1 1

1 1 1

���� � (7.2)

All previous 2-dimensional CNN or CNN-type implementations use either 4-connected

or 8-connected 1-neighborhoods, which are shown in Fig. 3.1 and Fig. 3.2. To imple-

ment AME with existing arrays, the reference data would have to be shifted through
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as many cells as the length of the current search. For example, a search of 0,7 would

be shifted through seven cells, of which each injects its own error into the shifted data,

thus producing accumulating inaccuracy. This accumulating inaccuracy also applies

to the averaging of the data. Another option would be to increase the size of the neigh-

borhood. Even the averaging of an 8X8 macroblock with B-templates would require

a 4-neighborhood. The number of connections per cell needed for a 4-neighborhood

is 80, which makes a VLSI realization extremely inefficient. For the data shift, the

neighborhood would have to be as large as the search range. With even a small search

range of [-7,8], a silicon implementation would be impossible. Another option would

be to implement the data shifts and averaging with A-templates. A-template imple-

mentations also suffer from accumulating analog inaccuracies and, as with IIR filters,

the effect boundary of the averaging cannot be defined exactly. To calculate the irreg-

ular block sizes of H.264 with CNN architectures would require irregular connections

and thereby space-variant templates.

7.2.1 Inaccuracies in Analog Motion Estimation

Whereas digital operations can be performed with sufficient precision, analog opera-

tions always include an error source due to various sources.

7.2.1.1 Device Mismatch

The manufacturing variations of CMOS processes cause process and device variations

that manifest themselves from lots down to devices. These variations can be classified

either as systematic or random. Systematic variations such as wafer-to-wafer varia-

tions or processing gradients can be minimized with proper circuit topologies, biasing

and layout techniques. Device-to-device variations, also called “device mismatch”,

are random factors that depend on the size of the device. The dominant sources [146]

of device mismatch for a pair of closely spaced MOS transistors are the threshold volt-

age VT and transconductance parameter β � The variances σ2 of these parameters can

be independently modeled as

σ2 �
∆VT � � A2

VT

W � L � (7.3)

�
σ

�
∆β �
β � 2 � A2

β

W � L � (7.4)

where β � µCox
W
L

� µ is the carrier mobility, Cox the oxide capacitance, W and L the

gate width and length of the MOS transistor, respectively, and AVT and Aβ the tech-

nology dependent proportionality constants. For the sake of compactness higher-order
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effects are not shown in Eq. 7.3 and Eq. 7.4. From Eq. 7.3 and Eq. 7.4, it can be seen

that the mismatch is in proportion to the size of the transistors making the minimizing

of the error in AME a trade-off between cell size and the error magnitude.

7.2.1.2 Charge Injection

Another source of error in the AME realization is the charge injection of the MOS

switches, which are caused by the release of the channel charge when the switch

closes. Charge injection effects on switched-current (SI) circuits [147] are thoroughly

studied in [148], but the analysis also applies here. In Fig. 7.2, with the operating

voltage Vdd as the switch-on voltage, the injected charge is

Qin j
� α � �

Vdd � �
1 � γ

3 � � Vt � � Cg � sw (7.5)

where γ is the body factor, Cg � sw the gate capacitance of Msw, and typically 0 � 5 ��
α
� � 1 � α depends on switching dynamics and the parasitic drain-source capacitances

of Msw. The voltage error induced by the injected charge is

∆Vg �M
� Qin j

CM � Cg �M1 � Cg �M2
� (7.6)

The drain current of M2will change by ∆i � gm �M2 � ∆Vg �M where gm �M2 is the transcon-

ductance of M2 �

7.2.1.3 Clock Feedthrough

Further error in the drain current of M2 is caused by the clock feedthrough from the

gate of Msw to the gate of MM � The clock feedthrough is induced by the drain-gate

overlap capacitance Cdg of Msw shown in Fig. 7.2. The error current is

∆i � gm �M2 � ∆Vg �M
� gm �M2 � Cdgsw

Cdg � sw � CM � Cg �M1 � Cg �M2
� Vdd � (7.7)

The charge injection and clock feedthrough can be canceled with the use of a half-

sized dummy switch, shown in Fig. 7.3 [149]. As, in a practical realization, the

transistors M1 and M2 are significantly larger than Msw � the addition of the dummy

transistor has a negligible impact on the cell size. The cancellation is not perfect due to

the device mismatch effects and, in the case of clock feedthrough, due to the different

sizes of drain-gate overlap capacitance Cdg of the switch and the dummy switch.

In AME, the error arising from both the charge injection and clock feedthrough

phenomena is of no impact when the error is common to all the cells in the AME
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Figure 7.2 Simplified B-template cell with parasitic capacitances.
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Figure 7.3 Charge injection canceling with the use of a half-sized dummy switch [149].

array. In such cases, the same amount of error is added to each of the blocks under

comparison (e.g. gain is added to Eq. 2.12), which does not affect the comparison

result. Thus, only the random component of charge injection and clock feedthrough

caused by device mismatch is of concern in AME.

7.2.1.4 Leakage Currents

The capacitor CM of Fig. 7.2 is slowly discharged through the leakage current of the

switch transistor Msw � This leakage current is due to the reverse-biased p-n junction

of the switch. For deep-submicron technologies, the gate currents M1-M10 of Fig.

3.4 also can contribute to the leakage. However, the maximum storage requirement is

well above the times needed in video applications [148].
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7.2.1.5 Effect of the Inaccuracies on the AME Result

The effect of the inaccuracies on the ME result is very similar to the effect of the

unideal matching criterion of Chap. 2.2.4.9. The effect of the total error in AME is

non-linear due to: 1) Any amount of error in the ME has no effect if the block with

the minimum matching criterion (the correct MV) is still chosen as the outcome of the

search. 2) Even if an MV pointing to a larger matching criterion block is chosen, the

difference in R/D does not depend linearly on the AME error. This is due to the fact

that the minimum block and the chosen block can be very similar in terms of PSNR

and bit-rate. Also, as stated in Chap. 2.2.4.9, the optimal matching criterion is input-

data-dependent which means that, even with induced error, the ME result can be better

in terms of R/D than the error-free ME result. Naturally, the probability that this will

happen decreases with a larger error.

7.3 Analog Motion Estimation Realization

7.3.1 Novel 3-Neighborhood

To achieve an efficient shift and averaging operations (operations 1. and 3. of the

list on page 91), the novel 3-neighborhood shown in Fig. 7.4 was developed. In

Fig. 7.4, the 3rd neighborhood connections are shown with the thick lines, and the 1st

neighborhood connections with the thin lines. The connections are shown only for the

center cell. The 3-neighborhood represents an efficient trade-off between size and the

number of connections in each cell. One advantage of the 3-neighborhood is that it

can be added to conventional CNN or CNN-type solutions. Without adhering to this

condition, more complex connections may have been designed.

The novel 3rd neighborhood reduces the number of shifts needed. The shifts are

achieved with the template of Eq. 7.1 for both the first and third neighborhoods. For

example, a search area of [-7,7] can be achieved with only 3 shifts. This is illustrated

in Fig. 7.5 with an example of the individual shifts needed for a -7,7 shift. The shift

lengths 2 and 4 have the choice of using either two 3N shifts and one 1N shift or

vice versa. It is advantageous to use either one, as the transistors of the B-template

implementation can then be optimized.

With the 3-neighborhood, the averaging operation can be achieved by implement-

ing the template of Eq. 7.2 two times. First the template of Eq. 7.2 is implemented in

the first neighborhood thereby averaging the data around the black cells of Fig. 7.4.

Then the same operation is performed in the 3rd neighborhood. The average is then

read from the center cell, which is shown in white in Fig. 7.4. The disadvantage of the

averaging operation is that the effect area is a 9x9 block, as opposed to the 8x8 block
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Figure 7.4 The 3-neighborhood for analog matching criterion calculation. The connections are
shown only for the center cell. A normal 8X8 macroblock is also outlined.

size used in MPEG-4 and H.264 This is illustrated with the dashed line in Fig. 7.4.

The basic 16X16 MVs defined by multiple video coding standards would require a

4-neighborhood, corresponding to the 3-neighborhood presented here, increasing the

number of connections, so that a silicon implementation would be inefficient. Also,

using only 8x8 MVs can be inefficient in some cases, for example, in homogeneous

areas. However, the 16x16 MVs can be deduced from the 8x8 MVs with either La-

grange optimization or a simpler formula; for example, if all the 8x8 MVs are close to

1

2

3

No. of
Shifts.

1

2

3

Shift.    #

-7,7  SA

Figure 7.5 Number of shifts needed for a given search area. Example of separate shifts needed
for a -7,7 shift also shown.
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Figure 7.6 Absolute value circuit [150].

each other, an averaged 16x16 MV can be used.

7.3.2 Matching Criterion Circuits

For the second operation of the list on page 91, dedicated circuits are needed for the

processor logic.

7.3.2.1 Absolute Value circuit

For a SAD calculation, an absolute-value circuit is needed. An absolute-value circuit

is introduced in [150] and shown in Fig. 7.6. The circuit is composed of a comparator

(M3-M6) and a current mirror (M1-M2).

7.3.2.2 Quadratic Circuits

For SSD calculation, a quadratic circuit is needed. In [151], a two-quadrant current

squarer is introduced. Due to the two-quadrant operation, the circuit of [151] needs

high-bias currents. A more efficient solution is to implement the absolute value circuit

of Fig. 7.6, and a one-quadrant quadratic circuit separately.

The first quadratic circuit, shown in Fig. 7.7 [152], uses transistors MR (I/V con-

verter) and M1 (nonlinear V/I converter) to produce the square of the input current.

When MR is biased into the linear region so that Vr -Vc< Vt � R making the I/V converter

approximately linear. The current through MR is then [153]

Iin
� KR

�
V 2

sd � R
2
� �

Vc � Vt � R � � Vsd � R � � (7.8)
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Figure 7.7 Quadratic circuit 1 [152]

M1 is biased into the edge of the weak inversion region using bias voltages Vc and

VSS2 so that δIM1
δIin

is very small when Iin=0. When Iin>0 M1 shifts into strong inversion

where Ids �M1 has square law characteristics.

Another version of the circuit of Fig. 7.7 is shown in Fig. 7.8 [152]. The circuit

was originally intended for cubic behavior but, by changing the bias voltages, can be

made to function as a quadratic approximation. It is shown in [153] that the speed of

channel resistance increase of an n-type transistor increases as a function of Iin. The

speed of the increase rises with Vds � which accounts for the exponential behavior of

Ids �M1.

A third quadratic circuit is shown in Fig. 7.9 [154]. In the circuit of Fig. 7.9,

the parallel combination of transistors M6 (in the linear region) and M7 (in saturation)

can be designed so that they convert the current IR=IB1 +Iin approximately linearly to

the voltage Vg � 1. When the rest of the transistors are biased in saturation, the output

current Iout is

Iout
� β1

2

�
R6 � 7 � IR � Vt � 1 � 2 � β4

β3
� IB2 (7.9)

OUT

IN

Vdd

Vc

Vr

MR
M1

M3M2

Figure 7.8 Quadratic circuit 2 [152]
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Figure 7.9 Quadratic circuit 3 [154]
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Figure 7.10 Simulated quadratic functions [152], [154].

where R6 � 7
� δVg � 1

�
δIR is the slope of the I/V converter and the current IB2 is chosen

so that Iout=0 when Iin=0.

The quadratic behavior of all the circuits is shown in Fig. 7.10.
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7.3.3 Cell Structure

Two types of cells incorporating the 3-neighborhood were designed. The first was a

preliminary version to validate the proof-of-concept. The second was an advanced

version which, with the addition of reference and current pixel memories, would be

fully capable of AME.

7.3.3.1 First Version

The first array realizing the introduced 3rd neighborhood had the cell structure of Fig.

7.11. The array is a CNN-type where the cell is a basic linear non-propagative cell,

shown in Fig. 3.4. This is capable of realizing the B-templates of Eq. 7.1 and Eq. 7.2.

The first and third neighborhood were implemented as separate non-propagative cells

due to ease-of-test purposes. The cell logic includes the absolute power circuit of Fig.

7.6 and the quadratic circuit of Fig. 7.9.

In addition to the B-templates of Eq. 7.1 and Eq. 7.2, a third template

Bave2
� ��� 4

64
6

64
6
64

6
64

9
64

9
64

6
64

9
64

9
64

���� (7.10)

was implemented to reduce the effect of the difference between the 9X9 block size

of the analog SAD and the 8X8 block size of a macroblock. This template reduces

the proportionate effect of the 3X3 blocks that include pixels that do not belong to

the macroblock. These pixels are the ones outside the outlined macroblock in Fig.

7.4. An ideal solution to the oversize analog SAD block would require space-variant

templates in the first neighborhood.

A 9x9 array test chip was realized; this is further described in Chap. 7.6.

7.3.3.2 Second Version

Based on the experiences in designing the first version, a more feasible cell structure

was also designed. The cell structure is shown in Fig. 7.12. The reference pixel data

from the previous frame is stored within the cell memory. Whether the memory is

1stNeighborhood Neighborhood3rd

Iin Iout
ABS 2nd Power

Linear
Non-Propagative
Cell

Linear
Non-Propagative
Cell

SAD/SSD

From Neighbors To Neighbors
From Neighbors To Neighbors

Figure 7.11 Cell structure of first version.
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CUR.
MEM
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Figure 7.12 Cell structure of second version.

analog or digital is not discussed here. The memory block for the current pixel data in

Fig. 7.12 could also be an interface to a photo-detector, as is shown in Fig. 7.1. Switch

S1 in Fig. 7.12 controls whether the reference data (search position 0,0) or the shifted

reference data (other search positions) is used for the matching criterion computation.

Switch S2 controls whether the computed data (i.e.


re f

�
i � dx � j � dy � � cur

�
i � j � 
 for

SAD), the reference pixel of the current position, or the shifted reference pixel is

input into the B-template. The cell logic includes the absolute power circuit of Fig.

7.6 and the quadratic circuit of Fig. 7.8.

The B-template implementation is shown in Fig. 7.13. To reduce the mismatch

effects of the data shift, the input of the cell is switched either into an N- or P-mirror,

depending on the driver. For example, if the reference pixels were shifted from posi-

tion (0,4) to (0,0): The first driver would be Mn4(0,4) and the current would be input

Vdd

IN / From Neighbors

To N1

Mp1

Mmemn

To N3

Mp3 Mp4

Mn1 Mn2 Mn3 Mn4

Mmemp

Figure 7.13 B-template structure. Switches in connection with M3 and M4 not shown. Pro-
grammability of M3 and M4 not shown.
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into Mp1(0,1); the second driver would be Mp1(0,1) and the current would be input

into the ABS block of position (0,0). The disadvantage of this method is that a second

analog memory (Mmem � p in Fig. 7.13) is required in the P-mirror. The templates of

Eq. 7.1 and Eq. 7.2 are implemented with Mn � p3,4. For simplicity the programmabil-

ity of the templates is not shown in Fig. 7.13. This programmability is realized with

switches in the “To N1” and “To N3” outputs. Also, switch S2 in Fig. 7.12 and the

input switch in Fig. 7.13 signify the same switch, but are drawn in each figure for the

sake of clarity. In place of the capacitor transistors and the separate input and output

transistors, basic SI [147], or S2I [155] memory cells could also be used. As the output

of the quadratic circuit of Fig. 7.8 is a p-mirror, the averaging operation is achieved,

first by Mn3 in the first neighborhood, and then Mp4 in the third neighborhood. This

has the advantage that Mn4 and Mp3 do not need to be programmable, as they are only

used for the shift operation.

7.4 Effect of Analog Building Blocks on Rate-Distortion

The change in rate-distortion induced by the analog inaccuracies was simulated in

two parts. First, the separate effects of the three operations on page 91 were simulated

independently. The purpose of this was to find out whether there is a fundamental

obstacle in the AME realization. Then the simulations were performed with the cu-

mulative effect of all inaccuracies. All simulations were done with a digital Simple

profile MPEG-4 architecture using the Full Search motion estimation algorithm. As

the average can only be computed on 9x9 blocks, the Full Search was made solely

with 8x8 blocks (the advanced prediction mode of MPEG-4), although the conven-

tional method would be to first calculate 16X16 block-size motion vectors and then

do a refined 8X8 block-size search around the 16X16 values. The rest of the test

environment is described in Chap. 4.1.2.

7.4.1 Average Operation and 9x9 Block Size

The target of the first simulation was to study the effects of inaccuracy in the averaging

operation on the effect of the 9x9 block size. Monte Carlo simulations of the cell

of Fig. 3.4 showed that, with reasonable cell sizes, a 5% mismatch could be easily

achieved. The 5% figure was then used in the averaging operation. The cell structure

was assumed to be the one shown in Fig. 7.11, which made possible the simulation

with both SAD and SSD as the matching criterion. The quadratic circuit was assumed

to be the one shown in Fig. 7.9. Both the SAD and SSD were simulated with averaging

templates used in both neighborhoods and the template from Eq. 7.10 in the second

neighborhood. The used values for Qp were 2, 3, 6, 9, 12, 16 and 26. The reference
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Foreman News
PSNR(dB) BR(%) PSNR(dB) BR(%)

Ideal SAD 1 -0.123 1.14 -0.050 0.77
Ideal SAD 2 -0.907 8.00 -0.284 2.59

Worst Case SAD 1 -0.128 1.26 -0.054 0.93
Worst Case SAD 2 -0.917 8.24 -0.316 2.65

Ideal SSD 1 -0.617 2.47 -0.271 2.11
Ideal SSD 2 -0.061 -0.17 -0.040 0.05

Worst Case SSD 1 -0.653 2.96 -0.368 2.25
Worst Case SSD 2 -0.092 0.17 -0.061 0.34

Table 7.1 Drop in PSNR and percentual increase in the number of coded bits for the sequences
Foreman and News. The number 1 refers to averaging templates in both neighborhoods. The
number 2 refers to Eq. 7.10 template used in the third neighborhood.

matching criterion was the SAD.

The results for the sequences Foreman and News are collected in Table 7.1. The

results are so closely spaced that a graph of the results would have been illegible. With

the SAD, using averaging templates in both neighborhoods gives the best results. The

calculation of the SSD showed better results when using the template of Eq. 7.10 in the

second neighborhood. Ideally, the best results were shown in the sequence Foreman

by using SSD and the template from Eq. 7.10 in the second neighborhood. Then the

results showed a 0.061dB drop in PSNR and a 0.17% drop in the number of coded

bits. This can be thought of as equivalent coding performance. With the SSD, the

worst case results were a 0.092dB drop in PSNR and a 0.17% increase in the number

of coded bits with the sequence Foreman. With the SAD, the ideal results with the

sequence News showed a 0.05dB drop in PSNR and a 0.77% increase in the number

of coded bits. The worst-case results showed a 0.128dB drop in PSNR and a 1.26%

increase in the number of coded bits.

7.4.2 Quadratic Circuits

Chap. 2.2.4.9 postulates that motion estimation is not entirely critical of the used

matching criterion. From this postulation, the conclusion can be drawn that ME is also

not critical of the exact shape of the quadratic function of SSD1. This is important, as

the analog accuracy errors in the quadratic circuits can appear as gain errors and as

errors in the shape of the quadratic function. Also, noteworthy cell-size savings could

be achieved by using the inferior quadratic circuits of Fig. 7.7 and Fig. 7.8 instead of

the quadratic circuit of Fig. 7.9. Thus the effect of near-quadratic curves on ME must

be simulated.

1SSD is defined with SSD � �
re f

�
i � dx � j � dy � � cur

�
i � j � � 2 and with any other curve in the

matching criterion the criterion is not SSD in the strict sense. Nevertheless, the term SSD will still be used
here to compass the various near-quadratic curves.
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Figure 7.14 Exponential functions used in the simulations.

The simulations were performed with the curve of the circuit of Fig. 7.7 and

with an ideal quadratic function with random gain of
�

5% added to the slope of the

quadratic function. To encompass other sources of mismatch error and other near-

quadratic curves, a range of various exponential curves were also simulated. These

curves are shown in Fig. 7.14. The used values for Qp were 2, 3, 6, 9, 12, 16 and 26.

Here, using MPEG-4 advanced prediction, 8x8 MVs would have brought no additional

information, hence only 16x16 MVs were used. The reference matching criterion was

the SSD.

The rate-distortion results for the sequences Foreman and News are collected in

Table 7.2. For Foreman, the results for the first quadratic circuit show a slight drop

in PSNR, and, a slight drop in coded bits. All of the exponential functions show an

Foreman News
PSNR(dB) BR(%) PSNR(dB) BR(%)

Circuit of Fig. 7.7 -0.002 -0.620 -0.002 -0.700
Circ. of Fig. 7.9(σ=

�
5%) -0.094 1.110 -0.022 -0.170

Exponential 1 0.015 -0.226 -0.004 -0.590
Exponential 2 0.006 0.733 -0.003 -0.710
Exponential 3 0.021 -0.110 -0.002 -0.420

Ideal SAD -0.232 1.505 -0.042 -0.210

Table 7.2 Drop in PSNR and percentual increase in the number of coded bits compared to the
ideal SSD for the sequences Foreman and News. Worst-case exponential numbers refer to Fig.
7.14.
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increase in PSNR and depending on the exponential function an increase or decrease

in coded bits. Also, all of the quadratic and exponential results are significantly better

than the ideal SAD. The worst of the results is the simulated gain error, but this is still

better than the SAD result. For News the quadratic circuit of Fig. 7.7 shows a slightly

worse rate-distortion. The exponential functions all show a drop in PSNR and a drop

in the number of coded bits. All the quadratic and exponential results can be thought

of as having coding performance equivalent to the SSD. The results of Table 7.2 are

averaged over all values of Qp. If the results were shown only over high values of Qp �
the difference between the unideal results would be slightly larger but could still be

thought of as having equivalent coding performance.

7.4.3 Data Transfer

The target of the last simulation was to study the effects of noise in the reference frame

data induced by the shift. With reasonable cell sizes, Monte Carlo simulations of the

circuit in Fig. 7.12 show a worst-case mismatch of 5% in each current mirror per each

shift. The effect of doubling the worst-case error was also simulated. The used values

for Qp were 3, 6, 9, 16, and 26. In this simulation, using MPEG-4 advanced prediction

8x8 MVs would also have brought no additional information, hence only 16x16 MVs

were used. The reference matching criterion was the SAD.

The rate-distortion results compared to the ideal SAD for the sequences Foreman

and News are collected in Table 7.3, which shows the change in PSNR and the per-

centual increase in the number of coded bits. As the target is a low bit-rate where Qp

has high values, the values for Qp=9 and Qp=26 are shown along with the average

through all Qp.

For News with high Qp � the coding performance shows a slight drop, as the bit-

rate has increased over 6%, while PSNR has increased only 0.061 on the average. For

the lower values of Qp � the drop in coding performance is lower. In both sequences,

doubling the worst-case error shows only a negligible drop in coding performance.

From this, it can be concluded that, as the SAD is a sub-optimal matching criterion,

the SAD has a larger effect on the coding performance than the error in the reference

frame.

The shift error is most significant when the motion vector magnitudes are small,

as in News. This can be a slight problem, as the motion vector distribution of natural

video sequences is center biased [87]. Also, the error from the high Qp quantization

is much more significant than the error from the shifting of the data. Finally, it can

be concluded that shift error is significantly smaller than the errors resulting from the

averaging (Chap. 7.4.1) and the quadratic circuits (Chap. 7.4.2).
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Foreman 1-100
Error PSNR(dB) BR(%)
Magnitude Ave. Qp=9 Qp=26 Ave. Qp=9 Qp=26

5% 0.055 0.055 0.112 1.406 1.586 2.310
10% 0.055 0.055 0.112 1.407 1.590 2.310

News 1-100
5% 0.061 0.045 0.131 1.588 1.857 6.440

10% 0.061 0.045 0.133 1.591 1.857 6.512

Table 7.3 Change in PSNR and percentual increase in the number of coded bits compared to a
sequence coded with no error in the data shift.

7.4.4 Effect of Combined Unidealities

To simulate the combined effect of the inaccuracies, the cell shown in Fig. 7.12 was

simulated with varying transistor sizes. The simulation was performed by doing 100

Monte Carlo simulations of the cell with the transistor sizes in Table 7.42 and calculat-

ing the standard deviation of these 100 values. This standard deviation was then used

in creating a QCIF-sized normal distributed random array. The array had a compo-

nent for the third neighborhood and a component for the first neighborhood for both

the current mirrors formed by [M1 M3] and [M1 M4]. The same operation was per-

formed on the ABS circuit of Fig. 7.6 and the quadratic circuit of Fig. 7.8. Even

though the quadratic circuit of Fig. 7.8 is the worst of the three quadratic circuits,

it was chosen because of its simplest implementation (i.e. least bias voltages). The

AME was then simulated by accessing each component successively. For example,

the mismatch computation of dx � dy
� �

0 � 7 � would be performed as follows:

First the reference value of [x0+0,y0+7] is multiplied by the deviation of the p_shift

between [x0+0,y0+7] and [x0+0,y0+6]. The same operation is then performed with the

deviation of the n_shift between [x0+0,y0+6] and [x0+0,y0+3] and a p_shift between

[x0+0,y0+3] and [x0+0,y0+0]. The prefixes “n” and “p” stand for the type of current

mirror used. The difference between the shifted reference and the [x0,y0] value is then

multiplied by the deviation of the ABS circuit and the curve of the quadratic circuit.

The accuracy of the quadratic curve is maintained with a wordlength of 20 bits. Finally

the values in the 9x9 neighborhood of [x0,y0] are multiplied by the n_average devia-

tion in the first neighborhood and the p_average deviation in the third neighborhood.

In all cases, values exceeding the range were saturated on the highest level.

The Monte Carlo simulations showed that the device mismatch part of the charge

injection and clock feedthrough was of no consequence when compared to the device

mismatch of the current mirrors.

The results for Foreman and News are shown in Table 7.4, Fig. 7.21, and Fig.

2In practice, M1 � M3 would be 8/9 of the size shown in Table 7.4 and the shift template of Eq. 7.1 would
be achieved with M3+ M4. Thus, only M3 would have to be programmable.
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Transistor Sizes R/D Results
Msw Mmem M1 � M3 M4 Foreman News
W/L W&L W&L W PSNR BR PSNR BR

1 0.32/0.4 5 2.88 0.32 -0.2293 0.0434 -0.0655 0.0102
2 0.32/0.4 5 5.76 0.64 -0.1936 0.0362 -0.0674 0.0108
3 0.32/0.4 5 8.64 0.96 -0.1763 0.0374 -0.0706 0.0103
4 0.32/0.4 5 11.52 1.28 -0.1813 0.0358 -0.0690 0.0097

Table 7.4 Transistor sizes used in simulation (W/L in µm). The L of M4 is the same as the L
of M1 and M3 of the same row. The cell with the transistors in question is shown in Fig. 7.13.
Also shown is the change in PSNR and percentual increase in the number of coded bits

7.22. The used values for Qp were 3, 7, 11, 16, 21, and 26. The reference matching

criterion was the SAD.

For Foreman, for all transistor sizes the results show a fairly constant loss. For the

first three transistor sizes, the results show a slight improvement and the difference be-

tween transistor size 3 and 4 depends on Qp, although that cannot be seen from Table

7.4. One possible explanation for the fairly constant drop is the quadratic curve. As

there is no constant improvement between the transistor sizes 3 and 4, the conclusion

that the transistor size 3 is sufficiently large can be drawn.

For News, the results are extremely close to each other and the conclusion that the

transistor size 1 would be sufficiently large can be drawn.

When compared to the individual results of Table 7.1, Table 7.2, and Table 7.3,

with a few exceptions, the combined results are inferior to the individual results, as

would be expected. The difference between the individual results and the combined

results is small, which would indicate that overly pessimistic deviation values were

used in the individual results.

7.5 AME Power Consumption

The power consumption of the AME array was derived by simulating the power con-

sumption and computation time of a single cell. The various sub-circuits of the cell (n

and p current mirrors, ABS circuit, quadratic circuit) were simulated separately. The

load for each sub-circuit was the subsequent sub-circuit of the cell as is shown in Fig.

7.12. The smallest transistor sizes of Table 7.4 were used in the simulation. Due to

the large transistor sizes and the corresponding parasitic capacitances, the effect of the

wiring capacitance was negligible and was left out of the simulation.

For a [-7,7] search area (2 � 7+1)2-1 shifts and (2 � 7+1)2 computations are needed.

Thus the total computation time can be derived with

τ � 128 � �
2 � tps � tns � � 80 � �

tps � tns � � 16 � tps � 225 � �
taq � tna � tpa � (7.11)
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IWC (µA) IDC (µA) σ2
I IRMS (µA) t (ns) %t

ps 33 18 9.8 � 10 � 11 20 40 7.5
pa 17 9.2 2.6 � 10 � 11 11 100 12.0
ns 16 8.6 2.3 � 10 � 11 9.8 80 8.8
na 2.0 1.2 3.3 � 10 � 13 1.3 400 47.8

ABS 34 11 9.8 � 10 � 11 14 200 23.9
q 28 7.8 5.7 � 10 � 10 10 100 -

Table 7.5 Maximum (IWC), DC (IDC), variance (σ2
I ), and RMS (IRMS) values of power con-

sumption current for the sub-circuits of Fig. 7.12. Also shown are the computation time (t) and
and percentage of total computation time (%t) (from Eq. 7.11).

where taq
� max

�
tabs � tq � � The subindexes ps and ns refer to the shift time of p and

n mirrors, respectively. The subindexes pa and na refer to the averaging time of p

and n mirrors, respectively. The subindexes abs and q refer to the computation time

of the ABS and quadratic blocks, respectively. The individual computation times are

shown in Table 7.53. The total computation time is 188 µs which enables a maximum

frame-rate of over 5300 fps.

For low-power applications the AME can put into an idle state after the computa-

tion as is done in [28]. Thus, for a frame-sized AME array, the final power consump-

tion P f inal is the product of the power consumption during the on-time and the ratio of

τ and the frame-rate f ps

Pf inal
� τ

1
f ps

� P (7.12)

where P is the power consumption during the on-time of the AME array. P can be

derived with P � VDD � IRMS where IRMS is the root mean square value of the power

supply current. IRMS is

IRMS
� � I2

DC � σ2
I (7.13)

where IDC is the DC current (the expectation value of the current distribution) and σ2
I

the variance of the current distribution. The dependence of the power supply current

on the input current varies with each sub-circuit. This dependence for the ABS and

quadratic circuits is shown in Fig. 7.15. The power consumption current of the current

mirrors is linearly dependent on the input current. To derive the true value for IRMS the

distribution of the input current would have to be known. The power supply current

3From Table 7.5 it can be seen that the n-mirror is slower than the p-mirror. This is due to the larger
transconductance of the n-transistor and thus the larger load caused by the Miller effect.
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distribution f
�
I � would then be derived with

f
�
I � � � Iin � max

Iin �min

g
�
IVDD � � h �

Iin � (7.14)

where g(IVDD) is the power supply current as a function of the input current, h(Iin)

input current distribution, and Iin �min and Iin �max are the minimum and maximum in-

put currents, respectively. Depending on the sub-circuit h(Iin) is the distribution of

the input luminance signal (shift circuits) or the difference between the current and

reference pixel (ABS, quadratic, and average circuits). As an approximation f
�
I � was

calculated with even distribution of h(Iin). Thus IDC and σ2
I can be derived straight

from g(IVDD). This approximation gives somewhat conservative results.

By taking into account Eq. 7.12, the total RMS power supply current IRMS � tot is

derived as the sum of IRMS of each sub-circuit and the proportionate on-time (%t) of

each sub-circuit. Thus IRMS � tot is

IRMS � tot
� ∑

nc
IRMS

�
nc � � %t

�
nc � (7.15)

where nc is the number of sub-circuits in Table 7.5. From the values in Table 7.5

IRMS � tot is 10.3µA. With VDD
� 2 � 5V and Pf inal

� VDD � IRMS � tot the values for P f inal are

2.8mW (CIF@30fps) and 0.3mW (QCIF@15fps).

Compared to previous analog ME realizations, [24] presents a 16mW (8mW com-

putational array, 8mW analog frame memory), QCIF@15fps realization. In [25], a

11mW, QCIF@17fps realization which includes reference and current block memo-

ries, is presented.

Compared to previous digital ME realizations, [11] presents a realization capable

of 0.4mW (QCIF@15fps,) and 2.5 mW (CIF@30fps). The power consumption values

of [11] do not include the data transfer between the frame memory and local search

area memories. From the power consumption figures of [12] (4.6mW logic, 16.2mW

total) it can be estimated that the total power consumption of [11] would be in the

range of 1.2mW (QCIF@15fps,) and 7.5 mW (CIF@30fps).

7.6 Realized Test Chip

A test integrated circuit realizing the cell structure of Chap. 7.3.3.1 was designed and

fabricated. Two 9x9 separate arrays capable of SAD and SSD computation and data

averaging were included. The SAD array included only the ABS circuit of Fig. 7.6,

while the SSD array included the ABS circuit and the quadratic circuit of Fig. 7.9.

The chip was fabricated in 0.18 µm CMOS and the sizes of the implemented SAD and

SSD cells, including the absolute value and quadratic circuits, were 25.3x34.0 µm and
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Figure 7.15 The power consumption current as a function of the input current. a) ABS circuit
(Fig. 7.6) b) Quadratic circuit (Fig. 7.8).
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Figure 7.16 Architecture of the realized chip

45.2x33.6 µm, respectively. The chip photograph is shown in Appendix.B. The size

of the core is 1.340x0.925 mm.

7.6.1 Chip Structure

As it would have not been feasible to have 81 input and output currents, the chip in-

terface had to be digital, which meant D/A and A/D converters and memory had to be

on-chip. This, however, could be achieved with no extra silicon area, as the vendor’s

minimum area requirement was substantially higher than the area of the computation

arrays. The architecture of the chip, including these peripherals, is shown in Fig. 7.16.

As the silicon size was not an issue, the memories were implemented as DFFs in or-

der to simplify the AGU design. Not shown in Fig. 7.16 are the bias circuits for the

quadratic circuit and the bias circuits to generate the input current offset, which were

also included on-chip.

7.6.1.1 D/A-Converter

The D/A-converters were implemented as the binary weighted converters shown in

Fig. 7.17 [156]. The dynamic range of a converter is 10 µA with a controllable offset

(Io f f set in Fig. 7.17). The dynamic range of the converter is also controllable (Ibias in

Fig. 7.17). Also, to speed-up settling of the output current, the outputs of the binary

weighted transistors (16W through 0.125W in Fig. 7.17) are switched into dummy

load transistors (D16 through D0 in Fig. 7.17) when their respective bits (B7 through

B0 in Fig. 7.17) are zero. The size of a single converter is 39.7x14.2 µm. The layout

of the converter is the same as in [126].

7.6.1.2 A/D-Converter

The A/D-converters were implemented as asynchronous Successive Approximation

Registers (SAR) shown in Fig. 7.18 [156]. The D/A-converter in Fig. 7.18 is the same

as the converter described above.

The conversion is performed, from an initial state of [11111111], by first switching

the MSB B7 to zero. The input current is then compared to the output of the D/A; if

the input current is below the output of the D/A then B7 is kept at zero. Otherwise
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B7 is switched to one. This procedure is than repeated for all the remaining bits with

the previous conversion decision kept unchanged. The control logic of the conversion

is asynchronous and controlled by only two bits: Start to signal the beginning of the

conversion process and Zero to reset the logic. The start signal propagates through the

shift register shown in Fig. 7.19. The shift register is composed of the current-starved

buffer shown in Fig. 7.20. The delay of the shift register is specified with the bias

voltage NBias of Fig. 7.20. The output of the comparator in Fig. 7.18 is fed into an

8-bit SRAM. Each bit of the SRAM is controlled by the output of the shift register.

The result of the conversion is obtained with

Bi
� NOR

�
Bi1 � Bi2 � (7.16)

where Bi1 and Bi2 are shown if Fig. 7.19.

The asynchronous mode of operation has several advantages. A constantly switch-

ing clock signal consumes power. Also, a fast clock signal induces noise through

substrate and electromagnetic coupling, which could negatively affect the conversion

processes and analog computation on the chip. Furthermore, the routing of the clock

signal consumes wiring and thus silicon area.

The size of a single converter is 179.8x14.2 µm. The layout of the converter is the

same as in [126]. A 9x9 A/D array would increase the silicon area over the vendor’s

minimum area and thus only a 1x9 A/D array was implemented. The computation

results are then read out column-by-column.

7.6.2 Measurements

The D/A and A/D converters of Chap. 7.6.1.2 and Chap. 7.6.1.2, respectively, were

first realized in [126]. When this test chip was designed, the converters were not yet

measured. The measurements [126] showed that the accuracy of the converters was

not of sufficient quality to measure meaningful results from the SAD and SSD arrays.
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Figure 7.17 D/A-converter [156]
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Figure 7.19 Asynchronous shift register.

As the measured converters are exactly the same down to the layout and the used

process is the same the measurement results should correspond with the converters

here. Unlike [126], the designed chip did not have the possibility of measuring the

converters separately; this would have enabled separate calibration of the converters.

Without the calibration possibility, the quality of the converters would have masked

the error in the SAD and SSD arrays.

For the D/A array, the mean Integral Non-Linearity (INL) was 0.773 LSB with

a standard deviation of 0.188 LSB. The D/A array’s mean differential Non-Linearity

(DNL) was 0.788 LSB and the standard deviation 0.186 LSB.

For the A/D array, the worst-case INL was 2.880 LSB and the DNL 5.64 LSB.
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Vdd
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Figure 7.20 The current-starved buffer L1 of the shift register in Fig. 7.19.

The mean Effective Number of Bits (ENOB) was 5.53 bits with a standard deviation

of 0.09 bits. The bandwidth of the A/D was 1.3 MHz.

The full measurement results and measurement process will be presented in the

future in [157].

If a second version of the chip had been designed, the cell structure of Chap.

7.3.3.2 would have been more feasible. Unfortunately, at the time, the vendor dis-

continued the university price version of 0.18 µm CMOS process, which would have

meant moving to 0.13 µm CMOS. Unfortunately, time constraints did not make de-

signing a new chip with a new cell structure and a new process possible.
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Figure 7.21 Foreman rate-distortion graphs (top graph) and close-ups of low bit-rate values
(bottom graph) with varying values of Qp.
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Figure 7.22 News rate-distortion graphs (top graph) and close-ups of low bit-rate values (bot-
tom graph) with varying values of Qp.



Chapter 8

Conclusions

This thesis presents several algorithmic and hardware solutions to reduce the power

consumption of block-based motion estimation, including a full analog motion esti-

mation array. This use of analog parallel processor arrays in computing block-based

motion estimation is the new contribution of this thesis. Motion estimation will, in

all likelihood, be a part of video codecs in the near future. Thus, the concept of cal-

culating the motion estimation result within analog arrays that are integrated with the

image sensor is promising and could hold one of the keys to low-power, large-frame-

size video coding.

On the algorithmic level, two algorithms are presented. The first reduces compu-

tational complexity and thus power consumption of frame-based coding in an object-

based Core profile MPEG-4 encoder. The second algorithm presents a method of

computing a near-optimal H.264 block-size partition without resorting to computa-

tionally complex Lagrange optimization. In addition to these algorithms, CNN tem-

plates that reduce the shape bit rate of MPEG-4 are presented. On the hardware level,

a novel third neighborhood connection is presented. Using this connection and spe-

cific cell logic, the analog motion estimation array is realized. Such an analog motion

estimation implementation enables lower power consumption than comparable digital

realizations.

To develop analog motion estimation into a marketable product, more research

needs to be done on the subject. First, the integration with an image sensor needs to

be investigated. The question that needs to be answered is whether it is more feasible

to integrate the AME cell with the sensor cell or whether the AME array should be kept

separate from the sensor. Second, the concept of very irregularly wired arrays needs to

be investigated. As the concepts of this thesis were derived from a CNN segmentation

implementation, the general idea was to keep the AME addable to the segmentation. In

the course of the research, it was seen that the most promising avenue of design would
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be the above-mentioned integration with an image sensor. Thus, if the concept of

merging the segmentation and AME is forgotten, the cell size could be made smaller.

Small cell size would then leave more space for the wiring, which would further make

possible irregular connections between the cells. Such connections could include a

hexagonal connection for gradient-based ME or connections to average 4x4, 8x8, or

other sized blocks.

Complex computational CNN or CNN-type arrays also may have promise. In ad-

dition to segmentation, the determining of slices could also be an avenue of research.

In H.264, flexible macroblock ordering (also known as slice groups) has an impact

on packet loss. The slices could be determined with algorithms similar to the ones

presented in this thesis. Also, for multiple reference frame ME, the detection of un-

covered areas that have their best prediction vector in a further-off reference frame

should be investigated.

So, it can be seen that video coding, with its large amount of data that needs to

be processed, holds many promising research subjects for analog (and digital) parallel

processing.
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Appendix A

Chip Layout

Figure A.1 Layout of the integrated chip presented in Chap. 5.5.
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Appendix B

Chip Microphotograph

Figure B.1 Microphotograph of the integrated chip presented in Chap. 7.6


