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the whole “old school”, Hanna, Riitta, Mara, Hynde, Ville, Juha, Mairas, Poju,
Toomas, and all the others. A warm hug is reserved to Mrs Lea Söderman for her
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Chapter 1

Introduction

Digital signal processing has become a household word with varying meanings de-
scribing alike a field in scientific research as well as the operational principle of a
common electric device. Technical solutions from consumer electronics to industrial
process control are increasingly relying on digital data management and manipu-
lation. It is difficult to imagine a human activity that is not somehow related to
observation, recording and transmission of sampled and quantized representations
of the reality - to digital signal processing. Maybe the most apparent and well-
recognized example is provided by the technology that enables recording, storage,
transmission and reproduction of image and audio information. However, the fast
progress in digital signal processing technology is achieved mainly by speeding up
the processing; the principled methods that are used may themselves be relatively
old and unchanged. It is thus quite common but unfortunate that, for example,
such natural objectives as better understanding of the underlying physics of the
phenomenon, or utilization of perceptual aspects, may characterize the research as
somewhat “organic”, with a flavor of being unnecessarily cumbersome or inherently
academic. This kind of confrontations, if there are any, are obviously transitory, and
it is apparent that the attention is shifting in a natural way towards qualitative and
conceptual aspects, and related controllability issues, with a touch of irony, precisely
due to the amount of processing power available.

Basic tools in signal processing rely on the possibility of representing signals and
systems interchangeably in the time- and frequency-domains using transformations
between the descriptions. The reproducing property of these transformations is
then in turn a consequence of underlying basis function representations for signals
and systems in the corresponding time- or frequency-domains. Basis function rep-
resentations provide also various parametrizations of signals and systems as well as
means for practical reproduction or modeling, utilizing, for example, digital filter
implementations. The underlying mathematical concepts that enable these consid-
erations are the notion of function spaces for signals and systems, and the concept
of related operators or functionals that describe transformations between function
spaces. Further insight and practicality is gained by utilizing such fields in mathe-
matics as linear algebra and complex analysis.



This thesis was inspired by a renewed interest in the early 1990’s towards alter-
native representations of signals and systems using rational orthonormal functions
[Heuberger, 1991] [Oliveira e Silva, 1994]. The mathematical foundation of these
considerations can be traced back to the 1920’s, to the work of Takenaka, Malmquist,
and Walsh [Walsh, 1969], where the idea of interpolation and approximation using
polynomials [Szegö, 1939] was generalized to rational function expansions. It is ob-
viously allowed to argue that the appearance of rational orthonormal functions is
an older and more direct consequence of the Hilbert space theory and the Cauchy
integral theorem.

Apparently unaware of the mathematical background, rational orthonormal filter
structures were introduced in the engineering literature in the 1950’s by Kautz,
Huggins and Young [Kautz, 1954] [Huggins, 1956] [Young and Huggins, 1962].
Discrete-time rational orthonormal filter structures can be attributed to Broome
[Broome, 1965] as well as the baptizing of the discrete Kautz functions, consequently
defining the discrete-time Kautz filter. Wiener [Wiener, 1949] and Lee [Lee, 1960]
had already a decade earlier proposed synthesis networks based on some classical
orthonormal polynomial expansions [Szegö, 1939], in particular the Laguerre func-
tions. Consequently, the “Laguerre trail” is still far more better known in the signal
processing community than its more general counterpart.

The revival of rational orthonormal filter structures is driven by proposed ap-
plications to system identification and control engineering [Heuberger et al., 1995]
[Van den Hof et al., 1994] [Oliveira e Silva, 1995] [Szabó and Bokor, 1997]
[Bokor and Schipp, 1998] [Bultheel and De Moor, 2000]. The “Laguerre branch” for
using orthogonal filter structures is equally dominated by the system identification
perspective [King and Paraskevopoulos, 1979] [Nurges, 1987] [Zervos et al., 1988]
[Mäkilä, 1990] [Wahlberg, 1991], although there are also some proposals for adaptive
filtering [den Brinker, 1994] [Fejzo and Lev-Ari, 1997] [Merched and Sayed, 2001].
However, publications that would more clearly approach the field of audio signal
processing are very rare [Davidson and Falconer, 1991] [den Brinker and Belt, 1997]
[Ngia and Gustafsson, 1999] [Campi et al., 1999]. Apparently, a systematic utiliza-
tion of rational orthonormal filter structures in a genuine filter synthesis sense, with
applications to audio signal processing, was initiated in [Paatero et al., 2001].

The author of this thesis has been privileged in being able to utilize his former studies
in mathematics in his more recent subject of interest, digital signal processing,
acoustics and related audio signal processing in particular. This perspective of a
“learning process” has also somewhat unavoidably affected the style and content
of this monograph. This is for example reflected in the fact that there are lot of
side tracts, or even loose ends, which is however considered as a contribution of
the thesis: a potential interested reader is provided with an extensive collection of
references. Admittedly, at times there are also lapses towards an educational touch
and the form of a textbook; the appearance is at least partly unintentional, but
the aim of this thesis is genuinely to build up from the perspective of elementary
concepts of signal processing. One of the few clear decisions in the process of writing
this thesis is that the mathematics is not pompously displayed and mystified. This
is not a thesis in mathematics and it would certainly not qualify as such. Another
conscious choice is the substantial utilization of footnotes to maintain readability of
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the bread-and-butter text.

More or less basic concepts for representing signals, systems and related transfor-
mations are presented in the beginning of Chapter 2. Function space descriptions of
signals and systems are introduced in Sections 2.2 and 2.3. In Section 2.4, conformal
mapping techniques are used to interconnect functions spaces and to deduce basis
function representations. Chapter 3 introduces the concept of generalized linear-
in-parameter models (GLM) as a general framework for various signal processing
tasks. Using this synthetic approach, methods that are conventionally associated to
a very limited type of model structure, that is, to an finite impulse response (FIR)
or moving-average filter, are generalized in a natural manner, which also brings out
the mathematical origin of some common signal processing routines. In particular,
the frequently misplaced barrier between FIR and IIR (infinite impulse response)
filtering methods is demystified. The GLM concept is also used as an introduction
to rational orthonormal filter structures, the topic of Chapter 4. Audio-oriented case
studies, including loudspeaker equalization, musical instrument body modeling, and
room response modeling, are presented in Section 4.4. The most important practi-
cal contribution of this thesis is probably the BU-method (dubbed from Branden-
stein and Unbehauen) for the optimization of rational orthonormal filter structures.
The BU-method and its variants, including the (complex) warped extension, the
(C)WBU-method, are presented in Section 4.3. These and some other less apparent
contributions of the thesis are considered in the concluding Chapter 5.
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Chapter 2

Mathematical means in signal
processing - from conventional to
somewhat advanced

Transformations between time- and frequency-domain representations of signals and
systems are essential in any development of signal processing methods. The begin-
ning of this Chapter is more or less “DSP textbook stuff”, although some uncon-
ventional interconnections are utilized to deduce and relate various transformations.
Function space descriptions for signals and systems are introduced in Section 2.2,
which gives also further insight into the transformation concept that is in most cases
missing from the aforementioned textbook considerations. The Hilbert space frame-
work for representing and modeling signals and systems is presented in Section 2.3.
This Chapter concludes by introducing an useful bundle of mathematical topics:
particularly, in Section 2.4 conformal mapping techniques are used to interconnect
function spaces and to deduce basis function representations into various function
spaces.

2.1 Representing signals, systems and transfor-

mations

Along with the actual definitions, a number of notational conventions are intro-
duced in this Section. Such concepts as linearity, causality, time-invariance, and
stability are included gradually. Some canonical digital filter implementations are
also presented as direct consequences of difference equation considerations.

2.1.1 Discrete-time signals and signal transformations

A discrete-time signal is a mapping from some index set representing time to a signal
value range. Here the discrete-time signal x(n) is defined as a mapping from a subset
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S of the ordered integer axis Z to the complex plane C, x : S → C, x : n 7→ x(n).
Sometimes it is convenient to express an ordered collection of component signals
as a vector valued mapping, x : S → CN , x : n 7→ x(n) = [x1(n) · · · xN(n)]T ,
where the superscript T denotes matrix transpose and N is the dimensionality of
the vector. In both cases, the properties of the complex plane, regarded as a vector
space (manifold) and as a multiplicative ring, guarantee well-defined sample-by-
sample arithmetic operations, such as, signal scaling, additions and multiplications.
An important operation on signals is the delay operator defined by

zk[x(n)] = x(n + k), k ∈ Z, (2.1)

which is defined to be zero outside the signal support. The most elementary signal
is the unit impulse signal

δ(n) =

{
1, if n = 0
0, if n 6= 0 .

(2.2)

Using the delay operator on the unit impulse, every signal can be decomposed as

x(n) =
∞∑

k=−∞
x(k)δ(n− k). (2.3)

Here too the summation is defined to be void outside the signal support. It should be
noted that definition (2.3) does not require any assumptions about the convergence
of the summation. It can also be seen as a decomposition of a complex valued func-
tion as a collection of assigned discrete values and characteristic functions defining
the support set1. Utilizing this cumbersome interpretation it can be stated that a
discrete-time signal has no physical energy, defined as the square Lebesgue integral
over the past (as well as future) times.

The frequency-domain representation of a discrete-time signal is based on the z-
transform, which associates a complex variable, z, to the signal x(n):

X(z) ≡ Z{x(n)} :=
∞∑

n=−∞
x(n)z−n. (2.4)

This power series expansion of x(n) is defined in some annular region of the complex
plane, that is, whenever (2.4) is absolutely summable2. If this region of convergence
(ROC) is not empty, it can be specified by

R(r1, r2) = {z = rejθ ∈ C : 0 ≤ r1 < r < r2 ≤ ∞,

∞∑
n=−∞

∣∣x(n)r−n
∣∣ < ∞}. (2.5)

From the theory of power series it is known that X(z) converges absolutely and
uniformly in R(r1, r2) and that it diverges for all z ∈ C \ R(r1, r2), where the bar
denotes closure. It is more case-specific what happens on the boundaries, but in the

1This provides a way to avoid defining the inter-sample signal values to be zero, which would
be incorrect in many ways.

2Definition (2.4) is meaningful if the summation is convergent, that is, absolutely convergent,
for some z 6= 0, implying that it is convergent on a circle with radius |z|.
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upcoming it is mainly the special cases r = 0, r = 1 and r = ∞ that are of interest.
Furthermore, the function X(z) is analytic in the ROC, that is, differentiable with
respect to the complex variable, even up to derivatives of all orders. This and
many other properties of the z-transform are consequences of the uniformity, which
permits operating inside the summation. One such result is the inverse z-transform

x(n) =
1

2πj

∮

C

X(z)zn dz

z
, (2.6)

where C is any closed (counter-clockwise) contour in the ROC. If the unit-circle,
T = {z ∈ C : |z| = 1}, is within the ROC, then the discrete-time Fourier transform
(DTFT) can be defined by the substitution3

X(ω) ≡ X(z)|z=ejω =
∞∑

n=−∞
x(n)e−jωn. (2.7)

It is easily seen that the Fourier transform is a continuous and periodic function
with period 2π.4 Conversely, every continuous 2π-periodic (square-integrable on T)
function has a trigonometric system decomposition of the form (2.7). Moreover,
X(ω) has the form of a Fourier series with discrete “line-spectra”

x(n) =
1

2π

∫ 2π

0

X(ω)ejωndω. (2.8)

This is the inverse discrete-time Fourier transform (IDTFT), and again, it is simply
(2.6) evaluated on the unit-circle. The N -point discrete Fourier transform (DFT)
for a discrete-time signal is defined formally by

X(k) =
∞∑

n=−∞
x(n)e−j2πkn/N , k = 0, 1, . . . , N − 1. (2.9)

Once again, the DFT could be defined as a substitution to transforms (2.4) or (2.7),
respectively, corresponding to equidistant sampling in the angular frequency-domain
0 ≤ ω < 2π.5 However these definitions would exclude periodic signals, that is,
signals for which x(n + P ) = x(n) for some integer P > 0 and all n ∈ Z, which are
by definition infinite in duration and divergent in any measure of summability.

The summation in (2.9) is finite and unconditionally convergent only in the case of a
finite-duration signal. However, it is apparent from the formal definition that X(k)
has a periodic extension in Z, implying that this infinite but periodic extension has
a finite Fourier series expansion

XP (k) =
N−1∑
n=0

xP (n)e−j2πkn/N (2.10)

3Actually this definition is insufficient in both directions – there are practical signals, with well-
defined z-transforms, having no Fourier transforms, and on the other hand, the Fourier transform
can be defined for a wider class of square-summable sequences.

4In contrast to the continuous-time counterparts where a distinction between periodic and
aperiodic signals has to be made.

5On the other hand, the definition could be relaxed to any ordered N -point discrete frequency
grid in [0, 2π], but in the following, unequal frequency sampling is restricted to cases when it can
be implemented by frequency transformations.
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with respect to its harmonically related frequency components, and with Fourier
series coefficients given by

xP (n) =
1

N

N−1∑

k=0

X(k)ej2πkn/N , n = 0, 1, . . . , N − 1. (2.11)

This can be seen as a discrete version of (2.8) where the integration is replaced by
summation and an appropriate normalization over the measured set. The (peri-
odically extended) discrete-time signal xP (n) is related to the original signal x(n)
through

xP (n) =
∞∑

l=∞
x(n− lN), (2.12)

which is seen by forcing (2.9) into the form of (2.11). The signal (2.12) is in general an
aliased version of x(n), produced by folding it over the time-interval 0 ≤ n < N − 1.
The transform pair

(2.10)

x(n) =
1

N

N−1∑

k=0

X(k)ej2πkn/N ­ X(k) =
N−1∑
n=0

x(n)e−j2πkn/N (2.13)

(2.11)

produces perfect reconstruction (PR) between the signal representations if and only
if there is no aliasing in the time-domain, that is, if xP (n) = x(n), n = 0, . . . , N − 1,
which holds exactly when x(n) itself has a periodic extension of the form (2.12). In
other words, PR is achieved for N -periodic or finite signals of duration less or equal
to N .6 Additionally, by substituting the IDFT into (2.4) or (2.7) it is seen that X(z)
or X(ω), respectively, have closed form representations as functions of the spectral
samples X(k). 7

2.1.2 Discrete-time system descriptions

A discrete-time system H is defined as an operator or functional that describes an
input-output relationship

x(n) −→ y(n)

H (2.14)

X(z) −→ Y (z).

Despite of the seemingly specialized definition for describing one particular relation,
{x(n), y(n)} or {X(z), Y (z)}, it is to be interpreted as a mapping from a specified
subset of the time- or frequency-domain discrete-time signals with well-defined im-
ages y(n) = H[x(n)] or Y (z) = H[X(z)] in the corresponding range of the mapping.

6In the latter case it is presumed that x(n) is first shifted to the “base interval” [0, L], L < N .
7This can be interpreted as (Lagrange) polynomial interpolation in terms of the values {X(k)}

at frequencies ωk = 2πk/N .
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It is obviously possible to extend the notion of a discrete-time system to mixed time-
and frequency-domain input-output relationships, for example, to include systems
that implement a signal transformation as a part of the process.

Another method for characterizing the internal behavior of a discrete-time system
is to use some test signals: the system is excited with a well-specified input signal
and the corresponding response (or output signal) is gathered and analyzed in some
sense. The depth of the analysis may vary from a detailed time- or frequency-
domain expression to the measuring of a single quantity that somehow characterizes
the system. The sort of “extremes” in the choices of test signals are then the impulse-
like or purely sinusoidal signals, respectively. They are complementary in the sense
that the former is completely localized in time and evenly distributed in frequency,
and vice versa for the latter. The impulse response of an initially relaxed 8 system
is defined as a collection of responses to shifted unit impulses,

h(n, k) = H[δ(n− k)], n, k ∈ Z, (2.15)

and in general it is an infinite set of component signals. If the system is excited with
a sinusoidal, or rather with a complex exponential, x(n) = ejω0n, ω0 ∈ [0, 2π], n ∈ Z,
then the following (formal) responses are produced

y(n) = H[ejω0n], n ∈ Z (2.16)

Y (ω) = H

[ ∞∑

l=−∞
2πδ(ω − ω0 + 2lπ)

]
, ω ∈ R (2.17)

where the summation is by definition the DTFT of the complex exponential9. That
is, the system is exited with an infinite 2π-periodic frequency impulse train. By
replacing the summation index l with (k−m) and evaluating the response Y (ω) to
the harmonically related inputs x(n) = ej2πnm/N , m = 0, . . . , N − 1, at equidistant
frequencies ωk = 2πk/N , k = 0, . . . , N − 1, the relation (2.17) results in the general
discrete frequency-domain impulse response expression

H(k, m) ≡ H

[ ∞∑

k−m=−∞
2πδ

(
2π(k −m)

N
+ 2π(k −m)

)]
= H[2πδ(k −m)], (2.18)

which can be seen as a formal discrete frequency-domain counterpart of (2.15).

8The term relaxed has to be dragged along for a while. A system is relaxed if it starts at rest.
A system is initially relaxed at n = n0, if y(n) = 0 for n < n0, and it is used to ensure that the
future outputs y(n), n ≥ n0, depend only on the inputs x(n), n ≥ n0. If the input is spanned
over Z, as it is to begin with here, then initially relaxed means relaxed at n = −∞ and the output
signal is solely and uniquely determined by the input signal x(n) [Proakis and Manolakis, 1992].
This has not yet anything to do with causality or time-invariancy.

9This is an example of a special case where the DTFT can be defined for a sequence that
is not absolutely or square-summable. Utilizing the Dirac delta function interpretation of δ(·),
the Dirac comb δ̃(ω) = 2π(

∑∞
l=−∞ δ(ω + 2πl)) is used to identify the DTFT of ejω0n as

δ̃(ω−ω0). The inverse DTFT is then a result of the sampling property of the Dirac delta function:
1
2π

∫
δ̃(ω − ω0)ejωndω = ejω0n.
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2.1.3 Linear time-invariant systems

So far, all the means for characterizing the internal behavior of the system are merely
theoretical. Definitions (2.14) describe in general an infinite collection of point-wise
relations. Equally, the aforementioned “test signals” are in practice unrealizable, in
addition to the fact that the produced responses (2.15) and (2.18) would anyhow
be impractical. By imposing some qualitative restrictions on the system it is occa-
sionally possible to relate an arbitrary input signal to system descriptions, such as
(2.15) or (2.18), to produce a well-defined closed form mathematical expression for
the corresponding response.

A system defined by (2.14) is called linear if and only if

H[ax(n) + by(n)] = aH[x(n)] + bH[y(n)]

or (2.19)

H[aX(z) + bY (z)] = aH[X(z)] + bH[Y (z)]

for any x(n) and y(n), or X(z) and Y (z), respectively, in the domain of the mapping,
and for any scalars a and b.10 Condition (2.19) reflects simultaneously the scaling and
additivity properties, that is, the superposition principle, of a linear system. From
(2.19) it follows that if H[x(n) ≡ 0)] = y(n) 6= 0, then the system is either nonlinear
or non-relaxed 11. Now, supposing that the input signal has a decomposition x(n) =∑

k ckxk(n) into weighted elementary signal components, the superposition principle
may be extended by induction to the form

y(n) = H[x(n)] = H

[∑

k

ckxk(n)

]
=

∑

k

ckH[xk(n)] =
∑

k

ckyk(n), (2.20)

where yk(n) = H[xk(n)] and the system is presumed to be relaxed12. Previously two
such decompositions were formed, that is, the decompositions of a periodic signal
into harmonically related components, and the weighted shifted unit delay repre-
sentation (2.3). The latter is defined for an arbitrary input signal x(n), providing a
desired explicit mathematical description,

y(n) = H[x(n)] = H

[ ∞∑

k=−∞
x(k)δ(n− k)

]
(Eq. (2.3))

=
∞∑

k=−∞
x(k)H[δ(n− k)] (Eq. (2.20))

=
∞∑

k=−∞
x(k)h(n, k) (Eq. (2.15)), (2.21)

10Throughout this work, it is presumed that the domain and range of a signal mapping are
at least vector spaces, which ensures that all linear combinations of the elements belong to the
same spaces. Additionally, “scalars” means members of the associated scalar field of the particular
vector space, which here amounts to the set of real or complex numbers, respectively.

11A simple example of such a system is y(n) = ax(n)+ b, a, b 6= 0, where the system is described
by a linear equation, but the linearity test (2.19) fails. For b 6= 0 the system is non-relaxed, or
biased, but it is a matter of interpretation whether it is linear or not.

12This result is very general and the emphasis is clearly on the beginning of the sentence.
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for the response y(n) of a relaxed linear system H to an input signal x(n).

Expression (2.21), although explicit, still has the disadvantage of being dependent on
a two-dimensional sequence h(n, k), that is, the summation extracts only the other
degree of freedom, leaving a time-dependent description of the system. If on the
other hand it can be presumed that the relaxed linear system is time-independent
or time-invariant, defined by the implication

y(n) = H[x(n)] ⇒ y(n− k) = H[x(n− k)], (2.22)

for every input signal x(n) and any integer shift k, then h(n, k) = h(n − k), and
(2.21) reduces to13

y(n) =
∞∑

k=−∞
x(k)h(n− k). (2.23)

This is the convolution sum representation of a linear time-invariant (LTI) sys-
tem, which gives the response to any input signal as a function of a single se-
quence, the unit impulse response h(m) = H[δ(m)]. The shorthand for (2.23) is
y(n) = x(n) ∗ h(n) and it is easily seen that convolution is an associative and
commutative operation14. The input x(n) is said to be convolved, or filtered, with
the impulse response h(n), that is, at each time-instant n, the product sequence
c(k) = x(k)h(n− k) is summed over all indices, where the sequence h(k) is first
folded over n, or vice versa for h(k) and x(k). In general, direct utilization of (2.23)
is possible only in the case of a finite (duration) impulse response (FIR), in which
case the summation (2.23) is finite for any n and x(k).

The frequency-domain counterpart of the input-output relationship in terms of a
system function is attained by applying the z-transform or the Fourier transform,
respectively, on both sides of (2.23). In the former case, repetitive use of definition
(2.4), combined to the LTI-property, provide

Y (z) =
+∞∑

n=−∞
y(n)z−n =

+∞∑
n=−∞

[ ∞∑

k=−∞
x(k)h(n− k)

]
z−n

=
∞∑

k=−∞
x(k)

[ ∞∑
n=−∞

h(n− k)z−n

]

=
∞∑

k=−∞
x(k)z−k

∞∑
n=−∞

h(n)z−n = X(z)H(z), (2.24)

whenever the intermediate definitions for the z-transforms,

Y (z) =
∞∑

n=−∞
y(n)z−n, X(z) =

∞∑
n=−∞

x(n)z−n and H(z) =
∞∑

n=−∞
h(n)z−n,

are valid. Additionally, the linearity property and the convolution-product-identity

y(n) = x(n) ∗ h(n) ←→ Y (z) = X(z)H(z) (2.25)

13By definition h(n, k) = H[δ(n − k)], and the condition (2.22) then particularly applies to
h(n) = H[δ(n)], implying that h(n, k) = H[δ(n− k)] = h(n− k).

14With a change of variable, m = n − k, an alternative or dual representation, y(n) =∑∞
−∞=k x(n− k)h(n), is attained, where in the last step the dummy variable m is replaced by k.
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provide principles for interconnections of systems. For initially relaxed LTI systems
H1 and H2 that are defined in appropriate domains, relations H = H2[H1] and H =
H1 +H2 correspond to cascade and parallel connections of the systems, respectively.
Once again presuming that the following descriptions are meaningful, the response
of a parallel system is given by h(n) = h1(n)+h2(n) or H(z) = H1(z)+H2(z), and by
h(n) = h1(n) ∗h2(n) or H(z) = H1(z)H2(z) for the cascaded system, respectively15.
Whenever an inverse system H−1 can be associated to a system H, it defines an
inverted input-output relationship16.

Another way to characterize the input-output relationship of an LTI system is by
directly trying to solve linear equations provided by the linear (matrix) operator
form y = Lx of y = H[x]:




...
y(n+1)

y(n)
y(n−1)

...




=




. . .
...

...
... ·

. . . h(0) h(1) h(2) · · ·

. . . h(−1) h(0) h(1) · · ·

. . . h(−2) h(−1) h(0) · · ·
· ...

...
...

. . .







...
x(n+1)

x(n)
x(n−1)

...




. (2.26)

In the above, the convolution sum (2.23) is simply augmented into a matrix form.
The matrix L has a special Toeplitz form, that is, the elements on the main diagonal
and all its sub-diagonals are equal, respectively. The input-output relationship then
has a particular shift structure, y(n− k) = z−khTx, k ∈ Z, where h is the impulse
response sequence. By a somewhat wild association, this can be seen as an infinite
collection of difference equations, whose overall solution can in principle be attained
from the constant coefficient difference equations a ∗ y = b ∗ x, where a and b are
some (infinite-dimensional) coefficient vectors to be specified17. As in (2.24), convo-
lution in the time-domain corresponds to A(z)Y (z) = B(z)X(z) in the z-domain,
where A(z) =

∑∞
k=−∞ a(k)z−k and B(z) =

∑∞
k=−∞ b(k)z−k are double-infinite for-

mal polynomials in the variable z. In actually assigning H(z) = B(z)/A(z) a bit
more has to be presumed18.

15In other words, LTI systems form an associative, commutative and distributive algebraic ring
R(h,+, ·/∗) with respect to the sum and product operations defined above. Linear convolution is
thus the time-domain product operation. The zero and unit elements of these algebraic structures
are h(n) ≡ 0 or H(z) ≡ 0 and h(n) = δ(n) or H(z) ≡ 1, respectively.

16Since the system is defined as a mapping it follows that the invertibility can be characterized
as an one-to-one correspondence, or a bijection, in the input-output relationship. In terms of h(n)
or H(z), the inverse system h−1(n) or H−1(z), if it exists, is the one for which h(n)∗h−1(n) = δ(n)
or H(z)H−1(z) = 1, respectively.

17The convolution representation is still a point-wise relation, that is, an infinite collection of
equations a(n)∗y(n) = b(n)∗x(n), n ∈ Z, but due to the shift-invariancy, it suffices to consider y(n)
as the solution of the convolution identity

∑∞
k=−∞ a(k)y(n− k) =

∑∞
k=−∞ b(k)x(n− k), a(0) = 1.

The left hand side of the equation can be associate to the homogenous difference equation a∗y = 0
for providing the coefficients of zero-input response using “initial condition” y. The right hand side
is then related to the particular or forced-input solution, where it is presumed that a particular
solution can be expressed as a linear combination of shifted input samples. This is motivated
by the fact that “solving” means an expression for y(n) in terms of a and b for a specific x(n),
which is not necessarily a unique description of the system itself, and consequently, due to the LTI
property it is presumable that the output takes the same general form as the input. The overall
solution as a superposition of the homogenous and particular solutions was already embedded in
the expression a ∗ y = b ∗ x.

18The corollary is that an LTI system can be associated to a dynamical process with time-
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An important subclass of the LTI systems are those that possess a finite difference
equation of the particular form

N∑

k=0

aky(n− k) =
M∑

k=0

bkx(n− k), (2.27)

where for convenience, coefficients are scaled so that a0 = 1. The order of the
difference equation is defined to be max{N, M} and it is consistent with the order
of the rational transfer function19 composed of the ratio of finite polynomials implied
by (2.27) for describing the system function in the z-domain.

An immediate consequence of (2.27) is that for n > 0 the response

y(n) = −
N∑

k=1

aky(n− k) +
M∑

k=0

bkx(n− k) (2.28)

can not depend on future input values x(m), m > n. The general definition for this
causality property is embedded in the implication

x1(n) = x2(n), for n < n0 =⇒ y1(n) = y2(n), for n < n0, (2.29)

where y1(n) and y2(n) are responses to x1(n) and x2(n), respectively. In general this
is a point-wise definition, but for LTI systems it reduces to an existential form, that
is, an LTI system is causal if (2.29) holds for any fixed n0. Furthermore, the causality
condition for an LTI system impulse response is particularly simple: property (2.29)
is equivalent to h(n) = 0, for n < 0.20 In the upcoming, a somewhat confusing but
frequently used term causal signal is to be interpreted as a signal that could be the
impulse response of a causal system.

The causality presumption forces the matrix operator (2.26) into a semi-infinite
upper-triangular form. In terms of the convolution sum (2.23), the summation
becomes onesided:

y(n) =
n∑

k=−∞
x(k)h(n− k) =

∞∑

k=0

h(k)x(n− k). (2.30)

If in addition the input x(n) is restricted to be causal then (2.30) reduces to

y(n) =
n∑

k=0

x(k)h(n− k) =
n∑

k=0

h(k)x(n− k), (2.31)

invariant parameters. In fact, if the delay operator is identified as the discrete-time time-derivative
operation, the suggestive term ’difference’ can on occasion be replaced by differential, in describing
the particular form of a dynamical system y = F [y,x]. It should however be pointed out that
this consideration is very speculative and that some of the denotations may not have any true
meaning as such. On the other hand, and especially in the case of the double-infinite time-axis Z,
it has been demonstrated that the two-operator description Ay = Bx of an input-output system
should be considered as the fundamental and more appropriate relation in contrast to the more
conventional one-operator form y = Hx [Mäkilä, 2005]. In principle, this observation also question
the whole interpretation of the system as a mapping.

19The term ‘system function’ is preserved for a wider meaning.
20Proof. Fix n0, choose x1(n) = x2(n), for n ≤ n0, and x1(n) 6= x2(n), for n > n0. Compose the

dual form of (2.23) for y1(n0) and y2(n0). Separate the summations into two parts, k ∈]−∞,−1]
and k ∈ [0,∞[. Equality y1(n0) = y2(n0) holds only if h(k) = 0 in the former sum.
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which implies that the response of a causal LTI system to a causal input is also
causal21. Summations (2.31) are finite, but in general they require an increasing
number of storage locations for the signal values {x(k)}n

k=0 and {h(k)}n
k=0. However,

as it was mentioned earlier, in the case of an FIR system, specified by an impulse
response {h(k)}N

k=0, the latter form of summation (2.31) provides a direct non-
recursive implementation

y(n) =
N∑

k=0

h(k)x(n−k) ≡ hTx(n), h =




h(0)
...

h(N)


 , x(n) =




x(n)
...

x(n−N)


 , (2.32)

where the input data vector x(n) is updated at every time-instant n by shifting
x(n) = z[x(n − 1)], that is, the new sample x(n) is added to the front of the
previous data vector x(n − 1) where the last element is disregarded. Equations
(2.27) or (2.28) provide a straightforward way to generalize the state vector form
(2.32) to some systems with infinite impulse response (IIR) duration:

y(n) = bTx(n)− aTy(n) = cTz(n), c =

[
b
−a

]
, z(n) =




x(n)
...

x(n−M)
y(n−1)

...
y(n−N)




. (2.33)

Equations (2.33) describe a causal finite dimensional recursive system. Because of
the perspective of this introduction, systems representable by equations (2.33) form
a very limited subset of the more general classes of recursive or IIR systems, respec-
tively, but as model structures (2.33) and (2.32) form the basis for approximating a
causal LTI system.

The LTI assumption guarantees that the difference equation (2.27) has always a
solution22. This is due to the fact that the constant-coefficients are independent
of the input and output sequences. However, it should be noted that although
the response in (2.28) is in principle produced by finite arithmetic operations this
does not mean that the response to a given input is always in practice attainable.
Moreover, a system defined by constant-coefficient difference equations (2.27), even
if it is causal, is not necessarily linear and time-invariant. The essential difference
compared to system descriptions (2.30) or (2.31) is that the response at a given time-
instant is separable to a recursive past of the system and a non-recursive contribution
of the present and past input values. To which extent these portions are genuinely
segregated depends on the aforementioned additional properties of the system. For
causal systems described by equations (2.27), the response y(n) for all n ≥ n0

is computable knowing x(n), and the initial conditions {y(n0 − 1), . . . , y(n0 −N)}.
21By convention, the dimensionality of x(n) and y(n) are the same, if not otherwise stated,

which in this case extends the response as y(n) = 0, n < 0. In the following it is crucial that no
ambivalency should appear in identifying operations on one-sided or causal sequences.

22The general solution is of the form y(n) = yh(n) + yp(n), where yh(n) is the solution of the
homogeneous (or zero-input) equation aT y = 0 and yp(n) is any (input-dependent) particular
solution of (2.27).
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Figure 2.1: A straightforward digital filter implementation of the difference equation
(2.27), the direct form I structure of an IIR filter.

Furthermore, the initial conditions reduces to {y(−1), . . . , y(−N)} for causal inputs.
Earlier it was stated that the response of a causal LTI system to a causal input is
causal, which is thereby equivalent to presuming zero initial conditions. In terms
of the general definition (2.14) of a discrete-time system, this is consistent with the
assumption of an initially relaxed system at n = 0. 23

2.1.4 Some LTI filter implementations

The more practical implication of the finite difference equation (2.27) is that it has an
implementation as a digital filter. Using the previous definitions for interconnections
of systems, every system possessing the form of equation (2.27) is separable into
primitive building blocks, such as, unit delay elements, signal scaling, and branching
and summing junctions of the signal flow. The requirement of causality, or from the
implementation point of view, the realizability of the system, is reflected in the fact
that every feedback loop must contain a delay24. A straightforward implementation
of equation (2.27) results in the direct form I structure of an IIR filter, depicted in
Figure 2.1. In addition, the equation (2.33) allows for an immediate state variable
interpretation of the system: the intermediate signal vector z(n) is a collection of
instantaneous unit delay outputs, that is, the contents of corresponding memory
locations.

The filter implementation in Figure 2.1 can be seen as a cascade connection of a non-

23In fact, a causal system described by constant-coefficient difference equations is strictly linear
only in the case of zero initial conditions, although this fact is sometimes pragmatically disregarded
in practical LTI filtering.

24Actually, arbitrary interconnections of causal LTI systems are allowed since delay free loops
are always extractable, for example, using equivalent circuit techniques.
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Figure 2.2: A transversal and non-recursive realization of an FIR filter.

recursive FIR filter, depicted as a tapped transversal delay-line filter in Figure 2.2,
and a purely recursive filter, implemented as a feedback connection of another direct
form FIR filter. If the order of these two blocks is interchanged, a direct form II
structure (Fig. 2.3) is produced, where the common delay-line (of length max(M,N))
introduces a genuine state-variable interpretation of the system. If the inputs and
outputs of the delay elements are denoted by w(n + 1) and w(n), respectively, the
system has a state-space representation

w(n + 1) = A w(n) + b x(n)

y(n) = c w(n) + d x(n), (2.34)

where the elements of (A,b, c, d) are attained from the direct form parameters
{bk, ak}. In particular, for the direct form II structure with N = M , the constants
(A,b, c, d) are given by

A =




−a1 −a2 · · · −aN

1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0


 , b =




1
0
...
0


 , (2.35)

c = [b1 − b0a1 b2 − b0a2 · · · bN − b0aN ] , d = b0. (2.36)

The state-space realization of a system is by no means unique. However, the transfer
function of a given realization (2.34) is easily seen to be

H(z) = c(zI−A)−1b + d, (2.37)

where it is presumed that the matrix (zI−A) is invertible25. Figure 2.4 illustrates
that the state-space system can be seen as a “vectorized first order resonator”.
Correspondingly, the impulse response of (2.34) is an exponential sequence, given
by

h(n) =

{
d , n = 0
cAn−1b , n = 1, 2, . . .

(2.38)

The state-space representation (2.34) will be utilized in Section 3.4.2.

25The matrix I is the N ×N unit matrix and the scalar multiplication zI result in a “z-variable
matrix”. The matrix function (zI −A) is the resolvant of the matrix A. For causal systems the
invertibility is equivalent to the constraint that all eigenvalues of A should be within the unit circle.
These eigenvalues are the solutions of the corresponding characteristic equation det(zI−A) = 0.
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Figure 2.3: The direct form II structure of an IIR filter. The implied choice M < N
is a pure technicality.

Figure 2.4: The block diagram of a single-input single-output (SISO) LTI system,
corresponding to the state-space equations (2.34) and to the transfer function (2.37).

The direct forms are just particular cases of an infinite variety of possible realizations
of a given LTI system (2.27).26 However, the direct form II structure provides a
minimal realization in the sense that the dimensionality of the state variable is the
smallest one possible. A minimal realization is still not unique, but two minimal
realizations of the same system are similar in the sense that they can be uniquely
recovered from each other using an invertible state transformation. An alternative
minimal state-space realization to the direct form structures and their traditional

26Alternative forms are attained, for example, by different decompositions of the rational transfer
function, as equivalent circuit manipulations, or as transformed state-space realizations.
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variants will be given in Section 3.4.2. Nevertheless, direct forms have the favorable
property of being linear-in-the-parameters, that is, the output possesses a linear
regressor form, consisting of a parameter vector and a regressor (or data vector),
as apparent from the expressions (2.32), (2.33) and (2.34), respectively. To what
extent this separation into a model and a set of its external parameters is genuine
will be the essential question in the forthcoming generalizations.

Some remarks Many of the frequently used concepts and terms are inherently
confusing. To begin with, recursive and non-recursive are related to the implementa-
tion, and on the other hand, FIR and IIR, when taken literally, are solely properties
of the impulse response. Sometimes these terms are intersected, although there ex-
ists, for example, recursive FIR filter impltmentations. The other blurred concept
is linearity, which was defined by condition(2.19).27 However, a digital filter is often
called linear if it is composed of linear building blocks, although the operation of
the system may not be linear. This relaxation allows, for example, forced (non-zero)
initial conditions and time-varying parameters28. In other words, the model (filter)
that produces the regressor of tap-output vector is usually presumed to be linear
and time-invariant, except for the effect of possible non-zero initial conditions, but
the external parametrization of the linear-in-parameter model may be time-varying.
The parameters themselves, even in the time-invariant case, are usually obtained by
non-linear operations from the data.

2.1.5 Implicit assumptions and alternative interpretations

In the previous section, a variety of definitions was given for representing signals and
systems in the time- and frequency-domains, as well as, transforms for transitions
between the representations. The contents and depth of reasoning is sufficient for
many purposes as such, more or less common text book argumentation, but some
of the unstated conditions for the definitions are essential in further generalizations.
On a general level, three presumptions were made:

• The signals and systems to be considered have decompositions with respect to
some basis functions

• There is a way to determine the components (coefficients, weights, coordinates,
parameters, . . . ) of these decompositions

• The equations that define the decomposition representations are meaningful

The last item is primarily related to the summability or integrability of the argu-
ments in the expressions. The second article is a combination of the former and
properties of the chosen basis functions. For the first, a mild premiss for a set to

27To make things even more complicated, the correct mathematical term would in general actu-
ally be affine.

28Once again, strict linearity would require zero initial conditions, and on the other hand, a
linear filter with time-varying coefficients is usually non-linear.
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Shifted unit impulses (TD) {. . . , 0, 0, δ(n− k), 0, 0, . . .}

Shifted complex variables (TD/FD) {. . . , z±2, z±1, 1, z∓1, z∓2, . . .}

Continuous exponentials (TD/FD) {. . . , e±j2ω, e±jω, 1, e∓jω, e∓j2ω, . . .}

Discrete exponentials (TD/FD) {. . . , z±j2π/N , 1, z∓j2π/N , . . . }

Equidistant sampling (TD/FD) {1, e∓j2π/N , e∓j4π/N , . . . , e∓j(N−1)2π/N}

Generic TD basis functions {. . . , x−1(n), x0(n), x1(n), . . .}

Generic FD basis functions {. . . , X−1(z), X0(z), X1(z), . . .}

Table 2.1: Basis functions for representing and transforming discrete-time signals
and systems in the time-domain (TD) and in the frequency-domain (FD).

qualify as a base is that it should be capable of representing any member of a some-
how specified class of quantities. Table 2.1 presents some of the basis functions used
in Section 2.1.1. An additional property of uniqueness of the basis representation is
intimately connected to the unambiguity of the corresponding transformation. On
the whole, the concept of a function space is what is needed for a general and uni-
form treatment of all three questions. This will be the subject of a few subsequent
Sections, starting with the following priming.

The square-summability property was briefly mentioned in connection with the
DTFT (2.7): the class of square-summable discrete-time signals is denoted and
defined by

`2(Z) = {x(n) :
∞∑

n=−∞
|x(n)|2 < ∞}. (2.39)

The corresponding set of causal signals is denoted by `2(N), with an obvious modi-
fication in definition (2.39).29 Actually, a stricter condition of absolute summability
was used in defining the region of convergence (2.5) of the z-transform (2.4), that
is,

x(n) ∈ `1(Z) = {x′(n) :
∞∑

n=−∞
|x′(n)| < ∞} (2.40)

implies that x(n) ∈ `2(Z), and similarly, `1(N) is a subset of `2(N), for the corre-
sponding classes of causal signals30. Sequences in `1(Z) or `1(N) are referred to as

29A more engineering oriented term for `2-signals would be energy signals, which distinguish
them from power signals with infinite energy but with finite average power.

30For `2-signals that are not `1-signals, the property of uniform convergence of the related trans-
forms is lost and and occasionally replaced by mean-square convergence. This would have a substan-
tial effect on the deductions, which is why `1-convergence was chosen in defining the z-transform
(2.4). However, it is precisely the larger classes of `2-signals that will be associated to the DTFT
and the z-transform, respectively, but this generalization requires some additional manoeuvering,
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stable, which is again more descriptive for systems than for signals. A necessary
condition for an `1-sequence is that it is decaying, lim|n|→∞ x(n) = 0. Another im-
mediate consequence, recognized by comparing (2.5) and (2.40), is that the region of
convergence must contain the unit circle31. Moreover, for causal and stable signals
the ROC must be of the form {z ∈ C : |z| > r, r < 1}, that is, the z-transform has
to be convergent also for z = ∞.32

In addition to (2.39) and (2.40), the third physically justifiable categorization of
signals is through amplitude variation: the class of bounded signals is defined by

`∞(Z) = {x(n) : sup
n∈Z

|x(n)| < ∞}, (2.41)

and similarly, denoted by `∞(N), in the case of causal sequences. Stable and
finite-energy signals are clearly subsets of bounded signals, inducing the inclusion
`1 ⊂ `2 ⊂ `∞.

A system is said to be bounded-input-bounded-output stable (BIBO-stable) if any
bounded input produces a bounded output. For an LTI system, the BIBO-stability
is equivalent to `1-stability, which is seen by forming norm inequalities for the con-
volution sum, y(n) = h(n) ∗ x(n), and conversely by using the “worst case input”
x(n) = ±M , with arbitrary alternation of the sign of the bound M < ∞. That is,
input-output system descriptions using bounded sequences correspond to stable im-
pulse response representations. However, the `∞-spaces are mathematically poorly
equipped for the development of a general framework for signals and systems. Now
the point of this all is that a slight modification in the input-system-output setup
provides powerful means for the processing of signals and systems. Figure 2.5 dis-
plays the change in configuration, where the “input and output spaces” are limited
to finite-energy counterparts, and where the system descriptions are extended to the
broader class of finite-energy impulse responses.

In the following, the concept of a model for signals and systems is considered as
an apparent but profound change in configuration that is essential to further de-
velopments. Some models for LTI systems were briefly mentioned in the preceding
section. In particular, the FIR model (2.32) was extended to a special class of IIR
models (2.33), complemented with the general state-space model description (2.34).
Changing the perspective from representation to approximation of a system provides
a more general notion of modeling. Moreover, the modified setup allows for a unified
approach to the modeling of both signals and systems33. In the case of modeling a
system, the terms approximation and identification may be used to reflect the data
used in the parameter evaluation, that is, to distinguish between target response
approximation and input-output-data identification.

which will be conducted is Section 2.2.2.
31Attributes exponential or majorant can be added to the term stability, depending on the

knowledge on R(r1, r2), 0 ≤ r1 < 1 < r2 ≤ ∞, and these stricter bounds for stability introduce
subsets for `1(Z) or `1(N), respectively.

32All the time, it is presumed that one is dealing with the extended complex plane C ∪ {∞}.
33Any `2-signal can be interpreted as the (impulse) response of a finite-energy system.
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Figure 2.5: The conventional setup for BIBO-stable LTI systems (top) and a modi-
fied input-system-output configuration (bottom).

The FIR model provides an asymptotically accurate model for any causal and finite-
energy signal or LTI system h(n), that is,

h(n) = lim
N→∞

N∑

k=0

h(k)δ(n− k) or H(z) = lim
N→∞

N∑

k=0

h(k)z−k, (2.42)

where the equality refers to convergence in the `2-sense. This favorable property
of a model is due to the choice of model structure (basis functions) and the chosen
parametrization (weighting by the impulse response). However, the FIR model is
very restricted since the rate of convergence of the approximation is completely
governed by the impulse response sequence. The situation is very different for a
recursive model structure of the form (2.33), since in general

• there are no analytic or closed-form solutions for the parameters with respect
to a given system and a chosen optimization criterion34

• even if a good (locally optimal) solution (in some sense) is attained, it is not
necessarily unique (in terms of the parameters), and there are usually very
poor means to validate a particular solution with respect to other potential
(local or global) solutions

• and consequently, the chain of subsequent solutions as the model order (or

34The emphasis is on the linking words ’in general’: in the following Chapter the modeling setup
will be specified as an output-error formulation, for example, in contrast to an equation-error
configuration, which would provide an exception of the statement.
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number of parameters) is increased do not constitute a well-behaved evolution
for the solution35

However, in most practical applications there are strong reasons for presuming that
the system to be modeled is inherently recursive, which implies that an essential
portion of the system dynamics can be captured with a relatively low number of
“recursion parameters”. Moreover, since all observable responses are effectively
finite in duration, the categorization to FIR or IIR systems is mainly descriptive
and rarely the reason for choosing a particular model structure. A clearer view of
the modeling characteristics is attained by examining the intermediate signals that
are weighted by the parameters, denoted by x(n) and z(n) in formulas (2.32) and
(2.33), respectively. These modeling signals are in both cases produced by causal
and linear filtering36 from the input, but in a very different manner. The modeling or
tap-output signals of the FIR filter are simply delayed input samples, independent of
the parameters, whereas the tap-outputs of the recursive part of (2.33) are delayed
versions of the output sequence, and therefore highly dependent on the parameters
{ai}. In terms of the tap-output impulse responses, the FIR filter tap-response are
completely localized in time, in contrast to the tap-outputs of the recursive part
of (2.33), which are distributed over all future time-instants. The objective is to
formulate a general framework for linear-in-parameter modeling, where some of the
favorable properties of both model types are preserved, namely that the modeling
signals are independent of the parameters and yet flexible time-domain signals. In
general, the model of a signal or system is supposed to be of the form

ŷ(n) =
N∑

i=0

cixi(n), xi(n) = gi(n) ∗ x(n), (2.43)

where {xi(n)} are modeling signals produced by causal LTI filtering of some generat-
ing input signal x(n) with the partial model impulse responses {gi(n)}. The filtering
is presumed to be implemented using realizable digital LTI filtering, causing the tap-
outputs to have rational and finite-dimensional transfer functions Gi(z) = Z{gi(n)}.
The impulse response and transfer function of the model are

h(n) =
N∑

i=0

cigi(n) and H(z) =
N∑

i=0

ciGi(z), (2.44)

respectively, where the tap-output weights {ci} can always be integrated to the linear
filtering operations by denoting g′i(n) = cigi(n) and G′

i(z) = ciGi(z). Equation (2.43)
can be interpreted as a generalized or distributed convolution operation, whereas,
expressions (2.44) define generalizations to the unit impulse response decomposition
and to the z-transform representation, respectively.

35The modeling error, measured in some sense, is not necessarily decreasing for an increase in
model order (in contrast to the model (2.42)). In addition, subsequent sets of model parameters
are usually completely “disconnected”, which complicates the survey.

36Assuming time-invariant recursion parameters in the latter.
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2.1.6 Deterministic and stochastic signals

The ongoing assumption so far has been that the discrete-time signals and systems
are in principle characterized by an explicit, although usually unknown, mapping
n 7→ x(n). However, the classification of signals in (2.39)-(2.41) was based on a
much more abstract relation to the individual signal samples, that is, on a single real
number reflecting somehow the magnitude of the signal. This observation motivates
the following short reference to random or stochastic signals, which complements
the previous definition of deterministic discrete-time signals.

A discrete-time stochastic signal x(n) is defined as a complex random or stochastic
process defined at discrete and uniformly spaced instants n ∈ Z of time, where the
stochastic process is characterized by some probabilistic laws. More precisely, the
signal x(n) is a realization of a random process related to complex random variables
{X} with well-defined probability density functions37. The signal sample x(n) is
the value of a random variable X evaluated at time-instant n, denoted by X[n],
and in general a complete description of the signal x(n) would require that the joint
probability density function of an infinite collection of random variables {X[n]} to
be known. A stochastic signal is said to be stationary if its statistical properties are
invariant to shifts in time38. That is, a stationary signal x(n) reduces to a sample
sequence drawn from the probability distribution of a single complex variable.

Fortunately, in most cases a practical description of stationary stochastic discrete-
time systems and signals does not require any reference to the probability theory.
This is due to the fact that weaker stationarity conditions are sufficient for the de-
velopment of stochastic counterparts of the previous concepts. More precisely, sta-
tionarity is redefined as the time-invariance of the first and second order stochastic
moments, the mean and mean-square value, E[x(n)] and E[x2(n)], respectively39.
These moments have natural physical interpretations and they can be estimated
directly from realizations of stochastic processes, that is, without resorting to prob-
ability distributions. Once again, the key property is the linearity of the expectation
operator and its estimates. According to the linearity, every stationary signal x(n)
can be replaced by a more convenient zero mean signal x(n)−µx, which will be the
additional presumption hereafter. The zero mean assumption provides simplifica-
tions in terminology since mean-square and variance type of quantities coincide40.
An additional consequence of the stationarity is that the autocorrelation function

rxx(m) = E[x(n + m)x∗(n)], m ∈ Z (2.45)

is a function of the time lag m alone, that is, independent of the time variable.
The time-invariance of the mean and autocorrelation characterize weakly stationary

37Meaning that the stochastic moments, µr = E[Xr] =
∫∞
−∞ αrpX(α)dα, r = 1, 2, . . ., are well-

defined with respect to the probability density pX(α). The expression E[·] is called the mean or
expected value of the argument.

38Since the random variable is completely characterized by the statistical moments, this is
equivalent to presuming that all the moments are time-invariant, that is, constants of the form
µr = µr(n) = E[(X[n])r] .

39That is, the mean and mean-square value of the process x(n) are defined through the associated
random variable X by E[x(n)] = E[X] and E[x2(n)] = E[X2], respectively.

40Otherwise a distinction between correlation and covariance terms should be made.
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signals as the relevant subclass of stationary signals. Furthermore, the set of wide-
sense stationary (WSS) signals is defined by an additional condition of finite mean-
square value, E[x2(n)] = rxx(0) < ∞. The set of WSS signals is denoted suggestively
as `2(Z). The cross-correlation of two WSS signals, x(n) and y(n), is defined by

rxy(m) = E[x(n + m)y∗(n)], m ∈ Z. (2.46)

The cross-correlation function resembles the convolution operation, which is even
more evident for the deterministic counterpart of (2.46),41

rxy(m) =
∞∑

n=−∞
x(n + m)y∗(n), m ∈ Z. (2.47)

Comparing expressions (2.23) and (2.47), yields rxy(m) = x(m) ∗ y∗(−m). An-
other property adopted from the deterministic representation is that the correla-
tion sequences of WSS signals are absolutely summable. This observation provides
frequency-domain representations for WSS signals and systems as the DTFT or
z-transform of the corresponding correlation sequences. Two principal results are
needed for the modeling concept of WSS signals. In the first place, the output of
a stable LTI system to a WSS input signal is a WSS signal. In addition, the zero
mean property of the input signal transforms to the output signal as well. Secondly,
any WSS signal can be represented as the output of a causal LTI system42. Using
definitions and properties of the convolution sum and the correlation terms, the
cross-correlation of the input and output signals, x(n) and y(n), related to an LTI
system defined by its impulse response h(n), is given by

ryx(n) = h(n) ∗ rxx(n). (2.48)

The DTDF of (2.48) is simply Syx(ω) = H(ω)Sxx(ω), which provides the cross-
spectral density Syx(ω) as a product of the frequency response H(ω) and the power
spectral density Sxx(ω).43 Similarly, the autocorrelation of the output, ryy(n) =
y(n) ∗ y∗(−n), can be expressed by

ryy(n) = rhh(n) ∗ rxx(n) (2.49)

due to the commutativity of the convolution operation. The DTFT of (2.49) is
Syy(ω) = Shh(ω)Sxx(ω), but the associated filtering operation requires some elab-
oration. If the transfer function of the causal LTI filter impulse response h(n) is
denoted by H(z), then the relation rhh(n) = h(n) ∗ h∗(−n) and some manipulation
on the corresponding z-transform provides

Shh(ω) = H(z)H∗(1/z∗)|z=ejω = |H(ω)|2. (2.50)

The transfer function H∗(1/z∗) is associated to the anti-causal part h∗(−n) and the
equality Syy(ω) = |H(ω)|2Sxx(ω) states that when a WSS signal x(n) with power

41The “averaging” of the form limN→∞( 1
2N+1

∑N
−N (·)) is omitted for notational reasons. It also

anticipates that the expectation and summation operators will be related without a normalizing
term.

42This is a vague version of the Wold decomposition principle.
43The (DTFT) relation between correlation terms and corresponding spectral densities is known

as the Einstein-Wiener-Khintchine relation.
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spectral density Sxx(ω) is transmitted trough a causal LTI system, the power spectral
density of the output equals Sxx(ω) weighted with the square magnitude response of
the filter44. Above equations, starting from (2.48), provide different input-system-
output identification setups depending on the available statistical data. These rela-
tions apply also to the partitioned model of the form (2.43) and (2.44), where the
system is replaced with the partial model impulse responses, providing the required
generalizations to the linear-in-parameter modeling of signals and systems in the
stochastic framework. The model is however always considered to be deterministic,
although possibly unknown, even if the partial model responses are embedded in a
stochastic representation along with the input signal description.

A zero-mean WSS signal with constant power spectral density is referred to as white
noise. The autocorrelation sequence, attained as the IDTFT, is thus necessarily an
impulse sequence, which implies that the white noise signal samples are, by defini-
tion, uncorrelated with each other45. White noise that is normalized to Sxx(ω) = 1
is the stochastic counterpart of the unit impulse sequence46. For a white noise in-
put x(n), the power spectral density of the output of a system H(z) is of the form
Syy(ω) = |H(ω)|2σ2

x, where σ2
x is the variance of the white noise input signal. Now

presuming that H(z) is a (causal, stable and) finite-dimensional LTI system, rep-
resentable by a reduced form rational transfer function H(z) = B(z)/A(z), three
categorizations of the output can be made depending on the polynomials B(z) and
A(z). The output is said to be a moving average (MA) process if A(z) is a constant
and B(z) a non-constant polynomial, implying that the output is solely dependent
on the present and past input values. The process is autoregressive (AR) if it is
purely a function of the present input and past output samples, corresponding to
a constant B(z) and non-constant A(z). The process is said to be autoregressive
moving average (ARMA) for non-constant A(z) and B(z). The terms all-pole, all-
zero and pole-zero are used, respectively, to describe the system that generates the
process. More generally, any WSS signal x(n) with a given power spectral density
Sxx(ω) = |H(ω)|2σ2

w can be produced as the output of a causal LTI filter H(z) to a
white noise input signal w(n). Conversely, the WSS signal x(n) with power spectral
density Sxx(ω) may be whitened by passing x(n) through a causal LTI filter 1/H(z).
The signal w(n) is called the innovation process related to H(z) and x(n).

2.2 Function space descriptions of signals and sys-

tems

Function spaces are generalizations of point spaces, such as the set of complex num-
bers C, where the points of the space are functions defined in a common domain

44Usually it is presumed that the impulse response is real valued, but with these definitions it
seems unnecessary.

45This reasoning makes the usual attribute ’uncorrelated’ redundant in the definition of white
noise

46In the case of (zero-mean) white noise, the constant value of the power spectral density,
Sxx(ω) = σ2

x, equals the mean-square value or variance of the signal, that is, the energy of the
signal.
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and range. All function spaces considered in the following are at the least vector
spaces ; the functions are all complex valued and the point-wise arithmetic operations
defining addition and multiplication rely on the vector space properties of C. The
construction of a vector space provides means for the study of linearly independent
members, which is the most important concept in modeling signals and systems.
Furthermore, all relevant spaces are normed vector spaces, enabling the measure-
ment of distance between terms. An additional property of completeness associated
to the norm ensures that the inspection of convergence is well-posed.

Function space descriptions enable mappings between classes of functions, functions
of functions, or less annoyingly functionals. Transformations and operators are
special cases of functionals, where the former is usually associated to invertible one-
to-one mappings between function spaces and where the latter categorizes mappings
within function spaces, such as projection and shift operations. Previous definitions
for transformations are sufficient for the purpose of representing signals and systems,
but transformations may also be used to transport general properties deduced for a
class of functions into another function space, which calls for some specification of
the involved classes of functions.

2.2.1 Banach spaces of Lebesgue integrable functions

A norm on a real or complex vector space X is a non-negative real-valued function,
‖ · ‖ : X → R, subject to certain conditions. Equipped with a specified norm, X
is a normed linear space, where the supplement ‘linear’ is a reflection of the joint
properties of X and ‖·‖. Any such norm induces a natural metric, d(x, y) = ‖x−y‖,
a measure of distance of two points x, y ∈ X. A normed linear space X is called
a Banach space, if X is complete with respect to the natural metric. Completeness
then means that convergence of a sequence of points {xn} implies convergence to a
point x ∈ X, limn,m→∞‖xn − xm‖ = 0 ⇒ limn→∞‖xn − x‖ = 0, or for a stricter
definition of convergence that any Cauchy sequence converges47.

The previously defined “signal spaces” `1, `2 and `∞ are special cases of the general
class of Banach spaces `p = {x(n) : ‖x(n)‖p < ∞}, when equipped with norms

‖x‖p =

(∑
n∈I

|x(n)|p
)1/p

, 1 ≤ p < ∞, ‖x‖∞ = sup
n∈I

|x(n)|, (2.51)

where I is the preferred subset of Z. More generally, the p-norm of a complex-
valued function, f : X → C, is based on the integrability of the quantity |f |p with
respect to some measure µ on X. In `p-spaces µ is the counting measure on Z,
and fortunately, also the other measure that is needed here, namely the Lebesgue
measure on R, has a sufficiently well-known interpretation without further discussion

47A sequence is a Cauchy sequence, if to every ε > 0, there is an integer N , such that ‖xn−xm‖ <
ε as soon as n,m > N . For sequences in R or C, this Cauchy criterion is usually the definition of
convergence, which embeds the fact that R and C are complete with respect to the absolute value
norm.
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on measurability48. The general class of Lebesgue integrable functions with respect
to some measure µ on X is denoted by LX(µ). Here the set over which the integrals
are evaluated is the unit circle T = {z ∈ C : |z| = 1} and the freedom of choice
among many different suitable parametrizations of this set is emphasized by the
simplified notation L(T). Analogously to 2.51, the class of complex-valued functions
f on T such that |f |p ∈ L(T) and the Lp-norm

‖f‖p =

(
1

2π

∫ 2π

0

|f(ejθ)|pdθ

)1/p

, 0 < p < ∞, ‖f‖∞ = sup
z∈T

|f(z)| (2.52)

is finite, is denoted by Lp(T). For any fixed p, 0 < p ≤ ∞, Lp(T) is a complex vector
space and the integral operator f 7→ ∫

fdµ is a linear functional on Lp(T), but (2.52)
as such is not even a norm. The space Lp(T) is enforced to be complete in the natural
metric by replacing point-wise equality of members in Lp(T) by equivalence classes
of functions that coincide almost everywhere (with respect to the measure). The
vectors in Lp(T) are still treated as functions, but the uniqueness is regarded with
respect to the metric: f ∼ g if and only if d(f, g) = 0. Defined in this manner,
Lp(T) is a Banach space for any fixed p, 1 ≤ p ≤ ∞.

Measurability was the underlying assumption in defining Lp-functions. More familiar
regularity properties of functions are given in terms of continuity or differentiability.
The class of continuous complex-valued functions on T is denoted by C(T) and
it is a dense subset of Lp(T), that is, functions in Lp(T) can be arbitrarily well
approximated by functions in C(T) with respect to the Lp-norm. The Lp-norms
define metrics in C(T), even in the strict point-wise sense, but actually only the
L∞-norm makes C(T) a Banach space.

The reason why Banach spaces are emphasized here is that the theory of functionals
on Banach spaces is the foundation of all transformations in Section 2.1, and for
some to come. For an abstract Banach space X, the class of all continuous linear
functionals on X is also a Banach space, the dual or conjugate space X∗, defined
by a specific norm. For example, the dual space of Lp(T), 1 ≤ p < ∞, is Lq(T)
with q = p/(p − 1), and every continuous linear functional on Lp(T) is of the form
f 7→ ∫

fgdµ, where g ∈ Lq(T).

2.2.2 Analytic functions and Hardy spaces

In Section 2.1.5, the z-transform (2.4) of a causal and stable signal or system was
found to be absolutely convergent in the complement of the open unit disk Ē =
{z ∈ C : |z| ≥ 1}. The z-transform of an `1(N)-sequence is thus continuous in Ē,
but more importantly, it is analytic or differentiable with respect to the complex
variable in the region E = {z ∈ C : |z| > 1}, denoted by H(E).49 Actually an

48There are several strategies in defining measures on sets and spaces, and corresponding integrals
of complex-valued functions [Hoffman, 1962] [Rudin, 1987].

49The function class H(E) is clearly a vector space, but it is also an algebraic ring, that is, closed
with respect to addition and multiplication operations. Moreover, any superposition of functions,
h = g ◦ f , where f ∈ H(E), f(E) ⊂ Ω and g ∈ H(Ω) for some region Ω ⊂ C, is again in H(E).
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alternative definition for functions in H(E) is that they are all of the form

f(z) =
∞∑
i=0

ciz
−i,

∞∑
i=0

|ci| < ∞. (2.53)

This is the Laurent series expansion in the “vicinity of z = ∞” and because of the ge-
ometry of E, this representation is unique50. Conversely, every continuous complex-
valued function on T, f ∈ C(T), has an unique analytic extension f ∈ H(E), and is
therefore representable by (2.53). The z-transform (2.4) and its inverse (2.6) define
an one-to-one mapping between `1(N) and C(Ē) ∩ H(E), but the boundary condi-
tions are too restrictive for the definition of a desired normed subspace of functions
in H(E).51

The boundary function of an H(E)-function is defined as the radial limit f(ejθ) =
limr→1+ f(rejθ(r)), where the convergence is with respect to any non-tangential (to T)
path z = reiθ(r) → eiθ. If the radial limits are bounded in the Lp-norm, 1 ≤ p ≤ ∞,
then they exist almost everywhere on T and define thus a function in Lp(T). The
function classes Hp(E) = Lp(T) ∩ H(E), 1 ≤ p ≤ ∞, are called Hardy spaces and
they constitute a sequence of nested Banach subspaces for H(E), when equipped
with the Lp-norm52. Alternatively, the Hardy space Hp(E), 1 ≤ p ≤ ∞, can be seen
as a subspace of Lp(T), the space of all f ∈ Lp(T) with analytic extensions in E.

The main reason why all this effort is made is that finally there is an explicit relation
between the Fourier transform and the z-transform. The (discrete-time)Fourier
transform pair

F (ejω) =
∞∑

k=−∞
f(k)e−jωk ←→ f(k) =

1

2π

∫ 2π

0

F (ejω)ejωkdω (2.54)

defines an one-to-one mapping between `2(Z) and L2(T), an isomorphism, which is
also an isometry, since ‖f‖ = ‖F‖ with respect to the corresponding metrics53. Now
the formal z-transform pair

F (z) =
∞∑

k=−∞
f(k)z−k ←→ f(k) =

1

2πj

∮

T
zkF (z)

dz

z
, (2.55)

50The derivative of f(z) is again of the form (2.53), and thus in H(E), which implies that
f (k)(z) ∈ H(E) for derivatives of all orders k = 0, 1, . . .. By comparing (2.53) and the power series
derived for f (k), the coefficients are explicitly given by ci = f (i)(∞)/i!. The Laurent series can
thus be seen as a generalized Taylor’s formula or as interpolation by polynomials, with respect to
z = ∞.

51Under the sup norm, C(Ē) ∩ H(E) (or using another denotation C(T) ∩ H(E)) is actually a
Banach space. In all above reasoning, “inverted” domains are used instead of the usual D and
D̄ = D∪T, which lean on the assumption that the complex plane is compactly extended. The class
of functions A = C(D̄) ∩H(D) is called the disk algebra.

52For 1 < p < s < ∞, H∞ ⊂ Hs ⊂ Hp ⊂ H1, and actually the chain can be extended to
N = H0 by a specified L0-norm (N is for Nevanlinna). For 0 ≤ p < 1, Hp is a vector space that is
however no longer normed.

53It is easy to prove that the sequence of Fourier coefficients of any F ∈ L2(T) is square-
summable. The fact that every sequence in `2(Z) is a sequence of Fourier coefficients for some
F ∈ L2(T) is known as the Riesz-Fischer-Theorem.
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can be seen as a generalization of (2.54), although it has very little meaning as such.
Earlier, the space Hp(E) was regarded as a subspace of Lp(T) by associating an
unique analytic extension to the corresponding Lp(T)-functions. For 1 < p ≤ ∞,
this subset of Lp(T) is completely characterized by the property that the negative
Fourier moments vanish, that is,

∫ 2π

0

F (ejω)ejωkdω = 0, k = −1,−2, . . . . (2.56)

In particular, this applies to p = 2 and the Fourier transform relationship (2.54) on
the boundary combined to condition (2.56) makes (2.55) a well-defined invertible
transformation between `2(N) and H2(E) = L2(T) ∩H(E).

Some remarks The analysis part of (2.54) that produces the Fourier coefficients
is well-defined for any F ∈ Lp(T), 1 ≤ p ≤ ∞, but the validity of the synthesis part,
the convergence of Fourier series in the corresponding norm, is guaranteed only in the
case p = 2.54 The spaces `2(N), `2(Z), L2(T) and H2(E) are all examples of Hilbert
spaces, which will be the topic of the next Section. The reason why more general
cases than just the two-norm spaces are dragged along is that many properties that
really “click” only in a Hilbert space, are still useful in more general spaces. For
example, the trigonometric system that generates Fourier transforms is complete
in many Banach spaces, although it is no longer a (Fourier) base. This result has
recently been generalized to the case of rational orthonormal bases in Lp(T) for
1 < p < ∞ [Akçay, 2000].

2.3 The Hilbert space

The Hilbert space is a construction that generalizes many properties of finite-
dimensional Euclidean spaces to infinite-dimensional function spaces. The dimension
of a space is the cardinality of a somehow defined basis set of the space. A basis set,
a base, should at the least be able to represent any member of the space, that is, to
span the space. The properties of a vector space enable the inspection of linearly
independent members. A finite set of linearly independent vectors, {e1, . . . , eN},
span a subspace of a vector space V , S = span{e1, . . . , eN} ⊂ V . Every element
x ∈ S has a unique representation x =

∑N
i=1 ciei. A set of less than N elements can

not span S and a set of more than N elements is inevitably linearly dependent. The
uniqueness of the coordinate representation, {c1, . . . , cN}, and the linear indepen-
dency of the basis vectors, {e1, . . . , eN}, are equivalent properties. In the following,
the potential usefulness of the concept of a base is considered in the case of some
infinite-dimensional spaces.

54There are ways to reproduce a function F ∈ Lp(T ), 1 ≤ p ≤ ∞, from its Fourier coefficients
by replacing the Fourier series with arithmetic means of its partial sums [Hoffman, 1962]
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2.3.1 Bases of spaces

In an infinite-dimensional Banach space B, a countably infinite set {ei}∞i=0 is a
Schauder basis, if for every x ∈ B, there is a unique series

∑∞
i=1 ciei such that

lim
N→∞

∥∥∥∥∥x−
N∑

i=0

cixi

∥∥∥∥∥ = 0. (2.57)

Then the relation is formally written as x =
∑∞

i=1 ciei, where the equality is to
be interpreted in the sense of the Banach space norm. The linear independency of
{ei}∞i=0 was not presumed, but it is a necessary condition for the representation to
be unique. If a Banach space has a Schauder base, it is necessarily separable, that is,
contains a countably infinite dense set55. However, all Banach spaces do not have a
Schauder base, and consequently, they may or may not be separable, in contrast to
Hilbert spaces that are always (essentially) separable and spanned by an infinitely
countable orthonormal set.

Maybe the most familiar Hilbert spaces are the Cartesian product spaces RN and
CN , where N is some positive integer. The inner product of two vectors x and y
is defined as the sum of component products, (x,y) = yHx, where the superscript
H denotes complex conjugate transpose. The unit vectors, ek = [0 · · · 1 · · · 0],
k = 1, . . . , N , where the kth element is 1, span the spaces RN and CN , respectively.
This base is orthonormal, since (ei, ej) = 0, if i 6= j, and (ei, ei) = 1, which provides

a unique representation x =
∑N

i=1 xiei, where the projection of x onto the basis
vector ek is given by xk = (x, ek), and it is the kth component or coordinate of
x. What actually qualifies RN and CN as Hilbert spaces is that they are complete
with respect to a special norm induced by the inner product, a norm given by
‖x‖ = (x,x)1/2. The square-norm of x is then the sum of squares of the components,
‖x‖2 = (x,x) =

∑N
i=1 x2

i , as is known for real Euclidean spaces.

2.3.2 Basic concepts of the Hilbert space theory

A complex vector space H is an inner product space, if there is a function (·, ·) :
H ×H → C that assigns to each ordered pair of vectors in H a scalar, with certain
symmetry and linearity properties56. One consequence of these properties is that
the relation ‖x‖ = (x, x)1/2 defines a norm in H. A by-product in proving that ‖x‖
actually is a norm, is the Schwartz inequality

|(x, y)| ≤ ‖x‖‖y‖ (or |(x, y)|2 ≤ (x, x)(y, y)). (2.58)

55In terms of the norm, a set A is dense in B, if any point in B is arbitrarily close to a point in
A. If B is a topological space (as it here always is), then the closure Ā = B. A weaker topological
definition for a base {ei}∞i=0 ∈ B is that the set of all finite linear combinations of the basis vectors,
denoted by S, is dense in B, S̄ = B. With this definition, there is generally not a representation
of the form (2.57).

56Namely, for x, y, z ∈ H and λ ∈ C, (i) (x + y, z) = (x, z) + (y, z), (ii) (λx, y) = λ(x, y), (iii)
(y, x) = (x, y)∗, (iv) (x, x) ≥ 0, and (v) (x, x) = 0, only if x = 0. Conditions (i) and (ii) say that
the mapping x 7→ (x, y) is a linear functional for any fixed y ∈ H. The exchange rule (iii) provides
axioms for the latter component in the inner product.

29



For real inner product spaces, the Schwartz inequality ensures that the inverse co-
sine of (x, y)/(‖x‖‖y‖) is a valid measure for the angle between x and y.57 Inner
product spaces are also metric with respect to the natural metric d(x, y) = ‖x− y‖,
the distance between x and y. These properties can be seen to some extent as
generalizations of geometrical concepts of Euclidean spaces58.

The Hilbert space is an inner product space that is complete in the norm ‖x‖ =
(x, x)1/2. Thus, the Hilbert space is a Banach space in which the norm is
induced by an inner product59.

Hereafter, the symbol H will denote a generic Hilbert space. Orthogonality is the
most important concept of a Hilbert space. One implication of the definition of the
inner product is that (0, y) = 0 for all y ∈ H, that is, the vector x = 0 is orthogonal
to every vector in H.

Orthogonality and orthonormality Two vectors x and y in H are orthogonal if
and only if (x, y) = 0. The orthogonality of x and y is denoted by x ⊥ y.
If S is a subset of H, then S⊥ = {x ∈ H : (x, y) = 0 for all y ∈ S} is the
orthogonal complement of S, the set of all x ∈ H that are orthonormal to
each vector in S. A vector x ∈ H is normal, if ‖x‖ = (x, x)1/2 = 1. A subset
of H is orthonormal, if all its vectors are normal and mutually orthogonal.
An infinitely countably subset {xi}∞i=0 is orthonormal, if (xi, xj) = 0 whenever
i 6= j, and (xi, xi) = 1 for all i = 0, 1, . . ..

An orthonormal set is linearly independent60. More importantly, any finite collection
of vectors of an orthonormal set in H spans a subspace S that is closed, that is,
a Hilbert subspace of H.61 Any linearly independent spanning set, or base, of S
is attained by a linear invertible transformation from the finite orthonormal set.
Furthermore, all orthonormal bases of S are related through an unitary (linear)
transformation62. An ordered infinitely countable set of orthonormal vectors {ei}∞i=0

57The concept of an angle is not very useful in more general inner product spaces, except for the
spacial case (x, y) = 0.

58Additionally, any norm that is induced by an inner product satisfies the parallelogram law

‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2), (2.59)

and conversely, any such norm originates from an inner product.
59Actually, the completeness was defined with respect to the metric, but the condition (v) of the

inner product ensures that the norm induces a metric.
60A subset of a vector space is linearly independent, if no finite linear combination of its vectors

is the null vector, that is, a finite weighted sum vanishes,
∑

i cixi = 0, only if ci = 0 for all i.
61The linear independency of an orthonormal set is easily established. Let S be the span of any

finite collection of orthonormal vectors {ei}. Then S is a subspace, and thus contains the null
vector, and there is only one linear combination such that

∑
i ciei = 0. The coefficients are given

by ci = (0, ei), which is zero for all i.
62Two bases of S, {ei} and {fi}, are related by e = Lf , where L is an invertible fixed matrix

operator. The transformation is unitary, if LHL = I, where I is the corresponding unit matrix,
that is, if L−1 = LH . The term unitary refers to the property that the operator norm of L is one.
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in H defines a chain of nested subspaces, H1 ⊂ . . . ⊂ HN ⊂ HN+1 ⊂ . . . ⊂ H. A
natural question is then whether or not H is attained as a limiting process for HN .
Before addressing these existence and completeness issues, some general properties
of the subspaces are stated, as well as, more practical results concerning the interplay
between linear independency and orthonormality.

The Projection Theorem If S is a closed subspace of H, then its orthogonal
complement S⊥ is also a closed subspace of H, and every f ∈ H has a unique
decomposition f = g + h, where g ∈ S and h ∈ S⊥. The space H is a direct
sum, H = S⊕S⊥, of its orthogonal components. The distance between f ∈ H
and the subspace S, infg∈S ‖f − g‖, attains its minimum for some g ∈ S, and
f − g ⊥ S is a sufficient and necessary condition for the determination of the
unique element g ∈ S.

In other words, g is the best approximation of f ∈ H by an element in the subspace
S, with respect to the Hilbert space norm. The approximation error f −g is orthog-
onal to S, an element of S⊥, which can be used to determine g. The name of the
Theorem is due to the geometrical interpretation that the decomposition defines a
projection operation P , such that Pf = g and (1 − P )f = f − g ∈ S⊥. The next
results shows how the approximation is attained, if the subspace is spanned by a
finite set of vectors.

Normal equations Let {ei}N
i=1 be any finite linearly independent set of vectors in

H. Then {ei}N
i=1 spans a (closed) subspace of H, denoted by HN , and the

coefficients of the best approximation x̂ =
∑N

i=1 ciei ∈ HN that minimizes
‖x− x̂‖ for any x ∈ H are attained uniquely, since according to the Projection
Theorem, x− x̂ ⊥ HN , so that

(x− x̂, ej) = 0, for all j = 1, . . . , N, (2.60)

and due to the linearity of the inner product, (2.60) is equivalent to

N∑
i=1

ci(ei, ej) = (x, ej), for all j = 1, . . . , N. (2.61)

The system of equations (2.61) is called the normal equations. If in addition,
the set {ei}N

i=1 is orthonormal, then (2.61) reduces to cj = (x, ej), j = 1, . . . , N .

The term closed is actually redundant in the case of finite-dimensional subspaces,
since they are always closed. However, in the Projection Theorem finiteness was
not required and it is essential that the orthogonal components are closed. In par-
ticular, for a countably infinite set of linearly independent vectors {ei}∞i=0, the term
closed span should be used to generalize definitions of algebraic finite bases to in-
finite dimensions. The closed span of {ei}, denoted by [{ei}], is used to include
limiting processes for sequences of vectors63. The closed span of any set of linearly

63This can be seen as a way to generalize the algebraic closure with respect to the vector space
operations by enlarging the subspace to the smallest closed set that contains the spanning set.
The notion of closure is a topological concept induced by the metric that enables the inspection of
convergence.
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independent vectors is a closed subspace of H, but not even the orthonormality
of the set {ei}∞i=0 guarantees that [{ei}] is all of H, that is, the set {ei}∞i=0 is not
necessarily complete in H. The completeness of a spanning set is closely related to
the usefulness of generalized Fourier series.

Fourier series Let {ei}∞i=0 be any countably infinite orthonormal set in H. The
series

∑∞
i=0 ciei converges (in the norm) to an element x ∈ H if and only if∑∞

i=0 |ci|2 < ∞ (that is, (ci)
∞
i=0 ∈ `2(N)). Then necessarily ci = (x, ei) for all

i = 0, 1, . . ., and ‖x‖ = ‖∑∞
i=0 ciei‖ = (

∑∞
i=0 |ci|2)1/2. The complex numbers

ci = (x, ei), i = 0, 1, . . ., are the Fourier coefficients and
∑∞

i=0(x, ei)ei is the
Fourier series of x with respect to the orthonormal set {ei}∞i=0, respectively.

• The Fourier series is always convergent, since for all x ∈ H,

∞∑
i=0

|(x, ei)|2 ≤ ‖x‖2 (Bessel′s inequality). (2.62)

• The Fourier coefficients provide the best fit with respect to the norm,

‖x−
m∑

i=0

(x, ei)ei‖ ≤ ‖x−
m∑

i=0

aiei‖, (2.63)

for all x ∈ H, any coefficients ai ∈ C, and arbitrary choice of approxima-
tion order m > 0.

The Fourier series for any x ∈ H is convergent, according to (2.62), but nothing guar-
antees that it converges to x. The property that it does, that is, x =

∑∞
i=0(x, ei)ei

for all x ∈ H, is one possible definition for the completeness of {ei}. However,
a clearer connection to previous results is achieved by considering the closed span
[{ei}]. Now if in the Projection Theorem, the space H has a trivial decomposition

[{ei}] = H and [{ei}]⊥ = 0, then the property (2.63) ensures that every x ∈ [{ei}]
has an unique series representation x =

∑∞
i=0(x, ei)ei.

64

Complete Orthonormal Bases An orthonormal countably infinite set {ei}∞i=0 in
H is complete, or a base, if and only if any of the following equivalent condi-
tions apply,

(i) x =
∑∞

i=0(x, ei)ei for all x ∈ H

(ii) [{ei}]⊥ = 0

(iii) [{ei}] = H

(iv) ‖x‖2 =
∑∞

i=0 |(x, ei)|2 for all x ∈ H (Parseval’s equation65)

64By definition, if x ∈ [{ei}], then for every ε > 0, there are some m > 0, aj ∈ C and ej ∈ {ei},
such that ‖x−∑m

i=0 ajej‖ < ε. Due to (2.63), this is particularly true for the Fourier series, and
the limiting process m →∞ gives the desired convergence result.

65Actually, if the Parseval’s equation holds, then it has also the generalized form
[Akhiezer and Glazman, 1981], (x, y) =

∑∞
i=0(x, ei)(ei, y) for all x, y ∈ H
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(v) lim
N→∞

ξN = 0, ξN = ‖
∞∑

i=N+1

(x, ei)ei‖2 =
∞∑

i=N+1

|(x, ei)|2, for all x ∈ H

The equivalence of conditions (i) to (iv) is fairly obvious from the above reasoning.
Condition (v) is based on the observation that any partition of the Fourier series,

x =
n∑

i=0

(x, ei)ei +
∞∑

i=n+1

(x, ei)ei, (2.64)

is orthogonal in the sense that ‖x‖2 = ‖∑n
i=0(x, ei)ei‖2 + ξn.66 This will prove to

be a very useful result, not only for the verification of completeness, but also for the
evaluation of approximation errors.

Fortunately, there are some encouraging results about the existence of Hilbert space
bases. Every (separable) Hilbert space has a countably infinite orthonormal base
[Hutson and Pym, 1980]. The term separable is in parentheses because it is essen-
tially redundant67. Moreover, almost all relevant Hilbert spaces are separable and
this restriction lightens the survey [Milne, 1980]. Every orthonormal set in a Hilbert
space H is contained in a maximal orthonormal set [Rudin, 1987].68 Here, the term
maximal is used to generalize completeness to a possibly uncountable set. In a sep-
arable Hilbert space, an orthonormal set cannot be uncountable. In particular, any
base of a separable Hilbert space is countable69. Then in principle, any orthonormal
finite set can be extended to a base, or conversely, any countably infinite maximal
(or dense) set can be transformed into a base by eliminating redundant members.
If the latter procedure is applied on every step of the following Gram-Schmidt or-
thogonalization process, then it provides a direct proof of the existence of a base in
a separable Hilbert space70.

Gram-Schmidt Orthogonalization process Let {yi} be a linearly independent
set of vectors in H such that [{yi}] = H. To produce a complete orthonormal
set {xi}, begin with choosing the first basis vector as x1 = y1/‖y1‖. Form the
vector z2 = y2− (y2, x1)x1 and normalize it, x2 = z2/‖z2‖. The vectors x1 and
x2 are then by construction orthogonal,

(x2, x1) = (((y2 − (y2, x1)x1)/‖z2‖, x1)

= ((y2, x1)− (y2, x1)(x1, x1))/‖z2‖ = 0, (2.65)

66The Projection Theorem provides an orthogonal partition x = xn + en and a triangle equation
for the corresponding norms, ‖x‖2 = ‖xn‖2 + ‖en‖2. The rest is a simple consequence of the
orthonormality of the basis vectors.

67This means that the dimension of a Hilbert spaces, its cardinality, is at most countably infinite,
which is in great contrast to, for example, the situation in more general Banach spaces.

68This is a consequence of an incredible versatile theorem in mathematics, the Hausdorff maxi-
mality theorem, or in a slightly different form, the axiom of choice or Zorn’s lemma [Väisälä, 1983]
[Rudin, 1987].

69Actually, also for an uncountable orthonormal set {ei} in a (non-separable) Hilbert space H,
the set {ei : (x, ei) 6= 0}, x ∈ H, is at the most (infinitely) countable [Milne, 1980], a plausible
proof of the countably cardinality of any Hilbert space.

70If {yi} is separable (but not linearly independent), reject yn at iteration n ≥ 2, if yn and
{x1, . . . , xn−1} are not linearly independent.
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Figure 2.6: A geometrical interpretation of the Gram-Schmidt Orthogonalization
process: the Euclidian space R2 is spanned by any non-parallel (and non-zero) vector
pair {y1, y2} and the GS process provides an orthonormal base {x1, x2} by utilizing
scaling and projections, as depicted.

and they span the same subspace as {y1, y2}. To prove that

zn = yn −
n−1∑
i=1

(yn, xi)xi, xn = zn/‖zn‖, (2.66)

is a valid recursion formula for n > 2, presume that the set {x1, . . . , xn−1} is
orthonormal and evaluate the inner products

(zn, xk) = (yn, xk)−
n−1∑
i=1

(yn, xi)(xi, xk) = (yn, xk)− (yn, xk) = 0, (2.67)

for k ≤ n − 1. Vectors zn and xn are by definition parallel and therefore xn

is orthogonal to {x1, . . . , xn−1}. As before, {x1, . . . , xn} and {y1, . . . , yn} span
the same subspace of H, and thus (2.66) will produce an orthonormal set into
H that is in addition complete. A geometrical depiction of the first two steps
of the Gram-Schmidt Orthogonalization process is given in Figure 2.6.

The following concluding remarks of this Section characterize linear operators on
Hilbert spaces. For any fixed g ∈ H, the mapping g∗ : f 7→ (f, g), H → C, is a
continuous linear functional, denoted as g∗ ∈ L(H,C).71 More importantly, every
element of the dual space H∗ = L(H,C) has the form of an inner product, that is,
there is an unique vector g ∈ H, such that

g∗(f) = (f, g), for all f ∈ H, and ‖g∗‖ = ‖g‖. (2.68)

This is the Riesz Representation Theorem and it provides an one-to-one isometric
mapping between H and H∗, that is, an isomorphism. A Hilbert space is thus self-
dual, the dual is the space itself, and the isomorphism is actually a homomorphism,

71As it was stated earlier, the set of continuous (or bounded) linear functionals, L(B,C), on a
Banach space B is itself a Banach space, B∗ = L(B,C), the dual of B.
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which simplifies the notion of linear operators on a Hilbert space. The set of bounded
(or continuous) linear operators, L : H∗ → H∗, is denoted plainly by L(H) and the
adjoint operator L∗ of L is defined through the inner product relation (Lf, g) =
(f, L∗g), f, g ∈ H, and consequently L∗ ∈ L(H).72 An operator L ∈ L(H) is
self-adjoint, if L∗ = L.

Another useful result on operators is that in every complex Hilbert space H that
originates from a measure µ, H = L2(dµ), the inner product is of the form

(f, g) =

∫
fg∗dµ, for all f, g ∈ H. (2.69)

In the following Section, formula (2.69) is used to produce explicit representations for
inner products in various Hilbert spaces by different interpretations of the measure
and integration.

2.3.3 Hilbert spaces for signals and systems

According to (2.69) and the corresponding counting measure, the inner product of
`2(N), the space of causal and finite-energy signals, is defined by

(x, y) =
∞∑

n=0

x(n)y∗(n), x, y ∈ `2(N). (2.70)

The series on the right side of (2.70) converges, because the product sequence
x(n)y∗(n) is in `1(N), which is seen by the Schwartz inequality (2.58). The space
`2(Z) is also a Hilbert space, with an obvious extension of (2.70) to the anti-causal
part, but the space `2(N) is in a special position since all (separable) Hilbert spaces
are isomorphic to `2(N) through some Fourier series representation.

The inner product for the stochastic counterpart of `2(N) is defined by

(x, y) = E[x(k)y∗(k)], x, y ∈ `2(N), (2.71)

where E[·] is the statistical expectation of the stochastic sequence x(n)y∗(n) ∈
`1(N). The validity of (2.71) is guaranteed by the linearity of E[·], combined to the
properties of (zero-mean) wide-sense stationary signals. In particular, comparing to
(2.45) and (2.46), the inner product is given by the cross-correlation, (x, y) = rxy(0),
and the square-norm of x ∈ `2(N), the inner product (x, x), is equal to the mean-
square value, ‖x‖2 = E[x2(n)] = rxx(0). Equipped with a proper definition for the
expectation, `2(S) is a Hilbert space for any choice of time-axis S ⊂ Z.

Bearing in mind how functions in H2(E) were identified in Section 2.2.2, the inner
product (F, G), F,G ∈ H2(E), is given by

(F,G) =
1

2πj

∮

T
F (z)G∗(1/z∗)

dz

z
=

1

2π

∫ 2π

0

F (ejω)G∗(ejω)dω. (2.72)

72In a Banach space B, the adjoint L∗ of L ∈ L(B,C) is formally defined by an “outer product”
relation < Lf, g >=< f, L∗g >, f ∈ B and g ∈ B∗, where < ·, · > share at least some of the
properties of (·, ·).
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The same formula applies to the Hilbert space L2(T) and the validity of (2.72) is
ensured in both cases by the fact that the product FG∗ is in L1(T). That (2.72)
really is a proper inner product inducing the Hilbert space H2(E), can be proven
directly or by utilizing the isomorphism between `2(N) and H2(E) given by the z-
transform (2.4).73 For the subclass of rational functions in H2(E), the integral in
(2.72) can always (at least in principle) be evaluated by a formula provided by the
Cauchy’s Residue Theorem.

The stochastic interpretation of (2.72) is easily attained using the isomorphism
(F, G) = (f, g), for f and g in `2(N) of WSS signals, and by applying the IDTFT
(2.8) on the relation (f, g) = rfg(0),

(F, G) =
1

2πj

∮

T
Sfg(z)

dz

z
=

1

2π

∫ 2π

0

S̃fg(ω)dω, (2.76)

where S̃fg(ω) = Sfg(e
jω) is the cross-spectral density of f and g.

The notion of modeling, introduced in Section 2.1.5, requires some additional def-
initions for the involved inner products. The modeling signals xi(n) and xj(n) are
supposed to be the product of causal LTI filtering of some generating input signals
x(n) and y(n) with partial model impulse responses gi(n) and gj(n), respectively.
What is still needed is the formulas for the quantities (xi, xj) and (Xi, Xj) in terms
of any mixture of time- or frequency-domain representation of the partial models
and (two) distinct model excitations. The partial models are always presumed to
be deterministic, but the input signals, and consequently the model outputs, are
either stochastic or deterministic. The point is that all the ingredients or the in-
ner products are either in `2(N) or in H2(E). For example the inner product of

73If F (z) =
∑

f(n)z−n and G(z) =
∑

g(n)z−n, then G∗(1/z∗) = (
∑

g(n)(1/z∗)−n)∗ =∑
g∗(n)zn, and a formal calculation provides

(f, g) =
∑

f(n)g∗(n) =
∑ (

1
2πj

∮
F (z)zn dz

z

)
g∗(n) (2.73)

=
1

2πj

∮
F (z)

(∑
g∗(n)zn

) dz

z
=

1
2πj

∮
F (z)G∗(1/z∗)

dz

z
, (2.74)

and since the z-transform is an isomorphism, (F,G) = (f, g). Equation (2.72) can also be seen as
a consequence of the z-transform property

h(n) = f(n)g∗(n) ←→ H(z) =
1

2πj

∮
F (w)G∗(z∗/w∗)

dw

w
, (2.75)

which is attained in a similar way as (2.73), and it is the (conjugate-antisymmetric) counterpart
of the fact that convolution in the time-domain, f(n) ∗ g(n), transforms into a product, F (z)G(z),
in the z-domain. The inner product (2.70) is the z-transform of x(n)y∗(n) evaluated at z = 1,
and equally, (F, G) = H(1) by comparing (2.73) and (2.72). The reasoning will become even
more confusing, if it is continued utilizing the (deterministic correlation) relation rfg(m) = f(m) ∗
g∗(−m), (f, g) = rfg(0).
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Xi(z) = Gi(z)X(z) and Xj(z) = Gj(z)Y (z) is easily deduced from (2.72) as74

(Xi, Xj) = (GiX,GjY ) =
1

2πj

∮

T
Gi(z)X(z)G∗

j(1/z
∗)Y ∗(1/z∗)

dz

z
(2.77)

=
1

2π

∫ 2π

0

Gi(e
jω)X(ejω)G∗

j(e
jω)Y ∗(ejω)dω. (2.78)

Rearranging and renaming of the arguments on the right hand side gives

(Xi, Xj) =
1

2πj

∮

T
Gi(z)G∗

j(1/z
∗)Sxy(z)

dz

z
(2.79)

=
1

2π

∫ 2π

0

Gi(e
jω)G∗

j(e
jω)Sxy(e

jω)dω, (2.80)

where the function Sxy(z) is alternatively an abbreviation for X(z)Y ∗(1/z∗) or the
z-transform of a deterministic or stochastic cross-correlation sequence rxy(m), the
cross-spectral density75. The right hand side of equation (2.79) is also the definition
for the time-domain inner product in terms of x, y, gi, gj ∈ `2(N), (xi, xj) = (gi(n) ∗
x(n), gj(n) ∗ y(n)), because in general there seems not to be any meaningful way
to expand the relations (2.70) or (2.71) directly in the time-domain76. However,
utilizing the inversion symmetry of the cross-spectral density, S∗xy(1/z

∗) = Syx(z),
it is easily deduced from (2.79) that

(Xi, Xj) = (GiSxy, Gj) or (Xi, Xj) = (Gi, GjSyx), (2.81)

which correspond to (xi, xj) = (gi ∗ rxy, gj) or (xi, xj) = (gi, gj ∗ ryx), respectively,
in the time-domain77. That is, the “filtered inner product” equals filtering with the
cross-correlation sequence of one or the other component in (gi, gj).

In the upcoming, there will occasionally be a need to express inner products of
vector valued signals and functions as a matrix valued inner product. Basically
it is just a matter of partitioning the inner product into element-wise operations,
but it still has to be specified how to combine the elements and where to map the
product. In some cases the denotation (x,y) could be used as an abbreviation
for [(x1, y1) · · · (xN , yN)]T , that is, to implement a component-by-component inner
product, where x and y are N -dimensional vectors. Here however, all inner products
of the elements of the participating vectors are needed; the inner product of two vec-
tors x and y, with respective dimensions N and M , is defined by (x,y) = [(xi, yj)]ij,
i = 1, . . . , N and j = 1, . . . , M , and it is a N ×M matrix containing all inner prod-
ucts between the elements of the vectors78. This definition is consistent with basic

74In this reasoning it is temporarily presumed that also stochastic signals have z-transforms,
which is certainly not true, but according to the isomorphisms between all the spaces it is allowed
to imagine generic z-transform representations that are however not known, tractable or calculable.

75Equation (2.79) is also produced by expanding the convolutions, some rearranging, and by
applying the z-transform property (2.75) of product sequences.

76Something like (xi, xj) = (gi, gj)rxy(0) works in special cases, but not in general.
77Equations (2.72) and (2.76) can be seen as special cases of (2.79), produced by the choices

Sxy(z) = 1 and Gi(z) = Gj(z) = 1, respectively.
78This definition can be seen as an “outer product” – for vectors x,y ∈ CN , the inner product

was established as (x,y) = yHx and xyH is the corresponding “outer product”, and notations like
(x,yT ) are sometimes used to indicate that the inner product spans a matrix.
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vector-matrix calculus rules, for example, in incorporating scalar and (appropriate)
matrix multiplications into the expressions. In the case that one of the parties is a
scalar, the expressions (x, y) and (x,y) produce a column and a row vector, respec-
tively, and the diagonal diag(x,y) is precisely the component-wise inner product
of x and y. Most of the properties of the scalar inner product have natural gener-
alizations, for example the conjugate symmetry, (y,x) = (x,y)H . Given a proper
definition for a linear matrix operator L, the above inner products may also be
generalized in the form (x,y) = L[xyH ], where L is the addition, expectation or
integration operation, respectively, on a matrix valued function x(·)y(·)H .

2.4 Useful interconnections of some mathemati-

cal topics

There is a certain reason why the theory of complex valued functions of complex
variables, the Function Theory, has monopolized a name that one would presume to
cover a much wider class of function descriptions79. Namely, although almost all con-
cepts of real functions can be transformed to the complex domain, this generalization
step produces a theory that is much more than a two-dimensional counterpart of
elementary real analysis. For example, the complex derivative is defined as an uni-
directional total derivative and not as a pair of partial differentials. Thus, functions
that have derivatives in every point of some region Ω of the complex plane C, the
class of analytic functions denoted by H(Ω), possess strong “regularity” properties.

Some of the properties of analytic functions have already been mentioned, such as
the limits of functions on the boundaries, and the converse, the analytic extensions
given a boundary function. These can be seen as generalizations of some particular
local representation and uniqueness results. In the following sections an additional
regularity property, the conformability of analytic functions, is related to other topics
such as transformations and operators on function spaces, factorizations of functions
and filters, and properties of matrices.

2.4.1 Möbius transformations and conformal mappings

Analytic functions preserve angles in points where the derivative is non-zero. Instead
of specifying this conformability property in detail and for more general functions,
it is sufficient to study functions f ∈ H(Ω) with non-vanishing derivatives in all of
the region Ω. Such a function is conformal in the sense that the shape of “small
objects” is preserved in the mapping.

The importance of conformal mappings is due to the fact that they can be used

79A more cosmopolite term would be Complex analysis: one has to admit that there are strong
personal and cultural reasons for taking up this subject, the former referring to authors’ lightweight
studies in the subject, and the latter to the fact that Function Theory is considerably contributed
by Finnish mathematicians. Nevertheless, it is surprising that basic studies in DSP do not usually
include an overview of Function Theory or Complex analysis.
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to transfer problems stated in one region to another region where the solution is
easier to obtain or already deduced. Two regions U and V of the complex field are
conformally equivalent, if there is a conformal one-to-one mapping f : U → V that
maps U onto V , or in other words, that f is an analytic bijection80. For such a
function, the inverse f−1(z) always exists and it is a conformal mapping of V onto
U . Now if g ∈ H(V ), then the mapping g 7→ g ◦ f is an one-to-one mapping of
H(V ) onto H(U) which preserves sums and products81, and problems concerning
H(V ) can be solved in H(U) and carried back to H(V ) using the mapping f . One
such equivalence has already been utilized in presenting results for H(E) that were
actually deduced in H(D) and then transferred using the inversion z 7→ 1/z, which
is a conformal one-to-one mapping from D onto E.

The Riemann Mapping Theorem states that every simply connected region of the
complex plane, except the complex plane itself, is conformally equivalent to the unit
disk D, and consequently all such regions are conformally equivalent (via the unit
disk D)82. However, for example E is not simply connected, but the inversion still
provides a conformal equivalence to all simply connected regions other than the
complex plane itself.

The above existence result is encouraging, but more importantly, most of the useful
conformal mappings can be produced by combinations of simple mappings. The
Möbius transformation (MT) categorizes four types of such elementary mappings,
and it is given by

z 7→ az + b

cz + d
,

∣∣∣∣
a b
c d

∣∣∣∣ = ad− bc 6= 0, (2.82)

where a, b, c and d are complex numbers, and the constraint on them ensures that
the MT does not reduce to a constant, which would certainly not be an one-to-one
mapping. The names bilinear transformation or linear fractional transformation are
also used in relation to (2.82), but they may have corrupted meanings, especially
in signal processing. One remarkable property of the MT is that any disk or half-
plane of the complex field can be mapped conformally to any disk or half-plane by
specifying the form of the function (2.82). Conversely, every conformal mapping
between disks and half-planes is a Möbius transformation. Moreover, boundary
points are mapped to boundary points and interior points to interior points, and
the mapping is attained explicitly and uniquely by fixing it for some few points,
usually with respect to three distinct points and their desired images. This can also
be seen as a limitation of degrees of freedom, since for example fixing the mapping
for three boundary points determines the mapping of the interiors uniquely.

The inverse of a MT is once again a MT and it is given by the substitutions a′ = d,
b′ = −b, c′ = −c and a′ = a with respect to the original MT defined in the form

80This sentence contains a tautology, since for one-to-one mappings f ∈ H(U), f ′(z) 6= 0 in U ,
and they are thus conformal.

81That is, the mapping is a ring isomorphism of H(V ) onto H(U).
82A region is by definition (open and) connected, meaning that any two points can be joined

with a continuous path within the region. A region is simply connected, if any closed path can
be continuously deformed into a single point. Simply speaking, a simply connected region has no
holes.
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(2.82).83 Additionally, properly defined compositions of Möbius transformations
reduce to the form of a MT, which is apparent also from the above reasoning con-
cerning conformal mappings of disks and half-planes84.

In addition to the MT, only two other basic types of conformal mappings are required
to produce a very general collection of conformally equivalent regions of the complex
plane. The power function z 7→ zn, where n = 2, 3, . . ., is an one-to-one conformal
mapping of the sector {0 < arg(z) < 2π/n} onto the sector {0 < arg(z) < 2π},
where arg(z) = θ is the angle of the complex number z = reiθ. The corresponding
inverse mapping is obviously z 7→ z1/n. Thus every sector in the complex plane is
conformally equivalent to any disk or half-plane85. The other elementary conformal
mapping is the complex exponent function z 7→ ez, which carries parallel strips
{θ1 < =(z) < θ2} to sectors {θ1 < arg(z) < θ2}. For example the parallel strip
{0 < =(z) < π} is conformally equivalent to the upper half-plane {=(z) > 0} and
the corresponding inverse mapping is the complex logarithm function z 7→ ln(z) =
ln |z|+ i arg(z) + in2π, n ∈ Z, where the branch of the logarithm must be specified
(by choosing n = 0). For example, sigmoid activation functions in neural networks,
such as the logistic function and the hyperbolic tangent, can be seen as compositions
of Möbius transformations and the complex exponent function [Mandic, 2000].86

2.4.2 Isomorphisms between function spaces

In this section, the conformal equivalency of disks and half-planes is utilized in two
special cases. To begin with, z-transform representations of signals and systems are

83If the MT is regarded as a matrix operator, defined by a mutual agreement for something
like M(z) = Mz or M(z) = M[z 1]T , where M is the coefficient matrix M = [a b; c d], then the
operator product [

a b
c d

] [
d −b
−c a

]
=

[
ad− bc 0

0 ad− bc

]
(2.83)

is the unit matrix scaled by the determinant det(M) = ad− bc 6= 0.
84Using the stereographic projection, every disk and half-plane is transformed to a disk (calotte)

on the Riemann Sphere (surface of a ball), where MTs form a closed family of all such mappings.
Moreover, the subclass of MTs, where a, b, c, d ∈ Z and bound by ad − bc = 1, forms a Mod-
ular Group of upper half-plane (=(z) > 0) mappings, with composition as the group operation
[Rudin, 1987]. The stereographic projection maps z ∈ C (considered as R2 ⊂ R3) to the surface of
the ball B(0, 0, 1/2, 1/2) (center point (0, 0, 1/2) ∈ R3 and radius 1/2) as the intersection point of
the line connecting (z, 0) and (0, 0, 1) (with the surface). This interpretation also “explains” why
the special point ∞ in the compactly extended complex plain do not have a direction (angle).

85All sectors are included by a combined MT and a properly defined mapping z 7→ (z1/n)m =
zm/n (formally, relying on the fact that rational numbers are dense in R).

86The logistic function can be decomposed as

f(x) =
1

1 + e−βx
= Mz, M =

[
0 1
1 1

]
, z = e−βx (2.84)

and the hyperbolic tangent is of the form

f(x) =
1− e−βx

1 + e−βx
= Mz, M =

[ −1 1
1 1

]
, z = e−βx. (2.85)
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related to Laplace transforms of continuous-time signals and systems. The latter
part categorizes conformal mappings of the unit disk onto itself, which are used to
form homomorphisms and isomorphisms on H2(E) and its subspaces, respectively.
In the next section these mapping are related to the generation and interconnections
of basis representations of various spaces.

Möbius transformations that map the unit disk D conformally to a true half-plane,
a half-plane that is defined as either side of a straight line through the origin, are of
the form87

sa(z) = a
z − 1

z + 1
. (2.86)

The complex number a 6= 0 can be seen as a scaling and rotation factor. For a real
and positive scaling factor a, a > 0, the unit disk D is mapped to the left half plane
{<(z) < 0}, denoted here as C−. Correspondingly, the region E is mapped to the
right half-plane C+. The unit circle is mapped to the imaginary axis, and using a
counter clockwise parametrization ejθ : [−π, π] → T, transforms the limits of the
boundaries as sa(−1) = limθ→±πsa(e

jθ) = ±∞. Figure 2.7 characterize how the
unit disk is mapped to the left half-plane for a = 0.4. The inverse of the mapping
(2.86) is easily obtained as

za(s) =
a + s

a− s
. (2.87)

The reason why mappings (2.86) and (2.87) are introduced here is that they define
an isomorphism between discrete- and continuous-time representations of signals
and systems88. The continuous-time Fourier transform or Plancherel transform

f̂(ω) =

∫ ∞

−∞
f(t)e−iωtdt ←→ f(t) =

1

2π

∫ ∞

−∞
f(t)eiωtdω, (2.88)

defines an isomorphism in the Hilbert space L2(R), the space of square-integrable
finite-energy functions on the real line R. A purpose-oriented way to distinguish
between the original and transform domains is to denote the latter as L2(iR) and
to use rotated functions F (iω) = f̂(ω). Now, similar arguments and deductions as
in Section 2.2.2 can be used to relate the Hilbert space pair L2(R) ↔ L2(iR) to the
Hilbert space pair L2(R+) ↔ H2(C+), but it would be an unnecessary repetition for
at least three reasons, which will be addressed below.

The analogy to the z-transform isomorphism `2(N) ↔ H2(E) is the Laplace trans-
form

F (s) =

∫ ∞

0

f(t)e−istdt ←→ f(t) =
1

2π

∫ ∞

−∞
F (s)eistds (2.89)

87Actually, from the infinite variety of such mappings, this particular form is attained by setting
sa(1) = 0, sa(0) = −a and sa(−1) = ∞. An interesting consequence of the conformity is that
since the segment of a line [0, 1] is perpendicular to the boundary at z = 1, so is also [−a, 0] to the
straight line defining the boundary of the half-plane at s = 0, and thus the normal [−a, 0] defines
the half-plane in question uniquely.

88As stated previously, in order to specify a mapping between E and C+, the scaling factor
should be real and positive: a = 1 is a simple choice, but in fact a = 1/2 would be a better one
in the sense that then the square matrix operators defined by (2.86) and (2.87) are then readily
normalized to produce an unit matrix product.
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Figure 2.7: En example of the mapping (2.86) for a = 0.4. The spiral in the unit
disk (on the left hand side) is mapped to the left half-plane in a very non-uniform
way (as displayed on the right hand side). The mapping is anchored by s(1) = 0
and s(0) = −0.4, as expected.

and it defines an one-to-one correspondence between the function classes L2(R+)
and H2(C+), where the latter is the space of analytic functions on C+ that are
square-integrable on the imaginary axis89.

This thesis is confined to discrete-time signal processing and the sole reason why
subjects as L2(R+) and H2(C+) are brought in is that the isomorphism between
H2(E) and H2(C+), defined by the conformal mapping (2.86), will be used to gen-
erate and interconnect basis functions in H2(E). Besides the conformal equivalency
of the regions, the only additional information that is needed is that L2(R+) and
H2(C+) really are Hilbert spaces. The required inner products appear naturally
using the generating formula (2.69) and a suitable normalization for the measure.
However, the completeness of the spaces and different aspect of the uniqueness and
one-to-one correspondence of the elements of these spaces are not discussed further
and a reference is made to more detailed deductions [Hoffman, 1962, Rudin, 1987,
Oliveira e Silva, 1995]. If H2(C+) is presumed to be a Hilbert space, then the only
thing that is still needed to establish the isomorphism between H2(E) and H2(C+)
is the knowledge of how the measure of integration is distorted in the transformation
(2.86). Forming the inner products and forcing them to obey an isometric relation
(Parseval’s equation) shows that the “normalization” of the mapping is given by the
complex differentials of (2.86) and (2.87), respectively, which are easily obtained as

dsa =
2a

(z + 1)2
dza ←→ dza =

2a

(a− s)2
dsa. (2.90)

The existential reasoning in Section 2.3.2 ensures that all separable Hilbert spaces
are isomorphically related, through `2(N) and some Fourier series expansion, but
the combination of conformal mappings (2.86) and (2.87), the z-transform and the
Laplace transform provide explicit isomorphisms between `2(N), H2(E), H2(C+),
and H2(R+).

Conformal mappings can also be used to produce isomorphisms within the Hilbert

89The fact that there is an one-to-one correspondence between the function classes is known as
the Paley-Wiener Theorem.
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Figure 2.8: A characterization of the mapping (2.91) for c = 1 and a = 0.4. The
uniformly spaced set of points on the left hand side have images that are warped
towards the new center of gravity w(0) = −0.4, as depicted in the right hand side
pane.

space H2(E). It is not difficult to show that all Möbius transformations that map
the unit disk D onto itself are of the form

wa(z) = c
z − a

1− a∗z
, |c| = 1, a ∈ D, z ∈ D. (2.91)

The complex number c, |c| = 1, is just an unitary rotation and the parameter a,
|a| < 1, is the fixed single zero of the mapping, wa(a) = 0. An example of the
mapping (2.91) is given in Figure 2.8: a uniform distribution of point in the unit
disk is mapped to a set of points that is shifted towards w = −1, corresponding to
the new “center of gravity” w(0) = −ca = −0.4, for the choices c = 1 and a = 0.4.
Conversely, all one-to-one f ∈ H(D), such that f(D) = D and f(a) = 0, are given
by (2.91) [Rudin, 1987]. The function wa is bounded and continuous in D̄ = T ∪D,
wa ∈ C(D̄), since the single zero of the denominator, the pole, is exterior to D̄. As
a MT, the unit circle T and its interior D are mapped separately to themselves; it
may also be more straightforwardly confirmed that |wa(z)| = 1 for all z ∈ T. This
latter property is referred to as inner, allpass or lossless, depending on the context.
A similar tautology asserts that |wa(z)| < 1 for all z ∈ D.

The transformation (2.91) categorizes homomorphisms of H2(D) and the notation
H2(D̃) is used to distinguish the transformed space. If the scalar rotation is omitted
by choosing c = 1 , then the inverse mapping in given by w−1

a = w−a.
90 Furthermore,

if the parameter a ∈ D is fixed, then the transformation (2.91) and its inverse defines
a change of variable, w ↔ z, into the function descriptions f(z) ∈ H2(D) and
f̃(w) ∈ H2(D̃), respectively91. The inversion z 7→ 1/z transforms these results to

90This is seen by a direct calculation or by using the general inversion rule for MTs, given earlier
as {a, b, c, d} ↔ {a,−b,−c, d}.

91As in the case of H2(E) and H2(C+), the actual mapping between elements of H2(D) and
H2(D̃) is subject to the distortion of measure on T. The explicit relation is given by

f̃(w) =
√

1− a∗a
1− a∗z

f

(
z − a

1− a∗z

)
←→ f(z) =

√
1− a∗a

1 + a∗w
f̃

(
w + a

1 + a∗w

)
, (2.92)

which is a consequence of the derivative formula D(w±a(z)) = (1− a∗a)(1∓ a∗z)−2.
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H2(E) and H2(Ẽ). The corresponding change of variable is then given by

w−1 =
1− a∗z
z − a

=
z−1 − a∗

1− az−1
↔ z−1 =

1 + a∗w
w + a

=
w−1 + a∗

1 + aw−1
(2.93)

Purposefully, the inversion is applied as an outer function on (2.91) and its inverse,
which genuinely exchanges the roles of D and E, the complement regions with respect
to the unit circle. The explicit mapping between elements f(z) ∈ H2(E) and f̃(w) ∈
H2(Ẽ) is attained as

f̃(w) =

√
1− a∗a

1− az−1
f

(
z−1 − a∗

1− az−1

)
↔ f(z) =

√
1− a∗a

1 + aw−1
f̃

(
w−1 + a∗

1 + aw−1

)
, (2.94)

which is seen by forming the inner product (2.72) in either of the spaces H2(E) or
H2(Ẽ), and by compensating for the change of measure in the integration, given by

dw =
1− a∗a

(1− a∗z)2
dz ↔ dz =

1− a∗a
(1 + a∗w)2

dw (2.95)

The complex power function z 7→ zN , N ∈ N, is a conformal mapping of the unit
disk D onto D, which is one-to-many, in fact, every point of the closed unit disk D̄
is mapped precisely n times to itself. It is a product of n Möbius transformations of
the form (2.91) having zeros at z = 0. Analogously, any finite product of functions
(2.91) is a conformal mapping of D onto D, and conversely, every conformal mapping
AN : D→ D, A(D) = D, that has a predefined set of zeros {a1, . . . , aN} is given by

AN(z) = c

N∏
i=1

z − ai

1− a∗i z
, |c| = 1, {a1, . . . , aN} ⊂ D, z ∈ D (2.96)

and this representation is unique up to a possible rotation by its zeros92. The
function (2.96) is inner, allpass and lossless, that is, |AN(z)| = 1 for z ∈ T and
|AN(z)| < 1 for z ∈ D, and it is stable since the poles {1/a∗1, . . . , 1/a∗N} are outside
the unit circle. These properties suggest once more a change of variable w−1 ↔
1/AN(z) in the Hilbert space H2(E). The mapping is not one-to-one in E, but
if z−1 7→ 1/AN(z) is regarded as a mapping from E to EN , where EN is a stacked
manifold of E, then the mapping is one-to-one and it defines an isomorphism between
H2(E) and some subspaces of H2(E). It is probably easier to imagine the actual
mapping on the boundary T, T → TN , ejω 7→ ejv(ω), where the phase function
ω 7→ v(ω) is a continuous monotonic function, and thus invertible93. Moreover, if

92The points {a1, . . . , aN} do not have to be distinct and some of them may even be set to zero.
The form of (2.96) that expresses these special cases is given by

AN (z) = zp

q∏

j=1

(
z − aj

1− a∗jz

)pj

, (2.97)

where p and pj are the multiplicities of zi = 0 and zi = zj , respectively. The orders of the terms
in (2.97) are bound by N = p + q +

∑
(pj − 1).

93Each term in the product (2.96) is of the form ejvi(ω) on T, where vi : [0, 2π] → [θ, θ + 2π] is
a continuous monotonic function for some initial phase θ = vi(0). The product of N such terms is
then simply ejv(ω) =

∏
ejvi(ω) = ej

∑
vi(ω), and the sum of monotonic functions is monotonic.
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the inverse mapping is restricted to one of the layers Ei, i = 1, . . . , N , that is, to one
branch of the inverse function, then there is a conformal equivalence between Ei and
a subregion of E and the union of N such regions is all of Ē.94 This construction
defines a decomposition of H2(E) into N subspaces H2

i (E), i = 1, . . . , N , which are
mutually orthogonal to each other. In addition, every H2

i (E) is a Hilbert space and
H2(E) is a direct sum of its components, H2(E) = H2

1 (E)⊕ . . .⊕H2
N(E). It would

be unnecessarily difficult to assert this decomposition directly, since later the actual
isomorphic relations between H2(E) and its subspaces H2

i (E), i = 1, . . . , N , will
appear naturally in the context of periodically generated bases of H2(E).

The function (2.96), characterized by its zeros {a1, . . . , aN}, is analytic in the unit
disk. Interestingly enough, the same applies to an infinite product of Möbius trans-
formations, given by the infinite Blaschke product

B(z) =
∞∏
i=0

−a∗i
|ai|

z − ai

1− a∗i z
, z ∈ D. (2.98)

The product (2.98) converges (uniformly on compact subsets of D) to an inner
function B ∈ H(D) if and only if

∑
(1 − |ai|) < ∞ [Hoffman, 1962]. Moreover,

for any bounded function f ∈ H(D), excluding f ≡ 0, the zeros must satisfy the
condition ∞∑

i=0

(1− |ai|) < ∞, (2.99)

and conversely, the function f has an unique factorization as f = Bg, where B is
the Blaschke product formed from the zeros of f and where g is an analytic function
without zeros95. This factorization property provides an important reversed result
that states that if the zeros of f ∈ H(D) satisfy

∞∑
i=0

(1− |ai|) = ∞, (2.100)

then f is identically zero, f(z) = 0, for all z ∈ D [Rudin, 1987]. This interplay
between the Blaschke product and the conditions (2.99) and (2.100) is used to prove
completeness of rational bases for various Hilbert and Banach spaces. For example in
the case of H2(D) or H2(E), the conjecture is that if the zeros or poles, respectively
for H2(D) or H2(E), of a rational orthonormal system satisfy (2.100), then the only
function that is orthogonal to all the basis functions is f(z) = 0, which was condition
(ii) for completeness in Section (2.3.2).

The representation of the Blaschke product (2.98) in the domain E is attained as

BE(z) = 1/B(z) =
∞∏
i=0

|ai|
−a∗i

1− a∗i z
z − ai

=
∞∏
i=0

−ai

|ai|
z−1 − a∗i
1− aiz−1

, z ∈ E. (2.101)

94In general it is impossible to describe these subregions. In the case of zN and z1/N , the
decomposition is achieved by attaching “semi-open segments” 2π(k − 1)/N ≤ arg(z) < 2πk/N ,
k = 1, . . . , N.

95This is a simplified version of a much stronger result for the broad class of Nevanlinna functions,
which is the superclass of all Hp spaces [Rudin, 1987]. The attribute bounded is used to avoid
specifying the norm. A practical example of bounded f ∈ H(D) are those that are continuous in
D̄.
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Now the poles and zeros of (2.101) are ai and 1/a∗i , i = 0, 1, . . ., respectively, and
BE(z) is thus stable and convergent in the region E. If

∑
(1 − |ai|) < ∞, then

once more, |BE(z)| = 1 for z ∈ T and |BE(z)| < 1 for z ∈ E, and (2.101) could be
interpreted as a change of variable in H2(E). However, in addition to the fact that
treating (2.101) as a conformal mapping is a bit far-fetched, the really interesting
case is precisely the one when

∑
(1− |ai|) = ∞.

2.4.3 The shift operator as a generator of bases

The Blaschke product is closely related to a class of bounded linear operators, shift
operators that generate shift-invariant subspaces into various Banach spaces. In
particular, the concepts of shift operators and shift-invariant subspaces is useful in
producing bases for the Hilbert spaces H2(E) and `2(N). A closed subspace Y of a
Hilbert space H is shift-invariant, if there is a linear transformation S : H → H,
such that S(Y ) ⊂ Y , that is, S(f) ∈ Y for all f ∈ Y . The Beurling-Lax Theorem
characterizes the nature of shift-invariant subspaces: for every inner function A, the
subspace of functions denoted and defined by AH = {Af : f ∈ H} is shift-invariant,
and conversely, every shift-invariant subspace is of the form AH [Rudin, 1987]. Here
the more general term ‘inner function’ is replaces by rational allpass functions (of
the form (2.101)) and the theorem is used to deduce and unify rational orthonormal
bases of H2(E), and their time-domain counterparts in `2(N).

The simplest allpass function, Blaschke product or shift operator on H2(E) is the
unit delay z−1. This right-shift of elements f(z) ∈ H2(E) and x(n) ∈ `2(N) is given
by

(Sf)(z) = z−1f(z) and Sx = {0, x(1), x(2), . . .}. (2.102)

These shift operators generate the previously defined “standard bases” of H2(E) and
`2(N), that is, the bases {z−i}∞i=0, z−i = Si(1), and {δ(n− i)}∞i=0, δ(n− i) = Siδ(n),
respectively. The right-shift operator decomposes H2(E) and `2(N) into infinite
direct sums of subspaces, H2(E) = H2

0 (E) ⊕ H2
1 (E) ⊕ . . . and `2(N) = `2

0(N) ⊕
`2
1(N) ⊕ . . .. The elements of H2

i (E) are characterized by the fact that they have a
zero of order at least i at z = ∞, and correspondingly, sequences in `2

i (N) have at
least i leading zeros.

Similarly, the first-order causal allpass operator, A(z) = (z−1 − a∗)/(1 − az−1) ∈
H2(E), defines a partition of the space H2(E) that is characterized by multiple poles
at z = a. The basis functions of the component spaces H2

i (E) are produced by the
change of variable, given in (2.93) and (2.94), applied to the canonical base {w−i}∞i=0

of H2(E),

{w−i}∞i=0 ←→
{√

1− a∗a
1− az−1

(
z−1 − a∗

1− az−1

)i
}∞

i=0

. (2.103)

The set of functions on the right-hand side of (2.103) constitute the Laguerre base
of H2(E) and the corresponding basis functions of `2(N), the discrete-time Laguerre
functions, are attained as their inverse z-transforms96. These Laguerre functions de-

96The Hilbert space H2(C+) (or L2(iR)) do not have a simple unit delay sort of a base, but it
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fine once more decompositions of H2(E) and `2(N) into infinite sums of subspaces.
For a 6= 0, the subspaces and basis functions are no longer “trivial”, but the confor-
mal equivalency provides simple means to transform and project elements of H2(E)
and `2(N) into different basis representations and partitions of subspaces.

A natural step now is to consider subspace partitions and basis functions induced
by the finite Blaschke product (2.96) and its inverse A(z) = 1/AN(z), which is a
causal and stable right shift operator. Two simple choices of poles, namely ai = 0
and ai = a ∈ D, and a regrouping of N successive terms in (2.103) into a vector
representation, provide readily

fj(z) =




1
...

z−N+1


 (z−N)j, j = 0, 1, . . . , (2.105)

for the canonical base, and respectively,

lj(z) =




√
1−a∗a

1−az−1

...
√

1−a∗a
1−az−1

(
z−1−a∗
1−az−1

)N−1




((
z−1 − a∗

1− az−1

)N
)j

, j = 0, 1, . . . , (2.106)

for the Laguerre base. These vector valued functions provide two different partitions
of H2(E) into a finite direct sum of subspaces, H2(E) = H2

1 (E)⊕ . . .⊕H2
N(E), where

subspaces H2
i (E), i = 1, . . . , N , are characterized by the corresponding components

of the vectors (2.105) and (2.106), that is, by basis functions fij(z) and lij(z), i =
1, . . . , N , j = 0, 1, . . ., respectively97. Each component space H2

i (E), i = 1, . . . , N ,
then in turn has a partitioning into an infinite collection of subspaces, H2

i (E) =
H2

i1(E) ⊕ H2
i2(E) ⊕ . . ., i = 1, . . . , N , with respect to the particular representation

of the component basis functions. These factorizations originate from a simple
regrouping of the unit-delay or Laguerre shift basis functions (2.103), respectively,
but they suggest a natural procedure with respect to a more general choice of the
shift operator A.

Once more, the partitioning and the generation of basis functions can be seen to
emerge from a change of variable; the constructions (2.105) and (2.106) are of the

is interesting to notice that the simplest base is once more attained with the aid of a conformal
mapping: the Laguerre base of H2(C+) and the standard base of H2(E) are connected by

{z−i}∞i=0 ←→
{ √

2a

a + s

(
a− s

a + s

)i
}∞

i=0

, (2.104)

where a > 0 and s ∈ C+, and the relation is due to the change of variable given by (2.87)
and (2.90). Functions on the right-hand side are Laplace transforms of continuous-time Laguerre
functions. For complex a such that <(a) > 0, the corresponding modified form of a basis function
is

√
2<(a)(a− s∗)i/(a + s)i+1.

97The functions fj(z) and lj(z), j = 0, 1, . . ., constitute bases for the space H2
N (E) of vector

valued functions with components in H2(E). Equipped with the matrix valued inner product,
H2

N (E) is a Hilbert space and the bases {fj(z)}∞j=0 and {lj(z)}∞j=0 are orthonormal in the sense
that (fi, fj) = δijI and (li, lj) = δijI, respectively.
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form v(z)(1/A(z))j, where the vector valued function v(z) acts as a normalization98.
Using the inner product (2.72), it is not difficult to verify that elements in v(z)
are mutually orthonormal, (v(z),v(z)) = I, but the more important fact is that
the components of v(z) are orthogonal to A(z) = 1/AN(z). More generally, since
AH2(E) is a close subspace of H2(E) for every inner function A, so is also its
orthogonal complement H(A) = H2(E)ªAH2(E).99 The elements of v(z) in (2.105)
or (2.106) are examples of bases for the corresponding finite-dimensional subspace
H(A), induced by two special cases of the inner function A(z) = 1/AN(z).

The idea is hopefully becoming clear, the components of the vector valued function

g(z) =

[√
1− a∗1a1

1− a1z−1
· · ·

√
1− a∗NaN

1− aNz−1

N−1∏
i=1

z−1 − a∗i
1− aiz−1

]T

(2.107)

are mutually orthonormal, (g,g) = I, and they are all orthogonal to the allpass
function

A(z) =
N∏

i=1

z−1 − a∗i
1− aiz−1

. (2.108)

The elements of (2.107) form a base of H(A) = H2(E) ª AH2(E), where A is
the allpass shift given by (2.108), and an orthonormal base for the Hilbert space
H2

N(E), the space of vector valued functions with components in H2(E), is obtained
as {gj = Ajg : j = 0, 1, . . .}. The explicit form of gj(z), j = 0, 1, . . ., is then simply
a generalization of (2.106), given by

gj(z) =




√
1−a∗1a1

1−a1z−1

...√
1−a∗NaN

1−aNz−1

∏N−1
i=1

z−1−a∗i
1−aiz−1




(
N∏

i=1

z−1 − a∗i
1− aiz−1

)j

, j = 0, 1, . . . . (2.109)

Correspondingly, the vector signal space L2
N(N), whose components are in `2(N),

is a Hilbert space and the inverse z-transforms of (2.109) form a base of the space
L2

N(N). Representations (2.105) and (2.106) are clearly special cases of (2.109),
but as such, they induce three genuinely different types of constructions for H2

N(E)
and L2

N(N), respectively. In fact, an infinite variety of partitions is introduced
with respect to different choices of {a1, . . . , aN} ⊂ D. The point is that all such
constructions produce bases for the spaces H2(E) and `2(N), respectively. The
essential difference is then in the manner the space, for example H2(E), is interlaced
into the space H2

N(E), that is, how the components of H2
N(E) partition H2(E),

H2(E) = H2
1 (E) ⊕ . . . ⊕ H2

N(E), which can also be expanded and expressed by a

98The change of variable interpretation between (2.105) and (2.106), or directly between {z−i}∞i=0

and (2.106), is quite clear, but the “change of measure” introduced by v(z) is not that obvious.
However, for the expanded components lij(z), it is simply the “Laguerre normalization”.

99For a shift operator S on a Hilbert space H, the subspace H(S) = HªSH is actually the null
space of the adjoint (left shift) operator S∗, H(S) = kerS∗. The shift operator is a non-unitary
isometry on H, and a lot could be deduced from the related operator theory, but in the underlying
case of allpass operators, explicit relations between functions provide sufficient grounds for the
reasoning.
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Figure 2.9: Two alternative filter configurations that realize (2.109) as input to
tap-output transfer functions.

relation of the form

H2(E)
A
←→ H2

N(E) =




H2
1 (E)
...

H2
N(E)


 =




H2
11(E) ⊕ H2

12(E) ⊕ · · ·
...

...
H2

N1(E) ⊕ H2
N2(E) ⊕ · · ·


 (2.110)

The change of variable interpretation, z−j ↔ g(z)A(z)j, is still plausible for the
construction (2.109), although it is not as obvious as in the case of (2.105) and
(2.106).100 This is not particularly disturbing since it is known from Section 2.3.2
that there is an isomorphic relation between H2(E) and the variously generated
subspaces H2

i (E). At this point it is sufficient to conclude that the component
functions of (2.109), the set of functions {gij(z)}∞j=0, form an orthonormal base in
H2

i (E) and that these functions can be produced by a causal and stable LTI digital
filter. Figure 2.9 depicts two alternative configurations for producing all functions
{gij(z) : i = 1, . . . , N, j = 0, 1, . . .} as input to tap-output transfer functions. The
corresponding time-domain basis functions {gij(n) : i = 1, . . . , N, j = 0, 1, . . .}
form a base in `2(N), and alternatively to the inverse z-transformation, they may
be produced as the tap-output impulse responses of the filters in Figure 2.9.

The following reasoning is not meant to be exact, but hopefully it is instructive and
serves as a justification for the introduction of the shift operator. All aforemen-

100However, equating simply the inner products in the bases {w−j}∞j=0 and {gij(z)}∞j=0 gives a
“change of measure” formula dw/w = gi(z)g∗i (1/z∗)dz/z, which is easily seen to reduce to the form
of (2.95). An alternative deduction of functions of the type (2.109), the Generalized Orthonormal
Basis Functions (GOBFs) by Heuberger [Heuberger et al., 1995], and a related Hambo transform
theory of signals and systems [Van den Hof et al., 1994], are considered later.
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tioned bases are implicitly presumed to be complete, that is, they provide a basis
representation for any member of the corresponding Hilbert space. An old theorem
by Walsh dating back to the 1920’s implies that a rational orthonormal system is
complete if and only if the set of poles satisfy condition (2.100).101 This condition
is very mild, since for example, any infinite sequence of poles such that |ai| < r, for
any 0 < r < 1, will do. Clearly, all bases related to the repeated appearance of a
finite set of poles fall into this category, which is particularly the case for the system
induced by (2.109) for any choice of N and {a1, . . . , aN} ⊂ D.

Continuing now in terms of the shift operator A, the “total shift”, A∞ =
∏∞

j=0 Aj,

could be said to be complete if it spans all of H2(E), that is, if the subspaces
it generates form an infinite orthogonal partition of the whole space, H2(E) =⊕∞

j=0 AjH(A), where H(A) = H2(E) ª AH2(E) is the generating subspace, as
before. On the other hand, if the initial subspace is generated with respect to
Ak, k > 1, producing H(Ak) = H2(E) ª AkH2(E), then it is easily seen that
H(Ak) =

⊕k
j=0 AjH(A), since both spaces are spanned by the same orthonormal

base. Furthermore, it is known from (2.100) that the total shift A∞ reduces to
the zero function, and by cautiously exploiting the denotation H(A∞) = H2(E) ª
A∞H2(E), the conclusion is that the total shift is complete if and only if the poles
satisfy condition (2.100). By the same argument, the “single shift”, related to the
infinite Blaschke product (2.101), generates an orthonormal set of functions

{√
1− a∗i ai

1− aiz−1

i−1∏
j=0

z−1 − a∗j
1− ajz−1

}∞

i=0

(2.111)

that is a complete base of H2(E) if and only if condition (2.100) is satisfied.

101This result has been the subject of numerous rediscoveries, especially during the last fifteen
years. Some of the published results have nonetheless broaden the result to more general Banach
spaces and to other rational systems, such as, rational wavelets [Akçay, 2000].
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Chapter 3

The generalized
linear-in-parameter model concept

In this Chapter, some of the concepts and results of the previous Sections are recapit-
ulated and utilized to produce a general framework for the modeling of discrete-time
signals and systems. To begin with, a particular modeling setup is established as
a blend of system identification and signal processing configurations. Then, the
special choice of the model structure introduced in Section 2.1.5 is redefined as an
approximation problem in the Hilbert space of causal and finite-energy signals and
systems. This concept of a generalized linear-in-parameter model (GLM) is then
used to deduce many familiar results and methods in signal processing, with an
obvious emphasis in mind that there are natural generalizations, or even a more
genuine perspective, to the traditional approach.

The GLM concept is not particularly ingenious, or not even entirely novel, but it
has not been formulated before as such, that is, from the point of view of linear
independency. There is certainly nothing new in constructing a model that is linear
in the parameters. For example, the FIR model (2.32), the IIR model (2.33), and the
state-space model (2.34), respectively, are linear in the parameters, and in system
identification terms, they are special cases of the class of linear regression models
[Ljung, 1987]. Continuing with pompous interfaces, the GLM concept can also be
seen as a generalization of the Wiener filtering Theory [Wiener, 1949] [Lee, 1960],
or at least, as a generalized framework for some aspects of optimal least-square or
minimum mean-square estimation and filtering. Additionally, all orthogonal series
expansions of a given signal or system are, by construction, linear in the parameters;
the same applies to a model or an approximation that is based on a finite, sparse or
truncated, collection of such expansion terms. The point that the GLM concept tries
to make is that the conventional linear regressor approach is perhaps not sufficient
enough for a well-posed general modeling setup, but on the other hand, that a
categoric restriction to orthogonal model structures is in some cases unnecessary
constraining for a practical and flexible generation of the modeling concept.
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Figure 3.1: The modeling setup - a parallel configuration of an unknown system
H and a model Ĥ, with a common input x, and outputs y and ŷ, respectively.
Minimization of the modeling error signal e = y− ŷ, in some chosen sense, is usually
the objective of modeling.

3.1 A general framework for various signal pro-

cessing tasks

The parallel setup of a possibly unknown system and a model in Figure 3.1 can
be used to describe many different assignments in signal processing. Using the ter-
minology of system identification, the setup is by construction in an output-error
(OE) form [Ljung, 1987]. This does not necessarily exclude other typical identifica-
tion schemes, since most of the “noise modeling” configurations can be embedded
to the modeling setup of Figure 3.1. However, the system identification framework
will not be elaborated further since the aim here is somewhat different. In fact,
some kind of a reloading of terms is required to avoid misleading interpretations
and comparisons. For example, as it can be seen from Figure 3.1, there are no addi-
tional noise sources in the system input and output, respectively, corresponding to
measurement errors or some other sources of inaccuracy. This is justifiable because
the necessary presumptions about the noise signals makes them uninteresting sub-
jects of modeling; in the OE configuration of LTI modeling the noise sources can be
commuted to be included into the modeling error, or alternatively, the error terms
are regarded as inherent parts of the input and output signals1.

In the following attempt to categorize different modeling tasks, the symbols
{x, δ,H, y, x̂, Ĥ, ŷ} are used generically to denote elements in `2(N) or H2(E), inter-
changeably, and both in the deterministic and stochastic sense.

Approximation or modeling by synthesis - the target response is considered as an
impulse response of some system H, y = Hx, x = δ, and a model ŷ = Ĥδ is
designed to approximate the system.

Identification or approximate system identification base on input-output-data -
the system output y = Hx is approximated with the model response ŷ = Ĥx.

1The usual presumption about the noise signals is that they are WSS and uncorrelated with
the input and output signals. The ongoing assumption here is that WSS signals are zero-mean,
which results in a constant term in the error variance.
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Filtering The signal y is regarded as a desired response, not necessarily as a re-
sponse of a particular system y = Hx, which is approximated by the response
ŷ of a digital filter Ĥ to the input signal x, ŷ = Ĥx.

The above classification is somewhat arbitrary and overlapping. The division be-
tween identification and approximation is associated simply with the form of the
available data and not as a distinction between “true identification” and approxi-
mate identification of a system. Moreover, here modeling means always filtering by
digital filters, which makes this all seem apparently stupid. In fact, in most cases
the first two items could be replaced with synthesis and analysis by digital filtering,
respectively, but these specifications provide flexibility in terminology in such a way
that still maintains enough specificity. In addition to analysis, synthesis and mod-
eling by filtering, the subsequent characterizations are more application oriented
special cases of filtering.

Prediction by filtering - the desired response y(n) = x(n + p), for some time-lag
p, is approximated with the model response ŷ = Ĥx.

Interference cancellation or noise reduction - the interference component in sig-
nal y is approximately canceled using a model for the interference, ŷ = Ĥx,
based on a reference signal x.

Inverse modeling or transmission channel equalization - the inverse of a system
y = Hx, or the inverse system response x = H−1y, with possible delay, is
approximated using the model response x̂ = Ĥy (where Ĥ is now an approxi-
mation of H−1).

The interference cancellation class includes such typical signal processing tasks as
echo and noise cancellation [Kuo and Morgan, 1996]. A more natural way to de-
scribe inverse modeling and equalization, as well as analysis of a signal, would be to
replace the parallel setup with a cascade connection of the system and the model,
depicted in Figure 3.2. However, in many practical cases the modeling is based on
a somehow attained description of the inverse system, or a desired modification2 of
it, which brings the situation back to the original setup of Figure 3.1, where the
system to be modeled is replaced with its inverse.

2One common modification is to make an unstable inverse system stable. Another modification
to the pure inverse modeling setup is attained when the desired overall transfer function of the
system and the model is chosen to differ from an identity mapping.
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Figure 3.2: Another modeling setup - a cascade configuration of an unknown system
H and a model Ĥ. The system output y acts as the input to the model and the
desired response is now x, a delayed version of x, or some other target response.

3.1.1 The linear-in-parameter model configuration

As it has been a few times already stated, the model structure that is employed here
is of the form

ŷ(n) =
N∑

i=1

wixi(n) = wTx(n), xi(n) = gi(n) ∗ x(n) (3.1)

Ŷ (z) =
N∑

i=1

wiXi(z) = wTx(z), Xi(z) = Gi(z)X(z), (3.2)

where wi, i = 1, . . . , N , are tap-output weights, or model parameters, and where the
impulse response of the model is a weighted sum of partial model impulse responses,

ĥ(n) =
N∑

i=1

wigi(n) = wTg(n) or Ĥ(z) =
N∑

i=1

wiGi(z) = wTg(z). (3.3)

The responses Gi(z) = Z{gi(n)}, i = 1, . . . , N , are supposed to be produced as
impulse responses of causal and stable LTI digital filters. However, the weights
wi, i = 1, . . . , N , are not restricted to be time-invariant and thus the model is not
necessarily linear or time-invariant3. The GLM structure of Fig. 3.3 is a direct
illustration of the formulas (3.3), where the partial model filters form a tapped
parallel system that is weighted and summed up to produce the model response.
This parallel system can sometimes be replaced with a cascaded or transversal model
structure.

Once more, the modeling concept that is developed here does not fit into the tradi-
tional division between parametric and nonparametric modeling [Ljung, 1987]. The
GLM is certainly parametric in the tap-output weights, but choosing of the partial
models is not necessarily a conventional data-driven parametrization process, and
even when it is, the parameters that define the partial models have a different mean-
ing. In the usual system identification framework, the space of feasible parameters
acts like a spanning set for the model structure or the model class, from which a

3Time-variant modeling will be discussed in a very limited sense, that is, restricted to the case
when the time-variant parameters are local (in time) estimates of the LTI parametrization.
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Figure 3.3: The GLM structure as a block diagram of unspecified partial models.

Figure 3.4: The GLM design steps - the division into linear and nonlinear parts in
the optimization and parametrization is somewhat case-specific.

particular realization, the model, is attained by fixing a point in this parameter
space. In the GLM setup the partial models are fixed, after a possible optimization
of parameters, and the model set is subsequently spanned by the variation of the
tap-output weights. Due to this incoherence, referring to parameters is avoided in
the following by using the terms weights or coefficients4.

The design steps for the construction of a GLM are illustrated in Fig. 3.4. The parti-
tioning into the linear and nonlinear domains should not be taken too seriously, since
exceptions are possible in both directions. Additionally, the terms optimization and
parametrization are for the time being somewhat vague expressions. The following is
the formal definition of the GLM, which will eventually steer the discussion towards
the particular themes of this thesis.

3.1.2 The synthetic definition of the GLM

As it was stated in Section 2.1.5, both the system and the model are supposed to be
elements of the space H2(E) or its time-domain counterpart `2(N). The following
definition is based on the concepts and results provided in Section 2.3.

4The abbreviation GLM provides different interpretations for the silent member, such as, the
linear regression or the linearly combined or weighted model, which are all equally ill-matched
descriptions.
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Definition of the GLM The model given by (3.3) is a Generalized Linear-in-
parameter Model (GLM) for the system y = H[x], x, y ∈ `2(N) and H ∈
H2(E), if the partial model responses, xi = Gi[x], i = 1, . . . , N , are mutu-
ally linearly independent. The optimal parametrization in the approximation
space spanned by the set {x1, . . . , xN} is attained as the solution of the normal
equations

N∑
i=1

wi(xi, xj) = (y, xj), j = 1, . . . , N. (3.4)

For clarity, the signal and system spaces were polarized as `2(N) and H2(E), respec-
tively, but this division is completely arbitrary. The notation of a generic Hilbert
space H could have been used to indicate equivalent representations both in the
time- and frequency-domains and with respect to the deterministic and stochastic
interpretation of the ingredients5. The “optimality” of the approximation is with
respect to the norm of the Hilbert space, which is an invariant quantity for all real-
izations of H, and terms such as least-square (LS) or minimum mean-square (MMS)
error may be used to specify between deterministic and stochastic representations.
The inner products that define the normal equations (3.4) can be evaluated using
various formulas given in Section 2.3.3.

The point in the definition of the GLM is to emphasize the importance of linear
independency in well-defined parametric modeling. The formulation may at first
seem strange or backward since the linear independency is presumed of signals that
are generally unknown. In addition, the restriction to partial model signals appear
as an unnecessary limitation compared to a more generic set of “modeling signals”
{x1, . . . , xN} that is not necessarily the product of filtering operations, or at the
least, not produced by a common input signal. However, the modeling means here
synthesis or filtering by a linear filter which makes the class of modeling signals as
general as possible6. Moreover, it turns out that the choice of the model structure is
the key to guaranteed linear independency, with almost no restrictions on the input
signals, which is the main motivation of the GLM concept.

3.1.3 The matrix form of the normal equations

The group of equations given in (3.4), the normal equations, submit to a matrix
form

Rw = p , (3.5)

where R and p are named the correlation matrix and the correlation vector, re-
spectively, with a conscious abuse of terminology. The matrix equation (3.5) simply

5This generalization extends to continuous-time signals and systems, as well as, to appropriate
vector and matrix valued decompositions of the signal and system spaces.

6For example the inclusion of individual partial model excitations, xi = Gi[ei], would be re-
dundant in the sense that the different excitations can be integrated to the model, xi = GiEi[x].
This is not completely true if and when the model is supposed to be produced by finite, causal,
and stable filtering operations.
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collects the scalar inner products and the N simultaneous equations into a single
equation for the unknown weights, w = [w1 · · · wN ]T ,

R =




(x1, x1) · · · (xN , x1)
...

. . .
...

(x1, xN) · · · (xN , xN)


 and p =




(y, x1)
...

(y, xN)


 . (3.6)

It is easily seen that the correlation matrix is the transpose of the matrix valued inner
product of the tap-output vector x(n) = [x1(n) · · ·xN(n)]T with itself, R = (x,x)T ,
and equally, p = (y,x)T for the correlation vector. This is the “unconjugated”
form of the normal equations, but the conjugate antisymmetry of the inner prod-
ucts provide many variants7. How the inner products are actually evaluated, or
approximately estimated, depends on the nature of the available information about
the input and output signals and the partial model responses. For example, the
expanded partial model response form of the elements of the correlation matrix and
vector, R = [rij] and p = [pi], are simply rij = (gj ∗ x, gi ∗ x) and pi = (y, gi ∗ x),
which equals rij = (gj, gi∗rxx) and pi = (ryx, gi), respectively, in terms of the (deter-
ministic or stochastic) auto- and cross-correlation sequences8. The lower case letters
point to the utilization of time-domain formulas (2.70) or (2.71) in the evaluation of
the inner products, but the elements of the correlation matrix and vector may also
be derived using the frequency-domain representations

r∗ij =
1

2πj

∮

T
Gi(z)G∗

j(1/z
∗)Sxx(z)

dz

z
(3.7)

=
1

2π

∫ 2π

0

Gi(e
jω)G∗

j(e
jω)Sxx(e

jω)dω, i, j = 1, . . . , N, (3.8)

and

p∗i =
1

2πj

∮

T
Gi(z)Sxy(z)

dz

z
(3.9)

=
1

2π

∫ 2π

0

Gi(e
jω)Sxy(e

jω)dω, i = 1, . . . , N, (3.10)

where Sxx(z) and Sxy(z) are z-transforms of the auto- and cross-correlation se-
quences, respectively9. For deterministic signals, the spectral densities are just ab-
breviations for the function products, Sxx(z) = |X(z)|2 and Sxy(z) = X(z)Y ∗(1/z∗).

7For example, if the model is defined as ŷ = wHx, then the correlation matrix and vector are
given by R = (x,x) and p = (x, y). The form of (3.5) is then restored by a complex conjugation
operation on all the elements, providing a normal equation for the complex conjugated weights,
Rw∗ = p. One of the main properties of any correlation matrix is thus becoming evident, they
are Hermitian symmetric, that is, complex conjugate symmetric, RH = R.

8Various formulations are possible (as it was demonstrated in Section2.3.3) due to the conjugate
(anti)symmetry of the inner products and correlation sequences, respectively.

9Complex conjugation of the terms is used to make the formulas more transparent – in (3.9)
the integrand resulting from pi = (y, gi ∗ x) would actually be Syx(z)G∗i (1/z∗), but p∗i = (gi ∗ x, y)
yields a neater form.
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3.2 General properties of the GLM normal equa-

tions

In principle, the solving of the normal equations consists of two steps, 1) evaluation
of the inner products, and 2) solving of the matrix equation (3.5) with respect to the
unknown variable w. In practice neither of these steps are performed as such. The
evaluation of the inner products involves almost always some kind of approximation
or estimation of the usually unattainable true values, such as, evaluation based on
windowing or other forms of finite data records, both in the time- and frequency-
domains. These questions are too wide-ranging for a general discussion and therefore
only some case-specific considerations are presented in the forthcoming. Likewise,
the discussion on the second step will be restricted to the minimum, since most of
the means for solving conventional normal equations [Proakis and Manolakis, 1992]
[Haykin, 1996], originating from matrix algebra [Golub and Van Loan, 1989], apply
also to the GLM configuration. Thus the aim here is just to show some connec-
tions to conventional results and methods through their common origins, providing
plausible generalizations, and to point out some dissimilarities. A somewhat more
detailed treatment of the properties of the GLM normal equations is given elsewhere
[Paatero, 2000].

The solution of the matrix equation (3.5) is simply

w = R−1p. (3.11)

This solution always exists and it is unique, since the correlation matrix is by def-
inition nonsingular10. That is, the correlation matrix is invertible, the inverse R−1

exists, and the unique solution of Rw = p is w = R−1p. However, direct inversion
of the correlation matrix is avoided since it is usually a numerically ill-conditioned
task11. There are many indirect methods to solve matrix equations of the form
(3.5) [Golub and Van Loan, 1989]. In general, these methods can be divided into
two classes, triangular matrix factorizations and various orthogonal transformations,
where the former represents sophisticated forms of the process of Gaussian elimi-
nation and where the latter is closely related to the eigenanalysis of the correlation
matrix. The conventional autocorrelation matrix is clearly a special case of the
GLM correlation matrix for a particular choice of the model. However, many of the
traditional means for solving normal equations rely solely on the Hermitian symme-
try, providing thus direct generalizations to the more generic GLM configuration.
The common grounds of some of these methods are considered in the following.
In the next section, some additional symmetry and “regularity” properties of the
correlation matrix are related to special cases of the GLM structure.

10The modeling signals, {x1(n), . . . , xN (n)}, are linearly independent if and only if the correla-
tion matrix, also known as the Gram matrix, is nonsingular, that is, its determinant is non-zero,
det(R) 6= 0 [Akhiezer and Glazman, 1981]. In pure matrix terms, a necessary and sufficient condi-
tion is that the correlation matrix should be of full rank.

11Directly meaning some known brute force method such as Gaussian elimination or forming the
inverse as A−1 = adj(A)/det(A), where adj(A) is the adjugate of A formed from all its cofactors
[Golub and Van Loan, 1989].
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3.2.1 The signal matrix representation

As it has been mentioned, the GLM correlation matrix is always Hermitian or Her-
mitian symmetric, which is a direct consequence of the inner product property
(x, y) = (y, x)∗. Another and useful way to see this fact is to decompose R by
defining a modeling signal matrix,

S =




x1(0) x2(0) . . . xN(0)
x1(1) x2(1) . . . xN(1)
x1(2) x2(2) . . . xN(2)

...
...

. . .
...


 , (3.12)

where the GLM partial model responses are simply stacked into the columns of S.
Using the definition of the time-domain inner products it is easy to verify that

R = SHS, (3.13)

and consequently that
RH = (SHS)H = SHS = R. (3.14)

The correlation vector can also be expressed using (3.12), p = SHy, where y =
[y(0) y(1) . . .]T is the system output as a vector12. Now the signal matrix form of
the normal equations is attained as

SHSw = SHy. (3.15)

The solution of the normal equations, in terms of the signal matrix, is then given by

w = (SHS)−1SHy, (3.16)

which can be seen as a generalization of the conventional least-square estimate
[Sorenson, 1980].

Representation (3.15) provides also another set of equations for the unknown weights
w, in general an infinite dimensional matrix equation13

Sw = y ( Sw ≈ y ). (3.17)

If there is an appropriate way to make equation (3.17) finite dimensional, for example
by truncating the signals into M samples, where M ≥ N , in such a way that the
truncation Ŝ is nonsingular14, then the solution of the equation Ŝw = ŷ is attained
as

w = S+ŷ, (3.18)

12The signal matrix representation (3.12)is inherently explicit or “deterministic”, and although
it would not be very instructive to form a “stochastic signal matrix”, the normal equation has a
natural representation in terms of the expected value of the partial model responses; the nth row
of the signal matrix, s(n) = xT (n), where x(n) is the tap-output vector at time n, can be used as
a generic variable in defining R = E[sH(n)s(n)] and p = E[sH(n)y(n)], respectively.

13Especially in this case it should be emphasized that the equality is approximative, that is,
generally there is not an exact solution and the equality sign means minimization of the equation
error ‖Sw − y‖ in the sense of the Hilbert space norm.

14Equivalent ways of expressing the same thing would be that the truncated modeling signals
should remain linearly independent or that Ŝ is required to have full rank, rank(Ŝ) = N .
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where S+ is the pseudo-inverse of Ŝ. In the case of a finite dimensional signal
matrix, the solutions (3.16) and (3.18) are in principle identical, but they point
to very different computational procedures for evaluating the least-square solution
[Haykin, 1996].

Now if the weight vector ŵ is the somehow attained solution of the normal equations,
then the response of the GLM model is ŷ = Sŵ, and the substitution (3.16) provides
an operator form for the model response,

ŷ = S(SHS)−1SHy ≡ Py. (3.19)

The infinite dimensional matrix operator P can be seen as a principled but imprac-
tical generalization of the projection operator ; using vector space notations, ŷ = Py,
where P is a projection from the entire signal space, that is, from `2(N) or H2(E),
onto the finite dimensional approximation space, spanned by the GLM partial model
responses15.

3.2.2 Positive definiteness of the GLM correlation matrix

The signal matrix representation provides also a compact way to verify an important
property of the GLM correlation matrix, namely that it is always positive semidefi-
nite. The GLM response for an arbitrary non-zero weight vector, w ∈ CN , is given
by y = Sw, and a simple manipulation shows that

0 ≤ (y, y) = yHy = (Sw)H(Sw) = wHSHSw = wHRw, (3.20)

or wHRw ≥ 0 for short, which is the condition for positive semidefiniteness.
The expression wHRw is the quadratic or Hermitian form of a Hermitian ma-
trix R. Strictly speaking, the GLM correlation matrix is actually positive definite,
wHRw > 0, for any w 6= 0, since positive definiteness of the correlation matrix is
equivalent to linear independency of the modeling signals16. As in the case of the con-
ventional correlation matrix, the positive definiteness is a combined property of the
input signal and the apparatus that perform the correlation operation: it is possible
to construct input signals that enforce the correlation matrix to be singular (and not
positive definite). However, as a general and not particularly well-founded comment,
such anomalies should not in principle have more severe consequences for the GLM
concept than they inherently have for the conventional setting. The following char-
acterization is adopted from an analogous result for the correlation matrix of a sta-
tionary discrete-time stochastic process [Haykin, 1996]; the GLM correlation matrix
is always positive semidefinite and almost always positive definite. The conjecture
then is that possible violations of the positive definiteness are due to the properties

15Or in matrix terms, a projection onto the column space of S. Any (Hermitian) symmetric and
idempotent matrix, PH = P and P2 = P, is an orthogonal projection, which is easily seen to be
true for P in (3.19), but this “definition” does not tell anything about what it actually projects.
However, the GLM construction in the Hilbert space framework ensures that Py = ŷ ∈ V and
(1 − P )y = y − ŷ ∈ V ⊥, where the approximation space V = span{S}, its complement V ⊥, and
the Hilbert space partitioning H = V ⊕ V ⊥, defines the projection in question.

16If wHRw = 0, for some w 6= 0, then wHRw = ‖∑N
i=1 wixi‖2 = 0, that is, the set of modeling

signals would be linearly dependent.
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of the input signal, and not as such, caused by the choice of the GLM structure17.
Adopting once more concepts from system identification, the property that ensures
positive definiteness is called persistency of excitation, and it is strongly linked to
identifiability properties of the model [Söderström and Stoica, 1989] [Regalia, 1995].
Loosely speaking, persistency of excitation means that the input signal is “spectrally
rich”, that is, potentially capable of exciting all modes or frequency components of
the model, and long enough in duration. This can be stated in terms of the spec-
tral density function, Sxx(ω), by requiring that it should be nonnegative (which it
already is by definition), and in addition, somehow bounded away from zero18.

3.2.3 Eigenanalysis of the GLM correlation matrix

As in the case of the conventional correlation matrix, many theoretical, method-
ological as well as numerical properties of solving the normal equations are closely
related to the eigenvalues of the GLM correlation matrix. The eigenvalues and the
associated eigenvectors are solutions of the matrix equation

Rq = λq ⇐⇒ (R− λI)q = 0, (3.21)

where I and 0 are the unit matrix and the zero vector of appropriate sizes, and where
the unknown variables, q ∈ CN and λ ∈ C, represent the eigenvectors and -values,
respectively19. The solution of the equation (3.21) with respect to λ is attained as
the solution of the characteristic equation,

det(R− λI) = 0, (3.22)

where the left hand side is a polynomial in λ with, as is well known, precisely N roots
that are not necessarily distinct. The eigenvector qi associated to the eigenvalue λi

is then attained as the solution to (3.21), Rqi = λiqi. Multiplying both sides of this
equation from the left by qH and resolving for λi yields

λi =
qH

i Rqi

qH
i qi

, i = 1, . . . , N. (3.23)

17The following reasoning is supposed to be plausible but not particularly exact. The GLM is
defined for a generic input, actually for an arbitrary input in the appropriate signal spaces, and
therefore the occurrence of wHRw = 0 must be an oddity for some special input signals. In
particular, the impulse response Gramian, the correlation matrix for an unit impulse excitation,
should necessarily always be positive definite, which does not however imply that the correlation
matrix is positive definite for an arbitrary input signal: for example, the impulse response Gramian
of the FIR model is in addition orthonormal (the unit matrix), but this does not imply that the
correlation matrix is always positive definite. A somewhat analogous relaxation of rigors is implied
in the definition of the GLM: it would not be very fruitful to enumerate and exclude some signals
from the input space, for example the zero signal, although it is obvious that the modeling concept
fails in such situations. The interplay between the input signal and the model structure is clearly
more involved in the case of the GLM, impossible to characterize in general, but the principled
difficulties are essentially the same for any correlation base modeling scheme.

18The usual requirements vary from continuity and strict positivity to milder constraints re-
lated to the Lebesgue measure, such as, essentially bounded away from zero or non-zero almost
everywhere.

19The geometrical interpretation of (3.21) is that the direction of the eigenvector is invariant
under the linear transformation R, Rq = λq.
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The quotient (3.23) that interconnects eigenvectors and -values is simply the nor-
malized quadratic form for the choice of vector qi. An immediate consequence of
(3.23) is that the eigenvalues are always real and non-negative. In addition, the
smallest eigenvalue is clearly a measure of the positive definiteness. The ratio of
the largest and smallest eigenvalue, the condition number of the GLM correlation
matrix χ(R) = λmax/λmin, evaluates the numerical sensitivity of solving the normal
equations [Golub and Van Loan, 1989].20

The above procedure for the determination of the eigenvalues and corresponding
eigenvectors is usually not used in practice as such, because solving the character-
istic equation is very sensitive to numerical errors. As an alternative, the general
representation of the normalized quadratic form, the Rayleigh quotient, may be used
to evaluate eigenvalues. It is not, for example, difficult to verify that the minimum
and maximum of the Rayleigh quotient with respect to the variable x ∈ CN provides
the smallest and largest eigenvalue,

λmin = min
x∈CN ,x 6=0

xHRx

xHx
and λmax = max

x∈CN ,x6=0

xHRx

xHx
, (3.24)

respectively21. According to the relation (3.23), the minimum and maximum of the
Rayleigh quotient is attained at the corresponding eigenvectors. This optimization
with respect to the Rayleigh quotient provides yet another interesting and facile
generalization of concepts, the GLM eigenfilters, as a generalization of the FIR
eigenfilters [Makhoul, 1981].

The formulas (3.24) provide also a way to evaluate or approximate the condition
number of the GLM correlation matrix that does not require an explicit eigenanal-
ysis. This subject will be re-examined in the case of orthogonal GLM structures,
in which case it will be proven that the minimum and maximum eigenvalues have
bounds that are independent of the particular model structure, that is, they depend
solely on the input signal as in the case of the conventional correlation matrix of a
stochastic process [Haykin, 1996].

3.3 Breaking the GLM normal equations

Directly or implicitly, the general theory of matrix factorizations provides the basis
for linear system analysis, for the solving of normal equations in particular, as well
as the foundation for many signal processing routines. The purpose of this Section
is not to enumerate possible choices or to present any of the methods in detail,
but once more, to link some of the previous results to a few new concepts that
are needed in the forthcoming. Moreover, the attention is oriented towards the

20The condition number is defined here in the sense of the matrix 2-norm, χ(R) ≡
‖R‖2‖R−1‖2 = λmax/λmin.

21The intermediate eigenvalues can be evaluated recursively starting from either form of (3.24),
corresponding to maximin or minimax constraints with respect to the subspaces spanned by the
related subsequence of eigenvectors. The minimax and maximin theorems for an arbitrary eigen-
value, λk, k = 1, . . . , N , may also be formulated without explicitly resorting to the remaining
eigenstructure [Haykin, 1996].
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solving of the GLM normal equations, where the correlation matrix is, by definition,
square, positive definite and Hermitian. This does not, however, mean that less
restricted forms of matrix factorizations are not interesting in the case of the GLM.
For example, the non-square equation (3.18), the over-determined matrix equation
bases on the signal matrix representation, can be solved using various triangular
matrix factorizations [Golub and Van Loan, 1989]. Also in this case, the regularity
of the underlying GLM setup imposes constraints on the non-square equation (3.18)
that limit in a natural way the variety of relevant methods.

3.3.1 Triangular matrix factorizations

The Cholesky factorization is a particular triangular matrix factorization enabled
by the Hermitian symmetry. Every GLM correlation matrix R has a decomposition
R = CCH , where the matrix C is either an upper- or lower-triangular Cholesky fac-
tor. The term “matrix square-root” is also used for the Cholesky factor22. Using the
Cholesky factorization for the GLM correlation matrix, the matrix normal equation,
CCHw = p, is solved in two steps, utilizing an intermediate variable z ∈ CN and
by solving two triangular equations23,

CCHw = C(CHw) ≡ Cz = p ⇒
{

Cz = p
CHw = z

(3.25)

Algorithms for attaining the Cholesky factor of a Hermitian matrix are given in
[Golub and Van Loan, 1989]. However, the Cholesky factorization is not proposed
as a preferable candidate for the actual solving of the normal equations, neither in
the conventional nor in the GLM configuration, but as an intriguing interconnector
between the next topic, the QR decomposition, and the recursive least-square (RLS)
algorithm, which will be derived for the GLM in the end of this Chapter. Intuitively,
the idea is that using the square-root of the correlation matrix, a “square-root
of the normal equations” could be used to avoid the correlation analysis and to
lower the numerical sensitivity of the solution, less surprisingly, proportionally to
the square-root of the original condition number of the correlation matrix24. The
GLM generalizations of square-root adaptive filters will not be speculated further in
this thesis, although the author is very interested in the related interplay between
Kalman and RLS filtering, which was presented and discussed by Haykin, Sayed and
Kailath in an extraordinary and illuminating interaction between two publications
[Sayed and Kailath, 1994b] [Haykin, 1996].

22It is not difficult to show that the Cholesky factorization can alternatively be formulated as
R = CDCH , where D is a real diagonal matrix, and where the Cholesky factor C

√
D is normalized

in the sense that the entries on the main diagonal of C are all ones.
23Triangular equations are solved by substitution/back-substitution, depending on the

lower/upper-triangularity of C.
24Supposing the correlation matrix is a product of its square-root factors, R = R1/2RH/2, then

the “square-root normal equation” is given by RH/2w = z, where z = R−1/2p is the transformed
correlation vector. This results in an efficient algorithm (the QR-RLS adaptive algorithm), if the
ingredients of R1/2 and z can be updated directly from the input data [Haykin, 1996].
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3.3.2 Orthogonal matrix factorizations

Orthogonality is becoming the second most ambiguous term in this thesis, after lin-
earity, and the following will hardly restrain this development. Various orthogonal-
izations can be used to transform the original problem of solving a matrix equation,
whether it be the normal equation (3.5) or the over-determined equation (3.17), into
an equivalent but simpler form. For example, if the Gram-Schmidt orthogonaliza-
tion process (Section 2.3.2) is applied to the signal matrix, and denoted as a matrix
transformation, GS = S⊥, then the normal equations with respect to the orthonor-
mal modeling signals, S⊥, reduce to SH

⊥S⊥w = Iw = SH
⊥y, that is, the optimal

weights, wi, i = 1, . . . , N , are simply the Fourier coefficients of the model output y,
wi = (y, x⊥i ), with respect to the orthonormal modeling signals, x⊥i , i = 1, . . . , N .

The Gram-Schmidt orthogonalization process is an example of a QR factorization
of the signal matrix, S = QR̃, where Q ∈ CM×M is an unitary matrix and where
R̃ ∈ CM×N is upper triangular25. The rectangular matrix R̃ is upper triangular in
the sense that it is a row partition of a square (upper) triangular R̃N ∈ CN×N and
a lower zero block 0 ∈ C(M−N)×N , R̃ = [R̃N ;0]. A matrix is unitary or orthogonal,
if QQH = I, or equivalently QHQ = I, for an appropriate unit matrix I. The first
N columns of the unitary matrix Q = [q1 · · · qM ], QN = [q1 · · · qN ], form an or-
thonormal basis of the approximation space spanned by the signal matrix S. There
are many other and usually preferable methods than the Gram-Schmidt orthogonal-
ization process for performing the QR factorization [Golub and Van Loan, 1989].26

Elementary unitary operations, such as Householder transformations and Givens
rotations, may be used sequentially to modify a matrix into an upper triangular
form. The matrix Q is then the composition of these operations.

The transformation defined by Q, Qx, x ∈ CM , is unitary in the sense that it
preserves the 2-norm, ‖Qx‖2

2 = (Qx)H(Qx) = xHQHQx = xHx = ‖x‖2
2. In

particular, applying the unitary operator QH on the equation Sw = QR̃w = y
transforms it into an upper triangular form,

QHQR̃w = QHy ⇒
[

R̃N

0

]
w =

[
z
...

]
. (3.26)

The solving of the over determined matrix equation (3.17) is thus reduced into a
lower-order square and triangular equation R̃Nw = z. Moreover, the solution of
the normal equation (3.5) is attained in a numerically less sensitive way than the
direct (least-square) estimate (3.16). This is beginning to sound like the “square-
root approach”, and in fact, in the reduced or thin version of the QR factorization,
S = QNR̃N , the matrix C = R̃H

N is precisely the unique lower triangular Cholesky
factor of the correlation matrix R, CCH = R = SHS [Golub and Van Loan, 1989].27

25Here, the dummy notation R̃ is used to avoid an unfortunate ambiguity that would result from
the more natural choice R.

26The Gram-Schmidt orthogonalization process can be seen as a linear transformation G : S 7→
QN , which produces the QR factorization as a by-product.

27In general, the square-root of a matrix is by no means unique, but in the case of a Hermitian
positive definite matrix the Cholesky factor is unique for a chosen form of the factorization.
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3.3.3 Diagonalizations of the correlation matrix

The unitary operator QH ∈ CM×M (multiplication from the left) transforms the
signal matrix into an upper triangular form, QHS = R̃; another unitary operator
U ∈ CN×N (multiplication from the right) can be used to diagonalize the signal
matrix. These two orthogonalizations define the singular value decomposition (SVD)
of the signal matrix,

QHSU = D =

[
DN

0

]
, DN = diag{σ1, . . . , σN}, (3.27)

where it is still presumed that M ≥ N and that the signal matrix is of full rank28.
The diagonal elements are called singular values and they are real and non-negative.
An equivalent form of the SVD of the signal matrix is attained from (3.27) as
S = QDUH . The SVD provides an interesting chain of transformations on the
equation Sw = y:

w̃ = UHw w = Uw̃
Sw = y ←→ Dw̃ = ỹ ←→ w = UD+QHy

ỹ = QHy y = Qỹ
(3.28)

The notation D+ is used to denote the Pseudo-inverse of D [Haykin, 1989], al-
though in this case of a diagonal matrix, the generalized inverse is not particularly
mysterious, D+ = [D−1

N 0], where D−1
N = diag{1/σ1, . . . , 1/σN}. Moreover, by com-

paring the rightmost equation in (3.28) to equations (3.16) and (3.18), it is apparent
that the matrix operator UD+QH is the pseudo-inverse S+ of the signal matrix S,
w = S+y ↔ Sw = y. The least-square optimal GLM weight vector is thus
attained directly from the SVD, but the formula serves also as a reminder of the
inevitable numerical sensitivity of solving the normal equations29.

As implied, the Gram-Schmidt orthogonalization process and the QR factoriza-
tion can be used in constructing the SVD, but once more the practical methods
and aspects, as described for example in [Golub and Van Loan, 1989], are skipped.
Analogously to the QR factorization, also the SVD has a reduced or thin version,
S = QNDNUH . By definition, the vectors qi and ui, picked from Q = [q1 · · · qM ]
and U = [u1 · · · uN ], are the left and right singular vectors of the matrix S, re-
spectively. The columns of QN were recognized earlier as the orthonormal base for
the signal space span(S), but what is U besides a base for the row space of S (range

28In a more general situation, the SVD may be used to evaluate the rank of the system Ax = b;
the rank of the matrix A is precisely the number of non-zero singular values.

29The matrix formula for the weight vector, w = S+y = UD+QHy, can be straightforwardly
expanded as

w = UD+QHy = U[D−1
N 0]

[
QH

N
...

]
y =

N∑

i=1

ui
qH

i y
σi

=
N∑

i=1

ui
(y, qi)

σi
. (3.29)

This expression shows that relatively small changes in S or y (or implicitly in the correlation terms
R and p) may be greatly amplified if the singular values are small [Golub and Van Loan, 1989].
It is also noteworthy that the formula (3.29) states clearly that the weight vector is in span(U)
and that its coordinates are the scaled Fourier coefficients (y, qi)/σi.
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of SH). The expansion of the GLM correlation matrix, R = SHS, in terms of the
(thin) SVD of the signal matrix S provides

R = SHS = (QDUH)H(QDUH) = UDHQHQDUH = UD2
NUH , (3.30)

which is the eigenvalue decomposition (EVD) of the correlation matrix. The eigen-
values are squares of the non-zero singular values and with an appropriate ordering,
λi = σ2

i , i = 1, . . . , N . The corresponding eigenvectors are the columns of U,
U = [u1 · · · uN ], and they are mutually orthogonal and normal. The transposed
form of (3.30),

UHRU = D2
N = Λ, (3.31)

is the unitary similarity transformation of the GLM correlation matrix R. With
respect to equations (3.21), the eigenvalues are also referred to as the spectrum of
the matrix30. The inverse of the GLM correlation matrix is obtained from the EVD
as

R−1 = UΛ−1UH , (3.32)

where Λ−1 = D−2
N = diag(λ−1

1 , . . . , λ−1
N ) for some ordering of the eigenvalues. In-

serting (3.32) into the solution of the normal equation (3.11) yields

w = R−1p =
N∑

i=1

uH
i p

λi

ui, p = (y,x)T = (x, y)∗. (3.33)

This is probably not in general a practical way to solve the optimal GLM weights,
since it is so far computationally the most complex method. Also compared to
the SVD form (3.29), the EVD based expansion is more sensitive to the eigenvalue
spread than its “square-root” counterparts. However, as in the original formulation
of the GLM, the possible (probable) infiniteness considerations are handed back
to the evaluation of the correlation terms, which is in general better justified than
working with truncations of infinite dimensional matrices, as in the case of all pre-
vious factorizations of the signal matrix. Moreover, it is interesting to speculate on
a special form of the GLM identification in light of (3.33); if the modeling signals
are known and fixed, then the GLM approximation of a desired response y is at-
tained as a function of the correlation term p = (x, y)∗ and a predefined eigenvalue
decomposition. That is, the GLM construction is used to generate an orthonormal
base for the parameter space, w ∈ span(U). Equation (3.33) is a generalization of
a well-known interconnection between the concept of optimal FIR Wiener filtering
and the EVD of the autocorrelation matrix [Haykin, 1989].

3.3.4 Orthogonal transformations induced by the GLM

An arbitrary orthonormal set of vectors, {u1, . . . ,uN}, ui ∈ CN , is a base for the
(Hilbert) space CN . Any such base defines an orthogonal transformation, T : CN →

30In Section 3.2.3 the eigenvalues and -vectors were deduced starting from the “eigenequation”
(3.21) and arriving at (3.23), which is precisely a partitioned form of (3.31), if the eigenvectors are
presumed to be normalized. The normalization is always possible, since a scaled eigenvector is still
an eigenvector, showing that eigenvectors are not unique. However, the eigenvalues are unique, but
they are not necessarily distinct. A direct derivation of (3.31), on the basis of the eigenequation
(3.21), would require the eigenvalues to be distinct [Haykin, 1996].
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CN , T : x 7→ y = UHx, and consequently an inverse transform, T−1 : y 7→ x = Uy,
where the transformations are defined by the unitary matrix U = [u1 · · · uN ] for a
chosen order of the basis vectors31. In particular, the EVD of the GLM correlation
matrix defines an orthonormal signal transform for a signal vector x(n),

y(n) = UHx(n) =




uH
1 x(n)

...
uH

Nx(n)


 ←→ x(n) = Uy(n) =

N∑
i=1

yi(n)ui . (3.34)

The transform pair (3.34) is simply the Fourier transform with respect to the or-
thonormal set of basis functions, U = [u1 · · · uN ], but it is also a self-contained
consequence of the eigenanalysis of the GLM correlation matrix. The left and right
hand side of (3.34) are called the analysis and synthesis part, respectively.

Among all unitarily equivalent orthogonal transformations of the form (3.34) there
is a special (although not unique) transformation that diagonalizes the correlation
matrix of the transformed signal32,

Ry = (y,y) = (UHx,UHx) = UH(x,x)U = UHRxU =




d1 · · · 0
...

. . .
...

0 · · · dN


 . (3.35)

This is in fact the unitary similarity transformation (3.31) of the correlation matrix
Rx and the diagonal elements are thus precisely the corresponding eigenvalues. Such
a transformation is called the discrete Karhunen-Loève transformation (KLT) and
it is the optimal signal transformation in the sense of energy compaction and coding
gain [Vaidyanathan 1993].33 Conversely, the KLT is sometimes defined as the signal
transformation that produces optimal compression or low-rank approximation for a
fixed R ≤ N ,

x̂(n) =
R∑

i=1

ci(n)ui , min
ci,ui:i=1,...,R

‖x(n)− x̂(n)‖2, (3.36)

31Square unitary matrices of a fixed dimension N > 0, U(N), form an algebraic group: U(N) is
closed with respect to matrix multiplication, it contains the unit-element I, and every element has
an inverse.

32For simplicity of notation, the correlation is temporarily defined in its conjugated or outer-
product form (see footnote on page 56), Ry = (y,y), which is motivated by the observation that
“the model”, y = UHx, is also in the conjugated form. The calculation rule (UHx,UHx) =
UH(x,x)U can be thought to generalize the scalar inner product axioms, λ(a, b) = (λa, b) and
(a, λb) = (a, b)λ∗.

33It should however be mentioned that KLT is not the only transformation y = Tx with the
property that THRxT is diagonal. Phoong and Lin have proposed an interesting non-unitary
Prediction-based Lower triangular Transform (PLT) which possesses many of the optimality char-
acteristics associated usually solely to the KLT [Phoong and Lin, 2000]. In addition to the de-
correlation property, also the optimality in the coding gain is proven for some proposed implemen-
tations of the PLT. The name of the transform implies that it is related to the Linear Prediction
Coding (LPC). In fact, the transform matrix itself is uniquely determined by the coefficient of the
optimal prediction error filters for successive filter orders, i = 0, . . . , N , with respect to the signal
x(n), and the lower complexity compared to the KLT is due to the efficiency in LPC calculations.
It is also interesting to note that as a triangular factorization, the PLT is closely related to the
Cholesky factorization of Section (3.3.1).
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and the relation to the EVD is then recognized as a sufficient and necessary condition
for the optimality; the eigenvectors with respect to the ordered eigenvalues, λ1 ≥
. . . ≥ λR ≥ . . . ≥ λN , provide the KLT of rank R. However, as pointed out also in
[Ogawa, 1992], the KLT should be defined with respect to the subspace into which
it projects and not as an expansion of fixed eigenvectors, since the eigenvectors are
not even unique.

Once more, in trying to be general, the above discussion has been blurry about the
nature and origin of the signal x(n), and consequently about the specific meaning
of the correlation matrix as well as the measure of optimality. The conventional
setup for the KLT is with respect to the transformation of a WSS random vector,
for example a sample vector, x(n) = [x(n) · · · x(n − N + 1)]T , drawn from a
WSS process x(n) [Haykin, 1996] [Mitra, 2001]. The KLT can then also be seen
as a de-correlation of the random variable defined by orthogonal projections onto
the basis vectors; for a WSS (zero-mean and finite variance) random variable, the
expansion coefficients in (3.34) are zero-mean and uncorrelated (random variables),
E[yi(n)] = 0, E[yi(n)y∗j (n)] = 0, if i 6= j, and E[|yi(n)|2] = λi. The partial model
outputs, x(n) = [x1(n) · · · xN(n)]T , of the GLM to a WSS input signal x(n) is
clearly a WSS random vector, and thus the KLT or de-correlation of x(n) in terms of
the GLM correlation matrix R∗ = E[x(n)xT (n)] is a straightforward generalization
of the conventional KLT. In this form the GLM structure acts as a pre-processing
for the KLT; a simple example of such an operation is the blocking or vectorization
of the input, x(n) → x(n) = [x(n) · · · x(n−N +1)]T , using an unit delay structure.

More genuine generalizations of the KLT are attained by employing the original
setting of transforming an input vector x(n) using generalized correlations defined
by the GLM. The KLT is completely signal dependent, a transformation assigned
to a single signal, although this determination is slightly awkward in relation to a
random signal. Generalizations of the KLT are thus usually related to an enlarge-
ment of the input signal class, or more imaginably, with respect to a set of patterns
that characterizes the signal class [Ogawa, 1992].34 Maybe somewhat surprisingly,
also a restriction to a signal subspace of CN , deduced by the rank reduced KLT
(3.36), may results in a more general classification of input signals. For example
in enhancement of noisy speech signals, the KLT has been used to decompose the
signal into signal and noise subspace components [Ephraim and Van Trees, 1995],
which is based on the observation that speech signals, as a class, are inherently rank
deficient (redundant). The potential benefits of the GLM-KLT concept are also re-
lated to subspace techniques; the generalized KLT generated with respect to GLM
correlation analysis of the combined system of the input and the model may be used
to efficiently compress the representation of the signal. To be more precise, with
a proper choice of the GLM structure with respect to a somehow specified class of
signals, the approximate representation of a signal can be made concise, in the sense

34The term “Generalized Karhunen-Loève”, transformation or expansion, has been used
in various meanings. The generalization in [Nakagawa and Miyahara, 1987] is based on a
weighted error criterion. Another type of generalizations can be categorized as (Wiener)
filtered KLT – the KLT is constructed with respect to a reference signal (other than x)
[Hua and Liu, 1998] [Yamashita and Ogawa, 1996] or with respect to a multiple-signal represen-
tation [Goldstein et al., 1999]. As filtering setups, these latter generalizations would have further
generalizations in terms of the GLM, but this reasoning is clearly getting off the track.
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of R ¿ N in (3.36), where the approximation x̂(n) is the truncated GLM-KLT,
that is, the transformation generated by the EVD of the GLM correlation matrix
with respect to the R largest eigenvalues35.

Some remarks There are some existing proposals that can be seen as gen-
uine GLM-KLT constructions. An allpass pre-filtering technique is proposed in
[Kuo et al., 1996] for unwrapping linear dependencies in the input signal to improve
the performance of the subsequent KLT. The method was entitled transform en-
crypted coding (TEC) to emphasize that as another benefit of the scheme, better
security of the coded signal is achieved. The TEC is obviously a special case of the fil-
tered generalizations of the KLT [Yamashita and Ogawa, 1996] [Hua and Liu, 1998]
[Goldstein et al., 1999]. Another observation is related to the transform-domain
adaptive filters (TDAF) [Marshall et al., 1989] [Haykin, 1996]. The KLT can be
seen as an adaptive de-correlation that is used to pre-process the input before the
actual adaption algorithm. This self-orthogonalization improves considerably the
performance of the adaptive filter [Gitlin and Magee, 1977] [Lee and Un, 1986].36

In practice, the KLT is replaced by an approximative self-orthogonalization pro-
vided, for example, by a fixed transformation and an adaptive estimate of the
eigenvalues [Haykin, 1996]. Alternatively, an adaptive filter may be used to per-
form the de-correlation. A gradient-adaptive Laguerre-lattice (GALL) algorithm
[Fejzo and Lev-Ari, 1997] has been proposed as a pre-orthogonalization for an adap-
tive nonlinear Wiener model [Fejzo and Lev-Ari, 1995]. Various formulations of
recursive-least-squares (RLS) adaptive Laguerre lattice filters have been deduced
[Merched and Sayed, 2001] as generalizations of their conventional RLS lattice coun-
terparts [Haykin, 1996]. These constructions based on the Laguerre filter are genuine
examples of non-trivial GLM de-correlators.

3.3.5 A note on fixed orthogonal transformations

The KLT is usually introduced as a mere theoretical reference for more practical or-
thogonal transforms. Especially in transform coding, it is not just the computational
complexity of the KLT but also the coding and transfer of the signal dependent ba-
sis that makes the KLT scheme impractical. The DFT based discrete cosine and
sine transforms, DCT and DST, respectively, are examples of widely used fixed and
signal independent transforms37. The motivation for using suboptimal transforms is
both practical in the sense of computational complexity as well as more principled

35Using previous relations between the EVD and the SVD, the GLM-KLT can also be deduced
from the SVD of the signal matrix. Nevertheless, here too it is better-justified to integrate potential
infiniteness considerations into the evaluation of the correlation terms than to work with in principle
infinite dimensional signal matrices. However in practice, and in this case of coding a finite signal
block, the dimensions in both interpretations are practically finite: the modeling signals are by
definition decaying (for a finite-duration input extended by an infinite zero sequence) so that any
given positive threshold for the damping (in some sense) of all the signals is met within a finite
data window.

36More generally, virtually any kind of subsequent processing benefits from the de-correlation
and signal scaling provided by the self-orthogonalization.

37Actually, there are four basic forms of both the DCT and the DST [Wang, 1984]
[Yip and Rao, 1987]. The third type of sinusoidal transform is the discrete Hartley transform
(DHT) and there has been propositions for an unified (and at the same time generalized) approach
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with respect to the potentially unknown or time-variant input statistics. Sometimes
the choice of a particular fixed transformation can be argued by considering it as
an approximation of the KLT for certain input signals. For example in the case
of a real autoregressive (AR) process it has been proven that the DCT is a good
approximation of the KLT [Huang and Zhao, 2000]. Another common way of say-
ing about the same is that the DCT and the KLT are asymptotically equivalent
in the sense of the data extending to infinity and at least for “strongly correlated”
or “almost Gaussian” input signals [Nakagawa and Miyahara, 1987].38 This should
not actually be too surprising since in the Hilbert space setup, all orthonormal bases
are “asymptotically unitarily equivalent”.

The GLM concept can be used to generate orthogonal transforms in several ways.
As a signal plus model dependent transformation, the GLM-KLT construction gen-
eralizes the signal dependency with respect to an input related set of filtered partial
model responses. Alternatively, this filtering can be seen as a means to specialize
the transformation for some desired purpose, for example, to reflect an unequal
frequency resolution in the transformation, or to anticipate particular types of en-
ergy envelopes, such as impulse-like, in the transformed signal. According to the
GLM framework, the model input may also be seen as an excitation that is not
related to the signal to be modeled or transformed. The GLM-KLT is thus in
principle a genuine generalization of both the various fixed orthogonal transforma-
tions and the proposed multiple signal (pattern) representation based KL transforms
[Goldstein et al., 1999][Cappelli et al., 2001].

Another form of GLM-generated orthogonal transformation is attained directly in
terms of the orthogonalized signal matrix, S⊥, from the introductory of this Section.
The GLM weights act now as the “coded signal” and an analogous transform to
(3.34) is given by

w(n) = SH
⊥y(n) =




sH
1⊥y(n)

...
sH
N⊥y(n)


 ←→ y(n) = S⊥w(n) =

N∑
i=1

wi(n)si⊥ . (3.37)

The argument n is left to indicate a potential connection to block-by-block trans-
formations and a hat should be attached to y(n) on the right hand side of (3.37)
since the really interesting cases are those when the transformation is approximative.
Kind of an implicit assumption is that (3.37) should be a low-rank approximation,
the dimensionality of w should be less than that of y, which does not yet necessarily
mean approximation in the reconstruction. In practice, and especially in the case of
GLM-generated basis functions, the transform matrix is possibly a truncated ver-
sion of the truly orthogonal signal matrix, an approximately orthogonal matrix. The
corresponding transformation is thus non-unitary, which does not have to be more
dramatic than the non-unitarity produced by rank-reduction in the case of a strictly

for all these transforms [Wang et al., 1992] [Deng et al., 1994].
38The DCT is usually preferred as the candidate for asymptotic equivalence, but this choice is

mainly pragmatic. For real signals the KLT is real in contrast to the DFT that is always complex –
the DCT is preferred over the DST because it is considered to provides more natural basis functions
for most practical cases (caused actually by predetermined choices in indexing, initial phases and
block sizes). However in [Jain, 1976], an exact fast KLT was derived in terms of sine functions
(although not the DST) for a wider class of signals (first-order Markov processes).
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unitary transformation. The transformation (3.37) represents simply “modeling by
synthesis” with respect to a chosen set of basis function {s1, . . . , sN}, or directly
{s1⊥, . . . , sN⊥}, which is the main approach and theme of the rest of this thesis.

Some remarks Alternatively to the matrix-vector multiplication implementa-
tion, the DFT transformation can be performed using a maximally decimated filter
bank [Vaidyanathan 1993]. The coefficients of the analysis and synthesis (FIR) fil-
ters are attained directly from the DFT matrix, and effectively, the combination
of filtering and down-sampling is used simply to evaluate inner products, as in
(3.34) or (3.37). This identity provides also filter bank implementations for other
fixed orthogonal transformations and a genuine interpretation of such transforms
in terms of the GLM. However, these constructions rely on the symmetry prop-
erties of the implied subband filter coefficients, which are usually lost in a more
general case of basis functions. Moreover, in utilizing filtering (convolution) for
computing inner products, either the input or the analysis filters must be flipped
or time-reversed, and the latter choice is commonly embedded in some form of
symmetry of the basis functions. The direct inversion of the filter coefficients is
possible only for FIR filters, and thus in general, it is the input that has to be time-
reversed39. The concept of lapped or non-square transforms is also useful in produc-
ing more flexible transforms [Malvar, 1990]. These questions are considered in the
special case of GLM-oriented transforms provided by various formulations of warped
transforms and related warped filter banks [Oppenheim et al., 1971] [Laine, 1992]
[Philips, 1994] [Evangelista and Cavalieri, 1998]. The warped discrete Fourier trans-
form (WDFT) was surprisingly rediscovered recently [Makur and Mitra, 2001] and
the authors should be acknowledged, if not for the originality of the concept, for
the deduction based on the nonuniform DFT [Bagchi and Mitra, 1996] that provide
at least in principle a way to generalize the WDFT to include warping with higher
order allpass mappings. As a final remark related to fixed transforms, the nature of
the GLM suggests that the potentially relevant applications of GLM-related fixed
transforms should probably fall into the category of “pulse coding”, such as, the
coding of electrocardiographic (ECG) signals [Olmos et al., 1999], the compressed
storage of seismic data [Spanias et al., 1990], or the modeling of speech waveforms
[Ephraim and Van Trees, 1995].

3.4 Two generic GLM structures corresponding

to particular types of correlation matrices

The definition of the GLM is based on the assumption of linear independency of
the modeling signals, and thus, it can be justly argued that the whole construction
is somewhat artificial and hollow as long as there are no guidelines for constructing
structures with guaranteed linear independency. However, the definition of linear

39It is always possible to approximate an IIR subband filter by an FIR filter, and thus to construct
an approximative square transform matrix. Direct truncation of the impulse responses is a simple
choice, but an alternative re-sampling in the frequency-domain gives probably better results: the
transfer function of the subband filters are evaluated at ej2πk/N , k = 0, . . . , N − 1, from which an
inverse N-point DFT provides the FIR filter coefficients.
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independency is itself arrogantly formulated and not very constructive, a definition
based on an implicative relation that is practical mainly in proving linear depen-
dency. This is why the linear independency was related earlier directly to conse-
quential properties such as nonsingularity and positive definiteness of the correlation
matrix. Here too, the justifying argument for the general framework is that the con-
tribution of the input signal and the model to the linear independency are essentially
separable; the former was previously characterized as the persistency of excitation
of the input signal, and in essence, the latter reduces to the requirement of positive
definiteness of the model impulse response Gramian, the correlation matrix for unit
impulse excitation.

It is possible to formulate a list of principles for constructing GLM structures as
parentheses for the ground rule “almost anything will do”. For example any irre-
ducible collection of causal LTI partial models is valid, meaning that the partial
model transfer functions are mutually irreducible when linearly combined. A much
weaker requirement is that none of the partial models should collapse, that is, al-
though some of the partial models may have reducible terms, no pairing of the
partial responses should result in a constant scaling relation between the transfer
functions. Particularly, for rational partial models it is relatively easy to construct
principles in terms of the explicit parametrizations of the partial models and the
related model orders. In the following, however, two important conceptual forms of
the GLM configuration are induced as consequences of increased regularity or struc-
ture of the correlation matrix. In addition, the linear independency presumption is
more inherently fulfilled in these constructions, in the sense that the contribution of
the model structure is quite explicitly characterized, although the actual building
blocks of the models are still relatively generic..

3.4.1 Toeplitz and block-Toeplitz forms

The Hermitian symmetry of the correlation matrix has been the ongoing driving
force in deducing GLM counterparts for concepts that are conventional associated
only to the FIR model40. There is however another orientation of symmetry that
can be used to facilitate the solving of linear matrix equations. A square matrix R
is persymmetric if it is symmetric with respect to its northeast-southwest diagonal;
the persymmetry is characterized by the relation R = JRTJ, where J is the permu-
tation or counter-identity matrix of appropriate dimensions. More importantly, the
inverse of a persymmetric matrix, if it exists, is persymmetric. A Toeplitz matrix
is a particular form of a persymmetric matrix, where the main diagonal and all its
subdiagonals are symmetric in the sense that each of them consists of identical ele-
ments. A Hermitian symmetric Toeplitz matrix is thus defined uniquely by N + 1

40In fact, the Hermitian symmetry has implicitly been used in a stronger sense than the sole
technical property posed on a matrix: a GLM correlation matrix is also weighty about its main
diagonal, measured for example as the distribution of square norms of the elements, which is an
important practical observation with respect to the solving of the normal equations, its positive
definiteness, and the usability of various matrix factorizations. The relative concentration of energy
on the main diagonal, in addition to the Hermitian symmetry, is in fact the property that justifies
the use of the term “correlation”.
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elements,

RN+1 =




r0 r1 · · · rN−1 rN

r∗1 r0 rN−1
...

. . .
...

r∗N−1 r0 r1

r∗N r∗N−1 · · · r∗1 r0




, (3.38)

where the modification in dimension and indexing will be utilized shortly. The ele-
ments of (3.38) may in turn be square matrices of a common dimension, in which case
the matrix is called block-Toeplitz. It is fairly intuitive that a correlation matrix of
the form (3.38) is related to some sort of shift-invariancy of the data that is collected
and correlated. In the case of the input signal itself and with respect to an “auto-
correlation” of the sequence using the delay operator, the (block-)Toeplitz property
is a characterization, or conversely a definition, of the stationarity of the stochastic
(vector) signal. This relation between statistical concepts and time-series analysis,
glued by the exactitude of the function (Hilbert) space framework, is the very basis of
linear filtering and prediction theory41. The significance of the (block-)Toeplitz form
of the correlation matrix is that it suggest a nested or iterative solution; in terms
of the GLM normal equations (3.5), if the solution of the equation RNwN = pN is
available, then the order update normal equation RN+1wN+1 = pN+1 is of the form

[
RN JrN

rH
NJ r0

]
wN+1 =

[
pN

pN+1

]
, (3.39)

where rN = [r1 · · · rN ]T is identified from (3.38) and where pN+1 is the new cross-
correlation term. It is not difficult to show that the solution of (3.39) is given by42

wN+1 =

[
wN − αNJR−1

N rN

αN

]
, αN =

pN+1 − rH
NJwN

r0 − rH
NR−1

N rN

, (3.41)

where it is essential that the inverse of a persymmetric matrix is also persymmetric
[Golub and Van Loan, 1989]. The term R−1

N rN = w′
N in (3.41) is the solution of

the corresponding Yule-Walker equation, RNw′
N = rN , and it is also presumed

41Kailath provides an interesting historical survey [Kailath, 1974] as well as a collection of
“benchmark papers” [Kailath, 1977] on the subject. Particular contributions are associated to Kol-
mogorow, Wold, Krein [Kailath, 1977] and Wiener [Wiener, 1949]. It is amazing how Kolmogorow
states household concepts of digital signal processing, such as linear (forward and backward) pre-
diction, moving-average process, and linear convolution. This is not the only instance when the
original formulation is inherently in discrete-time and more general in contrast to the perspective
offered by most DSP textbooks. This is at least partly due to the dominance of the so-called
Wiener filtering theory [Wiener, 1949] and its importance in the first actual signal processing ap-
plications using analog network synthesis [Lee, 1960]. It is however paradoxal that Wiener’s effort
in emphasizing the application and engineering side of his work has resulted in an one-sidedness
that does not originate from Wiener. This is however a fortunate historical detorsion for such as
the author of this thesis; there is still room for digging between the original ideas and current inter-
pretations and applications, a possible call for yet another sequel in the category “linear filtering
- once more with feeling”.

42Using the partition wN+1 = [zN αN ]T , the solution is attained by solving the augmented form
of (3.39), {

RNzN + αNJrN = pN

rH
NJzN + r0αN = pN+1

(3.40)

with respect to zN and αN , and utilizing R−1
N pN = wN and R−1

N J = JR−1
N .
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to be known. Thus the suggested iterative method consists actually of solving
two matrix equations in parallel: the weight vector wN is first upgraded using
R−1

N rN = w′
N in (3.41) and then the same recursion is utilized directly for the

auxiliary parameter w′
N using rN+1 in place of pN+1. The real and scalar version

of this procedure is known as the Levinson algorithm [Levinson, 1947].43 In ma-
trix terms it is the solution of a Toeplitz system with a general right hand side
(in the normal equation), in contrast to the iterative solution of the Yule-Walker
system [Golub and Van Loan, 1989]. The algorithm was much later reinvented in
the constrained latter form [Durbin, 1960], which has caused odd logic in termi-
nology. A retrospective renaming has also been used due to a close relationship
between the Levinson algorithm and the recurrence relations of the Szegö orthog-
onal polynomials [Szegö, 1939]. These interesting interconnections and some gen-
eralizations of the Levinson algorithm have been considered from various aspects,
such as, lossless wave scattering [Dewilde et al., 1978], lossless transfer functions
[Delsarte et al., 1982] and Hilbert space projections related to the shift operator
[Lev-Ari et al., 1984].

The Levinson algorithm is more than just an efficient way to solve Toeplitz systems.
In its conventional form for linear prediction it provides an one-to-one correspon-
dence between three sets of parameters for characterizing a WSS signal x(n), the
(auto)correlation terms {ri}, prediction error filter coefficients {wi}, and the reflec-
tion coefficients {ki} of a corresponding lattice filter [Haykin, 1989]. The interest
here is not necessarily in the linear prediction setting, but rather in the orthogo-
nalization process implied by the conversion to the lattice form. As an introduc-
tion, if the Gram-Schmidt orthogonalization process (Section 2.3.2) is applied to the
GLM tap-output vector x(n) = [x1(n) · · · xN(n)]T , then the elements of the vector
b(n) = [b1(n) · · · bN(n)]T , given by

bi = xi −
i−1∑
j=1

(xi, bj)bj ; b1 = x1

= xi −
i−1∑
j=2

(xi, bj)bj − (x2, x1)x1 ; b2 = x2 − (x2, x1)x1 (3.42)

are mutually orthogonal44. The second line in (3.42) is included to demonstrate
that the orthogonalization process may also be expressed as a matrix operation,
b = Tx, where the elements of the lower triangular matrix T are attained by
grouping common factors45. The signals are here considered as generic entries in
x and b. If instead the explicit (or deterministic) signal vector representation is
used, a rearrangement of (3.42) provides the QR decomposition of the signal matrix
S = [x1 · · · xN ] (Section 3.3.1).46 Formula (3.42) has an immediate interpretation

43Levinson’s article was republished as an appendix in Wiener’s Extrapolation, Interpolation,
and Smoothing of Stationary Time-Series, with Engineering Applications [Wiener, 1949], a “trivial
procedure ... to facilitate computation”, as introduced by the author.

44The time-variable and the normalization of the elements {bi} is omitted.
45The b’s are eliminated from the right hand side by recurrent substitution and linearity of

the inner product is used to expand terms – the formula will get really messy after couple of
substitutions.

46Using column vector denotations, xi and bi, and normalization for the latter terms, qi =
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in light of the Hilbert space Projection Theorem (Section 2.3.2): the entity bi is the
approximation or prediction error resulting from approximating xi in the subspace
V = span{x1, . . . , xi−i} and it is by definition orthogonal to V . Moreover, an
orthogonal base {b1, . . . , bi−i} of V is used and the (LS or MMS) optimal weights
are given by the Fourier coefficients (xi, bj), j = 1, . . . , i − 1. The purpose of this
section is to show that the straightforward but increasingly complicated procedure
(3.42) for producing the orthogonal signals {bi} from the modeling signals {xi}
simplifies greatly in the case of a (block-)Toeplitz correlation matrix by introducing
a corresponding GLM lattice structure47.

The GLM structure is by construction parallel, as it was depicted in Figure 3.3. It
is not however difficult to deduce that a GLM structure with a Toeplitz correlation
matrix has to be equivalent to a tapped transversal structure where the cascaded
blocks between the tap-outputs are identical inner, lossless or allpass functions,
taken once more as interchangeable terms [Paatero, 2000].48 Such a configuration is
represented in Figure 3.5, where the indexing of the tap-outputs is modified to start
from zero. The elements of the correlation matrix may now be expressed using the
allpass operator with respect to x0,

r∗ij = (xi, xj) =

{
(Aix0, A

jx0)
(Ajx0, A

ix0)
∗ =

{
(Ai−jx0, x0) ≡ rk, k = i− j ≥ 0
(Aj−ix0, x0)

∗ = r∗−k, k = i− j < 0
, (3.43)

where conjugate symmetry is used to simplify denotations and to attain one-to-one
correspondence to the notation of (3.38).

The shift-invariancy is also reflected to the correlation vector in a certain way. The
N + 1 dimensional GLM tap-output vector xN+1 submit to natural partitions using
vectors x0 and x, respectively, as defined and related by

xN+1(n) =




x0(n)
...

xN(n)


 =

[
x0(n)
xN(n)

]
=

[
x0(n)
x(n)

]
=

[
x0(n)

Ax0(n)

]
. (3.44)

Now the tap-output vectors x0 and x may be used to approximate xN and x0,
respectively, resulting in a generalization of the conventional forward and backward

bi/(bi, bi), the formula (3.42) transposes into xi = qirii +
∑i−1

j=1 rjiqj , or in composite form S =
QR, where Q = [q1 · · · qN ] is orthonormal and where the elements of R now constitute an
upper-triangular square matrix.

47It would be possible to simply state the lattice structure and then to derive the connection
to (3.42) using tedious circuit identification and some additional presumptions, but the following
reasoning is more instructive, relatively compact and even fairly original.

The interconnection between the conventional prediction error formulation and the lattice
form has been considered in depth in many excellent DSP textbooks [Roberts and Mullis, 1987]
[Haykin, 1989] [Proakis and Manolakis, 1992]. More theoretical, general and exhausting deduc-
tions where cited in the previous paragraph. In addition to the aforementioned, the follow-
ing construction is also inspired by other related lattice generalizations [Messerschmitt, 1980]
[Oliveira e Silva, 1997], but the setting and the main steps of the deduction are somewhat in-
novative.

48The necessity is plausible at least for rational partial transfer functions, but it is argued here
that the result is more general due to uniqueness properties of analytic functions with respect
to identities on the boundary: every structure that produces a Toeplitz correlation matrix is in
practice equivalent to the described form. The sufficiency of the argument is clear enough and it
will be explicitly utilized in the following deduction.

75



Figure 3.5: A tapped transversal GLM structure corresponding to a Toeplitz corre-
lation matrix. The common pre-filter (the transfer function from the input to the
first tap-output) is arbitrary, but the following blocks are identical allpass functions.

linear prediction error setting [Haykin, 1989],

{
fN(n) =

∑N
i=0 fiNxi(n) = x0(n)− (−fN)Tx(n)

bN(n) =
∑N

i=0 biNxi(n) = xN(n)− (−bN)Tx0(n)
, (3.45)

where the formulas are once more used to define quantities. The double negation
is used to account for the approximation error formulation as well as to simplify
upcoming expressions. It is easily deduced that the GLM correlation vectors, pf

N =
(x0,x)T and pb

N = (xN ,x0)
T with respect to the approximation problems (3.45), are

related as pf
N = J(pb

N)∗, that is, they are conjugate persymmetric49. In fact, the
modeling setup is in the Yule-Walker form, which means that the correlation vectors
are also generated by (3.43) and that they have already been denoted as r∗N and
JrN , respectively. The respective normal equations are thus given by −RN fN = r∗N
and −RNbN = JrN . By operating either of these equations with J and using the
persymmetry of the correlation matrix, it is clear that also the solutions of the
corresponding normal equations are conjugate persymmetric, bN = Jf∗N , or vice
versa for fN and bN .50 This observation has many immediate consequences. For
example, the norm (energy) of the prediction error signals (3.45) are necessarily
equal. Moreover, the transfer functions of the prediction error filters are “conjugate
mirror images” of each other, when expanded as polynomials in the shift operator51.

49As stated, pf
N = (x0,x)T = (x, x0)∗, and a manipulation of the second term reveals

pb
N = (xN ,x0)T =




(xN , x0)
...

(xN , xN−1)


 =




(xN , x0)
...

(ANx0, A
N−1x0)


 =




(xN , x0)
...

(x1, x0)


 = J(pf

N )∗. (3.46)

50Notably, also the augmented vectors [1 fT
N ]T and [bT

N 1]T are conjugate persymmetric.
51These transfer functions are defined as z transforms of (3.45) for X0(z) = Z(x0) = 1, that is, as

transfer functions from x0 to xi, i = 1, . . . , N . Using an apostrophe to indicate the normalization
by X0(z),

F ′N (z) = FN (z)/X0(z) =
N∑

i=0

fiNAi(z)

B′
N (z) =

N∑

i=0

biNAi(z) =
N∑

i=0

f∗iNAN−i(z) = AN (z)
N∑

i=0

f∗iNA−i(z)

= AN (z)
N∑

i=0

f∗iN (Ai(1/z∗))∗ = AN (z)(F ′N (1/z∗))∗, (3.47)

where the property A−1(z) = A∗(1/z∗) of an allpass function is utilized. Formula (3.47) is a
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Now if the Levinson algorithm (3.41) is used to order update fN , utilizing the re-
lation −RN fN = r∗N ⇔ R−1

N rN = f∗N , then the order updated augmented forward
prediction error vector is given by

[
1

fN+1

]
=




1
fN + αNJf∗N

αN


=




1
fN
0


 + αN




0
Jf∗N
1


=




1
fN
0


 + αN




0
bN

1


 . (3.48)

The second step is simply a partition, where however knowledge of the particular
form of fN+1 is used to force zeros into the partial vectors. The order updated
prediction error signal fN+1(n) can then be formed as in (3.45), and subsequently
expanded utilizing (3.44) and (3.48), to provide52

fN+1(n) = [1 fT
N+1]xN+1(n) = [1 fT

N 0]

[
x0(n)
xN(n)

]
+ αN [0 bT

N 1]

[
x0(n)

Ax0(n)

]

= [1 fT
N ]x0(n) + αN [bT

N 1]Ax0(n) = fN(n) + αNAbN(n). (3.49)

The corresponding formula for the backward prediction error is attained in a similar
way, by inserting JbN = −R−1rN into the Levinson algorithm (3.41), or more
directly by operating the vector partition (3.48) with J(·)∗, to produce

bN+1(n) = [bT
N+1 1]xN+1(n) = [0 bT

N 1]

[
x0(n)

Ax0(n)

]
+ α∗N [1 fT

N 0]

[
x0(n)
xN(n)

]

= [bT
N 1]Ax0(n) + α∗N [1 fT

N ]x0(n) = AbN(n) + α∗NfN(n). (3.50)

By combining (3.49) and (3.50), the order update recursions can be expressed si-
multaneously as {

fN+1(n) = fN(n) + kf
NAbN(n)

bN+1(n) = AbN(n) + kb
NfN(n)

(3.51)

or in the corresponding matrix form

[
fN+1(n)
bN+1(n)

]
=

[
1 kf

N

kb
N 1

] [
fN(n)

AbN(n)

]
=

[
1 kf

NA
kb

N A

] [
fN(n)
bN(n)

]
, (3.52)

for N = 0, 1, . . ., and using initializations f0(n) = x0(n) and b0(n) = x0(n). The
“Levinson constant” αN is temporarily replaced with more generic “coupling coef-
ficients” kf

N and kb
N . Formula (3.52) suggests a two-pair processing block defined

by the coupling matrix and the shift operator, a generalized feed-forward lattice
section, and a cascade connection of such sections forms a generalized feed-forward
lattice structure. The parameters of the coupling matrix are called reflection co-
efficients and another reason for distinguish them from the Levinson constant, be-
sides increased generality, is that they can be evaluated using local correlations
obtained directly from the lattice structure signals, that is, without resorting to the
transversal-form correlation terms. There are many ways to conclude that minimiza-
tion of the energy of the prediction error signals (3.51) with respect to the lattice

generalization of the relation for real FIR prediction error filters, BN (z) = z−NFN (z−1), or of the
formula for producing a dual set of orthogonal polynomials [Szegö, 1939].

52Notably, two different forms of the data vector (3.44) are used to match with the particular
form of the parameter vector (3.48).
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coefficients results in53

kf
N = − (fN , AbN)

(AbN , AbN)
= −(fN , AbN)

(bN , bN)

kb
N = −(AbN , fN)

(fN , fN)
= −(fN , AbN)∗

(fN , fN)
(3.54)

In particular, fN+1 and bN+1 are by construction orthogonal to AbN and fN , re-
spectively, and expanding these orthogonality conditions, (fN+1, AbN) = 0 and
(bN+1, fN) = 0, using (3.51), provides readily (3.54). Notably, the reflection coeffi-
cients act as Fourier or projection coefficients with respect to the local approximation
spaces spanned by {AbN} and {fN}, respectively, where the denominator terms rep-
resent normalization of the corresponding basis functions. Alternatively, the inner
product in the numerator can be seen as a correlation term between the lattice stage
inputs54. In the forward and backward linear prediction setting, the denominator
terms are equal, which provides a restatement of the fact that the reflection coeffi-
cients are complex conjugates of each other. Another immediate consequence of the
symmetry is that the prediction error energies possess simple recurrence relations55

{
Ef

i+1 = (fi+1, fi+1) = (1− kik
∗
i )(fi, fi)

Eb
i+1 = (bi+1, bi+1) = (1− kik

∗
i )(bi, bi)

⇒ Ei+1 = E0

i∏
j=0

(1− kjk
∗
j ), (3.55)

for i = 0, 1, . . ., whenever Ei+1 = Ef
i+1 = Eb

i+1, and where E0 = (f0, f0) = (b0, b0) =
(x0, x0) is the energy of the input signal x0(n) to the first lattice section. From the
right hand side of (3.55) it can be concluded that the sequence of prediction error
energies is strictly decreasing if and only if |ki| < 1 for all i = 0, 1, . . ., which can
also be seen as a requirement for (strict) stability of the lattice recursion (3.51).56

In practice, the correlation terms in (3.54) have to be estimated from finite data
records. For example, if the inner products are interpreted as expectation opera-
tions, then some chosen (weighted) time-average may be used to evaluate the lattice

53For example, the minimum (which is a unique global minimum) of (fN+1, fN+1) with respect
to kf

N is obtained by expanding the inner product as

(fN+1, fN+1) = (fN , fN ) + (fN , kf
NAbN ) + (kf

NAbN , fN ) + ((kf
NAbN ), kf

NAbN )

= (fN , fN ) + kf∗
N (fN , AbN ) + kf

N (AbN , fN ) + kf
Nkf∗

N (AbN , AbN ), (3.53)

where chosen calculation rules are utilized to extract the reflection coefficient from the inner prod-
ucts. The minimum is then attained directly from the quadratic form with respect to kf

N or by
applying suitable conventions for complex derivatives [Brandwood, 1983] of the quantities to locate
the minimum. The coefficient kb

N is attained in a similar manner from minimizing (bN+1, bN+1),
bN+1(n) = AbN (n) + kb

NfN (n).
54The term partial correlation coefficients (PARCOR or PCC) has been established by

various authors [Itakura et al., 1972] [Markel and Gray, 1973] [Makhoul, 1977] [Lee et al., 1981]
[Porat and Kailath, 1983].

55The recurrence formulas are obtained by forming the prediction error energies with respect to
recursions (3.51) and by substituting mixed expressions from (3.54) into the produced equations,
for example, by substituting −kf

N (AbN , AbN ) = (fN , AbN ) and −kf∗
N (fN , fN ) = (AbN , fN ) into

(3.53).
56At the present, the term stability is used merely as a condition for the meaningfulness of

the prediction error setting; stability issues of the implied inverse model will be considered very
briefly in the upcoming. In particular, there are no restrictions on the reflection coefficients when
recursions (3.51) are used for general feed-forward (GLM) lattice filter synthesis.
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coefficients. Due to the alternative forms of the lattice coefficient formulas, it is
apparent that approximation with respect to different quantities in the correlations
will most likely have an effect on the attained estimates. In particular, the chosen
approximation may produce reflection coefficients with magnitude greater than one.
Somewhat better balanced estimates are obtained by using both prediction error
signals in the normalization of the correlation terms57. The choice of estimated
quantities becomes even more crucial when instantaneous or recursively updated
estimates are used in a genuinely adaptive lattice formulation. GLM counterparts
of the prototype adaptive algorithms will be considered in Section 3.5, along with
some indications on their lattice form counterparts.

The GLM lattice structure corresponding to the recursion (3.51) with lattice coeffi-
cients kf

N = k∗N and kb
N = kN is depicted in Figure 3.6. The first filter block A0(z) is

inherited from the original transversal construction and it acts as a pre-filter for the
subsequent lattice structure. The choice of G0(z) is arbitrary in the sense that it
does not affect the previous deduction of the GLM lattice structure58. In fact, even
the (GLM) linear independency presumption is relaxed, since the modeling signals
xN+1(n) = [x0(n) · · · xN(n)]T of the transversal structure in Figure 3.5, or the cor-
responding modeling signals bN+1(n) = [b0(n) · · · bN(n)]T of the lattice structure
in Figure 3.6, are inherently linearly independent for any stable and causal G0(z)
and A(z), where the latter is, in addition, still presumed to be an allpass function59.
However, the point of this whole consideration is that the lattice structure provides
an efficient implementation of the orthogonalization operation: the tap-output sig-
nals bN+1(n) = [b0(n) · · · bN(n)]T are mutually orthogonal in the ideal GLM setting
with respect to the exact reflection coefficients (3.54).60

In the hope of getting this consideration to converge, only a few aspects of the
lattice orthogonalization are considered in conclusion. The explicit relation between
the GLM tap-output vector x(n) and the orthogonalized tap-output vector b(n) is

57Utilization of the geometric mean of the denominators in (3.54), (Ef
NEb

N )1/2, as a common
normalizing term is well-justified [Itakura et al., 1972], although it does not result from an ac-
tual error criterion [Makhoul, 1977]. In contrast, normalization with respect the arithmetic mean,
(Ef

N +Eb
N )/2, is directly related to minimizing the sum of prediction errors and this strategy is usu-

ally (at)tributed to Burg [Makhoul, 1977] [Haykin, 1989]. It is easy to verify that the corresponding
reflection coefficients, kI

N and kB
N , are related to the ones in (3.54) through kI

N = ±(kf
Nkb

N )1/2 and
kB

N = 2kf
Nkb

N/(kf
N +kb

N ), respectively. The Burg-method can thus be seen as the more conservative
choice, |kB

N | ≤ |kI
N |, since equality is attained only in the case when the estimates of kf

N and kb
N

coincide.
58The lattice structure was deduced with respect to the reference signal x0(n), and thus, choices

of the form G0(z) = Ai(z), i = 0, 1, . . ., would release the generalized (auto)correlations (3.43) in
terms of the actual input signal x(n). Moreover, some choice relate the subsequent GLM lattice
to the conventional feed-forward lattice through a change of variable, z−1 ↔ A(z); the trivial
candidate for such an interpretation is G0(z) = 1, but is some cases, there are also better-justified
“balancing functions” G0(z) induced by a particular A(z) (Section 2.4.3).

59The linear independency is asserted, for example, by the considerations related to the shift
operator in Section 2.4.3.

60The orthogonality, (bi, bj) = 0, i 6= j, is a direct consequence of the definition of the back-
ward prediction error (3.45) and the Hilbert space projection theorem (Section 2.3.2): for optimal
prediction error coefficients ci, the error bi = xi − cT

i xi−1 is orthogonal to the tap-output vector
xi−1 = [x0 · · · xi−1]T , denoted as (bi,xi−1) = 0T , which implies that (bj , bi) = (bj , xi−cT

i xi−1) =
(bj , xi)− cH

i (bj ,xi−1) = 0 for j > i, and consequently also for j < i.

79



Figure 3.6: The GLM lattice structure deduced from a (block-) Toeplitz correlation
matrix and a related transversal structure (Fig. 3.5) with identical allpass blocks.
The block-Toeplitz case implies a modified structure with vector valued internal
signals {xi, fi,bi}, matrix delay blocks A(z)I, and reflection coefficient matrices
{Ki}, which are equally obtained from (3.54) with respect to matrix valued inner
products. Notably, the forward and backward coefficient matrices are no longer
Hermitian transposes of each other since the denominator terms (bi,bi) and (fi, fi)
in (3.54) are not necessarily equal, that is, their traces that still represent prediction
error energies are equal, but the matrices are not diagonal, which in turn implies that
the component signals are not usually mutually orthogonal. The input signal is then
alternatively itself a signal vector or then the pre-filter may act as a multiplexer,
x0 = G0(z)x; the components of x0 are presumed to be linearly independent in
order to ensure invertibility of the aforementioned matrices.

given by 


b0(n)
b1(n)
b2(n)

...
bN(n




=




1 0 0 · · · 0
b01 1 0 · · · 0
b02 b12 1 · · · 0
...

...
...

. . .
...

b0N b1N b2N · · · 1







x0(n)
x1(n)
x2(n)

...
xN(n




, (3.56)

which is simply a collection of GLM backward prediction error models (or filters)
of the form (3.45) for orders 0, . . . , N . It is obvious but noteworthy that the trans-
formation (3.56), denoted as b = Lx, is invertible; the inverse L−1 exists since
det(L) = 1 6= 0, and in addition, the inverse is also known to be unit lower tri-
angular [Golub and Van Loan, 1989]. Now as it was preluded, the transformation
(3.56) can be recognized as the matrix representation of the Gram-Schmidt (GS)
orthogonalization process (3.42). This is seen by identifying terms in (3.56) and
the augmented form of (3.42), which is another proof of the orthogonality of the
backward prediction error signals. In practice, however, it is not meaningful to
form mappings between the elements of L and the inner product terms by trying
to replace the GS recursion with a block-operation using back-substitution, as it
was boldly implied in (3.42), although the correlation shift-invariancy (3.43) would
simplify the expression substantially compared to the general case. The point is
that the Yule-Walker form of the Levinson algorithm, or the implied lattice recur-
sion, provide efficient ways to generate all the elements in L; the prediction error
coefficients for all orders up to N are determined order-recursively from the corre-
lation terms {r0, . . . , rN}, or more directly from the estimated lattice parameters
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{E0, k0, . . . , kN−1}, respectively61. More precisely, successive rows of the matrix L
are generated as

[bT
i+1 1] = [ki bT

i + kiJbH
i 1], bT

i = [b0i · · · b(i−1)i], (3.57)

which is simply the conjugate persymmetric counterpart of the update formula (3.48)
for ki = α∗i . This expression manifests the decoupling or orthogonality property of
the lattice parametrization; the lattice parameters are independent of the approx-
imation order, or conversely, the order update of the whole set of forward and
backward prediction error coefficients is determined by a single lattice parameter.
The recursion (3.57) for i = 0, . . . , N − 1 can be considered as a mapping L : k 7→ b
from the lattice parameter vector to the prediction error coefficient vector of the
corresponding (final) prediction order. Moreover, the mapping is invertible and
the inverse L−1 is attained using a step-down recursion62. This one-to-one corre-
spondence between model descriptions provides useful means to such operations as
model reduction, parameter interpolation and stability control, regardless of the
actual model implementation. However, the emphasis is still on the more general
modeling setup than the prediction error configuration; the parameter mapping L is
just an intermediate operation for deducing the lattice structure or for constructing
the signal transformation L, that is, a way to implement favorable pre-processing
prior to forming the actual GLM. The following two paragraphs aim to summarize
the preceding more clearly in terms of the original modeling task. In particular,

61The term E0 is the energy of the lattice input signal, E0 = r0, and it acts as a signal scaling
information in addition to the N -dimensional signal model parametrization. In the linear prediction
setting it is common to replace E0 with EN , the final (forward) prediction error energy, because it
is the required information for the synthesis operation; EN is given in (3.55) as a function of the
parameters {E0, k0, . . . , kN−1}.

62The middle term in the recursion (3.57) is of the form b̃N+1 = bT
N + kNJbH

N , and together
with its conjugate persymmetric counterpart, Jb̃

∗
N+1 = JbH

N + k∗NbT
N , they form an invertible

transformation pair
[

Jb̃
∗
N+1

b̃N+1

]
=

[
1 k∗N

kN 1

] [
bT

N

JbH
N

]
↔

[
bT

N

JbH
N

]
=

1
1− k∗NkN

[
1 −k∗N

−kN 1

][
Jb̃

∗
N+1

b̃N+1

]
. (3.58)

The inverse operation is in principle defined whenever the determinant of the coupling matrix T is
non-zero, det(T) = 1−k∗NkN 6= 0. The strict condition |ki| < 1 for all ki guarantees thus an one-to-
one mapping between two parameter sets, but as in the conventional linear prediction setting, this
restriction excludes sone interesting and even common practical situations, that is, the mapping
could and should be extended with the expense of a non-unique correspondence of the parametriza-
tions [Picinbono and Benidir, 1986] [Benidir and Picinbono, 1987] [Mazel and Hayes, 1988].

It is interesting to notice that the matrix operator T and its simple inverse T−1 are special
cases of the Möbius transformation (Section 2.4.1). In addition, there is a clear similarity between
the left hand side of (3.58) and the lattice recursion (3.52), which in turn implies an inverted
lattice structure. If fact, the GLM forward and backward prediction error polynomials in the shift
operator are generated by including the allpass term A in the coupling matrix, as it appears in
(3.52), and therefore the corresponding step-down formulas for the prediction error signals and
polynomials would provide a straightforward and natural parallelism to the GLM lattice synthesis
structure. However, for many reasons the author is pleased not to be obliged to continue this
consideration.

Returning back to the mapping L, the inverse mapping L−1 : b 7→ k is attained by first
recognizing that [kN b̃N+1] = bT

N+1 and then using bT
i = (Jb̃i+1 − k∗i b̃i+1)/(1 − k∗i ki) from the

right hand side of (3.58) to extract the remaining reflection coefficients, [ki−1 b̃i] = bT
i , order-

recursively for i = N, N − 1, . . . , 1.

81



xi −→ ri −→ αi

↗ ↘
x filter/correlate/project L
↘ ↗{

fi

bi
←→ ki

Figure 3.7: The upper branch is the direct Levinson (or Yule-Walker) method in
contrast to the lower path that stands for evaluation with respect to pure lattice
quantities. The two kinds of arrows try to express the fundamental difference in
the nature of the order recursions: in the lattice case the filtering and correlation
operations are genuinely coupled and modular whereas the “direct form” quantities
xi and ri can be composed independently and then used to feed the actual order
update.

a distinction is made between direct utilization of the Levinson recursion and the
actual lattice structure implementation.

The Levinson recursion and the implied lattice structure may be viewed as an ef-
ficient way to implement matrix factorizations of the correlation or signal matrix,
respectively. In fact, the lower-triangular square matrix L in (3.56) is precisely
the inverse of the normalized Cholesky factor of the GLM correlation matrix that
is needed both in the QR decomposition and the Cholesky factorization (Section
3.3.1).63 From this point of view, the underlying orthogonalization or projection op-
eration may be seen as a computational maneuver involving some auxiliary variables
without actually constructing the lattice structure. Nevertheless, the two alternative
ways to determine the reflection coefficients, and consequently the matrix L, differ
essentially in the order and manner that filtering and correlation operations enter
into the order update recursion. A simplified diagram of the situation is sketched in
Figure 3.7. The cross-correlation part of the GLM normal equation is then solved
with respect to the chosen factorization of the correlation matrix. Notably, the
Levinson algorithm (3.41) for the general right hand side incorporates these two
operations into a simultaneous recursion.

The other possibility is to use the lattice structure to transform the original GLM
modeling signals {xi} into their uncorrelated or orthogonal counterparts {bi}. The

63The correlation matrix of the tap-response vector b(n), R∗
b = bbH = (Lx)(Lx)H =

LxxHLH = LR∗
xL

H = D, is real and diagonal, D = diag((b0, b0), · · · , (bN , bN )), which can be seen
as a diagonalization of the GLM correlation matrix Rx. By identifying C∗ = L−1

√
D, Rx = CCH

is the Cholesky factorization of the matrix Rx, which has an useful inverse R−1
x = C−HC−1 =

LT D−1L∗ = (D−1/2L)T (D−1/2L∗), where the corresponding Cholesky factors are attained directly
from L and multiplication by a simple matrix inverse D−1/2 = diag((b0, b0)−1/2, · · · , (bN , bN )−1/2).

The linkage to the QR decomposition is seen by transposition and expansion of b = Lx into
the (deterministic) signal matrix form B = SLT : normalizing B by multiplying with D−1/2

from the right, denoting the result by Q = BD−1/2 = SLT D−1/2, renders QR̃ = S with R̃ =
(LT D−1/2)−1 =

√
DL−T , which is now in turn upper-triangular.

82



GLM response with respect to a given target response y(n) is then constructed as

ŷN(n) =
N∑

i=0

cibi(n) = cTb(n), ci = (y, bi)/(bi, bi), (3.59)

where the modified indexing of this Section is maintained. The model response (3.59)
is the truncated Fourier series expansion of y(n) with respect to the basis functions
bi(n); the normalizing term (bi, bi) in the coefficient expression may alternatively
be considered as a scaling operation for the signals bi(n). The modeling signals
{xi} and {bi} span by construction the same approximation space, which implies
that the approximation and approximation error provided by (3.59) are identical to
those resulting from the original GLM configuration64. However, the fundamental
difference between the model parametrizations is that due to the orthogonality the
partial model weights, or coefficients, of (3.59) are independent of each other, that
is, independent of the model order and ordering of the modeling signals, which has
many desirable consequence concerning the choosing of a particular model. The
model structure corresponding to (3.59) and the GLM lattice for producing the
partial model responses {bi} is depicted in Figure 3.8. It is called a tapped lattice or
a joint section estimator structure, depending on the point of view. An additional
prediction error configuration is included into Figure 3.8 to emphasize the latter
perspective: the lattice recursion (3.51) complemented with

ei(n) = ei−1 − cibi(n), e−1(n) = y(n), i = 0, 1, . . . , (3.60)

define a joint estimation or prediction of the processes x(n) and y(n). The lattice
structure can be seen as a whitening filter (with respect to the output signal fi(n))
for the input signal x(n) , whereas the joint section defines a whitening process for
the output signal y(n) (that is induced by x(n) and de-correlated as {bi(n)}).65 The
prediction error configuration for the tapped sections is also useful from a practical
point of view. Namely, the block representation for the evaluation of the tap-output
weights, suggested by (3.59), may be replaced by local correlation terms

ci = (ei−1, bi)/(bi, bi), i = 0, 1, . . . , (3.61)

which is once more a direct consequence of the orthogonality66. This means that
using (3.60) and (3.61) also the tapped sections are genuinely order recursive or
modular, which is particularly appealing for such applications as adaptive filtering.

Some remarks Potential orthogonality is always embedded into the linear in-
dependency assumption through the (GS) orthogonalization process. This general
property was demonstrated in terms of the GLM in Section 3.3. The purpose

64The weights of the original GLM response ŷ = wT x and the orthonormal expansion coefficients
c are thus related simply as w = LT c ↔ c = L−T w.

65Without further explanation, the “whitening” can be considered as a limiting process for the
inverse modeling or system identification setup, x 7→ δ or y 7→ δ, respectively, where δ is
alternatively an impulse or a white noise signal (see Sections 2.1.6 and 3.1).

66The inner products in the numerators of the coefficient expressions are seen to be equal,
(y, bi) = (ŷi−1 + ei−1, bi) = (ŷi−1, bi) + (ei−1, bi) = (ei−1, bi), since all terms in the approximation
ŷi−1(n) =

∑i−1
j=0 cjbj(n) are orthogonal to bi(n).
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Figure 3.8: The tapped GLM lattice structure.

of this Section was to show that the presumption of a (block-)Toeplitz correla-
tion matrix implies a generalized transversal structure for producing the correla-
tion terms (Figure 3.5), and furthermore, a generalized lattice structure to imple-
ment the orthogonalization of the modeling signals (Figure 3.6). This does not
however exclude generalizations of the shift structure and the lattice configura-
tion with respect to non-Toeplitz correlation matrices. For example, the “dif-
ferent from, but close to Toeplitz” characteristics arising from non-stationarity
[Lev-Ari and Kailath, 1984] or varied correlation methods [Morf, 1977] may be tack-
led using the concept of displacement-rank [Kailath, 1973], which (at least in prin-
ciple) generalizes the Levinson algorithm to any symmetric positive-definite corre-
lation matrix [Friedlander et al., 1978] [Delsarte et al., 1982] [Lev-Ari et al., 1984].
Perhaps even more interesting from the GLM point of view is that there are also
generalizations of the Levinson algorithm in the case when the generating model is
not restricted to structures with identical allpass blocks [Merched, 2003]
[Bultheel and De Moor, 2000].

Another remark is in order to clarify the relation to other lattice configurations,
in particular the ARMA or pole-zero lattice structure [Gray and Markel, 1973]. As
stated, the GLM lattice structure is a generalization of the feed-forward lattice, in
particular, the tapped lattice form of an FIR, MA, or all-zero filter [Griffiths, 1978]
[Makhoul, 1978], in contrast to some modified pure lattice structures for producing
an arbitrary FIR transfer function [Vaidyanathan, 1986] [Tummala and Parker, 1987].
From the perspective of linear prediction of (speech) signals [Markel and Gray, 1973]
[Makhoul, 1975], the forward prediction error part of the lattice structure constitute
an analysis apparatus for the corresponding AR or all-pole lattice synthesis filter;
typically it is just the synthesis part that is of interest since the analysis operation is
usually embedded into direct correlation estimates, with the exception of adaptive
linear prediction [Makhoul and Viswanathan, 1978].

The conventional ARMA or pole-zero lattice is then in turn built on the synthe-
sis all-pole lattice; the denominator part of a (presumed to be) rational trans-
fer function is implemented as a lattice structure, whereas the numerator is con-
structed by tapping, weighting, and summing in the backward path of the lattice
[Gray and Markel, 1973]. This would then, using consistent terms, actually be a
tapped AR lattice that realizes a pole-zero transfer function. In fact, the numerator
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can be implemented by numerous combinations of output tapping or input injection
from or into various nodes of the AR lattice [Lim, 1984]. The original tapped AR
lattice is, however, special in the sense that it originates from a related orthogonal-
ization process: the (tap-output numerator) polynomials resulting from the inverse
lattice recursion (right hand side of (3.58)) are now orthonormal with respect to
normalization by the denominator term. They are precisely the Szegö orthogonal
polynomials on the unit circle [Szegö, 1939] [Delsarte et al., 1978] with respect to
a weighting function or modified measure in the associated inner product that is
induced by the spectral density of the (AR) input signal model. As claimed, all
this is at least in principle applicable to the (allpass shift operator driven) GLM
framework, including generalizations of vectorized or multidimensional lattice con-
figurations [Lim and Parker, 1984].

In contrast to the forward lattice, the conventional ARMA lattice is not genuinely
modular or order recursive since it is generated with respect to a fixed (presump-
tion of the) denominator term. In particular, the overall model does not include
the lower order models as substructures and it does not generalize naturally to
the unequal order ARMA(N,M) case. There are, however, “true ARMA lattice”
configurations based on elementary two-channel or -dimensional MA lattice sections
[Morf, 1977] [Friedlander and Maitra, 1981] [Lee et al., 1982] that can be further or-
ganized into complex arrays of processing blocks that constitute chains of successive
ARMA(i, j) systems, i ≤ N and j ≤ M , for the general (N, M)th order ARMA lat-
tice model [Benveniste and Chaure, 1981] [Karlsson and Hayes, 1987], including ex-
hausting extensions to the multichannel case [Ling and Proakis,1984] [Lev-Ari, 1987]
[Chakraborty and Prasad, 1991] [Pan and Levine, 1994]. Here, the feed-forward
tapped GLM lattice is proposed as a simple alternative for an ARMA lattice, where
the AR part is embedded into the allpass operator, yet in a modular and order
recursive manner, with a straightforward extension to the multidimensional case.

3.4.2 Orthonormal GLM structures

The (block-)Toeplitz property of the correlation matrix and the related transversal
allpass structure was previously seen as a source of orthogonality and guaranteed
linear independency for the GLM. As a somewhat limping converse, structural or-
thogonality, or mutual orthogonality of the partial model impulse responses, is in the
following related to the allpass property and to the appropriateness of the GLM con-
struction, with particular implications to the asymptotic behavior when the number
of partial models is increased towards infinity. That is, the orthogonality is intro-
duces as a sufficient condition for potential completeness of the GLM.

The GLM structure is orthogonal if the partial model impulse responses are mutually
orthogonal in the Hilbert space `2(N) or H2(E) sense, respectively. The structure is
orthonormal, if in addition, the partial model impulse responses are normalized to
unit energy. For example, with respect to the inner product (2.79), the structure is
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orthonormal if the correlation matrix67

R = [rij]
N
i,j=1 =

[
1

2πj

∮

T
Gj(z)G∗

i (1/z
∗)Sxx(z)

dz

z

]N

i,j=1

(3.62)

becomes the unit matrix I for the power spectral density Sxx(z) = 1, correspond-
ing to the unit impulse or white noise input signal, respectively. For such a GLM
configuration the normal equations reduce into the trivial form, Iw = p, or con-
sequently w = p = (y,g)T , where w are now Fourier coefficients of the truncated
Fourier series wTg for approximating y with respect to the orthonormal functions
g, the composite description of the components gi(n) ∈ `2(N) or Gi(z) ∈ H2(E),
respectively. In addition, the general expression for the (LS or MMS) approximation
error simplifies as ‖e‖2 = (y, y) −wHp = (y, y) − ‖w‖2, where (y, y) = ‖y‖2 is the
energy of the target response y.

The correlation matrix formula (3.62), which is in its general form, suggests some
implications for both orthonormal and non-orthogonal GLM structures:

• For an orthonormal structure, the properties of R (in terms of the eigenvalue
spread) are essentially determined by the properties of Sxx(z)

• In particular, orthogonality guarantees linear independency, characterized as
positive definiteness of R, presuming that Sxx(z) is positive and somehow
bounded away from zero on T

• Moreover, the aforementioned properties can be quantized in a way that is
independent of the particular choice of orthonormal functions, that is, as a
general consequence of the orthonormality

• The completeness of the model construction, unbiased convergence for in-
creased number of partial models, is analogous to the concept of completeness
in the Hilbert space. This completeness transfers as well to the identification
setup in terms of the GLM

• For Sxx(z) 6= 1, the formula (3.62) suggests functions that are orthogonal with
respect to Sxx(z)

• Consequently, it can be argued that for a somehow specified subclass of input
signals, there are probably non-orthogonal GLM structures that are preferable
in the sense of “approximative orthogonalization” of the overall system

The last two items will not be discussed further, although such observations are
obviously essential from the motivation point of view of the GLM concept. The
other statements will be tackled in a way that is original mainly in its generality, in-
cluding though some genuine stretching of the convention [Haykin, 1989] concerning
consequences of the GLM configuration. A similar generalization or lifting of the
basic concepts has been given in [Oliveira e Silva, 1995] for the more explicit case
of sequentially generated rational orthonormal functions.

67Here, the choice of the matrix inner product definition, R = (X,X)T , or alternatively R∗ =
(X,X) for RH = R, is reflected as rij = (Xi, Xj)∗ = (Xj , Xi).
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The key observation behind the previous statements is that for an orthonormal
set of functions and an arbitrary constant function Sxx(z) = c, the formula (3.62)
produces a diagonal matrix cI, which is positive definite if and only if c is positive-
real. In particular, any bounds for the (presumed to be real on T) function Sxx(z),
Smin ≤ Sxx(e

jω) ≤ Smax, result in an inequality SminI ≤ R ≤ SmaxI, with an
appropriate order relation for matrices68. In Sections 3.2.2 and 3.2.3 the properties of
the GLM correlation matrix in terms of its eigenvalues where characterized using the
quadratic or Hermitian form and its normalized counterpart, the Rayleigh quotient.
The orthogonality of the GLM structure provides a step further where the eigenvalue
spread is bounded directly by the minimum and maximum of the power spectral
density of the input signal69. Utilizing a compact (conjugated) denotation for (3.62),

R∗ =
1

2πj

∮

T
g(z)gH(1/z∗)Sxx(z)

dz

z
, g(z) = [G1(z) · · · GN(z)]T , (3.63)

the quadratic form of the correlation matrix, wHRw, for an arbitrary non-zero
vector w ∈ CN \ {0}, can be expanded as70

wHRw = wTR∗w∗ = wT

[
1

2πj

∮

T
g(z)gH(1/z∗)Sxx(z)

dz

z

]
w∗ (3.64)

=
1

2πj

∮

T
wTg(z)gH(1/z∗)w∗Sxx(z)

dz

z

=
1

2πj

∮

T
‖wTg(z)‖2Sxx(z)

dz

z
. (3.65)

This expression is still completely general and not particularly revealing as such.
However, the norm term in (3.65) is always strictly positive, which passes the non-
negativity requirement explicitly to the function Sxx(z). Furthermore, either of the
integrals (3.64) or (3.65) emphasize that wHRw = wHw for Sxx(z) = 1, directly in
terms of the orthonormality of the functions Gi(z), i = 1, . . . , N , that is, without
resorting to the presumption R = I. Now supposing that Smin > 0 is a lower bound
for the function Sxx(z) on T, possibly the tight one Smin = minω∈[0 2π] Sxx(e

jω), then
the quadratic form is bounded below as

wHRw = wT

[
1

2πj

∮

T
g(z)gH(1/z∗)Sxx(z)

dz

z

]
w∗

≥ wT

[
1

2πj

∮

T
g(z)gH(1/z∗)Smin

dz

z

]
w∗ = Sminw

Hw. (3.66)

The inequality (3.66) states explicitly that the correlation matrix is positive definite.
In particular, the GLM modeling signals are guaranteed to be linearly independent.

68For two square matrices A and B of equal dimensions, the order relation A ≤ B is defined as
the positive semidefiniteness of B−A.

69For simplicity, the function Sxx(ejω) is considered to be continuous, and thus bounded, on T.
As long as the point is to utilize the fact that a function is essentially bounded, it would somehow
seem unnecessary and unessential to complicate the notation at every step to include oddities in
the input signal space. After all, the attribute ‘essentially’ amounts to “almost everywhere” in the
Lebesgue integral (measure) sense, and thus, the power spectral density function can already be
considered to be (essentially) represented by its smoothed counterpart.

70The fact that wHRw is real is used to simplify notations through conjugation. Equally
obviously it holds that wT w∗ = wHw.
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Similarly, for an upper bound, Smax ≥ maxω∈[0 2π] Sxx(e
jω), the quadratic form is

bounded above as

wHRw ≤ wT

[
1

2πj

∮

T
g(z)gH(1/z∗)Smax

dz

z

]
w∗ = Smaxw

Hw. (3.67)

These two inequalities provide bounds for the normalized quadratic form,

Smin ≤ wHRw

wHw
≤ Smax, (3.68)

for any w 6= 0 of appropriate dimension. In particular, the bound remain valid for
the vector w that minimize and maximize the Rayleigh quotient, respectively, which
according to (3.24), provide the minimum and maximum eigenvalues λmin and λmax

of R, and consequently the chain of inequalities

Smin ≤ λmin ≤ λmax ≤ Smax. (3.69)

Finally, the condition number of the correlation matrix, as introduced in Sec-
tion 3.2.3, has an upper bound71

χ(R) =
λmax

λmin

≤ Smax

Smin

(3.70)

This upper bound is finite for Smin > 0 and Smax < ∞. The remarkable thing about
the bounds (3.69) and (3.70) is that they are completely independent of the choice of
orthonormal functions. Maybe even more surprisingly, the bounds are insensitive to
an arbitrary increase in the number of orthonormal functions, although it is known
that the eigenvalue spread and consequently the condition number are increasing
functions of the dimension N of the correlation matrix72. This is reassuring from
the point of view of numerical properties of solving the GLM normal equations for
increasing correlation matrix dimensions, but it does not yet imply that the resulting
model is unbiased, or asymptotically accurate.

By returning to the original GLM setup, the generic notion of the system to be
modeled, y = Hx, and its GLM model, ŷ = Ĥx, Ĥ = wTg, provide an operator
form for the modeling error e = y − ŷ = (H − Ĥ)x. The resulting error energy,
‖e‖2 = (e, e), can then be expanded using any of the signal and inner product

71In general, the condition number is defined as the product χ(R) = ‖R‖‖R−1‖, where ‖ · ‖
is some appropriate matrix norm. The particular expression (3.70) can be seen to result from
two alternative choices: i) the spectral norm ‖R‖S , which is the square-root of the largest
eigenvalue of RHR, and consequently ‖R−1‖S = λ−1

min, or ii) the (matrix) operator 2-norm
‖R‖2 = sup ‖Rw‖2/‖w‖2, where the operand is recognized as the square-root of the Rayleigh’s
quotient for RHR. A simplified interpretation of χ(R) is that it measures how perturbations in
R and p are reflected to the evaluation of the weight vector w = R−1p. From a more practical
point of view, actual algorithms for solving the normal equations “operate on the diagonal”, rep-
resentable by the eigenvalues, and thus the numerical sensitivity is (more of less) directly related
to multiplication and division operations on the eigenvalues.

72This is due to the interlacing property of the eigenvalues of any (Hermitian) symmetric ma-
trix and its sub-matrices [Golub and Van Loan, 1989]: for any consecutive nested sub-matrices,
RN+1 = [rij ]N+1

i,j=1 and RN = [rij ]Ni,j=1, with respect to an imposed ordering, the eigenvalues are
interlaced as λ1(RN+1) ≤ λ1(RN ) ≤ λ2(RN+1) ≤ · · · ≤ λN (RN+1) ≤ λN (RN ) ≤ λN+1(RN+1).
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interpretations, for example using (2.79) as above, providing73

‖E‖2 = (E, E) =
1

2πj

∮

T
|E(z)|2 dz

z
=

1

2πj

∮

T

∣∣∣H(z)− Ĥ(z)
∣∣∣
2

Sxx(z)
dz

z
. (3.72)

This expression is valid for an arbitrary model Ĥ = wTg, that is, without presuming
the orthogonality of g or the optimality of w. It is however known that (3.72) is
minimized for the solution of the GLM normal equation74. The quadratic nature of
this formula suggest once more that possible bounds for the spectral density can be
used to form bounds for the quantity (3.72),

Smin‖H −wTg‖2 ≤ ‖E‖2 ≤ Smax‖H −wTg‖2, (3.75)

The bounding norm term is the energy of the error signal eh = h − ĥ, that is, the
modeling error energy (3.72) for Sxx(z) = 1, denoted in the following as ‖Eh‖2.
Here too, the bounds have real meaning only if Smin > 0 and Smax < ∞. The same
argument applies to the transposed counterpart of the inequality (3.75) given by

‖E‖2/Smax ≤ ‖H −wTg‖2 ≤ ‖E‖2/Smin. (3.76)

This latter inequality is interesting from the point of view of potential identifiability
of a genuinely unknown system H directly from the input-output data, which also
implies that the quantity ‖E‖2 is evaluated or approximated with some other means
than (3.72), that is, without factoring out the unknown75.

The formula (3.72) as well as the inequalities (3.75) and (3.76) are still completely
general. Actual substance is brought into the consideration by first restricting to
the optimal model parametrizations and then by exploiting the consequences of
choosing an orthonormal model. The minimization of ‖E‖2 and ‖Eh‖2, as given
above, correspond to two different but well-defined GLM configurations, with unique
solutions with respect to the weights, denoted as w and c, respectively. In particular,

Smin‖H − cTg‖2 ≤ ‖y −wTx‖2 ≤ Smax‖H − cTg‖2, (3.77)

73To avoid presuming something like |(H−Ĥ)X|2 = |(H−Ĥ)|2|X|2 in the integrand, the generic
time-domain inner product may first be expanded as

‖e‖2 = (y − ŷ, y − ŷ) = ((h− ĥ) ∗ x, (h− ĥ) ∗ x) = ((h− ĥ) ∗ rxx, (h− ĥ)). (3.71)

Either of the last two expressions then result in (3.72) with respect to the inner product (2.79).
Alternatively, the inner product (Y (z)−Ŷ (z), Y (z)−Ŷ (z)) can also be expanded directly, producing
the integrand (H(z)−Ĥ(z))X(z)(H(1/z∗)−Ĥ(1/z∗))∗X∗(1/z∗), which reduces to the desired form.

74In the case of optimal model weights, (e, ŷ) = 0, which simplifies the energy formula,

‖e‖2 = (e, y−ŷ) = (e, y) = (y−ŷ, y) = (y, y)−(ŷ, y) = (y, y)−(wT x, y) = (y, y)−wT (x, y). (3.73)

The last inner product is the (conjugated) correlation vector p∗ = (x, y) = (g ∗ x, y) = (g, ryx),
which provide a companion for (3.72) in terms of the cross-spectral density Sxy(z) = S∗yx(1/z∗),

‖e‖2 = (y, y)−wT p∗ == (y, y)−wT

[
1

2πj

∮

T
g(z)Sxy(z)

dz

z

]
. (3.74)

75As a reminder, the “genuine system identification setup” in GLM means that in addition to
some description of the input and output signals, the partial model responses are also somehow
attainable. This does not however necessarily require the explicit knowledge of the the impulse
responses g.
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where x constitute of the partial model responses x = gx (or x = g ∗ x).76 Using
the chosen distinguishing terminology, the inequality (3.77) states that the identi-
fication or modeling error energy is bounded by the corresponding approximation
error energy, within the frame defined by the spectral density of the input signal77.
This ensures also smoothness in the limiting case Smax/Smin → 1 in the sense that
the error norms as well as the weights must eventually coincide.

The inequality (3.77) and its transposed counterpart of the form (3.76) guarantee
that if one of the parties, ‖E‖2 or ‖Eh‖2, converges to zero, then so must also the
other one, provided that 1 ≤ Smax/Smin < ∞. Moreover, in the case of conver-
gence, the asymptotic rate of decay will coincide, although the relative values of
‖E‖2 and ‖Eh‖2, as well as the two sets of weights, will not in general ever be
the same. The notion of convergence is obviously with respect to the generic di-
mension of the approximation space spanned by the GLM modeling signals78. The
point here is that the concept of completeness of a basis system in a Hilbert space
(Section 2.3.2) transforms naturally into a condition for universal convergence of
the modeling configuration. For example, the approximation error ‖Eh‖2 will tend
to zero, unconditionally for any H, if and only if the system {gi}∞i=0 is complete,
which also forces the corresponding identification setup to converge79. In the case of
a complete orthonormal system, the condition is somewhat more explicit since the
Fourier coefficients are independent of approximation order: an orthonormal system
{gi}∞i=0 is complete if and only if

lim
N→∞

∥∥∥∥∥H −
N∑

i=0

(H, gi)gi

∥∥∥∥∥

2

= lim
N→∞

∣∣∣∣∣
∞∑

i=N+1

(H, gi)

∣∣∣∣∣

2

= 0 (3.78)

for all H in the associated Hilbert space. As before, for an input signal such that
1 ≤ Smax/Smin < ∞, the condition (3.78) ensures that also the corresponding
identified configuration is asymptotically accurate or unbiased. That is, a com-
plete orthonormal GLM structure induces a complete set of modeling signals for the
system space. The subsequent GLM problems are still in general non-trivial and
disconnected, dependent on the choice of model order, but the underlying generating
orthonormal structure ensures that the progression is well-posed and easily quan-
tizes in terms of (3.77) and (3.78). In addition, the earlier result (3.70) characterize
the numerical sensitivity of solving the GLM normal equations.

76The fact that most likely w 6= c was the reason why w was not allowed to appear simultaneously
on different sides of inequalities.

77A practical application of (3.77) could be that the solution of the approximation problem (with
respect to a known H and a chosen g) can be used to quantize ‖E‖2 in terms of the input signal
statistics, that is, to anticipate the behavior of an identification configuration. The evaluation of the
approximation error energy is particularly simple in the orthonormal case, ‖Eh‖2 = (H,H)−‖c‖2,
where c = (H,g)T are Fourier coefficients of H with respect to g.

78Any appropriate set of GLM modeling signals, for example {gi}∞i=0 and {x∗gi}∞i=0, respectively,
define a sequence of “nested” approximation spaces, with corresponding optimal GLM weights, and
consequently an unique limit for the approximation error norm. This limit is not necessarily zero
and there is not in general “any common structure” in the subsequent solutions.

79The same can be stated in terms of ‖E‖2 and {xi}∞i=0. In both cases, the linear independency
presumption provides an unique decomposition (model parametrization) for all orders, and the
property that such a representation converges (in the norm) to an arbitrary element in the space
is characterized as completeness of the spanning system. This is one of the occasions when it is
essential that the “signal and system spaces” are interchangeable.
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Figure 3.9: A block diagram for implementing rational orthonormal (transfer)
functions of the form (3.79). The corresponding time-domain functions, gi(n),
i = 0, 1, . . ., are produced as tap-output impulse responses, and the orthonormal-
ity is manifested by the property that (gi, gj) =

∑∞
n=0 gi(n)g∗j (n) = 0, i 6= j, and

(gi, gi) = 1. The backbone of the filter is a cascade of first-order allpass filters and
the tap-output blocks are corresponding first-order all-pole filters with a normalizing
gain term.

The existence of complete orthonormal bases for the Hilbert spaces H2(E) and `2(N)
was confirmed in Section 2.4.3 by deducing a base: the z-domain functions

Gi(z) =

√
1− a∗i ai

1− aiz−1

i−1∏
j=0

z−1 − a∗j
1− ajz−1

, i = 0, 1, . . . , {aj}∞j=0 ⊂ D, (3.79)

are orthonormal in H2(E) for any choice of poles in D, and furthermore, the set
{Gi(z)}∞i=0 is complete in H2(E) if and only if the poles fulfil the additional condition

∞∑
j=0

(1− |aj|) = ∞. (3.80)

The corresponding complete orthonormal base {gi(n)}∞i=0 of `2(N) is attained as
inverse z-transforms of functions (3.79), or equivalently, as impulse responses of
synthesis filters with transfer functions (3.79). The latter alternative is emphasized
in Figure 3.9, which also explicates that functions (3.79) have a nested or transversal
structure.

The general construction of rational orthonormal functions given by (3.79) is pre-
cisely of the form that will be used in the next Chapter. However, this sudden
burst of explicitness in the choice of GLM structure is somewhat premature in the
sense that it is still used to furnish a more general consideration, in particular, to
characterize the relation between the orthogonality of a structure and the allpass
property.

An immediate and profound implication of the construction (3.79) is that a system
of rational functions can be dense in H2(E); the uncountably infinite space H2(E) is
proven to be separable simply by deducing a countable base. The conclusion is in fact
more general, any element in H2(E) can be approximated arbitrarily well by a (finite)
rational system, not necessarily orthogonal, which is very encouraging from the point
of view of the GLM concept. The deduction of functions (3.79) in Section 2.4.3 was
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admittedly fragmental but it related the derived orthonormal functions in an explicit
way to the generating allpass operator80. It is not difficult to show that an arbitrary
cascade connection of allpass functions can be used to construct (or more precisely
to argue the existence of) generic orthonormal structures as a formal generalization
of the tapped transversal structure of Figure 3.9 [Paatero, 2000]. However, it is
not the case that all orthonormal structures would somehow be related to allpass
functions. As a brute example, the sequence of rational functions81

G̃j(z) = Cj

∏j−1
i=0 (

∏2i−1
k=0 (z−1 − a∗kj))∏2j−1

k=0 (1− akiz−1)
, j = 0, 1, . . . {akj} ⊂ D (3.81)

is orthogonal, and orthonormal with normalizing coefficients Cj ∈ C such that
(G̃j, G̃j) = 1, for any choice of pole sequences in D.82 These functions constitute also
a nested or transversal synthesis structure but the intermediate blocks are no longer
allpass filters. The whole construction is obviously based on excessive pole-zero can-
celations: all poles of G̃l(z), l < j, are canceled out by zeros of G̃∗

j(1/z
∗) to ensure

orthogonality with respect to the z-domain inner product. This suggests that the
connection between orthogonal and allpass structures is somehow related through
an irreducibility requirement of the system of functions (when linearly combined).
From another point of view, the interconnection can be seen to be guaranteed if the
overall system admits to a minimal realization. In state-space terms (Section 2.1.4),
the minimality of the state-space description83 is then equivalent to the controlla-
bility and observability of the state-variable, and consequently, to the possibility of
choosing an orthogonal (or input balanced) realization [Mullis and Roberts, 1976]
[Moore, 1981].

The relation between structural orthogonality and the allpass (or loss-less) property
has been considered from various points of view under the title orthogonal filters
[Deprettere and Dewilde, 1980] [Dewilde and Dym, 1981] [Vaidyanathan, 1985].
However, the interest is usually not directed to tapped orthogonal structures, as
it is here, and even if it is, it is more commonly the ARMA lattice structure
[Gray and Markel, 1975] that emerge as a representative for orthogonal state-space
realizations [Vaidyanathan, 1985b] [Regalia et al., 1988]. The lattice counterpart of
orthogonal structures [Regalia, 1995] can be seen to result from a feedback con-
nection of (balanced) allpass realizations whereas the state-space realization for

80Another immediate consequence of the construction is that the subspace that a particular
allpass operator induces is independent of the ordering of the first order blocks in the Blaschke
product (2.101); the basis functions with respect to permutations of the pole set are obviously
different but all these bases are related through an unitary transformation.

81This is a complex and corrected version of the “general orthonormal construction” proposed
by Broome [Broome, 1965] as an intermediate phase in producing the real rational counterpart of
functions (3.79). As stated, Broome’s construction is incorrect because it misses some of the essen-
tial pole-zero cancelations for j > 2, which cumulates fast into a completely erratic construction.
However, the idea is clear and it was adopted to this anecdotal use. Nevertheless, it is somewhat
surprising that this formula or its variants do not, to the authors knowledge, appear anywhere in
the literature.

82The completeness of the generation is not needed here – at least for rational approximations
with respect to disjoint sequences of poles the completeness constraint seem to be of the form
(3.80) [Walsh, 1969].

83An overview and some historic notes on minimal state-space realizations is given in
[De Schutter, 2000]. An early reference of the state-space description itself is provided by
[Kalman, 1960].
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rational orthonormal functions of the form (3.79) are related to the cascade or
forward connection84. This latter observation together with state-space balanc-
ing techniques [Moore, 1981] has been the basis for deducing rational orthonormal
basis functions in state-space form [Heuberger, 1991] [Bodin and Wahlberg, 1994]
[Heuberger et al., 1995] [Oliveira e Silva, 1995]. These constructions are usually
directed to provide a system identification framework (including multiple-input
multiple-output systems) with respect to the generalized basis and a related trans-
form theory [Van den Hof et al., 1994] [Heuberger et al., 2003] [Wahlberg, 2003].85

In addition to the ease of handling vector and matrix valued signals and func-
tions, the state-space description is particularly justifiable when the whole real-
ization problem is reassigned with respect to the generalized basis representation
[Szabó et al., 2000] [de Hoog, 2001].

The aim here is, however, just to lay out an orthogonal state-space structure that
generates functions (3.79), which can be done in a pragmatic way. Furthermore,
the consideration will be “input oriented”, because it is precisely the input-to-state
part that is identified as the generating structure86. The state-equation (2.34) is
first rewritten in the form87

x(n) = Ax(n− 1) + bx(n), (3.82)

where the dimension of the square matrix A and the column vector b is considered
to be indefinite in the sense that it is just supposed to correspond to the number of
functions concatenated from the sequence {Gi(z)}∞i=0. The linear combination of any
such collection of functions then has a minimal state-space realization (for example

84The family of balanced realizations of allpass filters is closed with respect to appropriate
interconnections (as well as substitutions) of elements [Roberts and Mullis, 1987].

85An interesting extension of this Hambo transform theory relates a basis construction that is
induced by a variable length block partition of the generating allpass chain to a linear time-varying
operator in the transform domain [de Hoog et al., 2000].

86This excludes some of the conventional steps in a more general deduction. Usually the start-
ing point is a stable and minimal state-space description R = [A B;C D] with controllability
and observability Gramians P and O that are (positive definite) solutions of the Lyapunov equa-
tions APAH + BBH = P and AHOA + CHC = O. (Conversely, it is easy to see that the
explicit definitions of the Gramians, P =

∑∞
i=0 AiBBH(AH)i and O =

∑∞
i=0(A

H)iCHCAi,
fulfill the Lyapunov equations.) This realization can always be made input balanced using a
state transformation [Moore, 1981], that is, P = I = AAH + BBH , which is the orthogo-
nality condition for the structure in [Roberts and Mullis, 1987]. It is then straightforward but
somewhat cumbersome to show that the allpass presumption implies that RRH = RHR = I
[Roberts and Mullis, 1987] [Oliveira e Silva, 1995], that is, orthogonality (or unitarity) of the struc-
ture in a stricter sense (characterized as orthogonal allpass [Roberts and Mullis, 1987] or lossless
bounded(-real)[Vaidyanathan, 1985b] realizations). The latter form of the matrix product states
that O = I is also a solution of the second Lyapunov equation. The uniqueness of the solu-
tion is then either presumed, or alternatively, ensured through the invariability of the Hankel
singular values (square-roots of the eigenvalues of PO), which in this case are all equal to unity
[Glover, 1984]. It is also possible to conclude more directly that O = P = I (with simultaneous
input and output balancing), which guarantee an unique (and equal) solution for the Lyapunov
equations [Pernebo and Silverman, 1982].

87This modified description is used to avoid a delay in the state-equation. The corresponding
output-equation is y(n) = cT x(n − 1) + dx(n), where the feed-through term is gathered in the
scalar d. The z-transforms of the state-space equations are then x(z) = z(zI −A)−1bX(z) and
Y (z) = z−1cT x(z)+dX(z), which result in an external description Y (z) = [cT (zI−A)−1b+d]X(z)
that is equivalent to the original form (2.37).
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given by the “canonical realization” (2.35)). The minimality is reflected in the fact
that the input-to-state impulse responses g(n) = Anb, n = 0, 1, . . ., constitute a
controllability matrix C = [b Ab A2b · · · ] with full row rank. That is, the state-
space signals CT are linearly independent and the corresponding correlation matrix
P = CCH , the controllability Gramian, is positive definite. The following relation
will also be needed in the upcoming:

P =
∞∑

n=0

(Anb)(Anb)H =
∞∑

n=1

AnbbH(AH)n + bbH

= A(
∞∑

n=1

An−1bbH(AH)n−1)AH + bbH = APAH + bbH . (3.83)

The transfer function of the state-equation (3.82) is given by

g(z) =
∞∑

n=0

Anbz−n = z(zI−A)−1b, (3.84)

where it is presumed that the eigenvalues of A (the poles of the system) are strictly
within the unit circle to ensure stability. The realization can further be chosen to
be input balanced, that is, with a controllability Gramian P = I, which is precisely
the condition for an orthonormal GLM structure,

P∗ = (g(z),g(z)) = (z(zI−A)−1b, z(zI−A)−1b)

= [A b][A b]H = AAH + bbH = I, (3.85)

where the second line is due to (3.83) and it is the orthogonality condition for the
state-equation coefficients [Roberts and Mullis, 1987]. The first component of the
input-to-state transfer function is now identified as

G0(z) =

√
1− a0a∗0

1− a0z−1
=

z
√

1− a0a∗0
z − a0

= z(zI−A)−1b, (3.86)

where A = a0 and b =
√

1− a0a∗0 ≡ nO. The input pair (A,b) = (a0, n0) is bal-
anced, [A b][A b]H = a0a

∗
0+n2

0 = 1, and it implies an unique orthogonal allpass com-
pletion (A,b, cT , d) = (a0, n0, n0,−a∗0). Every allpass block in the cascaded struc-
ture (3.9) has a similar balanced realization, (ai, ni, ni,−a∗i ), with ni =

√
1− aia∗i .

The augmented state-space realization of an overall cascaded system of N + 1 such
blocks is then given by88




a0 0 · · · 0 0 n0

n1n0 a1 · · · 0 0 n1(−a∗0)

n2(−a∗1)n0 n2n1
. . .

...
...

...
...

...
. . . aN−1 0

...

nN

∏N−1
i=1 (−a∗i )n0 · · · · · · nNnN−1 aN nN

∏N−1
i=0 (−a∗i )∏N

i=1(−a∗i )n0 · · · · · · −a∗NnN−1 nN

∏N
i=0(−a∗i )




=

[
A b
cT d

]

(3.87)

88This is a scalar allpass version of more general block matrix formulas, given for example
in [Oliveira e Silva, 1995] and [de Hoog, 2001], which however share a common origin with this
consideration [Roberts and Mullis, 1987]. The point is that the cascaded realization can be gen-
erated recursively as Ãi = [Ãi−1 0;BiC̃i−1 Ai], B̃i = [B̃i−1;BiD̃i−1], C̃i = [DiC̃i−1 Ci], and
D̃i = DiD̃i−1 from a sequence of appropriate balanced realizations (Ai,Bi,Ci,Di).
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This realization is by construction orthogonal. It is in particular input balanced,
AAH + bbH = I, and the elements of the input-to-state transfer function vector
g(z) are identified with the orthonormal functions (3.79):

Gi−1(z) = gi(z), g(z) = z(zI−A)−1b = [g1(z) g2(z) · · · ]T . (3.88)

The construction (3.87) is still “generic” with respect to the order of the generating
allpass function in the sense that additional blocks (poles) can be appended (or
appropriate sub-systems can be isolated) without affecting the form of the generating
structure. It is noteworthy that the eigenvalues of A, the poles of the generating
allpass function, appear explicitly on the diagonal, which is a consequence of the
lower-triangular form of A. The vector b contains the feed-through terms of transfer
functions (3.79), d is the corresponding zero-lag term of the impulse response of the
allpass operator A(z), and the coefficients c perform the allpass completion in terms
of the functions z−1g(z), A(z) = z−1cTg(z) + d.

An excuse This was certainly not the most “pragmatic” way to deduce the
relation. It would have been more straightforward just to state the orthogonality
property (3.85) of a balanced realization of an allpass operator and then to use its
known partition into primitive blocks (3.87) to recognize that the functions (3.79)
are indeed produced by the state vector as in (3.88). It is also possible to isolate a
state-variable description directly from the difference equations for the development
(3.79), and consequently, to construct the orthogonal state-space structure without
any reference to balanced realizations. (This has been done in the constrained La-
guerre case [King and Paraskevopoulos, 1979] [Nurges and Jaaksoo, 1981] but also
for the general (real rational) structure [Wahlberg, 1994].) However, the presented
approach emphasizes a more general realization problem: it is straightforward to
pass from the state-space description to the transfer function form, but the con-
verse is not as simple. In the spirit of the GLM concept, the state-space of the
minimal realization was first recognized to coincide with the subspace spanned by
the corresponding functions (3.79). The coordinate change introduced by the input
balancing then provided an orthonormal base for the subspace in question. All such
bases were known to be unitarily equivalent and the particular structure was formed
inductively by identifying the basic building blocks and by utilizing their combining
rules. The original idea was also to deduce something illuminating using a more
abstract consideration that would have related a (non-minimal) realization of the
GLM partial model transfer functions to a reduced description in a proper (con-
trollable) subspace using such concepts as polynomial co-prime factorization and
subspace identification. The digest is very intriguing, but the author dare not cite
anything aggravating amidst his confusion.

3.5 Prototype adaptive algorithms and the GLM

There is an apparent conceptual conflict between the GLM as a genuine filtering
operation and the GLM as the solution of an approximation problem in the Hilbert
spaces of signals and systems. Namely, the former is in principle a well-defined,
although unspecified, causal signal processing task, but the latter is based on gener-
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alized correlations with respect to infinite data records or global and time-invariant
descriptions of the ingredients. However, the essential difference is not necessarily
related to causality or finiteness requirements, but rather, calls for a correct inter-
pretation of the available information. For example, the input and output signals,
and the partial model responses may well have representations that enable the eval-
uation of the “global” correlation terms, although the actual model is running in
“real-time” for some finite epoch starting from a reference time n = 0. Such a sys-
tem is LTI but not causal in the sense that presumptions of the future inputs and
outputs are used in the determination of the model parameters89.

From another point of view, the identification of a system is commonly based on
a finite collection of input and output data samples. In the time-domain this may
mean that some windowing of the input and output signals is applied prior to the
evaluation of the correlation terms90. Such a local description of the system results
usually in a time-variant overall model,

ŷ(n) = wT (n)x(n), (3.89)

corresponding to a time-varying or adaptive normal equation,

R(n)w(n) = p(n). (3.90)

Equation (3.90) aims to indicate that input and output data up to the time n > 0 is
somehow used to form the normal equations and to provide the weights for the model
(3.89). This does not however necessarily mean that the evaluation of the correlation
terms should terminate at time-index n. In fact, a correct interpretation of the GLM
in a Hilbert space would require that the evaluation of the correlations should run
until the end91. In practice this could mean that the “memory of the model” is
drained into the evaluation of the correlations by feeding a suitable number of zeros
into the model. The term autocorrelation method is conventionally associated to
such an interpretation, which is however even more confusing in the case of the
GLM than it already is for the FIR model [Haykin, 1996]. As a more practical
alternative, the correlation terms in (3.90) can be approximated in the time-domain
by cumulative sums of the form

R(n) =
n∑

i=0

sH(i)s(i) and p(n) =
n∑

i=0

sH(i)y(i), (3.91)

where s(n) = xT (n), the transpose of the tap-output vector. Continuing with vague
analogies, this would then correspond to the covariance or pre-windowing method

89Regardless of the interpretation of the signals as deterministic or stochastic, the quantities
X(z) and Y (z), or Sxx(z) and Sxy(z), respectively, determine the weight vector w with respect
to a chosen GLM structure, although the model operate causally according to ŷ(n) = wT x(n),
x(n) = g(n) ∗ x(n), apparently unaware of x(k) and y(k) for k > n.

90Strictly speaking, the windowing imposes also violations on causality: even in the case when
an FIR filter is chosen as the GLM, there are four basic presumptions of the data outside the
observation window [Haykin, 1996].

91The finite input and output signals x(n) and y(n) are extended to `2(N) by appending zeros,
{x(0), . . . , x(n), 0, . . .} and {y(0), . . . , y(n), 0, . . .}. This implies that the elements of the correlation
matrix should be evaluated with respect to the effective length of the partial model responses (in
the time-domain), which can be characterized by the essential length of the partial model impulse
responses. By the same reasoning, however, the evaluation of the correlation vector terminates at
time-index n.
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[Haykin, 1996], depending on how the generalization is interpreted. As in the case
of the autocorrelation method, an actual block-by-block identification of the model
with respect a segmentation of the input and output data would also require a
strategy for the insertion of the initial conditions of the model. These and many
other aspects of an actual implementation are too wide subjects to be considered in
general. However, the following representations of a running or sequential adaptation
of the time-varying weights in (3.89) are applicable without specifying a particular
GLM.

The form of the cumulative sums (3.91) reveal directly how the contribution of the
incoming data can be used to update the correlation terms. By using local estimates
of the correlations, the recent past of the data is weighted over the distant past in
the evaluation of the model weights. In particular, the aim is to form estimates
directly for the ingredients of the solution of the normal equation,

ŵ(n) = R̂−1(n)p̂(n) ←− {R̂−1(n− 1), p̂(n− 1), x(n), y(n)}. (3.92)

It is not a coincident that the appearance of (3.92) reminds of some former top-
ics: matrix factorizations and diagonalizations provide various modifications of the
following prototype adaptive algorithms. In addition, the numerical stability and
convergence properties of the adaptation schemes are closely related to the general
properties of the correlation matrix, in particular to its eigenvalues.

3.5.1 The generalized recursive least-square algorithm

The subsequent derivation of the recursive least-square (RLS) algorithm for the
GLM is an almost straightforward generalization of the FIR filter RLS algorithm
[Haykin, 1996]. One way to approach the subject is to consider an update formula
for the correlation matrix,

R(n) ≈ λR(n− 1) +4R̂(n), n = 1, 2, . . . , (3.93)

where 0 < λ ≤ 1 is a “forgetting factor” that weights the contribution of the
previous correlation matrix R(n−1). The matrix 4R̂(n) is an estimate of the error
R(n)−R(n− 1) and it is supposed to be a function of the incoming (filtered) data.
By construction of the correlation matrix (3.91), the cumulative sum representation
itself allow for the recursion formula R(n) = R(n − 1) + sH(n)s(n), which is a
special case of the recursion (3.93) for λ = 1. The recursion (3.93) introduces an
exponential weighting on the evaluation of the the correlation matrix,

R(n) =
n∑

i=0

λn−isH(i)s(i). (3.94)

Due to the linearity of the model, this weighting can also be seen to result from an
exponential windowing (with respect to λ1/2) of the input signal x(n) or the partial
model responses xj(n), respectively. Moreover, if the model weights are temporarily
considered to be fixed, then the operation of weighting or windowing can be passed
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through to the model output, and consequently, the square of the corresponding
modeling error signal may be expressed as

J(n) =
n∑

i=0

λn−i|e(i)|2, e(i) = y(i)−wTx(i). (3.95)

Minimization of (3.95) with respect to the model weights is called the exponentially
weighted least-squares method. The optimum corresponds to the solution of the
normal equation (3.90), with R(n) defined by (3.94) and a similar formula for the
correlation vector,

p(n) =
n∑

i=0

λn−isH(i)y(i). (3.96)

The recursion formulas for the correlation matrix and vector are thus given by

R(n) = λR(n− 1) + sH(n)s(n), n = 1, 2, . . . ,

p(n) = λp(n− 1) + sH(n)y(n), n = 1, 2, . . . . (3.97)

The other objective was to form the recursion directly with respect to the solution
of the normal equation, as in (3.92). By applying the matrix inversion lemma
[Golub and Van Loan, 1989], the recursion formula for the inverse of the correlation
matrix is attained as

R−1(n) = λ−1R−1(n− 1)− λ−2R−1(n− 1)sH(n)s(n)R−1(n− 1)

1 + λ−1s(n)R−1(n− 1)sH(n)
, (3.98)

n = 1, 2, . . .. The denotations P(n) = R−1(n) and

k(n) =
λ−1P(n− 1)sH(n)

1 + λ−1s(n)P(n− 1)sH(n)
(3.99)

provide a neater form for the equation (3.98),

P(n) = λ−1P(n− 1)− λ−1k(n)s(n)P(n− 1), n = 1, 2, . . . . (3.100)

A comparison and manipulation of (3.99) and (3.100) result in the relation k(n) =
P(n)sH(n), which states that the gain vector k(n) in the recursion (3.100) is related
to the tap-output vector x∗(n) = sH(n) through the transformation defined by the
correlation matrix. Finally, by collecting all these relations, a recursion formula for
the solution of the normal equation, ŵ(n) = P(n)p(n), is attained:

ŵ(n) = P(n)p(n)

= λP(n)p(n− 1) + P(n)sHy(n)

= λP(n)p(n− 1) + k(n)y(n)

= P(n− 1)p(n− 1)− k(n)s(n)P(n− 1)p(n− 1) + k(n)y(n)

= ŵ(n− 1)− k(n)s(n)ŵ(n− 1) + k(n)y(n)

= ŵ(n− 1) + k(n)[y(n)− s(n)ŵ(n− 1)]

= ŵ(n− 1) + k(n)[y(n)− ŵT (n− 1)x(n)]. (3.101)

98



The term in the brackets is the (a priori) estimation error based on the previous
weight vector, in contrast to the actual instantaneous (a posteriori) estimation error

e(n) = y(n)− ŵT (n)x(n). (3.102)

In conclusion, the GLM-RLS algorithm is given by equations (3.99), (3.100) and
(3.101) with respect to the partial model response s(n) = xT (n) and the estimation
error e(n) = y(n)−ŵT (n−1)x(n) for the incoming data {x(n), y(n)}. The algorithm
is initialized by setting P(0) and w(0) to some reasonable values. The scaled unit
matrix, P(0) = αI, α > 1, and the zero-vector, w(0) = 0, are common choices, but
especially in the case of the GLM it could be appropriate to use better balanced or
model-specific initial estimates.

The essential differences between the general case and the orthonormal GLM struc-
tures, such as the FIR filter, are related to the signal scaling (or gain) introduced
by the partial model responses. This implies also that the forgetting factor could
or should actually be a matrix, Λ = diag(λ1, . . . , λN), where the distributed fac-
tors, 0 < λj ≤ 1, are somehow associated to the GLM tap-output responses. An
actual convergence analysis would not be reasonably in the general case, but the
guidelines seem to be very similar to that of the FIR model [Haykin, 1996]. The
most important observation is that the RLS algorithm can be seen as a genuine
limiting process for the method of least-squares, that is, the solution of the GLM
normal equations. The convergence properties are once more related to the general
properties of the correlation matrix, in particular, the eigenvalue distribution. The
main difference between the general case and the orthonormal GLM structure is
thus in the way the contribution of the model may be segregated from the prop-
erties of the input signal, as it was demonstrated in Section 3.4.2. However, the
independence assumptions of the input statistics [Haykin, 1996] are by definition
equally valid (and unrealistic) for the GLM filtered data vector s(n) = xT (n).92 In
addition, the positive definiteness of the correlation matrix estimates is essential in
deducing the RLS algorithm, particularly in the use of the matrix inversion lemma,
and it can be argued that constraints in terms of the conventional tap-input vector,
x(n) = [x(n) x(n − 1) · · · x(n − N + 1)]T , have natural counterparts in terms of
the GLM partial model tap-output vector x(n) = [x1(n) x2(n) · · · xN(n)]T . These
considerations are closely related to the persistency of excitation of the input signal,
which was in Section 3.2.2 alleged to transfer to the data structure defined by the
GLM. This opinion is supported by a consideration between persistency of excitation
and general adaptive schemes [Bitmead, 1984].

Some remarks The main reason for bringing in the concept of adaptive fil-
tering is to provide an option for reducing the gap between adaptive FIR and IIR
filtering methods. The above RLS-GLM concept provides a general framework for
some existing proposals for combining the RLS algorithm and special forms of IIR
filters, such as, the Laguerre-domain adaptive filter (LDAF) [den Brinker, 1994], the
RLS Gamma filter [Palkar and Principe, 1994] and the RLS fixed pole adaptive fil-
ter (FPAF) [Williamson and Zimmermann, 1996]. It should however be noted that

92The independence assumption (for the FIR least-mean-square algorithm) has recently been
removed [Butterweck, 1997], which was acknowledged in the later (fourth) edition of Haykin’s
book. This update was pointed out to the author by Dr. Bert den Brinker. This does not however
affect the argument itself.
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a direct utilization of the RLS algorithm on the data structure of the IIR filter
(such as the state-variables z(n) and w(n) in (2.33) and (2.34), respectively,) do
not fall into the category of adaptive GLM. This is obviously due to the fact that
the induced partial models are not independent of the “parameters”, but also be-
cause the standard linear regression formulation corresponds to an equation-error
(EE) method [Ljung and Söderström, 1983], in contrast to the GLM that is by con-
struction an output-error (OE) configuration93. In practice, and at least from the
point of adaptive IIR filtering, it is mainly the OE configuration that has real phys-
ical meaning as a system model [Steiglitz and McBride, 1965]. The GLM concept
provides an adaptive IIR filter setup that is genuinely in an OE form, and yet,
corresponds to an unimodal or quadratic optimization problem, unlike OE IIR fil-
ter optimization in general. The distinction between the possible adaptivity or the
recursive and non-recursive part of the general adaptive IIR filtering schemes also
suggest a construction based on adaptive GLM with slowly varying partial mod-
els. There has been a few proposals in this direction [Salama and Cousseau, 1998]
[Cousseau et al., 1998] [Ngia and Gustafsson, 1999].

Another remark is related to the algorithm variants of the RLS algorithm and
their possible generalizations to other GLM structures than the FIR filter. As
it was mentioned in Section 3.3.1, the Kalman filter framework has been used to
deduce different QR decomposition-based and lattice-form RLS algorithms
[Sayed and Kailath, 1994b].94 The former is thus in principle based on a general
property of the GLM and the latter was earlier related to (block-) Toeplitz forms
and to structures with cascaded identical allpass blocks. However, the essential in-
gredient in both cases, as well as in their combinations, is the utilization of the simple
shift structure of the data, which is usually lost in the implied generalizations. Inter-
estingly enough, it has been shown that extended shift structures, in particular those
that are related to the allpass shift operator, provide generalizations: an extended
Chandrasekhar recursion [Sayed and Kailath, 1994] for fast fixer-order implementa-
tions and a generalized Szegö-Levinson realization algorithm [Dewilde et al., 1978]
in the order-recursive case. Both of these ideas have been concretized in the spe-
cial case of Laguerre filters [Merched and Sayed, 2001a] [Merched and Sayed, 2000].
Merched and Sayed have also proposed extensions to the general case of transversal
orthonormal IIR filters [Merched and Sayed, 2001b] [Merched, 2003], that is, to the

93There are undoubtedly linear regression models that can be put into output-error form using
filtered data [Ljung, 1987] [Söderström and Stoica, 1989], but the point is that the division be-
tween OE and EE methods that is natural in the system identification configuration is somewhat
confusing from the signal processing point of view [Johnson Jr., 1984]. Anyone who has experi-
mented with adaptive IIR filters knows that direct utilization of adaptive algorithms do not work:
there is a categoric difference in controllability and potential “adaptivity” of the recursive and non-
recursive parts, respectively, that has to be taken into account. Typically, slower or conservative
adaption steps or various “off-line” techniques are used for the recursive part of the model. Such
a difference in the underlying dynamics makes the direct EE configuration slightly awkward. The
EE method is usually attributed with ‘simple’, ‘linear’,‘unimodal’ but ‘biased’, whereas the OE
method is ‘more complicated’, ‘nonlinear’, ‘multimodal’ but the ‘correct choice’ [Shynk, 1989b]
[Regalia, 1995]. From another point of view, some algorithms, such as the Steiglitz-McBride
method [Steiglitz and McBride, 1965] and its generalizations [Regalia, 1992], utilize an interplay
between the EE and OE configuration to solve an OE identification problem using “linearizations”
provided by an intermediate EE formulation.

94The matrix decomposition-based techniques are known as fast or square-root fixed-order algo-
rithms where as the lattice-forms are related to order-recursive realizations.
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filter structure of Figure 3.9, but this remark is merely a reminder for the author in
the hope of a better understanding of the publications at a later time. In any case,
and at least for the transversal GLM structure with identical allpass blocks, there is
a clear connection between the generalized lattice structure and the block-Toeplitz
form of the correlation matrix, which may in some cases be used to deduce “fast”,
“square-root”, or “order-recursive” counterparts of the GLM-RLS algorithm.

3.5.2 The generalized least-mean-square algorithm

The main motivation for the whole construction of the GLM is that it provides an
unimodal or convex approximation problem with respect to the chosen approxima-
tion subspace and the choice of measure. The uniqueness of the solution of the
normal equation has also been utilized indirectly, for example, to provide develop-
ments for the correlation matrix, or as in the previous deduction, to validate the
RLS algorithm. As an alternative to approximative or iterative solving of the normal
equations, the unimodality of the approximation error energy surface may also be
used directly to solve for the optimal model weights. The cost function for the ap-
proximation error energy, the square or mean-square error of the signal e = y−wTx,
with respect to the model weights is given by

J(w) = (e, e) = (y −wTx, y −wTx)

= (y, y)−wHp− pHw + wHRw , (3.103)

where alternative definitions for the correlation terms, p and R, may be used to
expand the inner product. The cost function (3.103) is in quadratic form with
respect to the variable w, which is just a restatement of the unimodal nature of the
error energy surface95. By definition, the minimum of the quadratic form (3.103)
occur at w = R−1p, which is consistent with the result provided by a rewritten form
of (3.103), known in elementary calculus as the action of “completing the square”.96

The method of steepest descent is an old and widely used method of optimization,

95The inner product representation for the error energy (3.103) is neat and compact, and possibly
by itself sufficient proof for the quadratic nature, but the actual expansions impose feasible tests
for the declared conventions and definitions of this thesis. For example, according to the chosen
rules for vector-valued inner products,

J(w) = (y −wT x, y −wT x) = (y, y)− (y,wT x)− (wT x, y) + (wT x,wT x)
= (y, y)− (wT x, y)∗ −wT (x, y) + wH(x,x)∗w
= (y, y)−wHp− pHw + wHRw ,

where in the last step, p = (x, y)∗ = (y,x)T , wT p∗ = pHw, and R = (x,x)∗ = (x,x)T . On the
other hand, by utilizing the vector notation,

J(w) = eHe = (y − Sw)H(y − Sw) = (yH −wHSH)(y − Sw)
= yHy −wHSHy − yHSw + wHSHSW

= yHy −wHp− pHw + wHRw ,

where the correlation terms are expressed using the signal matrix representations, p = SHy,
pH = yHS, and R = SHS.

96For a real polynomial p(x) = C + Bx + Ax2, the extreme point x = −B/(2A) is seen directly
from the rewritten form p(x)/A = (x+B/(2A))2−B2/(2A)2+C/A. It is a minimum point if A > 0,
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where the minimization of a differentiable function over a vector field is conducted
using local linearizations and increments proportional to the negative of the gradient
vector. In terms of the function (3.103), the steepest descent algorithm for the weight
update is given by

wp+1 = wp − µ∇J(wp), (3.104)

where µ is the increment step-size parameter that is possibly time-variant and matrix
valued. The iteration index p is denoted as a superscript to indicate that it may
be an indirect function of the actual time-variable. The form of (3.104) differ from
the usual convention [Widrow and Stearns, 1985] [Haykin, 1996] by omitting the
factor 1/2 in the increment, which is not by itself very interesting, but it is an
indication of a more profound difference in the concept of differentiation with respect
to a complex (vector) variable. The function (3.103) is by definition real-valued,
whether or not the variable is real or complex, w ∈ RN or w ∈ CN , but the
difficulties arise from the fact that complex conjugation, as a composite action, is
not an analytic or differentiable function. At least partly due to the same reason
also the definition of the gradient itself is usually constructed by partitioning into
real and imaginary parts [Huang and Chen, 1989] [Morgan, 1991] [Picinbono, 1991]
[Haykin, 1996], which result in the aforementioned difference in the scaling of the
gradient vector. In the following, a direct evaluation of the complex gradient is
performed using chosen conventions of this thesis and an agreement on complex
derivatives [Brandwood, 1983],

∇wJ(w) = ∇w((y, y)−wHp− pHw + wHRw)

= ∇w(−wHp) +∇w(−pHw) +∇w(wHRw)

= ∇w(−pHw) +∇w(wHRw)

= −p∗ + R∗w∗, (3.105)

where the intermediate steps implicate the calculation rules97. In addition to the
scaling, the correlation terms are conjugated in contrast to the conventional appear-
ance, which is a consequence of the chosen “unconjugated” form of the model. As a
formal check, the gradient formula (3.105) ensures that ∇J(w0) = 0 ⇔ Rw0 = p,
where w0 is the unique solution of the normal equation. In this sense the gradient
can be seen as a perturbation term in the normal equation. Direct utilization of
the gradient (3.105) in the weight update formula (3.104) would result in an algo-
rithm where the correlation terms have to be somehow estimated, for example using
recursions (3.97). This formulation, however, has the advantage that it avoids the
inverting of the correlation matrix. The actual efficiency in computational complex-
ity is accomplished by replacing the various estimates of the correlation terms by
the instantaneous estimates

R̂(n) = sH(n)s(n) (3.106)

p̂(n) = sH(n)y(n). (3.107)

which is analogous to the assertion that R is positive definite. The corresponding factorization
of (3.103) is given by J(w) = (y, y) − pHR−1p + (w −R−1p)HR(w −R−1p), which is seen by
expanding the last term. It is also noteworthy that all terms in (3.103) are real if they are grouped
with respect to their degree, also the term −wHp−pHw = −2<(pHw), which results in something
close to x = −B/(2A).

97Using the definitions proposed by Brandwood,∇(wHp) = 0,∇(pHw) = p∗, and∇(wHRw) =
R∗w∗ [Brandwood, 1983].
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These instantaneous estimates are clearly special cases of the weighted correlations
(3.94) and (3.96) for λ = 0, or alternatively, a degenerations of the recursive for-
mulas (3.97) corresponding to memoryless updates98. From the point of view of the
stochastic correlation terms, R = E[sH(n)s(n)] and p = E[sH(n)y(n)], the instan-
taneous estimates are produced simply by omitting the expectation operator. A
direct substitution of these estimates to the gradient formula (3.105) transforms the
weight update (3.104) into

w(n + 1) = w(n) + µ(p̂∗ − R̂∗w∗(n))

= w(n) + µ(sH(n)y(n)− sH(n)s(n)w(n))∗

= w(n) + µsT (n)(y(n)− s(n)w(n))∗

= w(n) + µx(n)e∗(n), n = 0, 1, . . . , (3.108)

where e(n) is the approximation error signal and where the iteration index and the
time-variable are now identified99. The weight update algorithm (3.108) is called the
least-mean-square (LMS) algorithm or the stochastic gradient algorithm, where the
latter name is descriptive in the sense that it is actually a steepest descent algorithm
with respect to the expected value of the weight vector [Widrow and Stearns, 1985].

Externally the GLM-LMS algorithm differs from its FIR filter counterpart mainly in
the interpretation of the the data vector x(n). The algorithm is initialized by setting
w(0) = 0 or by a more sophisticated guess of the weight vector. As in the case of
the FIR-LMS algorithm, the stability and convergence of the GLM-LMS algorithm
is governed by the choice of the step-size parameter µ. Conventional constraints for
the step-size parameter are given by

0 < µ <
2

λmax(R)
and

N∑

i=l

µλi

2− µλi

< 1 , (3.111)

where λi, i = 1, . . . , N , are eigenvalues of the corresponding correlation matrix
[Widrow and Stearns, 1985] [Haykin, 1996]. The former constraint is related to the
stability and the latter essentially to the final mismatch or bias with respect to the
optimal solution. The potential convergence rate is obviously an increasing function
of the step-size parameter, although conservative choices of µ are usually preferred

98Which does not necessarily mean that the estimate is memoryless. One of the motivations for
considering adaptive algorithms is that in the GLM framework the model itself can be seen as a
potential storage for past estimates of the correlation terms.

99As a mere curiosity, there is also another and more generic way to deduce the algorithm
(3.108) directly in the Hilbert space framework, that is, without resorting to the nature of the
signals. Namely, the gradient can be approximated as

∇wJ(w) = ∇w(y −wTx, e) = ∇w((y, e)− (wTx, e))
≈ ∇w(−wT(x, e)) = −(x, e), (3.109)

which utilize the fact that due to the orthogonality principle, (y, eopt) = 0 , also the gradient of
(y, e) is negligible, at least in the vicinity of the minimum error eopt. Now the evaluation of the
inner product may be analogously estimated by an instantaneous signal product,

(̂x, e) ≡ x(n)e∗(n), (3.110)

which consequently results in the weight update algorithm (3.108).
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since the constraints do not actually guarantee convergence in the deterministic sense
and because the final misadjustment (bias in terms of the normalized excess mean-
square error) is directly proportional to the product µN [Widrow and Stearns, 1985].

As in the case of the conventional LMS algorithm, the dilemma between convergence
rate and steady-state mismatch suggests the use of an adaptive step-size parameter.
A simple choice for the adaptive step-size parameter is given by

µ(n) =
µ0

ε + xH(n)x(n)
, 0 << µ0 < 2, (3.112)

where ε is a small positive constant that ensures that the denominator of the expres-
sion is always strictly positive. The application of the step-size parameter (3.112) in
the weight update (3.108) provides a straightforward generalization of the normal-
ized LMS algorithm (NLMS) [Haykin, 1996]. The “normalization” is with respect to
an estimate of the tap-output energy, given by the instantaneous tap-output power
xH(n)x(n). The formula (3.112) is motivated by the observation that the largest
eigenvalue in (3.111) has an upper bound, λmax(R) ≤ ∑N

i=0 λi = tr(R), where the
trace of the correlation matrix, tr(R), is much easier to evaluate or approximate
than the actual eigenvalues100. In addition, an appropriate estimate of the trace of
the correlation matrix will provide a bound for the step-size parameter that satisfy
also the latter one of the conditions (3.111) [Haykin, 1996].

As the expression (3.112) shows, the trace tr(R) is then approximated by the quan-
tity xH(n)x(n). This simplification can once more be interpreted as an instantaneous
estimate: for example using the definition R = E[sH(n)s(n)], the estimation of the
correlation matrix is attained by omitting the expectation operator, R̂ = sH(n)s(n),
and the trace of the matrix R̂ is consequently equal to xH(n)x(n). In the case of
an orthonormal GLM structure it is also an estimation of the expected sum of
squares of the input samples, the “tap-input power” [Haykin, 1996], although the
relation is not as trivial as in the case of the FIR model. Moreover, the actual
normalization introduced by xH(n)x(n) is even more complicated when the model
structure is neither orthonormal nor Toeplitz; the estimate is in principle as valid as
the conventional instantaneous tap-input power, and also from the practical point
of view, the normalization performs desired averaging over the partial model re-
sponses, but this estimation is not as balanced as in the case of the FIR-NLMS
algorithm. These observations however suggest that in the general case, the scalar
function (3.112) should be replaced by a matrix valued adaptive step-size parame-
ter µ(n) = diag{µ1(n), . . . , µN(n)}, where the component functions are attributed
separately to the partial model responses. The specialities that should be taken into
account are primarily related to the scaling and inertia introduced by a particular

100The trace of a (correlation) matrix is the sum of the main diagonal elements, which according
to the unitary similarity transformation (3.31), equals the sum of the eigenvalues. For a Toeplitz
matrix, such as the FIR correlation matrix, the diagonal elements are identical, which provides
tr(R) = N r00, where r00 is one of the main diagonal elements. Now, for an FIR model, or any
other orthonormal GLM structure with a Toeplitz correlation matrix, the correlation term r00 is
also the mean-square value or energy of the input signal x(n), so that the trace can be approximated
by a truncation of the inner product (x, x), tr(R) ≈ xH(n)x(n). It should at this point also be
noted that in some of the definitions of the GLM correlation terms, the “mean-scaling operation”
1/N(·) is omitted since it is cancelled out in the normal equation. This is in fact the only instance
in this thesis when this chosen facilitation causes confusion.
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GLM. As in the case of the conventional NLMS algorithm, the step-size functions
could also be modified subject to various criteria, such as, smoothing, freezing,
thresholding, and dependence on the achieved modeling error [Greenberg, 1998].

Some additional remarks The LMS algorithm is usually associated with
tracking time-varying systems in various applications of adaptive filtering. However,
the fact that it is computationally a “lightweight method” may also be used as an
alternative for solving the normal equations, for example, in LTI system identifica-
tion or to replace block-by-block parametric representations in signal coding. There
is also an interesting connection between orthogonal transform coding and the LMS
algorithm, in particular, the block-coding based on the DFT may be implemented
exactly using the LMS algorithm [Widrow et al., 1987]. In fact, any discrete orthog-
onal transform may be implemented using the LMS algorithm [Wang, 1991], which
could be utilized in Section 3.3.5. The other remark is related to the lattice form of
the LMS algorithm, the gradient adaptive lattice (GAL) algorithm, although such
an introduction is not entirely accurate; the actual GAL update takes the form of a
normalized LMS algorithm, but relative to its operation it could also be attributed
to the lattice forms of the RLS family of algorithms. At least in principle, all GLM
structures that produce a block-Toeplitz correlation matrix should have a GAL im-
plementation, in particular, all GLM structures based on identical allpass blocks.
The gradient-adaptive Laguerre-lattice (GALL) algorithm [Fejzo and Lev-Ari, 1997]
is an example of such a non-trivial GLM representation.
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Chapter 4

Rational orthonormal GLM and
some audio oriented applications

In the context of signal processing, rational orthonormal filter structures were first in-
troduced in the 1950’s by Kautz, Huggins and Young [Kautz, 1954] [Huggins, 1956]
[Young and Huggins, 1962]. Kautz showed that an orthogonalization process ap-
plied to a set of continuous-time exponential components produces orthonormal ba-
sis functions having particular frequency-domain expressions. Much earlier, Wiener
and Lee [Lee, 1960] proposed synthesis networks based on some classical orthonormal
polynomial expansions [Szegö, 1939]. The idea of representing functions in orthonor-
mal components is elementary, but the essential observation in the aforementioned
cases was that some time-domain basis functions have rational Laplace transforms
with a recurrent structure, defining an efficient transversal synthesis filter structure.

Discrete-time rational orthonormal filter structures can be attributed to Broome
[Broome, 1965] as well as the baptizing of the discrete Kautz functions, consequently
defining the discrete-time Kautz filter. The point of reference in the mathematical
literature for the utilization of rational orthonormal function expansions is some-
what arbitrary, but a reasonable choice are the deductions made in the 1920’s
to prove interconnections between rational approximations and interpolations, and
the least-square problem, which were assembled and further developed by Walsh
[Walsh, 1969].

There has been a renewed interest towards rational orthonormal filters and model
structures over the last ten-fifteen years, mainly from the system identification
point of view [Heuberger, 1991] [Van den Hof et al., 1994] [Oliveira e Silva, 1995]
[Szabó and Bokor, 1997] [Bokor and Schipp, 1998] [Bultheel and De Moor, 2000].
The perspective has usually been to form generalizations to the well-established
Laguerre models in system identification [King and Paraskevopoulos, 1979]
[Nurges, 1987] [Mäkilä, 1990] [Wahlberg, 1991] and control [Zervos et al., 1988].
In this context, the Kautz filter or model has often the meaning of a two-pole gener-
alization of the Laguerre structure [Wahlberg, 1994], whereupon further generaliza-
tions restrict, as well, to structures with identical blocks [Heuberger et al., 1995].
Another, and almost unrecognized, connection to recently active topics in digi-
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tal signal processing is provided by the orthonormal state-space models for adap-
tive IIR filtering [Regalia, 1992] with some existing implications to Kautz filters
[Cousseau et al., 1998] [Salama and Cousseau, 1998].

Kautz filters have found very little use in audio related signal processing: to cite rari-
ties [Davidson and Falconer, 1991] [Ngia and Gustafsson, 1999] [Campi et al., 1999].
One of the reasons is certainly that results from such fields as system identification
and control engineering do not seems to find their way very easily to the convention
of audio engineering. The more inherent reason is that there is an independent but
related tradition of frequency warped structures, which is already well-grounded and
sufficient for many tasks in audio signal processing. Frequency warping provides an
approximation of the constant-Q resolution of modeling [Oppenheim et al., 1971] as
well as a good match with the Bark scale that is used to describe the psychoacous-
tical frequency scale of human hearing [Smith and Abel, 1999]. A recent overview
of frequency warped filters is given in [Härmä et al., 2000].

The motivation for the following utilization of Kautz filters is based on the obser-
vation and opinion that there is a certain void in generality and perspective, both
in the proposed utilizations of Kautz filters as well as in the warping-based view to
the allocation of frequency resolution into the modeling. In this thesis the use of
Kautz filters is demonstrated in the spirit of “pure filter synthesis”, that is, given
target responses are approximatively modeled as impulse responses of Kautz filters,
which was actually their original usage. Quite surprisingly, to the author’s knowl-
edge there has not been many (or hardly any) proposals in this direction on the level
of modern computational means in design and implementation. The aim is thus to
genuinely challenge the conventional FIR and IIR filter design approaches, as well
as, their warped counterparts. This mission has been initiated by a series of pub-
lications demonstrating potential audio related applications [Paatero et al., 2001]
[Härmä and Paatero, 2001] [Penttinen et al., 2001] [Karjalainen and Paatero, 2001]
[Paatero and Karjalainen, 2002] and by a few somewhat more methodological con-
siderations [Paatero, 2002] [Paatero, 2003] [Paatero, 2004]. An overview of Kautz
filters and their audio applications is given in [Paatero and Karjalainen, 2003].

The rest of this thesis is organized as follows. In Section 4.1 the rational orthonor-
mal functions that have already popped up at several occasions (for example (2.111)
and (3.79)) will be restated and placed into the linear-in-parameter model or filter
framework. The particular form in which these Kautz filters will be used is pro-
nounced, along with some general properties resulting from this choice. The basic
tool for the most important part, the choosing of the Kautz filter poles, is presented
in Section 4.3. Audio oriented case studies, including loudspeaker equalization, room
response modeling, and modeling of an acoustic guitar body, are demonstrated and
compared with more traditional approaches in Section 4.4.
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4.1 A particular rational orthonormal GLM: The

Kautz filter

As a short farewell for the GLM concept, the underlying model has all along been
considered to be implementable as a causal stable finite-dimensional linear filter
structure, corresponding to a rational transfer function of the form

Ĥ(z) =
P (z)

Q(z)
=

b0 + b1z
−1 + . . . + bMz−M

a0 + a1z−1 + . . . + aLz−L
, (4.1)

where time-invariancy of (all) the parameters {bi, ai} is not necessarily required.
The transfer function (4.1) has an infinite number of different implementations as a
digital filter. For example a simple regrouping, Ĥ(z) = P (z)/(1 − Q′(z)), suggests
one direction of interpretations. On the other hand, any function of the form (4.1)
has a “root-factored” representation

Ĥ(z) = g0
(z−1 − β1)(z

−1 − β2) . . . (z−1 − βM)

(z−1 − α1)(z−1 − α2) . . . (z−1 − αL)
, (4.2)

which in turn implies an infinite variety of cascade and parallel realizations with
respect to different partial fraction expansions. The perspective of the GLM is in a
sense the opposite: the partial models introduce a model of the form

G(z) =
N∑

i=0

wiGi(z) =
N∑

i=0

wi
Pi(z)

Qi(z)
, (4.3)

where {Gi(z)} are rational functions with fixed numerator and denominator poly-
nomial factors Pi(z) and Qi(z), respectively. The GLM is a fixed denominator (or
pole) model in the sense that the parameters {wi} interfere only with the numerator
terms, which is seen by expanding the expression into the common denominator
form1. The model (4.3) is by construction parallel, but as it has already been ob-
served, it may also describe a cascaded system, or even a lattice configuration.

4.1.1 Kautz functions and filters

A particularly efficient but at the same time general choice of partial models are the
Kautz functions

Gi(z) =

√
1− ziz∗i

z−1 − z∗i

i∏
j=0

z−1 − z∗j
1− zjz−1

, i = 0, 1, . . . . (4.4)

The efficiency is related to the transversal nature of the functions (Figure 3.9) as
well as to the favorable properties resulting from the mutual orthonormality of the
functions. The choice is general in the sense that it is capable of representing any

1Actually some pole-zero cancelations may occur, but the parameters do not introduce new
poles (at least other than z = 0).
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Figure 4.1: The Kautz filter. For zi = 0 in (4.4) it degenerates to an FIR filter and
for zi = a,−1 < a < 1, it is a Laguerre filter where the tap filters can be replaced
by a common pre-filter.

causal and stable (finite-dimensional) rational system with a proper choice of poles.
The model structure induced by this choice of partial models is also efficient among
other choices of the form (4.3) with respect to the same generating poles because
it is known to posses a minimal realization (Section 3.4.2). The generic form of a
Kautz filter is given by the transfer function representation

Ĥ(z) =
N∑

i=0

wiGi(z)

=
N∑

i=0

wi

(√
1− ziz∗i

1− ziz−1

i−1∏
j=0

z−1 − z∗j
1− zjz−1

)
, (4.5)

where wi, i = 0, . . . , N , are somehow assigned tap-output weights. The Kautz filter
is thus a truncated weighted sum of Kautz functions as depicted in Figure 4.1.
The filter structure (as well as the filter or model order) is uniquely defined by the
choice of poles, whereas the tap-output weights are considered as “free parameters”
to be specified. Defined in this manner, Kautz filters are merely a class of fixed-
pole IIR filters, forced to produce orthonormal tap-output impulse responses. In the
GLM framework, the weight determination process is inherently related to the least-
square or minimum-mean square criterion, but many other error norms as well as
error weighting schemes are possible. In the following however, the consideration is
constrained to the LS approximation problem, that is, to the approximate modeling
of a given system. It is apparent that the most important task is then how to choose
the poles, which embody the essential practical contribution of this thesis.

4.1.2 Least-square approximation by Kautz filters

Clearly the most obvious and simple choice of model parametrization is to use the
orthogonal expansion (or projection) coefficients with respect to the chosen orthonor-
mal basis functions. The approximation of a given target response h(n) (or H(z))
is obtained as its truncated Fourier series expansion with respect to the time- or
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frequency-domain Kautz functions,

ĥ(n) =
N∑

i=0

cigi(n), ci = (h, gi), (4.6)

or as (4.5), with wi = ci = (H, Gi). Evaluation of the Fourier coefficients ci can be
implemented in the time-domain by feeding the time-reversed signal h(−n) into the
Kautz filter and by subsequently reading the tap outputs xi(n) = Gi[h(−n)] at n =
0: ci = xi(0). That is, all inner products in (4.6) are implemented simultaneously
using filtering. In the case of an FIR filter this would equal design by truncation.
This choice of model or filter parametrization is in accordance with the Hilbert space
approximation problem, but also in more engineering-oriented terms, it is the least-
square approach, although it should be noted that here the LS criterion is applied
on the infinite time horizon and not for example in the time window defined by the
target response h(n).

In addition to the ease of evaluating the weights, the Fourier expansion representa-
tion (4.6) also implies that it accomplishes simultaneous time- and frequency-domain
optimization. Another duality is reflected by the fact that this approximation set-
ting produces equally phase as well as magnitude modeling of the target response.
Moreover, in an orthogonal configuration the contribution of each pole to the ap-
proximation is explicitly at hand, the approximation is independent of the ordering
of the corresponding pole set, and the coefficients are independent of the approxi-
mation order, which makes choosing the poles, approximation error evaluation, and
model reduction efficient2. This choice of LS approximation is also essential to the
proposed pole generating process (Section 4.3), which in turn provides the basis for
utilizing aforementioned properties due to orthogonality, that is, pruning, tuning
and appending an initial set of poles.

4.1.3 Real-valued Kautz functions for complex conjugate
poles

A Kautz filter produces real tap output signals only in the case of real poles. In
principle this does not in any way limit its potential capabilities of approximating a

2According to (4.6), the coefficient ci depends only on the corresponding basis function, ci =
(h, gi). In other words, the basis function gi is not affected by any reordering of the preceding
pole set, and in addition, it is completely insensitive to any further developments of the sequence
of functions with respect to appended poles. Moreover, the approximation error energy for a
set of poles {z0, . . . , zn} is given “orthogonally” as E = (h, h) − ∑N

i=0 |ci|2, which makes model
reduction efficient. In practice, the contribution of a particular pole zi to the approximation is
quantized quite well directly by |ci|2 regardless of its position in the pole sequence. An exact
model reduction scheme (with respect to a given pole set) is attained by moving each pole one at
a time to the end of the pole sequence; an alternative ordering procedure starting from the most
prominent pole was proposed in [den Brinker and Belt, 1997]. It should however be emphasized
that for various permutations of the pole set, the basis functions are in general different, but the
approximation ĥ(n) =

∑N
i=0 cigi(n) itself is independent of ordering. To be even more specific,

actually the magnitude responses of {gi} are indeed invariant to permutations of the “tap-order”,
but the phase responses depend on the preceding (allpass) block as a whole (but once more, not
on the ordering of the individual allpass blocks).
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Figure 4.2: One realization for producing real Kautz filter tap-output responses
defined by a sequence of complex conjugate pole pairs. The transversal allpass
backbone of Fig. 4.1 is restored by moving the denominator terms one step to the
right and by compensating for the change in the tap-output filters.

real signal or system. However, it may be preferable that the processing is restricted
to real quantities, that is, involving only internal signals, coefficients and arithmetic
operations that are real-valued. A restriction to real linear-in-parameter models can
also be seen as a categoric step in the optimization of the structure3.

It is always possible to form a real orthonormal structure from a sequence of real
or complex conjugate poles4. This can be seen to result from the observation that
the corresponding subspace is then generated by a real rational allpass operator
(Section 2.4.3) providing a real (valued or rational) orthonormal basis function rep-
resentation that is produced by an unitary transformation applied to one of its bases.
In practice this is done by applying an unitary transformation to the tap-output vec-
tor, consisting of 1’s corresponding to real poles and 2× 2 unitary rotation elements
corresponding to a complex conjugate pole pair. There is obviously an infinite va-
riety of (unitarily equivalent) possible solutions. To the practical purposes of this
thesis it is sufficient to just choose one particular real rational orthonormal structure:
the filter structure in Figure 4.2, proposed originally by Broome [Broome, 1965], is
maybe the most “symmetric” and intuitively simple structure.

The second-order section outputs of the transversal structure in Fig. 4.2 are mutu-
ally orthogonal, from which each tap output signal is further split into orthogonal
components of difference and sum, x(n)−x(n−1) and x(n)+x(n−1), respectively.
The tap-output filters are then given by

pi(z
−1 − 1) and qi(z

−1 + 1), (4.7)

where the normalizing coefficients {pi, qi} are determined by the corresponding pole

3Assuming that a real-valued response is approximated, it is known that the “true” poles of the
system are real or occur in complex conjugate pairs, which makes all other choices sub-optimal.

4Some of the Kautz filter deductions are made directly on the assumption of real rational
functions [Broome, 1965]. Moreover, the state-space approach to orthonormal structures with
identical blocks, the Generalized orthonormal basis functions of Heuberger, is based on balanced
realizations of real rational allpass functions [Heuberger, 1991].
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pair {zi, z
∗
i },

pi =
√

(1− ρi)(1 + ρi − γi)/2

qi =
√

(1− ρi)(1 + ρi + γi)/2
γi = −2<{zi}
ρi = |zi|2

(4.8)

where γi and ρi can be recognized as corresponding second-order polynomial coef-
ficients. The construction works also for real poles, producing a tap-output pair
corresponding to a real double pole. However in the following examples a mixture
of filter structures of Figures 4.1 and 4.2 is used in the case of both real and com-
plex conjugate poles, where in the latter the allpass characteristics of the transversal
blocks is restored by shifting the denominators one step to the right and by com-
pensating for the change in the tap-output blocks. In an actual implementation the
normalizing coefficients are obviously integrated into the tap-output coefficients.

As an example of the nature of Kautz filter responses with complex conjugate pole
pairs, the magnitude spectrum of the tap-output impulse responses is presented in
Figure 4.3. The chosen complex poles are depicted in Figure 4.3a: the real Kautz
filter structure is actually induced by the complex conjugate symmetric pole set
{zi, z

∗
i } . Figures 4.3b and 4.3c characterize the complementary orthogonal behavior

of resonances for odd versus even tap output responses.

4.2 Strategies for choosing the Kautz filter poles

Contrary to some all-pole and all-zero modeling and filter design methods there
are in general no analytical or global solutions for the optimal pole positions of a
Kautz filter5. This is however a general feature of pole-zero or ARMA modeling.
Kautz filter design can be seen as a two-fold procedure involving the choosing of
a particular Kautz filter pole set and the evaluation of the corresponding filter
weights. The fact that the latter task is much easier, better defined, and inherently
least squares optimal makes it tempting to use sophisticated guesses and random or
iterative search in the pole optimization. For a more analytic approach, the whole
idea in the Kautz concept is how to incorporate desired a priori information to the
Kautz filter. This may mean knowledge on system poles or resonant frequencies and
corresponding time constants, or indirect means, such as any available all-pole or
pole-zero modeling method to find potential Kautz filter poles.

A practical way to limit the “degrees of freedom” in filter design is to restrict to struc-
tures with identical blocks, that is, to use the same smaller set of poles repeatedly.
The pole optimization and the model order selection problems are then essentially
separated and various optimization methods can be applied to the substructure. Ad-
ditionally, for the structure with identical blocks, a relation between optimal model
parameters and error energy surface stationary points with respect to the poles may

5An iterative method (with respect to the pole set) based on a modified error criterion is
presented in [Sarroukh et al., 2001]. However, the attained pole set seem to diverge quite rapidly
(apparently due to the modification in optimization criterion) from the ones that are attained more
genuinely in the LS sense, for example, using the method of Section 4.3.
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Figure 4.3: An example of real-valued Kautz filter responses for complex conju-
gate pole pairs: (a) poles (only one per pair shown) positioned logarithmically in
frequency (with respect to the pole angle), and with pole radius of 0.97. (b) Mag-
nitude responses for odd tap outputs and (c) even tap outputs (see Fig. 4.2).

be utilized [den Brinker et al., 1996] as well as a classification of systems to associate
systems and basis functions [Oliveira e Silva, 1994c] [Wahlberg and Mäkilä, 1996].
However, as it has been stated, the aim here is to genuinely compete with traditional
pole-zero or ARMA modeling techniques, which calls for a method that produces
large sets of distributed (and usually close to unstable) poles for the efficient mod-
eling of challenging target responses. In the following some general aspects of the
Kautz filter framework are first considered.
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4.2.1 Generalized frequency resolution descriptions

As mentioned earlier, frequency-warped configurations in audio signal processing
[Härmä et al., 2000] constitute a self-contained tradition originating from warp-
ing effects observed in analog-to-digital mappings and digital filter transformations
[Constantinides, 1970]. The concept of a warped signal was introduced to compute
non-uniform resolution Fourier transforms using the Fast Fourier Transform (FFT)
[Oppenheim et al., 1971], and in a slightly different form, to compute warped au-
tocorrelation terms for warped linear prediction [Strube, 1980]. The original idea
of replacing a unit delay element with a first-order allpass operator in a transfer
function, that is, to utilize the substitution

z−1 ← z−1 − λ

1− λz−1
(4.9)

was subsequently restated and generalized to include warped counterparts of arbi-
trary linear filter structures [Steiglitz, 1980] [Imai,1983] [Karjalainen et al., 1996].

The warping effect or resolution description introduced by the first-order allpass
warping is defined by the phase function of the allpass transfer function (4.9).
The warping parameter λ can be chosen to approximate desired frequency scale
mappings, such as the perceptually motivated Bark scale, with respect to different
error criteria and sampling rates [Smith and Abel, 1999]. This is comprehensive
in the sense that the first-order allpass element is the only (rational, stable and
causal) filter having a one-to-one phase function mapping. Parallel structures can
be constructed to approximate any kind of warping [Laine, 1992], including the log-
arithmic scale [Härmä and Paatero, 2001], but the aim of this consideration is to
broaden the concept of frequency resolution description to account for the resolu-
tion allocation introduced by a Kautz filter. More on the topic can be found in
[Paatero and Karjalainen, 2003].

The following is a short reminder of the conformal mappings and related isomor-
phisms (Section 2.4.1) involved in the change of basis representation. The phase
function of the allpass operator defining the formal change of variable, z−1 ↔ 1/A(z),
is simply chosen as an interpretation of the frequency resolution mapping introduced
by a particular Kautz filter. This phase function is a well-defined (monotonic and
unique) function of the pole set (as a whole), which is consistent with the fact that
the order of the poles in the generating allpass operator do not change the modeling
characteristics of the particular orthonormal structure. If a mapping onto the “base
interval”, [0, 2π], is desired, it may always be produced by unwrapping the phase
function using the conformal mapping z 7→ z1/N , where N is the number of poles.
This is analogous to the frequency resolution introduced by the conventional warping
in the sense that the phase function of N cascaded identical first-order allpass func-
tions, ejNv(ω), is mapped back to ejv(ω). In principle, a given phase response profile,
considered as a desired frequency resolution mapping, may then be used to estimate
the poles. However, designing allpass filters is in general a demanding task, and es-
pecially in the implied case of high order allpass filters with strongly resonant poles,
this procedure is usually characterizable as hopeless [Härmä and Paatero, 2001].

The same Kautz filter as in Figure 4.3 is in the following used to demonstrate the
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Figure 4.4: Phase and resolution behavior of the real Kautz filter characterized in
Fig. 4.3: (a) pole positions, (b) phase functions of individual (second-order) allpass
sections, (c) accumulated phase in allpass tap outputs, and (d) group delay (phase
derivative).

proposed interpretation of the frequency resolution allocation introduced by the par-
ticular choice of model. Figure 4.4 characterizes the situation from the perspective
of the allpass operator. Figure 4.4(b) shows the phase functions for the individual
second-order allpass sections whereas Figure 4.4(c) displays the accumulated phases
at each tap-output of the allpass chain. The accumulated phase of the whole allpass
chain, that is, the uppermost curve in Figure 4.4(c) is proposed as the corresponding
frequency scale mapping. The negated derivative of this mapping, the group delay
τg = −dφ/dω of the allpass operator, is depicted in Figure 4.4(d). Similarly, the
group delay can be interpreted as a measure of frequency resolution allocation as
a function of the frequency. It illustrates well how the resolution is (in this case)
highest at low frequencies and then decreases except locally at frequencies corre-
sponding to the resonating pole pairs. It should be pointed out that this frequency
resolution consideration is supposed to be purely descriptive. In particular, this is
not proposed as a generalization of the warping concept, and any such implications
should be used with caution.

A trivial way to attain a desired frequency resolution allocation (in an approximative
sense) is to use suitable pole distributions. Sequences of (complex conjugate) poles
may be placed with pole angle spacings corresponding to any chosen frequency
resolution mapping. The choosing of pole radii is then also to be taken into account;
from the allpass phase matching point of view this is a much easier optimization
problem than trying to directly design a high order allpass filter. For example,
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motivated by some experiments on producing warping on a logarithmic scale with
parallel allpass structures, the choice of pole radii inversely proportional to the pole
angles has proven to be a good ad hoc solution [Härmä and Paatero, 2001].

4.2.2 Manual fitting to a given response

It is always possible to simply adjust manually the Kautz filter poles through trial
and error to produce a Kautz filter response matching, at least to some extent, a
given target response. A Kautz filter impulse response is a weighted superposition
of damped sinusoids which provide schemes for direct tuning of a set of resonant
frequencies and corresponding decay time constants. This approach is demonstrated
in the first case study in Section 4.4. However, this procedure is usually meaningful
only on a smaller scale, in adjusting or appending a few poles into a larger set of
poles that is attained using some “more automated” method. This hand-tuning
scheme is nevertheless useful in correcting local deviations that are not captured by
the overall model response.

By direct inspection of the time- and frequency-domain responses it is relatively easy
to find useful pole sets by selecting a set of prominent resonances and by applying
proper pole radius tuning. Choosing the complex conjugate pole angles is more
critical than the pole radius selection in the sense that the filter coefficients perform
automatic weighting of the sinusoidal components. It should be emphasized that in
the real Kautz structure two orthogonal signal components are assigned to model
the chosen resonance which result in relatively flexible modeling of the phase as well
as more complex decay profiles of the resonance.

An obvious way to improve the overall modeling with a structure based on a fixed
set of resonances is to use the corresponding generating substructure repetitively,
producing a Kautz filter with identical blocks. There is no obligation to use the
same multiplicity for all poles, but it makes model reduction easier. If a set of poles
is assigned for substructures that is then used repetitively, some kind of damping by
reduced pole radii should be applied to avoid “over modeling” the chosen resonances.

4.2.3 Utilizing the concept of complementary signals

The underlying assumption in utilizing orthonormal basis functions for approxi-
mating a given signal h(n) ∈ `2(N) or H(z) ∈ H2(E) is that there is a (possibly
hypothetical) complete representations for the given signal,

h(n) =
∞∑
i=0

cigi(n) or H(z) =
∞∑
i=0

ciGi(z), (4.10)

where ci = (h, gi) = (H, Gi), i = 0, 1, . . ., the inner product that provide the Fourier
coefficients, define in fact an isomorphism (consisting of linear functionals) from
`2(N) or H2(E) back to `2(N). It is also an isometry since ‖h‖2 =

∑∞
i=0 |c|2 = ‖H‖2

for all h(n) ∈ `2(N) or H(z) ∈ H2(E). Now from a more practical point of view the
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relevant question is how the coefficient mapping performs energy compaction into
the chosen truncation; for a chosen approximation order N , the approximation error
energy is given by

E =
∞∑

i=N+1

|ci|2 = H −
N∑

i=0

|ci|2, (4.11)

where H = (h, h) is the energy of the target signal. Hence the energy of an infinite
duration error signal is attained as a by-product from finite filtering operations,
previously described for the evaluation of the filter weights. It will be demonstrated
in the following that it is actually the allpass operator (defining the chosen Kautz
filter) that performs the energy compaction as well as the orthogonal error division in
Equation 4.11. This profound observation was made by Young and Huggins in their
introduction to the concept of complementary signals [Young and Huggins, 1962].

An allpass filter A(z) is lossless by definition, that is, the energy of the response
a(n) = A[x(n)] to any finite-energy input x(n) is preserved as

∑∞
n=−∞ |a(n)|2 =∑∞

n=−∞ |x(n)|2. However, the allpass operator introduces an interesting partition
of the signal energy: if the time-reversed target signal h(−n), n = M, . . . , 0, is fed
into the allpass filter defining the chosen Kautz filter (as it is done in the practical
coefficient evaluation process), then the energy of the response a(n) = A[h(−n)] is
distributed as

∞∑
n=−∞

|a(n)|2 =
∞∑

n=−M

|a(n)|2 =
0∑

n=−M

|a(n)|2 +
∞∑

n=1

|a(n)|2, (4.12)

where the first term in the sum is precisely the approximation error energy E whereas
the second term is the energy of the approximation, Ĥ = (ĥ, ĥ) =

∑N
i=0 |ci|2. This

is a consequence of the complementary nature of representations (4.11) and (4.12):
the infinite set of filter coefficients {ci}∞i=0 is attained by reading the Kautz filter
tap-outputs at n = 0 (for the input h(−n)), which implies that the energy of the
excessive coefficients,

∑∞
i=N+1 |ci|2, the approximation error energy, must be equal

to the energy of the allpass filter response in the time-interval [−M, 0].6 That is,
the Kautz filter optimization problem reduces to the minimization of the energy of
a finite duration signal, a(n), n = −M, . . . , 0, with respect to the poles.

To the author’s knowledge, there have been only two prior attempts to utilize the
concept of complementary signals in the pole position optimization of the Kautz
filter [McDonough and Huggins, 1968] [Friedman, 1981]. McDonough and Huggins
replaced the allpass numerator with a polynomial approximating the denominator
mirror polynomial, to attain linear equations for the polynomial coefficients in an

6The time-reversed input signal is used to attain correspondence with the coefficient evaluation
process; the actual energy partition may also be expressed in the “causal form”, using the shifted
filtering operation a(n) = A[h(M − n)], n = 0, 1, . . ., to produce

M∑
n=0

|h(n)|2 =
∞∑

n=0

|a(n)|2 =
M∑

n=0

|a(n)|2 +
∞∑

n=M+1

|a(n)|2, (4.13)

where then correspondingly,
∑M

n=0 |a(n)|2 is the approximation error energy, whereas∑∞
n=M+1 |a(n)|2 is the energy of the approximation.
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iteration scheme [McDonough and Huggins, 1968]. Friedman constructed a network
structure for parallel calculations of all partial derivatives of the approximation error
with respect to the real second-order polynomial coefficients (γi and ρi in (4.8)) that
he then used in a gradient algorithm in search for the poles [Friedman, 1981]. These
methods are described in more detail in [Paatero, 2000]; both constructions are
interesting and illuminating from a principled point of view, but they were found to
be far from applicable, at least in the implied case of modeling complex responses
with relatively high order models.

4.3 The BU-method

In a search for an appropriate method for the optimization of the Kautz filter poles,
the author was led to the more general topic of FIR-to-IIR filter conversion. The pro-
posed methods are usually based on forming a state-space description for the FIR fil-
ter which is then reduced into a lower order IIR filter using balanced model reduction
techniques [Belizynski et al., 1992] [Fahmy et al., 1994]. However, a method pro-
posed by Brandenstein and Unbehauen [Brandenstein and Unbehauen, 1998] was
immediately found to be interesting from the Kautz filter point of view. To be-
gin with, it is more explicit than the state-space formulations, and thus easier to
approach and size up. It also operates directly on the time-domain target signal, re-
sembling a lot (the denominator part of) the more familiar Steiglitz-McBride method
of pole-zero modeling [Steiglitz and McBride, 1965]. The most striking observations
were however that Brandenstein and Unbehauen had found Walsh’s interpolation re-
sults for the determination of the numerator polynomial and that they derived what
is essentially the complementary error signal concept for the optimization of the de-
nominator polynomial, all this without any reference to orthogonal filter structures.
The method proposed by Brandenstein and Unbehauen for optimizing the poles of
an allpass operator was readily adopted (with a minor modification) to the opti-
mization of the the Kautz filter poles, and consequently, entitled as the BU-method
[Paatero, 1999] [Paatero et al., 2001].

An outline of the BU-method for generating the Kautz filter poles is given in the
following:

• The algorithm is based on approximating an allpass operator A(z) of a given
order N with

Â(k)(z) =
z−ND(k)(z−1)

D(k−1)(z)
, (4.14)

where {1, D(1)(z), D(2)(z), . . .} are iteratively generated polynomials, restricted
to the form

D(k)(z) = 1 +
N∑

i=1

dk
i z
−i = 1 + D

(k)
1 (z), k = 1, 2, . . . . (4.15)

• The ratio (4.14) converges to an allpass function, if ‖D(k)(z)−D(k−1)(z)‖ → 0.
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• The objective is to minimize the output of (4.14) to the input X(z) = z−MH(z−1)
(the z-transform of h(M − n), n = 0, · · · ,M). Denote U (k)(z) = Â(k)[X(z)].

• Define Y (k)(z) = X(z)/D(k−1)(z) (all-pole filtered h(M − n), n = 0, · · · ,M).

• Now U (k)(z) = z−ND(k)(z−1)Y (k)(z), and by substitution (4.15) and rearrang-
ing,

Y (k)(z)z−(N−1)D
(k)
1 (z−1) = U (k)(z)− z−NY (k)(z). (4.16)

• Collecting common polynomial terms into a matrix equation produces A(k)d(k) =
u(k) + b(k), where d(k) and u(k) are unknown. The solution of A(k)d(k) = b(k)

minimizes the square-norm of u(k) = A(k)d(k) − b(k).

• The BU-algorithm:

1. For k = 1, 2, . . ., filter h(M−n), n = 0, · · · ,M , by 1/D(k−1)(z) to produce
the elements of A(k) and b(k) (from samples y(k)(n), n = 0, · · · ,M).

2. Solve A(k)d(k) = b(k), d(k) = A(k)\b(k), the (mirror) polynomial coeffi-

cients of D
(k)
1 (z). Go to step 1.

3. After a (sufficient) number of iterations, choose D(k)(z) that minimizes
the true least-square error. The Kautz filter poles are the roots of D(k)(z).

The fact that the BU-algorithm operated directly on the time-domain signal makes
it possible to utilize various manipulations of the target response in the design
phase to emphasize desired features in the pole generation procedure. For exam-
ple, time-domain windowing or frequency-domain weighting by suitable filtering can
be applied to modify the target response. The optimization may also be divided
into two or more parts using selective filters, which does not necessarily mean strict
bandpass filtering: pole sets attained by different emphasizing strategies may be
interlaced, cut and pasted quite freely. Obviously, the overall balance of such con-
structions has to be taken into account, for example, by attenuating the combined
pole set. However, the actual Kautz filter weights are evaluated (in all subsequent
examples) with respect to the original non-emphasized target response.

4.3.1 The BU-method and warping techniques

The following approach that combines the BU-method with frequency-warping tech-
niques has proven to be very useful. In the warped BU-method (WBU), as described
in more detail in [Paatero, 2002] [Paatero, 2003], the BU-method is applied to the
frequency warped target response, and subsequently the produced poles are mapped
back to the original frequency-domain using the corresponding inverse allpass map-
ping. An overview of various warping techniques is given in [Härmä et al., 2000],
but it is strongly emphasized that the WBU-method is not warped filter design.
The only situation when these methods coincide is when the BU-method produces
an FIR filter in the warped domain, that is, forces all the poles to the origin, imply-
ing that the optimal Kautz filter is a Laguerre filter. This freak incident, however,
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justifies the particular choice of warping in the WBU-method: the correct “trans-
formation pair” in this case is to apply Laguerre-warping (in the time-domain) to
the target response and to use allpass-warping in the frequency-domain to map the
produced set of poles.

The Laguerre-warped target signal is attained as the Laguerre-Fourier coefficients,
ci = (h, gi), i = 0, 1, . . . , N, of the target response h with respect to the choice of
poles a = zi, i = 0, 1, . . . , N , in the Kautz filter of Figure 4.1. The Laguerre filter
pole a, the warping parameter, should have a magnitude less than one to maintain
stability; however in this consideration the Laguerre parameter is allowed to take
complex values7. The number N is determined with respect to the “effective length”
of the produced warped signal: the accuracy and efficiency of the BU-algorithm is
affected by an unconsidered choice.

The BU-method is then applied to the warped target response h̃(i) = ci = (h, gi), i =
0, 1, . . . , N . Similar considerations as in the unwarped case may be used to determine
a desired approximation order (number of poles), that is, utilizing inspection of the
convergence of the BU-iterations and validation of the attained models in the warped
domain with respect to different approximation orders. The produced pole set is
then mapped back to the original frequency-domain according to the corresponding
inverse allpass mapping

z 7→ z + a∗

1 + az
. (4.17)

This procedure emphasizes a chosen frequency region in the choice of Kautz filter
poles, but as stated earlier, the corresponding Kautz filter tap-output weights are
evaluated (in the LS sense) with respect to the original target response. Here too,
pole sets that are attained by different warping schemes may be interlaced or more
selectively combined. The WBU-method is demonstrated in Section 4.4.2, where
some particular aspects in choosing a complex warping parameter are also consid-
ered.

Figure 4.5 gives an example how a signal is transformed using real Laguerre-warping.
The interpretation of Figure 4.5 is that the original signal is compressed to a smaller
set of (Laguerre-Fourier) filter coefficients. For example, an 800th order Laguerre
filter with a = 0.7 would exactly reproduce the original response with implied du-
ration of 5000 samples. This is not however always the case, that is, the effective
length of the produced warped signal may also exceed the length of the original
signal.

4.3.2 Utilizing partitions in time- and frequency-domains

To put it bluntly, the pragmatic reason why sub-signal techniques are proposed here
as a solution to the modeling of complicated and long impulse responses is that it

7There are many practical ways to attain the warped signal, including Laguerre counterparts of
de-warping techniques [Härmä et al., 2000]. In the complex case, however, when utilizing various
interpretations it should be noticed that it is actually the complex conjugated Laguerre functions
that are implied by the inner products (h, gi).
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Figure 4.5: A measured acoustic guitar body impulse response and some Laguerre
transformed counterparts.

is a way to split the original task into sub-model dimension, where the filter design
algorithms work. In the case of Kautz filter design using the BU-method this means
typically sub-signal lengths up to 10000 samples and maximum filter orders 200–300.

Various partitions into frequency subbands using filterbank techniques
[Vaidyanathan 1993] may be used, where the poles and the corresponding Kautz
models are generated with respect to the decimated sub-signals. As an alterna-
tive, the poles generated in a subband may also be mapped back to the original
frequency-domain for the construction of an overall Kautz filter. This latter ap-
proach will be demonstrated in the case of low-frequency models for room responses
in Section 4.4.3. A somewhat unorthodox mixture of subband and multirate tech-
niques based on complex modulation and complex-valued models in the subbands
has proven to be very useful in detailed modeling of challenging responses. This
frequency-zooming ARMA technique [Karjalainen et al., 2002b] was generalized to
Kautz filters in [Paatero and Karjalainen, 2002] and an example of this approach
will be presented in Section 4.4.3. It seems to be a general feature that “non-perfect
reconstruction” subband partitions are usually sufficient and even preferable, be-
cause it is not desirable that the model in the subband concentrates too much on
the bandpass filtering. In the Kautz filter case, however, it is relatively simple to
eliminate poles that are clearly dedicated to the cut-off frequencies of the chosen
subband partition8. Many configurations are apparently plausible, but it is quite
difficult to estimate on a general level the actual complexity of a particular imple-
mentation.

There are also more noble reasons for splitting a complicated modeling task into
sub-problems. Our knowledge about the auditory perception may be used to in-
clude perceptually relevant criteria into the modeling. This complicated topic was
addressed to some extent in [Paatero and Karjalainen, 2002]. In the case of mod-
eling a room impulse response by subband techniques this may mean appropriate
allocation of modeling resolution for different subbands, criteria on the subband
segmentation itself, or separation into different modeling strategies, such as the use
of artificial reverberation above a certain frequency. In the following, two elemen-

8Conversely, Kautz filters that are designed with respect to the subband signals, including
possible truncation of the pole sets at the band-edges, are genuinely bandpass in nature, although
the stop-band characteristics may be somewhat arbitrary.
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Figure 4.6: The polyphase realization corresponding to (4.18) and (4.18).

tary partitions in the time-domain are proposed, where the latter can be used in
modeling, equalization and control of the early response.

An N × M :th order FIR filter, corresponding to an impulse response h(n), n =
0, . . . , NM , can be decomposed into a polyphase form [Vaidyanathan 1993]

H(z) =
M−1∑

k=0

z−kHk(z
M), (4.18)

where the component filters Hk(z) are related to the original response h(n) trough

Hk(z) =
N−1∑
n=0

h(Mn + k)z−n, k = 0, . . . , M − 1. (4.19)

A direct representation of Eqs. (4.18) and (4.19) is depicted in Fig. 4.6. In practice,
the combined operation of segmentation, decimation, expansion and reconstruction
can be implemented in its commutator form [Vaidyanathan 1993]: the component
signals are formed sequentially from the input signal and the reconstructed response
in attained from the component responses by simply interlacing the samples.

Here the polyphase decomposition is utilized by approximating the component filters
Hk(z) using Kautz filters Ĥk(z). This configuration relies on the waveform match-
ing property, that is, accurate phase as well as magnitude modeling capabilities of
the Kautz filter, especially in the onset parts of the responses. The obvious idea
is that an appropriate decomposition splits the original response into manageable
portions, that is, into sub-signal lengths where the BU-method operates efficiently
and accurately. Typically, at least for audio related responses, good approximations
are attained with 10 to 20 times lower filter orders compared to the direct FIR filter
implementation.

Another strategy in dividing a long target response into manageable portions is to
partition it with respect to a chosen set of successive sample indexes, 0 < t1 < . . . <
tM < N , where N is the length of the target response. The (Kautz) approximation
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Figure 4.7: The proposed partition of a target transfer function: an approximation
by a superposition of delayed Kautz filter responses.

of a target response H(z) is then composed as

Ĥ(z) =
M∑

k=0

z−tkHk(z), (4.20)

where the first delay is either t0 = 0 or some other non-negative integer d that
represents an initial delay in the response. The scheme is illustrated in Fig. 4.7.
Based on this decomposition of the response h(n), n = 0, . . . , N , the component
Kautz filters are designed according to

step 1 choose the partitioning, 0 ≤ t0 < t1 < . . . < tM < tM+1 ≡ N , and the initial
sub-signal as s(n) = h(n), n = t0, . . . , t1 − 1

step 2 generate the poles with respect to s and a chosen (iterated) sub-filter order
N0

step 3 produce the Kautz filter impulse response h0(n), n = 0, . . . , N−t0, and form
the next sub-signal by subtracting the “overflow”, s(n) = h(n) − h0(n − t0),
n = t1, . . . , t2 − 1

step 4 repeat from step 2 for tk, k = 1, . . . , M − 1. The approximation is ĥ(n) =∑M
k=0 hk(n− tk), n = 0, . . . , N , where hk(n) = 0 for n < 0

In step 3, the “overflow” means the tail of all preceding Kautz filter responses. In
practice it is probably just the previous response that is not negligible. In principle,
any response can be modeled exactly using a partition of the form (4.20), but the
relevant applications of the proposed method are clearly related to the extraction
of successive impulse-like bursts. One such application is proposed in Section 4.4.3,
where the modeling of the early part of a room response is also suggested as a
potential way to control the early reflections.
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4.4 Audio Application Cases

In the following, the applicability of Kautz filter design is demonstrated using three
audio-oriented applications. The first one is a loudspeaker equalization task where
an overall model of the system is complemented to take into account local devia-
tions in the frequency response. This low-order modeling example is included to
explicate the manual tuning scheme of Section 4.2.2. In the second case, Kautz
filters are used to model a measured acoustic guitar body (impulse) response. The
aim is again somewhat methodological: utilization of the warped BU-method (Sec-
tion 4.3.1) is demonstrated. In the third case, measured room impulse responses are
modeled using Kautz filters to attain detailed models of the low-frequency part of
the response, but also to demonstrate that brute force solutions for modeling very
long complicated responses are possible using techniques of Section 4.3.2.

4.4.1 Case 1: Loudspeaker response equalization

An ideal loudspeaker has a flat magnitude response and a constant group delay.
Simultaneous magnitude and phase equalization of a non-perfect loudspeaker would
be achieved by modeling the response and inverting the model, or by identifying
the overall system of the response and a chosen Kautz equalizer. However, here the
use of Kautz filters is demonstrated in pure magnitude equalization based on an
inverted minimum-phase target response. A small two-way active loudspeaker was
selected for the equalization experiment due to its clear deviations from the ideal
magnitude response. The measured response and a derived equalizer target response
are included in Figure 4.8. The sample rate is 48 kHz.

Magnitude response equalization consists typically of compensating for three dif-
ferent types of phenomena: (a) slow trends in the response, (b) sharp and local
deviations9, and (c) correction of roll-offs at the band edges. This makes “blind
equalization” methods, which do not utilize audio-specific knowledge, ineffective.
The Kautz filter approach is proposed as an alternative between blind and hand-
tuned parametric equalization, with an obvious abuse of terminology.

As is well known, FIR modeling and equalization has an inherent emphasis on high
frequencies when considered on an auditorily motivated frequency scale. Warped
FIR (or Laguerre) filters [Härmä et al., 2000] shift some of the resolution to the
lower frequencies, providing a competitive performance with 5 to 10 times lower filter
orders than the corresponding FIR filters [Karjalainen et al., 1999]. However, the
filter order required to flatten the peaks at 1 kHz in this example is still high, of the
order 200, and in practice warped FIR or Laguerre models up to the order 50 are able
to model only slow trends in the response. In a recent publication [Tyril et al., 2001],
a tapped cascade structure of real-pole allpass filters was suggested for the low-

9In this study the equalization cases are presented as illustrative examples on the controllability
of the modeling task rather than from the point of view of practicality of the results. It may not
even be desirable to flatten sharp resonances in the main axis free-field response of a loudspeaker,
since off-axis responses can become worse and degrade the overall quality of sound reproduction.
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Figure 4.8: Measured magnitude spectrum of the loudspeaker under study (bottom),
Kautz equalizer responses (top), and equalization results for Kautz filter orders 9,
15, 30, and 38, respectively. The Kautz equalizers are designed using the BU-method
with respect to the target response (in the middle).

frequency equalization, although in practice, it was found too difficult to design.
However, here we demonstrate efficient design methods for the orthonormal and
complex-pole counterpart.

A simple way to focus on the 1 kHz region is to use a Kautz filter defined by
a single complex conjugate pole pair that is used repeatedly, that is, a pole a =
zi, i = 1, . . . , N , in the Kautz filter structure of Figure 4.2 is chosen, where the
phase angle of a corresponds to the region of interest. By tuning the pole radius a
trade-off between the 1 kHz region and the overall modeling is introduced. Quite
interestingly, as a good compromise, one ends up with a radius close to a typical
warping parameter at this sampling rate, for example λ = 0.76 corresponding to
the Bark-scale warping [Smith and Abel, 1999], and thus (maybe not anymore so)
surprisingly, similar results are attained for the Laguerre and the two-pole Kautz
equalizers for filter orders 50–200. Actually this simply means that in this case a
perceptually motivated warping is also technically a good choice for the flattening
of the 1 kHz region. This is demonstrated in Fig. 4.9.

The obvious way to proceed would be to add another pole pair corresponding to
the 7 kHz region. However, in search for considerably lower-order Kautz filters,
compared to FIR and Laguerre equalizers, the BU-method is utilized directly on
the target response. The BU-method provides stable and reasonable pole sets for
orders at least up to 40. Figure 4.8 presents the corresponding Kautz equalizers and
equalization results for orders 9, 15, 30 and 38. These straightforward Kautz filter
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Figure 4.9: Comparison of 100th order Laguerre and Kautz equalization results;
Kautz filters with 50 complex conjugate pole pairs corresponding to 1 kHz pole
angles and pole radius varied from 0.5 to 0.9 in steps of 0.05.

10
2

10
3

10
4

-30

-20

-10

0

10

Frequency / Hz

M
ag

ni
tu

de
 / 

dB

Equalization results, orders 34 and 28

Measured response

34
28

Figure 4.10: Kautz equalization results for orders 28 and 34, with pruned BU-poles,
comparable with the Kautz equalizers of orders 30 and 38 in Figure 4.8.

constructions are already comparable with the FIR and Laguerre counterparts, but
filter orders can be reduced further by omitting some of the poles. For example
for orders above 15, the BU-method produces poles that are very close to z = 1
because of the low-frequency boost in the target response, and omitting some of
these poles will actually tranquilize the whole low-frequency region. For example,
in the equalization result of Figure 4.10 the Kautz filters of orders 28 and 34 are
attained by omitting one and two pole pairs, respectively, from the original sets of
30 and 38 poles.

To improve the modeling at 1 kHz, three to four manually tuned pole pairs are
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Figure 4.11: Kautz equalizers and equalization results for orders 23, 32, and 34,
with combinations of manually tuned an BU-generated poles.

added to the BU-pole sets, corresponding to the resonances in the problematic area.
This is actually not too hard since the 1 kHz region is quite well “isolated” from the
dominant pole region, which allows for undisturbed tuning. The 15th and 30th order
Kautz equalizers of Figure 4.8 were used as the starting points, omitting three pole
pairs in the latter case. Three pole pairs were tuned directly to the three prominent
resonances and one pole pair was assigned to improve the modeling below the 1 kHz
region. Results for final filter orders 23, 32, and 34 are displayed in Figure 4.11,
where the last two differ only in the above mentioned optional compensating pole
pair.

Finally, as a mere example of the manual tuning scheme (Section 4.2.2), 10 pole
pairs are tuned manually to a chosen set of prominent target response resonances.
The design is based on 10 selected resonances, represented with 10 distinct pole
pairs, chosen and tuned to fit the magnitude response by trial and error. This is
of course somewhat arbitrary, but it seems to work. In Figure 4.12, along with the
equalizer and target responses, are vertical lines indicating pole pair positions. This
is clearly one form of “parametric equalization” with second order blocks since each
resonance is represented with a single pole pair. However, using Kautz filters the
choice of resonant frequencies is not as severe as it is for some other designs because
the tap-output weights perform fine-tuning (to some extent) and overall modeling
in the LS sense, and a misplaced pole (pair) usually just results in inefficiency.

Figure 4.13 compares some of the Kautz equalization results to those achieved with
FIR and Laguerre equalizers of orders 200 and 100, respectively. To aid the com-
parison, at respective filter orders, the computational complexity of the Kautz filter
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Figure 4.12: Manually tuned 20th order Kautz equalizer and target magnitude
responses, with lines indicating pole pair positions.
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Figure 4.13: Comparison of FIR, Laguerre, and Kautz equalization results.

(measured simply as the number of arithmetic operations) is about 3 to 4 times
higher than a direct FIR filter implementation using convolution. There are of
course usually more efficient ways to implement an FIR filter, as there would in
most cases also be to realize a particular Kautz filter, but this gives a picture of the
tradeoff. The additional computational load for Kautz filters compared to warped
FIR or Laguerre filters is somewhere between none and twice. The actual complexity
depends on many details, but in any case, efficient equalizers are attained at compar-
atively low filter orders. Furthermore, the fact that the Kautz filters in this case are
of relatively low order enables in principle filter transformations to other structures
that are potentially more efficient, such as, various direct-form filter structures.
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Figure 4.14: Measured impulse response of an acoustic guitar body.

4.4.2 Case 2: Guitar body modeling

As an example of higher-order Kautz modeling, a measured acoustic guitar body
(impulse) response is modeled using various techniques, in particular the warped
BU-method of Section 4.3.1. The target response is presented in Figure 4.14 and it
was obtained by tapping the bridge of an acoustic guitar with an impulse hammer
[Karjalainen and Smith, 1996] [Karjalainen et al., 2000], with strings damped10. The
response of an acoustic guitar body is a challenging but well suited Kautz modeling
task because the modes of the response are excited relatively simultaneously.

The obvious disadvantage of a straightforward FIR filter implementation for the
body response is that modeling of the slowly decaying lowest resonances requires
a very high filter order, in this case for example, orders up to thousands would be
needed to capture the essential resonant structure. All-pole and pole-zero modeling
are the traditional choices to improve the flexibility of the spectral representation.
However, model orders remain problematically high and the basic design methods
seem to work poorly11. A significantly better approach is to use separate IIR mod-
eling for the slowly decaying lowest resonances combined with an FIR filter for the
modeling of the rest of the response [Penttinen et al., 2000]. Perceptually motivated
warped counterparts of all-pole and pole-zero modeling pay off, even in more techni-
cal terms [Karjalainen and Smith, 1996], which is encouraging also from the Kautz
filter point of view12.

10A more ‘natural’ impulse response would be achieved by extracting the impulse response by
deconvolution from an identification setup using spectrally rich real playing of the acoustic guitar
as excitation [Penttinen et al., 2000], although the signal-to-noise ratio is better through an impact
hammer measurement.

11This vague statement tries to characterize a general dilemma in utilizing conventional all-pole
and pole-zero filter design methods. For example, all-pole modeling (using linear prediction) is
inefficient in the sense that very high filter orders are required to “capture the essential resonant
structure”. Prony’s method for pole-zero modeling is in principle a better choice, but in this case,
the required filter orders “remain problematically high”, because the “resonance modeling” is still
essentially based on all-pole modeling. Pole-zero modeling using the Steiglitz-McBride method
would be the correct choice (for modeling non-minimum phase resonant components), but the
required filter orders are not just “problematic”, but in fact, pathological for the stability of the
Steiglitz-McBride method.

12What is tried to say is that focusing of modeling resolution, for example by utilizing interme-
diate warping, may, as it does here, in fact improve the model in the least-square sense.
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Figure 4.15: A 262th order Kautz model, displayed together with the target re-
sponse. Vertical lines indicate pole pair positions, where the poles are obtained by
direct application of the BU-method.

Figure 4.15 demonstrates that the proposed pole position optimization scheme, the
BU-method, is able to capture essentially the whole resonance structure. The Kautz
filter order is 262 and the poles are obtained from a 300th order BU-pole set, omitting
some poles close to z = −1. In general, the BU-method works quite well at least up
to an order of 300 and the lower limit for finding the chosen prominent resonances
is about 100.

A relatively high filter order is still required to obtain good match of the lowest
(and strongest) modal resonances. The direct application of the BU-method pays
in average too much attention to the high frequencies compared to the importance
of the lowest modes both physically and from a perceptual point of view. A better
overall balance is achieved by applying the warped BU-method. Figure 4.16 depicts
the magnitude response of a 120th order Kautz model and Figure 4.17 displays how
the pole set is mapped from the warped domain back to the original frequency-
domain, where the actual model is constructed. A (Laguerre) warping parameter
λ = 0.64 was used, corresponding approximately to the Bark scale warping with re-
spect to the sample rate 22050 Hz [Smith and Abel, 1999]. The model of Figure 4.16
is at least as good as the much higher-order model in Figure 4.15 for the low- and
mid-frequencies, but the high-frequency region has obviously degenerated.

Figure 4.18 gives further information about the modeling power and characteristics
of the warped BU-method by depicting magnitude responses for a collection of low
order models (orders 10, 18, 39, 60, and 90), compared with the original response.
As with any reverberant system, the magnitude response does not tell the full story
how the response is perceived. Comparing time-frequency plots may be needed to
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Figure 4.16: Magnitude spectra of the target response and an 120th order Kautz
model corresponding to the pole set in Figure 4.17b.
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Figure 4.17: Kautz filter poles produced by the WBU-method, a) poles with respect
to the Bark-warped target response, and b) corresponding poles in the original
frequency-domain. The circle is the warping parameter.

evaluate both the temporal as well as the spectral evolution of model responses. The
purpose of Figure 4.18 is mainly to demonstrate that the model genuinely clings to
the resonances, distinctly with respect to the allowed number of poles, which is not
a general feature of IIR or pole-zero modeling. Furthermore, in this case a virtually
perfect match with the target response is attained at relatively low filter orders, as
implied for example by the model of Figure 4.15 that deviates less than 1 % (in
the square-error sense) from the original response. It is a safe estimate that in this
case audibly transparent models are attained for various purposes with filter orders
around 200, presuming that the modal density (in the higher-frequencies) is kept
rich enough. This can be achieved for example by more moderate warping or by
combining pole sets for different warping profiles.

This case study is concluded by demonstrating the idea of zooming by complex warp-
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Figure 4.18: Kautz models of the guitar body response, displayed with offset from
top to bottom: orders 10, 18, 39, 60, 90, and the target magnitude response.

ing, that is, the complex counterpart of the WBU-method. The target response is
still the same as above: the CWBU-method can be used to focus the modeling reso-
lution into a chosen frequency region. As an example, a complex warping parameter
a = 0.68 ej 0.43 is chosen, which corresponds approximately to the “zooming fre-
quency” 1.5 kHz. The poles are generated using the BU method with respect to the
complex Laguerre-warped target response. As in the WBU-method, the produced
pole set is then mapped back to the original frequency-domain using the correspond-
ing inverse allpass mapping. Figure 4.19 displays the two sets of poles for the model
order 120. Unfortunately, the procedure is not accurate enough to produce real and
complex-conjugate poles, as is seen from Figure 4.19b. This is due to inaccuracy of
the model in the warped domain and not a principled defect of the complex warping
procedure itself13. However, as expected, the achieved Kautz model response is “al-
most real” in the sense that the imaginary part is relatively negligible compared to
the real part of the response. The target response and the real- and imaginary-parts
of the model response are displayed in Figure 4.20a. The magnitude response of
Figure 4.20b shows that the resolution of the modeling is indeed increased in the
1–3 kHz region.

The question remains: how to make it real? The evaluation of modeling errors
reveals that the real part of the model response is actually a better model (in the LS

13The Laguerre signal transformation is a complete orthogonal transformation, and thus, an
exact representation (in terms of the generated poles and the implied rational orthonormal systems)
in the warped domain would transfer into an exact, and consequently real, representation in the
original signal domain. In practice, this ambiguity is indeed a defect of the proposed method,
particularly in forming low-order approximations. However, the pole distribution attained by this
zooming by complex warping procedure may always be utilized to construct or supplement a real
rational construction.
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Figure 4.19: Kautz filter poles produced by the CWBU-method, a) poles with re-
spect to the complex warped target response, and b) corresponding poles that are
mapped back to the original frequency-domain. The circle is the complex warping
parameter.
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b) Magnitude response of the target and the complex Kautz model
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Figure 4.20: The target and the complex Kautz model responses, a) the real part
fits well to the target and the imaginary part is relatively flat. In b) from bottom
to top, target and model magnitude responses and lines that indicate poles in the
lower and upper half of the unit circle, respectively.

sense) than the complex Kautz model response. However, the utilization of complex
arithmetics may in practice be badly justifiable or simply impossible. There are two
simple ways to form a conjugate symmetric pole set from the poles of Figure 4.19b,
that is, the upper half-plane poles can be used as complex-conjugate (cc) pole pairs,
or alternatively, the pole set may be expanded to include cc pairs of all the poles14.

14The latter scheme is equivalent to adding a pole set that is produced by the CWBU-method
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Figure 4.21: The target magnitude response (a) and various Kautz models generated
from the pole set in Figure 4.19b, b) the complex model, c) its real part, d) real
Kautz model with =(z) > 0 poles as cc-pairs, and e) real Kautz model with all poles
as cc-pairs.

Actually, some kind of damping of the pole radii should be used to take into account
for the increase in the model order. A comparison of magnitude response for different
configurations of the Kautz models is depicted in Figure 4.21, where the orders of
the real Kautz models d) and e) are 168 and 240, respectively. The main information
of Figure 4.21 is that the proposed alternatives for producing a real Kautz model
do not differ very much.

4.4.3 Case 3: Room response modeling

Models for a room response, that is, transfer function or impulse response repre-
sentations from a sound source to an observation location in a room, are used for
different purposes in audio signal processing, typically as a part of a larger system.
Room response modeling may constitute a major computational burden, both be-
cause of the complexity of target responses and the difficulty of incorporating proper
perceptual criteria in those models.

An obvious difficulty in modeling a room response is that the duration of the target
response is usually long and that the temporal as well as spectral structure of the
response can be very complex. Physically speaking, there are low-frequency modes

with respect to the complex conjugate warping parameter a∗ and the same chosen number of poles.

134



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−2

0

2

x 10
−3

Time / s

A
m

pl
itu

de

10
2

10
3

10
4

−50

−40

−30

−20

−10

Frequency / Hz

M
ag

ni
tu

de
 / 

dB

Figure 4.22: Time and magnitude responses of a measured room impulse response.

determined essentially by the room dimensions and on the other hand a reverber-
ation structure produced by the multitude of reflections. There are methods pro-
posed to take into account various time- and frequency-domain modeling aspects as
LTI digital filter models [Mourjopoulos and Paraskevas, 1991, Haneda et al., 1994],
including also reverb designs that approximate reflections and reverberation by com-
plicated parallel and feedback structures [Gardner, 1998].

A measured impulse response in a medium size room15 was chosen as an example
for room response modeling using Kautz filters. The target response and its mag-
nitude spectrum are displayed in Figure 4.22. (The sample rate is 44.1 kHz.) This
is not an ideal Kautz modeling task since the response is not a superposition of
coincident damped exponential components. The fact that the modes of a room
response are not excited simultaneously will become even more apparent as the
dimensions increase; a solution for partitioning the early response of a measured
concert hall response is introduced in the end of this Section. Another immediate
and general difficulty in modeling a room response is that the modal density is in-
herently very high, and although it is known that a more sparse representation of
the modal structure in the high-frequency part would be sufficient from a percep-
tual point of view [Karjalainen and Järveläinen, 2001], it is in practice very difficult
to incorporate such criteria into LS filter design. However, it is always possible to
construct a (long and complicated enough) Kautz filter that is able to model all
temporal details, though with an apparent inefficiency, for example, in producing
delayed resonant components. Such an exact but extravagant model construction

15The room has approximate dimensions of 5.5 x 6.5 x 2.7 m3 and shows relatively strong modes
with long decay times at low frequencies.
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Figure 4.23: Frequency bins corresponding to poles angles produced by the BU-
method for filter orders 1–120 and the magnitude spectrum of the room response.

could then in principle be reduced using technical and perceptual criteria; in prac-
tice, however, such pruning tasks may become overwhelming, or simply impossible
to conduct in a meaningful way. In the following however, the applicability of Kautz
filter techniques are considered mainly as supplementary or specialized elements in
the construction of an overall model for such complicated target responses as room
responses.

Detailed modeling of the low-frequencies is first considered by decimating the target
response into the frequency region of about 0–220 Hz, where each prominent mode
may have noticeable perceptual effect. The implied new target signal length is less
than 1000 samples, which makes the BU-method for generating the poles operate
very robustly. Figure 4.23 displays a pole angle bifurcation pattern for model orders
1–120 along with the magnitude spectrum of the room response up to 220 Hz at
the top. It is noteworthy how the BU-method fixes the prominent resonances at a
relatively low model order and that there is virtually no wobbling and splitting in
the choice16. Figure 4.24 illustrates the accuracy of the model magnitude responses
compared to the target response (top curve) for Kautz model orders 20–100 in steps
of 5. For orders 100–120 the match is practically perfect.

The quality of time-frequency modeling can be checked by a waterfall plot (cu-

16This figure does obviously not tell anything about the magnitude of the poles and how they
evolve. Typically a resonance is represented by a relatively strong and fixed pole pair, whereas the
supplementary poles, as the model order increases, are somewhat weaker. In this case it is also
possible to push the process to the limit of the target signal length: the optimal limiting Kautz
filter is indeed the FIR filter.
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Figure 4.24: Magnitude responses of Kautz models of order 20–100, in steps of 5
from bottom up, compared to the target magnitude response at the top.

mulative spectral decay), as shown in Figure 4.25 for the target response and for
a Kautz model of order 80. In careful comparison it can be noticed that some
less prominent modal resonances are weaker and shorter in the model response.
Increasing the filter order to 120 makes the model practically perfect also in a time-
frequency plot. There are also redundant poles at the band edges so that the actual
limit for perfect reconstruction is about 100. The attained low-frequency model can
then also be transformed back to the original frequency-domain (or corresponding
to any other chosen re-sampling) by mapping the poles with an appropriate com-
plex exponent function and by evaluating the tap-output weights with respect to
these poles and the original target response. This scheme results in a high con-
centration of poles, which is not a numerical problem in the Kautz filter case, in
contrast to some other IIR filter designs, but it introduces a steep low-pass cut-
off, which could and should be compensated or controlled by adding poles. This
type of a model for the low-frequency part could then be complemented, for exam-
ple, by appropriate artificial reverberation [Jot and Chaigne, 1991], as suggested in
[Paatero and Karjalainen, 2001].

As stated earlier, full bandwidth17 modeling using a single overall Kautz filter (or
any other LTI filtering approach) is at the least very difficult, and in addition, inher-
ently inefficient. As a somewhat more practical issue, the proposed pole optimization
process, the BU-method, is really in trouble at implied filter orders above 400–600
for accurate modeling of the target response. If the modeling accuracy can be com-

17In the following examples, the target response is re-sampled to 22050 Hz, providing a bandwidth
of approximately 10 kHz, which is sufficient for most practical considerations of full bandwidth
modeling of a room response.
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Figure 4.25: Cumulative spectral decay plot for (a) the target response and for (b)
a 80th order Kautz model in frequency range 0–220 Hz.
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Figure 4.26: Magnitude responses for the room: (upper) 320th order Kautz model
and (lower) target response, plotted with vertical offset. The poles are placed with
logarithmically spaced angles and constant radius 0.98. The pole pair positions are
indicated by vertical lines.

promised at some frequencies, or only a spectral envelope model is needed, several
Kautz filter pole determination techniques can be applied. Figure 4.26 illustrates
magnitude responses of a 320th order model and the target response, where the
Kautz filter poles are simply positioned according to a logarithmic spacing in fre-
quency and with constant pole radius of 0.98. At low frequencies below 200-300 Hz
the magnitude response fit is quite complete, but the poor performance in modeling
the dense resonance structure at higher frequencies is evident18.

18Alternatively, using a large set of weak poles (small radius), the Kautz filter acts as a “slightly
recursive FIR filter”, and there is a clear transition from this kind of FIR-type fit of the early
response to representing resonances by corresponding pole pairs. For responses where the high-
frequency components are short in time, some of the poles could actually be forced to zi = 0, that
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Figure 4.27: Kautz model magnitude responses, produced using the BU-method
(with upward offset to target response): for filter order 318 (top), and by warping
and back-mapping at the filter order 240 (bottom).

As examples of direct utilizations of the BU-method, two Kautz filter models for
the room response are presented in Figure 4.27. The 318th order Kautz model,
presented in the upper plot of Figure 4.27, is attained from a larger pole set by
omitting some poles close to z = −1. Poor modeling of the lowest resonances is
evident, but the high-frequency region is represented relatively well. In the lower
pane of Figure 4.27 the warped BU-method is used to produce a 240th order Kautz
filter, where the low-frequency region is emphasized by using a warping parameter
a = 0.64. As a tradeoff, worse modeling of the higher frequencies is apparent. These
model orders are already close to the “reliability limit” of the BU-method for the
corresponding target response duration and characteristics. A better overall model
would be achieved by combining the pole sets with respect to a chosen partition of
the frequency range.

A more detailed and reliable description of the “mid-frequency region” is attained by
further band-limiting (re-sampling to 11050 Hz) the target response; the magnitude
response of a 500th order Kautz filter is displayed in Figure 4.28, for a change on a
linear frequency scale. The WBU-method was used with a warping parameter a =
0.4, which is somewhat less than the corresponding Bark-scale warping parameter
(λ = 0.48 with respect to the implied sample rate [Smith and Abel, 1999]). It is once
more emphasized that these examples are merely demonstrations of the methodology
and that they are not suggested as such for the full bandwidth modeling of the room

is, a mixture of Kautz and FIR filter blocks could be utilized. It is noteworthy that this may be
done in any order of the sections and that the same chosen filter tap-output weighting applies also
to the FIR blocks. From a more practical point of view, the early response could be isolated as an
FIR filter whereas the rest of the response would constitute the target for the Kautz model.
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Figure 4.28: Magnitude responses on a linear scale: for the re-sampled target re-
sponse (bottom), and the 500th order Kautz model (top). Vertical lines indicating
complex conjugate pole pair positions.
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Figure 4.29: The target response versus a 64× 60th order Kautz model.

response. However, these considerations provide detailed descriptions of the resonant
frequencies, that is, parametrizations in terms of accurate complex pole positions
that can be used in other and pragmatically better-justified modeling strategies,
such as, parallel resonator design for the high-frequency part.

This case study is concluded by utilizing the model partition schemes of Section 4.3.2.
As a brute force example, the original measured room response of Figure 4.22 (32768
samples, sample rate 44.1 kHz) is modeled using a 64 × 60 polyphase Kautz filter,
which implies that the response is partitioned into 64 sub-signals of length 512
samples and that each of the sub-signals are approximated using a 60th order Kautz
filter. The time- and frequency-domain fit to the target response is almost perfect,
as can be deduced from Figure 4.29. A fixed sub-filter order is used, although a more
sophisticated allocation of the filter orders would improve the model, or alternatively,
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Figure 4.30: The early part of a measured concert hall impulse response (h), com-
ponent Kautz models (a)–(e), with filter orders 40, 30, 60, 60, and 80, respectively,
the composite model (f), and the modeling residual (g). The actual duration of the
time-window is 77 ms.

reduce the overall model order. Also in this approach, the low-frequency region could
be emphasized by using warping in the pole generation process, naturally, at the
expense of a decrease in the high-frequency mode density. The model response
was found to be audibly transparent (by subjective listening) to the original target
response and substantially lower order models were found to be tolerable for many
purposes. The actual usefulness of this approach from the implementation point of
view is not considered here and the only measure of computational complexity is
with respect to the implied polyphase FIR filter implementation, that is, a 512th
order FIR filter for the component signal is replaced with a 60th order Kautz filter.

From the time-domain perspective, the polyphase decomposition is an interlacing
operation; as described in Section 4.3.2 it is also possible to utilize successive segmen-
tation of the target response to attain partial model descriptions. As an example,
the early part of a measured impulse response of a concert hall was modeled using
the proposed Kautz filter configuration. Figure 4.30 presents a low-order approxima-
tion. More detailed models are achieved by increasing the filter orders. In principle,
any response can be modeled exactly using a partition of this form, but the rele-
vant applications of the proposed method are clearly related to the extraction of
impulse-like bursts. As another aspect, the model of the early response provides a
very compact parametrization that could be used in control and reproduction of the
response, for example, to be utilized in various virtual acoustics applications.
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4.4.4 Some comments on the application cases

Kautz filter design using the BU-method, its variants, and different rearrangements
of the modeling task, can be seen as a particular IIR filter design technique. The
motivation from an audio processing perspective is two-folded: many audio-related
target responses can be well-modeled by a combination of distributed decaying ex-
ponential components, which is by definition what a Kautz filters does, but in an
orthonormalized form, providing many favorable properties. On the other hand,
Kautz filtering techniques provide many ways to incorporate auditorily meaningful
allocation of frequency resolution to the modeling.

The above cases of modeling and equalization were taken as challenging examples in
order to show the applicability of Kautz filter techniques. Many specific questions,
such as the audio engineering relevance of modeling details, perceptual aspects of
the designs, as well as computational robustness and expense have been addressed
only briefly or not at all. In particular, an actual comparison between the proposed
methods and the “conventional means in FIR and IIR filter design” is never con-
ducted, although such expressions as “unattainable using traditional methods” are,
at the least, implied every now and then. The confrontation with FIR filter coun-
terparts is more or less self-explanatory, but especially the low-order Kautz models
should be more genuinely placed into the scope of available IIR filtering methods.
In the case of high-order models for complicated responses, the author is somewhat
presumptuously relying on the readers experience and knowledge of the difficulties of
IIR filter design, which is of course not a very good excuse. It is apparent that these
details as well as the more fundamental questions call for further investigations.

The aim of this study was to show that it is possible to achieve good modeling or
equalization results with lower Kautz filter orders than, for example, with warped
(Laguerre) or traditional FIR and IIR filters. In the loudspeaker equalization case,
Kautz filters of orders 20–30 can achieve similar results of flatness as warped IIR
equalizers of orders 100–200. This reduction is due to well-controlled focusing of
frequency resolution both on the global shape and on local deviations.

The guitar body response modeling case is probably the most straightforwardly
applicable of the presented examples. The combination of the BU-method and
warping techniques can be used quite flexibly to attain desired frequency resolution
allocation into the modeling. Low-order Kautz filters are able to focus sharply on
the perceptually significant low-frequency modes, showing advantage over warped,
FIR, and other IIR filter designs. On the other hand, increasingly detailed models
are obtained by increasing the model order: in this case, the target response is
within the reach of perfect reconstruction.

The room response modeling case should be taken as a mere methodological study,
except possibly regarding the usefulness of obtained low-frequency models. In par-
ticular, the only full bandwidth overall model for the room response, based on
polyphase decomposition, was just a pompous tour-de-force experiment of the wave-
form matching capabilities of Kautz filters in the subbands. Nevertheless, detailed
description of resonant frequencies in terms of accurate pole locations are attained
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by various warping, mapping and decimation techniques that could then in turn
be utilized in more sparse, pragmatic, and perceptually motivated schemes for the
modeling of the reverberation structure. Alternatively, a Kautz model for the low-
frequency part could be complemented with carefully designed artificial reverbera-
tion that would model the high-frequency part in a statistically and perceptually
meaningful way. As a future case study, it would be interesting to try to model a
room response by combining some of the proposed Kautz filter strategies: successive
segmentation for the early response, accurate modeling of the prominent resonances,
and a sparse but sufficiently rich resonator implementation of the late reverberation,
based on the pole position analysis provided by the BU-method.
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Chapter 5

Contributions of the thesis and
concluding remarks

The outcome is seldom what was expected in the beginning of a process. This is
particularly true in the case of this monograph which took its time to shape up.
The original idea of more or less translating and updating the licentiate’s thesis was
completely altered along the way. The sudden burst in publishing activity in the
years 2001–2002 brought the writing process to an almost standstill and it caused
a dilemma between continuing with the draft of a monograph or to switch to the
article bundle format, which could have been at the least a much faster alternative.
The author is however reasonably happy with the outcome and particularly content
with the decision of sticking to the monograph form.

The biggest contribution of this thesis, in the author’s opinion, is in the way that
various elements are combined and displayed. Even the somewhat anecdotal touch
is considered as an achievement. This is reflected, for example, in the way mathe-
matical concepts are treated as universally available, or as common property, with
very few actual references. On the other hand, there are some genuinely new ideas,
even in the mathematical part, that are not emphasized as such too clearly. This
situation would be sufficient enough for the author, but as it is customary, the thesis
is concluded by enumerating some of the more clear and distinct contributions.

The contribution of Section 2.1 is mainly that it provides a somewhat broader insight
into representing signals, systems and related transformations, where in particular,
the subsequent “signal space” framework is primed. Sections 2.2 and 2.3 are of
course elementary and simplified from the point of view of mathematics, but it is
actually relatively difficult to bring about an appropriate but compact presentation
of the relevant concepts to the context of this thesis. As an example, the identifi-
cation of the z-transform is in fact quite original. The concept of a base was also
introduced more thoroughly than usual. Some of the denotations and definitions in
Section 2.3.3 are genuinely new. However, Section 2.4 is clearly the most original
part of Chapter 2. Utilization of the bilinear transformation in relating function
spaces is not new, and on the other hand, there are much more profound consider-
ations of the shift operator in the mathematical literature; however in Section 2.4,
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conformal mapping techniques were introduced and utilized very pragmatically and
explicitly, which has probably not been done before. The author is not too con-
cerned about the mathematical correctness of this part of the thesis: the point is in
the deduction and the validity of the outcome is assured by different means.

The GLM concept of Chapter 3 is obviously in principle new, although not partic-
ularly ingenious as an innovation in the sense that many others have considered, at
least partly, similar aspects. Nevertheless, it has not been formulated before as such,
that is, from the point of view of linear independency. It is more in the eye of the
reader to decide how original the deductions of Sections 3.2 and 3.3 themselves are
compared to their conventional counterparts. The implication should however be
clear: linear independency is the driving force behind most familiar ways of solving
least-square problems, and in addition, it is the source of potential orthogonality.
The obvious vagueness of the construction is compensated by referring to proposed
applications that can be considered as exemplifications of the GLM. Section 3.4
contains some genuinely new constructions and considerations. The GLM lattice
structure is an authentic generalization, although it is still merely a conceptual con-
struction, but in the author’s opinion, it provides more insight to the actual problem
than some other more explicit and specified generalizations. Similarly, Section 3.4.2
is not just an introduction to orthogonal filter structures; most of the presented
aspects seem to be at least somewhat original, and for example, the basis function
construction (3.81) is genuinely unique, although once more slightly artificial.

It is lot easier to point out the actual contributions of Chapter 4. In the method-
ological part, the generalized frequency resolution description of Section 4.2.1 is
genuinely new, as well as, the rehabilitation of the concept of complementary sig-
nals in Section 4.2.3. The most important contribution is probably the introduction
of the BU-method to the context of rational orthonormal function expansions. The
BU-method and its variants are presented in Section 4.3. The case study part pro-
vides an entirely new perspective to the modeling of audio related responses. More
generally, the proposed methodology introduces a new family of IIR filter design
techniques that can be used in modeling very complicated responses. In particular,
the combination of the BU-method and the Kautz filter structure can be used to
produce such high-order and efficient pole-zero filters that are not usually attain-
able. The importance and originality of the proposed applications have also been
evaluated in the form of a series of related publications.

The GLM concept could naturally be extended to include, for example, various
weighting schemes or further considerations with respect to different norms. Alter-
natively, the GLM could be concretized by specifying families of particular model
structures. The point of the whole construction was, however, in the simplicity, as
well as, in the artificiality, and the author feels that this theme has been dragged
along at least long enough. The Kautz filter approach to the modeling of audio
related systems, on the other hand, is an ongoing process. As natural extensions
to the modeling by synthesis framework, more genuine identification configurations
have been considered for various equalization tasks. Another interesting topic is the
utilization of Kautz filters in adaptive noise control or sound management systems.
In conclusion, there is lot to be done.
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[Härmä et al., 1996] Härmä, A., Laine U. K. and Karjalainen, M. 1996. Warped
Linear Prediction (WLP) in Audio Coding. NORSIG 1996 IEEE Signal Pro-
cessing Symposium. Espoo, Finland, September 25–27. 447–450.
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[Mäkilä, 1991] Mäkilä, P. M. 1991. Laguerre Methods and H∞ Identification of
Continuous-Time Systems. Automatica. Vol. 53. No. 3. 689–707.
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