




ABSTRACT

Photogrammetric 3D measuring procedure needs careful planning, especially in
the close-range case, in order to fulfill requirements with respect to accuracy and
reliability of measurements. In the special case of indoor environment, where im-
aging is to be taken inside the object space, some difficulties concerning the im-
aging procedure can be expected. In these environments a special attention has
to be paid to the arrangement of sensible imaging geometry, which will guaran-
tee the precision of observations and the reliability of estimates. Sometimes, the
division of the measuring task into smaller sub-tasks cannot be avoided. This,
however, requires more planning in respect of data registering in order to get the
sub-models into the same coordinate system.

In this research the issue stated above is studied and a solution to the problems is
searched and found via adjusting the imaging procedure suitable to this special
case. Great attention is paid to the geometrical aspect of imaging for 3D measure-
ments and robustness of the solution. In this research a new Circular Imaging
Block method has been developed for measuring tasks in the inside scene en-
vironment. The new method is based on constrained imaging and least squares
estimation. One objective of the research has been to simplify the planning stage
of the photogrammetric measuring procedure in special circumstances. The con-
trolled imaging procedure improves the opportunity to assess the accuracy of
measurements beforehand, and diminishes the need of assistance with an unex-
perienced user to design and accomplish the imaging. Also, the number of un-
desirable coordinate transformations can be decreased, since all measurements
from one imaging station will be in one and the same coordinate system.

Results from real-world experiments verify that an adequate level of accuracy of
measurements for object reconstruction in general is attainable with this method.
Also, tests indicate that the level of reliability, which is expected in typical close-
range measuring cases, can be reached. The advantages of the method can be
encapsulated as the straightforwardness of imaging, no need of control data, and
the use of assisted automatic procedures in image measurements.

Keywords: photogrammetry, close-range, estimation, image block, block adjustment,
accuracy, reliability
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1 BACKGROUND

The concept of a model can be understood in various ways, depending on the
context in which it is mentioned. The model itself can be considered to be a de-
scription of a phenomenon written in the form of a mathematical formula. A
model can also be regarded as a product of a planning or design process. It might
be a model of a manufacturing process or it can express the shape and size of a
designed object, building or artifact. In this thesis, the word model denotes a geo-
metrical realization of an existing object, or group of objects, and their relation-
ships in three dimensional space. The term object reconstruction can be considered
to be a synonym for the word modelling in this sense.

Object reconstruction or geometrical modelling can be said to consist of determin-
ing the geometrical properties of an existing object and its relation to its surround-
ings at a given instant in time. In this thesis, the modelling process is confined to
a static object, or objects, and their geometric relation to each other.

An object model consists of the geometrical properties of the object, its relation to
other objects, its attributes connected with expressing its properties, its material,
color properties and functionality etc. related to certain applications. The focus of
this thesis is on acquiring three-dimensional coordinate information about an ob-
ject from a sequence of photographs. In a image-sequence analysis, often a static
camera pose is assumed and the movement of objects is the target of interest,
whereas, here, the object is assumed to be static while the camera is moved be-
tween consecutive exposures.

In contrast to research objectives in the field of computer vision, here the focus
of research in object reconstruction has been on the accuracy and precision of es-
timates. The automation of measurements and sensor-orientation determination
has been of only secondary interest. The flexibility of the measuring system is,
however, the concern of the research, but not at the cost of accuracy. The con-
cept of accuracy is understood here as the quality of the results, while precision
is understood as a quality of the measuring system itself. Accuracy represents
the goodness of results in respect to some standards, while precision quantifies
the suitability of observation to be used in a mathematical model. Sometimes,
accuracy is presented as a relative number of estimated object coordinate accu-
racy in respect to the maximum dimension of the object, for example îðï*î#ñ�ñ�ñ�ñ .
This kind of representation of the accuracy number is quite common, especially
in close-range photogrammetry.

The main focus throughout the thesis will be on examining a specific method
of obtaining three-dimensional geometric information on an object or objects.
The research is limited to close-range photogrammetric measuring methods; all
measurements are therefore expected to be made using terrestrial-based, rather
than airborne, methods.
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The image-based 3D measuring method developed in this research project is a
novel method designed for use in special conditions for the purpose of object
reconstruction. This special case means that imaging is to be taken inside the ob-
ject space and the goal is to reconstruct the surrounding object(s). This type of
imaging case will be denoted in this thesis as a inside scene imaging from now on.
The method developed in this research is called ”Circular Imaging Block” -method.
The method can be considered to be an additional method to close-range photo-
grammetric measuring methods, especially designed for inside scene imaging
case. The 3D measurements made by applying this method are based on image
observations from sequence of images. The sequence is taken symmetrically with
respect to one navel point and the location of the sequence will be referenced as
imaging station. This is to draw a distinction between it and camera station that is
a location of a camera, where a single image is taken.

The following review in Section 1.3 of photogrammetric measuring methods is
a cross-section of current methods designed to acquire 3D information for the
purpose of object reconstruction. The review is especially concerned with the ac-
quisition process related to this work in the field of close-range photogrammetry,
not about object modelling itself.

1.1 Structure of the thesis

In this thesis the specific close-range photogrammetric problem regarding im-
aging geometry design is discussed. The subject is treated from an imaging de-
sign point of view in specific inside scene object reconstruction cases. In Chapter
1 a closer look is taken at the techniques for providing measurements for object
reconstruction. More attention is paid to those methods that are applied in inside
scene environments.

Chapter 2 gives an overview of the mathematical background of the estimation
theory of photogrammetric measurements. In addition, the theory and concept
of photogrammetric network design is discussed. Also, research work dealing
with constraints in close-range photogrammetric measurements is reviewed.

In Chapter 3 the description of the ”Circular Imaging Block” -method is provided.
In this chapter the mathematical background of the developed method and as-
sumptions made are revealed. The mathematical consideration is based on the-
ory presented in Chapter 2.

The subject of Chapter 4 concerns the simulation tests accomplished in order to
demonstrate the network design options with the presented method.

The test arrangements of the accomplished real-world experiments and the ac-
quired reference data are presented in Chapter 5. The presentation also includes
a description of the techniques used in the image observation acquisition.

In Chapter 6 the refinement of the presented method is given. The improved
mathematical model and the obtained results of computations are analysed from
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the point of view of measuring accuracy and the reliability of the measurements.
A brief review of reliability analysis is provided for clarification of the techniques
used.

The feasibility of the developed method is discussed in Chapter 7. A few aspects
of the usage of the developed method are highlighted and a comparison with
panoramic imaging is made. The discussion concentrates on the applicability of
the method in an inside scene imaging case. In addition, suggestions for further
development and direction of research are given.

In Chapter 8 conclusions are drawn and some recommendations are given.

1.2 The objectives of the thesis

In this thesis, the problem of close-range network design in special conditions
will be studied at a deep level. The aim of the research is to find and develop a
new measuring method, which is based solely, on image information, to provide
3D measurements in inside scene imaging case. This research will concentrate
on method development, in order to provide a flexible measuring system for
users not necessarily having a background in photogrammetry. The geometri-
cal characteristics of the measuring conditions, for which the measuring system
is to be designed, are considered to be difficult from the photogrammetric net-
work design point of view. A solution to the problem of meeting the inside scene
object reconstruction needs, where the imaging will be carried out from inside
outwards, will be sought.

The starting point for the research is to simplify the close-range photogrammetric
design process in this particular measuring case. The solution will be sought
through overdetermination with redundant image information and by regulating
the way the imaging is accomplished. The á priori information of imaging will be
used in the form of constraints in the image block adjustment. As a consequence
of the simplification of the imaging design, some degradation of accuracy in ob-
ject reconstruction compared to an optimal solution can be assumed. Therefore,
the following question is posed:

Can a circular imaging block be robust enough and provide object measure-
ments for the purpose of photogrammetric object reconstruction?

The answer to this question will be sought using methods involving least square
estimation and accuracy assessment. The reliability of estimates and quality of
measurements will be defined by means of statistical testing.
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1.3 A review of close-range photogrammetric measuring
methods for object reconstruction

In close-range photogrammetry, measuring tasks can be planned according to the
required accuracy of the object model, the required completeness of the model,
presentation of the model, and properties of the object itself. To a large extent,
the purpose of the measurements dictates which method is appropriate for the
task. Is time the restricting element for mensuration or can the measurements be
made on an off-line basis? What is the usage of the resulting object model? Will it
only be used for visualization or will any measures be derived from the model?
Are we interested in the location of a few distinct points on the surface of the
object and their relative position in respect to a time span, or is it more important
to create a realistic-looking comprehensive model of an object that compromises
ultimate geometric accuracy?

Archaeological documentation: Sometimes the model required does not have to
be in 3D. It is fairly common on archaeological sites that images are taken as a
basis for 2D sketches and so 2D is sufficient. Occasionally, it also means stereo
pairs or rectified images of the relics of antiquity or mosaics are required. The use
of photogrammetry in archaeology is quite often restricted to obtaining photo-
graphs with a known image scale for documentation purposes. Seldom has the
complete geometrical model of the site been regarded as necessary, although re-
cently some interest has been aroused in reconstructing 3D models of archaeo-
logical sites as part of the documentation process (Ogleby 2001; Koistinen et al.
2001; Pollefeys et al. 2003). A three-dimensional visualized model of the current
structure of the site has been recognized by archaeologists as giving an additional
tool for interpreting the site. The sub-models of the artifacts or their stereo pairs
are also made in order to store them into a database (Chikatsu and Anai 1998).

Virtual reality models: Recently, it has, perhaps, mostly been virtual-reality
models that have inspired researchers all over the world to develop methods
for object model reconstruction. Virtual models are required in the construc-
tion industry for facility-management purposes and in the mining industry for
autonomous vehicle or machinery interaction, also known as teleoperating (El-
Hakim et al. 1997, 1998; Sequeira et al. 1999). However, perhaps the largest po-
tential can be seen in the entertainment industry and, especially, in the gaming
industry.

Creating a virtual object model does not necessarily require any real measure-
ments to be made, but can be accomplished from scratch even though it has been
realized that demand for real-world-based, rather than synthetically-generated
content models is rapidly increasing. This is because real-world data have the
potential to generate realistic looking models in a more automatic and faster man-
ner than their graphic-based counter-parts, which are also more labor-intensive to
produce (El-Hakim et al. 1998). In many cases, the virtual model is a combination
of actual measurements with real-world image texture and partial graphical ma-
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nipulation by the operator with synthetic texture. This is especially the case with
virtual models of archaeological sites created where only remains of the monu-
ments are present. The complete structure of the site has to be collected from
other sources, from literature, for example (Ogleby 2001).

The geometric content of the model does not have to be complete for all appli-
cations where virtual models are used. For applications where some measures
are to be derived from the model, the consistency of the model with respect to
scale and derived features has to be controllable. Quite often, detailed parts of the
model are first modelled in very rough or generalized form, while real-world im-
age data are used for surface texture in order to compensate for the inconsistency
of the geometric model. This is quite a powerful technique and an acceptable
approach if the model is used for visualization only.

Object reconstruction: The measurements to be carried out for reconstructing an
object model can be accomplished by using a variety of instruments. The model
can be based entirely on photogrammetric measurements or measurements might
be carried out using a hybrid method involving different types of sensor data.
Recently, the latter seems to be the most popular method among the latest re-
search projects (Ng et al. 1998; El-Hakim et al. 1997, 1998; Brenner and Haala
1998; Ogleby 2001). In many projects, the combination of laser scanner and video
imaging is used (El-Hakim et al. 1997, 1998; Ng et al. 1998), but there are other
combinations, such as a tacheometer and still video images (Ogleby 2001), air-
borne laser scanner data, 2D map data and aerial and terrestrial images (Brenner
and Haala 1998). Also, a fully image-based approach to object reconstruction
has been suggested (Seales and Faugeras 1995), where a stationary object is re-
constructed from an image sequence. The camera movement is estimated on the
basis of common features on the images and on object points determined from
silhouette points.

Laser scanning: Laser scanning is a powerful technique for extracting 3D geo-
metric information of objects. Here, the laser scanner is understood to be a device
which automatically collects 3D information from an object surface in a system-
atic pattern. It is essential to notice that data are collected in two directions and
usually stored in a form of a grid. This clarification is to make a distinction be-
tween laser-based devices that collect data only in one direction while data in the
other direction is obtained through the movement of the device itself or of the ob-
ject. Common to all these devices is the accomplishment of the collection of data
points at a very high rate (hundreds or thousands of points per second), although,
differences can be seen between 3D laser scanners in regard of their operating
range and the technique they are based upon. Commonly, these devices can be
divided into three categories with respect to operating range: 1) short-range, 2)
mid-range, 3) long-range.

With regard to the technique laser scanners are based upon, instruments can be
divided into devices based on triangulation techniques and devices based on time-
of-flight. The first category comprises a combination of a laser-beam projector and

19



a imaging sensor device. The distance measurement in these devices is based
upon angle observations with respect to the base distance of the laser and im-
aging sensor. The 3D point coordinates are solved based on measurements of
pan- and tilt-angular sensors and derived point distance value. These devices
typically fall into the category of short-range devices, but there are also devices
that can be considered to be in the mid-range category.

The devices based on a time-of-flight technique emit a laser pulse and the time
passed until the reflected pulse arrives back at the receiver is measured. In some
devices, the phase difference of emitted and received pulses are measured and a
more accurate estimate for time difference can be calculated.

In general, devices based on triangulation can be considered to be more accurate
than laser scanners based on a time-of-flight technique. Single-point accuracy
can be even ò�óõô#ö÷ö in the best case with triangulation-based devices, but accuracy
will drop abruptly when the object distance increases. At a distance of ten meters,
the accuracy can degrade to several millimeters (Boehler and Marbs 2002). With
time-of-flight scanners, the accuracy of distance measurement is quite constant,
regardless of object distance. However, a single 3D point accuracy is not constant
since measurement is a function of distance and angular observations. The accu-
racy with these devices is typically tens of millimeters in relation to a single-point
location. Unlike triangulation-based devices, these scanners are able to measure
up to a few hundred meters.

In comparing commercial scanner brand types, differences can be found in the
way they operate. In addition to operating range, scanning speed and angular
resolution, there are attributes that are scanner-type related. Also, the maximum
field of view, where a single scanning session is bound to be conducted, does
vary. There are scanner types that allow the scanning of nearly a full sphere,
while with other devices the scanning is restricted to a field of view of the size
of ø�ò�ù in one direction. The use of a narrow field of view in scanning a large
complex object will generally lead to multiple scanning sessions in order to cover
the whole object. Separate scannings must partly overlap to be able to merge data
sets into a single object model. This increases the number of scanning sessions
even more. Data merging and data registering, has become a challenge that has
inspired many researchers to find a feasible method in order to preserve object
consistency in object reconstruction.

With time-of-flight based devices, the accuracy of measured distance is nearly con-
stant within a few tens of meters, but there is no possibility of evaluating the
accuracy of an individual 3D point observation. This is because it is hard, or
even impossible, to track the precise location, where the laser beam is reflected
from. Sometimes, special 3D regular targets are used in order to estimate the
accuracy of a set of 3D point observations. This can be considered to be a draw-
back of laser scanning methods, in comparison to over-determined image-bundle
measurements. In investigating laser scanning accuracy, it has been noticed that
the measurement noise increases exponentially with the angle between the sur-
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face normal and laser beam (Sequeira et al. 1999). The same phenomenon of
reduced scanning accuracy has been discovered while comparing measurements
achieved by laser scanning with digital photogrammetric measurements (Lichti
et al. 2002). This knowledge of inaccuracy of observations on the surface near the
coplanar-to-ranging beam has been exploited in range data registration (Sequeira
et al. 1999). In the case of overlapping data, only those points from the scanning
that have a better viewing angle with respect to the surface normal they belong
to have been included into the model.

In most of the cases, the object cannot be modelled from one viewpoint only, so
several instrument stations are needed. To estimate coordinate transformation,
data sets must overlap. Because of the nature of laser scanning, no point-to-point
correspondences can be established, so data sets have to be examined in order
to find depth discontinuities for 3D feature extraction. In overlapping areas, the
same 3D features have to be identified in both data sets. Transformation can be
then based on minimizing the point distances in the overlapping area with an
Iterative Closest Point (ICP) or equivalent algorithm (Ng et al. 1998; Sequeira et al.
1999). The problem with combining the data in the way described is that there
is no controllability of the transformation and its accuracy unless the coordinate
transformation is established in another way. To solve this problem, special 3D-
targets have been developed. Targeting as in photogrammetry increases the need
for careful planning of the mensuration task; this reduces the flexibility of the
measuring method. Some laser scanning devices provide the 2D reflectance im-
age of a scanning grid. Few reports have been given where this image has been
used successfully to help in the determination of transformation between separ-
ate scans. Also, an approach has been suggested where a discrete orthoimage
is calculated from image data and an interpolated orthoimage grid is compared
with intensity values received from laser device (Wendt 2004). In the Olympia
project, the digitalization of the statue of Zeus was established by attaching a
laser scanner to the arm of a coordinate measuring device (Ogleby 2001). This
guaranteed that the points clouds coexisted in the same coordinate frame. Unfor-
tunately, this kind of approach can only be used with fairly small objects.

The uncertainty of sub-model registration based purely on laser measurements
has been the reason for looking for other alternatives. In some research projects,
the solution has been to combine different measuring techniques in order to
achieve a better overall accuracy of the model. In combining laser range data
and digital images, laser scanning is used to get most of the geometric data of the
scene, while images are used only for achieving a natural texture for the model
(Sequeira et al. 1999). However, there are projects, where image data are also used
for getting geometric data for data fusion, or even for extracting the object struc-
ture along with laser data. In cases where photogrammetric measurements have
been registered together with range data, a better and more precise coordinate
system for the control network has been obtained (Guidi et al. 2002; El-Hakim et
al. 2002; Beraldin et al. 2002). But there are also papers reporting the combination
of tacheometer measurements and laser scanning, or of all three techniques, in
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the same project (Balzani et al. 2002; Borg and Cannataci 2002). The general tend-
ency has been to use more precise techniques to create a common coordinate sys-
tem for measurements, and model only dominant features with photogrammetric
methods, leaving more detailed modelling to be carried out with laser scanning.

Image-based object reconstruction: In most accurate close-range photogram-
metric measurements up to úüûðú#ý�ý�ý�ý�ýÿþ ú ûðúlý�ý�ýHý�ý�ý imaging is based on a
multi-station convergent camera constellation (Fraser 1992). This requires a great
deal of expertise in photogrammetric network design. Usually, all points to be
measured are pre-targeted with retroreflecting or high-contrast targets. The re-
constructed object model will then be based on these defined object points. Typi-
cally, these points themselves are distinctive points of the object model, or they
are distributed on the object surface to best describe the shape of the object model.
The measuring tasks requiring such accuracy are usually unique tasks not to be
carried out regularly, unless it is about periodic inspection; for example in object
deformation measurements. The targeting can also be carried out by projecting
structured light onto the object surface or by using natural points in measure-
ments. This slightly degrades the achieved accuracy, but enables the measure-
ments to be made on a regular basis.

Some research has been conducted, especially in the field of computer vision,
to utilize perspective properties as vanishing points in order to resolve camera
orientation with respect to the object. The idea is based on the assumption of
parallel and orthogonal lines or of a symmetric pattern on the object structure.
This approach does not suit the reconstruction of all types of object, but there have
been encouraging results, especially in the field of architectural photogrammetry
(van den Heuvel 1998, 2003).

Image-based modelling from an image sequence has been of interest to many
researchers seeking to recover the shape of real objects, especially in the field of
computer vision. In some research activity, the motion of the object or camera is
expected to be rigid (Seales and Faugeras 1995) e.g., the object is rotated around
one rotation axis or the camera motion is assumed to follow a defined track.

One research line that deserves a closer look is an approach where á priori infor-
mation about a camera or scene is totally disregarded and object reconstruction is
performed automatically. In the research of a Belgium group from Leuven (Polle-
feys et al. 2004, 2003, 2000), the focus has been on automatic reconstruction and
the methodology used is probably unfamiliar to many photogrammetrists. The
image sequence is assumed to be taken with a hand-held camera and the move-
ment of the camera is allowed to be quite arbitrary. The modelling approach is
based on the idea of first recovering the motion of camera and, after that, deter-
mining the object parameters of certain feature points. The feature point selection
is based on using the interest operator in order to find good feature points for
tracking in the image sequence. The camera motion estimation and main struc-
tural recovery is accomplished in projective space. The estimation is initialized
first with an image pair, which is selected to have an appropriately wide separ-
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ation of image view, i.e., a good base ratio. The coordinate frame is initialized and
other images of the sequence are included gradually in the computation, while
the object structure is updated accordingly. In this stage, only a basic camera
model is assumed. After including all images of a sequence, and once their sub-
sequent epipolar geometry is resolved, a bundle adjustment is performed, while
intrinsic camera parameters are also taken into account. The adjustment is made
in projective space; in order to transform object structure into metric space, con-
straints on the camera intrinsic parameters are imposed. A more-dense object
structure is reconstructed from rectified stereo image pairs of subsequent images.
The results of image matching are dense disparity maps and these are then com-
bined into a global depth map by linking points from separate stereo models. In
the final stage, from this depth map, a surface model in the form of a triangu-
lar mesh is created. Multiple image views ensure that the texture from images
mapped on to the surface model creates a visually realistic looking model of the
object structure. The basis of this research has been to create an image-based ob-
ject reconstruction method, where no strict restrictions for imaging are assigned.
The emphasis has been on the exploitation of automatic procedures. Aspects of
imaging geometry on the accuracy of the object model have not been a big con-
cern in research. The focus seems to have been on the development of rapid
methods of object reconstruction to provide visual models from images. The re-
sulting object models constructed with this method have been very impressive.
The research work is also encouraging with respect to the development of auto-
matic reconstruction methods.

1.3.1 Special case: Inside scene imaging for object modelling

Especially in the indoor environment, the imaging strategy plays a very import-
ant role. This was noticed by Dr. Foramitti who constructed an imaging system
for architectural photographic recording in the early 1970’s in Austria. The objec-
tive of his imaging system was to provide an image sequence in a sensible order
to record architectural details of a scene for documentation(Foramitti and Ackler
1976). The imaging system consisted of a bar attached onto a tripod and a camera
attached to the end of the bar. By turning the bar around the tripod and tilting
the camera, he could photograph the structures in an inside scene environment.
However, no photogrammetric measurements were accomplished. His invention
was made in the 1970’s and the photographs were analog images; the instrumen-
tation of analogue photogrammetric stereo-plotters, used in those days, restricted
the use of heavily tilted photographs for photogrammetric mensuration.

The complexity of inside scene imaging and object reconstruction has inspired
many researchers since Foramitti to search for new ideas and methods to achieve
realistic and accurate models of the indoor environment. Some of these efforts
have concentrated on the modelling part, such as in research by Haggrén and
Mattila (Haggrén and Mattila 1997), where the concept of modelling was rep-
resented as an object-space-driven approach . The indoor scene was modelled
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with the help of an object-model library and the pose and orientation of the im-
ages were defined with respect to object models. The modelling was done inter-
actively and the coordinate system was established during the modelling process.
The research focused on modelling only a part of the scene. Free-net adjustment
was accomplished afterwards in order to reduce the possible deformations of ob-
ject space during the process of interaction.

A similar philosophy of object reconstruction was adopted by Khalil and
Grussenmeyer (Khalil and Grussenmeyer 2002) in an approach to object mod-
elling from a single image. Their starting point for the study was to solve the
image exterior orientation on the basis of a determination of vanishing points.
So the idea is basically the same as that in the work of Van den Heuvel in the
field of architectural photogrammetry (van den Heuvel 1998). The system de-
sign of the study involves the concept of a Conceptual Data Model (CDM) in the
reconstruction of indoor scenes. Information is represented in a data model on
three levels; geometric, topological, and semantic. Information on the coplanarity
and parallelism of objects stored in a relational database are then exploited in
the modelling of the object scene. In this method, three distance measures are
required to calculate the scale factors to the axes of a local coordinate system.

A more ambitious project to produce an accurate model in an indoor environment
has been set up by the National Research Council of Canada (NRC) (El-Hakim
et al. 1997, 1998). There has been developed an autonomous mapping system
designed especially for reconstructing a model of a corridor or tunnel-type indoor
scene. The system is carried out using a hybrid method by combining different
types of sensor data. The system consists of wheel encoders, a laser range sensor
and 8 CCD cameras. The cameras are fixed into a frame, while cameras point
sideways to cover an image strip of a half circle. The range sensor is mounted
on a pan and tilt unit, so it can cover the same area as the CCD sensors. All
data is gathered autonomously. However, some assistance is required on image
feature acquisition. The pose of the system is resolved on the basis of information
from all sensors. For object reconstruction only, the image and range data are
used. The system is unique, since all data is employed in a common network
adjustment to solve the pose and orientation of the mapping unit and the object
model simultaneously. The accuracy achieved in experiments is

�������������
which is

admirable in such an environment of high complexity. However, pre-calibration
of the system with help from a calibration frame is necessary in order to solve
the relative location and orientation of individual sensors. This information is
then used as á priori knowledge in the network adjustment process to stabilize
the computation.

Panoramic imaging: The use of panoramic images in object reconstruction has
been of interest in many papers recently. Panoramic images can be considered
to be ideal media for acquiring images in inside scene environment. The idea of
panoramic images has been known for over a century, but using this concept for
measurements in close-range photogrammetry has only recently been of interest.
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Panoramic images can be obtained by merging multiple central projective frame
images into a single panoramic image or by using cameras especially designed to
acquire the intensity information with panoramic projection.

In order to acquire panoramic image information from multiple central projec-
tive frame images, it is necessary to have a single projection centre that all im-
ages share. This can be accomplished by estimating mathematically the possible
eccentrical difference between projection centres and taking into account this ef-
fect in constructing the panoramic image (Wester-Ebbinghaus 1982; Hartley 1993;
Luhmann and Tecklenburg 2002), or by trying to place the camera in a rotational
mount piece so that no eccentrical difference exists between image perspective
centres (Pöntinen 1999; Kukko 2004).

In the case of special panoramic cameras, the imaging is based on a single array
sensor. The panoramic image is constructed while applying plane rotation for the
vertically aligned sensor and acquiring the intensity information during rotation.
The spatial resolution of the image is then dependent on a minimum rotational
resolution in the horizontal direction, while, in the vertical direction, the resol-
ution is limited by the number of sensor elements in the array. The sensor array
is assumed to be perpendicular to the axis of rotation, but there have been re-
ports of this assumption having been found to be incorrect (Schneider and Maas
2005). Also, there have been observations of uneven rotation of the sensor in the
direction of rotation and of violations of a planarity constraint (Parian and Gruen
2004). By applying correction values based on calibration, it has been possible
to reduce the error of the single observation from 	�
 to 

��� pixels (Schneider and
Maas 2005).

However, object reconstruction, based upon the image ray intersection, cannot
be achieved from a single panoramic image. The image observations from a
panoramic image can be equated with the horizontal and vertical angle obser-
vations from the theodolite. Consequently, to be able to measure 3D point lo-
cation by means of image ray intersection, at least two panoramic images have
to be created with a difference in location. In order to have observational redun-
dancy, three panoramas are the minimum. Before object reconstruction, images
have to be relatively oriented or oriented with respect to a chosen coordinate
system. With the use of photogrammetric bundle adjustment, the orientations
can be computed in a rigorous way. Luhmann and Tecklenburg have noted in
their investigation that generally ����� tie points are sufficient for a complete
room(Luhmann and Tecklenburg 2002).

For object measurements, the corresponding image-point observations have to
be made in the same way as when using central projective frame images. How-
ever, in contrast to frame images, the epipolar line, where correspondent points
should coexist, is not a straight line but a sinusoidal curve. This is due to the
presentation of the panoramic image projected on the surface of a cylinder. The
benefit of panoramic images in inside scene measurements by imaging outwards
from inside is their coverage of full ����
�� . This means that an object point can
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possibly be seen in all panoramic images of the project. However, the image scale
can vary largely from image to image. This is why, in many research projects,
an image management and browsing system has had to be created in order to
find all possible images where the object point can be seen (Luhmann and Teck-
lenburg 2004; Chapman et al. 2004). In very complex environments, the image
management system is a system component that is clearly crucial in getting the
task accomplished (Chapman et al. 2004).

The accuracy achieved in object reconstruction by using panoramic imaging has
generally been quite adequate for the requirements of an object model. By using
four panoramas constructed from a sequence of central projective images for
object measurements, the root mean square error (RMSE) has been of a size of���������

, when object dimensions have been  ���"!  ���#!%$��
(Luhmann and

Tecklenburg 2004) and & ��� ! & ��� !  �' � (Schneider and Maas 2005). A simi-
lar accuracy range of (*),+.-0/ �����

has been reported with the use of special
panoramic cameras (Schneider and Maas 2005). Even though, with panoramic
imaging, almost the whole scene can be covered, depending on the structure of
object scene, there can still be occluded areas where no image information is ob-
tained. In order to recover from this shortcoming, an image adjustment system
has been developed, where central projective frame image observations are ad-
justed simultaneously with panoramic image observations (Schneider and Maas
2005).

Panoramic imaging has also aroused interest in the computer vision commu-
nity. Panoramic imaging is sometimes called omnidirectional imaging in computer
vision literature. Research work has been undertaken in the development of con-
struction methods of panoramic images as well as in 3D object reconstruction.
The main objective of research in these research projects has concentrated on vari-
ous ways to recover the camera movement during imaging. The ultimate goal of
the research has been to resolve the camera rotation in an automatic way (Kang
and Szeliski 1997; Jiang et al. 2005). In object reconstruction, a 3D mesh has been
generated according to all possible pixel locations where the correspondent im-
age point has been found on other panoramic images. Also, here, automation
of the process has played the main role in investigations. Unlike with research
work in the photogrammetric community, the geometry of imaging regarding
object reconstruction has not been an important part of the research.

Stereo panoramic imaging: Some variation from the strict panoramic imaging
rule has been suggested where imaging does not share a common projection
centre. The aim of research in that case has been to create a stereo system with
a panoramic viewing capability (Peleg and Ben-Ezra 1999). The construction of
stereo panoramas is achieved from two image sequences. Each image sequence
is obtained by rotating the camera around a static axis along a circular path. The
looking direction of the camera is tangential to the circular path during imaging.
The second image sequence is created in the same way, except for the opposite
tangential viewing direction of the camera. The aim is to create a panorama im-
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age that consists of image strips from both image sequences. For the purpose of
stereo viewing, the image is projected onto a planar surface as a stereo pair with
a chosen viewing direction.

Another approach exploiting similar imaging geometry is called omnivergent
stereo (Seitz et al. 2002). The idea of imaging two image sequences is the same
as that found in the work of Peleg and Ben-Ezra. Also in this work, the aim has
been to reduce redundant image information and only store those image rays
tangential to the circular path. Along with basic image construction, the spheri-
cal omnivergent image model, where collected image rays are stored according to
their horizontal and vertical angle direction values, is presented. By storing im-
age ray information so that image rays with the same horizontal angle are stored
in the same image column, and image rays with equal vertical angles are stored
on same row, the epipolar line will go along the scan-line and the correspon-
dence of image points can be found on the same row. This is a benefit when
using standard stereo matching algorithms for object reconstruction. In addition,
an approach acquiring two images is presented for creating omnivergent stereo:
centre-strip stereo, based on a single image strip collection (equivalent to the work
of Peleg and Ben-Ezra), and dual-strip stereo, exploiting image acquisition from
two symmetrical off-centre slit images. In both panorama stereo and omnivergent
stereo, ideal imaging conditions are assumed in research and no discrepancy of
expected imaging geometry is considered. Also, the quality of the obtained ob-
ject point coordinates is not examined.

One research project, or more like a mission, to be mentioned is the Mars Ex-
ploration Rover (MER) mission that has connections to the reported research area
(Maki et al. 2003; Bell et al. 2003). In early 2004 the MER mission landed a pair of
rovers on the surface of planet Mars. The mission was launched by the National
Aeronautics and Space Administration Agency (NASA). Altogether 1�2 cameras are
placed on each rover to explore the Martian surface. From the 1�2 cameras two
stereo camera pairs are the target of interest concerning this research; namely the
Navcam and Pancam stereo cameras. The stereo cameras are mounted on a mast1�3�465�7 above the surface in a pan- and tilt-unit of the rover. The Navcam cameras
are within a distance of 8�2�2.7�7 apart and the Pancam cameras have 9�2�2.7�7 sep-
aration in camera bar. The imaging system resembles the imaging system used in
the earlier Mars missions of Mars Pathfinder and Viking.

The primary objectives of the Navcam camera system is to acquire an ”end of the
day” panorama of the local terrain after a rover traverse. This terrain model is
used in planning the route of the rover in the next stage. The stereo image sys-
tem can produce a stereo view covering the whole 9�:�2�; in order to obtain a terrain
model of the scene. A typical Navcam panorama consists of a sequence of 1�2 stereo
pairs, spaced apart by 9�: ; . In order to acquire a terrain model, images are repro-
jected to epipolar images and an image correlation technique is used to produce
disparity maps of the scene. The disparity maps obtained from separate stereo
images are then combined using angular information gained from the angular
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Figure 1. Imaging geometry of panoramic imaging created in Mars Exploration Rover (MER),
redrawn from (Maki et al. 2003).

actuators of the pan-tilt-unit. However, if image mosaics of the scene are to be
created, tie point measurements between images need also to be made. The rover
is equipped with a Inertial Measurement Unit (IMU), and in combination with in-
formation obtained from rotation and orientation of the rover wheels, this takes
care of positioning of the rover in respect to previous locations. When needed,
the position information is updated based on image measurements of objects,
seen from both imaging sites.

The imaging system used for 3D object measurements, where measurements are
based on image observations made from image sequences of camera pair attached
to a rotating bar, is depicted in Figure (1), which exhibits the imaging geometry.
The imaging geometry is comparable to imaging accomplished in omnidirectional
stereo and panorama stereo. The imaging system of Mars Exploration Rover cannot
be considered to belong under the title of indoor imaging, but surely demon-
strates the imaging conditions of inside scene environment, defined earlier in this
section.

To summarise, in this Chapter a review of photogrammetric close-range
measuring methods aiming to 3D object reconstruction have been made. Es-
pecially, more close look on methods applicable to inside scene environment is
taken. The reader is encouraged to bear in mind the imaging geometry pre-
sented in Figure (1) and described in the last part of the section dealing with
stereo panoramic imaging, since it resembles the imaging procedure used with
circular imaging blocks. A comparison of the developed method with methods
presented here in this section is to be made later in Chapter 3.

28



2 INTRODUCTION

2.1 Bundle block estimation

The reconstruction of an object purely on the basis of image information needs to
be performed with proper imaging geometry in order to obtain a consistent and
undistorted object model. Sometimes, especially for visualization, it is enough to
get a model that resembles a real object. In cases where many sub-object models
have to be merged into a larger and more complicated model, there is a risk of
major problems if the consistency of model geometry has not been dealt with
properly. Preferably, the whole model should be homogeneous in terms of accu-
racy of measurements. This, however, is quite difficult to achieve. In order to get
an appropriate solution, imaging has to be planned carefully.

In photogrammetric literature, special attention has been paid to the problem of
achieving a good imaging network (Fraser 1982, 1984; Mason 1995; Fraser 1996).
For some applications, requirements for accuracy can be very strict. There have
been reports of image-based object measurements achieving an accuracy of one
part in one million with respect to the size of the object (Fraser 1992). In such
cases, many planning iterations may be needed to achieve an optimized network.
The accuracy of a final 3D model depends upon:

1. the accuracy of image observations,

2. the geometry of imaging network,

3. the number of observations, and

4. the correctness of camera model.

The effect of image observation accuracy is apparent on object-parameter deter-
mination. How the geometry of intersecting image rays has an effect on object
accuracy can also be clearly shown with error propagation. An increase in the
number of observations above the number that is necessary to solve the object
parameters does not only improve the accuracy of object measurements, but also
gives us a tool with which to estimate the precision of our measurements without
any exterior reference. By applying a correct camera model, the occurrence of
systematic errors on object model coordinates can be prevented.

The reconstruction of an object model can be accomplished from multiple stereo
image pairs. From each stereo image pair, object points can be measured and
a sub-model representing a partial object created. Usually the goal is to recon-
struct the object as a whole and this initiates a need to have all sub-models trans-
formed into the same coordinate system. A rigid body, conformal transformation
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is often used for transferring the sub-models into a common coordinate system.
Unfortunately, this kind of approach generates quite a number of sub-models and
therefore some kind of image handling system is required to manage the whole
measuring project. Also, more effort has to be put into the search for correspond-
ing object features for the purpose of coordinate transformation. These numerous
sub-blocks are difficult to handle in the same project and their orientation can be
quite arbitrary in object space.

In stereo measurements, an object point is measured on both images. Sometimes,
the relative position and orientation of the image pair have been resolved before-
hand and the determination of model coordinates is to compute the intersection
point of two image rays in 3D space. In an ideal stereo pair case, corresponding
image rays will intersect in one unambiguous 3D point location. The disadvan-
tage of the stereo measurement approach is that it does not provide real quality
information of object point determination. Some feed-back of the quality of the
relative orientation of an image pair is available in the form of < -paralax, though.
Also, stereo imaging is not geometrically the most accurate imaging configur-
ation, even though it is widely used. In close-range photogrammetric measure-
ments, the multistation convergent configuration has been found to be the opti-
mal solution for imaging geometry (Fraser 1984, 1996).

As previously mentioned in this section, the number of observations has an effect
on object model accuracy. In an overdetermined case, there are more image ob-
servations of each object point than the minimum requirement. Due to random
noise on image observations or possible systematic error, the corresponding im-
age rays from multiple images do not necessary intersect at the same point. So
the problem is to solve the 3D point location, where the observations have the
best fit. In the field of geodesy and photogrammetry, the solution to the prob-
lem has been solved with the Least Squares (LSQ) Estimation model (Slama 1980).
Object point coordinates can be solved by minimizing the weighted squared sum
of observation errors in the image space. The image orientation values are also
commonly solved in the same adjustment. The problem is then to find the best fit
of the bundle of image rays with respect to each other and possibly with respect
to the pre-known object points or features. This estimation model is called the
bundle adjustment method (Brown 1976). Adjustment methods have been widely
used, first in aerial photogrammetry applications (Brown 1976) and later in close-
range photogrammetric measurements (Wester-Ebbinghaus 1978; Fraser 1984).
Recently, the computer vision community has also adopted the bundle method
in their computation models (Pollefeys et al. 2004). By using the bundle esti-
mation method in an overdetermined case, it is possible to assess the precision
and reliability of measurements, plus the quality of measurements, without any
exterior reference data.

30



The estimation model can be represented in the form of least squares in the fol-
lowing way: =?>A@CBEDGF (1)

The functional model can be derived as an observation equation, Equation (1),
where the discrepancy between the linear function of parameter values B and
observations F is presented as a residual vector = . The matrix @ is a coefficient
matrix of unknown parameter vector of this linear function. This observation
equation is an explicit function where observations can be expressed as a linear
combination of parameters. This, however, cannot be constructed in every case;
when it cannot be, observations and parameters have to be adjusted in the same
adjustment by using a general adjustment model (Mikhail 1976).

The objective of this LSQ estimation is to minimize the sum of squares of
weighted residuals. If the first derivate of Equation (2) with respect to the un-
known parameter vector B is computed and set to zero, we end up with Equation
(3). This will guarantee the minimum criteria and the solution for unknowns B
can be computed. In the literature, it is common to denote the symmetric squared
matrix @CHJI�@ in Equation (3) as K and the vector @CHJILF as M (Mikhail 1976).
The symmetric squared matrix K is often designated the normal matrix.=�HJI*=N> OP@QBRDGFPSTHJIUOV@QB�DGFPS (2)

BW> OP@ H I�@XSZY\[]@ H I^F> K Y\[ M (3)

,where I_> `baced Y\[fgf >�h Y\[fif (4)

The weight matrix I in Equation (4) is an inverse of the cofactor matrix. The co-
factor matrix h fif is a variance covariance matrix of image observations d fif scaled
by the reference variance of the adjustment. This information is hardly ever avail-
able and has to be created on the basis of prior experience. Since the image obser-
vations are assumed to be independent, the matrix will be reduced to a diagonal
matrix, whose diagonal elements are in a form of

jlkm> ` ac` ak�k (5)
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where nbop is the reference variance of adjustment and nqor�r is the variance of the
equivalent observation. Often the reference variance n op is selected as the vari-
ance of image observations, in which case the weight of a single image obser-
vation is unity, or unit weight. If only image observations are included in the
adjustment, the weight matrix s will then be the identity matrix. However, other
types of observation can be included in the estimation as well. They can have dif-
ferent variance properties as image observations and also image observations can
have different variance values, depending on whether the observation is from a
targeted point or a natural object point. Then the identity matrix will not be ad-
equate as a weight matrix for the adjustment.

The equivalence of the matrix presentation of the bundle model can be found
with the four factors presented previously in this section.

1. The weight matrix s includes the observation accuracy information.

2. The coefficient matrix of unknown parameters t contains the effect of im-
aging geometry. The distribution of object points and features, as well as
the relative position and orientation of image bundles, have a strong effect
on the structure of the matrix t . That is why the matrix t is often called the
design matrix.

3. The redundancy uwv of the adjustment can be calculated from the number of
observations and number of rows x in the matrix t (in the assumption of
explicit equations) compared to the number of unknown parameters y , i.e.,
size of vector z . So redundancy is u�v|{}x�~�y .

4. The precision of the camera model can be evaluated from camera calibration
measurements or, if the interior orientation parameters of the camera are
included as unknowns, the precision values can be derived from the par-
ameter variance-covariance matrix ���Z� , as discussed below.

The possibility of assessing the quality of measurements is one major advantage
of using LSQ estimation. Object space uncertainty can be evaluated by deriving
the observation uncertainty ���i� by use of error propagation into the variance-
covariance of unknown parameters ���Z� . The uncertainty of the object feature
parameters is also dependent upon the geometry of the imaging network. Ac-
cordingly, the estimate of variance-covariances of parameters is a function of the
design matrix t and weight matrix s in the form of the inverse of the normal
matrix � scaled by the posterior estimate of the reference variance of unit weight�n op . It is given as

��������{ �n op ���\� (6)

The variance-covariance matrix of unknown parameters �N��w���� , Equation (6), can
be used in the evaluation of adjustment results. The trace �]u����N��w������ has a direct
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relation to Root Mean Square (RMS) values and is therefore used in the assess-
ment of results, as well as in the simulation of the imaging network design (Fraser
1982). The quality of observations can be reviewed by examining the variance-
covariance matrix of residuals ���]� . Methods to detect blunders, or outliers, are
commonly based on residual variances and covariances.

This compact presentation of the bundle method is very general and is designed
to motivate the adoption of the method in image-based measuring configur-
ations. A more detailed description can be found in the literature (Mikhail 1976;
Mikhail et al. 2001).

2.2 Concept of Photogrammetric Network Design Problem

In photogrammetric measurements, the accuracy of 3D measurements depends
highly on the camera configuration. The best result can be achieved in the case
where images are exposed at the convergence angle of ����� . This is not a strict
requirement, but having an incident angle of intersecting image rays of �����.�G�����
from two or multiple images (Fraser 1992), will almost result in isotropic pre-
cision in all three coordinate directions. Unfortunately, this is occasionally dif-
ficult to arrange in practice. In cases where the optimum geometry cannot be
constructed, other criteria for the estimation model are used to achieve a stable
solution. In aerial photography, the overlap of two images should be adequate to
guarantee the accuracy of the model.

The achievable accuracy of a photogrammetric measuring system largely de-
pends on the localization and distribution of the control points or control features
to be used. The imaging device, its accuracy, and geometrical stability have to be
known when planning the mensuration system. These all have an effect on the
final measurement precision. Changing one component might have a great im-
pact on some other component and in that way affects the accuracy of the whole
measurement system. The standard procedure is to adjust the measurement con-
ditions iteratively to meet the accuracy requirements. The design of the measure-
ment system can be divided into ZOD, FOD, SOD and TOD levels of planning,
according to Grafarend (Grafarend 1974) and Fraser (Fraser 1984).� zero-order design (ZOD): the datum problem� first-order design (FOD): the configuration problem� second-order design (SOD): the weight problem� third-order design (TOD): the densification problem

According to Fraser (Fraser 1984, 1996), in close-range photogrammetric net-
works, this classification is not really applicable and the ZOD- and SOD-level de-
sign are greatly simplified compared to stages in geodetic network design, where
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the design classification was first presented (Grafarend 1974). The ZOD-level
planning is about the fixing of seven appropriate object space parameters in or-
der to remove the network’s datum defect. The variance-covariance matrix of ob-
ject space features ���� �� is highly dependent on the choice of this minimum control.
Even though the shape of the network will remain unchanged, the changes can be
seen in the numerical values of ���� �� as a result of this choice. However, the ZOD-
level planning can be ignored when only the shape of the object is needed. It is
also possible to solve the datum defect problem by applying numerical methods.
The solution is found by constraining the minimum  ¡£¢  ¡ of the linear equation
system. One approach is based on inner constraints in adjustment. Alternatively,
same solution can be achieved by using the singular value decomposition algor-
ithm. The solution based on inner constraints has proved to be more feasible in
practice (Fraser 1984; Mikhail et al. 2001), while the latter approach has had a
mainly theoretical value (Inkilä and Laiho 1989).

The most demanding phase in close-range photogrammetric network design is
probably planning the camera station configuration: the FOD level. As an indi-
cator of point triangulation precision in a convergent, multi-station photogram-
metric network, Fraser has presented a formula (Fraser 1984):¤b¥§¦ ¨© ª§« ¤¬¦ ¨© ª®­ ¤\¯ (7)

From Equation (7) we can see that the mean standard deviation of object point
coordinates ¤b¥ is dependent upon the° image coordinate standard error ¤ ;° scale number « , which is a relation of mean object distance ­ and camera

constant; and° a term ¨ expressing the strength of the network geometry.

The effect of the number of images
ª

on object point accuracy is inversely pro-
portional to the square root of

ª
, assuming that the additional images do not

essentially improve the geometry of the network. If the observation accuracy is
expressed in a form of standard error of incident angles ¤±¯ , the scale number re-
duces to mean object distance ­ . Values of ¨ are expected to range from ²
³g´ to²�³�µ . The value ¨ ¦ ¶ might be expected for a weakly convergent network. In
photogrammetric projects redundant measurements are mostly used. The redun-
dant measurements combined with the bundle of rays method provide the capa-
bility to estimate the precision and reliability of the measurement operation. This
definitely gives us feed-back information from the network design problem. In
the case of bundle estimation and convergent image geometry, where the object
variance-covariance matrix �N�� �� is expected to be diagonally dominant, the value
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of ·�¸ can be then expressed with a sub-diagonal matrix related to the 3D point
parameter coefficients in the design matrix.

It can be noted that planning can be a time-consuming process and can require
a good knowledge of how photogrammetric network design can be achieved
successfully. However, research work has been carried out in order to sim-
plify the process by implementing an expert system for network design (Mason
1995), where the convergent, multi-station photogrammetric network has been
assumed. This basically means that we are able to pose the camera stations
around the object, and images can be taken with convergent orientation. The
placement of the camera stations may often be constrained by various factors
such as: image scale, depth of field, incident angle and workplace environment
(Mason 1995). The use of genetic algorithms for automating the photogrammetric
network design process has also been proposed (Olague 2002).

In some applications where the precision requested is not so high and the imaging
conditions are complicated, some other kind of approach for imaging design can
be chosen. Sometimes, constructing a convergent image bundle is not even poss-
ible, especially in archaeological and architectural applications. This can also be
the case in industrial applications (Fraser and Mallison 1992; Fraser 1996), where
the problem of reconstructing the model of an inside scene often occurs. The
reason why the image block is not created from inside scene is that, especially in
concave corner areas, the imaging geometry is poor. The result of poor geometry
combined with noisy observations is a deformed object model. In most cases, the
problem has been solved by taking stereo images or creating sub-networks and
reconstructing the sub-models from them. The whole model is then recreated by
combining these models. This is done by solving the similarity or rigid conformal
transformation between sub-models with the help of common object features. An
alternative way to combine models is to use ICP or similar algorithms, where the
distance between point sets is minimized. This approach, however, assumes that
a substantial number of points are included in transformation estimation.

2.3 Constrained Imaging

In order to stabilize the adjustment process of the image block with poor imaging
conditions, some improvements have been suggested. The improvements have
mainly concerned the introduction of the prior knowledge of the imaging or ob-
ject properties in an adjustment. Papers dealing with this issue have most com-
monly arrived at a solution that applies constraints in objects space (Youcai and
Haralick 1999). Constraints have been established between object points reveal-
ing known relationships in object space. The exploitation of object information
has been taken a little further by photogrammetric formulations, including par-
ametric presentation of 3D linear features such as lines, circles, and ellipses. Other
conic sections, as well as b-splines in bundle adjustment, have also been pre-
sented (Mulawa 1989; Mulawa and Mikhail 1988). Presentation binds together
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the object feature parameters, image exterior orientation parameters and image
observations. In this approach, a strong connection is created between object fea-
tures and image ray bundles. Also, inter-feature relations, such as parallelism,
perpendicularity, coplanarity, etc. have been included in the estimation model.
The stabilizing effect of using linear features in place of points is based on bet-
ter localization of features on images, more rigorous solutions of transformation
between image space and object space, as well as improved redundancy in ad-
justment (McGlone 1995; Heikkinen 1994). Also, in the computation of exterior
orientation based on a linear transformation model, the same approach has been
followed (Ji et al. 2000).

Less effort has been put into making use of known information about imaging
conditions. In some cases, pre-computed relative orientation of stereo image
pairs has been included in the adjustment via weighted observations of orien-
tation parameters. Usually, relative orientation parameter values are considered
to be fixed, while only measured object points are taken into the computation of
the common adjustment. But there are examples where a bundle adjustment has
been exploited in an extensive way. In the National Research Council of Canada
(NRC), an autonomous mapping vehicle has been developed where, together
with image sensors, a range-sensor, as well as navigation-sensor data are in-
cluded in common bundle adjustment. The relative position and orientation of
image sensors with respect to the vehicle coordinate system is pre-calibrated and
this information is then used as constraints in adjustment (El-Hakim et al. 1997,
1998).

In research conducted by King, auxiliary information of the imaging condition
was included in the adjustment (King 1994). In his research, the bundle adjust-
ment was computed with constrained stereo pairs. This type of case resembles
the adjustment of independent models. According to the theory of independent
models (Schwidefsky and Ackermann 1978; Slama 1980), the three dimensional
similarity transformation is to be estimated among model and control point coor-
dinates. In this computation model, stereo models are the computing units, while
seven-parameter transformation is solved assuming only random noise in model
coordinates. In King’s investigation, image coordinates were the primary obser-
vations, not model coordinates, and the á priori information of the stereo case was
taken into account as additional observations. In his model, camera relative ro-
tations and the shift vector between two cameras were introduced in adjustment
as additional observation equations. By assigning different weights for camera
parameter observations, the restrictiveness of the stereo pair geometry case could
be tuned. This is, in fact, the same as with extended independent models, where
an additional parameter set is used in order to compensate the effect of system-
atic errors in stereo model coordinates. However, the set of unknown parameters
in King’s method was different.

Another solution for the adjustment of the block of stereo pairs that King pre-
sented is to use constraints between camera parameters. The constraints can
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be assigned to projection centre coordinates as a constant shift ( ¹ x, ¹ y, ¹ z) in-
side a stereo pair and constant rotation angle difference among rotation angles
( º¼»®½¾ºÀ¿ÂÁ�¹�º , ¹ÄÃ , ¹ÄÅ ).

If LSQ-type estimation is to be applied, the constraints can be given as a con-
straint equation. Absolute constraint equations are more strict than weighted ob-
servations and using them leads up to an additional degree of freedom (Mikhail
1976; Mikhail et al. 2001). This works well if base vectors of all stereo pairs are
collinear or parallel with each other. In order to allow the stereo pairs to have
varying orientation, different kinds of constraints have to be defined.ÆÀÇ�È Á�É�ÊË½GÉQÌ%Á�Í (8)

É�ÊÎÁÐÏ ÑÓÒ »Ê ½ÔÒ ¿ÊÖÕØ×ÀÙ ÑPÚ »Ê ½GÚ ¿Ê�Õ]×§Ù ÑÜÛ »Ê ½�Û ¿ÊÖÕ]× (9)

ÉQÌ%ÁÞÝß àá ÊãâJä É�Ê (10)

If a constraint of a base vector É length is applied instead of a shift difference
of projection centre coordinates, the varying orientation of stereo pairs can be
allowed. King used this constraint in his work, but instead of using a constant
value for base length, he allowed this value also to vary. By requiring the length
of the individual base vector É�Ê difference to mean length É�Ì of base vector to be
minimized, the constrained could be set as depicted in Equation (8-10).

Minimization of orientation-angle differences to mean difference values could
not be used. This was because the rotation angles of the cameras were expressed
with respect to the object space coordinate system. For the bundle of stereo pairs
with fixed relative rotations, the convergence angles must be invariant for all
stereo pairs, irrespective of the orientations of the camera axes with respect to
the object space coordinate system. Assuming the orthonormal rotation matrixå

, the convergent angles could be derived by computing the dot product of two
coordinate axes and applying the inverse cosine of the product, as depicted in the
following equation. æ ç È Á}èêé�ëêì ä ÑVí »äTä È í ¿äTä È Ù í » ä × È í ¿ä × È Ù í »äPî È í ¿äPî È Õæ ï È ÁAèðé�ë ì ä ÑPí »× ä È í ¿× ä È Ù í »×T× È í ¿×T× È Ù í »× î È í ¿× î È Õæ ñ È Á}èðé�ëòì ä ÑPí »îãä È í ¿îãä È Ù í »î × È í ¿î × È Ù í »îTî È í ¿îTî È Õ (11)

The notation í in the Equation (11) marks the rotation matrix
å

element from the
right í ¿Ê and left í »Ê image of the ó�ô�õ stereo model, respectively.
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In addition, King included the mean values of convergence angles into constraint
equations following the same principle as that of projection centre coordinates,
see Equation (12). As mean values are used in the constraint equation instead of
constant values, the means need to be updated after every iteration in the least
squares model estimation for this nonlinear case.

The methods described are examples of techniques that can be exploited when
imaging geometry cannot be optimized. The reason for not having optimal geo-
metry can be due to the structure of the object itself; the environment, which
restricts the possible imaging stations, or the computational speed required. The
ramifications of not taking care of stability in the reconstruction process can lead
to a distorted object model.
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3 CIRCULAR IMAGING BLOCK

In most accurate object reconstruction projects, the network design is based on
convergent imaging and targeted object points. There are many cases when this
is not possible. The imaging method presented here is designed for special con-
ditions where the traditional approach in the network design problem (Fraser
1984; Mason 1995) meets its limitations, when, for example, visibility is some-
how compromised, as with very complex object structures (Chapman et al. 2004;
Leroux et al. 2002). The only solution to this problem is for the imaging to be
accomplished inside the object space, not around the object, i.e., inside scene im-
aging.

The developed method is designed especially for inside scene imaging type of
modelling cases. The applications for this imaging system are congruent with
applications of methods presented in Section 1.3.1. This novel method is based
on image measurements made from an image sequence, but differs from object
reconstruction methods based on image sequences (Pollefeys et al. 2004, 2003,
2000) presented in Section 1.3, in the way imaging is accomplished. In the image
sequence research, a hand-held camera was moved arbitrarily, whereas in this ap-
proach the camera is supposed to be moved in a more rigorous way. Here the se-
quence is assumed to cover the whole scene of

	�
���

. Nonetheless, here, the ques-

tion is not about panoramic imaging, where a single image of panoramic view is
created. In this method, the measurements are based on image ray bundles of cen-
tral projective images of a frame camera. The images in the sequence do not share
a common projective centre like images in the creation process of a panoramic im-
age from multiple-perspective images (Wester-Ebbinghaus 1982; Pöntinen 1999).
The capability of measuring 3D objects is merely based on image observations
made from images having a displacement of projection centres on subsequent
images. All observations from the whole image sequence are expected to be
handled in a common bundle adjustment. In the computation of object-point
or feature parameters, the constrained relative position and orientation of images
in sequence will also be resolved.

3.1 Introduction to the Circular Imaging Block Concept

The novel method of ”Circular Imaging Block” utilizes the constraints between
camera stations. The idea is to minimize the workload and need of photogram-
metric expertise in photogrammetric network design. The number of parameters
to be used in specifying the imaging geometry is reduced to just a few. This also
gives rise to the possibility that non-photogrammetrists might design the photo-
grammetric network without any knowledge of accuracy aspects of the photo-
grammetric measurements and the theory of error propagation in the LSQ esti-
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mation model. In order to achieve this goal, the imaging has to be accomplished
in a specific way.

Earlier in traditional terrestrial photogrammetry, images were often constrained
to be taken so that the set of camera stations would comply with normal stereo
photography. This was partly because only analogue plotters were used for co-
ordinate measurements in those days. The restriction of those devices forced the
convergence of the images to be within fixed limits. Also, large image scale dif-
ferences could not be accommodated. With analytical methods, the use of con-
straints between camera stations in bundle adjustment became more flexible. In
practice, only the measured distances between camera stations were used as ad-
ditional observations or constraints. However, constraints in the form of equal
height of camera stations have also been applied, as well as lining up the set of
camera stations with equal orientation. In the latter case, the arranged camera
configuration of imaging could be introduced in computation by fixing one or
two coordinates of the projection centres in adjustment. More often, these object
space observations were only used in order to get better initial values for camera
pose estimates.

3.1.1 Definition of Circular Imaging Block

In this research, not only constraints are applied between camera stations, but the
chosen parameters to express camera pose rely on the assumption that images
are taken in a pre-defined way. The imaging is especially designed to be used
in applications where the measurement is meant to be made ”inside the object-
space”. This means that object features whose position, size, and orientation, are
to be measured are distributed around some pre-defined area, for example, the
room of a building. Instead of taking multiple stereo pairs and combining these
sub-models as a final model, in this approach only a few imaging stations are
needed. At each imaging station, tens of images are to be taken, depending upon
the distance of object features from the camera and the field-of-view of the used
camera. In order to obtain three-dimensional measurements from a single im-
aging station, there must be an offset between the recorded images. This parallax
can be achieved by moving the camera along a pre-defined trajectory between
successive exposures. In this research, the trajectory is assumed to be a circle on
an arbitrary plane. In practice, this can be arranged by fixing the camera at the
end of a supporting bar. The other end of the bar is then positioned to provide
a navel point for revolution. The navel point can be attached to, for example, a
tripod, which has been the case in real-world experiments, as will be described
in Section 5.3. The assumptions for the imaging are as follows:� the bar is rotated only on a plane or on a conic surface where the peak point

of the cone coexist with the navel point of revolution and the axis of rev-
olution goes along with axis of the cone, yet taking care that only plane
rotation is applied to the camera at the end of the bar.
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� one point in a bar will be in a constant position, i.e., the navel point.� the orientation of the camera with respect to the bar is constant throughout
the imaging sequence.� subsequent images must overlap so that tie points can be measured between
images.� sequence of images will cover ������� so that tie points between the first and
the last image in sequence can be measured.

The image block fulfilling these assumptions is called a ”Circular Imaging Block”,
Figure (2). The minimum number of images required in sequence is dependent
upon camera object distance and field of view. Also, the camera distance from
the navel point and the orientation in respect to the bar have an effect on this
minimum number. If using continuous imaging, for example, video imaging and
making measurements on each frame of the video sequence, enough overlap be-
tween subsequent images can be guaranteed. This undoubtedly increases the
redundancy of observations. The extra work caused by adding more images onto
the image block is evident, but, by applying autonomous image measuring algor-
ithms, the workload can be reduced substantially. The camera does not necess-
arily have to be a video or digital still camera; analogue film camera images can
also be taken. However, the amount of image mensuration needed favors the use
of digital images.

1α

2α

r

Figure 2. Initial imaging geometry of a circular imaging block according to definition.

This type of imaging design does not guarantee ideal measuring geometry,
neither does it avoid all the possible occlusions. Usually, multiple image blocks,
imaging stations, of this kind must be taken to satisfy the condition of recon-
structing the whole object. Unlike the case with panoramic images, 3D measure-
ments can be made from a single image sequence, displacement between projec-
tion centres do exist. This method provides measurements that are sufficient for
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object reconstruction, or which are a good base to be used in a design of more
precise measurements in complex modelling conditions.

Benefit of using circular imaging blocks include fast data acquisition and, also,
in the case of video imaging, the recording of increased amount of data. The in-
creased amount of data can be used for substituting the low quality of images to
some extent. By using low-cost tape recording devices, the provision of sufficient
storage space is rarely a problem. If a video camera is used, all images in a se-
quence can be used to reconstruct the object instead of selecting the images with
the best geometry. The development of digital still cameras and digital storage
devices has opened new perspectives on the use of digital imaging. The capacity
of storage devices for digital images is nowadays sufficient, while better spatial
resolution gives an advantage in using digital cameras over video devices, where
the resolution of images is restricted by video standards (PAL, NTSC etc).

3.1.2 Image Block Construction

It is important that the circular imaging sequence is closed, since the local coordi-
nate system will be created based on the observations from the imaging sequence.
That means that no control point network, or measurements for camera pose,
are required. The enclosure of imaging works as in a geodetic leveling chain;
the height difference of two points are measured twice, preferably on different
routes, closing at the start point. Instead of adjusting measurements directly, in
the case of image observations, the adjustment is based on observation equations
of indirect observations. The coordinate system is defined by fixing one point
and two directions. The navel point of revolution functions as the origin and
two coordinates axes of the orthogonal coordinate system are the normal vector
of plane rotation and it’s orthonormal vector containing the centre of projection
of the first camera pose in sequence. However, some scale measurements are
required to create a coordinate system in the metric world.

The restricted imaging arrangement forces the projection centres of each camera
position to lie on the same plane and within the same distance � from the navel
point. From the point of view of 3D measurements, a circular imaging block is
perhaps not the perfect imaging configuration for the task. In imaging design,
the camera is looking outward from the navel point, as in Figure (2). The con-
secutive camera positions will then have diverging optical axes. The impact of
observations of images with divergent image geometry is a decrease of reliability
of the camera orientation parameter estimates. The solution is to turn the camera
to the tangential direction of the circle path, Figure (3).

Still, the optical axes of the subsequent images will be divergent. By constructing
two such circular imaging blocks on the same tripod position with a difference in
camera orientation, better geometry can be achieved. Between image sequences,
the camera is turned ������� at the end of the bar, as shown in Figure (4). These two
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Figure 3. Circular imaging block geometry with camera turned to tangential direction

image blocks are co-centred and coexist in the same coordinate system. The ob-
ject point can be seen in images from both image blocks, and the camera optical
axis on the first block images is convergent with camera positions on the second
block. Now the imaging geometry with respect to the previous case has substan-
tially improved. Images of this pair of image blocks will be, at most, two times
as far from each other as the length of the bar. This is the imaging geometry used
in this work and implemented for the experiments. Imaging geometry resembles
the implementation depicted is Section 1.3.1 and comparison with methods pre-
sented in Section 1.3.1 will be made later in this Chapter.
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Block II

Block II

Block I

Block I

Figure 4. Two co-centric circular imaging blocks. The imaging geometry used in this thesis.

From the photogrammetric network design point of view, the ZOD-level of de-
sign is very much simplified with circular imaging blocks. The datum problem is
solved by creating an ”own” coordinate system, while the scale for the network
is based on simple distance measurement between two or more 3D points. The
FOD-level design consists of the selection of tie points from images and the length- of the bar used. The selected tie points can be image points of natural features
or targeted points. Using targeted points means extra work, but improvement
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of measuring accuracy also improves the precision of block estimates. In most
cases, especially when the image plane is chosen to be perpendicular to the plane
of rotation, it is desirable to select points from the side areas of the images. This is
because geometrically they have most resolving power in determining the orien-
tation angles of images. The reason why it is favorable to have the image plane
near perpendicular to the plane of rotation, and one of the image plane axes par-
allel to the rotation plane, is that the corresponding points between subsequent
images will then most likely be found in the overlapping area. In the opposite
case, the overlapping area will be decreased because of gaps between subsequent
images. The same phenomenon is known in aerial photography as drift, when
the airplane is turned away from the flying direction.

The optimum choice of length . is mainly dependent upon mean object distance.
The bounding values for . will be restricted by real imaging circumstances; con-
struction of a stable rotation system is compromised due to too large a radius. . The choice of the incident angle of the camera optical axes and the camera
position angle was chosen earlier to be /�0�1 i.e. tangential direction. This is a
reasonable choice in the case of using two co-centric circular imaging blocks for
measurements.

The photogrammetric network design problem is substantially simplified in this
imaging model. The effect of different choices of circular imaging block par-
ameters on 3D object estimates is discussed in Chapter 4. This kind of approach
is applicable in modelling tasks where there is no reference system nearby and
the camera station configuration is difficult to design or build.

3.2 Estimation of the Model from a Circular Imaging Block

In order to determine object point coordinates, the exact orientation of the camera
at the time of exposure has to be solved with respect to the chosen coordinate sys-
tem. Since the coordinate system will be created from scratch without any coor-
dinate reference system, the only observations included are image observations.
The only á priori information which is taken into account is one or more object
point distances. Those distances can be considered as observations or they can
be seen as a constraint between coordinates of object point pairs. The purpose of
scale measurement is to obtain object reconstruction in metric units.

Since the coordinate system is partially based on a predefined movement of the
camera, it is logical to solve the camera orientations simultaneously. In order
to ensure the accuracy of object reconstruction, over-determination (i.e. making
more observations than the minimum requirement) is exploited. By using over-
determination, it is also possible to assess the precision and reliability of object
measurements plus the quality of measurements. Due to over-determination,
adjustment of observations is required. As mentioned in Section 2.1, the overde-
termined problem solved with an LSQ estimation has proved to be statistically
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rigorous and therefore, in the discussion of the estimation model further on in
this thesis, the use of the least squares model is assumed.

3.3 Perspective projection

The camera model expected here is based on a central perspective camera model.
So the mathematical model of 3D-to-2D transformation is a perspective projec-
tion. The coordinate transformation from 2D to 3D image space will then be in
the form:

2436587:9;2=<?>@7BADCFEHG�IKJ�LNMPORQ
(13)

2R36587
denotes a 3D point coordinate vector and

2F<S>T7
the camera projection centre

coordinates in the chosen coordinate system in Equation (13). The 3D rotation
matrix

I
is assumed to be orthonormal and the image coordinate observation

vector
LNMUO4Q

is supposed to be image centre coordinates. The scalar
C

is a scale
factor between 3D and 2D image spaces. The inverse transformation derived
from Equation (13) yields:VWYX MZ M[K\

]^ 9;C VW`_ GaG _ Gcb _ Gcd_ b�G _ bab _ bad_ d�G _ dab _ dad
]^eVW`f 36587 [ fhgi=36587 [ i gjk36587 [ j g

]^
(14)

Explicit in Equation (14) is that the three points
2l<S>T7�mS2R36587

and
LNMUORQ

are collinear.
That is the reason why it is widely called the collinearity condition. The linear
equation system in Equation (14) can also be written as two separate equations,
where the scale factor

C
will be eliminated:

X Mn9 [K\ _ GaGpo f 3q587 [ fhg?r A _ Gcbso i=3q587 [ i g?r A _ Gcdso jk3q587 [ j g?r_ d�Gpo f 3q587 [ fhg?r A _ dabso i=3q587 [ i g?r A _ dadso jk3q587 [ j g?r
Z Ml9 [K\ _ b�Gpo f 36587 [ ftgSr A _ babso i=36587 [ i gSr A _ badso jk36587 [ j gSr_ d�Gpo f 36587 [ ftgSr A _ dabso i=36587 [ i gSr A _ dadso jk36587 [ j gSr (15)

In Equation (15) the
_ Mu7

denotes an element of orthogonal rotation matrix
Iwv

The
3D rotation matrix

I
is an orthonormal matrix, which is uniquely defined by

three independent rotation angles x m?yzm?{ :

I|9 V}W�~���� y ~p��� { ~���� x ����� {wA ����� x ����� y ~���� { ����� x ����� { [ ~p��� x ����� y ~p��� {[ ~p��� y ����� { ~���� x ~p��� { [ ����� x ����� y ����� { ����� x ~���� {�A ~���� x ����� y ����� {����� y [ ����� x ~���� y ~p��� x ~���� y
]��^
(16)
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This type of rotation matrix, Equation (16), is proved to be statistically most
rigorous when combined with redundant observations and an LSQ estimation
(Cooper and Robson 1996). The rotations ���S�4�?� of the coordinate axes �z���=�S� ,
respectively, are assumed to have positive direction on clockwise rotation while
looking from the origin along the direction of the respective coordinate axes.

The disadvantage of such a parameterization of the rotation matrix is that the
observation equation, Equation (1), presented in Section 2.1 becomes non-linear.
Non-linearity of the function can be solved by linearizing the equation and solv-
ing parameters with iterative methods. Then, however, the initial values for par-
ameters have to be obtained. This characteristic of the transformation model has
restricted its use in many real-time applications. Because in this research the rig-
orousness of the solution is favored over the speed of computation, the non-linear
projection model is used.

3.4 Camera model

The camera coordinate system is defined as a right handed, orthonormal 3D co-
ordinate system. The origin of the coordinate system is in the projection centre
of the camera and the image plane is positively oriented, i.e., it lies between pro-
jection centre and object. In the previous section, the perspective projection was
based, essentially, on a pin-hole camera model. This is an ideal model of light
traveling from a 3D object point through the projection centre into the image
plane along a straight line. Unfortunately, this is not the case in reality, when
light has to penetrate through the lens system onto the image plane. A descrip-
tion of light traveling inside the camera is called the interior orientation.

The discrepancies of this ideal model can be divided into linear and non-linear
components. In order to accomplish precise photogrammetric measurements,
these errors have to be eliminated or their effect on measurements have to be
compensated. The process of determining these systematic errors is called camera
calibration.

The deformations are due to many different error sources. The non-
perpendicularity of the optical axis and image plane cause coordinate axes of the
image plane to be non-orthogonal and so there can be a scale difference between
the � - and � -axes. Also, non-linear deformation will be observed, but the amount
of deformation usually is so small that only linear components are considered.
The scale difference can also be an effect of the aspect ratio of a pixel and non-
orthogonality of the effect of the misorientation of sensor elements in rows and
columns in the case of a digital sensor.

In calibration, the location of the projection centre with respect to the image plane
is described by the principal point coordinates ��� and ��� . The perpendicular dis-
tance of the projection centre from the image plane is then expressed by the cam-
era constant � . The scale difference is usually expressed by one number � , which
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models affinity. The non-orthogonality of image coordinate axes, or skew, can
be determined by one value � . The non-orthogonality � can also be written with
the help of angle � , which denotes the discrepancy in orthogonality and affinity� as ��� �t�S��� � (Niini 2000). The camera centred image coordinates after the
correction of linear distortions can be then given as� �¢¡ � �H£=¤¥��¦�§ �©¨cª £¢¤ ª ¦¬«ª ¡ � � ¨cª £¢¤ ª ¦¬« (17)

In Equation (17)
�¢¡

and ª ¡ denotes the camera centred and linear distortion cor-
rected image observations. The non-linear components of interior orientation
mainly are caused by the camera lens system. When light comes from object
points to the image plane, it has to go through an optical lens system with several
lenses that will change the direction of the light beam systematically due to dif-
ferent lens materials or misalignment of these lenses. This distortion is observed
to be non-linear. The distortion model can be divided into radial and decentring
distortion. Radial distortion causes image points to move away from the prin-
cipal point (pincushion distortion) or toward the principal point (barrel distor-
tion). This distortion is known to be circular symmetric in respect to the point of
best symmetry. This distortion can be modelled by a third degree of polynomial
(Brown 1971):� �F­ � �H£�§ ¨ �H£=¤¥��¦s« ¨q®�¯p¨c°s±² ¤ °³±´ «µ§ ® ± ¨c°¬¶² ¤ °s¶´ «µ§ ®�·¬¨c°s¸² ¤ °³¸´ «�«ª ­ �¹ª £�§ ¨cª £¢¤ ª ¦¬« ¨º®�¯p¨c°s±² ¤ °³±´ «µ§ ® ± ¨c°¬¶² ¤ °s¶´ «µ§ ®�·¬¨c°s¸² ¤ °³¸´ «�« (18)

Here, ° ² �¼» ¨ �H£=¤¥��¦s« ± § ¨cª £¢¤ ª ¦¬« ± , and ° ´ denotes the radial distance from the
point of best symmetry, see Equation (18). The radial distortion is zero in the
point of best symmetry, but it can be forced to be zero in any freely-chosen radius° ´ . The different choice of ° ´ will have an effect on the values of coefficients and
camera constant, but the total effect of changed parameter values will compensate
the radial distortion equally well (Brown 1971).

The decentring distortion is caused by an improper alignment of lens elements in
a compound lens system, with its correction being given as (Brown 1966):�½� ­¾­ � �H£¿§DÀÂÁ ± ¨ �H£l¤���¦s« ¨cª £¢¤ ª ¦¬«µ§ÃÁ ¯�¨c° ±² §ÄÀ ¨ �H£¢¤¥��¦s« ± «ª ­¾­ �Åª £�§ÄÀÂÁ ± ¨ �H£=¤Æ��¦s« ¨cª £¢¤ ª ¦¬«µ§ÇÁ ± ¨c° ±² §DÀ ¨cª £H¤ ª ¦�« ± « (19)

Normally, in camera calibration, all these parameters are determined simul-
taneously. Niini (Niini 2000) points out in his investigations that lens distortions
should be taken into account before the distortion raised in the imaging media
is corrected. This is because the lens distortions occur before the light beam is
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exposed to other distortions. In practice, this means substituting the È=ÉnÊYÈ�Ë andÌ É�Ê Ì Ë observations by their corrected values Í@ÈlÎTÏ Ì Î�Ð in Equation (18) and Equation
(19) and solving the corrections to linearly distorted coordinates. This substitu-
tion yields to an iterative solution of calibration parameters. Niini, however, dis-
covered that, if the effect of radial distortion is less than Ñ�Ò pixels in size (with the
camera in question), the difference of these estimation models is less than unit
measurement precision, here expected to be Ò¿ÓÔÒ�Õ pixels. The difference can espe-
cially be seen with devices that have substantial affine distortion, like video cam-
eras. But even with video cameras, the effect of lens distortion is unlikely to be
greater than the mentioned bounding effect. Since we are not primarily interested
in the actual values of calibration parameters, but more in the ability to compen-
sate distortions of image observations, we can safely use the following correction
model, where all camera-calibration parameters are solved simultaneously:Ö È¢×TØqÙ6ÙÛÚ¹È¢Î�ÜYÈ¢Î8Ý�ÞHß×TÎ Íqà ß Ýsá×TÎ ÜDà�â�Ý³ã×TÎ ÜDà á Ý�ä×TÎ ÐµÜÃå ß ÍTÝ â×TÎ ÜÄæ¬È âÎ ÐµÜDæÂåHâ�È¢Î Ì ÎÌ ×TØqÙqÙçÚ Ì Î�Ü Ì ÎèÝ�ÞHß×cÎ Íºà ß Ý³á×TÎ ÜDà�âSÝsã×cÎ ÜÄà á Ý³ä×cÎ ÐµÜÃåHâsÍcÝ â×TÎ ÜÄæ Ì âÎ ÐµÜÄæ?å ß È¢Î Ì Î (20)

where Ýé×TÎRÚëê È âÎ Ü Ì âÎ , see Equation (20). Other sources of non-linear distortion
might be due to a discrepancy of sensor or imaging media from the rectangular
flat image plane. In the case of film, the deformation of the media can occur at the
time of exposure if the film is not precisely in contact with the image plate. The
non-linear deformation of film can also be a result of the developing process or
film-storage environment. With digital sensors, the non-linear deformation can
be considered as a manufacturing imperfection. Sensor elements in a CCD array
might not be perfectly lined up or they might not be evenly spaced. The flatness
of the sensor array might also be compromised.

The non-linear deformations of the imaging media are quite difficult to model.
Usually some polynomial functions have been applied in order to compensate
for the effect of these anomalies on image observations. The problem with high-
order polynomials is that they require a substantial number of measurements
to be made in order to be precisely defined. For this reason, réseau grids with
known image coordinates have been used with film cameras. In modern digital
sensors, the non-linearity has been considered so small compared to the image
observation accuracy that it has been ignored. In addition, the non-orthogonality
component has been found to model the deformation of digital sensor irregu-
larities also. In addition, the instability of the sensor location inside the camera
has been noted (Shortis et al. 1998, 2001). The calibration unknowns can be di-
vided into block-invariant and -variant parameter. Meaning that block-variant
parameters (e.g. principal point coordinates) are independently derived for each
exposure and all other calibration parameters are in common for all exposures
in image block. This approach is good for cases where imaging geometry is ad-
equate for self-calibration. An improved procedure is suggested, where block-
invariant parameters are defined with help of finite element correction grid (Hast-
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edt et al. 2002). In this model also unflatness of sensor can be defined. However,
if self-calibration is not appropriate for the task, this stability problem has to be
taken care of with practical means, such as frequent calibration, or ensuring phys-
ically stable CCD chip positioning in the camera body.

In this research, the linear and non-linear deformations are expected to be cor-
rected based on pre-calibration of the camera. Self-calibration by including in-
trinsic camera parameters in a circular imaging block-adjustment can also be ap-
plied, but, due to restricted imaging geometry, determination of all calibration
parameter values is not feasible. The determination ability also depends very
much on the object point distribution.

3.5 Estimation Problem, Approach I

We can see the estimation problem as ìÇí½î number of relative orientations, or
even ì number, if we include relative orientation between the first and last im-
age in sequence. By choosing the model of independent stereo models, we can
avoid resolving the object point unknowns. To do so is advantageous, since we
are primarily interested in image locations and orientations in an image block.
The idea behind this prioritization is that we first want to get the image block
and coordinate system created. Then we carry out measurements on images in
order to reconstruct objects as in the ordinary mapping process, rather than tar-
geting all object points needed to reconstruct the object and resolve object points
simultaneously with block parameters.

Alternatively, we can end up using the bundle block estimation and applying the
collinearity condition. Then we will have ì number of exterior orientations to be
solved. The unfortunate situation is that now we have to assign initial values for
all of our tie points, because of the non-linear model.

In both cases we have a datum that is insufficient. We can apply a free-net type
approach and use a minimum norm solution or we can fix some parameters in
order to get the datum to become sufficient. We do not expect to have any exterior
points known in any coordinate system. As mentioned in Section 3.1.2, we create
a local coordinate system on site for our measurements. By selecting the navel
point of the image block as an origin, and fixing the ï -axis of a defined coordinate
system in the direction of the first image projection centre while the rotation-
plane normal assigns the second direction of the orthogonal coordinate system,
the datum problem will be solved.

As the camera is rotated around the origin, the orientation will change with re-
spect to the coordinate system, but the angle between the image plane and pos-
ition vector of the projection centre will stay constant. By applying this knowl-
edge, and the fact mentioned earlier that all projection centres ðBñ lie on the path
of the same circle, we can set constraints to stabilize the estimation process.
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ò¾ózô�ò³õÅö
(21)

÷ øÃùô�úDû ùôüúDý ùô õÅö
(22)

Equations (21) and (22) state that all projection centres are at the same distanceö
from the navel point, but this does not say anything about them lying on the

same plane. This can be expressed by setting a constraint between the projection
centres and a normal vector þ of the rotation plane:

ó4ô�ÿ þ õ�� (23)

We can also consider þ as a new parameter vector to be estimated. By giving
a large weight in the LSQ estimation for this observation equation we can force
the system to retain this condition, given in Equation (23). The constant angle
between the position vector of the projection centre and the optical axis of the
camera can be forced by adding the following constraint in estimation:

� ô �� �� ���� ÿ ózôò¾ózô�ò õ�	�

����������� (24)

In Equation (24),
� ô

denotes the orthonormal rotation matrix of the ����� image
in sequence and

óRô
the equivalent projection centre position vector. By using

independent stereo models and a coplanarity condition, there will be
����� ú �

unknown parameters (
ö
, þ and constant value are included as unknowns) or

�����
unknowns plus

� �"!
constraint equations. With the bundle of rays model, we will

end up to # �$� ú�% plus & �'! unknown parameters, where & denotes the number
of tie points. Since stereo models are based on the coplanarity of corresponding
image rays and base vector, no explicit observation function can be written where
only one observation is involved. This leads to the construction of the condition
equation and the general adjustment model (Mikhail 1976):(*)�+-, ú/.10µú/2"3 õ546 3 õ87 (25)

where the matrix
)

denotes the coefficient matrix of observations and the matrix6
contains the constraint conditions, see Equation (25). The bundle of image rays

model is based on the collinearity condition and explicit observation equations.
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The equation is equivalent to Equation (1) with the addition of constraints, see
Equation (26). 9;:"<>=@?BADC

E <>=GF (26)

3.6 Estimation Problem, Approach II

The image block estimation based on the bundle of rays model can also be writ-
ten by using a different set of parameters. As we are not using any exterior con-
trol points, but are constructing our own coordinate system, we can make some
assumptions. As we have already defined the origin to be the navel point of rev-
olution and the

<
-axis to be in the direction of the first photo projection centre, we

can also state that the projection centre of the camera in different camera poses
will lie on a plane parallel to a coordinate plane. We can choose the H -axis to
point upwards so that all projection centres will lie on the

<�I
-plane. This choice

is as good as any other, and widely used in terrestrial photogrammetric networks
(Slama 1980). Now we can fix the H -coordinate of all projection centres to be a con-
stant and express the

<
- and

I
-coordinates in a polar coordinate system instead

of Cartesian coordinates: JKMLONQP =@R S�T�UWV�X PY P =@Z�[]\_^�`�ab\c`d P =8R SeVgfihjX P (27)

Now we do not need to put any constraints to force parameter values of the pro-
jection centres to lie on a plane nor to be at a distance of

R
from the centre of

revolution, because all this information is included in Equation (27). What we
have not yet included in the model is the constant angle between the optical axis
of the camera and the position vector of the projection centre. In a special case
where we have zero tilt kml and spin nol angles, our rotation matrix differs from the
first camera rotation matrix prq]sgt u�svt wxs only by the difference p"q]sgt u�svy{z|t wxs . (Note that
the } increases in the opposite direction to

X
). More generally, the rotation of the

camera by

X P can be expressed in a 2D rotation on the plane:p"q]~�t u�~�t wx~ = p"q]sgt u�svt wxs S pBze~ (28)

where,

pBze~ = �� T�UWV�X P�� � Vvf�h"X P� � �Vvf�hjX P�� T�UWV�X P
��

(29)
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The elements of the �"�]��� ����� �x� will then be:�������������� �������������

�����������W �¡¢���W c£B���W o¤¦¥§ g¨i©j¡ª g¨i©"£���¬«­�����W �¡�®¯���W ±°¦ v¨�©r¤¢²� g¨�©³°´ v¨�©r£B���W o¤�µ¶²� g¨�©j¡· g¨�©­°´���| �£���¬¸­�����W �¡�®¯ g¨i©¹°´ v¨�©"¤¦¥§���W �°´ g¨i©"£B���W �¤�µm¥§ g¨i©j¡¢���| o°´���W �£�b«g���*¥º���W �£B v¨�©"¤�b«�«­�����W �°´���| �¤¦¥§ g¨i©³°´ g¨�©r£B v¨�©"¤�b«�¸­�� g¨�©³°´���W �¤ª²/���W �°´ g¨i©"£B g¨�©"¤�b¸g���� g¨�©j¡ª���W �£B���| �¤ª²/���W �¡¢ v¨�©"£�b¸�«­�� g¨�©j¡>®����| o°´ v¨�©"¤¢²� g¨i©¹°´ v¨�©"£B���| �¤�µ»¥¼���W �¡¢ v¨�©³°´���W �£�b¸�¸­�� g¨�©j¡>®� g¨i©­°� v¨�©"¤Q¥§���W �°´ g¨i©r£B���W �¤�µ_²����W �¡¢���W �°´���W �£
(30)

Since the rotation angles °¾½ , £�½ , ¤�½ depend on the first image rotation matrix by
the angle ¡_½ and projection centre coordinates of a single camera position are
dependent on the values of ¿ and ¡À½ , there is no need to estimate these dependent
parameters. Instead, the collinearity Equation (15) can be written according to
these independent parameters as������ �����OÁ

�*¥BÂ ������®¯Ã¦ÄÆÅ�ÇÈ¥ ¿ ���| �¡¶½�µ_²D���¬«
®-É�ÄÆÅ�Ç³¥�Ê�µ¶²D���¬¸]®-Ë�Ä�Å�Ç»² ¿  g¨�©"¡_½¯µ�b¸g��®¯Ã¦ÄÆÅ�ÇÈ¥ ¿ ���| �¡¶½�µ_²D�b¸�«
®-É�ÄÆÅ�Ç³¥�Ê�µ¶²D�b¸�¸]®-Ë�Ä�Å�Ç»² ¿  g¨�©"¡_½¯µÌQ�Í¥rÂ �b«g��®¯Ã¦ÄÆÅ�Ç³¥ ¿ ���| c¡_½¯µ_²/�b«�«
®-É�ÄÆÅ�ÇÈ¥/Ê�µ_²D�b«�¸
®-Ë�ÄÆÅ�ÇÎ² ¿  v¨�©"¡_½¯µ�b¸g��®¯Ã¦ÄÆÅ�Ç³¥ ¿ ���| c¡_½¯µ_²/�b¸�«
®-É�ÄÆÅ�ÇÈ¥/Ê�µ_²D�b¸�¸
®-Ë�ÄÆÅ�ÇÎ² ¿  v¨�©"¡_½¯µ (31)

This nonlinear observation equation, Equation (31), is then linearized with re-
spect to the first image rotation angles °mÏeÐx£�Ï�Ðx¤±Ï , radius ¿ and the angle ¡À½ ,Ñ � Ò|ÐxÓ1ÐÕÔÖÔiÐg× . Also, object point coordinates are expected to be unknowns
and linearization is to be carried out with respect to those object parametersÃ´Ä�Å�Ç
ÐØÉ�ÄÆÅ�ÇeÐxË»ÄÆÅ�Ç as well. Value Ê is some arbitrary constant. The result of lineariza-
tion is presented in Appendix I. It is essential to notice that all image observations
from all images have an effect on the determination of the first image orientation
angles °¾ÏeÐx£�Ï�Ðx¤±Ï and radius ¿ . All camera orientations are dependent on those
parameter values and therefore they can be considered as common parameters of
the image block. Now, the total number of image unknowns will be Ù ²8× . The
assumption of the first image projection centre to be in the direction of the Á

¥ axis
means that ¡»� will be fixed to zero and the number of unknowns reduced by one
to Ù ²Ú×Û¥§Ò . The total number of unknowns is then Ù ²Ü®¯×¦¥§Òeµo²ÞÝ�ß�à . The effect
of one image observation on the normal matrix á is depicted in Figure (5).

It can be seen that the number of unknown block parameters is less than with
using the parameter set presented in Section 3.5. Also we can avoid the use of
constraint equations. Exterior orientation parameters of dependent camera poses
can easily be derived back to standard presentation in a Cartesian coordinate
system by applying Equations (27) and (28).
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Figure 5. Effect of one image observation on normal matrix.

It was mentioned earlier that point intersection would be poor unless we do not
use image observations from a second co-centric image block. The difference
between these two coordinate systems is only an angle between their è¶é axes. So
the angle can be estimated from observations of common points.

With a single block estimation, we can find that the same geometrical problem
will appear. The intersection angle of image rays for the unknown 3D tie point
will be rather small, as shown in Figure (6). So, the position accuracy for such a
point is questionable. Even though those tie points are not to be used for mod-
elling purposes, the unreliability of these observations also affects the determi-
nation of camera orientation.

r

α i

êêëë
Figure 6. Poor intersection geometry.

Based on this aspect, both image blocks must be estimated simultaneously. This
way we can obtain good observations from convergent images, as depicted in
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Figure (4). The number of additional unknowns with respect to photo parameters
is ì­íÚîcï . The first four unknown parameters consist of rotation angles of the first
camera position on the second block and radius ð]ï of the second circular imaging
block. The angle ñ�ò (equivalent to óÎò in the first block) is an angle between the first
image projection centre and the ô -axis. It is to be emphasized that both blocks are
to be bound into the same coordinate system and therefore all camera rotationsñ±õ , when öÎ÷ùøWúxû1úØü1úÕýiýÖýþîÿï , are measured from the ô -axis. The number of tie points
does not need to increase much as both sequences will include more or less the
same scenery. The tie points are expected to be observed from both image blocks
since otherwise the geometry of intersection will be poor.

The assumption made is that the camera is turned by ø������ at the end of the sup-
porting bar, as suggested in Section 3.1.2 and shown in Figure (4). The cam-
era projection centres will still be on the same ô�� -plane as the first image block.
Otherwise correction for the height, or more precisely � -coordinate difference,
has to be introduced for the projection centre coordinates of the second block.

As we will construct our own coordinate system, and as we do not have any
exterior knowledge, we have to have a scale for our measurements. Distance
measures can be included in the estimation as a constraint equation or as a normal
observation with a large weight. For defining scale for the measurements, we can
include a distance measure between object points 	�õ and 	�
 as an observation
equation in the form of Equation (32).� ��
 õ�� 
 
�� ï í ��� õ�� � 
�� ï í ��� õ�� � 
�� ï ÷��Wõ�
 (32)

The model presented here resembles the imaging model of omnivergent stereo
(Seitz et al. 2002) and stereo panoramas (Peleg and Ben-Ezra 1999). In both cases,
the objective is to reconstruct image mosaics, where the object point can be seen
in two panorama images having image rays with convergent angles. Imaging is
assumed to comply strictly with the imaging model; no variation is allowed. In
contrast to those approaches, in this research the measurements are to be made
from multiple perspective projected images and the objective is to exploit the
over-determination and bundle method in object measurements. Also, determi-
nation of the exact orientation of the camera at the individual time of exposure
is the purpose of multiple image observations. In both the omnivergent stereo
and stereo panoramas methods, the goal is to reduce the redundant information
in the image sequence and exploit the epipolar geometry and stereo matching
algorithms. Also, aspects of the accuracy of object measurements have not been
treated in these two models.
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3.7 Image Block Estimation

The mathematical model used is based on image bundle blocks and a collinearity
condition. An alternative method would have been to use independent stereo
models as primary computation units. It is true that block adjustment based on
stereo models and a coplanarity condition does not include unknown 3D object
points in the estimation, which was stated earlier. But, thinking geometrically,
those unknown points are still there, and in the case of a bundle of rays one can
always eliminate the unknown 3D points from a LSQ type estimation by creating
a reduced normal matrix (Mikhail 1976; Mikhail et al. 2001). The design matrix �
and normal matrix � can be partitioned in respect to orientation unknowns and
object coordinate unknowns as follows:�������! "�$#&% (33)

�'�(�*)��+�-, � )  �. /� )  �$#� ) # �. /� )# �$#10 �-, �2 3 4�2 �#�.#5 4�.#3#20 (34)

, �6 3 /�6 �#�7#5 /�7#3# 0 ,*8  8 # 0 � ,$9  9 # 0 (35)

The design matrix � is partitioned into two sub-matrices where the columns of
the matrix represent the coefficients of the image orientation or 3D point coordi-
nate values as depicted in Equation (33). By using a similar notation, the solution
vector can also be divided into two parts 8  consisting of the parameter values of
exterior orientation parameters and 8 # the 3D point coordinate values, respect-
ively, see Equations (35). The normal matrix � can then be reduced to the size of
the sub-matrix �6 3 of the original normal matrix (Mikhail 1976):: �2 3 <;=�7#5 >�@?  #3# �2 �#BA 8  C� 9  EDF�7#5 G�@?  #3# 9 # (36)

The notation 9  and 9 # are result of corresponding partition of right-handside of
the normal equation in Equation (36). By using the linear model, we do not need
to re-eliminate the 3D point unknown parameters, but, since we have chosen
to use a nonlinear type model, we are forced to resolve corrections to approxi-
mations of point unknown parameters also. The back substitution to obtain 8 # in
given as

8 #H��� ?  #3#!I 9 #CDF�7#5 8  5J (37)

55



Equation (37). The idea of eliminating the unknown point parameters from the
estimation is beneficial. Since we are going to have numerous images included in
a single circular imaging block, we will most likely have numerous unknown 3D
points as well. In standard close-range block adjustments, we usually eliminate
the image parameters from the normal matrix in cases where we have numerous
images, since one image increases the diagonal element of the normal matrix by
six. In this model, one additional image increases the number of unknown par-
ameters by one, but one additional 3D point increases the number of unknowns
by three. Also, in the case of convergent imaging, the same object point can be
seen in multiple images, sometimes even from all of them. In circular imaging,
the scene from image to image changes, and one point can be seen only from a
small subset of images, therefore the number of tie points increases significantly.

As the normal matrix K can be updated sequentially by observation equations,
there is no need to construct the design matrix L at all. Also, the unknown par-
ameters can be eliminated sequentially. So the elimination can be performed
point-by-point. Although we have to take care that all observations attached to
that point are updated consecutively to the sub-matrix of KNM�O and K7O3O . After this,
the reduced normal matrix can be updated by using Equation (36) and we can
continue by processing the observations of the next point. The number of steps
to construct the reduced normal matrix does not differ much from the number of
steps used to construct the original K . Calculating the back substitution increases
the number of steps, but the computing time in this task is very short compared
to the time spent for computing the LSQ solution for a large normal matrix K .
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4 SIMULATION

The most desirable outcome of a photogrammetric measuring system is the
ability to create a consistent and reliable model of the object scene. The highest
attainable accuracy of object measurements can be evaluated by the use of simu-
lation. Simulation is a tool to verify the correctness of a mathematical model in
an artificial situation, sometimes due to unknown situations, lack of experience,
or to reproduce essential features or characteristics of a phenomenon. Often the
objective is to provide the circumstances that are as close as possible to those of
a real situation. In this research, the basic measuring conditions are maintained
throughout testing while only one parameter value of the system at one time is
altered in each experiment. Due to this alteration of multiple variables, the im-
pact of change of an individual parameter value on object measurements is hard
or unreliable to determine. In many cases, the unreliability of assessment is due
to a high correlation of individual parameter values.

In simulations carried out in this research, the maintained conditions were: the
number and distribution of object points in a scene; the camera model used; and the
orientation of camera with respect to the supporting bar. The object point set used in
the simulations was computer generated, consisting of PRQ�Q object points. The ob-
ject distance from the origin varied from two to fifteen meters and the mean object
distance was about eight meters. Generation of the point set was accomplished by
using a random number generator to generate a normal distributed dataset. The
only restriction for object point generation was that object points were allowed
to be situated not farther off than the maximum distance and not closer than the
minimum distance. Also, it was ensured that all points fitted the height range
according to the field of view of the used camera model. This was to guarantee
object points would be visible on images of the fictitious image block.

The camera geometry was chosen to be S�QTPVUXW(SYPRZ�Q pixels with a camera con-
stant of S[U�Q�Q pixels. This camera model resembles the geometry of the real cam-
era Olympus Camedia C-1400L, which was available at that time at the institute
where the research was carried out. The pixel resolution and field of view have
an effect on object measuring accuracy as well. Testing the measuring accuracy
with different camera geometries could have been one test option, but, as the
choice of camera cannot be considered to relate particularly to this photogram-
metric measuring method, only one camera model was used. Since no prominent
camera geometry on terrestrial imaging can be assigned, this selection can be
considered as good as any other choice. The pixel size of this particular camera
model was announced by the manufacturer to be P�\^]_U�`ba and was used in con-
verting the pixel noise level values to corresponding values in micrometers in
Tables (1) and (2).

The orientation of the camera with respect to the plane of rotation, and the di-
rection of the camera optical axis with respect to the rotation path, were kept
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constant. The optical axis of the camera was parallel to the plane of rotation and
also tangential to the circular path of projection centres during the rotation. The
rotation angles of the camera in the first camera pose in the first image block
were therefore ced�fGgihjdkfGgilmdkf and for the second block ced�fGgihjdon�p�fTqrgilsd+f .
Otherwise, the camera was rotated around a fixed rotation point with equal angu-
lar steps in the fictitious image block, i.e., only the h -angle was changed. It is to
be noted that the t -axis was parallel with the normal vector of the rotation plane.

Simulated image observations were created by back-projecting those 3D object
points, which fitted to the field of view, onto the focal plane in each camera pose.
Random noise of some predefined level was added to observations and the ad-
justment of the block was performed. In adjustment, both image blocks were
computed simultaneously with object point coordinates. In addition to these ar-
rangements, one scale observation in the size of two meters was included in the
computation.

These arrangements remained the same throughout all simulation tests. In or-
der to attain reliability in terms of statistical variables, n�f�f simulation runs were
carried out. Statistical parameters as the mean value and variance of block par-
ameters and object coordinates were computed from the results of n�f�f simulation
runs of tests.

4.1 Selection of simulation parameters

The performance of circular imaging blocks can be tuned by changing a few fac-
tors in the construction of the block. The accuracy of a final 3D model depends on
accuracy of image observations, geometry of imaging network, number of observations,
and precision of camera model. These are all factors most often mentioned in the
literature dealing with the accuracy of close-range photogrammetry (Fraser 1984,
1989; Mason 1995). The effect of image observation accuracy on object parameter
determination is apparent. Also, it can clearly be shown with error propagation,
how the geometry of intersecting image rays affects object accuracy. An increase
in the number of observations above the number that is necessary to solve the
object parameters does not only improve the accuracy of object measurements,
but also gives us a tool with which to estimate the precision of our measurements
without any exterior reference. By applying a correct and precise camera model
the occurrence of systematic errors on the object model can be prevented.

In this kind of constrained imaging system, the only factors having an influence
on imaging geometry are the length of the used bar and the initial orientation of
the camera with respect to rotation. The orientation of the camera has an influ-
ence on imaging geometry at close range. Since the object distance in these tests
spans over n�uwv the length of the bar will have more effect on the imaging geo-
metry than the orientation. The accuracy of measurements has been simulated
by adding some noise on “correct” image observations. The number of obser-
vations can only be increased by shortening the angular step between camera
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poses in the image block. The correct camera model has an influence on coordi-
nate values, as in any photogrammetric network. In a free-net type photogram-
metric network, the incorrect camera model may cause minor effects on object
coordinate values, since part of the systematic error will be absorbed in orien-
tation parameter values. In this kind of constrained imaging system especially,
the correctness of the camera model has an essential importance, since system-
atic error is more likely to be present in coordinate values than in constrained
orientation parameter values. Nevertheless, in these simulation tests, the camera
model is assumed to be correct without any systematic errors.

4.2 Noise level

The following procedure was adapted while testing the noise level of the image
measurements. This noise level test is to simulate the use of different cameras
or object points of different quality. The chosen noise levels were xGy{z , xGy{| , xGy}xTz
and xGy}xT| pixels. The first two cases can be considered to simulate bad and good
image measurements of natural object points and the latter two as bad and good
observations of targeted object points. The noise levels can also be thought of as
cameras of different quality or resolution.

In these simulation tests the radius was a constant zRxR~�� and �Rx images were in-
cluded in both image blocks. The object points were back-projected onto the focal
plane as image point observations according to the orientation information. The
quality of image observations was then degraded by adding normal distributed
noise on image coordinate values via a random number generator. In the gen-
eration of normal distributed noise, the algorithm depicted in (Knuth 1981) was
followed. The noise generated had a zero mean with a standard deviation of xGy�z ,xGy{| , xGy}xTz and x^y�xT| pixels, respectively.

From 100 runs of tests, the mean values and deviation of block parameter and
object 3D coordinate values were calculated in each test case. The standard devi-
ation of block parameters have been collected in Tables (1) and (2) and an equival-
ent presentation of the object coordinate standard deviation is depicted in Figure
(7). In Tables (1) and (2), the standard deviation values of ��� -angles are averaged
mean standard deviations.��������� ��� �R� � ���r� � ��� � ���r� � ��� � ���r� � �T� � �j��� � � � ���r� ���� xGy�zRx ��� �Gy}xT� 0.02385 0.02926 0.02060 1.13253 0.00752��� xGy�|Rx � z^y � � 0.01183 0.01173 0.01016 0.47376 0.00349��� xGy}xTz ��� y}�T� 0.00314 0.00349 0.00269 0.10728 0.00080��� xGy}xT| � xGy�z � � 0.00114 0.00122 0.00098 0.04490 0.00033

Table 1. Standard deviations of block parameters, Block I
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���������b �¡ ¢R£���¢�¤r¥G¡ ¢�¦2��¢�¤r¥G¡ ¢�§¨��¢�¤r¥G¡ ¢T©H�� j �¡ ¢ ªj��¢�¤r¥G¡«�¬+­G®�¯R­ ��°�± ®}­ ¡ 0.03340 0.03202 0.03001 1.06836 0.04481«�¬+­G®�²R­ � ¯^® °Y¡ 0.01639 0.01633 0.01473 0.55887 0.01948«�¬+­G®}­T¯ ��° ® ±T¡ 0.00434 0.00472 0.00390 0.13908 0.00531«�¬+­G®}­T² � ­G®�¯ °Y¡ 0.00158 0.00164 0.00142 0.05589 0.00189

Table 2. Standard deviations of block parameters, Block II

From Table (1), we can see that standard deviation declines first to half and then
to °Y³^° ­ and °Y³ ²R­ from the first listed values. The linear change in standard devi-
ations with changing « is entirely as predicted and consistent with expectations.
The same phenomenon can be seen in Table (2). The only difference between
these two tables can be seen in column ´¢�ª , where values in Table (2) are slightly
higher. That is partly due to the estimation of the angular difference of � -axis in
the first and second block. This uncertainty of estimate affects the estimates onª<µ -values in the second block. In the first image block � -axis was fixed.

In order to evaluate the tie point accuracy, mean values of point coordinate stan-
dard deviations were computed and indexed in respect to 3D point nominal dis-
tances from the centre of measurements. Second-order polynomials were then
fitted to point distances and coordinate mean deviations. Correspondent graphs
of different noise levels are shown in Figure (7).
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Figure 7. Effect of noise on object point accuracy

From Figure (7), the accuracy of such a measuring configuration can be estimated
to be °·¶.° ¯R­R­�­ for the best case and °¸¶º¹ ­�­ in the worst case. These relative
accuracy numbers are derived assuming the maximum dimension of the object
to be ± ­   . As this imaging system is symmetrical, the maximum distance from
the imaging station is then » ° ¯   .
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4.3 Length of radius

The length of the bar here has the same meaning as the base length in stereoscopy.
In principle, the longer the bar, the better the precision. However, in practice, the
imaging environment and mechanical constraints can limit the length of the bar.
This can occur when there is only a constricted space for the camera to be rotated
or when extending the length; the view will also change, and objects closer to the
centre will be out of sight, on most of the images or when the construction of such
a rotation system will be too unstable.

Fictitious circular imaging blocks with differing radii were constructed in the
centre of a randomly generated object point set. The field of view according to
the camera model was ¼T½�¾º¿(¼TÀ�¾ depending on whether it was evaluated in the
direction of Á - or Â -axis. In each case, the number of images in a block was Ã�½ . So,
in each computation, ÄTÅ block parameters and Ä�½�Ä coordinate values were subject
to estimation. The number of observations depended on the pose of the camera
with respect to the object point set. Only those object points that fitted inside the
field of view, were back-projected onto the image plane as image observations.
The difference in number of observations between the maximum and minimum
case was about Æ %. This variation was due to the change of imaging geometry
and can be considered insignificant in terms of redundancy of estimation.
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Figure 8. Effect of length of radius on object point accuracy

The standard deviations of coordinate values with respect to distance are de-
picted in Figure (8). The standard deviations were calculated from Æ[½�½ simu-
lated test runs with normal distributed noise added at a level of ½GÇ�È pixels. The
polynomial curve was fitted to the data, where the mean coordinate standard
deviation was depicted on the ordinate and the distance of the 3D point on the
abscissa. A curve was fitted to all data sets of different radii. The result of the
simulation showed that the effect was not totally linear. The further the object

61



points locate, the more significant is the improvement of point precision. After
some limit, the extension of the radius did not improve the result significantly.
In this case, the limit seemed to be around ÉRÊ�Ë�Ì and was, without question, also
dependent on the structure of the object point set and chosen camera model.

4.4 Number of photos in block

The change of number of images in a block was also tested in a similar way. Nor-
mally, it can be stated that increasing the number of images does not improve
the precision much, unless the whole imaging geometry of the photogrammetric
network is improved. This holds in traditional networks, where each new cam-
era position brings six new parameters into estimation. In this approach, one
new camera position adds only a single parameter Í�Î in adjustment, while re-
dundancy is essentially larger. This is due to the use of polar coordinates for pre-
senting the projection centres in the formulation of the mathematical model of the
circular imaging block. From Figure (9), it can be seen that increasing the number
of images and observations improved the precision up to Ï�Ê�Ê frames per block,
but, after that no significant improvement could be seen. However, whether it
is worthwhile to nearly double the number of frames in image processing if the
expected accuracy improvement is less than Ï�Ð %, as it is when increasing the
number of frames in a block from Ñ�Ê to ÒRÊ frames (i.e., from Ó�Ê to Ï�Ê�Ê images,
totally) should be considered. The amount of additional processing is dependent
on the chosen image measuring strategy and has to be assessed in each individual
case.
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Figure 9. Effect of number of images in block on object point accuracy
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4.5 Quality of initial values

In simulation tests, the initial values were set close to the correct values. The
reason for this was that there then would be no risk of the adjustment not con-
verging to a local minimum. The simulation environment was also used for
testing the limits of the goodness of initial values. The parameter values were
slightly changed from their correct values and only one parameter was alternated
at a time. The test was first accomplished without noise, and then only a small
amount of noise was added to the image observations.

The orientation angles of the first camera were more sensitive to the incorrectness
of the initial values than the Ô -angle of each photo or length of radius Õ . ForÖ*×iØ�×iÙ -angles, the initial values were required to be better than Ú�ÛEÜÞÝRÛ in order to
meet convergence. For Ô<ß -angles, ÝRÛ was generally good enough, and for length
of radius Õ the initial value à.ÝRá�â was acceptable. When evaluating the system
sensitivity with respect to the initial values of 3D points, it was discovered that
the discrepancy of a few decimeters up to a meter from correct coordinate values
were still acceptable.

In general, it can be noted that this photogrammetric measuring method requires
more accurate initial values for parameters than the measuring approach based
on convergence imaging. Acquiring the initial values for common block par-
ameter Ö*×iØ�×BÙ -values is an especially demanding task. The reason that these par-
ameters are more strict with their initial values can be deduced from the fact
that all rotation matrices are derived from these parameters. Also, all image ob-
servations affect the determination of the values of these unknown parameters
in the adjustment process. However, obtaining such accurate initial values for
this kind of regulated imaging strategy is easily achievable by the use of simple
auxiliary instruments, i.e., measuring tape, angle measuring devices, etc.
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5 VERIFICATION OF THE DEVELOPED METHOD

By using simulation, one can verify the system as being able to work in general.
But it is quite usual that not all possible variations from the ideal state of the
system can be simulated. This has also been the case in simulations described in
Chapter 4. A possible source of errors in imaging systems is systematic error in
the imaging devices, i.e., in the camera and lens systems. Also, it is presumed
in the mathematical model that no deviation of camera pose with respect to the
rotation plane or orientation of the optical axis of the camera with respect to the
path of rotation can exist.

In order to verify the results derived from simulated tests, two field tests with
real images were carried out. The aim of the tests conducted was to compare
the object coordinate values received from the measuring system with an exterior
reference. Two tests were accomplished; one was conducted in an indoor en-
vironment and the other in the open-air, in more optimal conditions.

5.1 Verification methodology

The decision to use reference data was made partly to verify that the developed
mathematical model would apply in real conditions and partly to gain an esti-
mate of achievable accuracy. The precision of measurements can be evaluated by
use of error propagation. This, however, would not necessarily reveal the poss-
ible systematic errors inside the estimation model. The reference information
must be acquired with a degree of accuracy better than that of the observed data
it is compared to, in order to guarantee the reliability of test results.

In this research, the exterior reference has been attained by tacheometer measure-
ments. The same instrument, a Geodimeter 600, has been used in both tests in the
acquisition of reference data. The 3D object targets were measured mainly from a
single measuring station by means of vertical and horizontal angle measurements
and one distance observation. As is commonly known, the tacheometer can pro-
vide accurate measurements of target objects if the object distance is above ten
meters. At shorter ranges, distance measurements especially become less accu-
rate. However, a confidence check could be made in the calibration measure-
ments of the instrument in distances shorter than ten meters.

Because the imaging is symmetrical in nature, the accuracy of object point
measurements is supposed to be equal for all points at the same distance from the
imaging station. This was realized earlier with simulated tests. For this reason,
the reference tacheometer measurements were made from the same point as the
photographic imaging. The object distance in such arrangements is the same in
both methods, which are therefore more comparable with each other.
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The tacheometer measurements can be considered to be more accurate than the
image-based methods of the circular image bock for object distances longer than
five meters. Within shorter distances, the reliability of tacheometer measure-
ments is reduced and the accuracy will be on the same level, or even worse, than
with image-based methods. This is a mild drawback, since, in order to assess the
accuracy of this method in the whole range, some accuracy information is needed
for the shorter distances as well. In order to overcome the problem, object points
at close range were measured from more than one measuring station and coordi-
nate systems were then bound into a common coordinate system. Unfortunately,
this could be done only with the test conducted outdoors. In the indoor case,
the point distribution and complexity of the measuring environment made the
equivalent arrangement impractical to realize. For this reason, the results con-
cerning the case with shorter distances should be studied with caution. In the
optimized test case, the accuracy of reference can be estimated to be better than
two millimeters, since that was the maximum residual in the estimation of the co-
ordinate transformation of separate point sets into a common coordinate system.

5.1.1 Targets

The objective in targeting is to be able to measure the same object points in both
reference and photogrammetric coordinate frames. In the indoor test case, the
used targets were printed black circles on white backgrounds attached to card-
board as shown in Figure (10a). In the middle of the black circle there was a
white spot, which was used to assist in setting the field prism in the centre of the
target. Three different sizes of targets were used in the test to compensate for the
scale difference in the image measurements. The diameters of the circles wereã�ä

, å ä and æ ä�ä millimeters. The further the point was located from the imaging
station, the larger was the target size used.

In the optimized test case, the used targets were retro-targets or retro-prisms. The
retro-targets were made of retro-reflecting material and were designed especially
for tacheometer measurements. The targets were originally of a square shape,
but were covered with black adhesive paper with a round hole in the middle, as
indicated in Figure (10b). The idea was to provide favorable conditions for image
matching, since a circular shape in image matching is more invariant to perspec-
tive distortion than a rectangular. In this case, the size of the targets was fixed.
There would have been two different sizes of retro-targets available, but since
the difference would have been so small, only ç äwèjè size targets were used. The
distance observations were tested with tacheometer retro-target combination at
several distances ( é è�êBëwè�ê æ äRè�ê æ ëwè�ê ç äwè ) and the standard deviation of distance
observations was ì2æ�í äwèjè , which is quite acceptable.
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( a ) Indoor Case: Cardboard targets ( b ) Optimized Case: Retro-
targets in black background

Figure 10. Used targets in experiments.

5.2 Image measurements

In photogrammetric measurement systems, the image point correspondence
problem is the most demanding task from the image measurement point of view.
In general, the choice, of which of the points are to be measured is not as import-
ant as how precisely the image points can be located and how reliably it can be
verified that corresponding image point observations are from the same object
point. It is not strictly true to say that the choice as to which points are measured
would have no importance. The distribution of image points on an image does
affect the accuracy of block parameter estimates. But what is meant here is that
points measured in this stage do not have to have any relevance from the object
modelling point of view. The only purpose of point measurements is to be able
to determine the camera pose with respect to the coordinate system. Although,
in these tests, the aim was to compare two data sets at the same object point
location, and therefore the object measurements were carried out with targeted
points. However, a few image observations were made on untargeted natural
points as well.

So, in selecting an image measurement strategy, one good choice could be feature-
based image matching. In a feature-based solution, the prominent well-defined
image point set is measured automatically. Extraction and selection of image
points on images is based on local distinct properties of the gray-level function.
The most significant algorithms, so-called interest operators, for extracting image
points, have been developed by Moravec, Harris and Förstner (Förstner and Gülch
1987; Förstner 1986; Mikhail et al. 2001). The correspondence of image points on
other images can next be determined by examining the feature properties. The
decision on the correct match can be based purely on geometrical reasoning and
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the feature properties themselves. In addition, the feature properties of interest
points in the vicinity can be taken into account in decision making. There is a
group of strategies to follow in order to solve the correspondence problem in a
robust manner. If some á priori knowledge of imaging geometry is available,
this can be taken into account as well. In this research, the initial approximates of
camera pose can easily be produced due to developed imaging strategy; applying
the feature-based method for image point measurements is therefore sensible.

As mentioned previously in this section, the objective was to be able to measure
the same object points both in a geodetic and photogrammetric manner in order
to compare the data sets. This was the main argument for using area-based image
matching approach. This way we can have control over object point measure-
ments. Also, the precision of individual image observations based on the area-
based method has been discovered to be better than in the feature-based method
(Mikhail et al. 2001).

Area-based matching, sometimes called template matching, is a method for
searching a similar image patch (template) of the source image on the target im-
age. The template image is a small image patch extracted in a particular location
from a source image. The source image is an image whose corresponding im-
age points will be searched on another image - here designated as the target im-
age. The method does not necessarily require human interaction. The area-based
matching method can be applied in combination with the feature-based approach
by first selecting the suitable image patches on the source image with the help of
an interest operator and then applying the template matching at the location in-
dicated by the correspondence match. But once again, since the particular object
points are the subject of interest, human interaction is required to point out the
equivalent image point at least on one image.

5.2.1 Strategy of image measurements

The followed procedure in image observation acquisition can be considered to be
semiautomatic. The goodness of initial values of block parameters were exploited
in the automation of image measurements. The object point was first measured
from one image of the block by the human operator, and after that the same image
point was used as a template for matching on an image of the second block, as
indicated by Figure (11). The idea was that the camera pose and orientation were
approximately known and the object point coordinates could easily be calculated
from these two image point observations. This coarse approximation of object
point location could subsequently be back-projected on other images of both im-
age blocks; see Figure (12). The back-projection of the object point indicated the
image area where the corresponding image point would be located on other im-
ages. How closely the back-projection will succeed in exposing the real location
of corresponding image points is heavily dependent upon block parameter ap-
proximations. This procedure was followed until all preferred object points were
measured.
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Figure 11. Correspondence of image points (shown by the operator) between image from Block I
and II.

Figure 12. Back-projection of an object point on images of one image block.

The selection of the image point on the first image was accomplished manually.
The object point could be measured with sub-pixel accuracy by utilizing image
magnification. Next, an image patch was extracted from the image and the tem-
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plate was generated from that image patch, so that the measured image point
located exactly at the centre of the template. In template generation, the bilinear
interpolation method was used to derive new gray-level values for the new pixel
locations in all three channels (red, green, blue). The size of the template might
also be changed.

A disadvantage of the area-based matching method is that it cannot tolerate big
perspective distortions between matched images. If the object surface is a flat
surface, the distortion can be considered as a 2D transformation problem. An
assumption of a flat object surface can be made only if small image templates
are used. In general, a smooth object surface can be approximated by number of
small flat patches. Since the used targets were flat, no violation to that restric-
tion of the method was made. Also, possible distortion could be diminished by
selecting a target image on another block whose direction of view was close to
the source image. The reason why the target image was chosen from another im-
age block, and not among consecutive images on the same image block in this
first stage, was due to better imaging geometry. The image pair chosen is close
to the stereo case; the larger the base-to-distance ratio, the better the accuracy in
point determination. So getting better approximates for object point coordinates
helps us to acquire the rest of the corresponding image point observations more
reliably.

For template matching, the Least Squares-method (LSQ) was applied. In LSQ
matching, the gray-level function of the template is matched against target im-
age gray-levels at a given location. The template is moved on the target image
until the sum of least squares of gray-level value differences is minimized. This
gives the location of the corresponding image point of the template to sub-pixel
accuracy on the target image. Since the matching problem is turned to nonlin-
ear form, the solution can only be achieved with the help of an iteration process.
However, the matching process needs good initial values for iteration and the op-
erator therefore has to give the starting point within a few pixels from the correct
location.

For the rest of the image point correspondences, the calculated approximate lo-
cation of the object point could be used to indicate the initial locations by means
of back-projection. However, these initial locations could not be regarded as accu-
rate enough for applying the LSQ-matching directly. A better start-point for iter-
ation was acquired, therefore, by use of image correlation. The cross-correlation
of template image and target image was computed for every location in the search
area. The back-projection strategy worked at this stage in favor of reducing the
size of the search area on the target image, as illustrated in Figure (12). If no á
priori knowledge had been available, the cross-correlation of template and tar-
get image would have had to be computed at every pixel location of the target
image. This way, the amount of computation was reduced and the search area
could be set around the back-projected image point. The size of the search space
could be changed at the operator’s discretion. The calculation of the correlation
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coefficient based on the equation of the normalized cross-correlation coefficient
is given (Schenk 1999):
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In Equation (38)
�üVý

and
�ü�	

are mean gray-level values in the template and
matching window, respectively. The value of the correlation coefficient î will
lie in the range of

����� î �����
.

On occasions when the back-projected point was located near the edge of the im-
age, there was doubt if the object point was out of the field of view. In order
to overcome this, the threshold value was set for the maximum correlation co-
efficient based on empirical observations. The maximum correlation coefficient
value within the search window had to be exceeded before proceeding to the fi-
nal measuring stage. Otherwise the conclusion was that that point had been out
of sight, and the search for the conjugate image point was halted. If the threshold
for correlation coefficient was exceeded, the pixel location that had the largest
correlation value was then used as a start point for the final LSQ-matching to
sub-pixel accuracy. The template matching was run sequentially in such a way
that the template was extracted always on the previous image and was only used
for a subsequent image in a block. So after every successful match, a new tem-
plate was extracted in that location and it was only used in matching on the next
image. This way, the effect of perspective distortion could be minimized in the
matching procedure.

The LSQ-matching can be considered as a two-dimensional signal fitting pro-
cess. In the least squares context, the � û��<ÿ �!� is a gray-level observation from a
template image in location

û��<ÿ �!�
and

übû��<ÿ �!�
is a transformation function for the

target image, which minimizes the gray-level differences between images. The
observation equation in the least squares sense is then� û"�<ÿ#�$�%�'&�û��<ÿ �!� ï ü û"�<ÿ �!�

(39)

The component
&�û��<ÿ �$�

in Equation (39) describes the random effect (noise) in
both images. This is an LSQ-image matching idea, which was presented in the
early 1980’s. The estimation model has been presented both by Grün (Grün and
Baltsavias 1985; Grün 1996) and in parallel to Grün’s investigation by Prof. Ack-
ermann and his research group at the University of Stuttgart (Ackermann 1984).
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Transformation is supposed to rectify the target image patch into a template im-
age pixel coordinate system. If the source image and target image are taken sub-
stantially from different view angles, and the object is evidently three dimen-
sional, the rectification would not satisfy the perspective distortion between im-
ages. However, by assuming the object surface is smooth and treating only a
small patch of the image in matching, even the following affine transformation
can be considered to be adequate for the task (Ackermann 1984):(*),+�-/.�01-!2�)43506-/7�8938:+<;�.�01;=2�)43%01;�7�8�3 (40)

Since it is a case of two separate photographs taken with different exposures, the
radiometric difference between images also has to be taken into account. In this
research, as in the original research of Ackermann (Ackermann 1984), two linear
components of radiometric transformation were considered to be adequate, as
given by: >@? )BA 8!C%D'E ? )BA 8$CF+HG 3 ? )BA#8$CI0'JLK
0MG 3 ? )BA 8!C�JON

(41)

The linear radiometric transformation included the shift
JPK

and the scale factor
JQN

as
depicted in Equation (41). The LSQ-image matching algorithm was implemented
with a simple image shift operation also. Instead of estimating all affine par-
ameters, only the displacements in both

)
- and

8
-directions were included. This

kind of simplification is justified if no perspective distortion is expected. Also,
this solution does not allow any significant image rotation between images.

Nevertheless, a simplified version of the LSQ-image matching method was used
successfully, since the used targets were the shape of a circle and therefore in-
variant for image rotation. Also, the scale difference and effect of viewing angle
were considered to be small enough to be disregarded. The reason for finally
using a reduced parameter set is partly because of the known risk of over-
parameterization in the estimation process. In some cases, the target size was
as small as 9x9 pixels, which can be considered to be too small an image area to
reliably solve all six affine and two radiometric parameters. However, the affine
model was also used when the posterior estimate of standard deviation RS . of
gray-level observation was detected to be too large for the use of shift parameters
only. Also, the choice of estimation model was based on visual inspection made
by the operator.

For observing all conjugate image points of a single object point, the only actions
required from the operator were to measure the object point from one image and
to point out it’s equivalent location on an image of the other block, as indicated in
Figure (11). The rest of the homologous image points were found automatically
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and their relation to each other and to the object point could be stored for further
computation.

All image measuring operations and calculations were implemented in a com-
puter program written by the author of this thesis. At the time, the research work
was started, there was no software on the market that could handle the image
sequence and measure homologous points with sub-pixel accuracy; those that
were available were not flexible enough to be altered for the special needs of
this measuring method. The implementation was carried out in the Linux Red-
Hat 9.0 platform with 2.4.20-8 kernel. The programming was accomplished in
C++ programming language and, for some graphical operations and user inter-
faces, Qt-3.1.2 library functions were utilized. Also, some matrix operations in
the estimation part were programmed by exploiting the library functions of the
mathematical programming library package, LAPACK (Lapack 2005).

5.3 Real world experiments

The real world experiments were made in two different setups, one of which
included fairly optimized conditions, while the other included more realistic
measuring conditions. The experiment accomplished in optimized conditions
will be designated from now on as Experiment I and the one made in the indoor
environment as Experiment II. For both experiments, selected object points were
targeted and reference measurements made with geodetic techniques for the pur-
pose of comparison as depicted in Section 5.1.

5.3.1 Experiment I

In this experiment measuring conditions were designed to be as optimal as poss-
ible, i.e., optimized regarding both photogrammetric measurements and the geo-
detic reference system.

The rectangular retro-targets were covered with black adhesive paper with a
round hole in the middle, as depicted earlier in Section 5.1.1 and Figure (10b).

All targets were faced to centre partly to obtain an optimal orientation for tach-
eometer measurements and partly to provide favorable conditions for the selec-
ted image matching method. The distribution of points was designed so that
there would be enough points within different object distances. Special atten-
tion was paid to observe the effect of object distance on point accuracy since the
accuracy is independent of the direction to the object point, due to symmetric
imaging. Targets were attached to the measuring poles at different heights, as
shown in Figure (13). The reason was to get adequate point distribution in the
vertical direction also. This is essential in order to determine camera orientation
reliably.
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Figure 13. Distribution of target points attached to the measuring poles in Experiment I.
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The camera setup was attached to the same tripod that was used in the tach-
eometer measurements. This way, the origin of both coordinate systems could
be approximately centred on the same point. It has to be emphasized here that
geodetically measured coordinates were never used as a control datum, but only
for the purpose of comparison. The orientation of both local coordinate systems
was fixed by using the same object point in order to define the reference direction
for plane coordinate axes.

Figure 14. Camera setup in Experiment I.

The navel centre was equipped with a centring device that had a bubble leveling
compensator. Leveling of the imaging system was not necessary by definition,
but it gave feedback as to how stable the system was during the imaging se-
quence. The camera used in the experiment was an Olympus E-10 (1680x2240pix,
c=2350pix) digital still camera and this was attached to the end of the metal barTVUXW�YZY

from the centre, as shown in Figure (14) . The other end of the bar was
supplied with an adequate counterbalance in order to maintain stability during
imaging. Images in sequence were taken with equiangular steps. The plane angle
between subsequent images was []\X^ resulting in _ W images per image block. The
camera was triggered with wireless remote control and the focus set to infinity;
the aperture was also predetermined according to setup values used in a pre-
vious camera calibration. The exposure time was allowed to be determined by the
automatic function of the camera. For the second block, the camera was turned
around [ UXW ^ and imaging was started at the same start point as the first image
sequence. Naturally, the real location of the projection centre inside the camera
could not be precisely determined at this stage. So the minor plane rotation dif-
ference between image blocks had to be accepted.

The required initial values for block parameters could be obtained by using
simple instrumentation. The radius of rotation could be evaluated by use of a
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tape measure and, for plane rotation angle readout a graduated scale attached
to the centring device could be used. The angle of optical axis with respect to
the supporting bar was fixed to the perpendicular alignment with the help of a
simple tool.

There were, in total, `Va targets used in the experiment and the distance range of
targets was from b9c up to bXb9c . The distribution of points was designed in such
a way that the target distances were distributed evenly. At least two targets were
attached to each measuring pole. The measuring poles were divided across the
target field so that targets could be used as tie points in the mensuration of image
blocks. The scale bar used for getting scale for measurements was set up at the
distance of d9c from the origin. The nominal value of the calibrated distance was
somewhat under b meters.

The initial values for unknown parameters were acquired quite easily. The length
of the bar was measured with the accuracy of a centimeter and rotation to an
accuracy of one degree. In this experiment, the camera was fixed perpendicularly
at end of the bar. With the help of a simple tool, this could be accomplished withineLfhg b f . The length of the scalebar was added into the estimation as a constraint,
the length having been verified beforehand in laboratory conditions.

5.3.2 Experiment II

The second experiment was conducted in an indoor environment. The target area
was an entrance hall, where the maximum distance inside the area was approxi-
mately `Xi meters. Conditions were not as optimal as in Experiment I. Compro-
mises had to be made as regards the photogrammetric measuring system and ac-
quisition of geodetic reference data. Targets used in the experiment were attached
to walls and to surfaces of columns inside the test area. This time, retro-targets
were not used, since they could not be measured reliably with a tacheometer.
In these circumstances, it was known that difficulties would occur with distance
measurements. When using retros, it is required that the incident angle of the
measuring ray should be equal or near the normal to the target surface to receive
an impulse of a reflected ray of adequate size; this cannot be guaranteed in indoor
space. Therefore, a standard field prism was used for reference measurements
and the targets used were printed targets made of cardboard. Three different
sizes of targets were used in Experiment II for different object distances. A more
detailed description was presented in Section 5.1.1 and in Figure (10a) .

In this experiment, the focus was set on more robust imaging system develop-
ment. The plane rotation is a hard condition to be fulfilled. Human intervention
in the rotation of the camera from one exposure to the next, and triggering the
camera, can cause unwanted discrepancy of supposed camera orientation. Some
abnormality in the height of the projection centres from the plane of rotation dur-
ing imaging can easily occur, if sufficient precautions are not taken.
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In order to fulfill requirements and to receive better initial values, a ball-bearing
type of rotation system was designed and assembled. Better rotation control was
achieved by supplying the system with a worm gear and a step motor, Figure
(15a). The step motor was controlled by the computer to rotate the camera with
equal-angled steps, Figure (15b). The camera was also triggered automatically
under computer control. In order to obtain other required initial values, the same
procedure as in Experiment I was followed.

( a ) Step motor fitted into worm gear. ( b ) Computer contolled imaging system.

Figure 15. Step motor driven imaging system

This type of system design provided fully-automatic imaging without human
intervention. The camera was the same as that used in Experiment I and the same
setup of camera parameters as used in the earlier camera calibration was adopted.

The experiment was run in interior space in an entrance hall, which consisted
of a corridor, two round columns and a staircase, as seen in Figure (16). So the
conditions were representative of those one might meet when carrying out a typi-
cal measurement task in interior space: blind angles, small angles between wall
surfaces and viewing angle plus varying illumination.

The imaging was made from the same spot as the tacheometer measurements.
The rotation centre of imaging differed only a few millimeters from the tach-
eometer coordinate system. This was verified afterwards with a coordinate sys-
tem transformation. Imaging was accomplished with a computer controlled sys-
tem with jVk photos per image block, the camera with a perpendicular viewing
angle being attached to the supporting bar approximately l/m�n�oZo from the ro-
tation centre. The camera settings were fixed to the same focus and aperture
values as used in camera calibration. The exposure time was allowed to be de-
termined by the automatic function of the camera. The imaging was carried out
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Figure 16. The entrance hall where the experiment took place.

under artificial illumination conditions and there was no control over how the
fluorescent lamps impacted upon image quality in any individual shot. For this
reason, some images were over-exposured and some under-exposured. Never-
theless, targets were able to be measured on images reasonably well. The scale
bar with a length of prqPs provided the scale for the 3-D measurements and was
set at a distance of tXs from the centre of measurements.

5.4 Camera calibration

The camera used in both experiments was an Olympus E-10, a typical non-pro-
fessional digital still-camera. According to the manufacturer, the camera has auLvXwXxzy qXqPt x pixel resolution with a {V|PsZs~} u t x sZs zoom lens. The camera was
used in experiments only with focal lengths in wide-angle mode with a single-
aperture stop value. The camera was therefore calibrated only with those settings.

In camera calibration, linear sensor deformations and nonlinear lens distortion
corrections were calculated according to the distortion model presented in Sec-
tion 3.4 in Equations (17) and (20). For the calibration, a three dimensional cali-
bration field was photographed from five imaging stations, see Figure (17). In
each imaging station, three images were taken, having approximately � x�� roll be-
tween exposures. So, all together

u | images were taken and around � x targeted
object points were measured. The estimation of unknown camera calibration par-
ameters was carried out via free-net adjustment with a single distance measure.
In free-net adjustment, inner constraints were applied.
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Figure 17. Three-dimensional calibration field used in calibration.

In both experiments, the resolved calibration parameters were kept fixed in the
block computation and only block parameters and object coordinate values were
estimated. In the latter analysis, it was suspected that radial distortion par-
ameters were not determined with adequate accuracy after all. Therefore, in
addition, a plumb-line calibration was accomplished in order to obtain better es-
timates of the amount of distortion of the lens. The problem with camera cali-
bration carried out with the calibration field is the high correlation of decentring
lens distortion parameters and the principal point, especially with �L� -component
and ��� . However, this problem can be overcome by solving the lens distortion
parameters, with, for example, plumb-line calibration and the rest of the cali-
bration parameters with test field calibration.

For the plumb-line calibration, �]� plumb-lines were set to hang from the ceiling
in front of a dark background, see Figure (18). The plumb lines were made of a
heavy fishing line, having small weights tied at the other end and letting them
hang freely. Three images were taken at a single position with ����� roll between
exposures. The distance to plumb lines was only two meters, but the camera
focus was set to infinity; other settings were the same as with earlier calibration.
The procedure followed in plumb line calibration was similar to that reported by
Fryer (Fryer et al. 1994).

The centre of the lines were observed from images by means of centroid compu-
tation of gray-levels in the transversal direction. Samples of the centroid locations
were observed at evenly separated points along the line.
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Figure 18. Used plumb-lines in camera calibration.

In computation of camera calibration, only the first two coefficients of radial dis-
tortion parameters �!�����X� and decentring distortion parameters �I���X��� were esti-
mated. In addition, the line parameters �%� and �V� had to be estimated. The straight
line equation in a parametric presentation is given as�������]�=��� �5�/�'  �L�¢¡¤£ �B�!¥'�V� ��¦

(42)

In Equation (42),
���

and   � are corrected image observations according to the dis-
tortion model. The lens distortion is included via terms � � and �V  as follows:§ ����� � � �/¨ �6� �  ���  ©�6  ¨ �1�V  (43)

The Equation (43) presents the corrected image observations. It is to be noted that
the adjustment model differs from that depicted in Equation (1) since the object
function is in implicit form. This means that Equation (42) has to be differentiated
with respect to observations also:ªZ«­¬ �6®�¯
�6°²± �,�´³

(44)
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In computation of new calibration parameters, the corrections were made to dis-
tortion parameters and line parameters after every iteration round, until the cor-
rections were small enough to be neglected. After this, new values were applied
in the calibration model and a new estimation of other calibration parameters
were computed, while lens distortion parameters were set fixed with obser-
vations made on images of a three-dimensional calibration field, Figure (17). This
was repeated until no corrections were required for any calibration parameters.
The reason for this kind of procedure was that it is not possible to solve all cali-
bration parameters with plumb line calibration and the change of lens distortion
parameters have an effect on other calibration parameters and vice versa.
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6 RESULTS AND ANALYSIS

6.1 Refinement of the mathematical model

The mathematical model presented in Section 3.6 was followed in the compu-
tations. As mentioned earlier, over-determination was exploited in measure-
ments, partly to improve the precision of estimates and partly to be able to evalu-
ate the quality of measurements afterwards. The estimation was based on linear
least squares, which guaranteed the optimal solution with respect to the obser-
vation error. The collinearity condition Equation (31) is non-linear with respect
to the parameter set based on polar coordinates and is dependent on rotation
angles. So, solving the unknown parameter values leads to an iterative solution
and the need for initial parameter values. Initial values can be acquired in a rela-
tively easy manner, as explained in Section 5.3.

Computation converged nicely after a few iterations. In earlier experiments,
where initial values were not accurate enough, the computation model had to be
altered to some extent. The parameter set had to be computed in groups in order
to assure the convergence of computation. First, only the plane rotation anglesµB¶ were set free, while the other parameter values were kept fixed. Iteration was
continued until the convergence was reached. After this, the common camera ro-
tation angles ·�¸Q¹�º4¸Q¹�»$¸ were also set free one by one and, in the final stage, radii
values of both image blocks were set free as well, and a common adjustment was
computed.

The magnitude of the maximum residual was found to be larger than expected.
It was found to be too large when compared through experience or by means
of equivalent instrumentation to other close-range measurements; this was es-
pecially the case when the fact that targeted points were used was taken into
account. The posterior estimate of the standard deviation of unit weight obser-
vation could be computed from the residual values as¼ ½ ¸¿¾ÁÀ ÂXÃ�Ä�ÂÅZÆMÇ (45)

This estimate says a lot about the fitness of the measurements with the chosen
model. In this case, the standard deviation of unit weight was over one pixel, so
it was evident that either the model was incorrect or that there were gross errors
among the observations.

When residuals were examined geometrically, the vertical alignment of residual
vectors could be noticed directly. This clear systematic pattern indicated that
either camera sensor plus lens calibration were not correct or the physical model
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presented with the chosen parameter set, Equation (31), could not depict the
actual imaging case.

Since calibration was carried out according to standard methods and camera cali-
bration parameters were kept fixed during computation, the conclusion was that
the used mathematical model could not entirely explain the physical model.

In order to verify the observed shortcoming of the mathematical model, the
photogrammetrically acquired 3D point coordinates were transformed into the
same coordinate system as the tacheometer measurements for comparison. For
transformation, a rigid body 3D transformation with three rotations and trans-
lations was used. When comparing the coordinates, it was immediately noticed
that there were big differences on coordinates of the points at greatest distance
from the camera.

The restrictions set for imaging required that all projection centres should lie on
the same plane and the orientation of the camera with respect to the supporting
bar and rotation plane should remain static during imaging. If the requirement of
projection centres lying on the same plane was violated, the effect of this discrep-
ancy should be visible on points with shorter distances also. Because the differ-
ence in object point coordinates with respect to reference data was much larger
with points far away, it was logically deduced that the reason for this discrep-
ancy was more likely due to unexpected orientation angle values than to simple
vertical translation.

Modification in the mathematical model was carried out in order to take into
account possible variation of the plane of rotation of the camera around the navel
point. The variation was suspected to be due to transversal tilt of the supporting
bar within the imaging session. Figure (19) describes the expected alteration of
camera height from nominal rotation plane during imaging due to tilting of the
bar.

È=É
Figure 19. Possible transversal tilt of bar during imaging.

An additional parameter
È

was added to the mathematical model to describe the
height difference from the nominal plane of rotation on each camera pose, see
Figure (19). The number of parameters was increased by Ê@ËÍÌ from the original set
of parameters in Equations (27) and (28). Only the first camera of the first block
was supposed to have a fixed value

ÈzÎÐÏ
defining the nominal plane. The total
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number of parameters was nearly doubled, but still the system was substantially
overdetermined. It is essential to notice that this geometrical interpretation affects
both projection centre coordinate values as well as rotation matrix construction,
as is depicted below: ÑÒÔÓÖÕØ×�Ù ÚÜÛLÝOÞXß4àB×4ÛLÝOÞXß4á=×â ×�Ù ÚÜÛLß¢ã¤äåá=×æ ×�Ù ÚÜÛLß¢ã¤äåà
×4ÛLÝ=ÞXß4á=× (46)

The change made in computation of the rotation matrix for each individual cam-
era pose could be derived from the common parameter angles of the block with
multiplication of rotation matrices:çéè]ê�ë ìOêíë î�ê Ù çéè]ï#ë ìðï¢ë î�ï Û ç²ñLê"ë òóê

(47)

This refinement of the model, presented in Equations (46) and (47), reduced the
standard error of unit weight ô õ4ö from ÷Xøúù9ûVü pixels to ü!øþýXÿ�� pixels in the common
adjustment. The effect of introducing a new parameter into the model can be il-
lustrated in the height variation of the projection centre from the nominal plane
during the imaging, which is shown in Figure (20). The fluctuation inside one
image block is quite small, but a clear shift can be noticed between image blocks.
This shift of ����� could have happened when the camera was turned into the
opposite direction at the end of the bar between the first and second image se-
quence. Similar fluctuation of an array sensor from the nominal plane rotation
during imaging has also been reported in investigations of panorama-cameras
(Parian and Gruen 2004).
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Figure 20. Height variation of projection centre during imaging.
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After this model refinement, the maximum length of the residual vector was still
over four pixels and residuals in � -direction were still slightly bigger than in � -
direction. Also, the comparison to reference showed that the 3D points were sys-
tematically farther away than points measured by a tacheometer. The conclusion
drawn from this discrepancy was that the camera must have been tilted in the
direction of the optical axis during imaging as well. Figure (21) demonstrates this
suspected phenomenon.

�
	
Figure 21. Possible tilt of the camera in direction of optical system.

The tilting can be considered as a vertical plane rotation. Some vertical and hori-
zontal displacement of a projection centre may have occurred as well as a con-
sequence of this tilt. This, however, can be neglected, since the maximum value
of the tilt � was less than �
� and the maximum effect of the tilt was less than a
millimeter in the projection centre coordinate value. So, the effect of the tilt can
be appended as an additional angle in the calculation of the rotation matrix:


������ ����� ������
������ ����� ���! 

#"
��� $%��� &'�
(48)

With this last addition, given in Equation (48), the systematic pattern on residuals
seemed to have disappeared, at least when visually examined . Also, the standard
deviation of unit weight ()+* reduced to ,.-0/�1 pixels, which is quite typical in close-
range photogrammetric cases and correlates with earlier experiments.

The refined mathematical model defined in Equations (46) and (48) was adopted
for all further computations reported in this thesis. The collinearity condition
then changed into the form:

23334 3335
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hi7 9;: < W%> @CB D?FHG IKJ.LNM�O�P Q R LNM�O
S Q T?UV< W'W @CY D'FHG IKJ[R O]\0^KS Q T?UV< W?` @�a D?FHG UdJ.O'\e^fP Q R LjMkO
S Q T<[`%>A@CBED?FHG�IKJ.LNM�O�P.Q'R LNM�O
SAQgT?UV<[`'W�@CYZD'FHG�IKJ[R O]\0^KSAQ_T?UV<k`?`�@�abD?FHGcUdJ.O'\e^fP.QXR LjMkO
SAQ_T

(49)

where terms l 	nm denote the matrix elements of rotation matrix

#�
��� ����� ���

in Equation
(48). The linearization of the collinearity condition, Equation (49), with respect to
the new unknowns is presented in Appendix II.

84



One issue yet to be dealt with is the eccentricity of the rotation system. In a
panoramic imaging system, the eccentricity of the rotation has to be determined
or it has to be minimized in order to achieve the geometry of ideal panoramic
imaging. In this research, the coordinate system is created on site, defining that
the o -axis must converge with the centre of rotation (navel, origin) and the pro-
jection centre of the first camera pose in sequence, which is not necessarily the
direction of the supporting bar. The rotation is defined with respect to this co-
ordinate system by definition. Since the bar-camera mount is assumed to be a
rigid construction, the only source of eccentricity can be the ball bearing of the
rotation or the arbitrary movement of the whole imaging system during the im-
aging sequence. The possible anti-symmetric rotation caused by a ball bearing
system can be considered to be so small compared to other sources of error that
it can be neglected. The possible arbitrary movement of the whole system during
the imaging sequence is quite hard to determine. The situation is here the same
as with panoramic imaging or with laser scanning; the instability of the imaging
platform has to be dealt with by other means. Also, here the question is handled
by mounting the imaging system on a platform, for example, on a tripod made
as stable as possible, and, in this way, ensuring that the possible vibration of the
whole system is negligible.

6.2 Comparison to reference

In order to compare photogrammetric data with reference data, a rigid body 3D
transformation between data sets for Experiment I was calculated. The length
of point-to-point differences, shown in Figure (22), represents the absolute co-
ordinate difference between data sets including inaccuracies of both measuring
methods and the coordinate transformation. The point differences near the ori-
gin are clearly greater due to the unsuitability of a tacheometer for measuring
over short distances. Whereas the tacheometer coordinates of far-off points are
more reliable, the differences between data sets are due more to the limitation of
photogrammetric methods. The second order curve, depicted in Figure (22), was
fitted to the data set of point differences. The differences are presented with re-
spect to the nominal distance of points from the origin. It can be compared with
the equivalent representation of simulated data in Figure (7), although it has to
be remembered that the camera model and the imaging configuration were not
entirely equivalent. In both real-world experiments, the radius of the imaging
sequence was near p�q�r�s and the expected observation standard deviation wasq.tvuxw�y+z'o corresponding to {ZtewZ|�}�s , which is equivalent to the used noise level ofq.t0qZp�y+z'oi~�{�t0w�}�s in simulation. The field of view was the same in both camera
models (simulated - true) .

In the optimal case, the situation can be considered to be near the simulated case
in terms of geometry (all targets facing the centre). However, the number of
points in the real-world experiment is essentially smaller than in the simulation.

85



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  2  4  6  8  10  12  14  16  18  20  22  24

D
iff

er
en

ce
 (m

)

Distance (m)

Difference in Distance

1

Figure 22. Optimal case, Experiments I

Also, it is to be noted that in the simulation the image observation accuracy is
assumed to be constant regardless of point distance. In the real-world case, the
image scale does have an effect on the accuracy of observations, especially when
the size of the target is the same, despite their location. In the simulated case,
only random noise is assumed to be found on observations, but, in the real-world
experiment, it is not possible to guarantee that all systematic error components
can be entirely compensated in computation.

In Figure (22), the coordinate difference between data sets is larger than the stan-
dard deviation of point coordinates in the simulated case in the same distance
range ( �x��������� ), compare to Figure (7). In the simulated case, the maximum
standard deviation is �x��� (noise �������0�����+�'��� at distance of �
�x� , but, in real-
world experiment, the coordinate difference is around ������� at this distance.
However, differences below �
����� within the same distance were recorded. The
derived values at the maximum distance ( �Z�x� ) give the coordinate difference of� ����� which is quite small compared to object distance.

In the case of interior space measurements, Experiment II, the effect of imperfec-
tion of reference data with shorter distances is evident, Figure (23). The variation
of coordinate differences within the same distance says something about the lack
of confidence in the reference values. However, the mean or derived value from
the fitted second-order polynomial curve gives an insight into the expected ac-
curacy of the measurements. Compared to equivalent results of the optimized
case, Experiments I, larger variation throughout the distance range can be seen.
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Figure 23. The length of point differences respect to object distance, indoor case, Experiment II.

Some discrepancies can be considered to be due to the tilted angle of the target
surface with respect to the view angle or inadequate illumination of the target
area. Insufficient illumination could be verified for the two furthermost points.
In general, illumination can be seen as one of the most restricting elements when
trying to achieve the most accurate measurements in indoor environments.

When comparing the indoor case with the optimized case, coordinate differences
with respect to reference in the indoor case are only slightly worse than with
the optimized case. However, the variation of differences is clearly larger in the
indoor case.

6.2.1 Root Mean Square Difference

Since the accuracy of 3D point measurements with this method is highly depen-
dent on the point distance from the origin, distinct coordinate differences should
be observed for different distance ranges. Another presentation of the object coor-
dinate accuracy can be given in the form of Root Mean Square Differences (RMSD).
In Tables (3) and (4), 3D coordinate RMSD’s are depicted for four distance ranges,
approximately five meters each. However, in the first range category, the closest
points are not closer than two meters. In Tables (3) and (4), the first column
presents the total point RMSD values and the next three columns present the
RMSD values in respect to each coordinate. The last column lists the number of
points falling into each distance range.
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Distance RMSD RMSD X RMSD Y RMSD Z No. of points
2m-5m 0.00705 0.00653 0.00857 0.00574 11

5m-10m 0.01010 0.01191 0.00552 0.01155 19
10m-15m 0.01393 0.01108 0.00502 0.02085 5
15m-20m 0.02459 0.03088 0.01197 0.02678 7

Table 3. Optimized case RMSD values in meters (m), Experiments I.

Distance RMSD RMSD X RMSD Y RMSD Z No. of points
2m-5m 0.01390 0.01990 0.00602 0.01214 12

5m-10m 0.01286 0.01625 0.00502 0.01439 59
10m-15m 0.02110 0.03293 0.00633 0.01451 13
15m-20m 0.02913 0.04810 0.00832 0.01277 10

Table 4. Interior space RMSD values in meters (m), Experiment II.

In Table (3), the RMSD increases with respect to the point distance, which is as
expected. With individual coordinate RMSD values, the trend is not so clear.
Especially the RMSDY values stay almost constant, except in the last distance
range. This says something about the nature of the measuring method. The point
accuracy, at worst, will always be in the outward direction from origin and the � -
coordinate axis is almost orthogonal to this direction among all points. Whereas
with � - and � -axis direction, the accuracy varies a lot and is point-location de-
pendent. Especially in the indoor experiment, the effect of the direction of the
point location can clearly be seen, see Table (4). In this case, most of the points
located far off are along the � -axis direction. The degradation of RMSDY values
in the last range category, especially visible in the optimized case, can be con-
sidered to be due to the change of image scale. In the indoor case, larger targets
were used at points locating furthest away.

The number of points in each distance range is not equal as in ideal circum-
stances. This is partly due to practical issues dictated by the object scene. In
the indoor case, the targets could only be attached on surfaces of wall, doors, or
columns, and in the optimized case, only a limited number of special targets were
available to be used in the target area.

The proportional accuracy numbers can be drawn from these RMSD values ex-
pressing the relative accuracy with respect to the size of the object. Since in this
method accuracy is expected to be symmetric with respect to the origin, the maxi-
mum dimension of the object can be considered to be twice as big as the distance
range depicted in Tables (3) and (4). Regarding this, the proportional accuracy
can be calculated to be in the range of ����������� to �������Z�Z� .
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6.3 Correlation of parameters

When determining the parameter values, the correlations between parameters
need to be considered. In least squares estimation with indirect observations, the
correlation of parameters can be problematic. In the case of a high correlation
between two parameters, it is hard to separate the influence of observations on
values of different correlating parameters in common adjustment. In principle,
the correlation of parameters should be dealt with by multivariable analysis, but
because of the complexity of computation and analysis of multivariate correlation
values, pairwise correlation values are computed instead.

In the following presentation, the pairwise correlations among common block
parameters are computed in the optimized case, Table (5-6), and in the interior
space case, Table (7-8). �   ¡ ¢�

1 -0.00599 0.07982 -0.01822
 

-0.00599 1 0.11092 0.83304
¡

0.07982 0.11092 1 -0.14633
¢

-0.01822 0.83304 -0.14633 1

Table 5. Optimized case, Experiment I, Block I�   ¡ ¢�
1 0.00441 0.08996 0.01817

 
0.00441 1 -0.11274 0.82962

¡
0.08996 -0.11274 1 0.14760

¢
0.01817 0.82962 0.14760 1

Table 6. Optimized case, Experiment I, Block II�   ¡ ¢�
1 0.00201 0.10339 0.00264

 
0.00201 1 -0.02704 0.90343

¡
0.10339 -0.02704 1 0.01085

¢
0.00264 0.90343 0.01085 1

Table 7. Interior space, Experiment II, Block I

In general, the pairwise correlations are quite small except in one case. In both
experiments and in both blocks, a high correlation was found between

 
- and

¢
-parameters. In the interior space case, the correlation was over £.¤e¥ and in the
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¦ § ¨ ©¦ 1 -0.00047 0.02927 -0.00066§ -0.00047 1 0.02684 0.91494¨ 0.02927 0.02684 1 -0.00816© -0.00066 0.91494 -0.00816 1

Table 8. Interior space, Experiment II, Block II

optimized case correlation was of the size of ª.«e¬Z­ . The reason for this high cor-
relation can be deduced from the fact that both parameters have an influence on
the scale of measurements, especially when the image plane, is perpendicular to
the rotation plane as was the case in both experiments. One reason why the cor-
related values in the optimized case were lower than in the interior space case
is that the distribution of object points in Experiment I was more even than in
Experiment II.

When the pairwise correlation of individual camera parameters ( ®d¯ , °k¯ , ±
¯ ) and ob-
ject coordinate values with common block parameters were computed, no sig-
nificant correlations were found, see Tables (9-12). In Tables (9-12), values are
the mean correlations of parameters. The maximum correlations of camera par-
ameters ( ®f¯ , °k¯ , ±�¯ ) between common block parameters were only ª.«0²x³ with the
interior space case and ª.«0²Z² with the optimized case. Therefore, these correlations
can be considered to be insignificant.´®f¯ ´°k¯ ´±�¯ ´µ ´¶ ´·¦ 0.00289 0.11401 0.09249 0.00428 0.01551 0.02311§ 0.05676 0.02096 0.01068 0.00754 0.03288 0.00641¨ 0.00702 0.12816 0.07603 0.00458 0.01581 0.01847© 0.15511 0.00876 0.00254 0.00888 0.03688 0.00669

Table 9. Optimized case, Experiment I, Block I

´®f¯ ´°k¯ ´±�¯ ´µ ´¶ ´·¦ 0.00420 0.11701 0.09568 0.00394 0.01445 0.01779§ 0.05600 0.02054 0.01214 0.00962 0.03111 0.00455¨ 0.00872 0.12486 0.08183 0.00477 0.01579 0.01717© 0.15019 0.00904 0.00316 0.01168 0.03639 0.00536

Table 10. Optimized case, Experiment I, Block II
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¸¹fº ¸» º ¸¼�º ¸½ ¸¾ ¸¿À 0.00306 0.13517 0.05711 0.01186 0.01277 0.00269Á
0.05133 0.00567 0.00324 0.01055 0.00362 0.00220Â 0.01637 0.08988 0.07867 0.01801 0.01501 0.00408Ã 0.15958 0.00561 0.00200 0.01230 0.00415 0.00272

Table 11. Interior space, Experiment II, Block I

¸¹fº ¸» º ¸¼�º ¸½ ¸¾ ¸¿À 0.00278 0.07042 0.11645 0.01162 0.01441 0.00373Á
0.04706 0.00720 0.00200 0.00919 0.00162 0.00237Â 0.01740 0.16176 0.04263 0.00671 0.00487 0.00149Ã 0.16522 0.00548 0.00146 0.00985 0.00205 0.00254

Table 12. Interior space, Experiment II, Block II

However, when pairwise correlations between camera parameters ( ¹dº , » º , ¼
º ) were
observed, a high correlation between

» º - and ¼�º -angles was found. The maximum
pairwise correlations are depicted in Tables (13) and (14). The high correlation
is apparent, since both angles have an effect on the vertical angle of the optical
axis. Since these two parameters

» º and ¼�º have been added into the mathematical
model in order to compensate the discrepancy of imaging from the ideal case,
the nominal values of these angles do not have real significance as long as de-
viation from ideal conditions can be compensated, especially when the actual
values have been a fraction of a degree.

ÄÆÅ�Ç ¹fº » º ¼
º¹Kº 1 0.26630 0.17787» º 0.26630 1 0.99159¼�º 0.17787 0.99159 1

ÄÆÅZÇ ¹fº » º ¼�º¹Kº 1 0.19951 0.15270» º 0.19951 1 0.99407¼�º 0.15270 0.99407 1

Table 13. Optimized case, Experiment I, Block I (left) and Block II (right)

ÄÆÅ�Ç ¹fº » º ¼
º¹Kº 1 0.23189 0.13985» º 0.23189 1 0.99865¼�º 0.13985 0.99865 1

ÄÆÅZÇ ¹fº » º ¼�º¹Kº 1 0.38489 0.18647» º 0.38489 1 0.99510¼�º 0.18647 0.99510 1

Table 14. Interior space case, Experiment II,Block I (left) and Block II (right)
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The high correlation of the parameters do have affect on determination of the
values of parameters in estimation. Therefore, it is sensible to try to reduce the
correlation by improving the point distribution and imaging geometry. In order
to achieve better determinability of estimates, it is also essential to acquire good
initial values of parameters. Fortunately, this can be achieved quite easily with
a proper initialization procedure, as described in Section 5.3. During the first
stage, the iteration can be carried out by taking only part of the parameters in an
adjustment process, and thereafter, with improved parameter values of the first
parameter group, release the remaining parameter values for estimation. The
acquired initial values for parameters can also be introduced in the estimation
process as weighted observations and, this way, support the adjustment not to
converge into a local minimum.

6.4 Reliability estimates

6.4.1 Internal and external reliability

When evaluating the goodness of the mensuration system, it is important to en-
sure the reliability of estimates. The reliability includes the ability to detect er-
roneous observations and evaluate the effect of undetected gross errors on esti-
mates. This can be achieved by means of statistical testing. The use of the least
squares method does not require any assumptions of distribution or statistical
properties of observations. However, while analyzing the residuals of the ob-
servation in order to detect possible gross errors, some assumption of their dis-
tribution has to be made. By treating the observations as normally distributed,
which is a fair assumption, the estimates of the linear least squares become maxi-
mum likelihood estimates (Förstner and Molenaar 1986). Also, the estimates are
then the best linear unbiased estimates for the unknown parameters. Equally, the
distribution of residuals can be assumed to follow normal distribution with zero
mean value ÈÊÉÌËÎÍ'Ï.ÐcÑ�ÒÓ
ÔÖÕNÕk× .
The effect of an observational error ØÚÙ on the residuals can be derived in relation
to the redundancy matrix Û#Ü (Förstner and Molenaar 1986):

ØÎÝÈÊÞàßáÛ#ÜAØâÙ (50)

where Û#Ü depicted in Equation (50) is defined as,

ÛáÜãÞ8äåßçæèÍXæ�é�ê�ë+ìíîí æ × ë+ìjæïé�ê�ë+ìíeí Þ ÔñðÕ�ðÕkÔ ë+ìíîí (51)

The redundancy matrix denotes the proportion of observational error that is ab-
sorbed into residuals. It is essential to notice that an error in one observation
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influences all residuals and one residual is influenced by all observational errors.
How a large portion of an observational error òâó_ô affects the corresponding re-
sidual õö ô is depicted by the diagonal element of the redundancy matrix ÷
ô . The
value of the diagonal element of the ø will be between ù and ú . The closer the
value is to ú , the better the localibility of the erroneous observation from the re-
sidual values. As can be seen in Equation (51), the structure is highly dependent
on the geometry of the measuring system.

In order to detect gross errors via testing of residual values, the calculated re-
siduals are first normalized by their estimated standard deviation. The resulting
values are known as standardized residuals õû ô :

õû ô�ü ý õö ôõþ+ÿ�� ������ ���� ü ý õö ôþ	� � � ÷kô (52)

In order to test an individual observation, whether it consists of a gross error or
not, an assumption needs to be made that the expected value of the individual
residual is zero and its distribution follows a normal distribution ö ô�

���]ù��[ú�� .
The hypothesis test can be expressed as,

� ÿ�� ö ô�ü ù��� � ö ô��ü ù (53)

The test is known as the Data Snooping test. This hypothesis testing of residuals
is based on the work of Baarda (Baarda 1968). Instead of testing individual
residual values, Equation (53), the standardized residuals õû ô are used as test
criteria. The standardized residual can be considered to be a better test criterion
than computed residuals õö ô , since it consists of the influence of local geometry
(included in value ÷kô ) on its value; this can be seen from Equation (52). The
hypotheses are, therefore:

� ÿ�� õû ô are from normal distribution or��� � a gross error has influence on the value of test statistics õû ô and the probability
density function is shifted by ��ô .
The possible influence ò û ô of error in an observation òÚógô on test statistics can be
derived from Equations (50) and (52) to the form (Förstner and Molenaar 1986):

��ô�üÌò û ô�ü ò ö ôþ	� � � ÷kô ü òÚóCôþ	� � � ÷kô (54)

It can noted, in Equation (54), that this characteristic of weaker geometry can
be summarized as follows: the smaller the redundancy number ÷
ô , the smaller
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the detectable effect on test statistic � �!#" . A corresponding formulation of the
hypotheses can be written as

$�%�& �!'")(+*-,/.�021�3$�45& �!'")(+*-,/67"�081�3 (55)

The parameter expressing the shift of the probability density function 68" , in
Equation (55), is also known as the non-centrality parameter. The problem is, of
course, that the size of an error made in observation �:9 " is not known. Therefore,
in practice, the power of the test is fixed with a specified significance level and
the non-centrality parameter is computed as a result of this selection:

6 %';=<?> ,/@�0BAC3 (56)

The significance level 1	DE@ , in Equation (56), expresses the probability of correctly
accepting an observation not consisting of an error and the power of the test A is
a probability of correctly rejecting an erroneous observation. The probabilities
and separation 6 of probability density functions of hypotheses

$F%
and
$�4

are
depicted in Figure (24).

Figure 24. Non-centrality 6 of hypotheses
$F%

and
$�4

with selected significance level and power
of test.

In hypothesis testing there are two types of error that can be made in making a
decision of accepting an observation.

Type I error: Rejecting a good observation as erroneous.

Type II error: Accepting a contaminated observation.
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Internal Reliability: By using the non-centrality parameter G2H solved from stat-
istics, the estimate of the size of a gross error not exceeding the limit of rejecting
an observation can be computed:

I HKJMLONQP	RTS G�HU V L (57)

In other words, it is the size of the error remaining on observations that cannot
be detected by using statistical testing with the selected power of the test with
an associated significance level. According to Baarda (Baarda 1968), this value
is known as the internal reliability of the measurements. It can also be seen as a
measure of controllability of the observations. The last part of the Equation (57),
namely the controllability factor G?WHXL , is given as

G WHXL N G�HU V L (58)

This is often computed to express the size of the gross error still to be detected
with respect to the standard deviation of the observation, see Equation (58). G WHXL is
a useful parameter when evaluating the internal reliability of observations with
different types of observation.

External Reliability: For continuation of the definition of interior reliability,
Baarda presented the concept of exterior reliability, which means the maximum
influence of undetected gross error on estimates. This influence can be derived
by placing the value of the undetected gross error

I HYJML in the right-hand side of
the normal equation in place of the observation:

I H[Z	LON=\^]	_a`#b)c I HBJML (59)

The exterior reliability values, in Equation (59), can be presented in the matrix
where

I:d
presents an e^fge matrix having

I HYJhL values on diagonal ijNlknmYopm2qMqhqhmBe :
I�r N=\s]	_a`�b)c IFd (60)

In Equation (60),
I�r

will be a tufFe matrix t presenting the number of unknown
parameters. However, these values are rather difficult to interpret, therefore
more-condensed values are derived from the matrix as the norm of the columnsI Z	Lpm	iCNvknmYopm2qMqhqhmBe :

w	xL N I Z b L \ I Z	LP xH (61)
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This value y	z , in Equation (61), shows the amount of the undetected gross error
that is absorbed by values of estimates compared to the standard deviation of
estimates, and is known as the sensitivity factor. It is to be noted that matrix {�|
does not have to be constructed, since y~}z can be computed from internal reliability
figures:

y }z'� {:�hz����	��K� {:�hz (62)

With an assumption that image observations are uncorrelated, Equation (62) can
be written as

y	z ���������n������ zO�
� �#�-� z� z � � (63)

This assumption essentially simplifies the computation of sensitivity factors as
can be seen from Equation (63).

6.4.2 Reliability of experiments

After the adjustment the residuals from the observation equation system were
computed. An a posteriori estimate for standard deviation of observations con-
nected with unit weight could be then calculated according to Equation (45). In
both experiments, �� � was ���������	�/� , see Tables (15) and (16), which indicates a fairly
good fitness of observation to mathematical model. The mean and maximum re-
siduals and standardized residual values are depicted in Tables (15) and (16). The
standardized residuals   � and  '¡ are derived from image residuals according to
Equation (52) and were used as test variables in hypothesis testing for outlayers.

�� � � �������n� ¢ � ¢?¡   �  '¡£¥¤�¦�§ 0.15106 0.12758 0.71427 0.62169£¥¦ � 0.49674 0.57031 2.44374 2.52473

Table 15. Residuals & standardized residuals (optimized case, Experiment I)

�� � � ������� � ¢ � ¢?¡   �  '¡£¥¤�¦�§ 0.17351 0.13385 0.78091 0.62910£¥¦ � 0.60747 0.54802 2.73555 2.60769

Table 16. Residuals & standardized residuals (interior space, Experiment II)
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In order to evaluate the imaging system with respect to the reliability of measure-
ments, internal and external reliability numbers were computed. The internal
reliability is expressed with a controllability factor ¨ª©« which gives the size of the
gross error, which still can be detected with respect to the image observation stan-
dard deviation. In the computation of controllability factors, the non-centrality
parameter ¨ « was determined from statistics, where the power of the test was¬ ­¯®±°³²

with a significance level ´ ­µ®�°�®�®�¶ . According to Inkilä (Inkilä 1996),
these are common values used in hypothesis testing of observational errors. In
Tables (17) and (18), the minimum, maximum, and mean values of controllability
factors ¨ ©« are depicted in the first column. In subsequent columns, the sensitivity
factors · and redundancy numbers ¸ of observations are depicted respectively.
The sensitivity factors are computed according to Equation (63) by assuming the
observations to be uncorrelated.

¨ ©« · ¸¹»º½¼ 4.13412 0.12877 0.27309¹¥¾n¿ 7.90719 6.74161 0.99903¹¥À�¾Á¼ 4.58102 1.88799 0.82393

Table 17. Controllability, sensitivity factors and redundancy numbers of observations (optimized
case, Experiment I)

¨ ©« · ¸¹»º½¼ 4.13699 0.20075 0.24881¹¥¾n¿ 8.28405 7.17991 0.99765¹¥À�¾Á¼ 4.39536 1.42933 0.88810

Table 18. Controllability, sensitivity factors and redundancy numbers of observations (interior space,
Experiment II)

From Tables (17) and (18), it can be seen that the minimum and mean values of
controllability factors are of a size that can be expected to be found in a normal
close-range photogrammetric case. However, the maximum values are nearly
two-times the equivalent minimum values. This indicates an inhomogeneity of
measurements. The same phenomenon can be found by observing the sensi-
tivity values, although the mean redundancy values are quite good and typical
for the close-range case. In order to examine the internal reliability values more
closely, the controllability factors were computed with respect to different object
distances. The values were generated from controllability factors corresponding
to image observations connected with object points that have fallen in the chosen
range category. The chosen presentation can be considered to be fair because of
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the nature of the imaging method; in other words, the imaging geometry does
change with respect to object distance. In Table (19), the controllability factors are
presented for four distance range categories.

Â�ÃÄ ÅÇÆ Å+È�É Å+È�Æ ÅËÊ�ÉÌ»ÍÏÎ 4.1762 4.1341 4.1341 4.1341Ì¥ÐnÑ 6.1040 6.1040 7.9072 7.9072Ì¥Ò�Ð�Î 4.6729 4.5871 4.5962 4.5828

Â ÃÄ ÅÇÆ Å+È�É Å+È�Æ ÅËÊ�ÉÌ»ÍÏÎ 4.1405 4.1370 4.1370 4.1370Ì¥ÐnÑ 5.2073 5.3980 5.3980 8.2841Ì¥Ò�Ð�Î 4.5346 4.4097 4.3977 4.3954

Table 19. Controllability factors respect to object distance; Experiment I: Optimized case (upper),
Experiment II: Interior space (lower),

What can be seen from Table (19) is that maximum values remain fairly constant
up to the last category in the interior space case, but, in the optimized case, the
abrupt change in maximum values already appears in the category under È�Æ Ì .
However, the mean values of controllability factors are nearly the same through-
out all distance ranges. One explanation could be that, even though the imaging
geometry degrades with respect to object distance, the number of images in se-
quence increases where the object point can be seen. This means a larger redun-
dancy of estimates.

In order to examine controllability separated into Ñ - and Ó -components, a similar
presentation of internal reliability divided into range categories was generated,
see Tables (20) and (21). The most interesting fact is that maximum values, as
well as mean values are, throughout the range categories, larger in Ó -components
than in Ñ -components. Again, this says something about the imaging geometry:
the geometry is stronger in the horizontal direction than in the vertical. This
is obvious, since the camera has been rotated on one plane during the imaging
sequence. Therefore, it would be a good idea to create a similar imaging sequence
on a different level parallel to the first one with a distinctive separation in height.

One general observation regarding the maximum and mean values in Tables (19),
(20) and (21) is that they are slightly bigger in the optimized case than in the in-
terior space case. This can be explained by the number of object points included in
the measurements. In the optimized case, there were Ô Æ object points measured,
whereas, in the interior space case, the number measured exceeded one hundred.
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Õ�Ö×XØ ÙÇÚ Ù+Û�Ü Ù+Û�Ú ÙËÝ�ÜÞ»ßÏà 4.3264 4.1430 4.1430 4.1430Þ¥ánâ 5.4133 5.6006 5.6006 5.6006Þ¥ã�á�à 4.6870 4.5413 4.5324 4.5082

Õ Ö×Xä ÙÇÚ Ù+Û�Ü Ù+Û�Ú ÙËÝ�ÜÞ»ßÏà 4.1762 4.1341 4.1341 4.1341Þ¥ánâ 6.1040 6.1040 7.9072 7.9072Þ¥ã�á�à 4.6588 4.6329 4.6601 4.6573

Table 20. Controllability separated to â - and å -components (Experiment I, optimized case)

Õ Ö×XØ ÙÇÚ Ù+Û�Ü Ù+Û�Ú ÙËÝ�ÜÞ»ßÏà 4.2078 4.1370 4.1370 4.1370Þ¥ánâ 5.0955 5.0955 5.0955 5.0955Þ¥ã�á�à 4.4940 4.3179 4.3074 4.3040

Õ�Ö×Xä ÙÇÚ Ù+Û�Ü Ù+Û�Ú ÙËÝ�ÜÞ»ßÏà 4.1405 4.1405 4.1405 4.1405Þ¥ánâ 5.2073 5.3980 5.3980 8.2841Þ¥ã�á�à 4.5753 4.5014 4.4880 4.4867

Table 21. Controllability separated to â - and å -components (Experiment II, interior space)
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7 DISCUSSION

This novel Circular Imaging Block method can be considered to be quite unortho-
dox from a classical photogrammetric point of view. Traditionally, in close-range
photogrammetry, a single object or objects that are distributed in a distinctively
bounded area are measured. Imaging is designed to achieve a proper configur-
ation of camera stations, preferably with convergent geometry. Conventionally,
multiple camera stations are set up and the camera station geometry is optimized
in order to achieve the required accuracy. Iteratively, the geometry of the imaging
is redesigned by alternating the multiple factors connected with the design pro-
cedure, as described in Section 2.2. All this requires a great deal of expertise and
some knowledge of estimation theory.

As opposed to the traditional approach, in this method, the imaging is achieved
outwards, inside the object space, i.e. inside scene imaging. The object does not
have to be a single object but can be composed of multiple objects distributed
around the imaging station. The measurements are made from a single im-
aging station, although multiple imaging stations can be used and are even rec-
ommended, especially if the object space is large and has a complicated structure.
Although, in the previous Chapter, accuracy aspects and reliability of the devel-
oped system were discussed and analyses were based on solid estimation theory,
the use of this method does not require a full understanding of the estimation
process. The imaging geometry is basically fixed. Only a few parameters that
have some effect on imaging geometry can be altered. This method can therefore
be regarded as a blackbox-method from the user’s point of view. Accuracy-wise,
the accuracy achieved in object space is not on the same level as with optimized
close-range measurements based on convergent imaging with high-contrast tar-
gets. But this has not been the objective of this method. The objective has been
to develop and provide a supplemental measuring method for special conditions
in close-range photogrammetry, in which traditional methods meet their limi-
tations. However, the achieved accuracy in object space has been found to be
at level of æèçéæ�ê�ënëuìlæíç�î�ë�ënë , which is adequate in many applications where
the object shape and geometry are to be measured for further analysis. One ex-
tra benefit of applying this method, perhaps not emphasized enough, is that all
three dimensional object coordinates will be in one and the same coordinate sys-
tem. Traditionally, when measurements are made in object conditions that fulfill
the same characteristics as those for which this novel method is designed, many
stereo-models or image bundle blocks have to be constructed, and coordinate
transformations made in order to get measurements into a common coordinate
system.
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7.1 Applicability of the method

A distinctive characteristic of the experiments is that the object space has been
clearly three dimensional. This property will most likely be the same in many ap-
plications. There will be objects quite near the imaging station and some objects
will lie at a distance of the outmost range of measuring capability. Convention-
ally, the imaging in close-range photogrammetry is arranged in such a way that
the precision of measurements will be preferably isotropic and with fairly con-
stant size throughout the scene. Unfortunately, the conditions under which this
method will be applied hardly ever meet the demand for a uniform image scale,
except in some simple cases. Due to imaging geometry no isotropic precision pat-
tern is not to be expected either, if measurements are made form single imaging
station. However, by setting up more than one imaging station and planning the
locations of the imaging stations inside the object area, a more homogeneous im-
age scale and isotropic precision pattern can be achieved. Another advantage of
using multiple imaging stations is the improved measuring geometry, especially
over long object distances as exemplified by Figure (25).
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( a ) Panoramic images and possible occlu-
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Figure 25. Comparison of panoramic imaging and Circular Imaging Blocks in a fictitious indoor
environment with obtrusive pillars and extensions.

This, however, requires the relative orientation of imaging stations to be solved as
in 3D mapping from panoramic images (Luhmann and Tecklenburg 2004; Schnei-
der and Maas 2005). Applying this method for 3D measurements, object points
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can be observed from single imaging station, where image image scale is quite
uniform, unlike with panoramic images, where conjugate image observations are
always from different imaging stations and therefore can have substantial im-
age scale difference. The uniform image scale can be considered to be advantage
when image observations acquisition are to be automated. Also with the same
number of imaging stations as in panoramic imaging, the occlusions can be sub-
stantially diminished, due to single station measuring capability of this novel
method. When 3D measurements are made from panoramic images, the same
3D point has to be seen in at least two images, i.e. from two imaging stations.
This is one kind of drawback in the usage of panoramas, since if object space is
complex in shape, there can be quite a number of areas that only can be seen on
one panoramic image and in this way create occlusions. The object points that
are collinear with imaging stations, i.e. two panoramic images lined up with re-
spect to the object, cannot be determined reliably. This is especially so if images
are taken on the same level. This is another reason to prefer Circular Imaging
Blocks to panoramic imaging for inside scene measurements. In Figure (25) the
comparison of panoramic imaging and circular imaging block methods are made
with respect to occlusion areas in object measurements.

Scale determination: While running the real-world experiments, it was noted
that, if only one scale measurement was observed at mean object distance, com-
puted object point coordinates were consistent with reference measurements in
short and mean object distances, but, far away, discrepancies were surprisingly
large. This is one reason why there were two separate scale measures; one
measured between two points with a short distance from imaging station, while
the second measured between two points among points locating farthest away.
Two separate scale measures seems to be needed in order to determine the scale
for measurements adequately and improve the determination of imaging geo-
metry, when there is large variation in object distances. It is recommended, there-
fore, that at least two scale measures are made if the total distance range exceedsTVUVW

, and one of these distance measurements is made between points at the far-
thest distance.

Illumination: In the interior space experiment case, the variation of illumination
was found to be quite substantial. The effect of insufficient illumination or a large
variation of illumination on object measurements can be significant. To achieve
an even illumination throughout the object scene is a general problem in all close-
range photogrammetric measurements indoors. In order to have some control
over the illumination, a source of light could be attached to the navel point of the
rotation system. The light source should be directed parallel to camera optical
axis. This way, the object will be illuminated similarly in both sequences, at least
on images having near a stereo position. However, this is not a comprehensive
solution, since in cases where there are objects at close and long distances from
camera, i.e., where there is a large image scale variation on a single image frame,
the objects closer to the camera will be over-exposured while the farthest objects
will be underexposured. Therefore, good general lighting over the whole area
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is to be taken care of and additional light sources are to be set to illuminate the
farthest objects and possible shadow areas, if this should prove possible.

Stability of imaging construction: In this research, the imaging is organized in
a controlled way. As has been shown, the original assumption of imaging has
not been entirely satisfactory and a few additional parameters have been assimi-
lated into the model to explain the variation from an ideal case. The instability
of the rotation system has been found to be the source of the variation. The ef-
fect of these disparities on object coordinates have been found to be significant,
although variations have not been extensive. In experiments, the longest radiusX used while rotating the camera around a navel point has been YVZ\[^] and, even
then, the counter balance has been discovered to be useful in stabilizing the ro-
tation system. In order to improve the stability of the rotation system, a better
mechanical design of the system has to be created, as has been achieved in the
design of panoramic cameras. Even then, the correction terms to compensate the
possible variation from the ideal conditions cannot be totally ignored, as has been
stated in papers dealing with this matter (Parian and Gruen 2004; Schneider and
Maas 2005).

7.2 Direction for further improvement

It has been shown that the measuring system presented in this thesis is functional
and object points coordinates can be reliably obtained. The results obtained from
real-world experiments have been found to be consistent with results derived
from simulations. In order to succeed in the computation of circular imaging
block adjustment, the acquisition of good initial values is crucial. Fortunately,
with presented instrumentation, the initial values are rather simple to obtain. In
adjustment, the initial values have only been treated as starting values of un-
known parameters in the estimation of the non-linear least squares system. How-
ever, the initial values can also be considered as additional observations in adjust-
ment. The observation equation for radius X estimate can be created in a way that
was achieved with the distance observation between two object points. For the
angular values, the observation equations can be constructed in a way shown by
King (King 1994). When initial values are treated as observations, the question
of proper weights has to be considered. Properly weighted observations of par-
ameters can assist in the convergency of computation and eliminate or decrease
the effect of correlation between parameters on results. However, if weights of
parameter observations are not consistent with weights of other observations, the
result of computation can be ambiguous and lead to distortions in object space.
Nevertheless, if the effect of the correlation of parameters, especially in this model_

and X , can be diminished, the approach is worthy of investigation.

Correspondingly, the camera system can be calibrated beforehand. In case the
camera is statically fixed to a supporting bar, the orientation of camera with re-
spect to rotation plane and length of radius can be determined with system cali-
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bration. All that is needed is a three-dimensional calibration field with known
object point coordinates. Thereafter, the common block parameters can be treated
as known values in an adjustment. Only parameters to be solved in addition to
object coordinates are the plane rotation `ba , roll cda , and tilt efa values.

Until now, only one camera has been used at one time. It is also possible to use
two cameras fixed into each end of the supporting bar. This way both image
sequences are obtained simultaneously. If system calibration is performed and
common block parameters are solved, also rotation values `hgia of the first image
block are bound with equivalent `bjka -values of the second block. This, however,
requires that both cameras are triggered off simultaneously. This coupling of `hgia -
and `bjka -values is meant to improve the determination of ` -angles in general. A
similar relation of roll cla - and tilt efa -angles can be established, but the coupling is
not as unambiguous as with angles `ba .
In this research, the only object features that have been dealt with have been
points. However, in an indoor environment, the object features most likely to be
found are straight lines, regular curves, planes, round pillars, etc. It is natural,
therefore, that these features should be included in the estimation model. Either
they can be incorporated within the block adjustment while block parameters are
to be solved, or they can be used as target features to be measured from known
camera positions. The procedure used in image observations of point features is
quite suitable for linear features also. The procedure, in which the operator makes
initial measurements on one image and the system automatically derives the ob-
servation of the same object feature from subsequent images, is quite applicable
for guided object modelling. The procedure can be called an assisted automatic
measuring approach. If lines are measured from an image sequence and the par-
ametric presentation of lines is to be solved as in linear feature photogrammetry
(Mulawa and Mikhail 1988; Mulawa 1989; Heikkinen 1994), there could be cases
when a solution cannot be found. The lines parallel to the plane on which the
camera is rotated cannot be determined if end points of the line are not visible
on images. In order to solve this problem, another image sequence pair, whose
rotation plane is parallel to the first image sequence pair, should be made. A dis-
tinctive separation in the vertical direction also improves the general intersecting
geometry.

It was noted earlier in this section that, by using the imaging model presented
in this research, some occlusions can be avoided, in contrast to the panoramic
imaging approach. However, some occluded areas might still remain, even with
careful planning. One option to be seriously considered for future research is the
inclusion in common adjustment of stereo pairs that cover the areas of occlusion.
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8 CONCLUSION

In this thesis, a novel Circular Imaging Block method and its mathematical model
have been developed. This offers a new approach to close-range photogram-
metric object reconstruction, which is most applicable in special circumstances.

Factors affecting the performance of the method have been revealed by the use of
computer simulations. The expected accuracy of 3D measurements can thereby
be derived from simulations regarding: the quality of image observations, the
number of images in a sequence, and the radius of the circle. This will also assist
in the design of measurements.

With the help of real-world experiments, the functionality of the developed
method has been verified. A refinement to the mathematical model has been
made, which also encompasses the possible deviation from an initial model of
imaging in practice. Consequently, with the completed mathematical model, an
accuracy capability of up to monqpVrVr\r has been verified with respect to reference
data when using an off-the-shelf digital camera. The results can be considered
to be adequate in several applications for 3D data acquisition in difficult inside
scene measuring cases.

The presented method is designed to be used for measuring the surrounding ob-
ject space from a single point of location. However, more than one such imaging
station can be combined to achieve a more precise and geometrically improved
network in terms of measuring accuracy. On the basis of experience obtained in
this work, it is recommended that object distances longer than pVrts should not
be measured from a single imaging station; rather, if the maximum dimension of
the space exceeds u\rVs , multiple imaging stations ought to be established. How-
ever, the feasible range of measurements from a single imaging station can be
estimated to be between pwvxmfyzs , in general.

A good quality of initial values for parameters has been found to be essential with
this method, but this issue can be considered to be quite general in close-range
photogrammetry. However, with this method, the requirement is more stringent.
Fortunately, the acquisition of initial values for parameters is a straight-forward
procedure, which can partly be computerized. Some attention, however, has to
be paid to data correctness.

In this work, the measurements from an image sequence have been semi-
automated. When acquiring image observations, the knowledge of camera orien-
tation information is exploited. This has led to measuring from a single image
while corresponding image observations on subsequent images in the sequence
are derived automatically. The single image guided measuring procedure is es-
pecially suitable for this kind of imaging approach, where subsequent images
do not differ much in their orientation. Characteristics of the procedure have
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also been used in measurements of an image block. However, in order to auto-
mate the acquisition of observations even more, the use of interest operators and
the feature-based matching approach in image block measurements should be
seriously considered.

The object measurements made by using this method have been performed with-
out any control points or control features. By applying this method, the coor-
dinates acquired will be directly in the same local coordinate system. This can
be regarded as a real benefit because coordinate transformations from one sub-
model to another are no longer needed.

A further solution has been obtained to the problem of inside scene object mod-
elling, where the design of imaging geometry has been found to be the most chal-
lenging task. This method has been created for the purpose of object reconstruc-
tion of stationary objects from a moving camera. The design of imaging geometry
in this approach has been greatly simplified. One of the reasons for simplification
of the design process has been to provide a technique for non-photogrammetrists
or inexperienced users to create an image configuration for 3D object measure-
ments. The method can be considered to work like a “blackbox” method, where
imaging geometry design can be created without any knowledge of the theoret-
ical background of the method. By means of confined parametrization of cam-
era position and orientation in observation adjustment model, the weakness of
imaging geometry has been partly compensated. The use of redundant image
observations, i.e., overdetermination, has improved the accuracy in object space
positioning and provided a better controllability of measurements compared to
the equivalent imaging geometry of present methods.

The objective of the thesis was to obtain a comprehensive answer to the following
question:

Can a circular imaging block be robust enough and provide object measure-
ments for the purpose of photogrammetric object reconstruction?

The answer to this question is demonstrably affirmative. A new imaging method
has been developed and its mathematical model derived for this difficult case.
With refinements the mathematical model has been shown to be consistent with
the practical imaging conditions. The feasibility of the method have been demon-
strated with real examples and the accuracy of the measurements satisfies the
demands of object reconstruction in general.

106



References

Ackermann, F. (1984). Digital image correlation: Performance and potential ap-
plication in photogrammetry, Photogrammetric Record 11(64): 429–439. (Cited on
p. 70 and 71.)

Baarda, W. (1968). A Testing Procedure for Use in Geodetic Networks, Vol. 2(5),
Netherlands Geodetic Commission, p. 97. (Cited on p. 93 and 95.)

Balzani, M., Pellegrinelli, A., Perfetti, N., Russo, P. and Tralli, F. U. S. (2002). Cyrax
2500 laser scanner and g.p.s. operational flexibility: From detailed close range
surveying, to urban scale surveying, in W. Boehler and P. Patias (eds), Int. Work-
shop on Scanning for Cultural Heritage Recording (CD), CIPA WG6 and ISPRS
Comm. V, Corfu, Greece, pp. 27–32. (Cited on p. 22.)

Bell, J., Squyres, S. W., Herkenhoff, K., Maki, J. N., Arneson, H. M., Brown, D.,
Collins, S. A., Dingizian, A., Elliot, S. T., Hagerott, E. C., Hayes, A. G., John-
son, M. J., Johnson, J. R., Joseph, J., Kinch, K., Lemmon, M. T., Morris, R. V.,
Scherr, L., Schwochert, M., Shepard, M. K., Smith, G. H., Shol-Dickstein, J. N.,
Sullivan, R. J., Sullivan, W. T. and Wadsworth, M. (2003). Mars exploration
rover athena panoramic camera (pancam) investigation, Journal of Geophysical
Research 108(E12): 30. (Cited on p. 27.)

Beraldin, J.-A., El-Hakim, M. P. S., Godin, G., Latouche, C., Valzano, V. and
Bandiera, A. (2002). Expolring a byzantine crypt trough a high resolution
texture mapped 3d model: Combining range data and photogrammetry, in
W. Boehler and P. Patias (eds), Int. Workshop on Scanning for Cultural Heritage
Recording (CD), CIPA WG6 and ISPRS Comm. V, Corfu, Greece, pp. 65–72.
(Cited on p. 21.)

Boehler, W. and Marbs, A. (2002). 3d scanning instruments, in W. Boehler and
P. Patias (eds), Int. Workshop on Scanning for Cultural Heritage Recording (CD),
CIPA WG6 and ISPRS Comm. V, Corfu, Greece, pp. 9–12. (Cited on p. 20.)

Borg, C. E. and Cannataci, J. A. (2002). Thealasermetry: A hyprid approach to
documentation of sites and artefacts, in W. Boehler and P. Patias (eds), Int.
Workshop on Scanning for Cultural Heritage Recording (CD), CIPA WG6 and ISPRS
Comm. V, Corfu, Greece, pp. 93–104. (Cited on p. 22.)

Brenner, C. and Haala, N. (1998). Rapid acuquisition of virtual city models from
multiple data sources, Real-Time Imaging and Dynamic Analysis, Vol. XXXII, Part
5 of International Archives of Photogrammetry and Remote Sensing, ISPRS Sym-
posium Comm. V, Hakodate, Japan, pp. 323–330. (Cited on p. 19.)

Brown, D. C. (1966). Dicentering distortion of lenses, Photogrammetric Engineering
32(3): 444–462. (Cited on p. 47.)

107



Brown, D. C. (1971). Close-range camera calibration, Photogrammetric Engineering
37(8): 855–866. (Cited on p. 47.)

Brown, D. C. (1976). The bundle method - progress and prospects, in K. Löfström
and A. Savolainen (eds), XXI International Congress of ISP, Vol. XXI, Part 03-03-
02 of International Archives of Photogrammetry, ISP, Helsinki, Finland, pp. 1–33.
(Cited on p. 30.)

Chapman, D., Deacon, A. and Brown, J.-L. (2004). An omnidirectional im-
aging system for the reverse engineering of industrial facilities, in H.-G. Maas
and D. Schneider (eds), Panoramic Photogrammetry Workshop, Vol. XXXIV, Part
5/W16 of International Archives of Photogrammetry and Remote Sensing, ISPRS,
Dresden,Germany, p. 8. (Cited on p. 26 and 39.)

Chikatsu, H. and Anai, T. (1998). Relics modeling and visualization in virtual
environment, Real-Time Imaging and Dynamic Analysis, Vol. XXXII, Part 5 of
International Archives of Photogrammetry and Remote Sensing, ISPRS Symposium
Comm. V, Hakodate, Japan, pp. 528–532. (Cited on p. 18.)

Cooper, M. A. R. and Robson, S. (1996). Close Range Photogrammetry and Machine
Vision, Whittles Publishing, Chapter Theory of Close Range Photogrammetry,
pp. 9–51. (Cited on p. 46.)

El-Hakim, S., Beraldin, J.-A. and Picard, M. (2002). Detailed 3d reconstruction
of monuments using multiple techniques, in W. Boehler and P. Patias (eds), Int.
Workshop on Scanning for Cultural Heritage Recording (CD), CIPA WG6 and ISPRS
Comm. V, Corfu, Greece, pp. 58–64. (Cited on p. 21.)

El-Hakim, S. F., Boulanger, P., Blais, F. and Beraldin, J. (1997). A system for indoor
3-d mapping and virtual environments, in S. F. El-Hakim (ed.), Videometrics V,
Vol. 3174, SPIE, pp. 21–35. (Cited on p. 18, 19, 24, and 36.)

El-Hakim, S. F., Brenner, C. and Roth, G. (1998). An approach to creating virtual
environments using range and texture, Real-Time Imaging and Dynamic Analysis,
Vol. XXXII, Part 5 of International Archives of Photogrammetry and Remote Sensing,
ISPRS Symposium Comm. V, Hakodate, Japan, pp. 331–338. (Cited on p. 18,
19, 24, and 36.)

Foramitti, H. and Ackler, F. (1976). Emphfelungen für die Anwendung der Photo-
grammetrie im Denkmalschutz, in der Architektur und Archäologie, Sonderheft 31
der Österreichishen Zeitschrift für Vermessungswesen und Photogrammetrie,
Österreichischer Veraien für Vermessungswesen und Photogrammetrie, p. 78.
(Cited on p. 23.)

Förstner, W. (1986). A feature based correspondence algorithm for image
matching, in E.Kilpelä, A.Savolainen and A.Laiho (eds), Proceedings of the Sym-
posium from Analytical to Digital, Vol. XXVI, Part 3/3 of International Archives of

108



Photogrammetry and Remote Sensing, ISPRS Symposium Comm. III, Rovaniemi,
Finland, pp. 150–166. (Cited on p. 66.)

Förstner, W. and Gülch, E. (1987). A fast operator for detection and precise lo-
cation of distinct points, corners and centres of circular features, in A. Gruen,
H. Beyer, Z. Parsic and L. Steinbrückner (eds), Intercommission Conference on
Fast Processing of Photogrammetric Data, International Archives of Photogram-
metry and Remote Sensing, ETH-Hönggerberg, Zürich, Swizerland, pp. 281–
305. (Cited on p. 66.)

Förstner, W. and Molenaar, M. (1986). Statistical concepts for quality control
(tutorial), Vol. XXVI, Part 3/4 of International Archives of Photogrammetry and
Remote Sensing, ISPRS Symposium III, Rovaniemi, Finland. (Cited on p. 92
and 93.)

Fraser, C. S. (1982). Optimization of precision in close-range photogrammetry,
Photogrammetric Engineering & Remote Sensing 48(4): 561–570. (Cited on p. 29
and 33.)

Fraser, C. S. (1984). Network design considerations for non-topographic photo-
grammetry, Photogrammetric Enginering and Remote Sensing 50(8): 1115–1126.
(Cited on p. 29, 30, 33, 34, 39, and 58.)

Fraser, C. S. (1989). Non-Topographic Photogrammetry, second edn, ASPRS,
Falls Church, Virginia U.S.A., Chapter Optimatization of networks in non-
topographic photogrammetry, pp. 95–106. (Cited on p. 58.)

Fraser, C. S. (1992). Photogrammetric measurement to one part in a million, Photo-
grammetric Enginering and Remote Sensing 58(3): 305–310. (Cited on p. 22, 29,
and 33.)

Fraser, C. S. (1996). Close Range Photogrammetry and Machine Vision, Whittles Pub-
lishing, Chapter Network design, pp. 256–282. (Cited on p. 29, 30, 33, and 35.)

Fraser, C. S. and Mallison, J. A. (1992). Dimensional characterization of a large
aircraft structure by photogrammetry, Photogrammetric Enginering and Remote
Sensing 58(5): 539–543. (Cited on p. 35.)

Fryer, J. G., Clarke, T. A. and Chen, J. (1994). Lens distortion for simple c-
mount lenses, Close Range Techniques and Machine Vision, Vol. XXX, Part 5 of
International Archives of Photogrammetry and Remote Sensing, ISPRS Symposium
Comm. V, Melbourne, Australia, pp. 97–101. (Cited on p. 78.)

Grafarend, E. (1974). Optimisation of geodetic networks, Bollettino di Geodesia e
Scienze Affini 33(4): 351–406. (Cited on p. 33 and 34.)

Grün, A. (1996). Close Range Photogrammetry and Machine Vision, Whittles Publish-
ing, Chapter Least Squares matching: a Fundamental measurement Algorithm,
pp. 217–255. (Cited on p. 70.)

109



Grün, A. W. and Baltsavias, E. P. (1985). Adaptive least squares correlation
with geometrical constraints, Computer Vision for Robots, Vol. 595, SPIE, Cannes,
pp. 72–82. (Cited on p. 70.)

Guidi, G., Tucci, G., Beraldin, J.-A., Ciofi, S., Damato, V., Ostuni, D., Costantino,
F. and Hakim, S. E. (2002). Multiscale archaeological survey based on the inte-
gration of 3d scanning and photogrammetry, in W. Boehler and P. Patias (eds),
Int. Workshop on Scanning for Cultural Heritage Recording (CD), CIPA WG6 and
ISPRS Comm. V, Corfu, Greece, pp. 13–18. (Cited on p. 21.)

Haggrén, H. and Mattila, S. (1997). 3-d indoor modeling from videography, Video-
metrics V, Vol. 3174, SPIE, San Diego, California, pp. 14–19. (Cited on p. 23.)

Hartley, R. (1993). Photogrammetric techniques for panoramic cameras, Itegrate-
ing Photogrammetric Techniques with Scene Analysis and Machine Vision, Vol. 1944,
Orlando, U.S.A., p. 13. (Cited on p. 25.)

Hastedt, H., Luhmann, T. and Tecklenburg, W. (2002). Image-variant interior
orientation and sensor modelling of high-quality digital cameras, in P. Patias
(ed.), Close-Range Imaging, Long-Range Vision, Vol. XXXIV, Part 5 of International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
ISPRS Symposium Comm. V, Corfu, Greece, p. 6. (Cited on p. 48.)

Heikkinen, J. (1994). Linear feature based approach to map revision., Mapping and
Environmental Applications of GIS Data, Vol. XXX, Part 4 of International Archive
of Photogrammetry and Remote Sensing, ISPRS Symposium Comm. IV, Athens,
Georgia, U.S.A., pp. 344–351. (Cited on p. 36 and 104.)

Inkilä, K. (1996). Pienimmän Neliösumman Estimointi, 2. korjattu painos edn,
Teknillinen korkeakoulu, Fotogrammetrian ja kaukokartoituksen laboratorio,
Otaniemi, Espoo, Finland, p. 106. (Cited on p. 97.)

Inkilä, K. and Laiho, A. (1989). The minimum-norm solution of a rank-deficient
least squares problem by qr-decomposition, in L. Mussio (ed.), Tutorial on
"Mathematical Aspects of Data Analysis", number InterCommission Working
Group III/VI in International Society for Photogrammetry and Remote Sensing,
ISPRS, Pisa, Italy, pp. 37–47. (Cited on p. 34.)

Ji, Q., Costa, M. S., Haralick, R. M. and Shapiro, L. G. (2000). A robust linear least-
squares estimation of camera exterior orientation using multiple geometric fea-
tures, ISPRS Journal of Photogrammetry and Remote Sensing 55: 75–93. (Cited on
p. 36.)

Jiang, G., Wei, Y., Quan, L., tat Tsui, H. and Shum, H. Y. (2005). Outward-looking
circular motion analysis of large image sequences, IEEE Transactions on Pattern
Analysis and Machine Intelligence 27(2): 271–277. (Cited on p. 26.)

110



Kang, S. B. and Szeliski, R. (1997). 3-d scene data recovery using omnidirec-
tional multibaseline stereo, International Journal of Computer Vision 25(2): 167–
183. (Cited on p. 26.)

Khalil, O. A. and Grussenmeyer, P. (2002). Single image and topology approaches
for modeling buildings, Close-Range Imaging, Long-Range Vision, Vol. XXXIV,
Part 5 of International Archives of Photogrammetry and Remote Sensing, ISPRS
Symposium Comm. V, Corfu, Greece, pp. 131–136. (Cited on p. 24.)

King, B. A. (1994). Methods for the Photogrammetric Adjustment of Bundles of Con-
strained Stereopairs, PhD thesis, The University of Newcastle, New South Wales,
Australia 2308, p. 220. (Cited on p. 36 and 103.)

Knuth, D. E. (1981). The Art of Computer Programming. Part 2: Seminumerical Al-
gorithms, Addison-Wesley, Reading, Mass., U.S.A., p. 688. (Cited on p. 59.)

Koistinen, K., Latikka, J. and Pöntinen, P. (2001). The cumulative 3d data
collection and management during an archaeological project, Surveying and
Documentation of Historic Buildings, Monuments, Sites - Traditional and Modern
Methods, CIPA, Potsdam, Germany, p. 6. (Cited on p. 18.)

Kukko, A. (2004). A new method for perspective centre alignment for spherical
panoramic imaging, The Photogrammetric Journal of Finland 19(1): 37–46. (Cited
on p. 25.)

Lapack (2005). Lapack – linear algebra package version 3.0.
http://www.netlib.org/lapack/index.html
(Reference date 27.07.2005) (Cited on p. 72.)

Leroux, C., Even, P., Lottin, A., Gelin, R., Idasiak, J. M., Boissonneau, J. F. and
Jeanjacques, M. (2002). Flexible 3-d modelling of hostile environments with
constrined viewpoint and multiple unknowns, in P. Patias (ed.), Close-Range
Imaging, Long-Range Vision, Vol. XXXIV, Part 5 of International Archives of Photo-
grammetry and Remote Sensing, ISPRS Symposium Comm. V, Corfu, Greece,
pp. 175–180. (Cited on p. 39.)

Lichti, D. D., Gordon, S. J., Steward, M. P., Franke, J. and Tsakiri, M. (2002). Com-
parison of digital phtogrammetry and laser scaning, in W. Boehler and P. Patias
(eds), Int. Workshop on Scanning for Cultural Heritage Recording (CD), CIPA WG6
and ISPRS Comm. V, Corfu, Greece, pp. 39–46. (Cited on p. 21.)

Luhmann, T. and Tecklenburg, W. (2002). Bundle orientation and 3-d object re-
construction from multiple-station panoramic imagery, Close-Range Imaging,
Long-Range Vision, Vol. XXXIV, Part 5 of International Archives of Photogrammetry
and Remote Sensing, ISPRS Symposium Comm. V, Corfu, Greece, pp. 181–186.
(Cited on p. 25.)

111

http://www.netlib.org/lapack/index.html


Luhmann, T. and Tecklenburg, W. (2004). 3-d object reconstruction from multiple-
station panorama imagery, in D. S. H-G Maas (ed.), Panoramic Photogrammetry
Workshop, Vol. XXXIV, Part 5/W16, ISPRS, Dresden,Germany, p. 8. (Cited on
p. 26 and 101.)

Maki, J. N., Bell, J., Herkenhoff, K., Squyres, S. W., Kiely, A., Klimesh, M.,
Schwoshert, M., Litwin, T., Willson, R., Johnson, A., Maimone, M., Baum-
gartner, E., Collins, A., Wadsworth, M., Elliot, S. T., Dingizian, A., Brown,
D., Hagerott, E. C., Scherr, L., Deen, R., Alexander, D. and Lorre, J. (2003).
Mars exploration rover engineering cameras, Journal of Geophysical Research
108(E12): 24. (Cited on p. 27.)

Mason, S. O. (1995). Conceptual model of the convergent multistation network
configuration task, Photogrammetric Record 15(86): 277–299. (Cited on p. 29, 35,
39, and 58.)

McGlone, C. (1995). Bundle adjustment with object space geometric constarints
for site modeling, Integrating Photogrammetric Techniques with Scene Analysis and
Machine Vision II, Vol. 2486, SPIE, SPIE, pp. 25–35. (Cited on p. 36.)

Mikhail, E. (1976). Observations and Least Squares, IEP-A Dun-Donneley, New
York, U.S.A., p. 497. (Cited on p. 31, 33, 37, 50, and 55.)

Mikhail, E. M., Bethel, J. S. and McGlone, J. C. (2001). Introduction to Modern
Photogrammetry, John Wiley & Sons, Inc., p. 479. (Cited on p. 33, 34, 37, 55, 66,
and 67.)

Mulawa, D. C. (1989). Estimation and photogrammetric treatment of linear features,
PhD thesis, Purdue, Ann Arbor, MI, U.S.A., p. 312. (Cited on p. 35 and 104.)

Mulawa, D. C. and Mikhail, E. M. (1988). Photogrammetric treatment of lin-
ear features, Vol. XXVII, Part B/3 of International Archive of Photogrammetry and
Remote Sensing, ISPRS Congress, Kyoto, Japan, pp. 383–393. (Cited on p. 35
and 104.)

Ng, K., Sequeira, V., Butterfield, S., Hogg, D. and Goncalves, J. G. M. (1998).
An integrated multi-sensory system for photo-realistic 3d scene reconstruc-
tion, Real-Time Imaging and Dynamic Analysis, Vol. XXXII, Part 5 of International
Archives of Photogrammetry and Remote Sensing, ISPRS Symposium Comm. V,
Hakodate, Japan, pp. 356–363. (Cited on p. 19 and 21.)

Niini, I. (2000). Photogrammetric Block Adjustment Based on Singular Correlation,
PhD thesis, Helsinki University of Technology, Otakaari 1, FIN-02015 HUT,
Finland, p. 111. (Cited on p. 47.)

Ogleby, C. (2001). Olympia - home of the ancient and modern olympic games
a virtual reality three dimensional experience, Recreating the Past - Visualiza-
tion and Animation of Cultural Heritage, Vol. XXXIV, Part 5/W1 of International
Archives of Photogrammetry and Remote Sensing, p. 5. (Cited on p. 18, 19, and 21.)

112



Olague, G. (2002). Automated photogrammetric network design using genetic
algorithms, Photogrammetric Engineering & Remote Sensing 68(5): 423–431. (Cited
on p. 35.)

Parian, J. A. and Gruen, A. (2004). A refined sensor model for panoramic cameras,
in D. S. H-G Maas (ed.), Panoramic Photogrammetry Workshop, Vol. XXXIV, Part
5/W16, ISPRS, Dresden,Germany, p. 12. (Cited on p. 25, 83, and 103.)

Peleg, S. and Ben-Ezra, M. (1999). Stereo panorama with a single camera,
Computer Vision and Pattern Recognition (CVPR), IEEE, Fort Collins, Colorado,
U.S.A., pp. 1395–1402. (Cited on p. 26 and 54.)

Pollefeys, M., Gool, L. V., Vergauwen, M., Cornelis, K., Verbiest, F. and Tops,
J. (2003). 3d capture of archeology and architecture with a hand-held camera,
Vision techniques for digital architectural and archeological archives, Vol. XXXIV, Part
5/W12 of International Archives of Photogrammetry and Remote Sensing, ISPRS,
Ancona, Italy, pp. 262–267. (Cited on p. 18, 22, and 39.)

Pollefeys, M., Gool, L. V., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J. and
Koch, R. (2004). Visual modeling with a hand-held camera, International Journal
of Computer Vision 59(3): 207–232. (Cited on p. 22, 30, and 39.)

Pollefeys, M., Vergauwen, M. and Gool, L. V. (2000). Automatic 3d modeling from
image sequences, Vol. XXXIII, Part B5 of International Archives of Photogrammetry
and Remote Sensing, ISPRS Congress, Amsterdam, Netherlands, pp. 619–626.
(Cited on p. 22 and 39.)

Pöntinen, P. (1999). On the creation of panoramic images from image sequences,
Photogrammetric Journal of Finland 16(2): 43–67. (Cited on p. 25 and 39.)

Schenk, T. (1999). Digital Photogrammetry Volume I, TerraScience, Laurelville,
Ohio, U.S.A., p. 428. (Cited on p. 70.)

Schneider, D. and Maas, H.-G. (2005). Combined bundle adjustment of
panoramic and central perspective images, in U. K. R. Reulke (ed.), Panoramic
Photogrammetry Workshop, Vol. XXXVI, Part 5/W8 of International Archives of
Photogrammetry and Remote Sensing, Berlin, Germany, p. 4. (Cited on p. 25, 26,
101, and 103.)

Schwidefsky, K. and Ackermann, F. (1978). Fotogrammetria (in Finnish, translated
from original "Photogrammetrie", in German), seventh edn, Otakustantamo, Es-
poo, Finland, p. 384. (Cited on p. 36.)

Seales, W. B. and Faugeras, O. D. (1995). Building three-dimensional ob-
ject models from image seaquence, Computer Vision and Image Understanding
61(3): 308–324. (Cited on p. 19 and 22.)

113



Seitz, S. M., Kalai, A. and Shum, H.-Y. (2002). Omnivergent stereo, International
Journal of Computer Vision 48(3): 159–172. (Cited on p. 27 and 54.)

Sequeira, V., Ng, K., Wolfart, E., Goncalves, J. and Hogg, D. (1999). Automated
reconstruction of 3d models from real environments, ISPRS Journal of Photo-
grammetry & Remote Sensing 54(1): 1–22. (Cited on p. 18 and 21.)

Shortis, M., Ogleby, C., Robson, S., Karalis, E. and Bayer, H. (2001). Calibration
modeling and stability testing for the kodak dc200 series digital still camera, in
S. El-Hakim and A. Gruen (eds), Videometrics and Optical Methods for 3D Shape
Measurements, Vol. 4309, SPIE, San Jose, CA, U.S.A., pp. 148–153. (Cited on
p. 48.)

Shortis, M., Robson, S. and Beyer, H. (1998). Principal point behaviour and
calibration parameter models for kodak dcs cameras, Photogrammetric Record
16(92): 165–186. (Cited on p. 48.)

Slama, C. C. (ed.) (1980). Manual of Photogrammetry, fourth edn, American Society
of Photogrammetry, 105 N. Virginia Ave. Falls Church, Va 22046 U.S.A., p. 1056.
(Cited on p. 30, 36, and 51.)

van den Heuvel, F. (2003). Automation in Architectural Photogrammetry Line-
Photogrammetry for the Reconstruction from Single and Multiple Images, PhD thesis,
Techniche Universiteit Delft, The Netherlands, p. 190. (Cited on p. 22.)

van den Heuvel, F. A. (1998). Vanishing point detection for architectural photo-
grammetry, Real-Time Imaging and Dynamic Analysis, Vol. XXXII, Part 5 of
International Archives of Photogrammetry and Remote Sensing, ISPRS Symposium
Comm. V, Hakodate, Japan, pp. 652–659. (Cited on p. 22 and 24.)

Wendt, A. (2004). On the automation of the registration og point clouds using
the metropolis algorithm, Vol. XXXV, Part B/3 of International Archives of Photo-
grammetry and Remote Sensing, ISPRS Congress, Istanbul, Turkey, p. 6. (Cited on
p. 21.)

Wester-Ebbinghaus, W. (1978). Photogrammetrische punktbestimmung durch
bündelausgleichung zur allseitigen erfassung eines räumlichen objektes,
Bildmessung und Luftbildwesen 46(6): 198–204. (Cited on p. 30.)

Wester-Ebbinghaus, W. (1982). Single station self calibration mathematical formu-
lation and fisrt experiences, Precision and Speed in Close Range Photogrammetry,
Vol. XXIV, Part V/2 of International Archieves of Photogrammetry and Remote Sens-
ing, ISPRS Symposium Comm. V, Yorks, UK, pp. 533–550. (Cited on p. 25
and 39.)

Youcai, H. and Haralick, R. M. (1999). Testing camera calibration with constraints,
Photogrammetric Engineering & Remote Sensing 65(3): 249–258. (Cited on p. 35.)

114



APPENDIX I

This appendix presents the partial derivatives of the observation equation with respect to
unknown camera and block parameters as well as object point coordinates.

Observation equation{||||} ||||~
�������������d�i���k��� �������\������� � ���¢¡z�¤£¥�k��� �§¦¥� � �¨�¢©z�¤ª«�¬��� �§�­�¯®±°²� �i�

�³©¯�d�i���k��� �������\������� � �³©�¡z�¤£¥�k��� �§¦¥� � �´©�©z�¤ª«�¬��� �§�­�¯®±°²� �i�
µ¶�·��� �³¡¯�d�i���k��� �¸���d�V�¥���¢� � �³¡�¡z�¤£¥�k��� �§¦¥� � �³¡�©z�¤ª«�k��� �§���L®±°¹� �i�

�³©¯�d�i���k��� �¸���d�V�¥���¢� � �³©�¡z�¤£¥�k��� �§¦¥� � �³©�©z�¤ª«�k��� �§���L®±°¹� �i�
where ¦ is a constant and symbols �t�»º denote the rotation matrix elements of ¼�½f¾�¿ ÀÁ¾�¿ Â^¾ :

¼²½f¾Ã¿ À�¾Ã¿ Â^¾ � ¼²½fÄ¯¿ ÀÁÄL¿ Â^ÄÆÅf¼�ÇÈ¾
In following equations the observation equation is simplified into a form:{|||} |||~

�����É��ª �Ê
µ¶���É�¶ª µÊ

where ª � denotes the nominators of the fraction depicted in equations � , and ª µ of µ
respectively.

Ê
is the denominator of the fraction in both equations.

In following presentation only partial derivatives of ª � , ª µ and
Ê

are depicted. The final
derivatives of observation equation can be computed asË �ËÍÌ �Î�É��Ï ª � Ê � Ï Ê ª �Ê ¡Ë µËÍÌ �Î�É��Ï ª µ Ê � Ï Ê ª µÊ ¡
where

Ì
denotes the unknown parameter and Ï ª � , Ï ª µ and Ï Ê present equivalent

partial derivatives of ª � , ª µ and
Ê

with respect to
Ì

It is to be noted that in case one would program the equations for the computer, parts of the
equations can be substituted by elements of rotation matrices and consequently simplify
the programming substantially. The presentation of rotation matrices is also included in
this appendix.
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Partial Derivates with respect to Ð�Ñ ÒÓ

ÔÕ×ÖÔ ÐÑ ÒÓ Ø ÙÚÛ ÜÝ Þ Ù ÚÛ Üiß Þ Ù ÚÛ Üià Þá ÜÛ âäã Üiå ÞÛ â ã Ü ß Þtæ ÙÚÛ Üiå ÞÛ â ã ÜÝ Þ ÙÚÛ Ü ß Þ ÞÛ â ã Üià Þ

ÔÕ×çÔ ÐÑ ÒÓ Ø æ Ù ÚÛ ÜÝ ÞÛ âäã Ü ß Þ Ù ÚÛ Ü à Þá ÜÛ â ã Üiå Þ Ù ÚÛ Üiß Þá Ù ÚÛ Üå ÞÛ âäã ÜÝ ÞÛ â ã Üiß Þ ÞÛ â ã Ü à Þ

ÔèÔ ÐÑ ÒÓ ØÛ â ã ÜÝ Þ Ù ÚÛ Ü à Þá Ù ÚÛ Üå Þ Ù ÚÛ ÜÝ ÞÛ â ã Üià Þ
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Partial Derivates with respect to é�ê ëì

íî×ïí éê ëì ð ñòó ôiõ öó ÷äø ôiù öú ó ÷äø ôõ öó ÷ø ôû ö ñò ó ôù ö

íî×üí éê ëì ð ñòó ôiõ ö ñò ó ôiù ötý ó ÷ø ôiõ öó ÷äø ôû öó ÷ø ôiù ö

íþí éê ëì ð ý ó ÷äø ôiõ ö ñò ó ôû ö
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Partial Derivates with respect to ÿ�� ��
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Partial Derivates with respect to �

�� �� � � � �� !�" # !%$& � ! � # � �� !�' # ( � �  ! � # � �� !) # $& � !�' # # !* +, - $& � ! " # # ( !, � �� ! � # � �� !�' # ( $& � ! � # � �  !) # $& � !�' # # . + (

$& � ! " # !$& � ! � # � �� !�' # ( � �  ! � # � �  !) # $& � !�' # # !/ + ( - � �  ! " # #

�� 0� � � ! $& � ! � # $& � !�' # , � �  ! � # � �  !) # � �  !�' # # � �  ! " # !* +, - $& � !�" # # ( !, � �  ! � # $& � !' # , $& � ! � # � �� !) # � �  !' # # . + (! $& � ! � # $& � !�' # , � �  ! � # � �  !) # � �  !�' # # $& � ! " # ! / + ( - � �  ! " # #

�1 � � �, � �� ! " # � �  ! � # $& � !) # !* +, - $& � ! " # # , $& � ! � # $& � !) # . +, $& � ! " # � �  ! � # $& � ! ) # ! / + ( - � �� ! " # #119



Partial Derivates with respect to 2

34 53 2 6 798 : ;�< 7 2 =%> ? : 7�@ => ? : 7�A = 8 > ? : 7�B => ? : 7 2 => ? : 7�@ = : ;< 7�A = = 7C D 8 E> ? : 7 A = = F : ;�< 7�B => ? : 7 2 => ? : 7 @ = G D F

7 : ;< 7 2 =%> ? : 7�@ = : ;�< 7�A = 8 > ? : 7�B => ? : 7 2 =%> ? : 7�@ => ? : 7�A = = 7H D F E : ;< 7�A = =

34 I3 2 6 7 : ;< 7 2 = : ;�< 7�@ =%> ? : 7�A = F> ? : 7�B => ? : 7 2 = : ;�< 7 @ = : ;�< 7 A = = 7C D 8 E> ? : 7A = = 8 : ;�< 7B => ? : 7 2 = : ;�< 7 @ = G D F

798 : ;�< 7 2 = : ;< 7 @ = : ;< 7 A = F> ? : 7B => ? : 7 2 = : ;�< 7@ =%> ? : 7�A = = 7H D F E : ;�< 7A = =

3J 3 2 6 7> ? : 7 2 => ? : 7 A = 8 > ? : 7�B = : ;�< 7 2 = : ;< 7 A = = 7C D 8 E> ? : 7 A = = F : ;�< 7B = : ;< 7 2 = G D F

798 > ? : 7 2 = : ;< 7�A = 8 > ? : 7�B = : ;�< 7 2 =%> ? : 7 A = = 7H D F E : ;�< 7 A = =
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Partial Derivates with respect to K

LM NL K O P9Q RST PU VT W�X P K V RST P�Y V Z PT W�X P�[ V RST P K V Z RST P[ VT WX P U VT WX P K V VT W�X P�Y V V P\ ] Q ^ RST P�Y V V Z

P RST P�[ V RST P K V Q T W�X P[ VT WX P U VT W�X P K V V _ ] ZP RST P U VT WX P K VT WX P�Y V Z PT W�X P�[ V RST P K V Z RST P[ VT WX P U VT W�X P K V V RST P�Y V V P` ] Z ^T W�X P�Y V V

LM aL K O P9Q RST PU V RST P K V RST P�Y V Z P9Q T W�X P�[ VT WX P K V Z RST P�[ VT W�X P U V RST P K V VT W�X P�Y V V P\ ] Q ^ RST P�Y V V Z

P9Q RST P[ VT WX P K V Q T WX P[ VT W�X P U V RST P K V V _ ] ZP RST P U V RST P K VT WX PY V Z P9Q T W�X P�[ VT WX P K V Z RST P�[ VT W�X P U V RST P K V V RST P�Y V V P` ] Z ^T W�X P�Y V V

Lb L K O c
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Partial Derivates with respect to radius d

ef ge d hi j%kl m jn o k l m j�p o k l m j�q o r j m s�t j�u o m s t j p o i kl m j�u o m s t jn o k l m j p o o m s t j q o o kl m j q o r

ji kl m jn o k l m j p o m s�t j q o r j m s t j�u o m s t j�p o i k l m ju o m s�t jn o kl m j p o o k l m j�q o o m s t j�q o

ef ve d hi ji kl m jn o m s�t j�p o k l m j q o r j m s t j�u o k l m j�p o r k l m ju o m s�t jn o m s t jp o o m s�t j�q o o k l m j q o r

j%kl m jn o m s�t j p o m s�t j q o r j m s t j�u o k l m j�p o r k l m ju o m s�t jn o m s t j�p o o k l m j q o o m s�t j q o

ew e d hi j m s t jn o k l m j q o r k l m ju o k l m jn o m s t j�q o o k l m j�q o r ji m s�t jn o m s t j�q o r k l m ju o k l m jn o kl m j q o o m s t j q o122



Partial Derivates with respect to x

yz {y x | }9~ ��� }� � � �� }�� �� ��� } x � � }� �� }�� �� ��� } � � ~ ��� } � �� ��� }� � ��� } � � � ��� } x � � }� � ~ � � �� } x � � �
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}9~ ��� }� �� �� }�� � � �� } x � � }� �� }�� � ��� }�� � � ��� } � �� ��� }� �� ��� } � � �� �� } x � � �� ��� } x � �} � �� }� �� ��� }� � � �� } x � ~ }� ��� }�� � � �� }�� � � � �� } � �� ��� }� �� �� } � � �� ��� } x � � }� � � �� ��� } x � � �} � �� }� �� ��� }� �� ��� } x � � }� �� } � � ��� } � � � ��� } � �� ��� }� �� ��� } � � � � �� } x � � � � �� } x �

y� y x | }9~ � ��� }� �� �� } x � � � �� }�� � � �� }� � � �� } x � � } � � ~ � � �� } x � � � }� ��� }� � � �� } x � � � �� }�� � � �� }� �� ��� } x � � �� �� } x � �

}9~ � ��� }� � � �� } x � ~ ��� } � � � �� }� �� ��� } x � � }� � � �� ��� } x � � � }9~ � ��� }� �� �� } x � � � �� } � � ��� }� � � �� } x � � � � �� } x �
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APPENDIX II

This appendix presents the partial derivatives of the observation equation with respect to
unknown camera and block parameters as well as object point coordinates.

Observation equationÊËËËËÌ ËËËËÍ
ÎÐÏÒÑÔÓÖÕ�×Ø×ÚÙ�ÛÝÜßÞáà ÑãâåäÚæèçêéìëêíîäÚæèçêïÚë�ðìñ Õ�×óòôÙöõêÜßÞáà Ñ÷âøíîç²ùûúüïÚë�ðìñ Õ�×óýôÙÿþ ÜßÞáà ñ â ç²ù úüé ë í ä æèç ïÚë�ð

Õ ý²×ÚÙ�ÛÝÜßÞáà ÑãâåäÚæèçêéìëêíîäÚæèçêïÚë�ðìñ Õ ýØòôÙöõêÜßÞáà Ñ÷âøíîç²ùûúüïÚë�ðìñ Õ ýØýôÙÿþ ÜßÞáà ñ â ç²ù úüé ë í ä æèç ïÚë�ð
� Ï ÑÔÓ Õ ò²×ÚÙ%ÛÝÜßÞáà Ñ÷â ä æèçêéìëêíîäÚæèçêïÚëóðìñ Õ òØòôÙöõêÜßÞáà Ñãâ íîç¼ùûúüïÚëóðìñ Õ òØýôÙÿþ ÜßÞáà ñ â ç²ù úüé ëêíîä æèçêïÚëóð

Õ ý²×ÚÙ%ÛÝÜßÞáà Ñ÷â ä æèçêéìëêíîäÚæèçêïÚëóðìñ Õ ýØòôÙöõêÜßÞáà Ñãâ íîç¼ùûúüïÚëóðìñ Õ ýØýôÙÿþ ÜßÞáà ñ â ç²ù úüé ëêíîä æèçêïÚëóð
where symbols Õôà�� denote the rotation matrix elements of �����
	 ���
	 
�� :

������	 ���
	 
�� Ï ������	 ����	 
�� í ������	 ����	 ���
In following equations the observation equation is simplified into a form:ÊËËËÌ ËËËÍ

Î ÏÒÑÔÓÝþ Î�
� ÏÒÑÔÓ þ ��

where þ Î denotes the nominators of the fraction depicted in equations Î , and þ � of �
respectively.

�
is the denominator of the fraction in both equations.

In following presentation only partial derivatives of þ Î , þ � and
�

are depicted. The final
derivatives of observation equation can be computed as

� Î
��� Ï ÑÔÓ � þ Î � Ñ ��� þ Î� ò
� �
��� Ï ÑÔÓ � þ � � Ñ ��� þ �� ò

where
�

denotes the unknown parameter and
� þ Î ,

� þ � and
� �

present equivalent
partial derivatives of þ Î , þ � and

�
with respect to

�
It is to be noted that in case one would program the equations for the computer, parts of the
equations can be substituted by elements of rotation matrices and consequently simplify
the programming substantially. The presentation of rotation matrices is also included in
this appendix.
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Partial Derivates with respect to !#" $%

&' (
& !" $% ) *+, -. / * +, -10 / - *+, -2 / * +, -13 / 4, 576 -18 /, 56 -13 /, 576 -2 / / 4

-, 56 -19 /, 576 -. / * +, -10 / 4 * +, -19 /, 576 - 0 / / -;: , 576 -2 / * +, -13 / 4, 576 -18 /, 56 - 3 / * +, -2 / / 4

-: * +, -19 /, 576 -. / * +, -10 / 4, 56 -19 /, 576 - 0 / / * +, -18 /, 56 - 3 /

&' <
& !" $% ) : *+, -. /, 56 - 0 / - *+, -2 / * +, -13 / 4, 576 -18 /, 56 - 3 /, 576 -2 / / 4

-: , 56 -19 /, 576 -. /, 56 - 0 / 4 *+, -9 / * +, - 0 / / -;: , 576 -2 / * +, - 3 / 4, 56 - 8 /, 576 - 3 / * +, -2 / / 4

- * +, -9 /, 56 -. /, 576 -10 / 4, 56 -19 / *+, - 0 / / * +, -18 /, 56 -13 /

&=
& !" $% ), 576 -. / - *+, -2 / * +, -13 / 4, 56 -18 /, 56 - 3 /, 56 -2 / / :

, 576 -9 / * +, -. / -: , 56 -2 / *+, - 3 / 4, 576 - 8 /, 576 -13 / *+, -2 / / 4 *+, -19 / * +, -. / *+, - 8 /, 576 - 3 /
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Partial Derivates with respect to >#? @A

BC D
B >? @A E FGH IJ K FGH I1L KH M7N IO K FGH I1P K Q IH M7N I1R KH MN I J K FGH IL K Q FGH I1R KH MN I1L K K FGH IO K FGH I1P K;S

IS FGH I R KH M7N IJ K FGH I1L K QH M7N I1R KH MN IL K KH M7N I P K

BC T
B >? @A ES FGH IJ KH M7N I1L KH M7N IO K FGH I1P K Q IS H MN I R KH M7N I J KH MN I1L K Q FGH I R K FGH I1L K K FGH IO K FGH I1P K;S

I FGH I R KH M7N IJ KH MN I1L K QH M7N I1R K FGH IL K KH MN I P K

BU
B >? @A EH MN I J KH M7N IO K FGH I P K S H M7N I R K FGH IJ K FGH IO K FGH I P K S FGH I1R K FGH IJ KH M7N IP K
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Partial Derivates with respect to V#W XY

Z V\[
Z VW XY ] ^_` ab c ^ _` a1d c a;e ^_` af c` g7h a1i c j` g7h af c` g h a1k c ^ _` ai c c j

a` g7h a1l c` g h ab c ^ _` a1d c j ^ _` a1l c` g h a1d c c a` g7h af c` g h ai c j ^ _` af c` g h a k c ^_` a1i c c j

ae ^_` a1l c` g h ab c ^ _` a1d c j` g7h a1l c` g h ad c c ^ _` a1k c ^ _` a1i c

Z V\m
Z VW XY ] e ^_` ab c` g7h ad c a;e ^ _` af c` g7h a1i c j` g7h af c` g h a1k c ^ _` ai c c j

ae ` g h a1l c` g h ab c` g h a1d c j ^_` a1l c ^ _` ad c c a` g h af c` g7h a1i c j ^ _` af c` g h a k c ^ _` ai c c j

a ^ _` al c` g h ab c` g7h a1d c j` g7h a1l c ^_` a1d c c ^ _` a1k c ^ _` ai c

Zn
Z VW XY ]` g h ab c ae ^ _` af c` g h a1i c j` g h af c` g7h a k c ^_` a1i c c e

` g h al c ^ _` ab c a` g7h af c` g h ai c j ^_` af c` g7h a k c ^_` a1i c c j ^_` a1l c ^ _` ab c ^ _` a k c ^_` a1i c
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Partial Derivates with respect to o

pq r
p o s t t�uv w t o x w y7z t{ x u v w t1| x } w yz t o x w y7z t1| x x t } w y7z t~ x uv w t1� x � w y7z t1� x w yz t � x u v w t ~ x x �

t w yz t o x w y7z t{ x uv w t| x � u v w t o x w y7z t1| x x uv w t1� x w yz t � x x t� � �� } � uv w t � x u v w t ~ x x �

t t�uv w t o x w y7z t{ x u v w t1| x } w yz t o x w y7z t1| x x uv w t~ x u v w t � x } t w yz t o x w y7z t{ x u v w t1| x � uv w t o x w y7z t1| x x w y7z t1� x x t� � � � } � w y7z t~ x x �

t t�uv w t o x w y7z t{ x u v w t1| x } w yz t o x w y7z t1| x x t w y7z t~ x w yz t1� x � uv w t~ x w yz t1� x u v w t � x x �

t w yz t o x w y7z t{ x uv w t| x � u v w t o x w y7z t1| x x uv w t1� x u v w t � x x t� � �� � � w yz t � x u v w t ~ x x

p q �
p o s t t } u v w t o x w yz t{ x w yz t1| x } w y7z t o x u v w t1| x x t } w y7z t ~ x uv w t1� x � w y7z t � x w y7z t1� x u v w t~ x x �

t } w y7z t o x w y7z t{ x w y7z t1| x � uv w t o x u v w t1| x x uv w t1� x w yz t � x x t � � �� } � uv w t1� x u v w t ~ x x �

t t } u v w t o x w yz t{ x w yz t1| x } w y7z t o x u v w t1| x x u v w t~ x uv w t1� x } t } w y7z t o x w yz t{ x w yz t| x � u v w t o x u v w t1| x x w y7z t � x x t� � � � } � w yz t ~ x x �

t t } u v w t o x w yz t{ x w yz t1| x } w y7z t o x u v w t1| x x t w y7z t~ x w y7z t1� x � u v w t~ x w y7z t1� x u v w t � x x �

t } w y7z t o x w y7z t{ x w y7z t1| x � uv w t o x u v w t1| x x uv w t1� x u v w t � x x t� � � � � � w yz t � x u v w t ~ x x

p�
p o s t } uv w t o x uv w t{ x t } w y7z t~ x uv w t1� x � w y7z t1� x w yz t1� x u v w t ~ x x } w y7z t o x u v w t{ x u v w t � x w y7z t1� x x t � � � � } � u v w t � x uv w t~ x x �

t } uv w t o x uv w t{ x uv w t~ x uv w t � x � w yz t o x uv w t{ x w y7z t � x x t� � � � } � w y7z t ~ x x �t } uv w t o x uv w t{ x t w y7z t~ x w yz t1� x � uv w t~ x w y7z t1� x u v w t � x x } w yz t o x uv w t{ x uv w t1� x u v w t � x x t � � � � � � w y7z t1� x u v w t ~ x x
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Partial Derivates with respect to �

�� �
� � � �;� � �7� � � ��� � � �1� � �� � � �� ��� � � �1� � � � � � �1� � � � � �1� � � � � �� � � � � �7� �1� ��� � � � � ��� � � �� � � � � � � �� ��� � � �1� � � � � � �1� � � � � �1� ��� � � �� � �

� � � � �1� ��� � � � � ��� � � �� ��� � � �� � � �7� � � � � �� �  ¡ � ¢ � � � �1� ��� � � �� � � �

�;� � �7� � � ��� � � �1� � � �7� �� ��� � � �1� � � � �7� �1� ��� � � � � ��� � � �� ��� � � �� ��� � � �1� � �� � � �1� ��� � � � � ��� � � �� � � � � �� � � �£ �   ¡ � ¢ � � � �� � � �

�;� � �7� � � ��� � � �1� � �;� � � � �� � � � � � � � � � �7� �� � � �7� �1� ��� � � �1� � � � � � � �� ��� � � � � ��� � � �1� � � � � � �� � � � � � � � �� � � �� � � � � �1� ��� � � � � � � �

� � � �1� ��� � � � � ��� � � �� ��� � � �� ��� � � � � � � �¤ �   ¡ � ¢ � �7� � � ��� � � �� � �

�� ¥
� � � � � � � � � � � � � �1� � �� � � �� ��� � � �1� � � � � � �1� � � � � �1� � � � � �� � � � � � � �1� ��� � � � � � � �7� �� � � � � � � �� ��� � � �1� � � � � � �� � � �7� �1� ��� � � �� � � �

� � � �1� ��� � � � � � � � � �� ��� � � �1� � � � � �1� � � �� �   ¡ � ¢ � � � �1� ��� � � �� � � �

� � � � � � � � � � �1� � � �7� �� ��� � � �1� � � � � � �� ��� � � � � � � �7� �1� ��� � � �� ��� � � �1� � � � � � �� ��� � � � � � � � � �1� � � �7� �� � � �£ �  ¡ � ¢ � � � �� � � �

� � � � � � � � � � �1� � �;� � � � �� � � � � � � � � � �7� �� � � �7� �1� ��� � � �1� � � � � �7� �1� ��� � � � � � � � � �� � � � � � �� � � � � �1� � �� � � �� � � � � �� ��� � � � � � � �

� � � �1� ��� � � � � � � � � �� ��� � � �1� ��� � � � � � � � ¤ �   ¡ � ¢ � � � �1� ��� � � �� � �

�¦
� � � �� � � � � � �� � � �� ��� � � � � � � � � � �� � � �7� � � � � � � �� � � � � � � �� � � �7� � � � �;� � �7� �� ��� � � � � � � � � � �� � � �7� � � ��� � � �� � � �

� � � �1� � � � � � � ��� � � �� � � �7� � � � � �� �  ¡ � ¢ � � � �1� ��� � � �� � � �

�� � � � � � � � � �� ��� � � �� � � � � � �� � � � � � � ��� � � �� ��� � � �1� � �� � � �� � � �7� � � � � �7� �1� � � �£ �  ¡ � ¢ � �7� �� � � �

�� � � � � � � � � � � �� � � � � �1� � � � � � �� � � � � �� ��� � � � � � � � � � � �1� � � �7� � � � � � �7� �� � � �7� � � � �� � � �� � � �7� �1� ��� � � � � � � �

� � � �1� � � � � � � ��� � � �� ��� � � � � � � �¤ �   ¡ � ¢ � �7� � � ��� � � �� � �
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Partial Derivates with respect to §

¨© ª
¨ § « ¬;­ ®¯° ¬± ²° ³7´ ¬ § ² ¬ ®¯° ¬µ ² ® ¯° ¬1¶ ² ·° ³7´ ¬1¸ ²° ³ ´ ¬1¶ ²° ³ ´ ¬µ ² ² · ¬­ ° ³7´ ¬1¹ ²° ³ ´ ¬ ± ²° ³ ´ ¬ § ² · ®¯° ¬1¹ ² ®¯° ¬ § ² ²

¬;­ ° ³ ´ ¬µ ² ® ¯° ¬1¶ ² ·° ³ ´ ¬¸ ²° ³7´ ¬1¶ ² ® ¯° ¬µ ² ² · ¬ ® ¯° ¬1¹ ²° ³7´ ¬± ²° ³ ´ ¬ § ² ·° ³7´ ¬1¹ ² ®¯° ¬ § ² ² ®¯° ¬1¸ ²° ³ ´ ¬1¶ ² ² ¬º » ¼½ ­ ¾ ® ¯° ¬1¶ ² ® ¯° ¬µ ² ² ·

¬;­ ®¯° ¬± ²° ³7´ ¬ § ²° ³ ´ ¬µ ² ®¯° ¬¸ ² · ¬;­ ° ³ ´ ¬1¹ ²° ³ ´ ¬± ²° ³ ´ ¬ § ² · ® ¯° ¬1¹ ² ®¯° ¬ § ² ² ® ¯° ¬µ ² ® ¯° ¬1¸ ² ­

¬ ® ¯° ¬1¹ ²° ³ ´ ¬ ± ²° ³ ´ ¬ § ² ·° ³ ´ ¬¹ ² ® ¯° ¬ § ² ²° ³ ´ ¬¸ ² ² ¬¿ » ¼ ½ ­ ¾° ³ ´ ¬µ ² ² ·

¬;­ ®¯° ¬± ²° ³7´ ¬ § ² ¬;­ ®¯° ¬µ ²° ³7´ ¬1¶ ² ·° ³ ´ ¬µ ²° ³ ´ ¬¸ ² ® ¯° ¬1¶ ² ² · ¬­ ° ³7´ ¬¹ ²° ³ ´ ¬ ± ²° ³ ´ ¬ § ² · ®¯° ¬¹ ² ® ¯° ¬ § ² ²¬° ³7´ ¬µ ²° ³7´ ¬1¶ ² · ®¯° ¬µ ²° ³7´ ¬1¸ ² ® ¯° ¬1¶ ² ² · ¬ ® ¯° ¬1¹ ²° ³7´ ¬± ²° ³7´ ¬ § ² ·° ³7´ ¬1¹ ² ®¯° ¬ § ² ² ® ¯° ¬1¸ ² ®¯° ¬¶ ² ² ¬À » ¼½ · ¾° ³ ´ ¬1¶ ² ®¯° ¬µ ² ²

¨© Á
¨ § « ¬;­ ®¯° ¬± ² ® ¯° ¬ § ² ¬ ® ¯° ¬µ ² ® ¯° ¬1¶ ² ·° ³7´ ¬1¸ ²° ³ ´ ¬1¶ ²° ³ ´ ¬µ ² ² · ¬­ ° ³7´ ¬1¹ ²° ³ ´ ¬± ² ®¯° ¬ § ² ­ ® ¯° ¬¹ ²° ³7´ ¬ § ² ²

¬;­ ° ³ ´ ¬µ ² ® ¯° ¬1¶ ² ·° ³ ´ ¬¸ ²° ³7´ ¬1¶ ² ® ¯° ¬µ ² ² · ¬ ® ¯° ¬1¹ ²° ³7´ ¬± ² ®¯° ¬ § ² ­ ° ³ ´ ¬1¹ ²° ³7´ ¬ § ² ² ® ¯° ¬1¸ ²° ³ ´ ¬¶ ² ² ¬ º » ¼ ½ ­ ¾ ® ¯° ¬1¶ ² ®¯° ¬µ ² ² ·

¬;­ ®¯° ¬± ² ® ¯° ¬ § ²° ³ ´ ¬µ ² ® ¯° ¬1¸ ² · ¬;­ ° ³ ´ ¬1¹ ²° ³7´ ¬± ² ® ¯° ¬ § ² ­ ®¯° ¬¹ ²° ³ ´ ¬ § ² ² ®¯° ¬µ ² ®¯° ¬¸ ² ­¬ ® ¯° ¬1¹ ²° ³ ´ ¬ ± ² ®¯° ¬ § ² ­ ° ³ ´ ¬1¹ ²° ³ ´ ¬ § ² ²° ³7´ ¬¸ ² ² ¬¿ » ¼½ ­ ¾° ³ ´ ¬µ ² ² ·

¬;­ ®¯° ¬± ² ® ¯° ¬ § ² ¬;­ ®¯° ¬µ ²° ³7´ ¬1¶ ² ·° ³ ´ ¬µ ²° ³7´ ¬¸ ² ® ¯° ¬1¶ ² ² · ¬­ ° ³7´ ¬1¹ ²° ³ ´ ¬ ± ² ®¯° ¬ § ² ­ ® ¯° ¬1¹ ²° ³7´ ¬ § ² ²

¬° ³7´ ¬µ ²° ³7´ ¬1¶ ² · ®¯° ¬µ ²° ³7´ ¬1¸ ² ® ¯° ¬1¶ ² ² · ¬ ® ¯° ¬1¹ ²° ³7´ ¬± ² ® ¯° ¬ § ² ­ ° ³ ´ ¬¹ ²° ³7´ ¬ § ² ² ® ¯° ¬1¸ ² ®¯° ¬1¶ ² ² ¬À » ¼ ½ · ¾° ³ ´ ¬¶ ² ®¯° ¬µ ² ²
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¨ § « Ã

133



Partial Derivates with respect to radius Ä

ÅÆ Ç
ÅÉÈ ÊË Ì�ÍÎ Ï ÌÐ Ñ ÍÎ Ï Ì1Ò Ñ Ì ÍÎ Ï ÌÓ Ñ ÍÎ Ï Ì1Ô Ñ Õ Ï Ö7× Ì1Ø Ñ Ï Ö× Ì1Ô Ñ Ï Ö7× Ì Ó Ñ Ñ Õ Ì Ï Ö× Ì1Ù Ñ Ï Ö7× Ì Ð Ñ ÍÎ Ï Ì1Ò Ñ Õ ÍÎ Ï Ì1Ù Ñ Ï Ö7× Ì Ò Ñ Ñ

ÌË Ï Ö7× ÌÓ Ñ ÍÎ Ï Ì1Ô Ñ Õ Ï Ö7× Ì1Ø Ñ Ï Ö× Ì1Ô Ñ ÍÎ Ï Ì Ó Ñ Ñ Õ ÌË ÍÎ Ï Ì1Ù Ñ Ï Ö7× ÌÐ Ñ ÍÎ Ï Ì1Ò Ñ Õ Ï Ö× Ì1Ù Ñ Ï Ö7× Ì Ò Ñ Ñ ÍÎ Ï Ì1Ø Ñ Ï Ö× Ì1Ô Ñ Ñ ÍÎ Ï Ì Ó Ñ ÍÎ Ï Ì1Ô ÑË

Ì ÍÎ Ï Ì Ð Ñ ÍÎ Ï Ì Ò Ñ Ï Ö× Ì Ó Ñ ÍÎ Ï Ì Ø Ñ Õ Ì Ï Ö× Ì1Ù Ñ Ï Ö7× Ì Ð Ñ ÍÎ Ï Ì Ò Ñ Õ ÍÎ Ï Ì1Ù Ñ Ï Ö7× Ì Ò Ñ Ñ ÍÎ Ï ÌÓ Ñ ÍÎ Ï Ì Ø ÑË

ÌË ÍÎ Ï Ì1Ù Ñ Ï Ö7× Ì Ð Ñ ÍÎ Ï Ì Ò Ñ Õ Ï Ö× ÌÙ Ñ Ï Ö7× Ì Ò Ñ Ñ Ï Ö7× Ì Ø Ñ Ñ Ï Ö7× Ì Ó Ñ Õ Ì ÍÎ Ï Ì Ð Ñ ÍÎ Ï Ì Ò Ñ ÌË ÍÎ Ï Ì Ó Ñ Ï Ö× Ì1Ô Ñ Õ Ï Ö7× ÌÓ Ñ Ï Ö× Ì1Ø Ñ ÍÎ Ï Ì1Ô Ñ Ñ Õ

Ì Ï Ö× Ì1Ù Ñ Ï Ö7× Ì Ð Ñ ÍÎ Ï Ì1Ò Ñ Õ ÍÎ Ï Ì1Ù Ñ Ï Ö7× Ì Ò Ñ Ñ Ì Ï Ö× Ì Ó Ñ Ï Ö× Ì1Ô Ñ Õ ÍÎ Ï ÌÓ Ñ Ï Ö× Ì Ø Ñ ÍÎ Ï Ì1Ô Ñ Ñ Õ

ÌË ÍÎ Ï Ì1Ù Ñ Ï Ö7× Ì Ð Ñ ÍÎ Ï Ì Ò Ñ Õ Ï Ö× ÌÙ Ñ Ï Ö7× Ì Ò Ñ Ñ ÍÎ Ï Ì1Ø Ñ ÍÎ Ï Ì1Ô Ñ Ñ ÍÎ Ï ÌÓ Ñ Ï Ö× Ì1Ô Ñ

Å Æ Ú
ÅÉÈ ÊË ÌË ÍÎ Ï Ì Ð Ñ Ï Ö7× Ì Ò Ñ Ì�ÍÎ Ï Ì Ó Ñ ÍÎ Ï ÌÔ Ñ Õ Ï Ö7× Ì Ø Ñ Ï Ö7× ÌÔ Ñ Ï Ö× ÌÓ Ñ Ñ Õ ÌË Ï Ö7× ÌÙ Ñ Ï Ö× ÌÐ Ñ Ï Ö× Ì1Ò Ñ Õ ÍÎ Ï Ì1Ù Ñ ÍÎ Ï Ì1Ò Ñ Ñ

ÌË Ï Ö7× ÌÓ Ñ ÍÎ Ï Ì1Ô Ñ Õ Ï Ö7× Ì1Ø Ñ Ï Ö× Ì1Ô Ñ ÍÎ Ï Ì Ó Ñ Ñ Õ Ì�ÍÎ Ï Ì1Ù Ñ Ï Ö× ÌÐ Ñ Ï Ö× Ì1Ò Ñ Õ Ï Ö× Ì1Ù Ñ ÍÎ Ï Ì1Ò Ñ Ñ ÍÎ Ï Ì Ø Ñ Ï Ö7× Ì1Ô Ñ Ñ ÍÎ Ï Ì Ó Ñ ÍÎ Ï Ì1Ô ÑËÌË ÍÎ Ï Ì Ð Ñ Ï Ö× Ì Ò Ñ Ï Ö7× ÌÓ Ñ ÍÎ Ï Ì Ø Ñ Õ ÌË Ï Ö7× Ì1Ù Ñ Ï Ö× ÌÐ Ñ Ï Ö× Ì1Ò Ñ Õ ÍÎ Ï Ì1Ù Ñ ÍÎ Ï Ì1Ò Ñ Ñ ÍÎ Ï Ì Ó Ñ ÍÎ Ï Ì Ø ÑË

Ì ÍÎ Ï Ì1Ù Ñ Ï Ö7× ÌÐ Ñ Ï Ö7× Ì1Ò Ñ Õ Ï Ö× ÌÙ Ñ ÍÎ Ï Ì Ò Ñ Ñ Ï Ö7× Ì1Ø Ñ Ñ Ï Ö7× ÌÓ Ñ Õ ÌË ÍÎ Ï Ì Ð Ñ Ï Ö× Ì Ò Ñ ÌË ÍÎ Ï ÌÓ Ñ Ï Ö× Ì1Ô Ñ Õ Ï Ö7× ÌÓ Ñ Ï Ö7× Ì1Ø Ñ ÍÎ Ï Ì1Ô Ñ Ñ Õ

ÌË Ï Ö7× ÌÙ Ñ Ï Ö7× Ì Ð Ñ Ï Ö7× Ì Ò Ñ Õ ÍÎ Ï ÌÙ Ñ ÍÎ Ï Ì Ò Ñ Ñ Ì Ï Ö7× ÌÓ Ñ Ï Ö× ÌÔ Ñ Õ ÍÎ Ï ÌÓ Ñ Ï Ö7× Ì1Ø Ñ ÍÎ Ï Ì1Ô Ñ Ñ Õ

Ì ÍÎ Ï Ì1Ù Ñ Ï Ö7× ÌÐ Ñ Ï Ö7× Ì1Ò Ñ Õ Ï Ö× ÌÙ Ñ ÍÎ Ï Ì Ò Ñ Ñ ÍÎ Ï Ì1Ø Ñ ÍÎ Ï Ì1Ô Ñ Ñ ÍÎ Ï Ì Ó Ñ Ï Ö× Ì1Ô Ñ

ÅÛ
Å È ÊË Ì Ï Ö7× Ì Ð Ñ Ì ÍÎ Ï ÌÓ Ñ ÍÎ Ï Ì1Ô Ñ Õ Ï Ö7× Ì1Ø Ñ Ï Ö× Ì1Ô Ñ Ï Ö× Ì Ó Ñ Ñ Ë Ï Ö7× ÌÙ Ñ ÍÎ Ï Ì Ð Ñ ÌË Ï Ö7× Ì Ó Ñ ÍÎ Ï ÌÔ Ñ Õ Ï Ö7× Ì Ø Ñ Ï Ö7× ÌÔ Ñ ÍÎ Ï ÌÓ Ñ Ñ Õ

ÍÎ Ï Ì1Ù Ñ ÍÎ Ï Ì Ð Ñ ÍÎ Ï Ì1Ø Ñ Ï Ö× Ì1Ô Ñ Ñ ÍÎ Ï ÌÓ Ñ ÍÎ Ï Ì1Ô Ñ Ë Ì Ï Ö7× ÌÐ Ñ Ï Ö7× ÌÓ Ñ ÍÎ Ï Ì1Ø Ñ Ë Ï Ö× Ì1Ù Ñ ÍÎ Ï ÌÐ Ñ ÍÎ Ï ÌÓ Ñ ÍÎ Ï Ì Ø Ñ Ë ÍÎ Ï ÌÙ Ñ ÍÎ Ï Ì Ð Ñ Ï Ö× Ì Ø Ñ Ñ Ï Ö× Ì Ó Ñ Õ

Ì Ï Ö× Ì Ð Ñ ÌË ÍÎ Ï Ì Ó Ñ Ï Ö7× Ì1Ô Ñ Õ Ï Ö× Ì Ó Ñ Ï Ö× Ì Ø Ñ ÍÎ Ï ÌÔ Ñ Ñ Ë Ï Ö× Ì1Ù Ñ ÍÎ Ï ÌÐ Ñ Ì Ï Ö× Ì Ó Ñ Ï Ö× Ì1Ô Ñ Õ ÍÎ Ï Ì Ó Ñ Ï Ö× Ì Ø Ñ ÍÎ Ï ÌÔ Ñ Ñ Õ

ÍÎ Ï Ì1Ù Ñ ÍÎ Ï Ì Ð Ñ ÍÎ Ï Ì1Ø Ñ ÍÎ Ï Ì1Ô Ñ Ñ ÍÎ Ï ÌÓ Ñ Ï Ö× Ì1Ô Ñ
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Partial Derivates with respect to Ü

ÝÞ ß
Ý Ü à á�âã ä áå æ âã ä á1ç æ á;è âã ä áé æ ä ê7ë á Ü æ ì ä êë áé æ ä êë á1í æ âã ä á Ü æ æ ì á ä ê7ë á1î æ ä êë áå æ âã ä á1ç æ ì âã ä áî æ ä êë áç æ æ

á ä êë áé æ ä êë á Ü æ ì âã ä áé æ ä êë á1í æ âã ä á Ü æ æ ì á;è âã ä á1î æ ä êë áå æ âã ä áç æ ì ä êë á1î æ ä ê7ë áç æ æ âã ä á1í æ âã ä á Ü æ æ áï ð ñò è ó âã ä á Ü æ âã ä áé æ æ ì

á�âã ä áå æ âã ä á1ç æ áâã ä áé æ âã ä á Ü æ ì ä ê7ë á1í æ ä ê7ë á Ü æ ä êë áé æ æ ì á ä ê7ë áî æ ä êë áå æ âã ä á1ç æ ì âã ä áî æ ä ê7ë á1ç æ æ

á è ä ê7ë áé æ âã ä á Ü æ ì ä ê7ë áí æ ä êë á Ü æ âã ä áé æ æ ì á;è âã ä á1î æ ä ê7ë áå æ âã ä áç æ ì ä êë á1î æ ä ê7ë á1ç æ æ âã ä áí æ ä êë á Ü æ æ ó ä ê7ë á Ü æ âã ä áé æ ì

á�âã ä áå æ âã ä á1ç æ á;è âã ä áé æ âã ä á Ü æ è ä ê7ë áí æ ä êë á Ü æ ä êë áé æ æ ì á ä ê7ë áî æ ä ê7ë áå æ âã ä á1ç æ ì âã ä áî æ ä ê7ë á1ç æ æ

á ä êë áé æ âã ä á Ü æ è ä ê7ë á1í æ ä ê7ë á Ü æ âã ä áé æ æ è á;è âã ä á1î æ ä ê7ë áå æ âã ä áç æ ì ä êë áî æ ä ê7ë á1ç æ æ âã ä áí æ ä êë á Ü æ æ áô ð ñò ì ó ä ê7ë á Ü æ âã ä áé æ æ ì

á�âã ä áå æ âã ä á1ç æ á;è âã ä áé æ ä ê7ë á Ü æ ì ä êë áé æ ä êë á1í æ âã ä á Ü æ æ ì á ä ê7ë á1î æ ä êë áå æ âã ä á1ç æ ì âã ä áî æ ä êë áç æ æ

á ä êë áé æ ä êë á Ü æ ì âã ä áé æ ä êë á1í æ âã ä á Ü æ æ ì á;è âã ä á1î æ ä êë áå æ âã ä áç æ ì ä êë á1î æ ä ê7ë áç æ æ âã ä á1í æ âã ä á Ü æ æ ó âã ä á Ü æ âã ä áé æ

ÝÞ õ
Ý Ü à á è âã ä áå æ ä êë á1ç æ á è âã ä áé æ ä êë á Ü æ ì ä ê7ë áé æ ä ê7ë áí æ âã ä á Ü æ æ ì á;è ä êë á1î æ ä ê7ë áå æ ä ê7ë á1ç æ ì âã ä áî æ âã ä á1ç æ æ

á ä êë áé æ ä êë á Ü æ ì âã ä áé æ ä êë á1í æ âã ä á Ü æ æ ì áâã ä áî æ ä êë áå æ ä êë áç æ ì ä ê7ë á1î æ âã ä áç æ æ âã ä á1í æ âã ä á Ü æ æ áï ð ñò è ó âã ä á Ü æ âã ä áé æ æ ì

á è âã ä áå æ ä êë á1ç æ á�âã ä áé æ âã ä á Ü æ ì ä êë á1í æ ä ê7ë á Ü æ ä ê7ë áé æ æ ì á;è ä êë á1î æ ä ê7ë áå æ ä ê7ë á1ç æ ì âã ä á1î æ âã ä á1ç æ æ

á è ä ê7ë áé æ âã ä á Ü æ ì ä ê7ë áí æ ä êë á Ü æ âã ä áé æ æ ì áâã ä á1î æ ä êë áå æ ä ê7ë áç æ ì ä êë á1î æ âã ä áç æ æ âã ä á1í æ ä ê7ë á Ü æ æ ó ä ê7ë á Ü æ âã ä áé æ ì

á è âã ä áå æ ä êë á1ç æ á è âã ä áé æ âã ä á Ü æ è ä êë á1í æ ä ê7ë á Ü æ ä ê7ë áé æ æ ì á è ä ê7ë á1î æ ä ê7ë áå æ ä ê7ë áç æ ì âã ä á1î æ âã ä áç æ æ

á ä êë áé æ âã ä á Ü æ è ä ê7ë á1í æ ä ê7ë á Ü æ âã ä áé æ æ è áâã ä á1î æ ä ê7ë áå æ ä ê7ë áç æ ì ä êë á1î æ âã ä á1ç æ æ âã ä áí æ ä êë á Ü æ æ áô ð ñò ì ó ä êë á Ü æ âã ä áé æ æ ì

á è âã ä áå æ ä êë á1ç æ á è âã ä áé æ ä êë á Ü æ ì ä ê7ë áé æ ä ê7ë áí æ âã ä á Ü æ æ ì á;è ä êë á1î æ ä ê7ë áå æ ä ê7ë á1ç æ ì âã ä áî æ âã ä á1ç æ æ

á ä êë áé æ ä êë á Ü æ ì âã ä áé æ ä êë á1í æ âã ä á Ü æ æ ì áâã ä áî æ ä êë áå æ ä êë áç æ ì ä ê7ë á1î æ âã ä áç æ æ âã ä á1í æ âã ä á Ü æ æ ó âã ä á Ü æ âã ä áé æ
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ö÷
öÉø ù ú�û ü7ý úþ ÿ ú�� �� û ú� ÿ û ü ý ú ø ÿ � û ü7ý ú� ÿ û ü7ý ú�� ÿ �� û ú ø ÿ ÿ � û ü7ý ú�� ÿ �� û úþ ÿ ú�û ü7ý ú� ÿ û ü7ý ú ø ÿ � �� û ú� ÿ û ü7ý ú�� ÿ �� û ú ø ÿ ÿ

� �� û ú� ÿ �� û úþ ÿ �� û ú�� ÿ �� û ú ø ÿ ÿ ú 	�
 �
 � � �� û ú ø ÿ �� û ú� ÿ ÿ �

ú�û ü7ý úþ ÿ ú �� û ú� ÿ �� û ú ø ÿ � û ü ý ú�� ÿ û ü ý ú ø ÿ û ü ý ú� ÿ ÿ � û ü ý ú�� ÿ �� û úþ ÿ ú�� û ü7ý ú� ÿ �� û ú ø ÿ � û ü7ý ú� ÿ û ü7ý ú ø ÿ �� û ú� ÿ ÿ �

�� û ú� ÿ �� û úþ ÿ �� û ú�� ÿ û ü ý ú ø ÿ ÿ � û ü7ý ú ø ÿ �� û ú� ÿ �

ú�û ü7ý úþ ÿ ú�� �� û ú� ÿ �� û ú ø ÿ � û ü ý ú�� ÿ û ü ý ú ø ÿ û ü7ý ú� ÿ ÿ � û ü ý ú�� ÿ �� û úþ ÿ úû ü ý ú� ÿ �� û ú ø ÿ � û ü ý ú� ÿ û ü7ý ú ø ÿ �� û ú� ÿ ÿ �

�� û ú� ÿ �� û úþ ÿ �� û ú�� ÿ û ü ý ú ø ÿ ÿ ú� 
 �
 � � û ü ý ú ø ÿ �� û ú� ÿ ÿ �

ú�û ü7ý úþ ÿ ú�� �� û ú� ÿ û ü ý ú ø ÿ � û ü7ý ú� ÿ û ü7ý ú�� ÿ �� û ú ø ÿ ÿ � û ü7ý ú�� ÿ �� û úþ ÿ ú�û ü7ý ú� ÿ û ü7ý ú ø ÿ � �� û ú� ÿ û ü7ý ú�� ÿ �� û ú ø ÿ ÿ �

�� û ú� ÿ �� û úþ ÿ �� û ú�� ÿ �� û ú ø ÿ ÿ � �� û ú ø ÿ �� û ú� ÿ
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Partial Derivates with respect to �

�� �
� � � ��� �� �� � � � � ��� � ��� � � � � � � � � � ��! � " � � � ��# � � � � ��! � � � � � � � � " � � � � ��$ � � � � �� � � �� ��� � " � � � ��$ � � � � �� � �

� � � � � � � � � � � ��! � � � � � ��# � � � � �! � � � � � � � � � �% & '( � ) � �� ��! � � � � � � � � "

��� �� �� � � � � ��� � �� � � � � � � � � �! � " � � � ��# � � � � �! � � � � � � � � " � � � � ��$ � � � � �� � � � � ��� � " � � � ��$ � � � � ��� � �

� � � � � � � � � �� ��! � " � � � �# � � � � ��! � � � � � � � � " ��� � � � � $ � � � � �� � � � � �� � " � � � � $ � � � � ��� � � � � � �# � � � � ��! � � ) � � � �! � � � � � � � "

��� �� �� � � � � ��� � � � � � � � � � � ��# � � � � � � � $ � � � � �� � � �� �� � " � � � � $ � � � � �� � � � � � � � � � � � ��# � � �* & ' ( � ) � � � � � � � �

��� �� �� � � � � ��� � � � � � � � � � � ��# � " � � � � � $ � � � � �� � � � � ��� � " � � � � $ � � � � ��� � � � � � � � � � �� ��# � �

� � � � � � $ � � � � �� � � � � ��� � " � � � ��$ � � � � ��� � � � � � ��# � � ) � �� � � � " ��� � � �� � � �� ��� � � � � � � � � � � � ��! � " � � � � � � � � � �# � � � � ��! � � "

� � � � � $ � � � � �� � � � � �� � " � �� � $ � � � � ��� � � ��� �� � � � � � � ��! � � � � � � � � � � � ��# � � � � �! � � � �+ & '( " ) � � � ��! � � � � � � � � �

��� �� �� � � � � ��� � ��� � � � � � � � � � ��! � " � � � � � � � � � ��# � � � � �! � � " � � � � ��$ � � � � �� � � �� ��� � "

� � � � $ � � � � ��� � � � � � � � � � � � � �! � " � � � � � � � � � �# � � � � ��! � � " ��� � �� � $ � � � � �� � � � � �� � " � � � � $ � � � � ��� � � � � � �# � � � � ��! � � ) � � � �! � � � � � � �

� � ,
� � � � � � � � �� � � � � ��� � � � � � � � � � � �� ��! � " � � � �# � � � � ��! � � � � � � � � " ��� � � � � $ � � � � �� � � � � ��� � " � � � ��$ � � � � ��� � �

� � � � � � � � � � � ��! � � � � � ��# � � � � �! � � � � � � � � � �% & '( � ) � �� ��! � � � � � � � � "

� � � � � �� � � � � ��� � ��� �� � � � � � � ��! � " � � � ��# � � � � ��! � � � � � � � � " ��� � � � � $ � � � � �� � � � � ��� � " � �� � $ � � � � �� � �

� � � � � � � � � �� ��! � " � � � �# � � � � ��! � � � � � � � � " �� � � � $ � � � � �� � � � � �� � " � � � � $ � � � � �� � � � �� ��# � � � � ��! � � ) � � � �! � � � � � � � "

� � � � � �� � � � � ��� � � � � � � � � �� ��# � � ��� � � � ��$ � � � � �� � � � � ��� � " � � � ��$ � � � � ��� � � � � � � � � � � � �# � � � * & '( � ) � � � � � � � �
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-.
-/ 0 1�2 3 4 15 6 1�7 2 34 1 / 6�8 92 1�: 6 ; 2 3 4 1�< 6 2 34 1�: 6�8 92 1 / 6 6 7

2 3 4 1�= 6�8 92 1 5 6 1�7 8 92 1 / 6�8 92 1�: 6 7 2 3 4 1 < 6 2 3 4 1: 6 2 34 1 / 6 6 6 1> ? @A 7 B 8 92 1�: 6�8 92 1 / 6 6 ;

1�2 3 4 15 6 18 92 1 / 6�8 92 1�: 6 ; 2 34 1 < 6 2 3 4 1�: 6 2 3 4 1 / 6 6 7 2 34 1�= 6�8 92 15 6 1 7 2 3 4 1 / 6�8 92 1�: 6 ; 2 3 4 1�< 6 2 34 1�: 6�8 92 1 / 6 6 ;

8 92 1= 6�8 92 1 5 6�8 92 1 < 6 2 3 4 1: 6 6 B 8 92 1�: 6 2 34 1 / 6 ; 12 3 4 1 5 6�8 92 1 / 6�8 92 1�< 6 ; 2 3 4 1= 6�8 92 1 5 6 2 3 4 1 / 6�8 92 1�< 6 6 1C ? @A 7 B 2 3 4 1 / 6 6 7

1�2 3 4 15 6 2 34 1 / 6�8 92 1 < 6 7 2 3 4 1�= 6�8 92 15 6�8 92 1 / 6�8 92 1 < 6 7 8 92 1= 6�8 92 1 5 6 2 3 4 1 < 6 6 B 8 92 1 / 6 ;

1�2 3 4 15 6 12 34 1 / 6 2 34 1�: 6 ;8 92 1 / 6 2 34 1 < 6�8 92 1: 6 6 7 2 34 1�= 6�8 92 15 6 18 92 1 / 6 2 34 1�: 6 7 2 34 1 / 6 2 3 4 1 < 6�8 92 1: 6 6 6 1D ? @A ; B 2 34 1�: 6�8 92 1 / 6 6 7

1�2 3 4 15 6 1�7 8 92 1 / 6 2 34 1�: 6 ; 2 3 4 1 / 6 2 34 1�< 6�8 92 1�: 6 6 7 2 34 1�= 6�8 92 1 5 6 1�2 3 4 1 / 6 2 3 4 1: 6 ;8 92 1 / 6 2 3 4 1�< 6�8 92 1�: 6 6 ;

8 92 1= 6�8 92 1 5 6�8 92 1 < 6�8 92 1: 6 6 B 2 34 1�: 6 2 34 1 / 6
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Partial Derivates with respect to E

FG H
F E I J�KL M JN O K L M J�P O K L M J E O M Q R J�S O M Q R JT O U J M Q R J�V O M Q R JN O K L M J�P O U KL M J�V O M Q R J�P O O K L M J E O M Q R JS O K L M JT O�W

JW KL M J�V O M Q R JN O K L M J�P O U M Q R J�V O M QR J�P O O M Q R J E O M Q R JS O O JX Y Z[ W \ K L M J�S O KL M JT O O U

JW KL M JN O K L M J�P O M Q R JT O M Q R J E O W J M Q R J�V O M QR JN O K L M J�P O U KL M J�V O M Q R J�P O O K L M JT O M Q R J E O�W

JW KL M J�V O M Q R JN O K L M J�P O U M Q R J�V O M QR J�P O O K L M J E O O J] Y Z[ W \ M Q R JT O O U

J�KL M JN O K L M J�P O M QR JT O K L M J E O K L M JS O U J M QR J�V O M Q R JN O K L M J�P O U KL M J V O M Q R J�P O O KL M JT O KL M J E O K L M J�S OW

JW KL M J�V O M Q R JN O K L M J�P O U M Q R J�V O M QR J�P O O M Q R J E O KL M JS O O J^ Y Z[ U \ M Q R JS O KL M JT O O

FG _
F E I JW KL M JN O M QR JP O KL M J E O M QR J�S O M QR JT O U JW M QR J V O M Q R JN O M Q R J�P O U K L M J V O KL M JP O O K L M J E O M Q R J�S O KL M JT OW

J�KL M J V O M Q R JN O M Q R J�P O U M Q R J�V O K L M J�P O O M Q R J E O M Q R JS O O JX Y Z[ W \ K L M JS O KL M JT O O U

J�KL M JN O M QR J�P O M Q R JT O M Q R J E O W JW M Q R J�V O M QR JN O M QR JP O U K L M J V O K L M JP O O K L M JT O M Q R J E OW

J�KL M J V O M Q R JN O M Q R J�P O U M Q R J�V O K L M J�P O O KL M J E O O J] Y Z[ W \ M Q R JT O O U

JW KL M JN O M QR JP O M Q R JT O KL M J E O K L M J�S O U JW M Q R J V O M QR JN O M Q R JP O U K L M J V O KL M JP O O K L M JT O K L M J E O KL M JS O�W

J�KL M J V O M Q R JN O M Q R J�P O U M Q R J�V O K L M J�P O O M Q R J E O KL M J�S O O J^ Y Z[ U \ M Q R JS O K L M JT O O

F`
F E I J M Q R JN O K L M J E O M Q R J�S O M Q R JT O W M Q R J V O K L M JN O K L M J E O M Q R J�S O KL M JT O W KL M J�V O K L M JN O M Q R J E O M Q R JS O O JX Y Z[ W \ K L M J�S O KL M JT O O U

JW M Q R JN O M Q R JT O M Q R J E O U M Q R J�V O K L M JN O K L M JT O M Q R J E O W K L M J V O KL M JN O KL M J E O O J] Y Z[ W \ M Q R JT O O U

J M Q R JN O M QR JT O K L M J E O K L M JS O W M Q R J�V O K L M JN O K L M JT O K L M J E O KL M J�S O W K L M J V O KL M JN O M Q R J E O K L M J�S O O J^ Y Z[ U \ M QR J�S O K L M JT O O
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Rotation matrix a�bdc ec f

gh h i jkl mn o jkl m�p o

ghq il r s m�t ol r s mn o jkl m�p o u jkl m�t ol r s m�p o

ghv iw jkl m�t ol r s mn o jkl m p o ul r s m�t ol r s m�p o

gq h iw jkl mn ol r s m p o

gq q iw l r s m�t ol r s mn ol r s m�p o u jkl m�t o jkl m�p o

gq v i jkl m�t ol r s mn ol r s m�p o ul r s m�t o jkl m�p o

gv h il r s mn o

gv q iw l r s m�t o jkl mn o

gv v i jkl m�t o jkl mn o
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Rotation matrix x�ydz {z |

}~ ~ � ��� �� � �� � ��� � �� � � ��� �� � � �� �� � � �� �

}~� �� �� �� � �� � �� �

}~� �� ��� �� �� � � �� � �� � � �� �� �� ��� � �� � ��� �

}� ~ �� � �� �� � �� � �� � �� � � �� �� �� �� � �� � �� �

}� � � ��� �� � �� � ��� �

}� � �� �� �� �� � � �� � � �� � �� �� �� ��� � �� � ��� �

}� ~ � ��� ��� �� � � ��� �

}� � �� � �� ��� �

}� � � ��� ��� � �� � ��� �

141
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