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Abstract. We study many-particle diffusion in 2D colloidal suspensions with full hydrodynamic interactions
through a novel mesoscopic simulation technique. We focus on the behaviour of the effective scaled tracer
and collective-diffusion coefficients DT(ρ)/D0 and DC(ρ)/D0, respectively, where D0 is the single-particle
diffusion coefficient, as a function of the density of the colloids ρ. At low Schmidt numbers Sc ∼ 1, we
find that hydrodynamics has essentially no effect on the behaviour of DT(ρ)/D0. At larger Sc, DT(ρ)/D0

seems to be enhanced at all densities, although the differences compared to the case without hydrodynamics
are rather minor. The collective-diffusion coefficient, on the other hand, is much more strongly coupled
to hydrodynamical conservation laws and is distinctly different from the purely dissipative case without
hydrodynamic interactions.

PACS. 68.35.Fx Diffusion; interface formation – 05.40.-a Fluctuation phenomena, random processes, noise,
and Brownian motion – 82.20.Wt Physical chemistry and chemical physics: Computational modeling;
simulation

1 Introduction

The dynamics of Brownian particles in confined geome-
tries, and in two dimensions (2D) in particular, is an im-
portant theoretical problem with applications in surface
science and colloidal systems [1–3]. Examples of funda-
mental questions that have been addressed recently are
the form of effective interactions between macroions in a
colloidal suspension [4,5] and the effects of hydrodynamic
interactions (HIs) on the diffusive properties of colloidal
particles [6–10].

So far, most studies have focused on self-diffusion of
particles in 2D. In the ideal case of no external poten-
tial and without HIs, the density-dependent self-diffusion
coefficients of 2D hard-disk particles have been recently
determined using numerical simulations [11,12] and vari-
ous theoretical approximations [12–15]. While the single-
particle limit in the ideal case is trivial, no exact analytic
results exist for finite densities. In this regime complicated
many-body effects manifest themselves through memory
effects in the motion of tagged colloidal particles.

The situation is even more complicated when the HIs
mediated by the solvent in a colloidal suspension are taken
into account. Recent work on the self-diffusion of colloidal
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particles in 2D and quasi-2D [6–10] indicates that HIs do
indeed influence self-diffusion. For hard spheres, HIs have
been shown to slow down self-diffusion [8]. The case is
more subtle in systems where interactions are softer and
relatively long-ranged, since then self-diffusion appears to
be enhanced [6–10]. Hence, the nature and magnitude of
these subtle effects in a given system depend on the rela-
tive importance of hydrodynamic and other interactions.

While the self-diffusion properties of 2D colloidal sys-
tems are relatively well understood, much less is known
about collective diffusion in 2D colloidal suspensions. Nev-
ertheless, collective diffusion plays a crucial role in pro-
cesses such as spreading and phase separation, as it de-
scribes the decay rate of density fluctuations in a sys-
tem. While the case without HIs has been considered re-
cently [12,16], the theoretical understanding of 2D situ-
ations with HIs is surprisingly limited. This is, in part,
due to theoretical difficulties when dealing with collective
transport in 2D liquids with full hydrodynamics. Further-
more, realistic numerical simulations of collective diffusion
in hydrodynamic two-phase colloidal systems have turned
out to be a considerable methodological challenge.

In this paper, our purpose is to employ a recently pro-
posed mesoscopic simulation method [17–19] to shed light
on some of the fundamental issues of many-particle diffu-
sion in 2D colloids. To this end, we consider an ensemble
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of colloidal particles that interact mutually with a short-
range repulsive potential and long-range HIs. The impor-
tance of HIs in the present case is quantified through a
comparison to a previous study [12] in which HIs were
neglected altogether.

The main issue we want to address here is the influ-
ence of hydrodynamics on the diffusive dynamics of this
system. We study tracer and collective diffusion for a wide
range of colloid concentrations. Our study reveals that the
tracer and collective diffusion of colloids in the present
model suspension are distinctly different in nature. While
the influence of hydrodynamics on tracer diffusion is rela-
tively weak, the collective diffusion is much more strongly
coupled to hydrodynamics. When previous results with-
out hydrodynamics [12] are compared to the present re-
sults with HIs, we can conclude that the concentration
dependence of collective diffusion changes completely.

2 Schmidt number

An important quantity measuring the properties of a fluid
in equilibrium is the dimensionless Schmidt number Sc,
defined as the ratio of momentum diffusivity to mass dif-
fusivity:

Sc =
ν

D
. (1)

Here ν = η/ρs is the kinematic viscosity of the fluid, η
being the viscosity and ρs the density of the fluid, and D
is the tracer diffusion coefficient of the fluid particles.

In a real fluid such as water Sc ∼ 103. Theoretical
arguments, too, often include the assumption that hydro-
dynamic fluctuations have reached a steady state on the
time scale of the motion of the colloidal particles. The
situation can be quite different in computer simulations:
efficient mesoscopic simulation techniques such as dissipa-
tive particle dynamics (DPD) typically have Sc ∼ 1 [20]
due to soft interactions often used in DPD simulations.
Larger Schmidt numbers could be obtained by using hard
conservative interactions, but then the benefits of DPD
would, for the most part, be lost. Other mesoscopic simu-
lation techniques such as the Lowe-Andersen method [21]
permit a wider range of Schmidt numbers even in the case
of soft interactions, but the numerical load of updating
the positions and velocities of all solvent and solute parti-
cles remains formidable. This is particularly problematic
in dilute solutions where an individual macromolecule is
embedded in a solvent. Here the computational cost is
mainly due to the solvent degrees of freedom, and only
a small fraction of the computing time is spent on the
macromolecule of interest.

Overall, for low Schmidt numbers, the hydrodynamic
interactions are still developing on the time scale at which
the colloids are diffusing, and hence the dynamics of the
colloids and the fluid velocity field are coupled. The ac-
tual effect on the dynamics of the colloids can in this case
be very complicated, and is not fully understood. Clearly,
there is a need for efficient techniques that can be used for
modelling systems with hydrodynamic interactions under

a variety of conditions, including both dilute and concen-
trated solutions, and cases where Sc is varied in a con-
trolled fashion. The method discussed below is a promis-
ing attempt in this direction.

3 Simulation method

The model system we consider comprises an ensemble of
disks immersed in a 2D liquid. The dynamics of the sys-
tem is simulated using a novel mesoscopic technique in-
troduced by Malevanets and Kapral (MK) [17,18]. The
MK method is a hybrid molecular-dynamics (MD) model,
where the colloid is treated microscopically, and the sol-
vent obeys coarse-grained dynamics. Despite the fact that
it has been introduced recently, the MK method has
been applied to a number of interesting problems, in-
cluding studies of dilute polymer systems [22], molecular
clusters [23], individual colloids under flow [18] and flow
around a cylinder in a 2D channel [24]. A variant of the
MK method by Malevanets and Yeomans has been applied
to binary fluid mixtures [25] and structural and dynamical
properties of individual polymer chains in a hydrodynamic
medium [19,26]. The methodology of the technique has
further been developed and discussed in references [27–30].

Let us first concentrate on the coarse-grained solvent.
The solvent consists of Ns particles of mass ms with con-
tinuous positions and velocities. The dynamics of these
solvent particles consists of free streaming interrupted by
multi-particle collision events. The time is partitioned into
segments (collision steps) τ , and the system itself is di-
vided into cells (collision volumes). The simplest tessella-
tion is a square grid with a mesh size a. During streaming,
the position of the particle i changes as follows:

xi(t+ τ) = xi(t) + τvi(t). (2)

Here vi is the velocity of the particle i. Collisions, in turn,
involve the exchange of momentum among the solvent par-
ticles in a given cell. In practice, the velocities of the par-
ticles are transformed as

vi(t+ τ) = V + ω · [vi(t)− V], (3)

where V is the average velocity of all the particles in the
cell the particle i belongs to and ω is a random rotation
matrix chosen separately for each cell. It can be shown [17]
that this dynamics consisting of a superposition of stream-
ing and collision events conserves the momentum and en-
ergy in each collision volume, and gives a correct descrip-
tion of the hydrodynamics of the velocity field. Illuminat-
ing pictures of steady-state flow fields in various geome-
tries can be found, e.g., in reference [17]. Note that the
technique does not, however, give a correct description of
the dynamics at microscopic time scales [18].

The coarse-grained collision dynamics can be com-
bined with a full molecular-dynamics description of em-
bedded solute molecules in the solvent. Such an approach
is very convenient if it is sufficient to account for the influ-
ence of the explicit solvent on the solute dynamics, with-
out paying attention to the microscopic details of the sol-
vent. The solvent-colloid and colloid-colloid interactions
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Vsc and Vcc, respectively, can be chosen as in MD, while
the interaction potential between two solvent particles is
always zero. Within time segments of length τ , the system
is evolved by Newton’s equations of motion:

∂xi(t)
∂t

= vi(t), (4)

mi
∂vi(t)
∂t

= − ∂V
∂xi

. (5)

Here mi is the mass of particle i and V = Vcc + Vsc. As
Vss = 0, solvent molecules will undergo free streaming
unless they interact with a colloid. The effective solvent-
solvent interactions take place as multi-particle collisions
at intervals of τ : the velocities of the solvent particles are
transformed according to equation (3).

The MKmethod reduces computing times significantly
compared to ordinary MD simulations for colloidal sys-
tems, especially in the case of dilute macromolecular solu-
tions. An even faster variant of the MK algorithm has been
introduced by Malevanets and Yeomans in reference [19].
In this case also the direct solvent-colloid interaction is ab-
sent, and the solvent-colloid interaction is described indi-
rectly through collisions. Another variation has been sug-
gested by Ihle et al. in reference [28]. They pointed out
that if the distance the solvent particles travel between
the collisions (the mean free path) is small compared to
the linear size of the collision volume, there will be unphys-
ical correlations at short time and length scales. To mend
this problem, they suggested a random shift of the grid
of collision volumes. In practice, all solvent particles are
shifted by the same random vector before a collision. Af-
ter the collision, the particles are shifted back by the same
vector. This procedure will ensure that particles in a given
cell will not remain correlated over several collision steps.

When designing an MK simulation, one has to pay at-
tention to a number of important details. The parameters
that determine the collision dynamics —the mesh size,
the collision step, and the rotation operator— determine
the properties of the coarse-grained solvent, e.g., the
solvent viscosity and the Schmidt number. Hence, one
should select these parameters carefully. However, in
selecting the parameters a number of constraints must be
taken into account.

When selecting the mesh size a for the collision vol-
umes, one should, for the sake of efficiency, ensure that
there are enough solvent particles in a cell. The cells, how-
ever, cannot be arbitrarily large: in that case the local
conservation breaks down. In addition, if the cells are very
large compared to the mean free path, there will be corre-
lations at short time and length scales. Hence, the solvent
density and the average velocity of the solvent particles
(i.e. the temperature) influence the choice of a. Addition-
ally, when colloids are embedded in the solvent, the mesh
size a should be chosen such that several colloid molecules
cannot be present in the same collision volume. In particu-
lar, if the direct solvent-colloid interactions are replaced by
collisions, several colloid molecules in the same cell could
lead to problems.

The choice of the rotation operator is another issue. A
convenient choice is to perform rotations about a vector
which has been chosen uniformly from the surface of a
unit sphere. The rotation angles may, e.g., be chosen such
that either an angle +α or −α is chosen with probability
1/2. The collision step τ , in turn, should be long enough
to provide a sufficiently long mean free path. On the other
hand, τ should be chosen small enough to incorporate
correctly the effect of solvent dynamics on the colloids.

The above-mentioned choices are not independent: if
one, e.g., alters a, the solvent viscosity is affected, and one
might have to reconsider the choice of τ to make sure that
there will be correct hydrodynamic interactions between
the colloid particles. Hence, it can be quite challenging to
obtain the desired transport properties for the fluid, e.g.
the Schmidt number, and fulfil all constraints at the same
time: in some cases one has to compromise. In most cases,
several parameters need to be changed simultaneously. In
this work, we have paid particular attention to account
for all of these points. In the following section, we will
elaborate on our choices of parameters.

4 Model system

The direct interactions between the colloid particles are
strongly repulsive and of short range. The interaction po-
tentials are of the form

Vkl(r) =
{
εkl

(
σkl

r

)n
, r ≤ rc ≡ 2.5σ;

0, r > rc,
(6)

where r is the separation between two particles of type k
and l (k, l ∈ {c, s}). Here we set n = 12, which allows a
direct comparison with previous calculations on a smooth
surface without hydrodynamics [12]. The colloid-colloid
interaction parameters are σcc = 2σ and εcc = ε, while the
solvent-colloid ones are σcs = σ and εcs = ε or zero, i.e. in
some cases there is no direct solvent-colloid interaction,
see above. The colloidal particles have a mass mc = 5m,
and the solvent mass is set to ms = m or ms = 0.5m.
Note that the description considered here is coarse grained
rather than molecular. Thus, the solvent particles dis-
cussed here should be considered as coarse-grained parti-
cles representing clusters of solvent molecules, and there-
fore the mass and size ratios of colloid and solvent particles
do not represent those of the actual molecules (for further
discussion, see Ref. [17]).

The parameters σ, ε and m now define our system
of units, and hence our unit of time is given by τLJ =
σ(m/ε)1/2. The temperature is kBT = 2ε, and for the
dimensionless solvent density we use ρs = 1. The dimen-
sionless solvent and colloidal densities have been defined as
ρs ≡ Ns/(A/σ2

cs) and ρ ≡ N/(A/σ2
cc), respectively. Here A

is the area of the system, Ns the number of solvent parti-
cles andN the number of colloidal particles. In these units,
the density of a closed-packed colloidal system is ρ ≈ 1.15.
The equations of motion were integrated using the velocity
Verlet algorithm with a time step δt = 0.005τLJ, and peri-
odic boundary conditions were employed in all directions.
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Table 1. A summary of the three different parameter sets
used. See text for details.

Sc ν [σ2τ−1
LJ ] τ [τLJ] a [σ] α ms [m] L [σ]

1 0.82(1) 0.5 2 ±90◦ 1 200
20 3.70(2) 0.05 2 ±125◦ 0.5 100
100 9.11(2) 0.1 2 ±170◦ 1 100

As mentioned in the previous section, the parameters
that determine the collision dynamics should be chosen
very carefully. In this study our aim is to fulfil the con-
straints discussed above as well as possible, and addition-
ally to control the Schmidt number Sc. The value of Sc is
influenced, e.g., by the choice of the collision step τ , the
grid size a, the rotation angle α and the solvent mass ms.
We have used different sets of parameters in the simula-
tions. These sets have been tuned to yield different kine-
matic viscosities and Schmidt numbers. As Ihle et al. point
out in reference [28], one should, by varying the mean free
path and rotation angle α, be able to simulate fluid with
a wide range of Schmidt numbers. Note that one thus,
to achieve a perceptible change in the Schmidt number,
has to accept that quite a few parameters must be re-
set, and also that all changes could affect the constraints
mentioned above. Embedding solvent molecules into the
solvent increases the number of constraints and tends to
complicate matters.

A list of the three different parameter sets and the re-
sulting relevant solvent properties is shown in Table 1. The
kinematic viscosities ν in Table 1 were computed using
equations (4–6) in reference [28], and the Schmidt num-
bers were obtained from equation (1). The diffusion coef-
ficients for the solvent molecules were computed using the
memory expansion method from reference [31]. The mem-
ory expansion method, as shown in reference [31], yields
results entirely consistent with the more traditional mean-
square displacement analysis, while it is computationally
considerably more efficient.

Let us now briefly assess the choice of parameters from
the point of view of the constraints discussed above. As
for the grid size a, it has been set to 2σ in all systems.
Recalling that σcc = 2σ, we can be assured that there is
at most one colloid in each cell. As the solvent density
ρs = 1, there are on the average four solvent molecules
in each cell. This is perhaps not optimal, but reasonably
efficient. The collision time τ has been assigned a value of
either 0.5τLJ or 0.1τLJ. This means that the systems with
Sc > 1 have a mean free path (distance travelled during
τ) of the order of 0.1a. In these cases, to avoid unphysi-
cal correlations at short time and length scales, we have
employed the random grid-shifting procedure proposed in
reference [28]. The hydrodynamics, in turn, is adequately
described at time scales that are at least an order of mag-
nitude larger than the collision time τ . Recalling that the
kinematic viscosity ν describes the diffusivity of momen-
tum, we can conclude that the length scales beyond which
the hydrodynamics should be valid are of the order of the
diameter of the colloidal particles σcc.

5 Results

5.1 Tracer diffusion

Perhaps the most well-known transport coefficient is the
tracer diffusion coefficient DT, which describes the motion
of a tagged tracer particle as DT = limt→∞DT(t), where
the time-dependent transport coefficient DT(t) is given by
the Green-Kubo description

DT(t) =
1
dN

N∑
i=1

∫ t

0

dt′〈vi(t′) · vi(0)〉 (7)

among N identical particles. Here d = 2 is the dimension-
ality of the system and vi(t) is the velocity of particle i at
time t. The quantity φ(t) ≡ 〈vi(t) · vi(0)〉 is the velocity
autocorrelation function. Alternatively, it is common to
define the tracer diffusion coefficient through the mean-
square displacement

〈[r(t)]2〉 ≡ 1
2dN

N∑
i=1

〈[ri(t)− ri(0)]2〉, (8)

but in that case the definition of the time-dependent coun-
terpart would be less convenient. Hence, in this study, we
determined DT(t) through equation (7) using the memory
expansion technique discussed in references [31,32].

Equation (7) expresses the fact that we are dealing
with a time-dependent quantity DT(t). Since this is also
the case in experiments, let us briefly discuss why it is im-
portant to consider diffusion coefficients in 2D and quasi-
2D cases as time-dependent ones.

For colloidal systems with HIs, it has been known since
the 1970s that there are long-time tails in the velocity
autocorrelation functions. These have been observed in
MD [33] and lattice-Boltzmann [34] simulations, and lead
to a divergence of the tracer diffusion coefficient in 2D [33,
35–37]. In this case, the diffusion coefficients DT(t) have
to be considered as time-dependent, effective quantities.
This matter is not just a theoretical issue, but concerns
both computational and experimental approaches.

When tracer diffusion in concentrated suspensions is
investigated experimentally, it is common to single out the
effects of the HIs by concentrating on the so-called short-
time diffusion coefficients [6,7,10,38]. These are measured
at times much shorter than τI , the time it takes the tracer
particles to diffuse the average distance between the sus-
pended colloidal particles. For this definition to be mean-
ingful, such times should be significantly larger than the
time τB it takes for the velocities of the colloidal parti-
cles to relax. In our case, for concentrated solutions and
small values of Sc in particular, the time interval between
τB and τI becomes very narrow. Furthermore, as the MK
method has been developed for studies in the hydrody-
namic regime, we cannot expect that it generates the cor-
rect dynamics at very short (microscopic) time and length
scales. Hence, this definition for short-time diffusion coef-
ficients is not appropriate for the present study.

In this work, we consider DT(ρ, t) normalised by the
single-particle diffusion coefficient D0(t) ≡ DT(ρ → 0, t).
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Fig. 1. (a) Tracer diffusion coefficients DT(ρ, t) as a func-
tion of t for Sc ≈ 1. These data have been obtained from
simulations without solvent-colloid interactions. The colloidal
densities from top to bottom are 0, 0.1232, 0.2464 and 0.3697,
and the dashed lines highlight the plateaus from which the
effective diffusion coefficients have been determined. The in-
set shows the effective scaled diffusion coefficient DT(ρ)/D0

at ρ = 0.2464 as a function of the system size L. (b) Effec-
tive scaled tracer diffusion coefficients DT(ρ)/D0 as a function
of ρ for Sc ≈ 1 (open circles), Sc ≈ 20 (open triangles) and
Sc ≈ 100 (open boxes). For reference, results without HIs [12]
are also presented (solid circles).

As shown in Figure 1(a), within the accuracy of the data,
the tracer diffusion coefficients DT(ρ, t) converge to a fi-
nite limit in the limit of long times. Although the slow
logarithmic divergences are present in our data (data not
shown), the amplitudes of the tails at late simulation times
are exceedingly small and partially masked by statistical
fluctuations. Hence, effective values DT(ρ) for the tracer
diffusion coefficients can be extracted from the plateau re-
gion. In the dilute limit, the plateau region yields the effec-
tive single-particle diffusion coefficient D0. The effective
scaled diffusion coefficients are then defined as DT(ρ)/D0.

The possible finite-size effects on the measured scaled
diffusion coefficients were also examined. In the inset of

Figure 1(a), we show the scaled tracer diffusion coefficient
DT(ρ)/D0 at the density ρ = 0.2464 for the case Sc ≈ 1
as a function of the system size. Since both DT(ρ) and D0

have a similar system size dependence, our results suggest
that the scaled quantity does not depend in any significant
manner on the system size used in the simulations.

In Figure 1(b) we show a summary of our results for
the scaled DT(ρ)/D0 as a function of the dimensionless
density of the disks ρ. For comparison we also present our
earlier Brownian dynamics (BD) results for the purely dis-
sipative case [12]. As stated in reference [12], in purely dis-
sipative systems, where the interaction potential is of the
form in equation (6), the results can be made consistent
with hard-disk results by a simple scaling of the density.
Through the scaling

ρ̃ =
(

ε

kBT

)2/n

ρ, (9)

where ρ̃ is the corresponding dimensionless density in the
hard-disk system, we can transform the hard-disk data
presented in reference [12] such that they correspond to
the interaction potential and temperature used in the
present study.

It is clear that at low values of Sc hydrodynamics has
virtually no effect on tracer diffusion. As Sc is tuned to
larger values, we find a minor enhancement of DT(ρ)/D0,
which is largest at intermediate densities ρ ≈ 0.4–0.7.
Thus, the hydrodynamics does not give rise to major devi-
ations from the case without HIs. Further, in the concen-
trated regime the tracer diffusion is considerably slowed
down compared to the dilute limit, and slightly beyond
ρ = 1 the tracer diffusion is essentially frozen due to pack-
ing constraints. Yet the phase behaviour in this limit was
found to be fluid-like, i.e., we did not observe transitions
to ordered phases. We conclude that HIs do play a role
here, but their influence on the scaled tracer diffusion co-
efficient seems to be rather minor.

5.2 Collective diffusion

An important transport coefficient characterising the de-
cay rate of collective density fluctuations is the collective-
diffusion coefficient DC, which should not be confused
with the tracer diffusion coefficient DT describing the mo-
tion of a tagged tracer particle as defined above by equa-
tion (7). The collective-diffusion coefficient can be writ-
ten as DC = limt→∞DC(t), where DC(t) is now defined
through the Green-Kubo relation

DC(t) = ξDcm(t) = ξ
1
dN

∫ t

0

dt′〈J(t′) · J(0)〉. (10)

Here ξ = 〈N〉/[〈N2〉 − 〈N〉2] is the thermodynamic factor
inversely proportional to the isothermal compressibility,
and J(t) =

∑N
i=1 vi(t) is the total particle flux. Note that

the autocorrelation function 〈J(t) · J(0)〉 is not a single-
particle quantity, but must be computed over the veloci-
ties of all N particles. Consequently, the term Dcm(t) can
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be interpreted as the time-dependent diffusion coefficient
characterising the center-of-mass (CM) motion of the N
particles under study. Following the approach discussed
above for tracer diffusion, one could approach the same
idea in terms of the mean-square displacement

〈[Rcm(t)]2〉 ≡ 1
2dNt

〈[R(t)− R(0)]2〉, (11)

where R(t) =
∑N

i=1[ri(t) − ri(0)] is the CM position of
the N particles at time t [39]. As in the case of tracer
diffusion, however, it is less convenient to define Dcm(t) in
this fashion. Thus, we have focused on equation (10) and
used the memory expansion technique.

The thermodynamic factor ξ, which is a static quan-
tity, is not affected by hydrodynamics within our accuracy.
To estimate ξ we have used data from our MK simulations
and the so-called Boublik approximation [40]. These are
in excellent agreement as demonstrated by the inset of
Figure 2(a) and reference [12].

In the case of dissipative hard spheres on a smooth sur-
face, there is an exact result that the CM mobility Dcm is
independent of the density ρ [13]. This is because the in-
terparticle interactions preserve the CM momentum, and
thus Dcm(ρ) = Dcm(0) = const. However, with HIs in
place this argument no longer holds. In Figure 2(a) we
show the scaled CMmobility as a function of density in the
present system. Note that the effective scaled CM mobili-
ties Dcm(ρ)/D0 have been determined in the same manner
as the effective scaled self-diffusion coefficients DT(ρ)/D0.
Now, we find that the scaled CM mobility is a decreas-
ing function of ρ, and decreases much more rapidly than
DT(ρ)/D0 shown in Figure 1(b). It should also be noted
that Dcm(ρ)/D0 does not appear to be sensitive to Sc:
while the self-diffusion of individual particles is slightly
influenced by Sc, the effects on individual particles seem
to be largely independent of each other, and thus cancel
out in the CM mobility.

In Figure 2(b) we show the scaled collective-diffusion
coefficient that displays a slight minimum or a plateau at
small values of the density ρ. The source of the interesting
shape is the interplay of ξ and Dcm(ρ)/D0: although the
thermodynamic factor increases monotonously, the initial
decay of the scaled CM diffusion coefficient is much more
rapid and dominates the behaviour of the scaled collective-
diffusion coefficient at small concentrations. The crossover
takes place around ρ ≈ 0.2–0.3, above which the behaviour
of the scaled collective-diffusion coefficient is dictated by
the thermodynamic factor. A comparison with Figure 1(b)
shows that the tracer and collective-diffusion coefficients
are essentially identical up to this crossover concentration.
In the dilute limit this is expected, since then DC = DT.
At concentrations above ρ ≈ 0.2 this consistency breaks
down due to particle number fluctuations that at large
concentrations govern collective diffusion in the present
system, and give rise to a scaled collective-diffusion co-
efficient whose behaviour is completely different from its
tracer counterpart.

From our data we can conclude that the HIs have a
significant effect on collective diffusion. Figure 2(b) shows
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Fig. 2. (a) Scaled CM mobility Dcm(ρ)/D0 as a function
of ρ for Sc ≈ 1. The inset shows the thermodynamic fac-
tor ξ from the Boublik approximation [40] (solid line) and
from our simulations (crosses). (b) Effective scaled collective-
diffusion coefficients DC(ρ)/D0 as a function of ρ. Open circles
are results with Sc ≈ 1, obtained from simulations without
solvent-colloid interactions. Open diamonds are results from
simulations where the solvent-colloid interactions are present.
Squares, in turn, are from computations where Sc ≈ 100. For
reference, the solid line is DC(ρ)/D0 in the case where HIs have
not been taken into account [12].

that the behaviour of DC(ρ)/D0 is in striking contrast to
the dissipative case (without HIs) which is entirely deter-
mined by ξ. We argue that this behaviour is generic in
colloidal suspensions governed by hydrodynamics, since
then the CM mobility is not constant, but competes with
ξ. The actual form of DC(ρ)/D0, however, may vary from
one system to another, depending on the details of inter-
actions and the impact of the HIs. Further studies, exper-
iments in particular, are called for.

5.3 Role of dynamics

Most of the data we have presented in this study, see Fig-
ures 1 and 2, have their origin in MK simulations where
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the conventional solvent-colloid interactions have been re-
placed by the colloid particles participating in the multi-
particle collisions. Including explicit solvent-colloid inter-
actions into the simulations is, of course, straight-forward,
but the computational cost then increases considerably
compared to simulations without explicit solvent-colloid
interactions. This point is particularly important in stud-
ies of collective diffusion, in which case the computational
effort is extensive.

To make sure that the minimum seen in DC(ρ)/D0

vs. ρ in Figure 2(b) is not an artefact generated by the
omission of the conventional solvent-colloid interactions,
we computed for a few densities (ρ ≤ 0.2) the effective
scaled diffusion coefficients with the conventional solvent-
colloid interactions in place.

We first found that the absolute, unscaled diffusion
coefficients calculated with and without explicit solvent-
colloid interactions differ slightly. This is expected, since
the effective friction between the solvent and the colloids
is altered when the direct solvent-colloid interactions are
left out. Based on our simulations for the present model,
the effect is similar for all concentrations. Hence, if we
scale the diffusion coefficients by the single-particle diffu-
sion coefficient, the scaled diffusion coefficients are, within
our numerical accuracy, unaltered, when the dynamics is
varied. This result is illustrated in Figure 3.

The key finding is that when we consider the low-
density regime for the scaled collective-diffusion coeffi-
cient, both schemes, i.e. the cases with and without di-
rect solvent-colloid interactions, yield the same behaviour
with the minimum or plateau DC(ρ)/D0 ≈ 0.75 close to
ρ ≈ 0.2–0.3 (see Fig. 2(b)). Thus, we are confident that
the behaviour observed here for collective diffusion is a
true finding and not merely due to the dynamics used in
this study. This conclusion is further supported by very re-
cent mode-coupling calculations [41] that have predicted a
behaviour similar to what we have observed in this work,
including a minimum at intermediate densities. The mini-
mum seems to be very robust: it is found for a wide range
of parameter values [41].

6 Discussion and summary

In the following, we will contrast our findings with previ-
ous results. As for tracer diffusion, there are experimental
and numerical studies in quasi-2D, which can be used
for comparison. One should keep in mind, however, that
our simulations have been conducted in an ideal 2D
system and not in quasi-2D. Further, to our knowledge,
there are no previous studies on the influence of HIs on
collective diffusion of colloidal systems in neither ideal or
quasi-2D systems.

In reference [6], the authors studied by digital videomi-
croscopy monolayers of paramagnetic polystyrene spheres
confined to an air/water interface. The interactions were
∼1/r3and therefore of relatively long range. The authors
compared their experimental data with results from quasi-
2D computer simulations, where hydrodynamic interac-
tions were neglected. It seems that for the low volume
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Fig. 3. (a) Scaled tracer diffusion coefficients DT(t)/D0 as
functions of time for ρ = 0.0616 and Sc ≈ 1. The thick
dashed line is the scaled tracer diffusion coefficient computed
with explicit solvent-colloid interactions, and the thin dashed
lines illustrate the corresponding errors. The thick solid line
is the scaled tracer diffusion coefficient obtained from simula-
tions where the conventional solvent-colloid interactions have
been replaced by multi-particle collisions. The thin solid lines
represent the errors in this case. (b) Scaled CM mobilities
Dcm(t)/D0 as functions of time for ρ = 0.0616 and Sc ≈ 1.
The dashed and solid lines have been chosen as in part (a).

fractions (ρ < 0.1) studied, the scaled tracer diffusion co-
efficients from simulations without HIs were smaller than
those obtained from experiments, in accord with our re-
sults. Additionally, the values of the scaled tracer dif-
fusion coefficients increased with the density of colloids,
which is opposed to what we see in our case. However,
one should keep in mind that reference [6] focused on the
low-concentration limit, while our purpose was to examine
the impact of HIs on both tracer and collective diffusion
over a wide concentration range, and to investigate the dif-
ferences between tracer and collective diffusion. It seems
obvious that at large concentrations the scaled diffusion
coefficients would decrease with the density of colloids,
thus the conclusions made in reference [6] are subject to
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the low-density limit considered therein. Nevertheless, the
main conclusion presented in reference [6] was that hydro-
dynamic interactions might enhance diffusion for colloids
with long-range potentials. The study was complemented
by reference [7], where the authors discuss their Brownian
dynamics simulations, where hydrodynamic interactions
had been included. They found very good agreement with
the earlier experimental results.

Pesché et al. [8] performed quasi-2D Stokesian dynam-
ics simulations to probe the static and dynamic properties
of a monolayer of colloidal particles between two paral-
lel walls. For hard spheres and moderately charged parti-
cles interacting with Yukawa-like potentials, they noted a
modest reduction of tracer diffusion due to hydrodynamic
interactions. For strongly repelling charged particles, they
observed a minor enhancement of tracer diffusion. In this
study, the scaled tracer diffusion coefficients seem to de-
crease monotonically as a function of colloidal density.

Our data indicate that in ideal 2D situations for short-
range interactions of the form V (r) ∼ 1/r12, the HIs have
a small, enhancing effect on tracer diffusion. In addition,
it is clear that in our case the values of effective scaled
tracer diffusion coefficients decrease monotonically with
an increasing colloidal density.

Our results are in reasonably good agreement with pre-
vious studies in cases where a comparison is appropriate.
Nevertheless, there remains a number of questions about
the influence of HIs on tracer diffusion. Perhaps the most
pressing ones are related to the nature of diffusion in 2D
systems. Does the tracer diffusion studied in experiments
essentially correspond to the ideal 2D situation, or is it in-
deed crucial to resort to a quasi-2D description? In other
words, how similar are the dynamic properties of ideal and
quasi-2D systems? If there are major differences, is there a
crossover from the ideal 2D to the quasi-2D case, followed
by another crossover to the 3D behaviour in bulk? And fi-
nally, how is the quasi-2D system then related to the two
limits? Numerical simulations that probe these issues, al-
though challenging, should be feasible in the near future.
Another important direction is to systematically investi-
gate the role of interactions. It would be interesting to
study what effect softer interactions between the colloidal
particles might have on the behaviour of tracer diffusion
with and without hydrodynamics. Work in this direction
is in progress.

As one of our main objectives has been to study the
effect of HIs on collective diffusion, it is rather unfortunate
that there are no experimental studies available for com-
parison. Thus, we are bound to summarise our findings
and discuss their relevance.

We have found that when HIs are included, collective
diffusion is notably different from tracer diffusion. Fur-
ther, collective diffusion with HIs is utterly unlike col-
lective diffusion in the dissipative case. These differences
can be attributed to the interplay of the steeply descend-
ing mobility factor Dcm and the monotonously increasing
thermodynamic factor ξ. The end result is a minimum
or plateau of the scaled collective-diffusion coefficient at
intermediate colloid concentrations.

The competition between dynamic and thermody-
namic effects is an essential feature of concerted diffusion
processes characterised by the collective-diffusion coeffi-
cient. Hence we feel that the behaviour found here for
collective diffusion is of generic nature. It would be inter-
esting to study how our results are affected when proceed-
ing from an ideal 2D system to a confined 3D geometry,
or how effective interactions obtained from experiments [5]
are manifested in collective diffusion. Experiments, in par-
ticular, would be illuminating.

To summarise, we have presented a detailed numer-
ical study of the effects of hydrodynamics on both self-
and collective diffusion of 2D repulsive colloidal particles.
This has been achieved by using a novel hybrid mesoscopic
scheme for two-component liquids. We have found that the
effective tracer diffusion coefficient appears to be for our
choice of colloidal interactions slightly enhanced when the
Schmidt number is increased, but it is not significantly al-
tered by HIs. The collective-diffusion coefficient, however,
is strongly coupled to hydrodynamics, and is distinctly dif-
ferent from the behaviour predicted by approaches where
hydrodynamic interactions are not taken into account.
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H. König, G. Maret, R. Klein, J.K.G. Dhont, Europhys.
Lett. 58, 919 (2002).
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