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"Common sense is not so common." 

Voltaire 
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Abstract

Objective: To study whether hemodynamic changes in human brain generate scalp-EEG responses.

Methods: Direct current EEG (DC-EEG) was recorded from 12 subjects during 5 non-invasive manipulations that affect intracranial

hemodynamics by different mechanisms: bilateral jugular vein compression (JVC), head-up tilt (HUT), head-down tilt (HDT), Valsalva

maneuver (VM), and Mueller maneuver (MM). DC shifts were compared to changes in cerebral blood volume (CBV) measured by near-

infrared spectroscopy (NIRS).

Results: DC shifts were observed during all manipulations with highest amplitudes (up to 250 mV) at the midline electrodes, and the most

pronounced changes (up to 15 mV/cm) in the DC voltage gradient around vertex. In spite of inter-individual variation in both amplitude and

polarity, the DC shifts were consistent and reproducible for each subject and they showed a clear temporal correlation with changes in CBV.

Conclusions: Our results indicate that hemodynamic changes in human brain are associated with marked DC shifts that cannot be

accounted for by intracortical neuronal or glial currents. Instead, the data are consistent with a non-neuronal generator mechanism that is

associated with the blood–brain barrier.

Significance: These findings have direct implications for mechanistic interpretation of slow EEG responses in various experimental

paradigms.

q 2003 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Conventional EEG techniques record events with

frequencies of 0.5 Hz and higher. Detection of slower

potential changes requires a direct current EEG (DC-EEG)

technique (Speckmann and Elger, 1999). DC potential

changes (or DC shifts) refer to slow EEG responses

measured by a DC-EEG amplifier with a bandwidth starting

from 0 Hz (Caspers et al., 1987; Speckmann and Elger,

1999). Pronounced DC shifts are observed in humans under

many conditions, for example during epileptic seizures

(Chatrian et al., 1968; O’Leary and Goldring, 1964; Caspers

et al., 1987; Vanhatalo et al., 2003a), during changes in

vigilance states (Wurtz, 1967; Wurtz and O’Flaherty, 1967;

Marshall et al., 1998), during changes in brain CO2 levels

(Caspers et al., 1987; Lehmenkuhler et al., 1999; Voipio

et al., 2003), and spontaneously in premature brain

(Vanhatalo et al., 2002). Slow EEG responses are well

documented also during cognitive or motor tasks (con-

tingent negative variation and Bereitschaftpotential,

respectively, Birbaumer et al., 1990).

According to the currently prevailing view (Caspers et al.,

1987; Birbaumer et al., 1990; Speckmann and Elger, 1999),

DC shifts are mainly attributable to electrical responses

generated by cortical neurons and glial cells. However,

several lines of evidence suggest an essential role for an

intracranial, non-neuronal generator. For example, volun-

tary hyperventilation in humans provokes millivolt-scale

DC shifts (Voipio et al., 2003), which are far too large to be

accounted for by a purely neuronal generator. Invasive

recordings in experimental animals (Wurtz, 1967; Wurtz
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and O’Flaherty, 1967; Caspers et al., 1987; Amzica et al.,

2002) show that slow DC shifts are often not associated with

intracortical current loops that are responsible for EEG

signals at higher frequencies. Instead, slow voltage shifts

recorded in the brain correlate strikingly well with changes

in cerebral blood flow (CBF) (Besson et al., 1970; Woody

et al., 1970; Cowen, 1974; see also Voipio et al., 2003).

There is also solid evidence for a large pH-sensitive

transendothelial potential gradient between the cerebrosp-

inal fluid (CSF) and blood both in humans and in many

animal species (Loeschcke, 1971; Tschirgi and Taylor,

1958; Held et al., 1964; Hornbein and Sorensen, 1972;

Sorensen et al., 1978; Revest et al., 1993). A recently

proposed volume-conduction model accounts for the

generation of significant DC potential gradients on scalp

by the blood–brain barrier (BBB; Voipio et al., 2003), thus

providing a novel mechanistic basis for the interpretation of

DC shifts.

In the present study, we examined the possibility that

acute manipulations of intracranial hemodynamics would

produce DC shifts that could be recorded on the human

scalp. We measured DC-EEG during various non-invasive

manipulations, which elicit changes in pressure gradients

between different intracranial compartments. All these

manipulations are in routine clinical use: Bilateral jugular

vein compression (JVC), head-up tilt (HUT), and head-

down tilt (HDT), Valsalva (VM) and Mueller maneuvers

(MM). JVC, VM, and MM exert their intracranial effects

mainly via the vascular route, while HUT and HDT act

mainly by a hydrostatic pressure mechanism. We also

studied the dependence of the DC shifts on the changes in

cerebral blood volume (CBV) and/or CBF (CBV/F)

detected by near-infrared spectroscopy (NIRS), in order to

find evidence for a possible causal relationship between DC

shifts and intracranial hemodynamics.

2. Subjects and methods

2.1. Subjects and overview of experiments

Twelve healthy subjects (8 males; age 25–43 years) were

recruited for the study. The first ðn ¼ 6Þ part of the study

consisted of JVC, HUT, HDT, VM, and MM with DC-EEG

recordings only, and the second part ðn ¼ 8Þ of CBV/F

measurement by NIRS simultaneously with DC-EEG

recording. All measurements were done in supine position,

and all maneuvers were performed 3–7 times, each

followed by a recovery of at least 60 s (except in the

experiment shown in Fig. 2D). This study was approved by

the Ethical Committees of both the University Hospital of

Helsinki, as well as the Harborview Medical Center,

University of Washington. All subjects gave informed

consent under a protocol approved by the University

Hospital of Helsinki and by the University of Washington

Human Subjects Committee.

2.2. Recording techniques

2.2.1. DC-EEG recording

Six-channel recordings (Fz, Cz, Oz, T3, T4, and the right

mastoid) were performed using a custom-designed DC-EEG

amplifier (long-term stability better than 1 mV/h, bandwidth

DC—160 Hz, high input impedance differential preampli-

fiers equipped with circuits for automatic electrode offset

voltage compensation and testing of electrode–skin contact

impedance) and sintered Ag/AgCl electrodes with 12 mm2

of active area (type E220N-LP; In Vivo Metric, Ukiah, CA,

USA). A separate electrode holder lifted the Ag/AgCl

electrode 6 mm above the skin, forming a closed space that

was filled with electrode gel (Berner Ltd, Helsinki, Finland).

The large volume of the electrode gel in the electrode cup

and holder, and the airtight contact of the holder with the

skin beneath, prevented electrode gel from drying to avoid

drifts generated by changes in electrode potentials (Geddes

and Baker, 1968). Amplitudes of the DC shifts were

quantified with reference in mastoid, while off-line re-

referencing was employed to verify the intracranial

topography of the DC potentials (Section 2.3.4). Signals

were acquired at 500 Hz by a 12 bit data acquisition card

and computer (amplitude resolution 2.4 mV). The software

for data recording and analysis was programmed under

Labview (National Instruments, Austin, TX, USA). Respir-

ation pattern was monitored with a capnograph (Capnomac,

Datex, Helsinki, Finland) in those trials where DC-EEG

responses to apnea were studied.

2.2.2. Near-infrared spectroscopy

Measurement of relative changes in CBV/F was

determined with NIRS, which essentially measures intra-

cranial absorbance of near-infrared light (wavelengths 780

and 840 nm) by deoxy-hemoglogin (deoxy-Hb) and oxyhe-

moglobin (oxy-Hb) (Obrig and Villringer, 1997; Villringer

et al., 1997). The sum of these two parameters, total Hb

(tHb), gives a fairly good estimate of total CBV. It is

notable, however, that NIRS measures blood volume in both

arterial and venous vascular beds (Watzman et al., 2000),

and the signals may be altered independently by both CBV

and CBF (Hoshi et al., 2001). A close correlation between

changes in actual flow of cerebral blood and the volume of

cerebral blood (tHb signal) has been shown in numerous

other situations (Toronov et al., 2001; Villringer et al., 1997;

Hoshi et al., 2001; Smielewski et al., 1997; Al Rawi et al.,

2001). The design of the head cap used in the present study

(i.e. distance between the emitters and detectors; see

Ichikawa et al., 1999) does minimize, if not exclude, the

possible signal from scalp vasculature. We measured the

tHb signal with a sampling rate of 2 Hz using a 24 channel

NIRS device (ETG-100, Hitachi Medical Corporation,

Tokai, Japan; Ichikawa et al., 1999). Channels were placed

symmetrically over the frontal– parietal regions. For

analysis, we chose one representative channel to compare

tHb changes with the simultaneous DC-EEG recordings.
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The overall waveform of the tHb response was similar in the

majority (usually .20 out of 24 channels) of the channels,

reflecting a near global change in tHb signal during these

maneuvers.

2.3. Experiments

We chose experimental manipulations, which act in the

cranium mainly through an intravascular (JVC, VM, and

MM) or an extravascular (HDT and HUT) route. Mechan-

ical obstruction of venous outflow by JVC results in

intracranial venous congestion with little effect on the

arterial side (Iwabuchi et al., 1983; Grady et al., 1986;

Buchvald et al., 1999), while changes in the intrathoracic,

and hence in the central venous pressure during expiratory

(VM) or inspiratory (MM) strain result in abrupt hyperten-

sion (VM) (Hamilton et al., 1944; Williams, 1981; Glaister

and Jobsis-VanderVliet, 1988; Tiecks et al., 1995) or

hypotension (MM) (Morgan et al., 1993; Virolainen et al.,

1995; Reinhard et al., 2000) within both intracerebral

arteries and veins. Tilt tests (HDT and HUT), in turn,

mediate their effects primarily via extravascular changes in

CSF hydrostratic pressure within the craniospinal cavity

(Magnaes, 1976; Chapman et al., 1990; Caprihan et al.,

1999; Shakhnovich et al., 1999).

2.3.1. Compression of the jugular vein

JVC was performed by the subject him/herself lying in

supine position with the neck slightly extended in order to

facilitate bilateral occlusion (Buchvald et al., 1999). The

occlusion was performed by gentle compression 2–3 cm

beneath the angle of the lower jaw with the middle and

index fingers. After a few trials the subjects learned to

compress their jugular veins strongly enough to cause a

clear change in CBV/F (as seen in the tHb signal) without

causing movement artefacts in the DC-EEG. Compression

lasted for 20 s, and trials were accepted only if they

produced a clear change in the tHb NIRS signal.

2.3.2. Head-down and head-up tilts

Tilt-table tests ðn ¼ 6Þ began with a baseline measure-

ment in supine position for at least 5 min. Subsequently, the

table was tilted either 30 8 head down or 20 8 head up for

20 s. Recordings from 4 subjects were analyzed due to

motion artefacts with the other two subjects. Simultaneous

recording with DC-EEG and NIRS was performed on 3

subjects.

2.3.3. Valsalva and Mueller maneuvers

The subjects ðn ¼ 6Þ performed VM by expiring through

a closed mouthpiece attached to a barometer they could read

(Virolainen et al., 1995; Pott et al., 2000). They were

requested to generate and hold a predetermined (20, 40, or

60 mmHg) positive pressure for 15 – 20 s. The MM

consisted of inspiring at functional residual capacity

through a mouthpiece attached to the barometer and holding

a predetermined negative pressure (220, 240, or

260 mmHg) for 15–20 s. During MM there was a minute

air leak in the mouthpiece to prevent closure of the glottis

(Reinhard et al., 2000), hence ensuring transmission of the

negative mouth pressure into the thorax. Subjects often

reported increased dizziness towards the end of the stronger

strains (240 and 260 mmHg), providing a subjective

indicator of transiently compromised cerebral circulation. In

the experiments with simultaneous DC-EEG and NIRS

measurements strain pressure was not measured, but

subjects were required to generate a pressure that produced

a clear change in CBV/F as observed by the tHb signal. Only

trials with a clear CBV/F response and without movement

artefacts were included.

2.3.4. Controls

All trials with artefacts caused by movements of body or

head were excluded from analysis. Skin-borne electrical

potentials (Picton and Hillyard, 1972; Wallin, 1981;

Grimnes, 1984) were short-circuited by scratching the skin

through basal lamina with a tiny needle (Picton and

Hillyard, 1972; Cowen, 1974). Artefacts caused by ocular

movements during MM and VM were avoided by request-

ing the subjects to keep their gaze fixed onto the barometer.

During HDT and HUT the subjects were instructed to fixate

onto a point that moved together with the bed. Possible

ocular artefacts were also inspected from the EEG traces

during analysis. The possibility that apnea during VM and

MM would cause a DC shift by a CO2-dependent

mechanism (Voipio et al., 2003) was evaluated by

Fig. 1. A single trial of JVC induces a prominent DC shift at Cz. Off-line

digital re-referencing of the response at Cz vs. mastoid (A) to linked

temporal derivations (B) causes only a small decrease in the amplitude of

the DC shift, which suggests an intracranial voltage source. Reproducibility

of the response within the same subject is shown in (C). All DC-EEG traces

in every figure (except in Figs. 7 and 8A, B) depict single trials. All traces

were first low-pass filtered at 4 Hz and then averaged over every 0.5 s

in order to facilitate the visual distinction of the slow DC shifts from

background EEG activity. Negative is downwards in all figures.
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performing a 20 s apnea with normal intrathoracic pressure.

The possibility of glossokinetic artefacts (Jaffe and Brown,

1983; Vanhatalo et al., 2003b) causing the observed DC

shifts was tested by performing voluntary, maximal back-

and-forward movement of the tongue. We found that the

time course of tongue response was always immediate as

opposed to the slow (tens of seconds) recovery observed

after our straining maneuvers, and that the amplitudes of

tongue-movement artefacts were always smaller than the

DC shifts (data not shown). Also, DC deflections caused by

tongue movement were markedly reduced or absent in

differential signals between midline and temporal

electrodes.

3. Results

3.1. Jugular vein compression

In order to test the hypothesis that changes in CBV/F are

associated with DC shifts, we first carried out experiments

with a 20 s period of decreased cerebral venous outflow

brought about by JVC. Bilateral JVC consistently resulted in a

significant DC shift at the midline electrodes (Fig. 1A) that

began within seconds after the onset of compression and often

reached a stable level before the end of the JVC. Recovery to

baseline was similar or slightly faster than the build-up of the

shift. Off-line digital re-referencing of the data to a calculated

Fig. 2. DC shifts associated with HDT or HUT. Single trials of 30 8 HDT and 20 8 HUT are shown in (A) and (B), respectively. The responses were reproducible

within each individual, as illustrated in recordings for HDT in (C). (D) A trial of subsequent HUTs with intervals shorter than the standard .60 s resulted in

increasing DC shifts at Oz while the shifts at Cz were still quite reproducible. All traces in (A)–(D) are from the same individual.

Fig. 3. Topography of DC shifts during HDT (A) and HUT (B) in 4 subjects. Bars represent the mean (^SEM) of peak amplitudes for each electrode derivation

from all trials on one subject. Note that the highest amplitudes are seen at the midline electrodes, and the polarity may be reversed between different electrodes.
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linked temporal signal (T3 þ T4) decreased the DC shift

amplitudes at midline derivations but indicated the generation

of significant DC gradients (shifts up to 15 mV/cm) on scalp

above the temporal level (Fig. 1B). Successive JVCs with 1–

2 min intervals showed that the DC shifts were highly

reproducible within each of the 6 subjects tested (Fig. 1C).

However, a large inter-individual variation was observed with

peak amplitudes of the JVC-induced shifts ranging from260

to þ150 mV at Cz against (T3 þ T4) (negative in 4 and

positive in two subjects; see also Fig. 7 that shows responses

from a different series of JVC experiments). The negative

shifts were monophasic whereas the positive ones were often

biphasic with an initial negative shift followed by a reversal of

polarity taking place within a few seconds. It is worth pointing

out that this type of a response is not inconsistent with a single

generator underlying the observed DC shifts (see also Woody

et al., 1970).

3.2. Effect of HDTs and HUTs

Next we examined whether DC shifts could also be caused

by changes in extravascular pressure via a hydrostatic

Fig. 4. DC shifts associated with MM and VM. During MM (A and B, data from two different individuals) the DC shift began and recovered gradually, while

during VM (C) the DC shifts started with a rapid change from the baseline level and showed a much slower recovery back to baseline (Fig. 5B). Note the clear

pressure-dependence of the DC shift (A–C). In some subjects the polarity of response varied between the lower (220 or 240 mmHg) and higher

(260 mmHg) pressure strain (B). Note the reproducibility in recordings of the MM (D) and VM (E) responses within a single individual. Fig. 4F demonstrates

a DC shift caused by voluntary apnea, with the 20 s respiratory pause indicated by the capnograph signal (lower trace). Apnea-related DC shifts developed very

slowly, and they did not reach an amplitude that could significantly contaminate the responses upon MM and VM. Eye blink artefacts have been removed and

marked with an asterisk.
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mechanism. Both HDT and HUT resulted in slow DC shifts

(Fig. 2A, B) in all of the 4 subjects analyzed. The responses

varied from rapid shifts that reached their peak in 10 s to

shifts that developed at a constant rate throughout the 20 s tilt

period. The highest amplitudes were seen at the midline

derivations (Fig. 3A, B) indicating again the presence of

significant DC gradients on scalp above the temporal

level. As with JVC, both the amplitudes and polarities of

the DC shifts varied between subjects (Fig. 3A, B), but the

responses were quite reproducible within each subject

(Fig. 2C). When subsequent HUTs were occasionally carried

out with intervals much briefer than the standard .60 s, the

resulting DC shift was increased at some electrode

derivations (Fig. 2D). Again, some of the positive shifts

were biphasic with an initial negative deflection lasting up to

10 s (Fig. 2A, C).

3.3. Valsalva and Mueller maneuvers

The above results suggest that intervention in brain

hemodynamics and/or intracranial pressure (ICP) might

cause DC shifts on scalp. Therefore, we next recorded

DC-EEG during VM and MM, which are routine manipula-

tions in clinical work. An abrupt increase (VM) or decrease

(MM) in thoracic pressure, and thereby in ICP, resulted in a

rapid DC shift in each of the 6 subjects (MM Fig. 4A, B and

VM Fig. 4C). The responses were reproducible within every

subject (Fig. 4D, E) in spite of inter-individual variation in

amplitude and polarity. The observed time courses varied

from very fast shifts from baseline to peak amplitude

(typical to VM), to slowly levelling or linearly increasing

responses (typical to MM). Again, some of the initially

negative responses were biphasic with partial recovery or

reversal of polarity by the end of the maneuver. After MM,

the recovery of the DC shift had a time course similar to that

of its development, whereas after VM the recovery was

often prolonged by a positive overshoot before returning

back to baseline (Figs. 4C, E, and 5B).

The amplitude of the DC shift correlated with the

pressure, but the dependence was not always monotonic. As

shown in Fig. 4A, B, a positive shift that was observed upon

MM at low pressure levels could be converted to a negative

one during subsequent MM trials at higher straining

pressures (Fig. 6C). This behavior was seen in two subjects

at midline derivations upon MM (Fig. 6C). With VM, higher

straining pressures resulted consistently in higher ampli-

tudes of the DC shift (Figs. 4C and 6D).

The topography of the DC shift was similar in both

straining maneuvers: the highest amplitude was observed at

the midline derivations (Fig. 6A, B). Off-line digital re-

referencing to a calculated linked temporal reference

(T3 þ T4) highlights that the observed shifts were gener-

ated around midline (Fig. 5).

We then tested the possibility that the DC shifts during

MM or VM would be caused by the respiratory pause (i.e.

apnea) during these maneuvers. As expected (Voipio et al.,

2003), voluntary apnea resulted in a positive DC shift,

which was highest at the Cz derivation (up to 15–33 mV,

referred to mastoid; Fig. 4F). However, the very slow time

course and the low amplitude of apnea-related DC shifts

indicate that respiratory pause is not responsible for the DC

shifts observed during the manipulations described above.

3.4. DC shifts vs. NIRS signal

All the results presented so far are consistent with the

idea of a causal link between DC shifts and changes in

CBV/F. To characterize this further, we determined the

temporal correlation of DC shifts with changes in CBV/F by

simultaneous recording of both signals. We started these

experiments with JVC, since this manipulation gave the

most consistent DC shifts. As shown with the specimen

traces in Fig. 7A, JVC gave rise to a prompt positive shift at

Cz that was paralleled by a strikingly similar tHb signal. In

subjects with negative JVC-induced shifts at Cz, the

similarity in the shape of the NIRS and DC-EEG responses

was preserved although the tHb shift did not reverse

(Fig. 7B). In order to unravel such correlations in each

individual from the inter-individual variability of the DC

Fig. 5. During MM (A) and VM (B) the differential signal between Cz and

T3 þ T4 was very similar to the one obtained with a mastoid reference.

This supports the idea that DC shifts are not dependent on mastoid

electrodes, and hence their voltage source likely resides within the cranium.

Note also that after VM (B) there is a very slow recovery and a marked

overshoot before returning to baseline.
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shifts, we carried out experiments of this type on 6 subjects

with 4–6 JVCs in each. Both the tHb signals and the DC

shifts at Cz with respect to (T3 þ T4) were averaged within

each subject, and the gradually changing DC signal during

both JVC and the recovery phase has been plotted against

the simultaneous tHb signal in Fig. 7C. It is evident that the

JVC-induced DC shift and the change in CBV/F are tightly

linked in each of the 6 subjects studied.

We extended the results obtained with JVC using the

other manipulations on 4–6 subjects. Straining maneuvers

caused a consistent increase (VM) or decrease (MM) in

CBV/F (tHb signal), which showed a close temporal

correlation with DC shifts (Fig. 8A, B). During the tilts

(HUT and HDT) the time course of the DC shift and of the

change in tHb was essentially the same, although tHb often

returned back to baseline somewhat earlier than the DC shift

(Fig. 8C, D).

4. Discussion

The present study demonstrates marked DC shifts during

5 different, routine physiological maneuvers known to affect

intracranial hemodynamics, adding to earlier findings

(Besson et al., 1970; Woody et al., 1970; Cowen, 1974)

by demonstrating a tight link between DC shifts and

changes in CBV/F.

Due to the very small compliance of the cranium, rapid

changes in ICP and CBV/F have direct effects on each other

(Kety et al., 1948; Greenfield and Tindall, 1965; Czosnyka

et al., 1999). All manipulations in this study thus affect both

ICP and CBV/F, although by different routes (Section 2.3).

Limited spread of intravenous pressure in the vascular bed

due to obstruction of bridging veins (Oka et al., 1985) by

increased ICP (Numoto and Donaghy, 1970; Nakagawa

et al., 1974; Laas and Arnold, 1981) might partly explain the

observed topography with highest DC shifts typically over

the midline. Such a topography is also consistent with our

recently proposed BBB-driven volume conduction model of

DC shift generation (Voipio et al., 2003), which predicts

largest shifts at areas around vertex for a uniformly

distributed signal generated by the BBB. Regional variation

of ICP (Bundgaard and Cold, 2000) makes it likely that the

changes in ICP elicited by the present maneuvers may not

be homogeneously distributed. The observed inter-individ-

ual differences in the polarities and the amplitudes of the DC

shifts (Woody et al., 1970; Somjen and Tombaugh, 1998)

might be related to differences in the time course,

Fig. 6. Topography and pressure dependence of the DC shifts during MM (A,C) and VM (B,D) in 4 subjects. Each bar represents the mean (^SEM) of peak

amplitudes from all trials in one derivation. The amplitudes are highest at the midline electrodes (A,B), and they are clearly augmented by increasing the

straining pressure (C,D). All amplitude measurements are referred to mastoid.
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anatomical distribution, and the relative contribution of ICP

and CBV/F changes induced by these maneuvers.

It is likely that the DC shifts described in our study are

caused by changes in intracranial transepithelial potentials.

Several intracranial epithelial or endothelial layers,

especially those associated with the BBB, are known to

possess relatively large transcellular electric potentials

(Tschirgi and Taylor, 1958; Held et al., 1964; Loeschcke,

1971; Hornbein and Sorensen, 1972; Sorensen et al., 1978;

Revest et al., 1993). Animal experiments have clearly

demonstrated that these DC potentials are readily altered by

changes in CBF, pH, and/or by ionic trafficking (Loeschcke,

1971; Hornbein and Sorensen, 1972; Somjen et al., 1991),

and the latter is sensitive to changes in transepithelial

pressure gradients (Cutler et al., 1968; Lyons and Meyer,

1990; Albeck et al., 1991). DC shifts are also associated

with transient changes in the gross permeability properties

of the BBB (Somjen et al., 1991; Amzica et al., 2002). A

leakage of BBB during a rapid increase in intracarotid

pressure (Hardebo and Nilsson, 1981; Ziylan, 1984; Iijima

et al., 1994) may thus contribute to the DC shifts observed

during VM. In cats and monkeys, CO2-induced brain

potential shifts can have a biphasic shape, and their polarity

can be reversed by hypoventilation or by manipulation of

ICP. Based on simultaneous measurements of CBF, pH, and

brain potential, such effects were taken to result from a

change in the relative roles of two factors associated with

CBF and brain pH with different time courses and opposite

effects on the BBB potential (Woody et al., 1970). These

earlier observations suggest that all the DC shifts observed

in our study (including the variability between, and hyste-

resis within subjects) can be explained by changes in BBB

potentials.

There is increasing evidence pointing to a tight link

between neuronal activity and CBF (Rees et al., 2000;

Logothetis et al., 2001), which has been utilized in

functional imaging techniques, such as positron emission

tomography (PET), functional magnetic resonance imaging

(fMRI) and NIRS. Our findings (this study and Voipio et al.,

2003) raise the intriguing possibility that slow EEG events

Fig. 7. DC shifts induced by JVC are paralleled by tHb responses. During both positive (A) and negative (B) DC shifts (two different subjects; Cz vs. T3 þ T4),

NIRS records a monophasic tHb response with a time course similar to that of the DC shift. The traces shown (A–C) are averages of 3–5 subsequent responses

and the semiquantitative tHb signal is shown on a relative scale. Plotting the tHb responses against the DC shifts as continuous x–y plots starting at the

beginning of JVC (insets in A and B) illustrates the subject-specific relationship of the two signals. (C) Plots of tHb against DC shifts (Cz vs. T3 þ T4) during

JVC and recovery in 6 subjects. The baseline level of the DC-EEG signal at the beginning of JVC is taken as 0 mV (closed circle), and the tHb signal is shown in

a normalized scale to aid comparison.
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might reflect activity related changes in CBF (cf. Lang et al.,

1988; Uhl et al., 1991; Oishi and Mochizuki, 1998; Lamm

et al., 2001; Vanhatalo et al., 2003a).

Finally, it is obvious that even a modest change in

respiratory pressure can generate DC shifts comparable to

the few microvolt scale changes seen during cognitive

paradigms (e.g. contingent negative variation (CNV) or

Bereitschaftspotential; Birbaumer et al., 1990; Pihan et al.,

2000; Roberts et al., 1989). Thus, studies on DC shifts

related to cognitive tasks should include adequate

controls or direct monitoring of the subjects respiration

patterns.
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