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Abstract

Multilevel processor sharing scheduling disciplines have recently been resurrected in papers that focus on the differentiation
between short and long TCP flows in the Internet. We prove that, for M/G/1 queues, such disciplines are better than the
processor sharing discipline with respect to the mean delay whenever the hazard rate of the service time distribution is
decreasing.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

We consider multilevel processor sharing (MLPS)
scheduling disciplines in the context of M/G/1 queues.
MLPS disciplines were introduced by Kleinrock in
the early 1970s, see[9]. An MLPS discipline� is de-
fined by a finite set of thresholdsa1< · · · < aN defin-
ingN +1 levels,N �0. A job belongs to leveln if its
attained service is at leastan−1 but less thanan, where
a0 = 0 andaN+1 = ∞. Between these levels, a strict
priority discipline is applied with the lowest level hav-
ing the highest priority. Thus, those jobs with attained
service less thana1 are served first. Within each level
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n, an internal discipline�n is applied. We let the in-
ternal disciplines vary in the set{FB,PS}, where FB
refers to the foreground–background discipline that
gives priority to the job with the least-attained service
and PS to the processor sharing discipline that shares
the service capacity evenly among all jobs.
The MLPS disciplines form a subset of a larger

family of scheduling disciplines that are based on the
attained service of jobs. Yashkov has proven that FB
minimizes the mean delay among such disciplines
whenever the service time distribution is of type de-
creasing hazard rate (DHR), see[15]. Righter and
Shanthikumar[12] proved that, under the DHR con-
dition, FB minimizes the queue length even stochasti-
cally. Righter et al.[13] showed that FB minimizes the
mean delay whenever the service time distribution is
of type increasing mean residual life (IMRL), which
is a weaker condition than DHR. Recently, Wierman
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et al.[14] proved that FB is better than PS with respect
to the mean delay whenever the service time distribu-
tion is of type DHR, and vice versa if the service time
distribution is of type increasing hazard rate (IHR). A
fundamental fact behind these results is the following
extremal property of FB regarding unfinished trun-
cated workUx , which refers to the sum of remaining
truncated service times of the jobs in the system: FB
minimizesUx at every moment in each sample path
for all truncation thresholdsx, independent of the ser-
vice time distribution type[1, Proposition 5].
The PS discipline has been proposed as an appro-

priate model for the bandwidth sharing among TCP
flows in a bottleneck router[3,8,11]. On the other
hand,MLPS disciplines have recently been resurrected
in some papers that focus on the differentiation be-
tween short and long TCP flows in the Internet[2,6,7].
Flow sizes in the Internet have been modelled by,
e.g., Pareto and hyperexponential distributions[4,5].
The latter type satisfies the DHR condition, while the
Pareto distribution defined in[4] by

P {X�x} = 1−
(

k

x

)�

, x�k,

has a decreasing hazard rate only from the lower limitk
on. However, an arbitrarily smallkcan be chosenwhile
keeping fixed the shape parameter� that controls the
rate at which the tail disappears. Another possibility is
to define the Pareto distribution slightly differently by

P {X�x} = 1−
(

1

1+ cx

)�

, x�0,

as done, e.g., in[5,10]. This distribution type satisfies
the DHR condition.
In [1], we proved that the MLPS disciplines with

just two levels are better than PS with respect to the
mean delay whenever the hazard rate of the service
time distribution is decreasing, and vice versa if the
hazard rate is increasing and bounded. In this paper
we show that these results are valid foranyMLPS
discipline.
The paper is organized as follows. The notation and

the essential existing results concerning the compari-
son of MLPS disciplines are given in Section 2, while
the new results are developed in Section 3. Section 4
concludes the paper.

2. Notation and existing results

We denote by MLPS the family of MLPS disci-
plines� for which �n ∈ {FB,PS} for all n. Among
the disciplines{FB,PS}, we define the following or-
der relation:

FB
 FB, FB
 PS, PS�FB, PS
 PS.
Furthermore, we denote by(N + 1)PS the family of
MLPS disciplines withN+1 levels (andN thresholds)
that use PS as the internal scheduling discipline within
all the levels. Thus, 1PS refers to the PS discipline
alone, 2PS to the PS+ PS disciplines, 3PS to the
PS+ PS+ PS disciplines, etc. Finally, we denote by
TLPS the family of MLPS disciplines that have just
two levels, i.e.,N = 1.
In this section we present the results concerning

the comparison of MLPS disciplines from our previ-
ous work[1] that form a basis for the new results to
be presented in the following section. The results are
grouped into two subsections: the first reviews exist-
ing sample path results and the second existing mean
value results.

2.1. Sample path results

Consider a single-server queueing system starting
empty at timet=0 and obeying a scheduling discipline
� ∈ MLPS. We assume that the jobs arrive one at a
time. LetAi denote the arrival time of jobi, Si its
service time, andX�

i (t) its attained service at timet.
LetA(t) denote the set of jobs arrived until timet,

A(t) = {i : Ai � t},
N�(t) the set of jobs in the system at timet,

N�(t) = {i ∈ A(t) : X�
i (t) < Si},

andN�(t) = |N�(t)|. Furthermore, for allx�0, let
N�

x(t) denote the set of jobs whose attained service
is less thanx,

N�
x(t) = {i ∈ A(t) : X�

i (t) <min{Si, x}},
N�

x (t) = |N�
x(t)|, andU�

x (t) the unfinished truncated
work with truncation thresholdx at timet,

U�
x (t) =

∑
i∈N�

x(t)

(min{Si, x} − X�
i (t)).
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Proposition 1 (Aalto et al. [1, Proposition 8]). Let
�,�′ ∈ MLPSwith the same thresholds{a1, . . . , aN }
such that�n 
 �′

n for all n ∈ {1, . . . , N + 1}. Then
U�

x (t)�U�′
x (t) for all x�0 and t �0.

Proposition 2. Let � ∈ MLPS with thresholds
{a1, . . . , aN } and �′ ∈ (N + 1)PS with the same
thresholds{a1, . . . , aN }. ThenU�

x (t)�U�′
x (t) for all

x�0 and t �0.

Proof. This follows immediately from Proposition 1
since�n 
 PS= �′

n for all n. �

2.2. Mean value results

Consider an M/G/1 queue obeying a scheduling dis-
cipline� ∈ MLPS. Let� denote the arrival rate andS
the service time of a job. We assume thatE[S] < ∞
and that the system is stable, i.e.,�= �E[S] <1. Fur-
thermore, we assume that the service time distribution
is continuous with the corresponding density func-
tion denoted byf (x). Let F(x) = ∫ x

0 f (y)dy and
F(x)=1−F(x). The corresponding hazard rate func-
tion is denoted byh(x) = f (x)/F (x).
Let U�

x denote the unfinished truncated work with
truncation thresholdx andT �(y) the delay of a job
with service time ofy time units. By[9, Eq. (4.60)],

U
�
x = �

∫ x

0
F(y)T

�
(y)dy, (1)

whereU
�
x = E[U�

x ] andT
�
(y) = E[T �(y)]. Let then

T � denote the delay of any job. As explained in[1],
it follows from (1) that

T
� = 1

�

∫ ∞

0
(U

�
x)′h(x)dx,

whereT
� = E[T �] and(U

�
x)′ = (d/dx)E[U�

x ].
In fact, these results, as well as the following one,

are valid for all scheduling disciplines that are based on
the attained service of jobs. However, for the purposes
of this paper, it is sufficient to consider the family of
MLPS disciplines.

Proposition 3 (Aalto et al. [1, Propositions 1 and

2]). Let �,�′ ∈ MLPS such thatU
�
x �U

�′
x for all

x�0.

(i) If the hazard rate h(x) is decreasing, then

T
��T

�′
.

(ii) If the hazard rateh(x) is increasing and bounded,

thenT
��T

�′
.

Proposition 4 (Aalto et al. [1, Proposition 4]). Let

� ∈ 2PS.ThenU
�
x �U

PS
x for all x�0.

Proposition 5. Let� ∈ TLPS.ThenU�
x �U

PS
x for all

x�0.

Proof. Let �′ ∈ 2PS with the same threshold as�.
Since

U
�
x = lim

t→∞
1

t

∫ t

0
U�

x (s)ds,

Proposition 2implies thatU
�
x �U

�′
x for all x�0. The

claim follows now from Proposition 4.�

Theorem 1. Let � ∈ TLPS.
(i) If the hazard rate h(x) is decreasing, then

T
��T

PS
.

(ii) If the hazard rateh(x) is increasing and bounded,

thenT
��T

PS
.

Proof. These results follow immediately from Propo-
sitions 3 and 5. �

3. New results

In this section we present the new results concerning
the comparison of MLPS disciplines. Similarly as in
the previous section, the results are grouped into two
subsections.

3.1. Sample path results

Consider a single server queueing system starting
empty at timet=0 and obeying a scheduling discipline
� ∈ MLPS. Assume that the jobs arrive one at a time.
The notation used is the same as in Section 2.1.

Proposition 6. LetN �1,� ∈ (N+1)PSwith thresh-
olds {a1, . . . , aN }, and �′ ∈ NPS with thresholds
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{a1, . . . , aN−1}. ThenU�
x (t)�U�′

x (t) for all x�aN

and t �0.

Proof. First we note that, since the two disciplines
follow the same rule as regards the jobs with attained
service time less thanaN−1, we surely have, for all
t �0,

i ∈ N�
aN−1(t) ⇒ X�

i (t) = X�′
i (t). (2)

Then we claim that, for allt �0,

i ∈ N�
aN

(t)\N�
aN−1(t) ⇒ X�

i (t)�X�′
i (t). (3)

Eqs. (2) and (3) guarantee thatN�
x(t) ⊂ N�′

x (t) for
all x�aN and t �0. This, together with (2) and (3),
implies that, for allx�aN andt �0,

U�
x (t) =

∑
i∈N�

x(t)

(min{Si, x} − X�
i (t))

�
∑

i∈N�′
x (t)

(min{Si, x} − X�′
i (t)) = U�′

x (t).

Thus, it remains to prove that (3) is true for allt.
The proof given below is an induction with respect to
arrival epochsAk.
1. During the interval[0, A1) both systems are

empty. Thus (3) is trivially true for allt < A1.
2. Let k ∈ {1,2, . . .}, and assume that (3) is true

for all t < Ak. We will show that it is also true in the
interval [Ak, Ak+1).
We divide the interval[Ak, Ak+1) into three consec-

utive periodsI1, I2, andI3, with the following starting
(b) and ending (e) points:

Ib1 = Ak, Ie1 = sup{Ib1 < t �Ak+1|N�
aN−1(t) >0},

Ib2 = Ie1, Ie2 = sup{Ib2 < t �Ak+1|N�
aN

(t) >0},
Ib3 = Ie2, Ie3 = Ak+1.

We note that during intervalI1 both systems give ser-
vice only to those jobs whose attained service is less
thanaN−1. During intervalI2 there are no longer any
such jobs in either system. The system with discipline
� gives service to those jobs whose attained service
is at leastaN−1 but less thanaN , while in the other
system all the remaining jobs are served at the same
time. Finally, in the intervalI3, when there are no
longer any jobs with attained service less thanaN in
the system with discipline�, all the remaining jobs

are served at the same time also in that system.We fur-
ther note thatI1 is always of positive length, whereas
I2 andI3 may vanish. The three intervalsI1 − I3 are
considered in 2.1–2.3, respectively.
2.1. Consider first the intervalI1. Due to the induc-

tion assumption and the fact that, during this interval,
strict priority is given (in both systems) to those jobs
with attained service time less thanaN−1, we have,
for all t ∈ I1 andi ∈ N�

aN
(t)\N�

aN−1(t),

X�
i (t) = X�

i ((Ak)
−)�X�′

i ((Ak)
−) = X�′

i (t).

Thus, (3) is true for the whole intervalI1. This is
enough if the intervalI1 ends at timeAk+1 when a new
job arrives. Otherwise we have to consider, at least,
the intervalI2, too.
2.2. Consider then the intervalI2. During this inter-

val, strict priority is given to those jobs with attained
service time at leastaN−1 but less thanaN in the sys-
tem with discipline�. From (2) and 2.1, we deduce
thatX�

i (Ib2 )�X�′
i (Ib2 ) for all i ∈ N�

aN
(Ib2 ) implying

that

N�
aN

(Ib2 ) ⊂ N�′
aN

(Ib2 ).

From timeIb2 on, the setN
�
aN

(t) remains the same
until a new job arrives or one of the jobs in this set
reaches levelaN or leaves the system. In this subin-
terval, we have

N�
aN

(t) = N�
aN

(Ib2 ) ⊂ N�′
aN

(Ib2 )

=N�′
aN

(t) ⊂ N�′
(t),

and the jobsi ∈ N�
aN

(t) in the system with discipline
� are served with rate

(X�
i )′(t) = 1/N�

aN
(t),

while in the system with discipline�′ they get service
with rate

(X�′
i )′(t) = 1/N�′

(t)�1/N�
aN

(t).

Thus, we haveX�
i (t)�X�′

i (t) for all i ∈ N�
aN

(t) and
t in this subinterval. Continuing similarly, it is easy
to see that (3) is true for allI2. This is enough if the
intervalI2 ends at timeAk+1 when a new job arrives.
Otherwise we have to consider the final intervalI3,
too.
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2.3. Consider finally the intervalI3. By definition,
N�

aN
(t) = ∅ for all t ∈ I3. Thus, (3) is trivially true

for all t ∈ I3. �

3.2. Mean value results

Consider a stable M/G/1 queue obeying a schedul-
ing discipline� ∈ MLPS. The notation used is the
same as in Section 2.2.
It is well known that the mean delay of a job with

service timex >0 in a PS system reads as

T
PS

(x) = x

1− �
.

According to [9, Eqs. (4.27) and (4.39)], the corre-
sponding mean delay in a system with scheduling dis-
cipline � ∈ (N + 1)PS with thresholds{a1, . . . , aN }
satisfies, for allx > aN ,

T
�
(x) = T

FB
(aN) + �N(x − aN)

1− �aN

.

Here�aN
= �E[min{S, aN }] refers to the “truncated

load”, and�N(x) is such that�′
N(x) = d

dx
�N(x) sat-

isfies the following integral equation:

�′
N(x) = �

1− �aN

∫ x

0
�′

N(y)F (aN + x − y)dy

+ �
1− �aN

∫ ∞

0
�′

N(y)F (aN + x + y)dy

+ cN(x) + 1 (4)

with cN(x)�0. In addition,�N(x) is increasing im-
plying that�′

N(x)�0 for all x >0. Note further that

T
�
(x) is differentiable, at least, for allx > aN .

Proposition 7. Let � ∈ (N + 1)PS with thresh-

olds {a1, . . . , aN }. Then(T
�
)′(x)�(T

PS
)′(x) for all

x > aN .

Proof. This is proved similarly as the corresponding
result for the two-level case, see the derivation of the
latter part of Eq. (13) in[1]. �

Proposition 8. Let � ∈ (N + 1)PS.ThenU
�
x �U

PS
x

for all x�0.

Proof. The claim is proved by induction.

1. For N = 1, the claim is the same as in
Proposition 4.
2. Let thenN >1 and assume that the claim is true

for any�′ ∈ NPS.
Let � ∈ (N + 1)PS with thresholds{a1, . . . , aN }

and �′ ∈ NPS with thresholds{a1, . . . , aN−1}. By
Proposition 6 and the induction assumption above, we
have, for allx�aN ,

U
�
x �U

�′
x �U

PS
x .

Define then

x∗ = inf {x�aN |T �
(x)�T

PS
(x)}.

By (1) we have, for allx�aN ,

U
�
x = U

�
aN

+ �
∫ x

aN

F (t)T
�
(t)dt.

Thus,U
�
x �U

PS
x for all x�x∗. In particular, we have

U
�
x∗ �U

PS
x∗ .

On the other hand, by definition,T
�
((x∗)+)�T

PS
(x∗).

Together with Proposition 7 this implies that, for all
x > x∗,

(U
�
x)′ = �F(x)T

�
(x)��F(x)T

PS
(x) = (U

PS
x )′.

Finally, since both� and PS are work conserving dis-
ciplines, for which the mean unfinished work is equal,
we have

U
�
∞ = U

PS
∞ .

These last three formulas together with the fact thatU
�
x

is a continuous function ofx guarantee thatU
�
x �U

PS
x

for all x > x∗, which completes the proof.�

Proposition 9. Let � ∈ MLPS. ThenU
�
x �U

PS
x for

all x�0.

Proof. Let �′ ∈ (N + 1)PS with the same thresholds
as�. Since

U
�
x = lim

t→∞
1

t

∫ t

0
U�

x (s)ds.

Proposition 2 implies thatU
�
x �U

�′
x for all x�0. The

claim follows now from Proposition 8.�
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Theorem 2. Let � ∈ MLPS.
(i) If the hazard rate h(x) is decreasing, then

T
��T

PS
.

(ii) If the hazard rateh(x) is increasing and bounded,

thenT
��T

PS
.

Proof. This follows immediately from Propositions 3
and 9. �

4. Conclusions

What still remains to be proved is the plausible
claim that, roughly said, an MLPS discipline with the
internal disciplines belonging to the set{FB,PS} is the
better, the more levels there are. The key question here
is the following “level splitting problem”. LetN �1
and � ∈ (N + 1)PS with thresholds{a1, . . . , aN }.
Furthermore, letn ∈ {1, . . . , N} and�′ ∈ NPS with
thresholds{a1, . . . , an−1, an+1, . . . , aN }. Then prove
thatU

�
x �U

�′
x for all x�0.
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