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Abstract

We consider the calculation of blocking probabilities in multicast trees with dynamic membership. We extend the work
by Karvo et al., where an approximate algorithm based on the reduced load approximation (RLA) was given to calculate
end-to-end blocking for infinite sized user populations in multicast networks. The new algorithm for calculating end-to-end
call blocking exactly for an arbitrary sized user population is based on the known blocking probability algorithm in hierarchical
multiservice access networks, where link occupancy distributions are alternately convolved and truncated. We show that the
algorithm can be applied to multicast trees embedded in a network with an arbitrary topology carrying also non-multicast
traffic. The resource sharing of multicast connections, however, requires the modification of the algorithm by introducing a
new type of convolution, the OR-convolution. In addition, we discuss several different user population models for which the
algorithm is applicable.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A multicast transmission originates at a source and propagates along a multicast tree to the set of
receivers, hereafter referred to as users. The membership in the multicast tree is assumed dynamic, i.e.
a user may leave the tree and new users may request to be joined to the tree at any time. In contrast to a
unicast transmission, at the network nodes a single copy of the information stream is delivered to each
branch leading to at least one user. The transmission reaches many different end-users without replication
of the same information stream separately for each user, thus resulting in bandwidth saving. This kind
of transmission is particularly suited to distribution type applications, such as distribution of radio or TV
programs, or, e.g., push type services in 3G mobile networks, where certain information is delivered to
all the subscribers of the service. The multicast tree can be embedded in a larger network, where also
other type of traffic is carried. For instance, one can think of the multicast tree being embedded in an
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ATM network carrying also unicast calls, or in the Internet carrying streaming type applications for which
capacity reservations are made using, e.g., the RSVP protocol.

Blocking occurs in a network when, due to limited capacity, at least one link on the route is not able to
admit a new call. Traditional mathematical models to calculate blocking probabilities in tree-structured
networks exist for unicast traffic. Due to different resource usage, these models cannot directly be used
for multicast networks. Only recently, have mathematical models to calculate blocking probabilities in
multicast networks been studied. As usual, one has to make a distinction between the time blocking and
the call blocking probabilities. The former refers to the fraction of time the system spends in such states
where a given type of call could not be admitted, whereas the call blocking probability refers to the fraction
of actual call requests that are rejected. If calls arrive according to a Poisson process, these two quantities
are equal due to the PASTA property of the Poisson process. In finite user population models, such as
studied in this paper, this is not the case, and one must carefully distinguish between these quantities.

The past research has mainly been focused on blocking probabilities in multicast capable switches.
Kim [6] studied blocking probabilities in a multirate multicast switch. Three stage switches were studied
by Yang and Wang[13] and Listanti and Veltri[7]. Stasiak and Zwierzykowski[12] studied blocking in
an ATM node with multicast switching nodes carrying different multirate traffic (unicast and multicast),
using Kaufman–Roberts recursion and reduced load approximation (RLA). Admission control algorithms
were studied in[10].

Chan and Geraniotis[2] have studied blocking due to finite capacity in network links. They formulated
a closed form expression for time blocking probabilities in a network transmitting layered video signals.
The model is a multipoint-to-multipoint model. The network consists of several video sources, where
each source node can also act as a receiver. The video signals are coded into different layers defining the
quality of the video signal received by the user. The traffic class is defined by the triplet: physical path
(p), source node(s), and class of video quality(t). The behavior of each user is modeled as a two-state
Markov chain, with unique transition rates defined for each traffic class triplet.

Karvo et al.[3,4] studied blocking in a point-to-multipoint network with only one source node. The
source is called the service center and it can offer a variety of channels, e.g., TV-channels. The users
subscribing to the network may, at any time, join or leave any of the several multicast trees, each carrying
a separate multicast transmission or channel offered by the source. The behavior of the user population
defines the state probabilities at the links of the tree-structured network. The user population is assumed
infinite and the requests to join the network arrive as from a Poisson process. The model studied in[3]
considered a simplified case where all but one link in a network have infinite capacity. An exact algorithm
was derived to calculate the call blocking probability in this simplified case. Extending the model to
the whole network was done only approximately in[4], where end-to-end blocking probabilities were
estimated using the RLA approach. The single link case was further broadened by Bousseta and Beylot
[1] by including both multirate multicast and unicast traffic in their formulation.

In [8] the single link case discussed in[3,4] was extended to a mathematical model for a multicast
network with any number of finite capacity links and an infinite user population. Furthermore, the case
of having background traffic on the links of the network was also discussed, independently of[1]. The
aim of the present paper is to collect the pieces together and give a unified and more detailed account
of the algorithm. Additionally, we extend the algorithm by allowing arbitrary sized, i.e. also finite, user
populations and by introducing different user models. A proof for the insensitivity properties of the results
is also provided. The new material is presented inSections 4 and 6and inAppendix A. Section 7includes
a more detailed justification of the embedded network truncation operators.
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This paper continues withSection 2where the notation used throughout the paper is presented. We also
define the leaf link state and state space, and show how the network state can be obtained from the leaf
link states. InSection 3we assume user independence. This is a natural assumption for distribution type
applications, where the users do not interact with each other. We then show how the link distributions
within the network can be obtained from the leaf link distributions via a new convolution operation, the
OR-convolution. InSection 4, four different user population models are introduced and the resulting leaf
link distributions are given.

We start the derivation of the algorithm, by separating the tree-structured multicast transmissions from
the surrounding distribution network. The first main result is presented inSection 5. It gives an ex-
pression for the time blocking probability in a network with any number of finite capacity links, and
an algorithm for calculating this blocking probability exactly is introduced. The section also presents
some issues related to computational effort. InSection 6it is shown how the algorithm can be ap-
plied for calculating call blocking probabilities using different user models. With the algorithm derived
in the simplified setting, the algorithm is easily extended to include non-multicast traffic originating
from outside the tree-structured transmission network. The final result, the extension of the algorithm
to calculate blocking probabilities in multicast trees embedded in a network with an arbitrary topology
carrying also non-multicast traffic is presented inSection 7. Section 8summarizes the main results and
discusses the topics for further research. A proof of the insensitivity properties of the results is given in
Appendix A.

2. Network model

In Sections 2–6, we consider the tree-structured subnetwork formed by the routed multicast connections
originating from the source. InSection 7, we consider embedding the dynamic multicast tree network
in an arbitrary structured network. Until then, we use the term network to refer to the tree-structured
multicast network.

2.1. Notation

The notation used throughout this paper is as follows. The set of all linksj is denoted byJ =
{1, . . . , J }. Link J refers to the link connecting the source to the rest of the network. Furthermore, let
U = {1, . . . , U} ⊂ J denote the set of leaf links. The leaf link and user population connected through
the leaf link is indexed byu ∈ U. The set of links on the route from leaf linku to the source is denoted
byRu.Mj andNj stand for the set of all links downstream from linkj including link j and the set of
downstream links connected to linkj , respectively. The set of user populations downstream from link
j is denoted byUj . Note thatUj is also the set of leaf links downstream from linkj , including link j
if link j ∈ U, in other wordsUj = Mj ∩ U. The set of channelsi offered by the source is denoted by
I = {1, . . . , I }. Let d = {di; i ∈ I}, wheredi is the capacity requirement of channeli. Here we assume
that the capacity requirements depend only on the channel, but link dependencies could also be included
into the model. The capacity of the linkj is denoted byCj . The different sets are depicted inFig. 1.

Note that we have specified neither the size nor the traffic process of the user population. We will
postpone this discussion untilSection 4and start by defining the network state, state space and steady-state
probabilities in terms of an arbitrary leaf link process.
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Fig. 1. Example routed multicast connections to show the notation used.

2.2. Link and network state

Let the pair(u, i) ∈ U× I denote a traffic class, also called a connection. The connection state, which
may be off (0) or on (1), is denoted byYu,i ∈ {0,1}. The state vectorYu = (Yu,i; i ∈ I) ∈ S defines
the joint state of different channels on leaf linku ∈ U, whereS = {0,1}I denotes the link state space.
Similarly, for any linkj ∈ J the link state is denoted by the vectorYj = (Yj,i; i ∈ I) ∈ S.

Consider now a network with all links having infinite capacity. The leaf link statesYu jointly define
the network stateX,

X = (Yu; u ∈ U) = (Yu,i; u ∈ U, i ∈ I) ∈ Ω, (1)

whereΩ = {0,1}U×I denotes the network state space.

2.2.1. OR-operation
In a tree-structured multicast network, where traffic has resource sharing characteristics, the link states

are obtained from the leaf link states using the OR-operation. Consider only two linkss, t ∈ Nv immedi-
ately downstream from linkv, wheres, t, v ∈ J. Let ys, yt , yv ∈ S denote the states of these three links,
respectively. Channeli is idle in link v if it is idle in both linkss andt and active in all other cases, which
is equivalent to the binary OR-operation. In other words, forys, yt ∈ S

yv = ys ⊕ yt ∈ S, (2)

where the vector operator⊕ denotes the OR-operation taken componentwise.
In a multicast link, the link state depends on the user states downstream from the link. If a channel is

idle in all links downstream from linkj it is off in link j and in all other cases the channel is active. The
OR-operation gives the link stateYj = (Yj,i; i ∈ I) ∈ S, j ∈ J as a function of the network state,X,

Yj = gj (X) ≡
⊕
k∈Uj

Yk =




Yj if j ∈ U,⊕
k∈Nj

Yk otherwise.

Here, the last form is given to motivate the derivation of the recursive algorithm presented inSection 5.1.
Note that, whenX = x the occupied capacity on the linkj is d · gj (x).
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When the capacities of one or more links in the network are finite, the network state spaceΩ is truncated
according to the capacity restrictions on each linkj ∈ J. The truncated state space, denoted byΩ̃, is
defined as follows:

Ω̃ = {x ∈ Ω|d · gj (x) ≤ Cj,∀j ∈ J}.
Correspondingly, we denote bỹX ∈ Ω̃ the state vector in the truncated space.

3. Steady-state distribution in a network with infinite link capacities

The network state is jointly defined by the leaf link states. Under the assumption that each user pop-
ulationu ∈ U is independent, and that the link capacities are infinite for all links in the network, the
stationary distribution of the network can be obtained from the leaf link distributions, defined by the
user population connected through the leaf link. Let us assume that the leaf link distributions,πu(yu) =
P(Yu = yu), u ∈ U, are known. For the whole network, the state probability has a product form,

π(x) = P(X = x) =
∏
u∈U

πu(yu), (3)

as the user populations are independent.

3.1. OR-convolution

In Section 2.2, it was shown that the link state is obtained by an OR-operation over all downstream leaf
link states. Under the assumption of independent user populations and infinite link capacities, the link
distributions can be obtained using a new convolution operation, the OR-convolution.

The OR-convolution, denoted by⊗, is the operation,

[fs ⊗ ft ](yv) =
∑

ys⊕yt=yv

fs(ys)ft (yt )

defined for any real valued functionsfs andft .
The link state distribution is obtained by OR-convolving the appropriate leaf link distributions. Thus,

the link state probability, denoted byπj(y), for y ∈ S, is equal to

πj(y) = P(Yj = y) =

⊗

k∈Uj
πk


 (y) =



πj(y) if j ∈ U,
⊗

k∈Nj

πk


 (y) otherwise.

4. User population models

In the previous section, the steady-state distribution of the network was defined in terms of the leaf link
distributions. Recall that, according to our notation, the leaf link and the user population connected through
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the leaf link are equivalent. Consequently, the user population model defines the leaf link distribution
πu(y). For the derivation of the blocking algorithm to follow, we further need to assume that the behavior
of the user population is described by a reversible Markov process, i.e. a Markov process satisfying
the detailed balance equations[5]. We are able to loosen the assumption by allowing general holding
time distributions leading to more general processes, seeAppendix Afor the proof of this insensitivity
property.

In this section, we present four different user population models. We first consider a model for a single
user choosing from the set of channelsI. The second model, presented inSection 4.2is constructed as
a special case of the single user model, the single user being only connection-specific, i.e. having only
the possibility of choosing a given channeli. We construct the leaf link distribution by combining theI
single users, one for each channel. The most general user population model, the finite user population
model, is presented inSection 4.3. It is a model for a population consisting ofN users each having the
whole selection of channels to choose from. We show how the steady-state probability for the population
and thus for the leaf link can be obtained with the aid of the single user model presented inSection 4.1.
In Section 4.4, we show how the user population for a finite number of users results in the infinite user
population, presented in[3], as the number of usersN tends to infinity. The given four user population
models and the corresponding four leaf link distributions cover a large variety of user models for different
distribution type multicast services, e.g., distribution of radio or TV channels. Furthermore, each model
can be defined in terms of the single user model presented next.

4.1. The single user

First, we consider a model where each user population consists of a single user. Letu ∈ U. Useru,
connected through leaf linku, can either be in the idle state 0 or connected to some channeli ∈ I. The
model proposed here is a Markov process withI +1 states. All transitions by useru are made via the idle
state. The transition rate from state 0 to statei ∈ I is denoted byλu,i = αiλu, whereαi is the probability
of choosing channeli among the channel setI,

∑
i∈I αi = 1. The transition rate from statei to state 0 is

denoted byµi . The state transition diagram of the Markov process is shown inFig. 2.
The steady-state probabilities of this single user system are

πu,i = ρu,iπu,0, πu,0 =
[

1 +
I∑

i=1

ρu,i

]−1

,

Fig. 2. The Markov process used to model user behavior.
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whereρu,i = αiλu/µi . Because the state diagram of the model was chosen to be a tree, the detailed
balance equations are satisfied, which can also be seen directly

πu,0λu,i = πu,iµi, i ∈ I.
Thus the process is reversible. Furthermore, it can be shown (cf.Appendix A) that the insensitivity
property applies and the channel holding times as well as the user idle times can be generally distributed
with means 1/µi and 1/λu, respectively, leading to a semi-Markov process.

The probabilityPu that useru connects to some channel in the multicast network is

Pu = 1 − πu,0 =
∑

k∈I ρu,k
1 + ∑

k∈I ρu,k
. (4)

In addition, the parameter̂αi is defined as the conditional probability of being in statei given that the
user connects to the multicast network,

α̂i = ρu,i∑
k∈I ρu,k

= αi/µi∑
k∈I αk/µk

, i ∈ I. (5)

It follows thatπu,i in terms ofPu andα̂i is

πu,i = Puα̂i, i ∈ I,
The steady-state probabilitiesπu(y) for leaf link u then have the following form:

πu(y) =



Puα̂i if y = ei , i ∈ I,

1 − Pu if y = 0,

0 otherwise.

(6)

Note that the mean idle time 1/λu can be arbitrarily small, in which case the user switches almost directly
from one channel to another. However, by having the idle state, we emphasize the fact that the capacity
reservation related to the current channel has to be first released, before a new reservation can be made.
Namely, it may happen that the new reservation, if it is larger than the previous one, is not accepted
because of the capacity constraints. In our model, the user naturally remains idle in such a case.

4.2. The connection-specific single user

In the paper by Chan and Geraniotis[2], each user of a traffic class(p, s, t) was modeled as a two-state
Markov chain with unique transition rates. The user model can be obtained as a special case from the
single user model presented in the previous section. Instead of being leaf link specific, i.e. having a
selection of channels to choose from, each user is now connection-specific. The user is denoted by the
pair(u, i), formerly denoting a connection. Behind each leaf linku there areI users, one for each channel
i. The Markov process for the connection-specific user(u, i) are obtained by setting the transition rates
λu,j = µj = 0, for j �= i, i ∈ I. The Markov process is depicted inFig. 3.

As the channels are independent, the unrestricted steady-state distribution for leaf linku is then

πu(y) =
∏
i∈I

p
yi
u,i(1 − pu,i)

1−yi , (7)

wherepu,i = λu,i/(λu,i + µi).
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Fig. 3. The Markov process for the connection-specific user.

As the connection-specific user is a special case of the single user, the insensitivity property applies
(cf. Appendix A) and the channel holding times as well as the user idle times can be generally distributed
with means 1/µi and 1/λu,i , respectively.

4.3. The finite user population

Consider a leaf linku with a user population of sizeN connected through the link. Users are as-
sumed independent and homogeneous, each user being modeled according to the single user model of
Section 4.1. We can obtain the unrestricted leaf link distributionπu(y) in terms of the single user dis-
tribution given in(6). To do this, we construct the finite user population of sizeN from single users,
by envisaging that downstream from leaf linku there areN links with infinite capacity each connecting
a single user to the network. In other words, we create a new hypothetical setUu of users downstream
from link u. If each user has the same probabilityPu to subscribe to the network and a steady-state
distribution given byEq. (6), then the OR-convolution gives the distribution for the actual leaf link
u servicing the population ofN users. Thus, the state probability, denoted byπu(y), for y ∈ S, is
equal to

πu(y) = P(Yu = y) =

⊗

k∈Uu
πk


 (y). (8)

As the finite user population can be obtained from the single user model, the insensitivity property applies
(cf. Appendix A) and the channel holding times as well as the user idle times can be generally distributed
with means 1/µi and 1/λu,i , respectively.

The leaf link distribution given inEq. (8)can also be obtained by calculating the state probabilities of
|Uu| = N users, using a multinomial distribution with parameterspi = Puα̂i , for i ∈ I andp0 = 1−Pu,

P(� = ξ |Ξ0 + · · · + ΞI = N) =



N !

∏I
i=0

p
ξi
i

ξi !
if ξ0 + · · · + ξI = N,

0 otherwise,
(9)

where� = (Ξi, i = 0, . . . , I ) is the state vector,Ξi ∈ N. The state probabilities given inEq. (8)are
obtained by summing the state probabilities ofEq. (9)to take into account the multicast conditions.

4.4. The infinite user population

As the number of usersN belonging to user populationu tends to infinity, the population model
converges to the infinite population model presented by Karvo et al.[3]. This is easily seen, as the
multinomial distribution with parameterspi = Puα̂i and expected valuesNPuα̂i converges to the joint
distribution of independent Poisson distributed variables with parameterau,i = (λ̂u/µi)αi . Writing the
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expected value with the help ofEqs. (4) and (5)gives

NPuα̂i = N
λu

∑
k∈I αk/µk

1 + λu
∑

k∈I αk/µk

αi/µi∑
k∈I αk/µk

.

The limit of the expected valueNPuα̂i is then

lim
N→∞

(NPuα̂i) = lim
N→∞

(
αi

µi

Nλu

1 + λu
∑

k∈I αk/µk

)
→ αi

µi

λ̂u = au,i, ∀i ∈ I,

where limN→∞Nλu → λ̂u.
The finite user population model therefore converges to the infinite user population model presented

in [3]. The reversible Markov process for the infinite user population is the joint queue length ofI

independentM/M/∞ queues. The unrestricted stationary distribution for leaf linku with an infinite
sized user population connected through is thus

πu(y) =
∏
i∈I

(1 − e−au,i )yi (e−au,i )1−yi . (10)

Note further the similarity betweenEqs. (7) and (10). In both models the stationary leaf link distribution is
the joint distribution of connection-specific user populations. The equations differ only in the probability
of connecting to the channel,λu,i/(λu,i +µi) and 1− e−au,i , respectively. For the infinite user population
model, the insensitivity property applies (cf.Appendix A) and the channel holding times can be generally
distributed with mean 1/µi , leading to independentM/G/∞ queues.

5. Time blocking in a multicast tree network

When the capacities of one or more links in the network are finite, the network state space is replaced
by the truncated network state spaceΩ̃. In the previous section we specified four different user models.
Assuming independent user populations, i.e. independent leaf link distributions, the state probabilities of
the truncated system differ from those of an infinite system only by the normalization constantG(Ω̃) =∑

x∈Ω̃ π(x). This result, known as the truncation principle, applies if the idle and holding time distributions
are exponential, as the resulting state vectorX̃ is a reversible Markov process (cf.[5]). For general idle
and holding time distributions, the applicability of the truncation principle is shown inAppendix A. The
state probabilities of the truncated system are therefore

π̃(x) = P(X̃ = x) = P(X = x|X ∈ Ω̃) = π(x)

G(Ω̃)
for x ∈ Ω̃. (11)

When the capacities of the links are finite, blocking occurs. A call belonging to traffic class(u, i) is
blocked if there is not enough capacity in the network to set up the connection. Note that, once channel
i is active on any link belonging to the routeRu of user populationu, no extra capacity is required on
that link for a new connection(u, i). Let us define another truncated setΩ̃u,i ⊂ Ω̃ with a tighter capacity
restriction for the links on routeRu,

Ω̃u,i = {x ∈ Ω|d · (gj (x) ⊕ (ei1j∈Ru
)) ≤ Cj,∀j ∈ J},
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whereei is theI -dimensional vector consisting of only zeros except for a one in theith component, and
1j∈Ru

is the indicator function equal to 1 forj ∈ Ru and 0 otherwise. This set defines the states where
blocking does not occur when useru requests a connection to channeli. The time blocking probability
bt
i for traffic class(u, i) is thus,

bt
u,i = 1 − P(X̃ ∈ Ω̃u,i) = 1 − G(Ω̃u,i)

G(Ω̃)
. (12)

This approach requires calculating two state probability sums: one over the set of non-blocking states
appearing in the numerator and another one over the set of allowed states appearing in the denominator
of Eq. (12).

The multicast one-to-many connections form a tree-type structure, and much of the theory in calculating
blocking probabilities in hierarchical multiservice access networks[9] can be used to formulate the
end-to-end blocking probability algorithm in a multicast network as well.

5.1. The algorithm

Using the analogy to tree-structured access networks, the time blocking probability is calculated by
recursively convolving the state distributions of individual links proceeding from the leaf links to the origin
link, and at each step, truncating the link distributions according to the capacity restriction of the link.

In order to calculate the denominator ofEq. (12), let us define a new subsetS̃j of the set of link states,
S,

S̃j = {y ∈ S|d · y ≤ Cj } for j ∈ J.
Thus,S̃j refers to those states of linkj for which the capacity constraint is satisfied. The corresponding
truncation operator acting on any real valued functionf is defined as

Tjf (y) = f (y)1y∈S̃j . (13)

For y ∈ S let

Qj(y) = P(Yj = y; Yk ∈ S̃k,∀k ∈Mj ). (14)

This is the probability that linkj is in statey and all the links downstream from linkj (link j included)
satisfy the capacity constraints. It is crucial for our algorithm that these probabilities can be calculated
recursively as follows:

Qj(y) =



Tjπj (y) if j ∈ U,

Tj


⊗

k∈Nj

Qk


 (y) otherwise.

Note that, if the capacity constraint of linkj ∈ Mj is relaxed, then the branches terminating at link
j are independent, and the probabilities of the jointly requested channel state can be obtained by the
OR-convolution. The effect of the finite capacityCj of link j is then just the truncation of the distribution
to the states for which the requested capacity is no more thanCj .
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The state sumG(Ω̃) needed to calculate the blocking probability inEq. (12)is equal to

G(Ω̃) =
∑
y∈S

QJ(y),

whereQJ(y) is the probability(14) related to linkJ connecting the source to the rest of the network.

Similarly for the numerator ofEq. (12), let S̃
u,i

j ⊂ S̃j be defined as the set of states on linkj that do
not prevent useru from connecting to multicast channeli, i.e.

S̃
u,i

j = {y ∈ S|d · (y ⊕ (ei1j∈Ru
)) ≤ Cj } for j ∈ J.

The truncation operator is then

T
u,i
j f (y) = f (y)1

y∈S̃u,ij

. (15)

For y ∈ S let

Q
u,i
j (y) = P(Yj = y; Yk ∈ S̃u,ik ,∀k ∈Mj ). (16)

This is the probability that linkj is in statey and none of the links downstream from linkj (link j

included) prevents useru from connecting to multicast channeli. It is as crucial as above that also these
probabilities can be calculated recursively as follows:

Q
u,i
j (y) =



T

u,i
j πj (y) if j ∈ U,

T
u,i
j


⊗

k∈Nj

Q
u,i
k


 (y) otherwise.

The state sum in the numerator ofEq. (12)is then

G(Ω̃u,i) =
∑
y∈S

Q
u,i
J (y),

whereQu,i
J (y) is the probability(16) related to linkJ connecting the source to the rest of the network.

Finally, the blocking probability inEq. (12)is

bt
u,i = 1 −

∑
y∈SQ

u,i
J (y)∑

y∈SQJ(y)
.

5.2. Computational complexity

The complexity of the algorithm increases exponentially with the number of channels, as the number of
states in each of the distributions to be convolved is 2I . This can be seen by investigating the computational
effort of the OR-convolution algorithm. The computational effort of convolving two state vectors of length
2I is O((2I −1)2). However, the total computational effort of the OR-convolution algorithm in a network
withU user populations, O((U−1)(2I−1)2) = O(U22I ), grows on linearly with respect toU , irrespective
of the number of linksJ . This can be compared to a brute force approach of going through all the 2UI
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network states and summing the probabilities of those which satisfy the conditions of an allowed state.
Clearly, the computational effort of the OR-convolution algorithm grows exponentially as the numberI

of channels grows, but it does not depend critically on the size of the network, defined by the number of
user populations, as is the case with the brute force method.

6. Call blocking in a multicast tree network

Until now, we have shown how the exact algorithm can be used to calculate time blocking probabilities
in point-to-multipoint multicast networks, with arbitrary sized user populations. However, call blocking
probability is often of more interest. In[3] call blockingbc

i was defined for the multicast network; call
blocking occurs when a user is not able to subscribe to channeli.

6.1. Call blocking with infinite user populations

Due to Poisson arrivals, the time blocking probability for the infinite user population is equal to the
call blocking probability. Therefore, no modifications of the algorithm are needed. Note that the single
link model by Karvo et al.[3] is a special case of the network model derived in this paper, and hence the
same results can be obtained using the network algorithm.

6.2. Call blocking with single users

The Markov process model that describes the behavior of a single user was presented inSection 4.1.
The model assumes that each user is subscribed to one channel at a time and a request for a new channel
can occur only through the idle state. A user experiences call blocking, when there is not enough capacity
to turn the channel on. Call blocking for useru is equal to time blocking in a network where useru is
removed. This follows easily from the product form state distribution. Removing useru from the network
is equivalent to setting useru in state 0,

πu(y) =
{

1 if y = 0,

0 otherwise.
(17)

For all otherj ∈ U the state probabilities are given byEq. (6).
As described inSection 3the leaf link distributions define the network distribution and by using the

state probabilities defined above, the algorithms presented inSection 5.1can be used to calculate the time
blocking in the reduced system. The resulting end-to-end call blocking probability is

Bc
u,i = 1 −

∑
y∈SQ

u,i
J (y)∑

y∈SQJ(y)
,

where

Qj(y) =




1y=0 if j = u, j ∈ U,
Tjπj (y) if j �= u, j ∈ U,

Tj


⊗

k∈Nj

Qk


 (y) otherwise,
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and

Q
u,i
j (y) =




1y=0 if j = u, j ∈ U,
T

u,i
j πj (y) if j �= u, j ∈ U,

T
u,i
j


⊗

k∈Nj

Q
u,i
k


 (y) otherwise.

6.3. Call blocking with connection-specific users

The connection-specific user model presented inSection 4.2is a special case of the single user model,
and the call blocking probability is calculated in a similar fashion. The end-to-end call blocking probability
for user (u, i) is obtained using the time blocking algorithm to a network where user (u, i) is removed.
In other words, by replacingπu(y) with the state probability

π(i)
u (y) =

∏
j∈I\{i}

p
yj
u,j (1 − pu,j )

(1−yj ).

For all the other users,Eq. (7)is used.

6.4. Call blocking with finite user populations

For a finite user population withN > 1, the call blocking probability can be calculated by envisaging
the underlying single user processes downstream from the leaf link, as was done inSection 4.3, i.e.
by imagining that each user is connected to the leaf link by a separate infinite capacity link. The call
blocking probability is then equal to the call blocking probability of a single user in this extended
system.

7. Blocking in a multicast tree embedded in a larger network

Until now, only the tree-structured part of the network, resulting from the multicast traffic offered by
the source was considered. As mentioned earlier, the algorithm can be extended to generally structured
networks, with mixed traffic. In this case, the tree-structured distribution portion of the network carries,
in addition to multicast traffic, background unicast traffic originating from the surrounding network as
illustrated inFig. 4.

We assume that the background traffic is independent on each link. This is a reasonable assumption
in a network carrying a large number of traffic streams, none of which is dominating the others. The
distribution of the background traffic is also assumed to be independent of the multicast traffic in the link.
This is a viable assumption when the background traffic consists of calls, like calls in an ATM network,
or, in the case of the Internet, streams with capacity reservations. The present model does not directly
apply to the case where the background traffic is elastic responding to the available capacity.

The non-multicast traffic in linkj is assumed to be Poisson with traffic intensityAj . The capacity
requirement is equal to one unit of capacity. The link occupancy distribution of the non-multicast traffic
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Fig. 4. A distribution network embedded in a general network.

in a link with infinite capacity is thus,

qj (z) = (Aj )
z

z!
e−Aj , z ∈ N. (18)

Here we deal only with single rate unicast traffic, the generalization to multirate Poisson traffic is
straightforward and is considered, for example, in[1]. Note also that, for the truncation principle to
apply, the background traffic can be modeled by any reversible Markov process or, even, the corre-
sponding non-Markovian process with general holding times. In this work we consider the Poisson
case.

The inclusion of background traffic affects only the truncation step of the algorithm presented in
Section 5.1. The state probabilities are defined as inSection 4. The state probabilities of the link states
that require more capacity than available on the link are set to zero as before. However, also the state
probabilities of the states that satisfy the capacity restriction of the link are altered, as the available
capacity on the link depends on the amount of non-multicast traffic on the link.

Therefore, the truncation functions presented inEqs. (13) and (15)must be replaced by the operators

T̂jf (y) = P(Zj ≤ Cj − d · y)f (y) =
Cj−d·y∑
z=0

qj (z)f (y),

T̂
u,i
j f (y) = P(Zj ≤ Cj − d · (y ⊕ (ei1j∈Ru

)))f (y) =
Cj−d·(y⊕(ei1j∈Ru ))∑

z=0

qj (z)f (y). (19)

HereZj refers to the part of the capacity of linkj that is occupied by non-multicast traffic.
To justify Eq. (19), consider two new sets for the collection of random variables(Y, Z), for j ∈ J and

i ∈ I,

Ŝj = {(y, z) ∈ S× N|d · y + z ≤ Cj }, Ŝ
u,i

j = {(y, z) ∈ S× N|d · (y ⊕ (ei1j∈Ru
)) + z ≤ Cj },
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whereN denotes the set of natural numbers. Then, the probabilitiesQ̂j andQ̂u,i
j are expressed as

Q̂j (y) = P(Yj = y; (Yk, Zk) ∈ Ŝk,∀k ∈Mj ) = P(Yj = y, Zj ≤ Cj − d · y;
(Yk, Zk) ∈ Ŝk,∀k ∈Mj \ {j}) = P(Zj ≤ Cj − d · y) × P(Yj = y;
(Yk, Zk) ∈ Ŝk,∀k ∈Mj \ {j})

and

Q̂
u,i
j (y)=P(Yj = y; (Yk, Zk) ∈ Ŝu,ij ,∀k ∈Mj )

=P(Zj ≤ Cj − d · (y ⊕ (ei1j∈Ru
))) × P(Yj = y; (Yk, Zk) ∈ Ŝk,∀k ∈Mj \ {j}).

Thus, the algorithm differs only by the truncation function used

Q̂j (y) =



T̂jπj (y) if j ∈ U,

T̂j


⊗

k∈Nj

Q̂k


 (y) otherwise.

Similarly,

Q̂
u,i
j (y) =



T̂

u,i
j πj (y) if j ∈ U,

T̂
u,i
j


⊗

k∈Nj

Q̂
u,i
k


 (y) otherwise.

Another way of describing the relationship between the two different types of traffic, is to consider them
as two traffic classes in a two-dimensional link occupancy state space as shown inFig. 5. If the capacity
is infinite, the traffic classes are independent of each other. The finite capacity of the link imposes a
linear constraint for this state space. We notice that the marginal distribution of the capacity occupancy

Fig. 5. Shaping of the marginal distribution of the capacity occupancy.



326 E. Nyberg et al. / Performance Evaluation 54 (2003) 311–330

of the multicast traffic is weighted by the sums over the columns of the occupancy probabilities of the
background traffic. If the multicast traffic occupiesc = d · yj units of capacity, and the link capacity
is Cj , then possible non-multicast traffic states on the link are those withzj ≤ Cj − c, wherezj is the
number of non-multicast calls, in accordance withEq. (19).

The blocking probability inEq. (12)is again obtained by two series of convolutions and truncations
from the leaf links to the linkJ . The time blocking probability of the network is

b̂t
u,i = 1 −

∑
y∈S Q̂

u,i
J (y)∑

y∈S Q̂J (y)
.

Recall that only the truncation operators used in the algorithm were altered. Therefore, the same modifi-
cations that were presented inSection 6apply for the above algorithm.

8. Conclusions

We have presented an algorithm for calculating end-to-end time blocking probabilities in multicast
networks exactly. The algorithm is based on the known algorithm for calculating blocking probabilities
in hierarchical multiservice access networks. The multicast traffic characteristics were taken into account
in the convolution step of the algorithm by introducing the new OR-convolution. As the complexity of
the algorithm grows only linearly with the number of users (there is one OR-convolution and truncation
operation per each added user), it makes an exact analysis of even large networks tractable, notwithstanding
the fact that the size of the state space of the system grows exponentially with the number of users.

The algorithm was further extended to include background traffic in addition to multicast traffic. In the
present paper the background traffic is assumed to consist of calls with capacity reservations, such as calls
in an ATM network, or streaming type traffic with capacity reservations in the Internet. We have given
four different user models satisfying the requirements for the use of the algorithm. The single user model
presented inSection 4.1can be considered as the main model, as from it the other three user population
models can be derived. The main model can be modified in order to obtain the connection-specific user
model presented by Chan and Geraniotis[2], and user models for arbitrary sized user populations.

We also showed how the original algorithm for calculating time blocking probabilities can be applied to
calculating call blocking probabilities for all the user models presented. The results were further proven to
be insensitive to the channel holding time distributions. For the finite user population models, the results
for the time blocking probabilities were insensitive to user idle time distributions as well.

Calculating the end-to-end call blocking probability exactly, however, becomes infeasible when the
number of channels increases. In contrast to ordinary access networks, the aggregate one dimensional link
occupancy description is not sufficient, since in the multicast network it is essential to do all calculations
in the link state space, with 2I states. This is due to the resource sharing property of multicast traffic,
namely the capacity in use on a link increases only when such a channel is requested which currently is not
carried in the link. Thus, in cases where the number of channels is large, say more than 10, approximation
methods such as RLA are needed.

We leave for further research extending the presented user population models to cover an even larger
variety of realistic multicast user models and new approximation methods for calculating blocking prob-
abilities. The acceleration of the presented algorithm for systems with a large number of channels should
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also be investigated. The complexity of the algorithm would decrease considerably if the calculations
would not require the 2I states of link state space. One possibility would be to assume that the channels be
identical in terms of the probabilities of choosing the channels, the capacity requirement of the connection
and the mean holding time of the receiver. These assumptions are clearly restrictive, but would allow the
use of the algorithm for networks with many channels. Finally, an interesting area for further study is
the adaptation of the present algorithm to the case where the background traffic depends on the state of
the multicast transmissions, as in the case of elastic sources responding to the available bandwidth in the
Internet.
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Appendix A. On the insensitivity of multicast loss systems

In this appendix, we give a rigorous treatment of the insensitivity property discussed earlier. This is
done by using the theory of generalized semi-Markov processes. The aim is to prove that the steady-state
distributionπ̃(x) in a network witharbitrary link capacities isinsensitiveto the underlying connection
holding time distributions, i.e.̃π(x) depends only on the mean, but not on the form, of the connection
holding time distributions. For the finite user population models,π̃(x) proves out to be insensitive even
to the user idle time distributions. Below, we will show that these properties are valid at least among the
distribution classes defined in[11]. For shortness, these distributions are called general.

A.1. Finite user population models

The reversible Markov processes used to model finite user populations inSections 4.1–4.3implicitly
require that all the user idle time and connection holding time distributions be exponential. If these expo-
nential distributions are replaced by general distributions, without modifying their means, the resulting
model is a semi-Markov process. It is well known that this semi-Markov process has the same stationary
distribution as the original Markov process. Thus, by(3), we see that the steady-state distributionπ(x)
in a network withinfinite link capacities is insensitive to both the user idle time and connection holding
time distributions. However, this does not prove the insensitivity ofπ̃(x). Thus, a different approach is
needed.

Consider first the user model defined inSection 4.1. If the user idle time and connection holding time
distributions are exponential, the network state processX̃(t) = (Ỹui(t); u ∈ U, i ∈ I) is a reversible
Markov process satisfying the followingdetailed balance equations: for all u ∈ U, i ∈ I, andx ∈ Ω̃,
such thatx + eui ∈ Ω̃,

π̃(x)λui = π̃(x + eui)µi. (A.1)

Assume then that the user idle time and connection holding time distributions are general. It is further
assumed that whenever a connection request is blocked, the related user starts a fresh idle period. In this
case, the network state processX̃(t), in general, is neither a Markov process nor a semi-Markov process.
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Instead, it is ageneralized semi-Markov process(GSMP) as defined, e.g., in[11]. The idea is to consider,
in addition to the network state variablẽX(t), the remaining timesTu(t) that each useru stays inits
current state. IfỸui(t) = 1, thenTu(t) tells how long useru still continues to subscribe to channeli at
time t (and we say thatclocksui is activeat that time). But ifỸui(t) = 0 for all i, thenTu(t) tells how long
useru still remains idle at timet (and we say that clocksu0 is active at that time). Thus,U(I +1) different
clocks are needed, exactlyU of which are active in each network state. Let thenT(t) = (Tu(t); u ∈ U).
The point is that thesupplementedprocess(X̃(t),T(t)) is a Markov process.

By Theorem 1.1 of[11], the GSMPX̃(t) is insensitive to the user idle time and connection holding
time distributions if the followinglocal balance equationsare satisfied:

(i) for all u ∈ U andx ∈ Ω̃ such that clocksu0 is active,

π̃(x)λu =
∑
i∈I

π̃(x + eui)µi1x+eui∈Ω̃ +
∑
i∈I

π̃(x)λui1x+eui /∈Ω̃ ,

(ii) for all u ∈ U, i ∈ I, andx ∈ Ω̃ such that clocksui is active,

π̃(x)µi = π̃(x − eui)λui.

It is easy to see that all these local balance equations follow from the detailed balanceequation (A.1).
The user model defined inSection 4.2can be handled similarly. In this case, the detailed balance

equations are exactly the same ones(A.1) as above. The number of clocks needed is 2UI: clock suix is
active whenever̃Yui = x ∈ {0,1}. The local balance equations corresponding to the insensitivity property
read now as follows:

(i) for all u ∈ U, i ∈ I, andx ∈ Ω̃ such that clocksui0 is active,

π̃(x)λui = π̃(x + eui)µi1x+eui∈Ω̃ + π̃(x)λui1x+eui /∈Ω̃ ,

(ii) for all u ∈ U, i ∈ I, andx ∈ Ω̃ such that clocksui1 is active

π̃(x)µi = π̃(x − eui)λui.

It is again easy to see that all these local balance equations follow from the detailed balance equations.
Consider finally the user population model defined inSection 4.3. The claim follows now from the

first case above,Eq. (8)and the observation that the pure convolution operator preserves the insensitivity
property.

A.2. Infinite user population model

The infinite user population was modeled inSection 4.4as a collection of independentM/M/∞
queues, requiring that all the interarrival time and connection holding time distributions be exponential. It
is well known that the steady-state distribution in anM/G/∞ queue is the same as in the corresponding
M/M/∞ queue (see, e.g.,[5]). Thus, by(3), we see thatπ(x) is insensitive to the connection holding
time distributions. To prove the insensitivity ofπ̃(x), we again apply the GSMP theory.

Consider first the extended network state processÑ(t) = (Ñui(t); u ∈ U, i ∈ I), whereÑui(t) denotes
the number of ongoing multicast connections belonging to traffic class(u, i). Note thatX̃(t) = h(Ñ(t)),
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whereh(n) = (1nui>0; u ∈ U, i ∈ I), so thatỸui(t) = 1Ñui(t)>0. Let thenE = {0,1, . . . }U×I . The state

space ofÑ(t) is denoted bỹE,

Ẽ = {n ∈ E|h(n) ∈ Ω̃}.
Let π̃(n) denote the steady-state distribution ofÑ(t). If the connection holding time distributions are ex-
ponential, the extended network state processÑ(t) is a reversible Markov process satisfying the following
detailed balance equations: for allu ∈ U, i ∈ I, andn ∈ Ẽ, such thatn + eui ∈ Ẽ,

π̃(n)λui = π̃(n + eui)(nui + 1)µi. (A.2)

Assume then that the connection holding time distributions are general. In this case, basically due to an
infinite user population, the extended network state processÑ(t) is not an ordinary GSMP but a GSMP
resulting from a generalized semi-Markov schemewith relabeling, as defined in[11]. (A similar relabeling
scheme is also needed when modeling anM/G/∞ queue in this framework.) In addition to single clocks,
differentclock typesare defined. In our case, there are 2UI different clock types: one clock of typeSui0

corresponding to the interarrival times is always active, andn clocks of typeSui1 corresponding to the
holding times are active wheneverÑui(t) = n.

By Theorem 3.1 of[11], the GSMPÑ(t) resulting from the relabeling scheme described above is
insensitive to the connection holding time distributions if the following local balance equations are
satisfied: for allu ∈ U, i ∈ I, andn ∈ Ẽ, such that at least one of the clocks of typeSui1 is active,

π̃(n)µi = π̃(n − eui)λui
1

nui
.

It is easy to see that all these local balance equations follow from the detailed balanceequation (A.2).
The insensitivity ofπ̃(x) follows immediately from the insensitivity of̃π(n).
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