The doctoral dissertations of the former Helsinki University of Technology (TKK) and Aalto University Schools of Technology (CHEM, ELEC, ENG, SCI) published in electronic format are available in the electronic publications archive of Aalto University - Aaltodoc.
|
|
|
Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of the Department of Surveying for public examination and debate in Auditorium M1 at Helsinki University of Technology (Espoo, Finland) on the 3rd of February, 2006, at 12 o'clock noon.
Dissertation in PDF format (ISBN 951-22-8017-5) [3979 KB]
Dissertation is also available in print (ISBN 951-22-8016-7)
Even though computer vision and digital photogrammetry share a number of goals, techniques, and methods, the potential for cooperation between these fields is not fully exploited. In attempt to help bridging the two, this work brings a well-known computer vision and image processing technique called foveation and introduces it to photogrammetry, creating a hybrid application. The results may be beneficial for both fields, plus the general stereo imaging community, and virtual reality applications.
Foveation is a biologically motivated image compression method that is often used for transmitting videos and images over networks. It is possible to view foveation as an area of interest management method as well as a compression technique. While the most common foveation applications are in 2D there are a number of binocular approaches as well.
For this research, the current state of the art in the literature on level of detail, human visual system, stereoscopic perception, stereoscopic displays, 2D and 3D foveation, and digital photogrammetry were reviewed. After the review, a stereo-foveation model was constructed and an implementation was realized to demonstrate a proof of concept. The conceptual approach is treated as generic, while the implementation was conducted under certain limitations, which are documented in the relevant context.
A stand-alone program called Foveaglyph is created in the implementation process. Foveaglyph takes a stereo pair as input and uses an image matching algorithm to find the parallax values. It then calculates the 3D coordinates for each pixel from the geometric relationships between the object and the camera configuration or via a parallax function. Once 3D coordinates are obtained, a 3D image pyramid is created. Then, using a distance dependent level of detail function, spherical volume rings with varying resolutions throughout the 3D space are created. The user determines the area of interest. The result of the application is a user controlled, highly compressed non-uniform 3D anaglyph image. 2D foveation is also provided as an option.
This type of development in a photogrammetric visualization unit is beneficial for system performance. The research is particularly relevant for large displays and head mounted displays. Although, the implementation, because it is done for a single user, would possibly be best suited to a head mounted display (HMD) application.
The resulting stereo-foveated image can be loaded moderately faster than the uniform original. Therefore, the program can potentially be adapted to an active vision system and manage the scene as the user glances around, given that an eye tracker determines where exactly the eyes accommodate. This exploration may also be extended to robotics and other robot vision applications. Additionally, it can also be used for attention management and the viewer can be directed to the object(s) of interest the demonstrator would like to present (e.g. in 3D cinema).
Based on the literature, we also believe this approach should help resolve several problems associated with stereoscopic displays such as the accommodation convergence problem and diplopia. While the available literature provides some empirical evidence to support the usability and benefits of stereo foveation, further tests are needed. User surveys related to the human factors in using stereo foveated images, such as its possible contribution to prevent user discomfort and virtual simulator sickness (VSS) in virtual environments, are left as future work.
Keywords: foveation, 3D visualization, stereo imaging, photogrammetry, virtual reality, level of detail, human visual system, stereoscopic perception
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
© 2006 Helsinki University of Technology