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Highly Diastereoselective Methylation of Five-Ring N,O-Acetals
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Abstract: Highly diastereoselective methylation of (2S ,4S)- and (2R ,4S)-3-tert-butyl 4-methyl 2-tert-
butyloxazolidine-3,4-dicarboxylate (1a /b) is reported. The relative and absolute configuration of the
methylated products was assigned by NOESY and confirmed by a crystal structure of 1a.
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INTRODUCTION

In the course of our studies towards new synthetic routes
for sphingosine-related metabolites [1] such as myriocin [2],
mycestericins [3], and sphingofungins [4], we became
interested in α  substituted amino acids [5] (Fig. 1). We
chose the principle of self-regeneration of stereocenters
(SRS) [6] as the general synthetic strategy for these
compounds. For these purposes, L-serine is a convenient
starting material since it already contains all the
functionalities of the hydrophilic end of the metabolites. For
stereoselective α  alkylation of this particular amino acid, a
new stereogenic center is transiently introduced via
formation of oxazolidines of type 1. Although similar
oxazolidines have previously been prepared, we herein report
new alkylation products. In contrast to recent literature, we
have not only regenerated configuration at the defined
stereocenter, but we have also prepared a product of
inversion [6,7].
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Fig. (1). Examples of Sphingosine-related Metabolites.

RESULTS AND DISCUSSION

The oxazolidines used in our alkylation studies were
prepared according to standard methods (1a), or with a
slightly modified literature procedure (1b) [7,8]. Compound
1a [9] was isolated from a 3:1 mixture together with 1b
[10], while diastereopure 1b was obtained in three steps
from L-serine (Scheme 1) [7]. Oxazolidines derived from
serine esters are prone to ring-chain tautomerism [11].

*Address correspondence to this author at the Laboratory of Organic
Chemistry, Helsinki University of Technology, P.O. Box 6100, FIN−02150
Espoo, Finland; E-mail: ari.koskinen@hut.fi

Equilibrium studies of serine methyl and ethyl esters with
aromatic aldehydes in CDCl3 have shown three-component
tautomeric mixtures where the open-chain Schiff base
intermediate was typically predominating. Among the two
ring forms the amount of the cis epimer was always higher
than that of the trans epimer and, unlike the thiazolidines
[12], no reaction conditions could be found to obtain
predominantly the trans product [11]. We used the bulky N-
protecting group Boc together with the large tBu ring
substituent to obtain 1 in configurations where one face was
maximally shielded from subsequent nucleophilic
alkylation. In fact, 1a was in solution a 9:1 mixture of
rotamers while only one rotameric form was observed for 1b
[13].

Subsequent methylation reactions of the ester enolates of
1a  and 1b  were performed under standard conditions
(Scheme 1) [14]. Using 110 mol-% of LDA was sufficient to
deprotonate 1b but not 1a. However, the alkylation yields

were only modest, mainly starting material being recovered,
indicating slow enolization. Increasing the amount of base to
200 mol-% and prolonging the enolization time up to one
hour improved the yield of the methylated products
significantly. In contrast to literature, the use of DMPU as a
co-solvent did not affect the outcome of the alkylations
[7,15]. The methylated products 3a (87%) and 3b (92%)
were obtained in high yield and purity [16]. Compounds
3a/b  are enantiomers, which was confirmed by their
identical NMR spectra and opposite signs of optical
rotation.

The relative and thus also absolute configurations of
1a/b and 3a/b were determined with NOESY experiments
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Fig. (2). NOESY spectrum of 3b.

and confirmed by the crystal structure of 1a. In the NOESY
spectrum of 1b (not shown) there is a clear correlation
between the methyl protons of the tBu and the acetal proton
at C2 as well as the equatorial methylene proton at C5. The
same correlations are observed for 3b, too (Fig. 2). Whereas
there is no visible correlation between the pseudoaxial C5
proton and the C4 proton in 1b, we observed a correlation of
the pseudoaxial methylene proton at C5 with the C4-methyl
protons in 3b.

Based on the above arguments, the newly introduced
substituent in 3b  is necessarily trans  to the tBu ring
substituent. The relatively restricted rotational flexibility of
1a/b is corroborated by broader resonance signals of the
acetal proton at C2 and the tBu/Boc methyl protons in the
1H NMR spectra both in CDCl3 and benzene-d6 at room
temperature.

An ORTEP-3  [17] plot of 1a confirms the NOESY
observations and the trans configuration of the C2 and C4
ring substituents, and illustrates how one face of the
molecule ring is shielded by the large ring substituents (Fig.
3) [18].

In summary, selective formation of both diastereomers of
3-tert-butyl 4-methyl 2-tert-butyloxazolidine-3,4-dicarboxy-
late (1a/b) was achieved by two different routes, where the

reversal of the order of protection steps is the main
difference. Analytical data for 1a and 1b are presented for the
first time and the observed structural and conformational
properties were utilized to synthesise 3a and 3b in high
purity, yield and dr. Further examples of this methodology
and careful structural analysis of the highly substituted N,O-
acetals will be reported in due course.
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Scheme 1. Reagents and conditions: ia) (Boc)2O, MeOH/CH2Cl2,
r.t.; ib) (Boc)2O, TEA/THF, r.t.; iia) toluene, reflux; iib)
pivalaldehyde, TEA/pentane, reflux; iii) LDA, MeI, THF, -78 °C.
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Fig. (3). ORTEP-3 plot of 1a.
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