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Introduction and Summary
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1 Introduction

This thesis studies the following questions: How economic equilibria can be
reached with limited information by adjusting affine equations, and how col-
lusion in oligopolistic markets can be maintained with affine reaction strate-
gies. The main emphasis is on the first question, which is considered for ex-
change economies, contracting problems, and a two-party negotiation support
method. In brief the main contributions are new ways to reach and maintain
equilibria.

The common characteristic with the various models included in this work is
that they all include agents who are making decisions with respect to affine
constraints, i.e., constraints that include a linear part and a constant. For ex-
ample, in an exchange economy there are consumers willing to acquire amounts
of products that maximize their utility functions and do not exceed their bud-
gets, which are affine constraints with respect to the amounts. An example of
an affine contracting game is a buyer-seller game where the seller announces
that the price of amounts of product to be sold depends on a unit price and
a constant premium, i.e., the price is an affine mapping of the amount. Math-
ematically speaking, all the models considered in this thesis include convex
optimization under affine equations. Furthermore, the models are dynamic
and the affine equations are the variables that determine the dynamics.

Understanding the resource allocation among economic agents is the first step
to understanding competitive markets. Exchange economies provide a simple
framework for studying resource allocation in its purest form, i.e., in settings
where there is no production but only consumers. The equilibrium of an ex-
change economy is the set of prices for which the total demand of commodities
equals the consumers’ total amounts of them. The main issues concerning the
equilibrium are its existence, uniqueness, Pareto-optimality of the correspond-
ing resource allocation, stability, and comparative statics. This thesis focuses
on stability issue, more specifically on explaining how the equilibrium can be
reached. Existence and Pareto-optimality are studied for a negotiation support
model by Ehtamo et al. (1999a) that can be interpreted as a specific exchange
economy.

Processes for reaching the equilibrium of exchange economies have been stud-
ied extensively in economics literature beginning from the works of Walras
(1874), who introduced the concept of tâtonnement processes. The idea of tâ-
tonnement processes is that prices are adjusted until the equilibrium is found
but no trades are made before that. Samuelson (1947) was the first to suggest
the use of differential equations to analyze tâtonnement stability. Arrow and
Hurwicz (1958), and Arrow et al. (1959) proved the global stability of Samuel-
son’s continuous time tâtonnement process, i.e., convergence to an equilibrium
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for all initial prices, under economically significant conditions such as gross
substitutability and the weak axiom of revealed preferences.

Continuous time tâtonnement processes have the disadvantage that they can-
not be used in solving resource allocation problems in any real world setting
because the consumers’ actions can only take place in discrete time instances.
Therefore, the stability issue should rather be studied in discrete time. The
results obtained within the last two decades show that most discrete time
processes for reaching the equilibrium fail to converge under the stability con-
ditions given by Arrow et al. (1959) for the continuous time process. This
thesis answers to the need of discrete time tâtonnement process with satis-
factory convergence properties by showing that a modification of fixed-point
iteration converges under conditions that are remarkably close to the contin-
uous time convergence conditions. Mathematically the main contribution is a
new convergence result for fixed-point iteration in solving equations that are
characterized by a property known in economics literature as Walras’ law.

For the affine contract design problem this thesis shows that the complete
information equilibrium can be reached when the contracting game with the
same agents is played repeatedly and the contract is adjusted with fixed-
point iteration. For example, if there is a seller and a population of buyers
who all have similar preferences and each period one of them is to be served,
then the seller can finally reach the price-amount tariff that gives him the
optimal profits even though he does not have any prior information on the
buyers’ preferences. The process has two meanings. First, it gives a practical
method for finding optimal contracts with limited information. Second, it could
explain why complete information contracts are observed even though there
was incomplete information in the market settings.

In this thesis, in addition to exchange economies and contracting games, the
adjustment of affine equations is considered in finding Pareto-optimal points
for two-party negotiations over continuous issues. For example, the negotiation
could be on allocating resources, such as money and labor force, between two
units of a company. The purpose of negotiation support methods in such set-
tings is to locate Pareto-optimal points among which the decision makers, e.g.,
the units of a company, can choose their agreement. The Pareto-optimality of
a point means that at least one of the parties is worse off at any other point.

The constraint proposal method, a negotiation support method by Ehtamo
et al. (1999a) for finding Pareto-optimal points, is based on adjusting artificial
budget constraints. It is one of the few negotiation support methods that
does not require the parties to disclose any private information to each other.
This thesis presents conditions under which the constraint proposal method
leads to a system of equations that has Pareto-optimal solutions. Furthermore,
convergence of fixed-point iteration in solving the problem is analyzed. The
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thesis also discusses how the setting in the constraint proposal method can
be interpreted as an exchange economy where the parties are allocating their
total dispute on the issues.

In the aforementioned models, the decision makers are assumed to be short-
sighted in the sense that during the process they do not consider any other
future periods than the current one, i.e., they are willing to reveal their best
responses for given affine equations. When studying the question of maintain-
ing cooperation in oligopolistic markets it is reasonable to assume that the
firms are fully rational and do not behave short-sightedly as in these models.
One purpose of this thesis is to explain tacit collusion as a result of rational
behavior. This issue is studied in the framework of repeated games with dis-
counting. It is well-known that cooperation can be maintained in such games
with various trigger-type strategies when the players are patient enough, i.e.,
their discount factors are sufficiently large. This thesis takes a different ap-
proach: Instead of restricting the discount factors the possible deviations from
cooperation are assumed to be bounded.

Usual trigger-type strategies are based on switching to a punishment phase
after one of the firms has deviated. The punishment phase is the same regard-
less of the magnitude of deviation. Thus, these discontinuous strategies omit
the continuous nature of firms’ output variables and they cannot fully explain
market behavior. As an alternative to trigger strategies economists have con-
sidered reaction function strategies, which presume that the firms’ actions vary
continuously to their rivals’ actions. In this thesis a static reaction function
strategy, proposed by Osborne (1976), is formulated in a repeated game. The
strategy is based on changing the outputs in proportion to the deviation and
hence it is called the proportional strategy.

It is shown that depending on the discount factors there are always intervals of
deviations such that the proportional strategies constitute a subgame perfect
equilibrium when restricting to these intervals. Subgame perfection means
that it is optimal for the firms to follow the proportional strategies regardless
of what has happened during the history of the game. In a duopoly case
the equilibrium also satisfies an important equilibrium refinement called weak
renegotiation proofness, which guarantees that the firms would not be willing
to change their behavior if they could renegotiate their agreement anew in any
contingencies, see Farrell and Maskin (1989). Furthermore, this thesis discusses
the relationship of proportional strategies and conjectural variations models
that are widely used, especially in empirical literature, to explain and measure
incomplete competition.
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1.1 Overview on Contents

The following three chapters of this thesis study the adjustment of affine equa-
tions in various economic settings. In chapters II and III the affine equations
are budget constraints and in Chapter IV they are contracts. In all of these
three models there is a coordinator, who adjusts the equations, and a group
of decision makers, who solve optimization problems under these equations as
constraints. In an exchange economy the coordinator is a Walrasian auctioneer,
a hypothetical agent whose only task is to adjust the prices until equilibrium is
reached. For the constraint proposal method a mediator acts as a coordinator
and in a contract design game the principal takes the coordinator’s position.

In addition to their structural similarities, the models in chapters II–IV are
mathematically close to each other: They all result to equilibrium problems
that are characterized by Walras’ law and degree zero homogeneity. In the
oligopolistic game of Chapter V there is no outside coordinator to drive the
market to an equilibrium, but rather the collusive firms themselves act as
coordinators. With this interpretation the proportional strategies play the role
of dynamic coordination variables as the affine equations in chapters II–IV.
The coordinator and the other parties in the models are summarized in Table
1.

Table 1: Summary of Contents

Chapter II Chapter III Chapter IV Chapter V

Setting Exchange
economy

Negotiation Contract
design

Cartel

Coordinator Auctioneer Mediator Principal Firms

Other parties Consumers Negotiators Agent None

Affine equations Budget
constraints

Artificial
constraints

Contract Reaction
strategies

In chapters II–IV the two main assumptions are short-sighted behavior and
limited information on the decision makers’ preferences, whereas Chapter V
assumes full rationality and complete information. On the other hand, chap-
ters II–IV focus on reaching an equilibrium and Chapter V on maintaining
a predetermined point as the equilibrium outcome of an oligopolistic game.
The common characteristic of Chapters II–IV is that affine equations are ex-
ogenously taken as dynamic variables. In Chapter I budget constraints arise
naturally as equations to be adjusted.

In the following sections I describe the various models of this thesis in more de-
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tail, shortly review the related literature, and present the main results. Finally
I discuss some topics of further research.

2 Chapter II: Convergence of Non-Normalized Iterative Tâton-

nement

In an exchange economy there is a group of consumers with initial endow-
ments of commodities that have exogenously defined market prices. Although
the market participants are called consumers, exchange economies are suit-
able models for quite general resource allocation problems that involve other
economic agents than consumers and other resources than commodities as
well.

In the following n ≥ 2 is the number of commodities, m is the number of
consumers, and wj = (wj

1, . . . , w
j
n) is the consumer j’s initial endowment of

commodities. For given prices p = (p1, . . . , pn) each consumer is willing to take
the bundle of commodities that maximizes her utility with respect to the bud-
get constraint, the meaning of which is that the monetary value of the bundle
cannot exceed the value of consumer’s initial endowment. In other words con-
sumer j maximizes her utility function uj(x) subject to p·x ≤ p·wj and xi ≥ 0
for all i = 1, . . . , n. Here p·x =

∑

i pixi. The result of consumer’s maximization
problem is the demand function xj(p). On the aggregate level the economy is
characterized by the excess demand function z(p) that is obtained by summing
all the consumers’ excess demands xj(p)−wj , i.e., z(p) =

∑

j [x
j(p)−wj ]. The

properties that excess demand functions usually have are listed below.

(P1) z is single valued and continuous for all p > 0.
(P2) Monetary value of the excess demand is zero, i.e., z satisfies Walras’ law :

p · z(p) = 0 for all p > 0.
(P3) Only relative prices matter, i.e., the prices can be scaled with any posi-

tive multiplier without affecting the excess demand. Mathematically z is
homogeneous of degree zero: z(αp) = z(p) for all α > 0.

(P4) Excess demand of each commodity is bounded from below, i.e., there is
a scalar ν < 0 such that zj(p) > ν for all j and p > 0.

(P5) All the commodities are desirable in the sense that when some of them
become free, the excess demand becomes infinitely large at least for some
of those commodities. Mathematically this means that

lim
pk→p

[max
j∈Jp

zj(p
k)] = ∞,

when pk > 0, p 6= 0 and Jp = {j : pj = 0} 6= ∅.

A price vector p∗ ∈ R
n
+ = {p ∈ R

n : pj > 0 ∀j} that clears the market, i.e.,
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satisfies z(p∗) = 0, is the equilibrium of the economy. It can be shown that
when the properties (P1)–(P5) hold there is always at least one equilibrium for
an exchange economy. Moreover, (P1)–(P5) hold under quite loose assump-
tions on the consumers’ utility functions. These assumptions also guarantee
that the allocations x1(p∗), . . . , xm(p∗) corresponding to an equilibrium p∗ are
Pareto-optimal. See, e.g., Balasko (1988), Debreu (1959), Hildenbrand and
Kirman (1988), Mas-Colell et al. (1995), Takayama (1974), and Varian (1992)
for more on these properties and how they are obtained from the consumers’
utility maximization problems.

Let us now go to the stability issue, which is the main concern in Chapter II.
Samuelson (1947) was the first to formulate the continuous time tâtonnement
process as the following differential equation

ṗ(t) = z(p(t)), (1)

where ṗ(t) is the time derivative of p(t). Arrow and Hurwicz (1958), Arrow
et al. (1959) and Arrow and Hurwicz (1960) were the first to show that the
process (1) is globally stable, i.e., it converges to an equilibrium for any positive
initial prices, under the following condition:

(C1) There is an equilibrium p∗ > 0 that satisfies p∗ · z(p) > 0 for all p > 0 for
which z(p) 6= 0.

Furthermore, Arrow et al. (1959) proved that (C1) holds when the excess de-
mand function satisfies the gross substitutability condition or the weak axiom
of revealed preferences. A differentiable excess demand function z is said to
have the gross substitute property if ∂zj(p)/∂pi > 0 for j 6= i. This prop-
erty means that when the price of some commodity increases, the demand for
other commodities grows. The weak axiom of revealed preferences is discussed
in Section 2.1.

The process (1) as well as other tâtonnement processes are usually interpreted
as auctions run by a fictitious agent, a Walrasian auctioneer, who sets the
prices until an equilibrium is reached and the trades are made. When for-
mulated in discrete time, such processes could provide practical auctioning
methods for solving resource allocation problems. The more common purpose
of tâtonnement processes is to explain how an economy comes to its equilib-
rium. However, as remarked by Balasko (1988, Section 1.7), economic theory
does not propose a vector field defining the true dynamics leading to equilib-
rium. Hence, tâtonnement processes are merely approximations that simplify
the formulation and analysis of market dynamics.

To be economically meaningful a tâtonnement process should have the follow-
ing properties: Its use should not require other information than prices and
the corresponding excess demand, it should satisfy the law of demand, ac-
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cording to which prices should increase for commodities with excess demand
and fall in the opposite case, the process should converge under economically
relevant conditions, and the process should be formulated in discrete time.
Basically most discrete time processes are variations of fixed-point iteration
pk+1 = pk + z(pk), which is clearly the simplest discrete time process that
could possibly satisfy the other aforementioned requirements.

One feature of all tâtonnement processes is that they do not describe strategic
behavior because the consumers’ are assumed to be price takers: They do not
consider how their current demand affects the future prices. An explanation for
this behavior could be that the economy is too large for any single consumer to
be able to affect the prices by acting strategically, see Roberts and Postlewaite
(1976). Moreover, since the equilibrium of an exchange economy is a result of
price taking behavior by definition, it is natural to consider processes in which
the consumers are price takers.

Uzawa (1960) was the first to provide convergence results for an iterative dis-
crete time process with normalized prices, i.e., one of the prices is set to a
constant and only the rest of them are adjusted. More recent studies, how-
ever, question the relevance of these results by showing that such discrete time
processes often fail to converge and they may exhibit periodic or even chaotic
behavior. Saari (1985) has shown that for any normalized iterative process
there are always economies for which the process fails to converge. Further-
more, according to Goeree et al. (1998) a rather general class of normalized
discrete time processes exhibits periodic and chaotic behavior. Tuinstra (2000)
demonstrates similar results for a multiplicative process. For related studies
see also Bala and Majumdar (1992), Day and Pianigiani (1991), Mukherji
(1999), Saari (1995), and Saari and Simon (1978). Actually, one conclusion
from Chapter II is that price normalization is the main reason for undesirable
properties that occur in discrete time tâtonnement processes.

This far the stability result of the continuous time process (1) has not been
extended for discrete time processes. Arrow and Hahn (1971, Section 12.8)
argue that a discrete time version of the non-normalized process converges to
any given neighborhood of the set of equilibria when the iteration parame-
ter and initial prices are chosen appropriately. The corresponding continuous
time process, however, has significantly better convergence properties. This
thesis aims to remove the lack of a discrete time tâtonnement process with
satisfactory convergence properties.

Chapter II shows that a simple iterative process, a modification of fixed-point
iteration, converges globally under conditions that are only slightly stronger
than those required for the continuous time tâtonnement process. The process
is based on changing the prices in proportion to the excess demands of the
commodities such that the new prices are positive and the difference between
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the old and the new prices is bounded. The process has minimal informational
requirements, it satisfies the law of demand, and it can be interpreted as a
discrete time alternative of the non-normalized continuous time tâtonnement
process. It is not, however, based on approximating the corresponding contin-
uous time process.

In practice, the process can be mplemented as follows

pk+1 = pk + µkz(pk), (2)

where the parameter µk is updated as follows:

Step 1 a scalar γk > 0 is chosen such that pk + γkz(pk) > 0, and γk = γk−1

for k ≥ 1 if pk + γk−1z(pk) > 0,
Step 2 µk = min{γk, M/‖z(pk)‖}, where M > 0.

The purpose of the first step is to guarantee that the new prices are positive.
When pk > 0 there is a positive number γk such that pk+γkz(pk) > 0. It follows
from the first step that when the initial prices are positive, i.e., p0 > 0, then
all the prices obtained during the process are positive as well. The second step
guarantees that µkz(pk) is bounded in the Euclidean norm ‖·‖. As a result the
change of the price vector is bounded, namely ‖pk+1 − pk‖ = ‖µkz(pk)‖ ≤ M ,
where M is an arbitrarily chosen positive number. Instead of step 2 we could
assume that ever increasing price changes do not occur or prices cannot change
arbitrarily fast between two periods. This is because step 2 is needed only to
guarantee bounded price changes for the purposes of convergence analysis.

2.1 Convergence Results

Chapter II proves that the process (2) converges when z has the properties
(P1)–(P5) and satisfies the condition (C1) required for the continuous time
process together with (C2) as stated below. In the condition (C2) vector p∗

is the same equilibrium vector for which (C1) holds and Eε = {p ∈ R
n
+ :

‖z(p)‖ < ε}. The convergence condition (C2) is the following:

(C2) There are positive scalars ε and σ such that p∗ · z(p) ≥ σ‖z(p)‖2 for all
p ∈ Eε.

The condition (C1) means that the hyperplane {x ∈ R
n : p∗ · x = 0} supports

the hypersurface {x ∈ R
n : x = z(p), p > 0}, see Figure 1. According to (C2)

this hypersurface is around the origin inside a ball which has its center at the
ray of solutions {p ∈ R

n
+ : p = λp∗, λ > 0}. In Figure 1 the center of the ball

is located at p∗, i.e., λ = 1. As σ goes to zero, z is allowed to become flatter,
i.e., (C1) is obtained as the limit from (C2). Hence, the difference between
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(C1) and (C2) is conceptual rather than something that could have a major
effect in computational or practical considerations.

For a mathematically sufficiently regular excess demand function, the con-
dition (C2) means that the hypersurface obtained from the excess demand
function is not too flat around the origin. Consequently, the iterative process
converges when in addition to gross substitutability the hypersurface obtained
from the excess demand function has positive normal curvature to all tangent
directions around the origin. In Chapter II this property is demonstrated for
Cobb-Douglas economies.

In addition to gross substitutability also another economically important con-
dition called the weak axiom of revealed preferences implies the convergence
of (2). An excess demand function is said to satisfy the weak axiom of revealed
preferences if for any pair of price vectors p1 and p2 for which z(p1) 6= z(p2) it
holds that

p1 · z(p2) ≤ 0 =⇒ p2 · z(p1) > 0.

The interpretation of the WA is that if p1 is revealed preferred to p2, which
means that the value of z(p2) with prices p1 is negative, then p2 cannot be
revealed preferred to p1. Chapter II presents a new second order weak axiom of
revealed preferences (SWA) that implies (C2) analogously as the WA implies
(C1). An excess demand function z satisfies this condition if for any p2 > 0
there is σ > 0 such that

p1 · z(p2) ≤ 0 =⇒ p2 · z(p1) ≥ σ‖z(p1) − z(p2)‖2

x2

x1

p∗

‖x − p∗‖ = ‖p∗‖

p∗ · x = 0

x = z(p)

Figure 1. Illustration of (C2).
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The SWA means that if p1 is revealed preferred to p2, then p2 is not revealed
preferred to p1 and the value of z(p1) with prices p2 is bounded from below in
proportion to the differences of the excess demands ‖z(p1) − z(p2)‖2. Hence,
the economic interpretation of the WA and the SWA are the same but the
SWA also implies (C2). Consequently the iterative process converges under
the SWA and (P1)–(P5. It is shown that the SWA holds when the excess
demand function is Lipschitzian and strongly monotone, or the economy has
a representative consumer with a strongly concave utility function. On the
monotonicity of mappings and concavity of functions see, e.g., Aubin (1993)
and Rockafellar and Wets (1998).

3 Chapter II: Analysis of the Constraint Proposal Method for Two-

Party Negotiations

In the constraint proposal method an impartial mediator locates points where
the parties’ utility functions have joint tangent hyperplanes. The setting is
very close to exchange economies since, as demonstrated in Chapter III, the
mediator’s task can be formulated as a resource allocation problem, where the
total dispute is to be allocated between the parties.

The idea of locating Pareto solutions by finding the joint tangent was first
presented for oligopoly games by Ehtamo et al. (1996), and Verkama et al.
(1996). Ehtamo et al. (1999a) extend the approach to negotiation settings. The
constraint proposal method is implemented in a negotiation support system
RAMONA, which has been applied, e.g., to agricultural negotiations between
Finnish Government and the Finnish Farmer’s Union, see Teich et al. (1995).

From the practical point of view, the main benefit of the constraint proposal
method is that the DMs’ utility functions need not be elicited explicitly. More-
over, the method is informationally decentralized in the sense that the DMs
do not have to disclose any private information to each other but only to
the mediator. Other informationally decentralized methods include, e.g., the
heuristic presented by Teich et al. (1996) and the Joint Gains method by
Ehtamo et al. (1999b), and Ehtamo et al. (2001). These methods are based
on seeking joint improvements from a tentative agreements. See Raiffa (1982)
about the original discussion behind these methods.

Chapter III focuses on three major questions: Does the method produce Pareto-
optimal points, does it lead to a problem that has a solution, and can the joint
tangent hyperplanes be found with fixed-point iteration. These questions are
essential for the method to be useful in practice. Moreover, the relationship to
exchange economies is discussed as well as a possible way of using the method
to generate a single Pareto-optimal point.
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In practice the mediator adjusts a hyperplane going through a predetermined
reference point until the DMs’ most preferred alternatives on the hyperplane
coincide. Mathematically, the mediator chooses a reference point r and defines
a hyperplane

H(p, r) = {x ∈ R
n : p · (x − r) = 0}.

Here p denotes the normal of the hyperplane. The mediator asks the DMs
to give their most preferred points on the hyperplane. These most preferred
points solve optimization problems of the form

max
x∈H(p,r)

uj(x), (3)

where the subscript j refers to one of the parties. Knowing the optimal answers
the mediator then updates the hyperplane. The procedure is repeated until the
most preferred points coincide within some predetermined tolerance. Hence,
the problem of locating Pareto-optimal points is decentralized to solving of
individual optimization problems.

When the DMs’ problems have unique optima, the mediator’s problem can
be formulated as a system of equations F (p, r) = 0 to be solved for p. The
mapping F has some important similarities with excess demand functions: It
satisfies Walras’ law, i.e., p·F (p, r) = 0, and it is degree zero homogeneous with
respect to p. Actually, when r is chosen from the line connecting to the DMs’
optimal global optima, F can be interpreted as an excess demand function for
the exchange economy, where both DMs have a share of the total dispute, the
difference of their global optima, as an initial endowment to be exchanged.

Chapter III shows that reference points chosen from the line connecting the
DMs’ global optima produce Pareto-optimal points. Moreover, under quite
general assumptions on the DMs’ utility functions, the mediator’s problem
has a solution. The essay also gives local convergence condition for fixed-point
iteration as a scheme for adjusting the normal of the hyperplane constraint.
This convergence condition is essentially a localized version of the condition
obtained for exchange economies in Chapter II. Furthermore, Chapter III de-
rives an algebraic convergence test that is based on examining whether the
normal curvature of the hypersurface obtained from F for fixed r is positive
to all tangent directions.

By solving F (p, r) = 0 for p with different reference points r, several Pareto
solutions can be obtained. The DMs can then choose their agreement among
these points. Another possible way to use the method is to generate a single
Pareto-optimal point as a resolution, for example by first bargaining on a
suitable reference point for the method and then using it to produce a single
Pareto point.

As pointed out, the constraint proposal method is actually a specific exchange
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economy. There are, however, some important differences between the con-
straint proposal method and ordinary exchange economies. In an exchange
economy the demand functions are not defined if some of the prices are neg-
ative. Moreover, the demand for a resource usually grows infinitely large as
its prices go to zero. In the constraint proposal method p can have negative
components and there is no reason to assume the DMs’ responses to satisfy
any boundary conditions for zero components of p. Due to these specific prop-
erties the analysis on Chapter III is not based on earlier results for exchange
economies.

4 Chapter IV: Adjustment of an Affine Contract with Fixed-point

Iteration

In an adverse selection game a principal designs the optimal contract for an
agent without knowing the agent’s preferences completely, for textbooks on
contracting see, e.g., Macho-Stadler and Pérez-Castrillo (2001), and Salanié
(1997). Usually it is assumed that the principal knows the agent’s preferences
except for a single type parameter θ that can take one of the values θ1, . . . , θN .
The value of type parameter is the agent’s private information. The principal,
however, has a subjective probability distribution over the agent’s possible
types, which makes the game Bayesian, see Harsanyi (1967–68).

A typical example of a principal-agent game is a buyer-seller game, in which
the seller does not know exactly how the buyers value the product he is selling.
In the buyer-seller game, the seller acts as the principal who offers the buyer a
price tariff that specifies the prices of the goods for any amounts to be bought,
see Mirman and Sibley (1980), Roberts (1979), and Spence (1980).

Let y ∈ R
m and x ∈ R

n denote the decision variables for the principal and the
agent, respectively. Furthermore, let v and u be their utility functions, e.g.,
principal’s utility from pair (x, y) is v(x, y). In the general contract design
game the principal offers the agent a menu of contracts γi(x), i = 1, . . . , N ,
and commits to make his decision according to the contract that the agent
chooses. The agent may also reject all the contracts in which case he obtains
his reservation utility ū. After the agent chooses to sign a contract γi(x) he
makes a decision xγ that maximizes u(x, γi(x)). The principal then implements
the contract, i.e., takes the action yγ = γi(xγ), and the game ends. The agent
is said to participate the game if he signs a contract instead of taking his
reservation utility.

The principal’s problem in a static setting is to design the menu of contracts
that maximizes his expected utility such that the agent obtains at least her
reservation utility and chooses the contract intended for his type. The expected
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utility is calculated with respect to the principal’s subjective probability dis-
tribution over the types. If the the principal knew the agent’s type, i.e., has
complete information, then he could offer the agent a single contract that
maximizes his utility with respect to the constraint that the agent should
participate the game.

Using subjective probability distributions in modeling games of incomplete
information has an alternative in economics literature. Namely, adjustment
processes provide a way to reach the complete information equilibrium under
limited preference information. Nevertheless, such processes have not raised
any attention in contracting literature although various learning processes have
recently been popular in other fields of game theory, see, e.g., Fudenberg and
Levine (1999).

Instead of Bayesian approach and type a parameterization, it is assumed in
Chapter IV that the game is played repeatedly with the same participants.
Hence, the principal can offer the agent a single contract and adjust it accord-
ing to observations on the agent’s behavior. Furthermore, the agent is not fully
rational in the sense that he does not consider the outcomes of future periods
when making decisions. One explanation for such behavior is that there is a
large population of similar agents and each round one of them is drawn ran-
domly to play the game and it is unlikely that the same agent is chosen several
times repeatedly. Repeated adverse selection games and long term contract-
ing have also been studied with fully rational agents, see, e.g., Freixas et al.
(1985) and Laffont and Tirole (1988). This essay, however, studies only how
the complete information contract can be reached with limited information,
and the issues on long term relationships are thus omitted.

Let (x∗, y∗) denote the principal’s optimum under the agent’s participation
constraint. Note that when u is unknown to the principal he cannot necessarily
have prior knowledge about the agent’s participation constraint. Therefore,
the principal is assumed to know that his global optimum (x∗, y∗) satisfies the
agent’s participation constraint, which is that the agents obtains at least ū
by signing the contract. Thus, the agent will always participate the game. For
example, this can happen when it is common knowledge that the agent does
not have a participation constraint at all. The essay also considers the general
case where the principal does not know the participation constraint but can
find the best point that satisfies this constraint through adjustments.

In Chapter IV the principal’s contract design problem is defined as follows.
Find an affine contract γ(x) = y∗ + L(x − x∗), i.e., mapping L, such that x∗

maximizes principal’s utility v(x, γ(x)). Affine or linear contracts are appealing
mainly because of they are simply to administer and monitor. On related
contracts see, e.g., Rasmusen (1989, Chapter 7). Recently Ehtamo et al. (2002)
have presented a procedure for finding the optimal linear tariff in a wage-
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contracting game. Their procedure is close to the adjustment process presented
in Chapter III: One step in the tariff adjustment process is to find the correct
slope of the tariff as in Chapter III the task is to find the correct L to define
the optimal contract.

To formulate the principal’s problem as a system of equations L is parame-
terized with p ∈ R

n+m, with p = (px, py), px ∈ R
n, py ∈ R

m, such that the
contract defines an affine subset on the hyperplane

px · (x − x∗) + py · (y − y∗) = 0.

The basic idea of the adjustment approach is that the principal tries to find p
so that

d(p) =







x(p) − x∗

y(p) − y∗





 = 0,

where x(p) denotes the solution of the agent’s maximization problem and
y(p) = γ(x(p)). An appropriate method for this task is fixed-point iteration
pk+1 = pk + µd(pk), where µ 6= 0 is an iteration parameter. The advantage of
fixed-point iteration is that it can be implemented in a repeated game where
the principal does not know u. This is because the agent’s response x(p) is
sufficient information for updating p. Hence, the iteration can be interpreted
as a naive learning process similarly as, e.g., the Cournot adjustment process,
in which the players use their best responses sequentially to their opponents’
latest moves.

The sufficient condition for the convergence of fixed-point iteration is that the
agent’s preferences are characterized by a strongly concave utility function, i.e.,
there is σ > 0 such that u(x, y)−σ(‖x‖2 + ‖y‖2) is concave. More specifically,
it is shown that for all initial parameters p0 fixed-point iteration, with µ > 0,
either stalls at a point in which py = 0 or converges. Basically this result
means that the complete information equilibrium can be reached by adjusting
the contract with fixed-point iteration.

5 Chapter V: Osborne’s Cartel Maintaining Rule Revisited

The main question on incomplete competition in oligopolistic markets is how
collusion can be maintained without explicit cartel agreements. The following
properties are desirable for models explaining this tacit collusion: Cooperation
should be obtained as a result of rational behavior, the dynamic aspect of the
firms’ interaction and the continuous nature of their output variables should
be accounted for.

The models of incomplete competition in oligopolistic markets can be divided
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roughly to three approaches: conjectural variations equilibrium, subgame per-
fect trigger strategies in repeated games, and reaction function strategies both
in static and in repeated games. The advantage of latter two approaches, com-
pared to conjectural variations equilibrium, is that they can be motivated by
rational behavior. Moreover, reaction strategies are particularly attractive be-
cause they presume that the firms’ actions vary continuously as a response to
deviations. Hence, small deviations lead to small punishments. Trigger-type
strategies are based on breaking cooperation at least temporarily, if one of the
parties deviates from cooperation. Hence, the punishment is the same regard-
less of the magnitude of deviation, which is rather implausible in circumstances
where the outputs are continuous.

Osborne (1976) made a significant finding by observing that keeping the mar-
ket shares is a continuous equilibrium strategy that maintains collusion in a
Cournot oligopoly. Actually, Osborne noticed that the firms’ profit functions
have a common tangent line at the joint profit maximum, and moving along
this tangent line maintains cooperation and keeps the market shares constant.
In economics literature the strategy of keeping the market shares constant
is called Osborne’s rule or Osborne’s quota rule, see Rothschild (1981) and
Phlips (1988).

Although Osborne’s model is static, because the firms are assumed to react
without time delay, it has given much insight to what might be the cartel main-
taining mechanisms in practice, see Phlips (1988, Section 6.2) and Jacquemin
and Slade (1989). One possible example where Osborne’s rule could explain
market behavior is the OPEC oil cartel, of which Osborne was mainly inspired
when introducing his quota rule. Chapter IV formulates Osborne’s rule in an
infinitely repeated game with discounting and shows that it can maintain co-
operation in such settings as well. The motivation for generalizing Osborne’s
rule to repeated games is that such reaction strategy could explain market
behavior and incomplete competition better than trigger strategies. Further-
more, it is reasonable to assume that by keeping their market shares the firms
could indeed sustain collusion.

In an infinitely repeated Cournot oligopoly firms are making decisions on pro-
duction quantities and they face each others infinitely many times. In such
setting the firms’ one period profit functions are typically of the form

πj(q) = P (q)qj − Cj(qj),

where j refers to a firm, qj is firm j’s output quantity, q is the vector of all firms’
outputs, Cj is firm j’s cost function, and P is the inverse demand function, i.e.,
price as the function of outputs. In the repeated game the firms are supposed
to maximize their discounted cash flows; firm j maximizes

∑

k δk
j πj(q

k) with
respect to q1

j , q
2
j , . . . . Here k refers to the round and δj ∈ (0, 1) is the firm’s

discount factor.
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Osborne observed that the deviations should be bounded for his quota rule to
be credible. Therefore, Chapter V takes a different approach to earlier repeated
game models by bounding the allowed deviations that the firms can make in-
stead of restricting the discount factors. Namely, for trigger-type strategies it
is well-known that cooperation is the subgame perfect equilibrium outcome
when the firms’ discount factors are large enough, see, e.g., Friedman (1971),
Abreu (1986), and Fudenberg and Maskin (1986). Subgame perfection means
that it is always better for the firms to follow their strategies than to deviate
from them. Friedman and Samuelson (1990, 1994a,b) construct reaction func-
tions that lead to subgame perfect equilibria for large discount factors. For less
elaborate continuous reaction functions see also Friedman (1968, 1973, 1976).
However, according to Stanford (1986b) and Robson (1986) these reaction
functions cannot maintain cooperation.

Linear reaction function strategies in dynamic games have been previously
studied by Kalai and Stanford (1985), Stanford (1986a), Ehtamo and Hämäläi-
nen (1989, 1993), and Ehtamo and Hämäläinen (1995). These strategies are
close to the proportional reaction strategy presented in Chapter V but they
all lack subgame perfection. Kalai and Stanford (1985), however, prove that
linear strategies constitute an ε-perfect equilibrium when the reaction times
are short enough. Stanford (1986a) shows that linear reaction functions lead to
a subgame perfect equilibrium for a repeated duopoly with using the limit of
the means evaluation criterion instead of discounting. Ehtamo and Hämäläi-
nen (1993) consider linear reaction strategies in a continuous time natural
resource model and introduce the concept of incentive equilibrium.

5.1 Results for Proportional Strategies

The dynamic counterpart of Osborne’s rule in a repeated game is the following.
After observing that one of the firms has unilaterally deviated, i.e., exceeded
the tacitly agreed cooperative output, the other firms choose their total output
in proportion to the deviation while the deviating firm returns to cooperation.
Each punishing firm has a largest acceptable punishment output, which is the
output they choose. If some of the punishing firms unilaterally exceeds the
largest acceptable output, this firm is treated as a deviator. More formally the
strategy can be formulated for firm j as the feedback law:

qk
j (qk−1) =























fj(q
k−1
i ) if in round k − 1 firm i 6= j has unilaterally

deviated or exceeded its maximal allowed pun-
ishment,

qλ
j otherwise.

Here qλ
j is the firm’s cooperative output and fj gives the maximal allowed pun-

ishment output for firm j. The firms’ profits are assumed to depend on their
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own output and the other firms’ total output. Moreover, the total punishment
output depends affinely on the deviation, i.e., if firm j has deviated

∑

i6=j

fi(qj) = L(qj , αj) = αj(qj − qλ
j ) +

∑

i6=j

qλ
i .

In the following L(qj , αj) is referred to as the proportional scheme with slope
αj.

The above formulation of Osborne’s rule in a repeated game differs from the
usual reaction function models; the whole strategy is not assumed to be a
continuous function. The deviating firm returns to cooperation and only the
punishing firms adjust their output continuously. Hence, the strategy resem-
bles more so-called tit-for-tat strategy, see Axelrod (1984), than usual reaction
function strategies that lead to a sequence of consecutive deviations from the
cooperative output after a deviation. The proportional scheme is also close
to the measure-for-measure strategy observed in duopoly experiments by Sel-
ten et al. (1997). These experiments suggest that people tend to respond in a
continuous manner to each others’ moves when the variables are continuous.

The main result of Chapter V is that cooperative play is the subgame per-
fect equilibrium outcome of the game when (i) the profit functions satisfy
certain rather general assumptions, (ii) the functions giving the maximal al-
lowed punishments satisfy certain regularity assumptions, (iii) the slopes of
the proportional schemes are large enough, and (iv) the possibility of large de-
viations does not affect the firms’ behavior. The latter requirement means that
subgame perfection requires that the possible deviations should be bounded.
Due to this boundedness the cooperative point is said to be supportable as a
locally subgame perfect equilibrium outcome. Figure 2 illustrates the possible
intervals of deviations on which proportional strategies constitute a subgame
perfect equilibrium.

In practice deviations could be bounded due to technological limitations on
making large output adjustments. On the other hand, the upper bounds of
allowed deviations reflect how trustful the firms should be in order to sustain
cooperation. Namely, subgame perfection requires that the possibility of large
deviations does not affect the firms’ behavior, i.e., the firms should trust that
the deviations will stay below certain upper bounds. It is demonstrated with
a duopoly example that these upper bounds can be quite large. Furthermore,
it is shown that cooperative points that are below the firms’ best response
functions are supportable as locally subgame perfect equilibrium outcomes. In
Figure 2 the shaded region represents these supportable points.

The lower bounds for the slopes required for subgame perfection are the slopes
that maintain cooperation in the static setting divided with the firms’ discount
factors. In particular, when the joint profit maximizing point is maintained as
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qλ
1

qλ
2

q2 = L(q1, α1)

q1 = L(q2, α2)

firm 2’s best response

firm 1’s best
response

allowed deviations
for firm 2

for firm 1

allowed
deviations

q1

q2

Figure 2. Illustration of the Region of Supportable Points in a Repeated Duopoly.

the equilibrium, the static Osborne’s rule can be obtained in the limit of the
proportional strategies as discount factors tend to one. Hence, maintaining the
market shares has a new motivation as a way to sustain collusion.

In addition to subgame perfection it is shown that in a duopoly setting, which
the essay mainly considers, the equilibrium is weakly renegotiation proof. This
property means that none of the continuation payoffs with both firms using
proportional strategies is Pareto dominated by any other continuation payoff.
See Farrell and Maskin (1989) for the concept of weak renegotiation proofness
and Bernheim and Ray (1989), and van Damme (1989) for related concepts.
Continuation payoffs are the discounted profits that the firms obtain when
they follow their proportional strategies beginning from a given history of the
play. Hence, weak renegotiation proofness means that the firms would not
change their behavior even if they could renegotiate the original agreement
anew in any contingencies.

The subgame perfection of proportional strategies could explain conjectural
variations equilibrium as a result of rational behavior. The main idea of con-
jectural variations models originating from Bowley (1924), is that each firm
believes that the quantities chosen by its rivals depend on the firm’s own
output. These behavioral assumptions are captured in parameters called the
conjectural variations. By identifying the conjectural variations as the slopes
of the proportional schemes, a conjectural variations equilibrium, with suffi-
ciently large conjectural variations, corresponds to a locally subgame perfect
equilibrium under proportional strategies. When this occurs the conjectural
variations are said to be strategically consistent. I also present some implica-
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tions of strategic consistency to Lerner indices, which are popular measures of
incomplete competition in empirical literature, see, e.g., Bresnahan (1989).

6 Future Research Directions

Chapters II–IV of this thesis deal with reaching an equilibrium while Chapter
V considers maintaining a desired outcome as an equilibrium. Although this
thesis takes mostly a theoretical approach to these topics, the results could
prove useful in real world applications. For example, the iterative tâtonnement
process could be applied as an auctioning procedure to solve resource alloca-
tion problems in practice. Indeed, there are some experimental results on the
use of tâtonnement processes, see, e.g., Biais et al. (1999), Bronfman et al.
(1996), Anderson et al. (2004), Myagkov and Plott (1997), and Smith (1965).
One topic of further theoretical work on excess demand functions is the rela-
tionship of different monotonicity concepts and the various forms of the weak
axiom of revealed preferences.

In Chapter III the number of negotiators is limited to two. There is, however, a
possible extension for the constraint proposal method to multi-party settings,
see Heiskanen et al. (2001) and Heiskanen (2001). This generalization leads to
a mathematically different problem than the two-party case. Hence, existence,
Pareto-optimality, and convergence issues are still open for the multi-party
constraint proposal method.

In Chapter IV there is only a single agent with unknown utility function from
the principal’s view. The computational challenges on multi-agent contracting
problems, especially when there are more than to dimensions, are still to be
resolved. In particular, an economically meaningful learning process for finding
price-amount tariffs is lacking for buyer-seller games in presence of different
types of buyers.

An interesting question for further research on proportional strategies, Chap-
ter V, is whether they predict the bounds where cooperation collapses in ex-
perimental oligopoly games. Namely, we can assume that people, and other
economic agents as well, react to small deviations with small punishments
and the cooperation collapses only when the deviations are large, in which
case some kind of trigger is launched. Testing this hypothesis experimentally
would be of further interest. A theoretical topic of additional research on pro-
portional strategies is to study them under incomplete price information, for
such a model see Green and Porter (1984). Namely, in practice the firms may
not observe each others’ outputs directly but only through market prices that
may contain uncertain or stochastic elements.
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In conclusion, this thesis provides both theoretical explanations for market
behavior and practical methods for reaching equilibria and maintaining coop-
eration.

Contributions of the Author

Mitri Kitti is solely responsible for the writing of this monograph. The ideas
presented in Chapter II, as well as the mathematical formulation are Kitti’s.
The ideas presented in Chapters III-V have been developed jointly with Harri
Ehtamo, and the mathematical formulation and analysis in these chapters is
Kitti’s. The research initiative for Chapters IV and V is from Ehtamo. Cur-
rently, the author is preparing publication manuscripts on the results of this
study, see Kitti (2005), Kitti and Ehtamo (2005a,b), Ehtamo and Kitti (2005).
Manuscripts on chapters III–V are joint works with Harri Ehtamo. Manuscript
Kitti and Ehtamo (2005b) has been submitted for possible publication.
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Chapter II:

Convergence of Non-Normalized Iterative

Tâtonnement

Abstract

This chapter gives global convergence conditions for iterative tâtonnement with
the additional requirements that prices stay strictly positive and their changes are
bounded. Convergence is shown when the excess demand function has the gross
substitute property and curves appropriately around the equilibrium. Furthermore,
a new, second order, form of the weak axiom of revealed preferences is introduced; a
condition which also implies convergence. It is shown that this condition holds when
the excess demand function is strongly monotone or has a representative consumer
with strongly concave utility function.

Key words: equilibrium, iteration, tâtonnement, convergence
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1 Introduction

The latest results on discrete time price adjustment processes are mostly neg-
ative: Discrete time processes may fail to converge and they may exhibit pe-
riodic or even chaotic behavior, see Bala and Majumdar (1992), Day and
Pianigiani (1991), Goeree et al. (1998), Mukherji (1999), and Tuinstra (2000).
This paper shows that a simple iterative process avoids these phenomena and
converges globally under conditions that are only slightly stronger than those
required for the continuous time tâtonnement process.

Tâtonnement processes are usually interpreted as auctions, where a fictitious
agent, Walrasian auctioneer, sets the prices until an equilibrium is reached and
the trades are made. The main purpose of such processes is to explain how an
economy comes to its equilibrium. In addition to this, a discrete time process
could provide a practical auctioning method for solving resource allocation
problems.

The need for analyzing discrete time price adjustment processes has been long
recognized. Samuelson, who formulated the tâtonnement process in continuous
time with a set of differential equations, observes the following, see Samuelson
(1947, p. 286):

“ The types of functional equations which have been most studied are those
defined by differential equations, difference equations, and integral equa-
tions, and mixed varieties. The first of these possesses the most highly de-
veloped theory and provides valuable examples of various principles. Since
economic observations consist essentially of series defined for integral values
of time, the second category of difference equations is perhaps of greatest
interest to the theoretical economist.”

Some discrete time alternatives for the continuous time tâtonnement process
have been suggested in the economics literature. Uzawa (1960) has analyzed
an iterative process for the normalized excess demand, where the price of one
of the commodities, numéraire, is set to a constant and only the rest of the
prices are adjusted. There are, however, some negative results on normalized
processes. Saari (1985) has shown that for any normalized iterative process
there are always economies for which the process fails to converge. Further-
more, according to Goeree et al. (1998) a rather general class of normalized
discrete time processes exhibits periodic and chaotic behavior. Tuinstra (2000)
demonstrates similar results for a multiplicative process.

Several authors have noticed that in most cases the results on the continuous
time process do not hold for the discrete time process. Arrow and Hahn (1971,
Section 12.8) argue that a discrete time version of the non-normalized process
converges to any given neighborhood of the set of equilibria when the itera-
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tion parameter and initial prices are chosen appropriately. The corresponding
continuous time process, however, has significantly better convergence proper-
ties. Indeed, satisfactory convergence results for non-normalized discrete time
tâtonnement are lacking.

This paper studies fixed-point iteration with the additional requirements that
prices stay strictly positive and the difference between the old and the new
prices is bounded. Since only the value of the excess demand function is used
in updating the prices, the process has minimal informational requirements.
Moreover, the process has the property that if a commodity has positive excess
demand, its price rises, and if the excess demand is negative the price falls.
Hence, the process can be interpreted as a discrete time alternative of the non-
normalized continuous time tâtonnement process. The process is not, however,
based on approximating the continuous time process.

It is well known that the continuous time process converges globally under
the gross substitution property and the weak axiom of revealed preferences,
see Arrow et al. (1959) and Arrow and Hurwicz (1958). Here it is shown that
the iterative process converges when in addition to gross substitutability the
hypersurface obtained from the excess demand function has positive normal
curvature to all tangent directions. Furthermore, a second order form of the
weak axiom of revealed preferences is introduced. Together with some common
properties of excess demand functions this condition implies the convergence
of the iterative process, too. It will be shown that the second order weak axiom
holds when the excess demand function is Lipschitzian and strongly monotone,
or the economy has a representative consumer with a strongly concave utility
function.

The paper is organized as follows. Section 2 presents the model for an exchange
economy and the iterative adjustment process. The global convergence of the
process is analyzed in Section 3. In Section 4 the conditions of Section 3 are
applied to show convergence for economies that satisfy the gross substitute
property and curve appropriately around the equilibrium. As an example, I
demonstrate that Cobb-Douglas economies satisfy these conditions. The con-
vergence of the process is shown under the second order weak axiom of revealed
preferences in Section 5. The results are discussed in Section 6.
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2 The Model

2.1 Excess Demand Function

An exchange economy with m consumers and n commodities, m, n ≥ 2, is de-
scribed by preference relations �i, i = 1, . . . , m, defined on {x = (x1, . . . , xn) ∈
R

n : x ≥ 0}, and endowment vectors wi = (wi
1, . . . , w

i
n) ≥ 0, i = 1, . . . , m.

In this model, subscript denotes the component of a vector and superscript
denotes the consumer. Furthermore, x ≥ 0 means that xj ≥ 0 for all j.

Given a price vector p > 0, that is p ∈ R
n
+ = {p ∈ R

n : pj > 0 ∀j}, the demand
function xi(p) for consumer i is the maximizer of �i over the budget set, which
means that xi(p) �i x holds for all x ∈ {x ∈ R

n : p · x ≤ p ·wi, x ≥ 0}, where
p ·wi =

∑

j pjw
i
j . The equilibrium of the economy is a price vector p∗ for which

z(p∗) =
m

∑

i=1

[xi(p∗) − wi] = 0. (1)

The mapping z is called the excess demand function of the economy and it
will be assumed to have the following properties:

(P1) z is single valued and continuous for all p > 0.
(P2) z satisfies Walras’ law: p · z(p) = 0 for all p > 0.
(P3) z is homogeneous of degree zero: z(αp) = z(p) for all α > 0 and p > 0.
(P4) There is a scalar ν < 0 such that zj(p) > ν for all j and p > 0.
(P5) It holds that

lim
pk→p

[max
j∈Jp

zj(p
k)] = ∞,

when pk > 0, p 6= 0 and Jp = {j : pj = 0} 6= ∅.

Homogeneity is an elementary property that an excess demand function has
because the consumers’ budget sets stay the same when the budget constraints
are multiplied with positive constants. Walras’ law and continuity result from
the consumers’ maximization problems when the preferences are strictly con-
vex and locally non-satiated.

The property (P4) means that all the component functions of z are bounded
from below on R

n
+. An excess demand function has this property because the

consumers’ net supply of any commodity cannot exceed the total endowment.
According to (P5) all the commodities are desirable in the sense that when
some of them become free, the excess demand becomes infinitely large at least
for some of those commodities. This is the case, for example, when there is a
positive total amount of all the commodities and the consumers have strongly
monotone preferences. When z has the properties (P1)–(P5), the economy has
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at least a ray of equilibrium prices. See, e.g., Mas-Colell et al. (1995, Chapter
17) for more about the properties of excess demand functions.

2.2 Iterative Price Adjustment Processes

To be economically meaningful a tâtonnement process should not require other
information than prices and the corresponding excess demand, it should satisfy
the law of demand, according to which prices should increase for commodities
with excess demand and fall in the opposite case, and the process should
converge under economically relevant conditions. The simplest continuous time
process that satisfies these properties was introduced by Samuelson (1947) and
is described by the differential equation

ṗ(t) = z(p(t)), (2)

where ṗ(t) is the time derivative of p(t). This process is usually interpreted
as an auction run by a fictitious agent, a Walrasian auctioneer, who sets the
prices until an equilibrium is reached and the trades are made.

It can be shown that under the following condition (C1), the process (2) is
globally stable, i.e., it converges to an equilibrium for any positive initial prices.
The stability condition can be stated as follows:

(C1) There is p∗ > 0 that solves (1) and satisfies p∗ · z(p) > 0 for all p > 0 for
which z(p) 6= 0.

This convergence condition was first presented by Arrow and Hurwicz (1958)
and Arrow et al. (1959), who assumed the set of equilibria to be unique up
to a positive scalar multiple, i.e., a unique ray. It was further shown Arrow
and Hurwicz (1960) that (C1) implies the convergence of the continuous time
process even though the set of equilibria is not a unique ray. For a detailed
analysis of the corresponding normalized process see, e.g., Balasko (1988, Ap-
pendices to Chapters I and III).

The convergence condition (C1) can be interpreted as the weak axiom of re-
vealed preferences between the equilibrium p∗ and any disequilibrium price
vector. An excess demand function satisfies this condition in three important
cases: (i) when there is no trade at equilibrium, (ii) when the excess demand
function satisfies the weak axiom of revealed preferences for any pair of price
vectors, or (iii) when it has the gross substitute property. The latter two
properties will be discussed in detail in Sections 4 and 5.

The simplest discrete time alternative for the process (2) is the fixed-point
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iteration
pk+1 = pk + z(pk), (3)

where k is the iteration index that corresponds to the time instants at which
the prices are adjusted. The main argument for analyzing (3) instead of (2)
is that the auction, which a price adjustment process aims to characterize,
proceeds in discrete time instants. This paper studies (3) with the additional
assumptions that prices stay positive and their changes are bounded. A way
to implement such process in practice is given in the following section.

To obtain non-negative prices we could update pk
j as follows

pk+1
j = max{0, pk

j + µzj(p
k)}, (4)

where µ is a positive constant. The convergence of this process has been ana-
lyzed by Uzawa (1960) when the prices are normalized so that the price of one
commodity is set to a constant and only the prices of other commodities are
adjusted. In essence, it has been shown that under gross substitution there is a
choice of µ such that the process converges. The corresponding non-normalized
process converges to any given neighborhood of the equilibrium ray with some
choice of µ and with p0 chosen such that the prices remain strictly positive
during the process, see Arrow and Hahn (1971, Section 12.8). In addition to
the limitations on the choice of µ and p0, the drawback of the process (4) is
that due to (P5) the excess demand function is not finite if some prices become
zero.

2.3 Fixed-Point Iteration with Positive Prices

It is commonly known that the discrete time process (4) does not converge
under the same assumptions as the continuous time process (2). For example,
the convergence of the process (4) depends on the choice of parameter µ,
whereas the convergence of the process (2) is not dependent on any additional
parameter. Moreover, the normalized discrete time processes tend to exhibit
chaotic behavior. The aim of this paper is to show that a modification of fixed-
point iteration (3) converges under condition that are remarkably close to the
convergence conditions of the continuous time process. Indeed, for numerical
or computational considerations the difference of the convergence conditions
for the iterative process studied in this paper and the conditions for the process
(2) are negligible.

As mentioned earlier, prices should stay strictly positive. Other requirement we
need is that their changes are bounded, i.e., there is M > 0 such that ‖pk+1 −
pk‖ ≤ M , where ‖ · ‖ denotes the Euclidean norm. This assumption is needed
to show the convergence and it is quite reasonable. Namely, it means that
ever increasing price changes do not occur, or prices cannot change arbitrarily
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fast between two periods. Note that this condition does not mean that prices
should be bounded themselves. Moreover, the bound M can be arbitrarily
large.

A process that satisfies the two aforementioned requirements can be defined
by the following formula

pk+1 = pk + µkz(pk), (5)

where the parameter µk is updated as follows:

Step 1 a scalar γk > 0 is chosen such that pk + γkz(pk) > 0, and γk = γk−1

for k ≥ 1 if pk + γk−1z(pk) > 0,
Step 2 µk = min{γk, M/‖z(pk)‖}, where M > 0.

The first step guarantees that the new prices are positive and the second step
guarantees bounded price changes. When pk > 0 there is a positive number γk

such that pk + γkz(pk) > 0. One way to find an appropriate γk in numerical
considerations is to choose γk = (1/2)l where l is the smallest integer for
which pk + (1/2)lz(pk) > 0. It follows from the first step that when the initial
prices are positive, i.e., p0 > 0, then all the prices obtained during the process
are positive as well. The second step guarantees that µkz(pk) is bounded. As
a result the change of the price vector is bounded, namely ‖pk+1 − pk‖ =
‖µkz(pk)‖ ≤ M . Note that according to the two steps, µk is updated only if it
is necessary for obtaining positive prices or for keeping the changes bounded
by M . Hence, it may well happen that these steps are never implemented
during the actual process.

The process (5) satisfies the law of demand and prices are adjusted in pro-
portion to their excess demands in a similar way as in the process (2). There
is, however, an important difference between the prices obtained from the two
processes. Namely, it follows from Walras’ law that for the process (5) we have
‖pk+1‖ > ‖pk‖ when z(pk) 6= 0, whereas ‖p(t)‖ = ‖p(0)‖ for the process (2).

If γk went to zero, then the sequence of prices obtained from (5) could become
arbitrarily close to the path obtained from (2). If this happened, the process (5)
would be an approximation of the process (2) for large k, and we could expect
the two processes to converge under the same conditions. In the following
section we shall see that µk does not converge to zero when the process (5)
converges, which means that the process (5) does not approximate (2). The
convergence conditions of the two processes are, however, very close to each
other.

The rest of the chapter focuses on the convergence of the process (5) al-
though we could be speaking about fixed-point iteration with positive prices
and bounded price changes.
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3 Convergence Analysis

This section gives general convergence conditions for the process (5). These
conditions will be applied in Sections 4 and 5 to show convergence when z has
some more specific economic properties. The main result is that the process (5)
converges when z has the properties (P1)–(P5) and satisfies (C1), see Section
2.2, together with (C2) as stated below. In the condition (C2) vector p∗ is the
same equilibrium vector for which (C1) holds and Eε = {p ∈ R

n
+ : ‖z(p)‖ < ε}.

The convergence condition (C2) is stated as follows:

(C2) there are positive scalars ε and σ such that p∗ · z(p) ≥ σ‖z(p)‖2 for all
p ∈ Eε.

Section 5 introduces a slightly strengthened form of the weak axiom of revealed
preferences and shows that it implies (C2) analogously as the weak axiom
implies (C1).

Let us next examine the geometrical interpretation of conditions (C1) and
(C2). The condition (C1) means that the hyperplane {x ∈ R

n : p∗ · x = 0}
supports the set {x ∈ R

n : x = z(p), p > 0}, see Figure 1. The condition (C2)
means that this set is at least locally, around the origin, inside a ball which
has its center at the ray of solutions {p : p = λp∗, λ > 0}. This can be seen by
writing p∗ · z ≥ σ‖z‖2 equivalently as ‖p∗/(2σ)− z‖2 ≤ ‖p∗/(2σ)‖2. In Section
3.1 we show that for a regular economy (C2) means that the hypersurface
obtained from the excess demand function is not too flat around the origin.
Indeed, as σ goes to zero, z is allowed to become flatter, i.e., (C1) is obtained
as the limit from (C2).

The way in which the parameter µk is updated guarantees that the norm of
the scaled excess demand µkz is bounded by the constant M . As a result
the scaled excess demand is for all p > 0 inside a ball centered at the ray of
solutions. These geometrical ideas are illustrated in Figure 1, where σ = 1/2
and λ = 1.

Let us state the main convergence theorem that will be used in showing the
other convergence results of this paper.

Theorem 1. Let z have the properties (P1)–(P5) and satisfy the conditions
(C1)–(C2). Then the process (5) converges to an equilibrium for any p0 > 0.
If there is a unique ray of equilibria, then there is N ≥ 0 such that convergence
is monotonical when k ≥ N .

The monotonical convergence of the sequence {pk}k to p̃ means that ‖pk−p̃‖ →
0, when k → ∞, and if pk 6= p̃, then ‖pk+1 − p̃‖ < ‖pk − p̃‖.
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The following lemmas are used in the proof of Theorem 1. Here we let B(p∗, ε)
denote the closed ball with radius ε > 0 centered at p∗, i.e., B(p∗, ε) = {x ∈
R

n : ‖x − p∗‖ ≤ ε}.

Lemma 1. Let the continuous mapping z : B(p∗, r) 7→ R
n satisfy Walras’

law for all p ∈ B(p∗, r), and let the inequality p∗ · z(p) ≥ ‖z(p)‖2 hold for
all p ∈ B(p∗, r). If p0 ∈ B(p∗, r) and µk ≤ 1 for all k, then the iteration
pk+1 = pk + µkz(pk) converges. When there is µ̄ such that 0 < µ̄ ≤ µk, the
iteration converges to a solution of z(p) = 0.

The proof of Lemma 1 is presented in Appendix. The following lemma is
for showing that convergence is monotonical when there is a unique ray of
equilibria. For the proof of Lemma 2 see Chapter IV.

Lemma 2. Let z satisfy the same conditions as in Lemma 1 and let the
iteration pk+1 = pk + µz(pk), µ > 0, converge to a solution p̃ for which there
is α > 0 such that

‖z(p)‖2 ≤ 2αz(p) · p̃
for all p ∈ B(p∗, r). Then convergence is monotonical.

The following lemma shows essentially that the convergence condition of Lemma
1 holds for the scaled excess demand that is obtained by adjusting the para-
meter µk as described in steps 1 and 2. The proof is presented in Appendix.

Lemma 3. If z has the properties (P1), (P3)–(P5), and satisfies (C1)–(C2),

*p
 |x|=M 

 |x−p | = |p  |  **

) ( x=z  p 

0*p ⋅ x= 

2x

1x

||

| | | |

Figure 1. Illustration of the convergence conditions.
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then there is σ > 0 such that p∗ · ẑ(p) ≥ σ‖ẑ(p)‖2 for all p > 0, where

ẑ(p) =







Mz(p)/‖z(p)‖ if ‖z(p)‖ ≥ M,

z(p) otherwise.

With the lemmas 1–3 we can prove Theorem 1.

Proof of Theorem 1. Let us first note that the process (5) can be expressed
with the formula

pk+1 = pk + λkẑ(pk),

where λk = min{γk, 1}, and ẑ is as defined in Lemma 3. When z has the
properties (P1)–(P4) so does ẑ, and (P5) implies that ẑ has the property

(P5’) lim
pk→p

[max
j∈Jp

ẑj(p
k)] > 0, when p 6= 0, and Jp = {j : pj = 0} 6= ∅.

Moreover, it is known from Lemma 3 that p∗ · ẑ(p) ≥ σ‖ẑ(p)‖2 holds for all
p > 0 when z satisfies (C1)–(C2). Due to homogeneity p∗ can be replaced by
p∗/σ in (C1) and (C2); hence, without loss of generality we may suppose that
σ = 1. It follows then from Lemma 1 that the iteration converges.

Let us show that due to (P5’) the parameter λk has a positive lower bound
that is required in Lemma 1 to obtain convergence to a solution of (1). On
the contrary, suppose that {λk}k has a subsequence which converges to zero.
Since the sequence is decreasing this means that the whole sequence converges
to zero. It then follows that pk → p, where some components of p are zero,
i.e., Jp 6= ∅. This can be shown by observing that pk cannot converge to a
positive price vector if λk is updated infinitely many times, which is the case
as λk → 0. Namely, assume that {pk}k converges to a point p > 0. First, note
that there has to be at least one commodity l for which there is a negative
subsequence of {ẑl(p

k)}k. Otherwise λk would be updated only finitely many
times and it could not converge to zero. Because p > 0, for all ε ∈ (0, pl)
there is Nε ≥ 0 such that pk

l > ε for all k ≥ Nε. By the iteration formula we
have pk

l + λkẑl(p
k) > ε for all k ≥ Nε and consequently λk > (ε − pk

l )/ẑl(p
k)

when ẑl(p
k) 6= 0 and k ≥ Nε. For the iteration indices i corresponding to the

negative subsequence of {ẑl(p
k)}k we have 0 < (ε− pi

l)/ẑl(p
i) < λi → 0. Then

either pi
l → ε or ẑl(p

i) → −∞. The first is a contradiction with pk
l → pl and

the latter is a contradiction with the convergence of {pk}k and the continuity
of ẑ. Hence, we have Jp 6= ∅ and pk

j → 0 for all j ∈ Jp. Thus, by the continuity
of ẑ and (P5’) there are l ∈ Jp and N ≥ 0 such that pk

l → 0, and ẑl(p
k) > 0

for all k ≥ N . Now we get from the iteration formula that pk+1
l > pk

l for all
k ≥ N , which contradicts pk

l → 0. Hence, λk has a positive lower bound and
convergence to a solution of (1) follows from Lemma 1.
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Let us assume that there is a unique ray of solutions for (1). Then the process
(5) converges to a point p̃ = βp∗, where β > 0. From Lemma 3 we see that
there is α > 0 such that for αp̃ we have 2αp̃ · ẑ(p) ≥ ‖ẑ(p)‖2 for all p > 0.
We can also note that λk is updated only finitely many times, since as shown
above pk cannot converge to a positive price vector if λk is updated infinitely
many times. Hence, there is N such that λk = λN for all k ≥ N . Lemma 2
then implies monotonical convergence for k ≥ N . 2

Let us make some observations on the proof of Theorem 1. First, it was shown
that the parameter γk does not converge to zero, which essentially means that
the process (5) does not approximate (2) for large k.

Second, suppose the condition

p∗ · z(p) ≥ σ‖z(p)‖2 (6)

holds for all p > 0 and z has the properties (P1)–(P3) and (P5’), then Lemma
3 is not needed in showing the convergence of the process (5). Moreover, in
that case we can set µk = γk in step 2, because z is bounded due to (6),
namely ‖z(p)‖ ≤ ‖p∗‖/σ. Boundedness is, however, in contradiction with (P5),
according to which the excess demand becomes infinitely large when some of
the commodities become free. Therefore, it is reasonable to suppose that (6)
holds only locally; that is exactly what the condition (C2) says.

Third, constructing an example where the process (5) fails to converge should
be rather easy since there are such examples for the process (2), see, e.g., Scarf
(1960). More interesting question is whether there are excess demand functions
that satisfy (C1) but for which the iterative process does not converge. Condi-
tions (C1) and (C2) guarantee that the sequence of prices obtained from the
process (5) is bounded. Hence, we could expect the sequence of prices to be un-
bounded if only (C1) holds. This would be natural in view of results by Arrow
and Hahn (1971), according to which (C1) implies convergence to any given
neighborhood of the equilibrium ray but not necessarily to an equilibrium.

3.1 Curvature and Convergence

Theorem 1 shows that the process (5) converges when the set {x ∈ R
n :

x = z(p), p > 0} is included in a specific ball at least around the origin.
This property holds in Figure 1 because this set is not too flat around the
origin. This section characterizes more closely the relationship between the
convergence and the geometry of the hypersurface defined by a regular excess
demand function.

Let us first define a parameterized hypersurface that can be obtained from an
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excess demand function z. Because z is homogeneous, one of the commodities,
e.g., the last one, can be selected as a numéraire, which means that the price of
this commodity is set to a constant and the other prices are considered as rel-
ative prices with respect to the price of this commodity. Let p̄ ∈ R

n−1 denote
the price vector that is obtained by dropping the last price of p. As a result we
can define a mapping z̄ : R

n−1
+ 7→ R

n by setting z̄(p̄) = z(p̄, 1). This mapping
is a parameterized hypersurface in R

n and {x ∈ R
n : x = z̄(p̄), p̄ > 0} is the

actual hypersurface obtained from z. Note that z(p) = z̄(p̄) when p = (p̄, 1),
but due to homogeneity z as such is not an appropriate parameterized hyper-
surface.

In the rest of this section it will be assumed that z̄ is twice continuously
differentiable. Let ∇j z̄(p̄) denote the vector that is obtained by differentiating
the component functions of z̄ with respect to j’th argument. These vectors
are the row vectors of the Jacobian matrix ∇z̄(p̄) and we use them to define
the regular points of the parameterized hypersurface z̄.

Definition 1. Point p̄ is a regular point of z̄ if ∇1z̄(p̄), . . . ,∇n−1z̄(p̄) are lin-
early independent. A parameterized hypersurface z̄ is said to be regular if all
points p̄ > 0 are regular points of z̄.

Let N(p̄) be the unit normal of the tangent space of z̄ at p̄, i.e., the normal of
the set {x : x = ∇z̄(p̄)d, d ∈ R

n−1} . At a regular point p̄, the tangent space of
z̄ is n−1 dimensional subspace, a hyperplane, spanned by the vectors ∇j z̄(p̄),
j = 1, . . . , n − 1. It follows from Walras’ law that N(p̄∗) = p∗/‖p∗‖, where
p̄∗ = (p∗1/p

∗
n, . . . , p∗n−1/p

∗
n). Namely, Walras’ law implies that p·∇z(p) = −z(p),

which gives that p∗ · [∇z(p∗)d] = −p∗ · z(p∗) = 0, i.e., p∗ is perpendicular to
all tangent directions at p∗.

The normal curvature of a parameterized hypersurface can be defined as fol-
lows.

Definition 2. Let p̄ > 0 be a regular point of a parameterized hypersurface
z̄. The normal curvature of z̄ at p̄ to a tangent direction ∇z̄(p̄)d, d 6= 0, is

κ(d; p̄) =
n

∑

k=1

n−1
∑

i=1

n−1
∑

j=1

[

Nk(p̄)
∂2z̄k(p̄)

∂p̄i∂p̄j
didj

]

/‖d‖2. (7)

Normal curvature measures how the normal direction of the hypersurface
changes when moving from z̄(p̄) to a tangent direction. The change of the nor-
mal direction describes how the hypersurface curves at z̄(p̄). See, e.g., Spivak
(1979, Sections 7.C–D) on deriving (7) from the basics of differential geome-
try. 1 In this paper (7) is taken as the definition of normal curvature.

1 In fact κ(d; p̄) = II(v, v)/I(v), where I and II are the first and the second
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The following lemma shows that the positive normal curvature of z̄ to all
tangent directions at equilibrium p̄∗ is necessary and sufficient condition for
z to satisfy (C2), when the regular parameterized hypersurface z̄ is twice
continuously differentiable. The proof is given in Appendix.

Lemma 4. Let z be a twice continuously differentiable excess demand function
having the properties (P1)–(P3) and an equilibrium at p∗ = (p̄∗, 1), and let z̄
be a regular parameterized hypersurface. Then z satisfies (C2) if and only if z̄
has positive normal curvature at p̄∗ to all tangent directions.

From Theorem 1 and Lemma 4 we can prove the following convergence result
according to which (P1)–(P5) together with positive normal curvature of z̄
at p̄∗ to all tangent directions guarantees the convergence of the process (5).
Note that due to regularity and (C1) there is a unique ray of equilibria, which
implies monotonical convergence.

Theorem 2. Let z be twice continuously differentiable regular excess demand
function that has the properties (P1)–(P5) and satisfies (C1) for p∗ = (p̄∗, 1).
Furthermore, let the normal curvature of the regular parameterized hypersur-
face z̄ be positive at p̄∗ to all tangent directions. Then the process (5) con-
verges to an equilibrium for any p0 > 0 and there is N such that convergence
is monotonical when k ≥ N .

4 Convergence under the Gross Substitute Property

A differentiable excess demand function z is said to have the gross substitute
property if ∂zj(p)/∂pi > 0 for j 6= i. This property means that when the price
of some commodity increases, the demand for other commodities grows. For
such an excess demand function it can be shown that if p∗ is an equilibrium
then p∗ > 0. Moreover, the set of equilibria is a unique ray, see, e.g., Arrow
et al. (1959, Lemma 4).

It can be shown that under the gross substitute property the excess demand
function satisfies (C1), see, e.g., Arrow et al. (1959, Lemma 5). It follows that
the continuous time process (2) converges when the excess demand function
has the gross substitute property. The following proposition shows a related
result on the convergence of the process (5) when z satisfies (C2) in addition
to having the gross substitute property. The condition (C2) can be replaced
by the assumption that the parameterized hypersurface z̄ has positive normal
curvature at equilibrium to all tangent directions.

fundamental forms, respectively, and v = ∇z̄(p̄)d. The expression (7) for the normal
curvature follows from the properties of the second fundamental form.
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Proposition 1. Let z be a differentiable excess demand function with the
properties (P2)–(P4) and the gross substitute property. Let p∗ = (p̄∗, 1) be an
equilibrium.

(a) If z satisfies (C2), then the process (5) converges to an equilibrium for
any p0 > 0.

(b) If z̄ is twice continuously differentiable and has positive normal curva-
ture to all tangent directions at p̄∗, then the process (5) converges to an
equilibrium for any p0 > 0.

In both cases there is N such that convergence is monotonical when k ≥ N .

Proposition 1 is based on theorems 1 and 2 and the following lemmas. Lemma
5 shows that in the gross substitute case z has the property (P5). The proof
of Lemma 5 is presented in Appendix.

Lemma 5. Suppose that z is homogeneous, satisfies Walras’ law, and has the
gross substitute property. Then z has the property (P5).

Lemma 6 shows that in the gross substitute case z̄ is regular. The result follows
from the well known fact that the rank of the Jacobian ∇z(p) is n − 1 for all
p > 0 when z has the gross substitute property, see, e.g., Hildenbrand and
Kirman (1988, Section 6.4).

Lemma 6. When z has the gross substitute property, all points p̄ > 0 are
regular points of z̄.

The result (a) of Proposition 1 follows from Theorem 1 and Lemma 5. The
result (b) follows from Theorem 2 and Lemma 6. Furthermore, under gross
substitution there is a unique ray of solutions so that convergence is monoton-
ical in both cases.

4.1 Cobb-Douglas Economy

In this section the convergence of the process (5) is explicitly shown for an
economy in which the consumers’ preferences are characterized by Cobb-
Douglas utility functions that are of the form

ui(x) =
n

∏

j=1

x
ai,j

j ,

where ai,j > 0 and
∑

j ai,j = 1 for all i = 1, . . . , m. It follows from each
consumer’s optimization problem that the j’th component of the consumer i’s
demand function is xi

j(p) = ai,j(p · wi)/pj. Thus, the excess demand for the
j’th commodity is zj(p) = (p · qj)/pj − tj , where qj =

∑

i ai,jw
i and tj =

∑

i w
i
j.
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Let us suppose that qi
j > 0 for all i, j, for example because wj

i > 0 for all

i, j. It can be seen that ∂zj(p)/∂pi = qj
i /pj > 0 when i 6= j, i.e., the excess

demand function of the Cobb-Douglas economy z has the the gross substitute
property. Moreover, z has the properties (P1)–(P4).

For the convergence of the process (5) to an equilibrium, we need to show that
the normal curvature of z̄ is positive at p̄∗ to all tangent directions. Let us begin
with deriving the derivatives of z̄ up to second order. The first derivatives of
z̄ at p̄ are

∂z̄j(p̄)

∂p̄k
=















qn
k if j = n,

(qj
j p̄j − p · qj)/(p̄j)

2 if k = j < n,

qj
k/p̄k if k 6= j < n,

where p = (p̄, 1), and the second derivatives are

∂2z̄j(p̄)

∂p̄k∂p̄l

=



























0 if k, l 6= j or j = n,

−2(qj
j p̄j − p · qk)/(p̄j)

3 if k = l = j < n,

−qj
l /(p̄j)

2 if k = j, l 6= j < n,

−qj
k/(p̄j)

2 if l = j, k 6= j < n.

Let us assume for simplicity that the unique ray of equilibria is {λ(1, . . . , 1) :
λ > 0} ⊂ R

n
+. It can be shown that the general case, where (C1) holds

for some equilibrium p∗, can be transformed such that (C1) holds for the
transformed excess demand function with λ(1, . . . , 1) in place of p∗, see Arrow
et al. (1959, Section 3.1.1.0). Let us denote p∗ = (1, . . . , 1) = (p̄∗, 1). It follows
that tj = p∗ · qj =

∑n
k=1 qj

k.

The normal curvature of z̄ at p̄∗ to a tangent direction defined by d ∈ R
n−1,

d 6= 0, is

κ(d; p̄∗) = 2
n−1
∑

j=1

[

(dj)
2tj −

n−1
∑

k=1

(qj
kdjdk)

]

/
[

(n − 1)1/2‖d‖2
]

= 2f(d)/
[

(n − 1)1/2‖d‖2
]

.

To prove that κ is positive it is enough to show that the function

f(d) =
∑

j

[

(dj)
2tj −

∑

k

(qj
kdjdk)

]

is positive for all d ∈ R
n−1 for which ‖d‖ = ρ. It turns out that the unique

minimizer of f is d = 0 and f(d) > f(0) = 0 when d 6= 0.
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The necessary condition for the minimum of f over R
n−1 is

∂f(d)

∂dj
= 2(tj − qj

j )dj −
n−1
∑

k=1
k 6=j

(qj
kdk) = 0

for all j. Clearly, d = 0 satisfies this condition. Let us now show that f(d)
is strictly convex function by which it follows that the necessary condition is
sufficient and f(d) > f(0) = 0 for all d 6= 0.

To see that f(d) is strictly convex it is enough to show that its Hessian matrix
is positive definite. The entry in the j’th row and k’th column of the Hessian
is

bj,k =
∂2f(d)

∂dj∂dk

=







2(tj − qj
j ) if j = k,

−qj
k if j 6= k.

(8)

The positive definiteness of the Hessian matrix follows from the observation
that the Hessian is strictly positively diagonally dominant, which means that
bj,j > 0 and |bj,j| >

∑

k 6=j |bj,k| for all j = 1, . . . , n − 1. From (8) we see

that |bj,k| = qj
k for j 6= k, and bj,j = |bj,j| = 2(tj − qj

j ), so that the Hessian
has positive diagonal entries. Furthermore, it can be seen that the Hessian is,
indeed, diagonally dominant:

|bj,j| −
∑

k 6=j

|bj,k| = 2

[

(
n

∑

k=1

qj
k) − qj

j

]

−
n−1
∑

k=1
k 6=j

qj
k = 2qj

n +
n−1
∑

k=1
k 6=j

qj
k > 0,

because qk
j > 0 for all j and k. As a conclusion κ(d; p̄∗) > 0 holds for all d 6= 0.

The convergence of the process (5) for a Cobb-Douglas economy follows then
from Proposition 1.

5 Second Order Weak Axiom of Revealed Preferences

An excess demand function is said to satisfy the weak axiom of revealed pref-
erences if for any pair of price vectors p1 and p2 for which z(p1) 6= z(p2) it
holds that

p1 · z(p2) ≤ 0 =⇒ p2 · z(p1) > 0.

The interpretation of the WA is that if p1 is revealed preferred to p2, which
means that the value of z(p2) with prices p1 is negative, then p2 cannot be
revealed preferred to p1.

It can be seen that the WA implies (C1); hence, also the stability of the
continuous time process (2). As was seen in Section 3 the excess demand
function has to satisfy (C2) to obtain convergence for the process (5). Hence,
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we need to define a strengthened form of the WA, called the second order
weak axiom of revealed preferences, which implies (C2) analogously as the
WA implies (C1).

Definition 3. An excess demand function z satisfies the second order weak
axiom of revealed preferences (SWA) if for any p2 > 0 there is σ > 0 such that

p1 · z(p2) ≤ 0 =⇒ p2 · z(p1) ≥ σ‖z(p1) − z(p2)‖2

The SWA means that if p1 is revealed preferred to p2, then p2 is not revealed
preferred to p1 and the value of z(p1) with prices p2 is bounded from below
in proportion to the differences of the excess demands ‖z(p1) − z(p2)‖2. Note
that in the definition of the SWA the constant σ depends on p2.

It can be seen that the SWA implies (6) for all p > 0. Thus, we could say that
(6) means that the second order weak axiom holds between the equilibrium
vector p∗ and any other price vector. As explained in Section 3, if z satisfies
(6) for all p > 0, then it is bounded. Because excess demand functions are
not necessarily bounded it is reasonable to assume that the SWA holds only
around the equilibria. We say that z satisfies the SWA on Eε if the SWA holds
for all p1, p2 ∈ Eε.

As a corollary of Theorem 1 we obtain the following convergence result for
economies that satisfy the SWA.

Proposition 2. Let z be an excess demand function that has the properties
(P1)–(P5), and let p∗ be an equilibrium. If z satisfies the WA for all p > 0
and the SWA on Eε, then the process (5) converges to an equilibrium for any
p0 > 0.

5.1 Strongly Monotone Mappings and the SWA

It is well known that the WA holds when the excess demand function is
monotone or has a representative consumer with an appropriate preference
relation. This arises the question whether there are similar economic condi-
tions which imply the SWA. This section shows that if the excess demand
function is a strongly monotone and Lipschitz continuous, then it satisfies
the SWA. Furthermore, if the economy has a representative consumer, whose
preferences are characterized by a strongly concave utility function, then the
excess demand function satisfies the SWA. The latter result is based on the
strong monotonicity of the gradient mapping of a strongly concave function.
It follows from Proposition 2 that when z has the properties (P1)–(P5) and
satisfies one of the conditions presented in this section, then the process (5)
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converges globally to an equilibrium.

We first define some monotonicity concepts. Below, I denotes the n×n identity
matrix.

Definition 4. Let S be a convex set in R
n. Mapping F : S 7→ R

n is monotone
on S if the inequality (p1 − p2) · [F (p1) − F (p2)] < 0 holds for all p1, p2 ∈ S
whenever F (p1) 6= F (p2). If there is σ > 0 such that F + σI is monotone on
S, then F is said to be strongly monotone on S.

Because excess demand functions are homogeneous, it is reasonable to de-
fine monotonicity for them by restricting the monotonicity condition to those
price vectors that are somehow comparable to each other. An appropriate
monotonicity concept for excess demand functions is obtained by requiring
that the monotonicity condition holds for z with a pair of prices p1 and p2 if
for some vector y > 0 we have p1 − p2 ∈ Ty = {x ∈ R

n : y · x = 0}. The
condition p1 − p2 ∈ Ty means that the value of commodity bundle y is the
same for prices p1 and p2. Geometrically monotonicity means that the vector
of price changes and the vector of demand changes point to the opposite half
spaces. It can be shown that the excess demand function of a large economy,
in which there is a continuum of consumers, is monotone when the income
distribution of the economy has certain properties, see Hildenbrand (1983).

It is well known that when z is monotone in the sense that the monotonicity
condition holds when p1−p2 ∈ Ty, then z satisfies the WA. The SWA is related
to the strong monotonicity of the excess demand function analogously, which
is shown in Proposition 3, where in addition to monotonicity, z is assumed
to be Lipschitz continuous in the sense of the following definition. Note that
due to homogeneity z cannot satisfy the ordinary Lipschitz condition ‖z(p1)−
z(p2)‖ ≤ L‖p1 − p2‖.

Definition 5. An excess demand function z is Lipschitz continuous on the
cone C ⊂ R

n
+ relative to vector y > 0 if there is a constant L > 0 such that

the inequality ‖z(p1)− z(p2)‖ ≤ L‖α1p
1 −α2p

2‖ holds for all p1, p2 ∈ C when
α1, α2 > 0 satisfy αkp

k − y ∈ Ty for k = 1, 2.

The following proposition shows that Lipschitz continuity and strong monotonic-
ity imply the SWA.

Proposition 3. Let the excess demand function z be Lipschitz continuous on
Eε relative to y > 0, and strongly monotone for all p1, p2 ∈ Eε that satisfy
p1 − p2 ∈ Ty. Then z satisfies the SWA on Eε.

Proof. Let p1, p2 ∈ Eε, p1 6= p2, and p1 · z(p2) ≤ 0. Moreover, let the positive
coefficients α1 and α2 be such that αkp

k − y ∈ Ty for k = 1, 2. In that case
we have α1p

1 − α2p
2 ∈ Ty and α1p

1, α2p
2 ∈ Eε. Note that Eε is a cone, i.e.,
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αp ∈ Eε for all α > 0. By homogeneity it holds that z(αkp
k) = z(pk) for

k = 1, 2. From strong monotonicity and Walras’ law we obtain

−α1p
1 · z(p2) − α2p

2 · z(p1) = (α1p
1 − α2p

2) · [z(p1) − z(p2)]

≤ −σ‖α1p
1 − α2p

2‖2.

It follows that

α2p
2 · z(p1) − σ‖α1p

1 − α2p
2‖2 ≥ −α1p

1 · z(p2) ≥ 0.

From the Lipschitz continuity relative to y we get

σ‖z(p1) − z(p2)‖2/L2 ≤ σ‖α1p
1 − α2p

2‖2 ≤ α2p
2 · z(p1).

Hence, the SWA condition holds with the constant σ/(L2α2). 2

Due to the result of Proposition 3 it would be natural to call the SWA as the
strong axiom of revealed preferences. Strong axiom, however, usually refers
to the following indirect form of the WA: for any N ≥ 2 the inequalities
pk · z(pk+1) ≤ 0, k = 1, . . . , N − 1, imply that pN · z(p1) > 0.

There is another relationship between the SWA and strongly monotone map-
pings in addition to the one described above. Namely, if the economy has a
representative consumer whose preferences can be characterized by a locally
strongly concave utility function u (see the definition below), then the econ-
omy satisfies the SWA around the equilibrium ray. A representative consumer
means a preference relation for which

∑

i x
i(p) equals the demand function

obtained by maximizing this preference relation under the budget constraint
p · (x − ∑

i w
i) ≤ 0.

Definition 6. A differentiable function u is strongly concave on a convex set
S if ∇u is strongly monotone on S. 2

See, e.g., Rockafellar and Wets (1998, Section 12.H) for more about strongly
monotone mappings and convex functions. In the framework of exchange
economies Shannon and Zame (2002) have utilized strong concavity to show
determinacy of equilibrium. 3

The relationship of the SWA and the representative consumer with a strongly
concave utility function is stated in the following proposition. In addition to
strong concavity we need local nonsatiation, which means that in any environ-
ment of a commodity bundle there are more desirable bundles. This condition
guarantees that Walras’ law is satisfied.

2 In a non-differentiable case the definition is the same except that the gradient is
replaced with subgradient. Differentiability is assumed here for simplicity.
3 Shannon and Zame (2002) call strong concavity as quadratic concavity.
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Proposition 4. Let a locally nonsatiated preference relation be characterized
by a strictly concave utility function u that is strongly concave on B(

∑

i w
i, δ).

Let x(p) be the demand function that is obtained by maximizing u(x) subject
to the budget constraint p · (x − ∑

i w
i) ≤ 0 and let the prices be positive at

equilibrium. Then the excess demand function z(p) = x(p) − ∑

i w
i satisfies

the SWA on Eε for some ε > 0.

Proof. First, note that the demand function x(p) is continuous because u is
a strictly concave function, see, e.g., Hildenbrand and Kirman (1988, Proposi-
tion 3.1). Under local nonsatiation and concavity, the necessary and sufficient
optimality condition for maximizing u over the budget pk · (x − ∑

i w
i) ≤ 0 is

∇u(x(p)) = λkp
k for some λk > 0 when x(pk) > 0. Because prices are positive

at the equilibrium, i.e., p∗ > 0, there is ε̄ > 0 such that x(p) > 0 when p ∈ Eε̄.
Note that we have x(p1)−x(p2) = z(p1)−z(p2), and local nonsatiation implies
Walras’ law. These facts and strong concavity yield

[

∇u
(

x(p1)
)

−∇u
(

x(p2)
)]

·
[

x(p1) − x(p2)
]

=
(

λ1p
1 − λ2p

2
)

·
[

z(p1) − z(p2)
]

=

−λ1p
1 · z(p2) − λ2p

2 · z(p1) ≤ −σ‖z(p1) − z(p2)‖2.

By rearranging the terms in the bottom line and dividing with λ2 we obtain

p2 · z(p1) − (σ/λ2)‖z(p1) − z(p2)‖2 ≥ −(λ1/λ2)p
1 · z(p2) ≥ 0,

where the latter inequality holds when p1 is revealed preferred to p2. Thus,
z satisfies the SWA when p1 and p2 are chosen such that x(p1), x(p2) ∈
B(

∑

i w
i, δ) and x(p1), x(p2) > 0. It follows from this result and the continuity

of x that there is ε ≤ ε̄ such that z satisfies the SWA on p ∈ Eε. 2

6 Conclusion

An extensive part of literature has concentrated on normalized tâtonnement
processes, i.e., processes in which one of the prices is selected as a numéraire
and only the rest of them are adjusted. This paper shows that a non-normalized
process pk+1 = pk + z(pk), with additional requirements on positive prices and
bounded price changes, converges under conditions that are remarkably close
to the classical convergence conditions by Arrow et al. (1959) and Arrow and
Hurwicz (1958) for the continuous time process ṗ = z(p). Indeed, price nor-
malization seems to lead to chaotic behavior whereas non-normalized process
has better convergence properties.

For practical or numerical considerations the difference between the conver-
gence conditions of the usual continuous time process and the conditions ob-
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tained in this paper are quite negligible. This is because the continuous time
convergence condition is obtained as the limit from the discrete time conver-
gence condition as the hypersurface defined by the excess demand function
becomes flatter.

This paper has also introduced a second order form of the weak axiom of
revealed preferences that implies convergence of iterative tâtonnement. This
condition has the same economic interpretation as the ordinary weak axiom
of revealed preferences but the condition is mathematically more stringent.
Actually, the ordinary weak axiom is obtained as a limiting case from the
second order version. The second order weak axiom holds in two specific cases:
when the excess demand function is strongly monotone, or the economy has a
representative consumer with locally strongly concave utility function.

Appendix: Proofs of the Lemmas

Proof of Lemma 1. Let us first observe that

µkp
∗ · z(p) ≥ ‖µkz(p)‖2, (9)

when µk ≤ 1. This can be seen by multiplying both sides of p∗ ·z(p) ≥ ‖z(p)‖2

with µ2
k and noticing that µ2

kp
∗ · z(p) ≤ µkp

∗ · z(p) because µk ≤ 1.

From (9) and Walras’ law we have

‖pk+1 − p∗‖2 = ‖pk + µkz(pk) − p∗‖2 =

‖µkz(pk)‖2 − 2µkz(pk) · p∗ + ‖pk − p∗‖2 ≤ ‖pk − p∗‖2.

Note that pk belongs to B(p∗, r) for all k = 0, 1, . . ., when p0 ∈ B(p∗, r).
Therefore, the sequence {‖pk − p∗‖}k converges and as a result the sequence
{‖pk‖}k is bounded. From Walras’ law it follows that

‖pk‖2 = ‖p0‖2 +
k−1
∑

i=0

µ2
i ‖z(pi)‖2,

so that {‖pk‖}k is a growing and bounded sequence and hence convergent.
The iteration formula yields

pk = p0 +
k−1
∑

i=0

µiz(pi).

Hence, ‖p0 +
∑k−1

i=0 µiz(pi)‖ converges, too. From the triangular inequality we
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get

‖p0 +
k+l
∑

i=0

µiz(pi)‖ ≥
∣

∣

∣

∣

∣

∣

‖p0 +
k

∑

i=0

µiz(pi)‖ − ‖
k+l
∑

i=k+1

µiz(pi)‖
∣

∣

∣

∣

∣

∣

and we obtain

‖pk+l − pk‖ = ‖
k+l
∑

i=k+1

µiz(pi)‖ → 0, (10)

when k → ∞ and l ≥ 1. Thus, {pk}k is a Cauchy sequence and hence conver-
gent. Let p̃ denote the limit point of this Cauchy sequence.

Let us now show that when 0 < µ̄ ≤ µk the sequence {pk}k converges to a
solution of z(p) = 0. By setting l = 1 it follows from (10) that µk‖z(pk)‖ → 0.
Because it holds that µ̄‖z(pk)‖ ≤ µk‖z(pk)‖ and z is continuous, we see that
p̃ is a solution of z(p) = 0. 2

Proof of Lemma 3. Let z satisfy (C2) on Eε̄ = {p ∈ R
n
+ : ‖z(p)‖ < ε̄} with

constant σ̄. By the homogeneity of excess demand we know that ẑ obtains all
its values on the unit simplex ∆ = {p ∈ R

n
+ :

∑

j pj = 1}. Because of (P4) and
(P5) it can be seen that p∗ · z(pk) → ∞, when pk → p and Jp 6= ∅. As a result,
we have

lim
pk→p

p∗ · ẑ(pk) > 0,

when Jp 6= ∅. From this property, continuity, and (C1), it follows that there is
δ > 0 such that p∗ · ẑ(p) ≥ δ for all p ∈ ∆ \ S, where S = {p ∈ ∆ : pj > ε′

∀j = 1, . . . , n} and ε′ > 0 is chosen such that Eε̄ ∩ ∆ ⊂ S.

Clearly, the infimum of p∗ · ẑ(p) over S \Eε̄ is positive, since otherwise ẑ would
violate (C1). Let α > 0 denote this infimum. We have p∗ · ẑ(p) ≥ min{δ, α}
for all p ∈ ∆ \ Eε̄. Because ‖ẑ(p)‖ ≤ M we get p∗ · ẑ(p) ≥ σ̂‖ẑ(p)‖2 for all
p ∈ ∆ \ Eε̄ by choosing σ̂ < min{δ, α}/M2. The result follows by choosing
σ = min{σ̄, σ̂}. 2

Proof of Lemma 4. From Taylor’s formula we get

z̄k(p̄
∗ + d) = z̄k(p̄

∗) + ∇z̄k(p̄
∗) · d +

1

2
d · ∇2z̄k(p̄

∗) · d + o(‖d‖2), (11)

where d ∈ R
n−1 is such that p̄∗ + d > 0 and o(‖d‖2)/‖d‖2 → 0 as ‖d‖ → 0.

Here ∇z̄k denotes the gradient of k’th component function of z̄. Furthermore,
vectors are considered as column vectors and x′ denotes the transpose of vector
x.
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Recall that Walras’ law gives N(p̄∗) = p∗/‖p∗‖. Furthermore, we have

∇z̄(p̄) =















∇z̄1(p̄)′

...

∇z̄n(p̄)′















=
[

∇1z̄(p̄) · · · ∇n−1z̄(p̄)

]

,

and because ∇z̄(p̄)d is a tangent direction of the parameterized hypersurface
z̄ at z̄(p̄), we get p∗ · [∇z̄(p̄∗)d] = 0. From this together with (11) and z̄(p̄∗) = 0
we obtain

2p∗ · z̄(p̄∗ + d) =
∑

i,j,k

p∗k
∂z̄k(p̄

∗)

∂p̄i∂p̄j

didj + o(‖d‖2),

where in the summation i and j run from 1 to n − 1 and k runs from 1 to n.
By the definition of normal curvature this can be written as

2p∗ · z̄(p̄∗ + d) = ‖p∗‖κ(d; p̄∗)‖d‖2 + o(‖d‖2). (12)

From Taylor’s formula (11) we also get

‖z̄(p̄∗ + d)‖2 = z̄(p̄∗ + d) · z̄(p̄∗ + d) = d · [∇z̄(p̄∗)′∇z̄(p̄∗)d] + o(‖d‖2), (13)

where ∇z̄(p̄∗)′ is the transpose of the Jacobian matrix.

Because p̄∗ is a regular point of z̄, the Jacobian is full rank matrix. Therefore,
the matrix A = ∇z̄(p̄∗)′∇z̄(p̄∗) is positive definite. It is known from linear
algebra that for a symmetric matrix A it holds that

βL‖d‖2 ≤ d · (Ad) ≤ βU‖d‖2, (14)

where βL and βU are the minimal and maximal eigenvalues of A, respectively.

When the curvature is positive to all directions, we have

κ∗ = min
‖d‖=ρ

κ(d; p̄∗) > 0,

because as a continuous function κ attains its minimum over ∂B(0, ρ) = {d ∈
R

n−1 : ‖d‖ = ρ}, where ρ > 0 is chosen such that p̄∗+d > 0 for all d ∈ ∂B(0, ρ).
An appropriate ρ can be found because p∗ > 0. By choosing α > βU/(‖p∗‖κ∗)
we obtain the following inequality from (12) and (13):

2αp∗ · z̄(p̄∗ + d) ≥ ‖z̄(p̄∗ + d)‖2,

when ‖d‖ ≤ ρ. Hence, z satisfies (C2) around the equilibrium ray with the
constant σ = 1/(2α).
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To conclude the proof it needs to be shown that (C2) implies that z̄ has positive
normal curvature at p̄∗ to all tangent directions. Without loss of generality we
may assume that σ = 1 in (C2). It follows that there is ρ > 0 such that
2p∗ · z̄(p̄) ≥ ‖z̄(p̄)‖2 for all p̄ ∈ B(p̄∗, ρ). From (12), (13), and (14) we get

‖p∗‖κ(d; p̄∗)‖d‖2 + o(‖d‖2) ≥ βL‖d‖2,

for all d ∈ B(0, ρ), and consequently κ(d; p̄∗) ≥ βL/‖p∗‖ > 0, i.e., the normal
curvature of z̄ is positive to all tangent directions at p̄∗. 2

Proof of Lemma 5. Let us suppose that pk → p as k → ∞. Without
loss of generality we may suppose that the first l prices of p are zero, i.e.,
Jp = {1, . . . , l}, l < n. By homogeneity we can choose an equilibrium vector
p∗ such that pj > p∗j for all j /∈ Jp. Moreover, there is N such that when
k ≥ N , we have pk

j < p∗j for all j ∈ Jp, and pk
j > p∗ for all j /∈ Jp.

According to Walras’ law

l
∑

j=1

p∗jzj(p
∗
1, . . . , p

∗
l , p

k
l+1, . . . , p

k
n) = −

n
∑

j=l+1

pk
jzj(p

∗
1, . . . , p

∗
l , p

k
l+1, . . . , p

k
n). (15)

The gross substitute property implies that zj(p
k) < zj(p

∗
1, . . . , p

∗
l , p

k
l+1, . . . , p

k
n)

for j /∈ Jp and k ≥ N , because pk
j < p∗j , j ∈ Jp. Thus, from (15) we obtain

l
∑

j=1

p∗jzj(p
∗
1, . . . , p

∗
l , p

k
l+1, . . . , p

k
n) < −

n
∑

j=l+1

pk
jzj(p

k) =
l

∑

j=1

pk
j zj(p

k), (16)

where the last equality is from Walras’ law.

Let us make a counter assumption that z1(p
k), . . . , zl(p

k) are bounded above.
Taking limits from both sides of (16) as k → ∞ yields

l
∑

j=1

p∗jzj(p
∗
1, . . . , p

∗
l , pl+1, . . . , pn) ≤ 0, (17)

because limk→∞
∑l

j=1 pk
jzj(p

k) ≤ 0 by the boundedness. From the gross sub-
stitute property, on the other hand, it follows that when j ∈ Jp we have

zj(p
∗
1, . . . , p

∗
l , pl+1, . . . , pn) > zj(p

∗) = 0. (18)

Recall that p∗ was chosen such that pj > p∗j for all j ∈ Jp. Clearly, (17) leads
to contradiction with (18). Thus, at least one of z1(p

k), . . . , zl(p
k) becomes

infinitely large as pk
j → 0 for all j ∈ Jp. 2
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Chapter III:

Analysis of the Constraint Proposal Method

for Two-Party Negotiations

Abstract

In the constraint proposal method a mediator locates points at which the two de-
cision makers have joint tangent hyperplanes. This chapter gives conditions under
which these points are Pareto optimal and proves the mediator’s problem has a
solution. In practice, the mediator adjusts a hyperplane going through a reference
point until the decision makers’ most preferred alternatives on the hyperplane coin-
cide. Local convergence conditions for fixed-point iteration as an adjustment process
are given. I also discuss the relationship of exchange economies and the constraint
proposal method, and the possible ways of using the method.

Key words: group decisions and negotiations, negotiation support method, Pareto
optimality, existence of solution, fixed-point iteration
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1 Introduction

This chapter considers a two-party negotiation over two or more continuous
issues. For example, the negotiation could be on allocating resources, such as
money and labor force, between two units of a company. The purpose of ne-
gotiation support methods in such settings is to locate Pareto optimal points
among which the decision makers (DMs), e.g., the units of a company, can
choose an agreement. Ehtamo et al. (1999a) have recently formalized an inter-
active method for finding Pareto points by means of joint tangent hyperplanes.
The method is called the constraint proposal method. This chapter focuses on
three major questions: Does the method produce Pareto-optimal points, does
it lead to a problem that has a solution, and can the joint tangent hyperplanes
be found with fixed-point iteration.

The idea of locating Pareto solutions by finding the joint tangent was first
presented for oligopoly games by Ehtamo et al. (1996) and Verkama et al.
(1996). Teich et al. (1995), Ehtamo et al. (1999a), and Heiskanen et al. (2001)
extend the approach to negotiation settings, where an impartial mediator tries
to find joint tangent hyperplanes. The method is based on the geometrical
observation that under some concavity assumptions there is a jointly tangential
hyperplane for the DMs’ indifference contours at a Pareto optimal point.

In practice, the mediator adjusts a hyperplane going through a predetermined
reference point until the DMs’ most preferred alternatives on the hyperplane
coincide. I show that reference points chosen from the line connecting the DMs’
global optima produce Pareto optimal points, and the mediator’s problem has
a solution.

In the theory of oligopolistic markets the joint tangent can be interpreted as
a mechanism according to which the members of a cartel can punish each
others from deviating the joint optimum, see Osborne (1976). This idea is
further generalized to a dynamic resource management problem by Ehtamo
and Hämäläinen (1993) and Ehtamo and Hämäläinen (1995), where the parties
safeguard themselves with linear strategies against any attempts by the other
party to break an agreement. See also Chapter V where Osborne’s approach
is extended to repeated oligopoly games.

From the negotiation support point of view, the main benefit of the constraint
proposal method is that the DMs’ utility functions need not be elicited. Sec-
ond, the method is informationally decentralized in the sense that the DMs
do not have to disclose any private information to each other. Other methods
with similar properties include, e.g., the heuristic presented by Teich et al.
(1996) and the Joint Gains method by Ehtamo et al. (1999b) and Ehtamo
et al. (2001). These methods are based on seeking joint improvements from a
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tentative agreements; an approach, which was first suggested by Raiffa (1982).

The constraint proposal method is implemented in a negotiation support sys-
tem RAMONA, which has been applied, e.g., to agricultural negotiations be-
tween Finnish Government and the Finnish Farmer’s Union, see Teich et al.
(1995). In RAMONA the hyperplane, on which the DMs are asked their most
preferred points, is interpreted as a budget constraint. This interpretation re-
lates the method to exchange economies. I shall briefly discuss the similarities
and differences of exchange economies and the constraint proposal method.

The chapter is organized as follows. In Section 2 I describe the mediator’s
problem as a system of equations to be solved and make some observations on
the properties of the system. Section 3 studies the choice of the reference point
and Pareto optimality of the solution of the mediator’s problem. Conditions
for the existence of solution of the mediator’s problem are analyzed in Section
4. Adjustment of hyperplane constraint with fixed-point iteration is studied
in Section 5. Section 6 discusses the relationship of the constraint proposal
method and exchange economies. In Section 7 I make some concluding remarks
and discuss the possible ways of using the method.

2 Constraint Proposal Method

There are two DMs, a and b, who negotiate over n ≥ 2 continuous issues.
Let the real numbers x1, . . . , xn denote the values of these issues and let x =
(x1, . . . , xn). The DMs’ preferences are characterized with the utility functions
ua, ub : R

n 7→ R. These are needed in the mathematical analysis, but the
negotiation method itself does not require these functions to be explicitly
known. The utility functions’ sublevel sets at y are denoted by Si(y) = {x ∈
R

n : ui(x) ≥ ui(y)}, i = a, b. In this chapter we need the following assumptions
on the DMs’ value functions:

(A1) ua and ub have unique global optima at x̄a and x̄b, respectively, and
x̄a 6= x̄b,

(A2) ua and ub are continuous,
(A3) ua and ub are quasiconcave,
(A4) ua and ub are locally nonsatiated on Sa(x̄

b) ∩ Sb(x̄
a) with the exception

that local nonsatiation is not required at DMs’ own optima,
(A5) ua and ub are strictly quasiconcave.

The global optima are used for constructing appropriate reference points for
the constraint proposal method. We may assume that these optimal points
are different since otherwise there would be no need to negotiate at all. The
continuity of utility functions is crucial when studying the existence of solution
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for the mediator’s problem of finding joint tangent hyperplanes.

Quasiconcavity of function ui means that the set Si(y) is convex for all y ∈ R
n.

The local nonsatiation of ui at y can be formulated mathematically as follows:
for all ρ > 0 there is x′ ∈ B(y, ρ) = {x ∈ R

n : ‖x − y‖ ≤ ρ} such that
ui(x

′) > ui(y). This condition is needed within the region Sa(x̄
b) ∩ Sb(x̄

a)
where the Pareto-optimal points are located. Here ‖ · ‖ is the Euclidean norm
and B(y, ρ) is the ball centered at y having radius ρ. The strict quasiconcavity
of ui means that for each x1, x2 ∈ R

n, x1 6= x2, we have ui (λx1 + (1 − λ)x2) >
min{ui(x

1), ui(x
2)} for all λ ∈ (0, 1). Strict quasiconcavity implies both qua-

siconcavity and local nonsatiation. It also assures the uniqueness of the global
maximum, see, e.g., Mas-Colell et al. (1995, Section 3.D).

The purpose of the constraint proposal method is to locate Pareto optimal
solutions that are points where it is not possible to move to any other point
without worsening one of the DMs value. Formally, Pareto optimality of point
x∗ means that there is no x for which

ui(x) ≥ ui(x
∗)

for i = a, b and the inequality is strict for at least one i.

In the constraint proposal method an impartial mediator tries to locate a
hyperplane going through a given reference point such that the DMs’ most
preferred alternatives on that hyperplane coincide. When this happens the
hyperplane is tangential to the DMs’ indifference curves at the point in ques-
tion; see Figure 1, where the hyperplane is simply a line. If all the DMs’ more
preferred points are on the opposite sides of the hyperplane as in Figure 1,
then the point is Pareto optimal.

o 

Contours of 

Contours of u
b
 

u
a
 

Figure 1. A Pareto optimal point and a joint tangent hyperplane.
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Let us now formulate the mediator’s problem mathematically. First, the me-
diator chooses a reference point r and defines a hyperplane

H(p, r) = {x ∈ R
n : p · (x − r) = 0}

going through the reference point. The normal of the hyperplane is denoted by
p and p · x denotes the usual inner product of vectors p and x. The mediator
asks the DMs to give their most preferred points on the hyperplane. These
points solve

max
x∈H(p,r)

ui(x), i = a, b. (1)

Knowing the optimal answers the mediator then updates the hyperplane. The
procedure is repeated until the most preferred points coincide within some
predetermined tolerance. I will turn back to the adjustment of the hyperplane
in Section 5.

Let Xi(p, r), i = a, b, denote the solutions to (1). The mediator’s problem can
be formulated as follows: for fixed r find p such that

Xa(p, r) ∩ Xb(p, r) 6= ∅. (2)

When (1) has a unique solution, i.e., Xa and Xb consist of single points, then
the mediator’s problem can be formulated equivalently as the following system
of equations to be solved for p:

F (p) = xa(p, r) − xb(p, r) = 0, (3)

where xi(p, r), i = a, b, denotes the unique solution of (1). Recall that under
strict quasiconcavity the solution of (1) is unique.

By solving (3) with different reference points, different Pareto solutions can
be obtained. This can be done in practice, e.g., by sliding the reference point
as suggested by Ehtamo et al. (1999a). Under some concavity assumptions for
ua and ub the resulting Pareto optimal points vary lower semicontinuously as
the reference point is changed, see Heiskanen et al. (2001, Theorem 5).

This study assumes that when solving for their most preferred points the
DMs do not have other constraints than the hyperplane given by the media-
tor. There could be some other constraints as well, e.g., in a resource allocation
problem the amounts of the resources could be limited. Nevertheless, adding
the same compact and convex constraint set to the DMs’ optimization prob-
lems would not affect the mathematical properties of the problem. To ease
the notation I neglect all these additional constraints. See Heiskanen (2001)
for the use of the constraint proposal method in negotiations with additional
constraints.

Let us now make observations on the properties of F . These properties are
needed in the following sections. First, because any parallel normal vectors
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define the same hyperplane, F is degree zero homogeneous, i.e.,

(P1) F (p) = F (αp) for all α 6= 0 and p.

In particular, if F (p∗) = 0 then F (αp∗) = 0 for all α 6= 0, which means that
the mediator’s problem has at least a ray of solutions if it has one solution.
This holds for both formulations (2) and (3) of the mediator’s problem.

Second, since xi(p, r) ∈ H(p, r) for i = a, b, it follows that F satisfies a condi-
tion which is known as Walras’ law in microeconomics literature:

(P2) p · F (p) = 0 for all p 6= 0.

We shall see that Walras’ law plays an important role in the analysis of the
constraint proposal method. It is also a property that does not hold for the
multi-party generalization of the method considered by Heiskanen et al. (2001)
and Heiskanen (2001). Hence, most of the results of this chapter cannot be
generalized to a multi-party setting with the same techniques as used in this
chapter. The interpretation of Walras’ law is further discussed in Section 6.

2.1 Example: Quadratic Utility Functions

Let us assume that the utility functions are of the form

ui(x) = −
n

∑

j=1

αi
j(xj − x̄i

j)
2,

where αi
j > 0 for j = 1, . . . , n and i = a, b. By solving the optimality conditions

of (1) we get that the DM i’s responses for given hyperplane constraint are

xi
j(p, r) = [p · (r − x̄i)]pj/[αi

j

∑

k

(p2
k/α

i
k)] + x̄i

j , (4)

for j = 1, . . . , n and i = a, b.

To illustrate the geometrical ideas behind the constraint proposal method let
us now consider the two dimensional case and set αa

1 = αb
2 = 15, αa

2 = αb
1 = 1,

x̄a = (0, 0), x̄b = (2, 2), and let us choose the reference point r = (2, 0).
The contours of the utility functions are illustrated in the left part of Figure
2; dotted lines represent the contours of ua and dashed lines represent the
contours of ub. The resulting optimal solution functions xa(p, r) and xb(p, r)
are illustrated in the figure by solid lines. The optimal solution functions, given
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by (4), are

xa(p, r) = (2p2
1, 30p1p2)/(p2

1 + 15p2
2),

xb(p, r) = (30(p2
1 − p1p2) + 2p2

2, 30p2
1) /(15p2

1 + p2
2).

The resulting F , defined by (3), is drawn in the right part of Figure 2.

There are three solution rays to (3):

R1 = {(p1, p2) : (p1, p2) = λ(1, 1), λ 6= 0},
R2 = {(p1, p2) : (p1, p2) = λ

(

(2 −
√

3)/(2 +
√

3), 1
)

, λ 6= 0},
R3 = {(p1, p2) : (p1, p2) = λ

(

1, (2 −
√

3)/(2 +
√

3)
)

, λ 6= 0}.

These rays are illustrated with dashed lines in the right part of Figure 2. A
hyperplane going through the reference point (2, 0) and the normal in R1, R2,
or R3 gives the joint tangential points (1, 15)/8, (0.00, 0.14), and (1.86, 2.00),
respectively. These points are the intersection points of the solid lines in the
left part of Figure 2, the points marked with circles. All these points are Pareto
optimal. In the right part of Figure 2 we also see that Walras’ law, (P2), means
that F (p) is perpendicular to its argument p.
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Figure 2. Illustration of xa(p, r), xb(p, r), and F (p).

3 Pareto Optimality and the Choice of Reference Points

In this section I first show that under the assumptions (A1)–(A4) all the
solutions of the mediator’s problem (2) are Pareto optimal when the reference
point is chosen from the line connecting the DMs’ optima. I also show that
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all the Pareto points can be obtained by choosing the reference points in this
manner.

Let us begin with showing in Lemma 1 that Pareto optimality can be charac-
terized with jointly supporting hyperplanes when the value functions satisfy
(A1)–(A4). See, e.g., Yu (1985, Section 3.4) for other Pareto optimality con-
ditions. The following notation is adopted

H+(p, r) = {x ∈ R
n : p · (x − r) ≥ 0},

H−(p, r) = {x ∈ R
n : p · (x − r) ≤ 0}.

The proof of Lemma 1 is presented in the appendix.

Lemma 1. Let the assumptions (A1)–(A4) hold. Then x∗ is Pareto optimal
if and only if there is H(p, x∗) such that Sa(x

∗) ⊂ H+(p, x∗) and Sb(x
∗) ⊂

H−(p, x∗).

The part (a) of the following theorem tells that the solutions of (2), if there
are such, are Pareto optimal when the reference point is chosen from the line
connecting the DMs’ global optima. The part (b) of the theorem has been
proven in Ehtamo et al. (1999a) in the case of differentiable quasiconcave
utility functions. The meaning of this results is that all the Pareto points can
be obtained by taking reference points from the line connecting the decision
makers’ global optima. Related results are also given by Heiskanen (2001) for
strictly pseudoconcave utility functions. 1

Theorem 1. Let the assumptions (A1)–(A4) hold.

(a) Let r = λx̄a + (1− λ)x̄b, λ ∈ [0, 1]. If x∗ ∈ Xa(p, r) ∩Xb(p, r), then x∗ is
Pareto optimal.

(b) If x∗ is Pareto optimal, then there are r = λx̄a + (1 − λ)x̄b, λ ∈ [0, 1],
and p such that x∗ ∈ Xa(p, r) ∩ Xb(p, r).

Proof. Let us begin with the part (a). If λ = 0 or λ = 1 the result is obvious.
Thus we may suppose that λ ∈ (0, 1). Let us first observe that under the
quasiconcavity and the local nonsatiation of ui, x∗ ∈ Xi(p, r) implies that
H(p, r) is tangential to Si(x

∗). Namely, S ′
i(x

∗) = {x ∈ R
n : ui(x) > ui(x

∗)}
has to belong either to H+(p, r) or to H−(p, r). If this was not the case, the
local nonsatiation would imply that there are x1 and x2 that belong to opposite
half spaces and yield larger utility than x∗. Quasiconcavity then assures that
points along the line λx1 + (1 − λ)x2 are better than x∗, too. Since this line
goes through H(p, r), the point x∗ cannot be optimal on H(p, r). As shown in

1 Strictly pseudoconcave functions are strictly quasiconcave. Hence, Theorem 1
gives a more general result for two-party negotiations than the results of Heiskanen
(2001).
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the proof of Lemma 1 under (A4) we have Si(x
∗) = clS ′

i(x
∗) when x∗ is not

the global optimum of ui. Here cl denotes the closure of a set. Hence Si(x
∗),

i = a, b, belong to the same halfspaces as S ′
i(x

∗), i = a, b.

It follows from the choice of the reference point that the halfspaces containing
Sa(x

∗) and Sb(x
∗) are opposite. For example, let us suppose that Sa(x

∗) ⊂
H+(p, r), i.e., p·(x−r) ≥ 0 for all x ∈ Sa(x

∗). In particular we have p·(x̄a−r) ≥
0. Observing that

x̄a − r = (1 − λ)(x̄a − x̄b) = (1 − λ)(r − x̄b)/λ,

it follows that p · (x̄b − r) ≤ 0. Then Sa(x
∗) and Sb(x

∗) belong to the opposite
halfspaces and Pareto optimality follows from Lemma 1.

Let us now show the part (b). By Lemma 1, Pareto optimality means that
there is a hyperplane H(p, x∗) such that Sa(x

∗) ⊂ H+(p, x∗), and Sb(x
∗) ⊂

H−(p, x∗). An appropriate r is now obtained by taking the intersection of the
line λx̄a + (1 − λ)x̄b, λ ∈ [0, 1], and H(p, x∗) as the reference point. Namely,
for such r we have H(p, r) = H(p, x∗) and thus x∗ would be optimal choice
for both DMs under the constraint x ∈ H(p, r). Hence, we need to show that
there is such an intersection point. Let us denote

f(λ) = p · [λx̄a + (1 − λ)x̄b − x∗].

Because Si(x
∗), i = a, b, are convex sets and x̄i ∈ Si(x

∗), i = a, b, and because
Sa(x

∗) ⊂ H+(p, x∗) and Sb(x
∗) ⊂ H−(p, x∗), we know that there are δ1, δ2 ∈

[0, 1], δ2 ≤ δ1, such that f(λ) ≥ 0 for all λ ∈ [δ1, 1], and f(λ) ≤ 0 for all
λ ∈ [0, δ2]. Clearly f is a continuous function, so that there is λ∗ ∈ [0, 1] such
that f(λ∗) = 0. The result follows by taking r = λ∗x̄a + (1 − λ∗)x̄b. 2

Under assumption (A5), Theorem 1 implies that a Pareto point other than
one of the global optima x̄a, x̄b should have a reference point other than one of
these optima. The result does not, however, guarantee that there is always a
solution for the mediator’s problem even though the reference point is chosen
from the line connecting the DMs’ optima.

Since any point on a given hyperplane can be taken as a new reference point
defining the same hyperplane, the solutions of (2) can be Pareto optimal even
though the reference point is not chosen from the line connecting the DMs’
optima. It is also easy to find reference points such that at least some of the
solutions of (2) fail to be Pareto optimal.
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4 Existence of Solution

In this section I show that under the assumptions (A1), (A2), and (A5), the
mediator’s problem, i.e., equation (3) since (A5) holds, has a solution for any
reference point. In Figure 2 we have an example where the system has three
solutions, which are all Pareto optimal; the points market by circles in the left
part of Figure 2.

Let us begin with a general existence result for F (p) = 0. The proof of the
following lemma is given in Appendix and it is based on a fixed-point theorem
according to which a continuous mapping from a unit sphere to itself has
either a fixed-point or it maps some point to its antipode when n is odd, see
Dugundji (1966, Corollary 3.3 in Chapter XIV).

Lemma 2. Let the continuous mapping F : R
n \ {0} 7→ R

n, n ≥ 2, have the
properties (P1) and (P2). Then F (p) = 0 has at least a ray of solutions.

Recall that a ray of solution mean that if F (p∗) = 0 then F (αp∗) = 0 for all
α 6= 0. Due to homogeneity of xa(p, r) and xb(p, r) with respect to their first
argument there is at least a ray of solutions for (3) if there is one solution.
Similar existence results as that given by Lemma 2 can be found in economics
literature, where F is the excess demand function of an exchange economy. In
that framework the solution is called competitive equilibrium. There is, how-
ever, a significant difference between the results on economic equilibria and
the results of this chapter. Namely, for exchange economies vector p repre-
sents prices and they are assumed to be positive. Moreover, ‖F (p)‖ becomes
infinitely large when some components of p converge to zero. Because of these
specific properties, the existence results for exchange economies are based on
different deduction than the result of this section, see, e.g., Mas-Colell et al.
(1995, Chapter 3). The relationship of exchange economies and the constraint
proposal method is discussed in detail in Section 6.

To be able to use Lemma 2 for the mediator’s problem we need to show that
xa and xb are continuous with respect to p 6= 0. Lemma 3 gives this result
when ua and ub are strictly quasiconcave functions with the property that
the sets that are preferred to r are compact. These properties hold, e.g., for
strictly concave functions that attain their optima. The main characteristics
of the problem that guarantee the continuity of F are the continuity of the
utility functions, the single valuedness of the optimal solutions due to strict
quasiconcavity, and the continuity of the hyperplane constraint with respect
to its normal. The proof of Lemma 3 is given in the appendix.

Lemma 3. For i = a, b let ui be a strictly quasiconcave continuous function
and let Si(r) be a compact set. Then xi(p, r) is continuous with respect to its
first argument for all p 6= 0.
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When xa and xb are continuous with respect to p, then F is continuous, too.
The following theorem tells essentially that for the constraint proposal method
with two negotiators F (p) = 0 has a solution for any reference point. The
theorem follows immediately from Lemma 2 and Lemma 3.

Theorem 2. Let the assumptions (A2) and (A5) hold, and let Sa(r) and Sb(r)
be compact sets. Then there is p∗ 6= 0 such that xa(p∗, r) = xb(p∗, r).

Finally, let us notice that the existence result does not generalize as such to
the multi-DM setting because of the structural differences of these problems
with the two DM case. For example, in multi-DM setting equation (3) is not
defined for linearly dependent parameter vectors, and therefore the resulting
F is not continuous.

5 Adjustment of the Hyperplane Constraint

The basic idea of the constraint proposal method is that the mediator pro-
poses the negotiators a hyperplane and asks their optimal points on the plane.
If the points are significantly different the mediator updates the normal of
the hyperplane with using the DMs’ current and possibly other previous op-
timal choices. Ehtamo et al. (1999a) have suggested fixed-point iteration for
updating the normal of the hyperplane constraint. The main advantage of
this iteration is that the mediator can adjust the hyperplane on the basis of
the DMs’ optimal answers for given normal. For example, the derivatives of
the mapping F need not be approximated. Although fixed-point iteration has
been successfully applied by several authors dealing with the constraint pro-
posal method, e.g., Ehtamo et al. (1999a), an explicit convergence proof is
lacking. This section aims to remedy this matter.

In fixed-point iteration the normal pk is updated in proportion to the value of
F as follows:

pk+1 = pk + µF (pk), (5)

where µ > 0 is a fixed parameter. If the difference of two successive normals
is small, then F is close to zero and an approximate solution has been found.
Due to the properties (P1) and (P2) fixed-point iteration can also be applied
to a normalized system, where one of the components of p is set to a non-
zero constant and only the rest of the components are updated. I do not,
however, consider the normalized procedure in this chapter because it is not
clear whether it makes the process more stable or not. The results for the
non-normalized process do not hold for the normalized one because Walras’
law does not hold if one of the equations is dropped.

The following result on the convergence of fixed-point iteration is shown in
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Chapter IV.

Lemma 4. Let the continuous mapping F : B(p∗, ρ) 7→ R
n, ρ > 0, satisfy

(P2) and the inequality
p∗ · F (p) ≥ ‖F (p)‖2 (6)

for all p ∈ B(p∗, ρ). If p0 ∈ B(p∗, ρ) then (5) converges to a solution of (3). If
(5) converges to a solution p̃ for which there is α > 0 such that

‖F (p)‖2 ≤ 2αF (p) · p̃

for all p ∈ B(p∗, ρ), then the convergence is monotonical.

The above lemma assumes continuity, (P2), and condition (6). As shown earlier
F is continuous when the utility functions are continuous and strictly quasicon-
cave. Hence, an additional property to obtain convergence is the inequality (6),
which means geometrically that the hypersurface {x ∈ R

n : x = F (p), p 6= 0}
curves enough at the origin. More specifically, (6) is equivalent to

‖p∗/2 − F (p)‖ ≤ ‖p∗/2‖.

Thus, F (p) is inside a ball centered at the ray defined by p∗. This is illustrated
in Figure 3, where F (p) is indeed inside a ball, represented with the dashed
line, for p chosen from the vicinity of p∗/2.
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Figure 3. Illustration of convergence condition (6).

Unfortunately, the concavity assumptions do not imply (6) even though (6)
seems to be a generic feature. Chapter II shows that when the parameterized
hypersurface obtained from F has non-zero normal curvature to all its tangent
directions, then (6) is is satisfied. This curvature condition can be formulated
for the second derivatives of F as is done in Section 5.1. The above Lemma on
the convergence of (5) gives a local convergence result. Nevertheless, numerical
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tests suggest that the iteration converges globally, i.e., for all initial normals.
A possible explanation is that R

n can be divided into regions corresponding
to different solution rays and in these regions (6) holds.

5.1 Convergence Test

In this section I give a more detailed characterization for condition (6) and
derive a simple algebraic test for the convergence of (5). The test is based on
examining whether the normal curvature of the hypersurface obtained from F
is positive to all tangent directions.

Let us first define some basic concepts of differential geometry. Let us as-
sume that the last component of p is equal to one, i.e., pn = 1. Let us denote
p = (p̄, 1), where p̄ ∈ R

n−1, and set F̄ (p̄) = F (p̄, 1). Mapping F̄ : R
n−1 7→ R

n is
the parameterized hypersurface obtained from F . To define the normal curva-
ture of F̄ at p̄ we need to assume that it is twice continuously differentiable and
regular. Regularity means that the vectors ∇1F̄ (p̄), . . . ,∇n−1F̄ (p̄) are linearly
independent. Here ∇jF̄ (p̄) denotes the vector that is obtained by differentiat-
ing the component functions of F̄ with respect to j’th argument. Furthermore,
we let N(p̄) denote the normal of the hypersurface at p̄. It follows from Walras’
law that N(p̄∗) = p∗/‖p∗‖, when F (p∗) = 0 and p∗ = (p̄∗, 1), see, e.g., Section
3.1 of Chapter II.

The normal curvature of F̄ at p̄ to a tangent direction F̄ (p̄)d, d 6= 0, is a func-
tion κ(d; p̄) = [(Ld) ·d]/‖d‖2 that depends on N(p̄) and the second derivatives
of F̄ . Here L denotes the matrix L = AB−1, where A = [N(p̄) · ∇ijF̄ (p̄)]i,j,
B = [∇iF̄ (p̄) · ∇jF̄ (p̄)]i,j, and ∇i,jF̄ denotes the vector obtained by differen-
tiating the component functions of F̄ with pi and pj . The notation [ai,j]i,j for
a matrix means that the component of the matrix in i’th row of j’th column
is ai,j. For the derivation of the formula for the normal curvature see, e.g.,
Spivak (1979, Section 7.C–D). It is shown in Lemma 4 of Chapter II that (6)
holds around p∗ = (p̄∗, 1) if κ(d; p̄∗) > 0 for d 6= 0. Hence, we can formulate
the following theorem.

Theorem 3. Let F satisfy (P1) and (P2), and let F̄ be regular and twice
continuously differentiable. Then F satisfies (6) around p∗ = (p̄∗, 1), F (p∗) =
0, if and only if F̄ has positive normal curvature to all tangent directions at
p̄∗.

We can use the result of Theorem 3 to derive an algebraic test for the con-
vergence. Namely, if we find the minimal value of the normal curvature over
the unit sphere we can see from its sign whether (6) holds. Indeed, the critical
points of κ over the unit sphere correspond to so called principal curvatures.
These critical points are exactly the eigenvectors of L and the eigenvalues are
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the principal curvatures. Hence, we can test (6) numerically by computing the
eigenvalues of L. If these eigenvalues are positive we know that (6) holds for
p∗, and if they are negative then (6) holds for −p∗. Notice, however, that this
test requires that p∗ is known.

For example, in the two-dimensional quadratic case of Section 2.1 we have
the following positive principal curvatures corresponding to the three ray of
solutions: κ1 = 16

√
2/45, κ2 = κ3 =

√
14/45. Hence, condition (6) holds when

p is chosen close enough to any of the the three solution rays illustrated in
Figure 2.

6 Constraint Proposal Method and Exchange Economies

In this section I discuss the relationship of the constraint proposal method and
exchange economies. In an exchange economy there is a number of consumers
with initial allocations of some resources. Given prices for the resources each
consumer is willing to buy a bundle that maximizes his utility under his bud-
get, which is the monetary value of his initial bundle. The maximizing bundle
is called the consumer’s demand function. A vector of prices is an equilibrium
if the total demand equals the total supply of the resources which is simply the
sum of the initial allocations. Under some economic conditions the equilibrium
prices can be found by a simple auctioning process, where an auctioneer ad-
justs the prices until an equilibrium is reached but no trades are made during
the adjustment process. See, e.g., Mas-Colell et al. (1995, Part IV) for more
about the basic properties of exchange economies.

The problem of finding a Pareto solution for the negotiation can be interpreted
as a resource allocation problem, where the decision makers are sharing their
total dispute w = x̄a − x̄b. The initial allocation of the total dispute is defined
by the reference point r = λx̄a+(1−λ)x̄b, λ ∈ [0, 1]; the proportion of the total
dispute for the first DM is λ and (1−λ) for the second DM. Moreover, decision
maker i gets at the least value ui(r) as the outcome from the negotiation.

The constraint proposal method can be interpreted as an auctioning process,
where the mediator acts as an auctioneer who tries to find a Pareto optimal
allocation of the total dispute w. The relationship to resource allocation can
be explicitly seen by making the following transform of variables: ya = x− x̄a,
yb = x̄b − x. The DMs’ optimization problems are then of the form

max
yi

Ui(y
i) s.t. p · (yi − λiw) = 0, i = a, b, (7)

where Ua(y
a) = ua(y

a + x̄a), Ub(y
b) = ub(x̄

b − yb), and λa + λb = 1, λi ∈ [0, 1]
for i = a, b.
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Let p denote a price vector of n-resources, which correspond to the issues,
and let λiw denote the initial endowment that the DM i has. Then we can
interpret the linear constraint in (7) as a budget identity. Moreover, the point
yi(p), i = a, b, that solves (7) is the DM’s demand function for the resources,
and

∑

i(y
i(p)− λiw) is the excess demand of the resources. Similarly as F (p),

the excess demand satisfies Walras’ law, which means now that the monetary
value of the excess demand is zero. Homogeneity of the excess demand function
means that only the relative prices of the resources matter.

As the above discussion demonstrates the mediator’s problem in the constraint
proposal method is remarkably close to the resource allocation problems of
exchange economies. Indeed, the part (a) of Theorem 1 corresponds to the first
fundamental welfare theorem in microeconomics and the part (b) corresponds
to the second fundamental welfare theorem. According to the first fundamental
theorem a price equilibrium is Pareto optimal and according to the latter there
is a price equilibrium corresponding to a Pareto solution, see Mas-Colell et al.
(1995).

There are some important differences between the constraint proposal method
and exchange economies. In an exchange economy the demand functions are
not defined if some of the prices are negative. Moreover, the demand for a
resource usually grows infinitely large as its prices go to zero, i.e., the utility
functions do not have global optima and (A1) does not hold. In the constraint
proposal method p can have negative components as well and there is no
reason to assume the DMs’ responses to satisfy any boundary conditions for
zero components of p.

Due to the aforementioned differences, the results for exchange economies are
not applicable for the constraint proposal method. Pareto optimality results
of Section 3 are also based on different assumptions than the welfare theorems
for exchange economies.

7 Discussion

7.1 General Remarks

In this chapter I have analyzed the choice of the reference point in the con-
straint proposal method. I have shown that the method produces Pareto op-
timal points when the mediator chooses the reference point from the line con-
necting the DMs’ optima and all the Pareto points can be produced in this
manner. Moreover, I have proven that the mediator’s problem has always a so-
lution under reasonable assumptions on the DMs’ utility functions. In essence,
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these results mean that the constraint proposal method is not just a heuris-
tic approach for finding Pareto solutions, but it indeed gives Pareto optimal
points.

To find a joint tangent hyperplane the mediator has to solve a system of
equations. A suitable method for that purpose is fixed-point iteration, which
requires only the DMs’ last optima to update the hyperplane. This study
gives local convergence conditions for fixed-point iteration and a numerical
convergence test.

In addition to the aforementioned results, I have discussed the relationship of
the constraint proposal method and exchange economies. I have shown that
the mediator’s problem in the constraint proposal method can be transformed
to a resource allocation problem where the total resource to be shared is the
difference of the DMs’ optima. I have also pointed out some differences between
the economic resource allocation model and the mediator’s problem. Due to
these differences the results for the constraint proposal method are based on
different assumptions and techniques as those for exchange economies.

7.2 Ways of Using the Constraint Proposal Method

The constraint proposal method can be applied in a variety of ways. One
way, as suggested by Ehtamo et al. (1999a), is to use the method for finding
an approximation for the whole Pareto frontier. The negotiation then becomes
distributive along the frontier. The method can also be used in a kind of “post-
settlement settlement” fashion; this method was suggested by Raiffa (1982).
First the parties negotiate unaided and reach a tentative solution point, not
necessarily Pareto optimal, after which they search for a jointly beneficial
Pareto optimal solution using one of the available methods, e.g., the constraint
proposal method.

Yet, there is at least a third possible way of using the constraint proposal
method. Namely, that of first bargaining on a suitable reference point for the
method and then using it. I describe such a process briefly. In particular, the
bargaining could be restricted to the reference points on the line connecting
the DMs’ optima. This problem is one dimensional since it is over the choice
of parameter λ that defines a point r(λ) = λx̄a + (1 − λ)x̄b. Note, however,
that the resulting utility points vi(λ) = ui(r(λ)), i = 1, 2, do not form a line in
u1, u2-plane; rather they form a rough approximation of the Pareto frontier.

If the negotiation over the “approximate” Pareto frontier results in r(λ̄), then
the DM i is guaranteed to have at least the value vi(λ̄) after applying the
constraint proposal method with this reference point. Indeed, the constraint
proposal method applied with reference point r(λ) gives a point that both
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DMs prefer to it.

The negotiation over the reference points can be considered as a bargaining
problem. For example, one may use the axiomatic approach to bargaining
initiated by Nash (1950). Nash bargaining solution is obtained by maximizing
the product

[va(λ) − da] · [vb(λ) − db], (8)

where di is the threat point, which gives the value for the DM i if the bargaining
fails. For example, we may take the threat point according to the worst case
scenario, where the di is chosen to be the value at the other party’s optimum,
i.e., da = va(0), db = vb(1). Even though it is not necessarily possible to give
both DMs their worst case outcomes, these values can be taken as the threat
points.

In practice, the bargaining solution λ̄ ∈ [0, 1] can be found approximately by
first eliciting the utility functions va(λ) and vb(λ) within some accuracy. See
von Winterfeldt and Edwards (1986, Section 7.3.) for methods of estimating
utility functions, such as va and vb, that depend on a single parameter. There
is a plethora of efficient methods to perform this task. After having found the
approximations of utility functions the bargaining solution can be computed
numerically by maximizing (8).

Let us sum up the process of finding a single Pareto optimal point for the
negotiation problem:

1. The reference point r(λ̄) is chosen according to Nash bargaining solution,
e.g., by a sequential bargaining process.

2. The mediator finds one solution for (2) with the reference point r(λ̄) and
suggest this point to the DMs.

Theorem 1 guarantees that the above procedure gives a Pareto optimal point
if the mediator finds a solution for (2).

As an example, let us consider the same utility functions as in the two di-
mensional example of Section 2.1. We now obtain va(λ) = −64(1 − λ)2,
vb(λ) = −64λ2, da = va(0) = 0, and db = vb(1) = 0. The optimum of (8)
is obtained at λ̄ = 1/2 and r(λ̄) = (1, 1), i.e., the reference point is chosen
exactly from the middle of the DMs’ optima. With this reference point the me-
diator’s problem has three solutions giving the Pareto optimal points (1, 15)/8,
(1.74, 1.99), and (0.22, 1.16), the latter two being approximate values.
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Appendix: Proofs of the Lemmas

Proof of Lemma 1:

Let us denote S ′
i(x

∗) = {x ∈ R
n : ui(x

∗) > ui(x)}. To obtain the result we
need the property that S ′

i(x
∗) = intSi(x

∗) or equivalently clS ′
i(x

∗) = Si(x
∗)

when x∗ is not the global optimum of ui. Here int stands for the interior and cl
for the closure of a set. Note that Si(x

∗) is a closed set and S ′
i(x

∗) is an open
set by the continuity of ui. Moreover, S ′

i(x
∗) is assumed to be a nonempty

set, which will be the case because x∗ belongs to a region {x ∈ R
n : ua(x) ≥

ua(x̄
b), ub(x) ≥ ub(x̄

b), x 6= x̄i} where ui is locally nonsatiated. Let us denote
Ii(x

∗) = {x ∈ R
n
+ : ui(x) = ui(x

∗)} and observe that Si(x
∗) = S ′

i(x
∗) ∪ Ii(x

∗).
By the continuity we have clS ′

i(x
∗) ⊂ Si(x

∗) and it only needs to be shown
that Si(x

∗) ⊂ clS ′
i(x

∗), i.e., Ii(x
∗) ⊂ clS ′

i(x
∗). Now take x ∈ Ii(x

∗) and note
that x 6= x̄i as x∗ 6= x̄i. By (A4) we find for all k = 1, 2, . . . points xk such
that ui(x

k) > ui(x) and ‖xk − x‖ ≤ 1/k. By this construction xk → x which
means that x ∈ clS ′

i(x
∗).

Let us first assume that x∗ = x̄a, which is a Pareto optimal point, and show
that there is a joint tangent hyperplane at this point. Note that the deduction
is similar for x∗ = x̄b. We have Sa(x

∗) = {x∗} and by the convexity of Sb(x
∗)

and x∗ ∈ ∂Sb(x
∗) = Ib(x

∗) there is a hyperplane H(p, x∗) such that Sb(x
∗) ⊂

H−(p, x∗). Here ∂ denotes the boundary of a set. Because x∗ ∈ H(p, x∗) we
see that Sa(x

∗) ⊂ H(p, x∗) ⊂ H+(p, x∗).

Let us now show that there is a joint tangent hyperplane for a Pareto optimal
point x∗ 6= x̄i, i = a, b. Recall that such point belongs to {x ∈ R

n : ua(x) ≥
ua(x̄

b), ub(x) ≥ ub(x̄
a)}. By the definition of Pareto optimality, we have

S ′
a(x

∗) ∩ Sb(x
∗) = ∅ and Sa(x

∗) ∩ S ′
b(x

∗) = ∅, (9)

since the other DM should be worse of at any other point that the other prefers
to x∗.

Because S ′
a(x

∗)∩Sb(x
∗) = ∅, there is a hyperplane H(p, x∗) such that S ′

a(x
∗) ⊂

H+(p, x∗) and Sb(x
∗) ⊂ H−(p, x∗), see, e.g., Bazaraa et al. (1993, Theorem

2.4.8). Since the halfspaces are closed sets and Si(x
∗) = clS ′

i(x
∗) we have

Sa(x
∗) ⊂ H+(p, x∗) and hence there is joint tangent hyperplane at x∗

Let us now assume that there is a hyperplane H(p, x∗) such that Sa(x
∗) ⊂

H+(p, x∗) and Sb(x
∗) ⊂ H−(p, x∗). The purpose is to show that x∗ is Pareto

optimal. We may assume that x 6= x̄, i = a, b, since otherwise the result would
be obvious. Let us assume that x∗ was not Pareto optimal and at least one
of the DMs prefer x to x∗. We may suppose that x ∈ S ′

a(x
∗) ∩ Sb(x

∗), i.e,
ua(x) > ua(x

∗) and ub(x) ≥ ub(x
∗). Moreover, S ′

a(x
∗) = intSa(x

∗) as shown
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above and therefore S ′
a(x

∗) ⊂ intH+(p, x∗) = {x ∈ R
n : p · (x − x∗) > 0}. On

the other hand x ∈ H−(p, x∗) by the separation of Sa(x
∗) and Sb(x

∗). Since
intH+(p, x∗)∩H−(p, x∗) = ∅ we have obtained contradiction. Thus x is Pareto
optimal. 2

Proof of Lemma 2: Let us define a mapping G : ∂B(0, 1) 7→ ∂B(0, 1) by
setting

G(p) =
p + F (p)

(1 + ‖F (p)‖2)1/2
.

It follows from (P2) that ‖G(p)‖ = 1 so that the image of ∂B(0, 1) under G
belongs to ∂B(0, 1) itself.

For any p ∈ ∂B(0, 1) the mapping is continuous since F is continuous. Thus,
either G has a fixed point or it sends some point to its antipode when n
is odd, which follows from a corollary of Poincaré-Brouwer theorem, see,
e.g., Dugundji (1966, Corollary 3.3 in Chapter XIV). Let us assume that
n ≥ 3 is odd. Hence, there is p∗ ∈ ∂B(0, 1) such that p∗ = G(p∗) or p∗ =
−G(p∗). By taking inner product of both sides of these equations with re-

spect to (1 + ‖F (p∗)‖2)
1/2

F (p∗) and applying (P2) we get ‖F (p∗)‖2 = 0 or
−‖F (p∗)‖2 = 0, which implies that F (p∗) = 0.

Let us now assume that n ≥ 2 is even. Then we can define a continuous
mapping F̃ : R

n+1 → R
n+1 with properties (P1) and (P2) as follows: F̃ (p, q) =

(F (p), 0), where p ∈ R
n and q ∈ R. As F is continuous, satisfies (P1) and (P2),

F̃ has all these properties, too. Since n + 1 is odd, F̃ (p, q) = 0 has a solution
by the above deduction, i.e., there is (p∗, q∗) ∈ R

n+1, with ‖p∗‖2 + (q∗)2 = 1,
such that F̃ (p∗, q∗) = 0. Consequently, we have F (p∗) = 0. 2

Proof of Lemma 3:

Let us first notice that

Xi(p, r) = arg max
x∈φi(p,r)

ui(x), i = a, b,

where φi(p, r) = Si(r)∩H(p, r), i.e., the constraint x ∈ H(p, r) can be replaced
with x ∈ φi(p, r). This is because the maximization problem has a unique
solution that belongs to Si(r), which is the set of points that are at least as
good as r. Note also that φi is non-empty and because Si is compact valued
so is φi.

Let us first show that φi is lower hemicontinuous with respect to p 6= 0, i.e.,
pk → p̄, xk ∈ φi(p

k, r), imply that there is a subsequence {xkj}j such that
xkj → x̄ ∈ φi(p̄, r). This is because due to compactness of Si(r) the sequence
{xk}k has a convergent subsequence and because p · (x − r) is a continuous
function, the limit of the subsequence belongs to φi(p̄, r). Second, φi is upper
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hemicontinuous with respect to p 6= 0, i.e., pk → p̄, x̄ ∈ φi(p̄, r), imply that
there is a sequence {xk}k with xk ∈ φi(p

k, r) for all k such that xk → x̄. Indeed,
such a sequence can be constructed by setting xk = arg minx∈φi(pk,r) ‖x − x̄‖.

Because φi is both upper and lower hemicontinuous, it is continuous. By the
Berge’s theorem Xi is a closed and upper hemicontinuous set-valued mapping
for p 6= 0, because it is the set of points that maximize a continuous func-
tion ui over a compact-valued continuous mapping φi, see, e.g., Border (1985,
Theorem 12.1). Strict quasiconcavity implies that Xi is a singleton, and as
a single valued upper hemicontinuous mapping Xi is continuous, see Border
(1985, Proposition 11.9 (d)). Hence, xi(p, r) is continuous with respect to its
first argument when p 6= 0. 2
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Chapter IV:

Adjustment of an Affine Contract with

Fixed-Point Iteration

Abstract

This chapter studies a principal-agent game where the principal commits to an

affine contract. The principal has incomplete information but he can adjust the

contract according to the myopically behaving agent’s reactions when the game is

played repeatedly. The adjustment process can be considered as a learning model. I

derive convergence conditions for fixed-point iteration as an adjustment scheme and

study a related continuous time process. The analysis is based on parameterizing

the problem such that we obtain a degree zero homogeneous system of equations,

where the nonlinear mapping satisfies Walras’ law.

Key words: principal-agent problems, contracts, fixed-point iteration,

convergence, adjustment, learning
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1 Introduction

In an adverse selection game there is a principal who’s task is to design an
optimal contract for a number of agents without knowing their preferences
completely. An example of an adverse selection game is a nonlinear pricing
model where the principal is a seller who designs a price-amount tariff under
uncertainty on byers’ preferences. For an overview on contract design with
asymmetric information see, e.g., Macho-Stadler and Pérez-Castrillo (2001)
and Salanié (1997).

There are two basic ways to tackle incomplete information in economic mod-
els. The first way is to characterize the equilibrium by assuming probability
distributions over the incompletely known variables. The second way is to
consider dynamic processes that lead to the complete information equilibrium
even with limited information. The latter approach has long traditions in the
stability analysis of economic equilibria, e.g., in the fields of oligopolistic mar-
kets and exchange economies. In the recent literature of game theory, reaching
the equilibrium has been considered from the learning point of view, see Fu-
denberg and Levine (1999). A simple example of a learning scheme is the
Cournot process in which the players use their best responses sequentially to
their opponents’ latest moves.

Adverse selection problems have been mostly studied in a static Bayesian
framework and the question of reaching the complete information equilibrium
has not raised much attention. See, however, Ehtamo et al. (2002) on adjusting
a linear wage contract in a simple principal-agent setting by using a three-
phase procedure. This study takes the stability approach to the contracting
problem and shows that the complete information equilibrium, the principal’s
optimum, can be reached with a simple adjustment process beginning from
any disequilibrium contract.

This chapter considers a two-player game, where the principal commits to a
contract that is an affine mapping of the agent’s actions. The principal has in-
complete information but the game with the same players is played repeatedly
so that the principal can adjust the contract according to the observations on
the agent’s behavior. Mathematically the problem is on finding linear equation
constraints such that the agent’s optimum under these constraints equals a
predetermined point, the principal’s optimum. I show how this complete infor-
mation equilibrium can be reached by adjusting the contract with fixed-point
iteration when supposing that the agent acts myopically, i.e., the agent does
not consider any other future periods than the next one. One reason for this
behavior could be that there is a large number similar agent’s and each round
a randomly chosen agent plays the game against the principal.
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In the literature on repeated adverse selection models the focus has been on
commitment and renegotiation issues and the analysis is usually Bayesian, i.e.,
the agent’s utility function is assumed to be known except for one parameter
over which there is a probability distribution. In a repeated game with this
kind of parameterization there is no need for adjustment because the principal
knows the agent’s utility function completely after the first round. This study,
however, is not considering long the term contracting problem, but the ques-
tion is rather on the stability of the complete information equilibrium — one
of the main questions for any economic equilibrium. The major differences to
the usual Bayesian approach on adverse selection are that no type parameter-
ization is assumed and the contracting problem may involve more than just
two variables.

The main result on the convergence of the adjustment process is based on
a new convergence theorem for fixed-point iteration. Namely, I show that
fixed-point iteration converges when the system of equations is characterized
by Walras’ law and an additional condition that is remarkably close to the
classical stability condition of Walrasian tâtonnement process given in Arrow
et al. (1959). I will briefly discuss how the adjustment of an affine contract
presented here is related to the stability of Walrasian equilibrium.

The contents of the chapter are as follows. Section 2 presents the principal-
agent game with complete information and discuss the existence of solution
for the principal’s contract design problem. In Section 3 the game is parame-
terized such that the contract design problem can be formulated as a system
of equations to be solved. Furthermore, I study the properties of the para-
meterized problem. The results of sections 2 and 3 are based on concavity
properties of the agent’s utility function.

Section 4 shows how fixed-point iteration can be used in adjusting an affine
contract when the two-player game defined in sections 2 and 3 is played re-
peatedly and the principal is supposed to have incomplete information. In
Section 5 I discuss the corresponding continuous time adjustment process and
show the similarities of the contract design problem and price adjustment in
exchange economies. In sections 4 and 5 it is assumed that the principal’s op-
timum is such that the agent always participates the game when the contract
passes through that point. In Section 6 I briefly characterize processes that
work for finding the principal’s optimum in the case where the agent does not
always participate the game.
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2 Contract Design Game and the Complete Information Solution

In this section I define the principal-agent game and derive conditions for the
existence of an affine solution for a contract design game with complete infor-
mation. Although principal-agent terminology is adopted the words principal
and agent do not refer to any specific agency problem.

There are two utility maximizing players, a principal and an agent with utility
functions v, u : R

n × R
m 7→ R, respectively. The principal’s decision variable

is y ∈ R
m and the agent’s is x ∈ R

n, ‖ · ‖ denotes the Euclidean norm in R
m,

R
n, as well as in their product space.

In a game of incomplete information the principal does not know the agent’s
utility function. Usually it is assumed that the agent’s utility function is deter-
mined by a type parameter θ ∈ {θ1, . . . , θN} that is unknown for the principal,
who, however, has a probability distribution over the possible values of the
parameter. The agent knows his own type. There are two interpretations for
using type parameters. One is that there is a population of agents whose types
are drawn from a probability distribution. Alternatively we could assume that
there is only a single agent whose type is random from the principal’s view.
This study does not use type parameterization but the approach is close to
the latter one because it will be assumes that the principal meets the same or
similar agent when the game is played repeatedly.

In the contract design game the principal offers the agent a menu of contracts
γi(x), i = 1, . . . , N , and commits to make his decision according to the contract
that the agent chooses. The agent may also reject all the contracts in which
case he obtains his reservation utility ū. After the agent chooses to sign a
contract γi he makes a decision x′ and the principal implements the contract,
i.e., chooses the action y′ = γi(x

′), and the game ends. The principal’s problem
is to design the menu of contracts that maximizes his expected utility such
that the agent obtains at least his reservation utility and chooses the contract
intended for his type.

There is a wide variety of applications for contract design games. For example,
the principal could be a seller who offers a buyer a price tariff that specifies the
prices y of the goods for any amounts x to be bought. Nonlinear pricing with
a multi-product monopoly has been studied, e.g., in Roberts (1979), Mirman
and Sibley (1980), Spence (1980).

In this study the principal observes perfectly the agent’s move. Furthermore,
in this and the next section the principal is assumed to have complete informa-
tion, that is to say he knows the agent’s utility function or type. I show under
mild technical assumptions that the principal gets his optimum with a sin-
gle affine contract. Affine contracts are often considered as simple to monitor
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and implement. Compared to discontinuous contracts, e.g., various threshold
contracts, affine contracts have the advantage that the risk of losses becomes
low for small deviations from the principal’s optimum. In the aforementioned
buyer-seller game an affine price tariff could be implemented by specifying the
unit prices plus possible fixed prices for each good to be sold.

The contract design problem is defined as follows. Find a contract γ : R
n 7→

R
m that maximizes v(xγ, γ(xγ)) over all feasible contract mappings γ, where

xγ solves

max
x

u(x, γ(x)) (1)

and

u(xγ , γ(xγ)) ≥ ū. (2)

Equation (2) is called the agent’s participation constraint. I next show that
there is an affine contract of the form

γ(x) = y0 + Lx, (3)

where L is a linear mapping (m×n matrix) from R
n into R

m, and y0 is a fixed
vector in R

m, that solves the contract design problem.

Suppose that x∗, y∗ solves

max
(x,y)∈D

v(x, y),

where D is the set of points that satisfy the agent’s participation constraint
u(x, y) ≥ ū. Because the pair x∗, y∗ is the best outcome the principal can hope
to get in the game, we can restrict our attention to those affine contracts that
pass through x∗, y∗, i.e., y∗ = γ(x∗). Thus for any contract of the form (3) we
should have y0 = y∗ − Lx∗. Hence, we can without loss of generality assume
that the principal gives his contracts in the form

γ(x) = y∗ + L(x − x∗). (4)

Note that since the contract goes through x∗, y∗, which belongs to D, the
agent will get at least his reservation utility when accepting the contract.
Thus he will always participate the game. It is assumed that there are no
constraints other than the participation constraint for the principal’s and the
agent’s decisions.

The affine contract design problem can now be defined as follows. Find a
contract of the form (4), i.e., find an m × n matrix L such that x∗, y∗ solves

max
x,y

u(x, y) (5)

s.t. y = y∗ + L(x − x∗). (6)
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The contract γ that solves the above problem is called a contract at x∗, y∗ and
the pair (x∗, γ) is a Nash equilibrium for the game.

Let us suppose that the agent’s objective function u is concave and let us
denote the set of all subgradients of u at x∗, y∗, i.e., the subdifferential of u
at x∗, y∗, by ∂u(x∗, y∗). A subgradient at x∗, y∗ means a pair (ξx, ξy) ∈ R

n+m

that satisfies

u(x∗, y∗) − u(x, y) ≥ ξT
x (x − x∗) + ξT

y (y − y∗) ∀(x, y) ∈ R
n+m,

where the superscript T denotes the transpose of a vector or a matrix. The
subdifferential of a concave function u is a non-empty set and if the function
is differentiable at x∗, y∗ then the subdifferential is a singleton and equals the
gradient of u at x∗, y∗.

For given L necessary and sufficient optimality condition for (5), (6) at x∗, y∗

is that

∂u(x∗, y∗) ∩ {(ξx, ξy) ∈ R
n+m | ξx + LT ξy = 0} 6= ∅. (7)

Geometrical interpretation of condition (7) is that there is a subgradient of u
at x∗, y∗ that is normal to the affine set defined by (6).

Now, suppose that (ξx, ξy) ∈ ∂u(x∗, y∗) is such that ξy 6= 0. Then there is a
contract of the form (6) at x∗, y∗. One possible L satisfying (7) is given by

L = −ξyξ
T
x /‖ξy‖2. (8)

Usually there are also other affine contracts than the one defined by (8).
Suppose, e.g., that the dimension of x equals the dimension of y, i.e., m = n,
and suppose (ξx, ξy) ∈ ∂u(x∗, y∗) is such that all components of ξy are nonzero.
Then we can choose L to be a diagonal matrix. In a multi-product buyer-seller
situation the corresponding tariff can be specified by giving a unit price for
each good to be sold.

I collect the essential of the above discussion to the following.

Theorem 1 If u is concave and has a subgradient ξx, ξy at x∗, y∗ such that
ξy 6= 0, then there is a solution to the affine contract design problem. Further-
more, a mapping of the form (4) is a contract at x∗, y∗ if and only if the x, y
points satisfying (6) belong to the hyperplane

{(x, y) ∈ R
n+m | ξT

x (x − x∗) + ξT
y (y − y∗) = 0} (9)

for some (ξx, ξy) ∈ ∂u(x∗, y∗).

The latter part of the theorem is equivalent to the necessary and sufficient
optimality condition (7). Also note that if u is differentiable the requirement
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ξy 6= 0 becomes ∇yu(x∗, y∗) 6= 0, which means that the agent’s utility is
sensitive for the changes of y around x∗, y∗.

The rather general formulation of the contract design problem in this way is
inspired by some early papers in the field of control theory and differential
games. Affine contract design problems, or affine incentive design problems
as they are called in these papers, and their relation to incentive problems in
economics is discussed in Ho et al. (1982). For mathematical analysis of affine
incentive design problems in dynamic game settings of complete information
see Başar (1984) and Ehtamo and Hämäläinen (1993).

3 Parameterization of the Problem

Theorem 1 suggests us to parameterize the principal’s problem. Let us denote
the subgradients of u appearing in (9) by parameter vectors px and py, and
denote the column vector composed of px and py by p. The contract design
problem can then be formulated as follows: Find p ∈ R

n+m, py 6= 0, such that
x∗, y∗ solves

max
x,y

u(x, y)

s.t. y = y∗ + L(p)(x − x∗),
(10)

where the matrix L(p) is chosen such that the contract defines an affine subset
on the hyperplane

pT
x (x − x∗) + pT

y (y − y∗) = 0. (11)

An appropriate parameterization for L is given by

L(p) = −pyp
T
x /‖py‖2, (12)

for py 6= 0. Because the contract is chosen to satisfy (11), L becomes, regardless
of its explicit form, degree zero homogeneous, i.e., L(αp) = L(p) for α 6= 0.
This is because αp defines the same hyperplane as p.

Let S(p) ⊂ R
n+m denote the set of solutions to (10) for given p. Then the

contract design problem above is to find p so that

(x∗, y∗) ∈ S(p). (13)

Theorem 1 gives conditions for the existence of a solution for (13), and due
to the degree zero homogeneity of L, there is at least a ray of solutions if the
conditions of Theorem 1 hold. One can always obtain a system with a unique
solution from a homogeneous system that has a unique ray of solutions, e.g.,
by setting one of the components of p to a nonzero constant and dropping
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the corresponding equation from the system. However, here we do not have
any need to do so. Furthermore, we do not necessarily have a unique ray of
solutions.

Note that if (x(p), y(p)) ∈ S(p), then x(p) is the agent’s reaction for the
contract parameterized by p. Furthermore, as a solution set of a convex opti-
mization problem, S(p) if non-empty, is a convex set. The other properties of S
are summarized in the following theorem, which readily follows from Theorem
6 and Corollary 1 presented in Appendix A.

Theorem 2 If u is concave, L is continuous at p and S(p) 6= ∅, then the
set-valued mapping S is closed at p. If u is strictly concave and D is compact,
then S is single-valued and continuous at p, py 6= 0.

Notice that the compactness of a level set, e.g., the set D, of a concave function
is equivalent with the compactness of all the level sets, see, e.g., Corollary 8.7.1
in Rockafellar (1970). Obviously strongly concave functions satisfy conditions
of Theorem 2. Strong concavity of u means that −∂u is a strongly monotone
mapping, i.e., there is a constant σ > 0 such that

(ξx1
− ξx0

)T (x0 − x1) + (ξy1
− ξy0

)T (y0 − y1) ≥ σ(‖x1 − x0‖2 + ‖y1 − y0‖2)

for all (x1, y1),(x0, y0) and (ξxi
, ξyi

) ∈ ∂u(xi, yi), i = 0, 1. If u is twice con-
tinuously differentiable, then strong concavity is equivalent with the negative
semidefiniteness of ∇2u(x, y) + σI for every x, y pair, where ∇2u denotes the
Hessian of u with respect to x and y and I is an identity matrix. We shall see
in the following section that strong concavity is essential for the convergence
of fixed-point adjustment.

A two-dimensional example of points x(p), y(p) with L(p) defined by (12) is
presented in Figure 1. In the figure the agent’s optimum with a given p and
the corresponding contract line (dashed line) is a point where the contract line
is tangent to one of the contours (dotted lines) of u. The solid line represents
the locus of all x(p), y(p) points. In the figure K denotes the (negative) cone
of solutions of (13). The opposite directions are solutions as well.

4 Adjustment with Fixed-Point Iteration

In a game of incomplete information the explicit form of u is unknown for
the principal. As explained earlier, the principal-agent game with incomplete
information is usually formulated as a Bayesian game by supposing that the
principal knows the form of u except for one parameter and has a probability
distribution over the possible values of that parameter.

82



K

x

y

p

x*  

y*  

Figure 1. Two-dimensional illustration: the agent’s contours and reactions.

Instead of Bayesian approach the game of incomplete information is played
repeatedly and the principal can adjust the affine contract according to ob-
servations on the agent’s actions, i.e., the principal is committed to a contract
only for one period at a time and faces the same agent in each round. Note
that when u is unknown to the principal he cannot necessarily have prior
knowledge about the agent’s participation constraint; hence he cannot use D
when solving for (x∗, y∗) as in Section 2. We shall therefore assume here that
the principal knows that his global optimum (x∗, y∗), solving max v(x, y) over
R

n+m, belongs to D. Thus the agent will always participate the game, recall
the discussion in Section 2 below (4). For example, this can happen when it
is common knowledge that the agent does not have a participation constraint
at all. In Section 6 I study the general case where the principal does not know
D but can find the best point in D through adjustments.

The basic idea of the adjustment approach is that the principal tries to find a
solution p so that (13) holds. An appropriate method for this task is fixed-point
iteration

pk+1 = pk + µd(pk), (14)

where d denotes the mapping

d(p) =







x(p) − x∗

y(p) − y∗





 ,
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(x(p), y(p)) ∈ S(p), and µ 6= 0 is a fixed parameter. The advantage of fixed-
point iteration is that it can be implemented in a repeated game where the
principal does not know u. This is because the agent’s response x(p) is suf-
ficient information for updating p by (14). Note that y(p) is defined through
the affine contract given x(p).

An interpretation for the above adjustment scheme is that it describes a learn-
ing model, where the iteration specifies the principal’s learning rule. Further-
more, the agent is assumed to be myopic in the sense that he does not consider
outcomes of other games than the current one. An explanation for myopic
behavior is that the agent’s discount factor is small compared to the speed
at which the learning rule converges. Another argument for myopic learning
comes from matching models where there are a great number of players and in
each period the players match their strategies with different opponents. Since
the same players are unlikely to meet anew they tend to play myopically. In
the principal-agent game there could be a large number of similar agents and
in each round one agent is chosen randomly to play the game.

4.1 Convergence Analysis

The convergence analysis of this section is based on properties of the para-
meterized problem (13). I show essentially that the strong concavity of the
agent’s utility function is required for the convergence of (14).

Because L is degree zero homogeneous, S and d are homogeneous, too. More-
over, d(p) is perpendicular to p, i.e., d(p)T p = 0, because the contract satisfies
(11). This property is known as Walras’ law and it generally holds for ex-
cess demand functions of exchange economies. In the following lemmas I give
general convergence conditions and characterize the convergence properties of
fixed-point iteration in a problem of finding a solution for a system of equa-
tions, where the nonlinear mapping satisfies Walras’ law together with an
additional condition. The proofs of the lemmas can be found in Appendix B.

Lemma 1 Let the continuous mapping F : B(p∗, r) 7→ R
N , B(p∗, r) = {p ∈

R
N | ‖p − p∗‖ < r}, r > 0, satisfy the following conditions:

1. F (p)T p = 0 ∀p ∈ B(p∗, r),
2. ‖F (p)‖2 ≤ 2F (p)Tp∗ ∀p ∈ B(p∗, r).

Then fixed-point iteration pk+1 = pk + µF (pk), µ 6= 0, converges to a solution
of F (p) = 0 when p0 ∈ B(p∗, r). Moreover p∗ is a solution.

Lemma 2 Let conditions 1 and 2 of Lemma 1 hold for F and let fixed-point
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iteration pk+1 = pk + µF (pk) converge to a solution p̄ that satisfies

‖F (p)‖2 ≤ 2αF (p)T p̄ ∀p ∈ B(p∗, r) (15)

for some α > 0. Then the iteration converges monotonically, i.e., ‖pk+1− p̄‖ <
‖pk − p̄‖.

The latter lemma tells that the convergence is monotonic if the sequence
of parameters p converges to a solution, e.g., to p∗ that satisfies the second
condition in Lemma 1. This can be guaranteed in some specific cases as will
be seen in the example of Section 4.2.

Using Lemmas 1 and 2 we obtain the following convergence theorem for the
adjustment of an affine contract using fixed-point iteration.

Theorem 3 If u is strongly concave and assumptions of Theorem 1 hold, then
fixed-point iteration (14), for p0

y 6= 0, either converges to a solution of (13) or
pk

y = 0 for some k. If the iteration converges to a subgradient direction of u at
x∗, y∗, then it converges monotonically.

Proof. As a strongly concave function u satisfies the assumptions of Theorem
2 and it follows that d is continuous when py 6= 0. Clearly condition 1 of Lemma
1 holds for all p with py 6= 0. Therefore we need to show only that condition
2 holds. Without loss of generality we can choose µ = 1. Let (x, y) ∈ S(p),
(ξx∗, ξy∗) ∈ ∂u(x∗, y∗) as in Theorem 1 and (ξx, ξy) ∈ ∂u(x, y). From strong
concavity we have

(ξx − ξx∗)T (x∗ − x) + (ξy − ξy∗)T (y∗ − y) ≥ σ(‖x − x∗‖2 + ‖y − y∗‖2), (16)

where σ > 0. By plugging the contract in place of y we get from the second
term on the left-hand side of (16)

ξT
y L(p)(x∗ − x) − ξT

y∗(y∗ − y),

and hence the left-hand side of (16) equals

(ξx + L(p)T ξy)
T (x∗ − x) − ξT

x∗(x∗ − x) − ξT
y∗(y − y∗).

From the optimality condition it follows that ξx + L(p)T ξy = 0; hence the
left-hand side of (16) is equal to

ξT
x∗(x − x∗) + ξT

y∗(y − y∗) = d(p)T p∗

where p∗ 6= 0 denotes a vector that is composed of ξx∗ and ξy∗ . Note that the
right-hand side of (16) is equal to σ‖d(p)‖2. Thus, condition 2 holds for d when
py 6= 0. It follows from Lemma 1 that if pk

y 6= 0 ∀k = 1, 2, . . . , then the iteration
converges. Otherwise pk

y = 0 for some k. Because condition 2 holds when p∗ is
any subgradient direction, Lemma 2 implies monotonic convergence. 2
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Theorem 3 shows that fixed-point iteration is an appropriate method to com-
pute the solution for the contract design problem. Moreover, in a repeated
game the iteration describes a convergent learning rule for the principal and
we may say that the equilibrium of the game is stable. Note that it is obvious
from Lemma 1 and Theorem 3 that when the initial parameter vector p0 is
chosen close enough to a solution the iteration does not stall.

4.2 Example

The purpose of this example is to illustrate the geometrical ideas of the con-
vergence analysis. Let us assume that the agent’s utility function is

u(x, y) = min{−x2/2 − y2,−x2 − y2/2},

and the principal’s optimum is achieved at x∗ = 1, y∗ = −1. As a minimum
of two strongly concave functions u is also strongly concave but it is not
differentiable for all x, y. Contours of u are illustrated in Figure 1. Because
the example is only two-dimensional (11) defines the contract uniquely by
(12).

The graph of S consists of four parts given below:

(px, py)-region Image under S

I: 1/2 ≤ px/py ≤ 2 y = x, −1/3 ≤ x ≤ 1/3

II: |px/py| ≤ 1/2 (y + 1/2)2 + (x − 1/2)2/2 = 3/8,

x ≤ 1, y ≤ −1/3

III: 2 ≤ |px/py| (y + 1/2)2/2 + (x − 1/2)2 = 3/8,

1/3 ≤ x, −1 ≤ y, x 6= 1, y 6= 0

IV: −2 ≤ px/py ≤ −1/2 x∗, y∗.

The first three parts in x, y-plane are marked in Figure 2. Part IV is the point
(1,−1). Notice that S and d are not defined when py = 0 and therefore there is
a discontinuity at x = 1, y = 0. The discontinuity is not, however, illustrated
in the figure.

The first convergence condition of Lemma 1, namely that d(p) is perpendicular
to p, was explained in the second paragraph of Section 4.1 and it is illustrated
in Figure 1. The geometric interpretation of the second convergence condition
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Figure 2. Two-dimensional illustration of the second convergence condition and an

iteration.

in Lemma 1 for d is that the image of {(px, py) ∈ R
n+m | py 6= 0} under d is

contained in a ball. This can be seen by writing the condition in an equivalent
form

‖d(p) − p∗‖2 ≤ ‖p∗‖2,

i.e., the ball is centered at p∗ and has radius ‖p∗‖. This condition is now
satisfied and the dashed line in Figure 2 illustrates one appropriate ball when
the origin is transformed to (1,−1).

In general, strong concavity of u implies that the level set {(x, y) ∈ R
n+m |

u(x, y) ≥ u(x∗, y∗)} is contained in a sufficiently large ball that goes through
x∗, y∗. The region inside the dotted line in Figure 2 belongs to the aforemen-
tioned level set. Because the points (x(p), y(p)) are inside the level set and d(p)
is the difference vector of (x∗, y∗) and this point, d is inside the ball obtained
from the one that contains the level set by transforming the origin to x∗, y∗.
Notice that the condition 2 of Lemma 1 has both global and local interpreta-
tion. Globally the condition implies that d(p) belongs to a compact set and in
the vicinity of p∗ it means that d is not too flat.

In this example y is one-dimensional and therefore all the solutions of (13) are
subgradient directions. Hence, fixed-point iteration converges monotonically,
see Theorem 3. The first six (x, y) points of an iteration with µ = 1 and initial
parameter vector p0 = [3 2]T are illustrated with numbered dots in Figure 2.
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5 Continuous Time Process

In this section I focus on a continuous time process for adjusting the affine
contract. Continuous time approach is commonly used in the stability analysis
of Walrasian equilibrium and it turns out that the famous stability result by
Arrow et al. (1959) is related to the adjustment of an affine contract.

In this section p(t) denotes the parameter vector at time t and we suppose
that p is differentiable with respect to t and denote its derivative by ṗ. If we
set p(tk) = pk, p(tk+1) = pk+1 and assume that µ = tk+1 − tk, we get the
process

ṗ = d(p) (17)

as a limit from (14) when µ → 0. This process can not be implemented in a re-
peated game but it works as an idealization for the discrete time process where
the principal reacts arbitrarily fast. Hence, the process describes a continuous
time learning model.

The following lemma gives convergence conditions for a continuous time ad-
justment process for a system that satisfies Walras’ law. The lemma is a mod-
ification of the stability theorem for Walrasian equilibrium by Arrow et al.
(1959). The formulation and proof follow the presentation of Theorem 3.E.1
in Takayama (1974) with the difference that there is no unique ray of solu-
tions. A similar result for exchange economies with multiple equilibria is given
in Arrow and Hurwicz (1960).

Notice that in Lemma 3 we need to assume existence of a solution for the
equation, which was not assumed in Lemma 1. However, the condition that is
required in addition to Walras’ law is less stringent than condition 2 of Lemma
1. The proof is presented in Appendix B.

Lemma 3 Let K ⊂ Ω, K 6= ∅ be the set of solutions of F (p) = 0 and let the
continuous mapping F : Ω 7→ R

N , Ω ⊂ R
N , satisfy Walras’ law and

F (p)Tp∗ > 0 ∀p ∈ Ω \ K (18)

for some p∗ ∈ K. Then the process ṗ = F (p) converges monotonically to a
solution of F (p) = 0 when p(0) ∈ B(p∗, r) ⊂ Ω.

The geometric interpretation of (18) is that points F (p), p ∈ Ω \ K, are on
the half-space defined by the hyperplane with normal p∗. Clearly F has this
property if it satisfies condition 2 of Lemma 1. Using Lemma 3 I can prove
the following convergence theorem for the continuous time adjustment process
(17).

Theorem 4 If assumptions of Theorem 1 and Theorem 2 hold, then the
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process (17), for py(0) 6= 0, either converges to a solution or stalls at a point
in which py = 0.

Proof. From Theorem 1 it follows that the set of solutions K of d(p) = 0, is
non-empty and clearly condition 1 of Lemma 1 holds. Moreover, from Theorem
2 we know that d is continuous when py 6= 0. Now let us suppose that p is
not a solution of (13) and let (x, y) ∈ S(p). Let (ξx∗ , ξy∗) ∈ ∂u(x∗, y∗) as in
Theorem 1 and (ξx, ξy) ∈ ∂u(x, y). From strict concavity of u we get

(ξx − ξx∗)T (x∗ − x) + (ξy − ξy∗)T (y∗ − y) =

(ξx + L(p)T ξy)
T (x∗ − x) − ξT

x∗(x∗ − x) − ξT
y∗(y∗ − y) =

ξT
x∗(x − x∗) + ξT

y∗(y − y∗) = d(p)T p∗ > 0,

where p∗ 6= 0 is composed of ξx∗ and ξy∗ . Hence the conditions of Lemma 3
are satisfied for F = d with Ω = R

n+m \ {p ∈ R
n+m | py 6= 0}. If we get during

the process a point p(t) such that py(t) = 0, the iteration stalls since d is not
defined at such a point.

2

Compared to Theorem 3, the convergence conditions in Theorem 4 are weaker
because instead of strong concavity only strict concavity is required. Similarly
as for the discrete time adjustment, the process does not stall when initial
parameter vector p(0) is chosen close enough to a solution.

The essential properties of d are its homogeneity and that it satisfies Wal-
ras’ law and these properties are also typical for excess demand functions of
exchange economies. According to the Sonnenschein-Mantel-Debreu theorem
Sonnenschein (1973), Mantel (1974), Debreu (1974) any continuous function
that satisfies Walras’ law for p ≥ 0 is an excess demand function for some
economy.

Our two-player model is, indeed, similar to an exchange economy with only
one consumer and a Walrasian auctioneer. This can be seen from (10) and
(11) by making the following alternative interpretation. The variables x and y
represent the amounts of commodities, px and py are the corresponding prices,
(x∗, y∗) is the consumer’s initial bundle, (11) gives a budget constraint for the
consumer, and x(p), y(p) are the amounts that the consumer is willing to buy
for given prices. Furthermore, process (17) describes a price adjustment scheme
that drives the excess demand of commodities, d(p), to zero. The principal acts
as an auctioneer who sets the prices according to the excess demand but no
trade occurs until an equilibrium is reached, i.e., (17) is a tâtonnement process.

The analog to exchange economies leads us to ask whether fixed-point itera-
tion works in finding a Walrasian equilibrium. The convergence conditions for
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fixed-point iteration are, however, more stringent than those required for the
convergence of the continuous time process. Particularly the second condition
of Lemma 1 does not necessarily hold for excess demand functions of exchange
economies. The reason for this is that when d is an excess demand mapping
it usually has the following property: when price of some commodity goes to
zero, the excess demand for that commodity grows infinitely large given that
the other prices are fixed. Therefore, d cannot be inside any ball and condition
2 of Lemma 1 does not hold. Though we cannot generalize the convergence
result as such to exchange economies, it is possible to modify the iteration to
obtain a convergent tâtonnement process as is shown in Chapter II.

6 Processes for Finding the Principal’s Optimum

So far I have assumed that the agent will always participate the game during
the process, i.e., the principal’s global optimum (x∗, y∗) belongs to D, recall
the discussion in the beginning of Section 4. If (x∗, y∗) does not belong to D,
the agent does not necessarily participate the game. In this case the contract
design problem is to find the optimal point for v over D and a corresponding
contract at that point. In this section I characterize procedures for finding
the principal’s optimum assuming that a contract can be found at any given
(x∗, y∗) ∈ D, e.g., with the adjustment process described previously in this
chapter.

Let w = (x̄, ȳ) ∈ R
n+m, I call w a reference point, and let S(p, w) denote the

set of solutions to

max
x,y

u(x, y)

s.t. y = ȳ + L(p)(x − x̄),
(19)

for given p and w, where L(p) is as in (10). Now the contract design problem
is to find w∗ such that v(w∗) = maxw∈D v(w) and p∗ ∈ G(w∗), where G(w) =
{p | w ∈ S(p, w)}. We assume now that given any w ∈ D, a parameter vector
p that defines the contract at w, i.e., p ∈ G(w), can be found. Namely, given
that u is strongly concave, and for all w ∈ D there is ξy 6= 0, (ξx, ξy) ∈ ∂u(w),
the convergence result of Theorem 3 holds for any reference point w ∈ D.
In addition, I make the following assumptions for the adjustment of reference
point w:

1. The reference point wk ∈ D is updated only if a strictly better point wk+1 ∈
D can be found.

2. If it holds that wk ∈ D and wk 6= w∗, then wk+1 ∈ D such that v(wk+1) >
v(wk) can be found.

The first assumption is natural because there is no reason for the principal
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to expect less utility from the future rounds than from the previous ones.
Furthermore, it is rather easy to generate better reference points, so that the
second assumption is reasonable, too. For example when the current reference
point is in the interior of D, one can find a better reference point that is also
in the interior of D by taking an appropriate step to an improving direction of
v at the current reference point. It is also worth noticing that if the reference
point is taken outside of D, an affine contract going through that point will
usually have points in common with D. Nevertheless, the agent will reject the
contract at some stage of the updating procedure. In that case some of the
agent’s previous choices can be taken as a new reference point.

We further need the concept of complete process. We say that a process is
incomplete if the sequence of reference points converges to w̄ but there is a
non-trivial process that starts from w̄ and satisfies assumptions 1 and 2. By a
non-trivial process we mean a sequence {w̄k}k generated by the process with
w̄0 = w̄, such that w̄k 6= w̄ at least for some k. Process that is not incomplete is
called complete. Similar concept of a complete process in the price adjustment
framework has been used in Smale (1976).

The following theorem shows that a complete adjustment processes, which sat-
isfies the above assumptions, converges and there is a subsequence of contracts
converging to the solution of the contract design problem.

Theorem 5 When v is strictly concave, then for any complete process, which
begins from w0 ∈ D and satisfies assumptions 1 and 2, the sequence of ref-
erence points converges to w∗. Furthermore, when u is strictly concave, and
for all wk ∈ D there is (ξk

x, ξk
y ) ∈ ∂u(wk) such that ξk

y 6= 0, then there is a
subsequence of parameters pk ∈ G(wk) converging to p∗ ∈ G(w∗) given that
G(w∗) 6= ∅.

Proof. Let us first observe that due to assumption 2 and the assumption that
w0 ∈ D the sequence of reference points {wk}k, obtained during the process,
belongs to D. Let us now show that this sequence converges to the principal’s
optimum over D, i.e., to point w∗. There are two possibilities: either wk = w∗

when k > N , or for every k we have v(wk+1) > v(wk). In both cases v is a
Lyapunov function for the subsequence. Hence the subsequence converges and
the limit is in D, which is a closed set because u is continuous. Notice also
that v is strictly concave and w∗ is its unique maximizer over D, so that it
is an appropriate Lyapunov function. From the completeness assumption it
follows that the limit is w∗.

It follows from the continuity of S, see Corollary 1, that G(w) is a closed
mapping. Because of homogeneity of S we may choose a bounded sequence
{pk}k, pk ∈ G(wk), where wk ∈ D, e.g., we may set ‖pk‖ = 1. This sequence
has a convergent subsequence and from the closedness of G it follows that the
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limit is in G(w∗) when G(w∗) 6= ∅. Hence we have the result. 2

In view of Theorem 5, iteration (14) can be started using any reference point
w ∈ D, and as I discussed it is rather easy to generate reference points. When
during an iteration a point (x(p), y(p)) is encountered, giving the principal
a better outcome than the current reference point, it can be taken as a new
reference point in iteration (14), which can be continued from the current
parameter vector.

7 Conclusion

In this chapter I have presented a new adjustment approach for an affine
contract design problem. When a principal-agent game with incomplete infor-
mation is played repeatedly, the principal can adjust his contract according
to agent’s previous move. The adjustment procedure is based on parameteriz-
ing the problem appropriately and updating the parameters with fixed-point
iteration.

The parameterization of the contract design problem results to a degree zero
homogeneous system of equations, where the mapping satisfies Walras’ law. I
showed that the iteration converges when an additional condition, the condi-
tion 2 of Lemma 1, holds for the system. As a result I obtained a convergence
result for a principal-agent game where the agent has a strongly concave utility
function. In addition to fixed-point iteration I have studied a related contin-
uous time adjustment process.

The idea of using linear constraints in coordinating decision makers to a de-
sired outcome has been used in the context of Walrasian tâtonnement and
recently in negotiation analysis. In Ehtamo et al. (1999) a method of find-
ing a Pareto-optimal solution for a two-party negotiation is formulated as a
problem of searching for a joint tangent hyperplane for the parties utility func-
tions. The problem results to a degree zero homogeneous system of equations
that satisfies Walras’ law. The search of the joint tangent hyperplane is done
interactively between a mediator, using the method, and the parties. In this
framework fixed-point iteration has been used successfully in numerical exper-
iments. As chapters II and III show, the convergence results presented in this
chapter are useful for adjustment of hyperplane constraints in finding Pareto
optimal solutions or more generally adjustment of linear budget constraints
for exchange economies.
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A Continuity Properties of the Optimal Set Mapping

Here S(p, w) ⊂ R
n+m denotes the set of solutions for (19) for given p and

w = (x̄, ȳ). The following theorem characterizes the continuity of S with
respect to p and w.

Theorem 6 If u is concave, L(p) is continuous at p and S(p, w) 6= ∅, then
the set-valued mapping S is closed at (p, w).

Proof. Let us assume that S(p, w) 6= ∅, pk → p, wk → w and (xk, yk) → (x, y),
where (xk, yk) ∈ S(pk, wk) 6= ∅. We denote the set of feasible points of problem
(19), i.e., the set of points satisfying the linear contract, with C(p, w) and the
normal cone of the feasible set, {(ξx, ξy) ∈ R

n+m | ξx + L(p)T ξy = 0}, with
N(p). Let us first note that C(p, w) is a closed mapping with respect to (p, w),
because L is continuous.

According to sufficient optimality conditions (xk, yk) ∈ S(pk, wk) if and only
if (xk, yk) ∈ C(pk, wk) and

∂u(xk, yk) ∩ N(pk) 6= ∅.

From continuity of L it follows that N is a closed mapping. Concavity of u
implies upper hemi-continuity of ∂u. Moreover,

∪(x,y)∈{(xk ,yk)}k
∂u(x, y)

is bounded, see, e.g., Prop. 6.2.1 and 6.2.2 in Section 6 of Hiriart-Urruty and
Lemaréchal (1993). Hence, there is a convergent sequence {ξi}i such that

ξi ∈ ∂u(xki , yki) ∩ N(pki).

It follows that limi→∞ ξi ∈ ∂u(x, y)∩N(p). Because C is a closed mapping we
have (x, y) ∈ C(p, w). Thus, sufficient optimality conditions are satisfied and
(x, y) ∈ S(p, w).

2

Corollary 1 If u is strictly concave with compact level sets and L(p) is con-
tinuous at p, then S is single-valued and continuous at (p, w), w ∈ D.

Proof. From the compactness of the level sets we know that D is compact
and S(p, w) 6= ∅. The latter follows from Weierstrass theorem. Strict concavity
of u implies that S(p, w) is a singleton. Furthermore, since D is compact there
is w̄ = (x̄, ȳ) such that u(x̄, ȳ) = max(x,y)∈D u(x, y) and clearly S(p, w) ⊂
{(x, y) ∈ R

n+m | u(x, y) ≥ u(x̄, ȳ)} so that S is a closed mapping into a
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compact set. Hence S is upper hemi-continuous, see, e.g., Prop. 11.9 (c) in
Border (1985).

Continuity follows from upper hemi-continuity and single-valuedness, see prop
11.9 (d) in Border (1985).

2

B Proofs of the Lemmas

Proof of Lemma 1: If function F satisfies the conditions 1 and 2, then they
hold also for µF with µ 6= 0. Hence, without loss of generality we can prove
the convergence with µ = 1. Let p∗ be as in condition 2, then

‖pk+1 − p∗‖2 = ‖pk + F (pk) − p∗‖2 =

‖F (pk)‖2 − 2F (pk)T p∗ + ‖pk − p∗‖2 ≤ ‖pk − p∗‖2.

Note that pk ∈ B(p∗, r) ∀k = 0, 1, . . ., when p0 ∈ B(p∗, r). Therefore the
sequence {‖pk − p∗‖}k converges and the sequence {‖pk‖}k is bounded. From
condition 1 it follows that

‖pk‖2 = ‖p0‖2 +
k−1
∑

i=0

‖F (pi)‖2,

so that {‖pk‖}k is a growing and bounded sequence and hence convergent.
From the iteration formula we have

pk = p0 +
k−1
∑

i=0

F (pi).

Hence ‖p0 +
∑k−1

i=0 F (pi)‖ converges, too. From triangular inequality we get

‖p0 +
k+l
∑

i=0

F (pi)‖ ≥
∣

∣

∣

∣

∣

∣

‖p0 +
k

∑

i=0

F (pi)‖ − ‖
k+l
∑

i=k+1

F (pi)‖
∣

∣

∣

∣

∣

∣

and it follows that

‖pk+l − pk‖ = ‖
k+l
∑

i=k+1

F (pi)‖ → 0, (B.1)

when k → ∞ and l ≥ 1. Thus {pk}k is a Cauchy sequence and hence conver-
gent; let p̄ denote its limit point. Moreover, from (B.1) we get by setting l = 1
that ‖F (pk)‖ → 0, and from the continuity of F we have F (p̄) = 0.
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We can construct a sequence of solutions converging to p∗ by taking neigh-
borhoods B(p∗, rk) with r ≥ r0 > r1 > ... > rk → 0. There is a solution p̄k in
each of these neighborhoods, and p̄k → p∗ since rk → 0. From the continuity
of F we have F (p∗) = 0. 2

Proof of Lemma 2: If (15) holds for α > 0 then it holds for any ᾱ > α.
Specifically, we can choose ᾱ > 0 such that (15) holds for p∗ = ᾱp̄−2p̄ instead
of αp̄. Moreover we can take α such that ‖F (p)‖2 < 2αF (p)T p̄ if p is not a
solution. Similarly as in Lemma 1 we can deduce that ‖pk+1−p∗‖2 < ‖pk−p∗‖2,
and ‖pk+1 −αp̄‖2 < ‖pk −αp̄‖2 when pk is not a solution. From parallelogram
law we get

‖pk − αp̄‖2 + ‖pk − p∗‖2 = 2‖pk − p̄‖2 + 2|1 − α| · ‖p̄‖2.

By rearranging the terms we have

2‖pk − p̄‖2 = ‖pk − αp̄‖2 + ‖pk − p∗‖2 − 2|α − 1| · ‖p̄‖2

> ‖pk+1 − αp̄‖2 + ‖pk+1 − p∗‖2 − 2|α − 1| · ‖p̄‖2 = 2‖pk+1 − p̄‖,

and hence {pk}k converges monotonically to p̄. 2

Proof of Lemma 3: From the first condition it follows that ‖p(t)‖ = ‖p(0)‖,
because

d‖p(t)‖2/dt = 2p(t)T ṗ = 2p(t)T F (p) = 0,

i.e., ‖p(t)‖ is constant. Let us choose p∗ such that ‖p∗‖ = ‖p(0)‖, and differ-
entiate D(t) = ‖p(t) − p∗‖2, where p∗ is as required in the assumptions:

dD(t)/dt = d‖p(t) − p∗‖2/dt = 2ṗT (p(t) − p∗)

= 2F (p)T (p(t) − p∗) = −2F (p)T p∗ < 0,
(B.2)

when p(t) is not a solution. Hence, p(t) ∈ Ω and p(t) moves monotonically
towards p∗. We need to show that p(t) is not bounded away from K, i.e., the
process converges to a solution. Let us suppose that p(t) is bounded away from
K, i.e., there is ε > 0 such that

p(t) ∈ S = B(p∗, r) \ {p | ‖p − p̄‖ < ε for some p̄ ∈ K}

for all t. Note that S 6= ∅ because p∗ ∈ K. From continuity of F it follows
that f(p) = −2F (p)T p∗ is a continuous function. From Weierstrass theorem
we know that f(p) achieves its maximum −δ < 0 in the compact set S. Hence,
we have dD/dt = −2F (p(t))T p∗ ≤ −δ < 0. Integrating both sides from 0 to
t and rearranging the terms we get

D(t) < D(0) − δt.
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For t large enough we have D(t) < 0, which is a contradiction with non-
negativity of the norm. 2
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Chapter V:

Osborne’s Cartel Maintaining Rule Revisited

Abstract

This chapter formulates a proportional reaction strategy in a repeated oligopoly
game with discounting. The strategy is based on increasing the total output quantity
in proportion to deviations from a cartel point. Such strategy was originally pro-
posed by Osborne (1976) for a static oligopoly. I show that the resulting equilibrium
is subgame perfect when the possible deviations are bounded and the proportional
reactions have sufficiently large slopes. The lower bounds for the slopes depend on
profit functions and discount factors in a simple way. In a duopoly setting, which the
chapter mainly considers, the equilibrium is weakly renegotiation proof. A possible
strategic explanation for conjectural variations equilibrium is discussed as well.

Key words: oligopoly, collusion, proportional strategy, renegotiation proofness,
conjectural variations
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1 Introduction

Tacit collusion in oligopolistic markets can be explained with subgame per-
fect equilibrium strategies in the framework of repeated games. In particular,
there is a long tradition of studying strategies in which a firm’s actions vary
continuously as a response to its rivals’ behavior. Following this tradition I
consider specific linear punishment strategies for infinitely repeated Cournot
oligopolies with discounting, the main emphasis being on duopoly settings.
These strategies are called proportional strategies and this chapter shows that
they provide subgame perfect equilibrium when restricting to sufficiently small
deviations.

Continuous reaction functions in repeated games as mechanisms to sustain co-
operation were first suggested by Friedman in a series of papers, see Friedman
(1968, 1973, 1976). The main motivation for continuous strategies is that they
are more plausible in many circumstances than discontinuous strategies, be-
cause with them small deviations lead only to small punishments rather than
to the collapse of collusion. Experiments by Selten et al. (1997) suggest that
people actually tend to behave in a continuous manner in duopoly games.

Among continuous strategies, linear reaction strategies are particularly inter-
esting because they are simple but their subgame perfection is a non-trivial
question. Moreover, in oligopolistic games such strategies are closely related
to conjectural variations models that are widely used in empirical literature
on imperfect competition. This far linear reaction strategies have lacked sub-
game perfection when using discounted profits as the evaluation criterion. For
nonlinear reaction functions subgame perfection can be obtained, see Fried-
man and Samuelson (1990, 1994a,b). Kalai and Stanford (1985) prove that
linear strategies give rise to an ε-perfect equilibrium when reaction times are
short enough. Furthermore, Stanford (1986a) shows that using linear reac-
tion functions leads to a subgame perfect equilibrium for a repeated duopoly
when using the limit of the means evaluation criterion instead of discounting.
Ehtamo and Hämäläinen (1993) consider linear reaction strategies in a contin-
uous time natural resource model and study the credibility of these strategies.
They call the corresponding equilibrium the incentive equilibrium, because, as
they argue, punishing only slightly from small deviations is apt to encourage
cooperation.

This chapter studies linear strategies in which unilateral deviations from the
cartel point are punished in proportion to the deviation. The whole strategy
is not continuous since the deviating firm is assumed to return to cooperation
immediately after the deviation. Hence, the strategy re-establishes cooperation
and does not lead to a sequence of consecutive deviations from the cooperative
outputs as reaction function models usually do. The reason for this formulation
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is that subgame perfection cannot be obtained with reaction functions that
give a firm’s output as a function on the other players’ last period moves
regardless of who was the first to deviate, see Stanford (1986b) and Robson
(1986).

It is shown that using proportional strategies is an equilibrium and it is sub-
game perfect when excluding the possibility of too large deviations. Never-
theless, subgame perfection for all deviations can be obtained, for example,
by combining proportional strategies with trigger strategies. Local subgame
perfection requires the slopes of the punishment lines to be steep enough de-
pending on the marginal profits and discount factors in a simple way. In a
duopoly setting the equilibrium is also weakly renegotiation proof in the sense
of Farrell and Maskin (1989). Compared to the results of Kalai and Stan-
ford (1985), Stanford (1986a), and Ehtamo and Hämäläinen (1993), new local
properties for the equilibrium are obtained in this study.

The local nature of our analysis owes to observations made by Osborne (1976)
in a static oligopoly setting. Osborne was inspired by the rather long lasting
stability of the OPEC oil cartel and he suggested that maintaining the firms’
market shares sustains the cartel in practice. In the literature this linear strat-
egy has been called Osborne’s rule or Osborne’s quota rule, see Phlips (1988,
Section 6.2) and Jacquemin and Slade (1989, Section 3.1.1) for discussion
on this strategy. Osborne realized that the quota rule is also credible when
deviations are sufficiently small. 1 The proportional strategies are studied in
repeated games in a similar way as Osborne analyzed his quota rule in a static
setting. In particular, the quota rule can be obtained as a limiting case from
proportional strategies when Osborne’s assumptions hold and the discount
factors approach to one.

The proportional strategy is related to conjectural variations models as well;
the slope of the proportional scheme can be understood as a conjectural vari-
ation parameter. Moreover, similarly as conjectural variations are often in-
terpreted as the slopes of firms’ reaction functions, the proportional scheme
can be obtained as a linearization from a more general non-linear equilibrium
strategy. In view of this interpretation it is natural to study local properties
of proportional strategies. The results also have some relevance for conjec-
tural variations. Namely, subgame perfection of proportional strategies could
explain conjectural variations equilibrium as a result of rational behavior: Con-
jectural variations equilibrium can be maintained as an equilibrium with pro-
portional strategies having the conjectural variations as their slopes.

1 By credibility Osborne refers to the property that the punishing firm is better off
by following the linear punishment than by ignoring the deviation. In the literature
Credibility often refers to subgame perfection. In this paper credibility is not used
in this meaning.
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This paper is structured as follows. In Section 2 I discuss the Osborne’s rule
for a static duopoly model. In Section 3 I define the proportional scheme with
time delay and analyze its properties for bounded deviations. The strategy is
formulated for oligopolies with more than two companies in Section 4 where
some implications for conjectural variations equilibria are also derived. Section
5 discusses the results.

2 Osborne’s Rule for a Static Cournot Duopoly

This section goes through the static Osborne’s rule in an appropriate extent.
For simplicity I first consider a duopoly setting although. Originally Osborne
(1976) presented his quota rule in the context of more general oligopolies. The
extension will be discussed in Section 4.

The firms are indexed with i, q = (q1, q2) denotes the pair of output quantities,
and πi is firm i’s profit function. The subscript −i refers to i’s rival. The use
of index i without specifying its values, means that we are considering either
of the two firms.

The first assumption we need on a profit function is the following:

(A1) πi is differentiable, strictly concave, and strictly decreasing in q−i when
qi > 0.

Since πi is a strictly concave function, the maximum of πi under convex con-
straints is unique. This property will be needed when analyzing proportional
reaction strategies. Our second assumption is that at the tacitly agreed coop-
erative point firm i’s profit function is increasing with respect to qi. Let qλ

denote the cooperative point, and let us assume that at this point the pro-
duction quantities and the profits are positive. The second assumption can be
written for πi and qλ as

(A2) ∂πi(q
λ)/∂qi > 0.

Osborne’s quota rule is based on the observation that when qλ is a Pareto-
optimal point and profit functions satisfy (A1) and (A2), then there is a joint
tangent line to the contours of the profit functions. This tangent line is defined
by

∇πi(q
λ) · (q − qλ) = 0, (1)

where the dot denotes the usual inner product. The joint tangency property
is illustrated in Figure 1, where the solid contours are for π1 and the dashed
contours are for π2. Although in Figure 1 the line also goes through the origin,
this need not be the case in general. This property is discussed below. When qλ
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is not Pareto-optimal then the line given by (1) is tangent only to the contour
of πi at qλ but not necessarily to the corresponding contour of π−i.

qλ
1

qλ
2

q′
1

q′
2

Figure 1. A Pareto-optimal point and a joint tangent line.

The tangent line (1) takes the form

q−i = L(qi, α
λ
i ) = qλ

−i + αλ
i · (qi − qλ

i ),

where

αλ
i = − ∂πi(q

λ)/∂qi

∂πi(qλ)/∂q−i

. (2)

Under (A1) and (A2) we have αλ
i > 0. We also assume that qλ

i > 0, i = 1, 2,
in which case (A1) gives ∂πi(q

λ)/∂q−i > 0, and thus αλ
i < ∞.

Osborne interpreted the joint tangent line strategically by assuming that firm
i’s rival responds to its actions according to the rule

q−i = r−i(qi, α
λ
i ) = max{qλ

−i, L(qi, α
λ
i )}. (3)

In other words, when firm i pushes its production from qλ
i to increase its

profit, the rival reacts by keeping the joint production on the tangent line,
hence actually decreasing firm i’s profit. For example, if firm 1 moves to q′1 as
in Figure, then firm 2 raises its output to q′2, which decreases firm 1’s profit. As
Osborne showed, following this reaction rule suffices for an equilibrium when
reactions are instantaneous. Note that it is not profitable for firm −i to punish
its rival from decreasing its output below qλ

i .

Osborne showed the equilibrium property of the linear reaction rules for n
firms, which is not as obvious result as in the duopoly case. Spence (1978)
extends the result by characterizing a more general class of reaction functions
that give rise to efficient outcomes. The following theorem is a reformulation
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of Osborne’s result, and it shows that αλ
i is a lower bound for the slope of L

in r−i such that qλ
i becomes firm i’s optimal choice. The result presented here

is slightly different from that of Osborne (1976). In particular, the Pareto-
optimality of qλ is not required. The proof is is given in Appendix.

Theorem 1. Let us assume that αi ≥ αλ
i and assumptions (A1) and (A2)

hold for πi and qλ. Then qλ
i maximizes πi (qi, r−i(qi, αi)).

When profit functions and the slopes of their tangent lines satisfy the assump-
tions made in Theorem 1, then qλ becomes the equilibrium outcome under the
proportional reaction strategies. Osborne further showed that the tangent line
defined by (1) has the ray property if qλ is the joint profit maximum and, in
addition to satisfying (A1) and (A2), the profits are of the form

πi(q) = P (q)qi − Ci(qi), (4)

for i = 1, 2. Here Ci is the cost function and P is the inverse demand function
that satisfies ∂P (q)/∂q1 = ∂P (q)/∂q2. The ray property says that the common
tangent line q−i = L(qi, α

λ
i ), i = 1, 2, also passes through the origin, see Figure

1. The economic interpretation of this property is that by reacting according to
the rule (3) the firms automatically preserve their market shares at qλ

i /(qλ
1+qλ

2 ),
i = 1, 2. Or putting it in another way, by always reacting so that the market
shares remain constant, the firms move along the joint tangent line and thus
maintain cooperation.

Finally, Osborne discusses the credibility of the quota rule in his paper. The
credibility refers to the property that the punishing firm is better off, at least
for small deviations, by following the rule than by just ignoring the deviation.
In this paper this property is tightened; credibility means that it is better to
follow the punishment line than to choose any other output below it as the
punishment. Note that by (A1), a deviating firm i would not mind if it is
punished less than the proportional scheme L(qi, α

λ
i ) suggests. This property

will be the main ingredient of the equilibrium strategy in dynamic setting.

In Figure 2 we see that for firm 1’s deviation q′1 firm 2 would choose the
punishment q′2 = L(q′1, α

λ
1) among all quantities below this output (vertical

line segment from 0 to q′2). Actually, firm 2 would prefer quantities above q′2,
the optimal output being on the best response line (dark circle). For firm 1’s
outputs larger than qL

1 , e.g., for q′′1 , firm 2 would rather choose an output below
the punishment line. To be more specific, firm 2 would choose the point from
the best response line. Hence, in case of large deviations firm 1 has no reason
to believe that firm 2 would actually follow the proportional scheme, if also
punishment outputs below it were possible; i.e., the proportional strategy is
not credible for deviations larger than qL

1 . Note that qL
1 is the point in which

firm 2’s best response function (the decreasing line) crosses the punishment
line. In the following section I discuss the credibility in the dynamic setting
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but the meaning will essentially remain the same.

qλ
1 qL

1
q′′
1

q2 = L(q1, α
λ
1
)

q′
1

qλ
2

q′
2

firm 2’s contours

firm 2’s best response line

Figure 2. Credibility in a static setting. The further on the left the contour is, the
higher the profit is.

Osborne’s rule, as presented in this section, is static as the reaction to devi-
ation is assumed to be instantaneous. The idea of punishing from deviations,
however, implies the passage of time as one of the firms should first deviate
and the other should subsequently react to this deviation. In the following
section the proportional reaction strategy is formulated in a repeated game
setting to account for the time delay between the observation of deviations
and the resulting actions. As in the static setting of this section, we obtain
lower bounds for the slopes of the proportional schemes such that cooperative
play becomes the equilibrium outcome of the game.

3 Osborne’s Rule with Time Delay

In this section the duopoly game is played repeatedly infinitely many times
and the firms observe all each others’ previous actions. Furthermore, the firms
maximize their discounted profits, i.e., firm i maximizes

∞
∑

k=0

δk
i πi(q

k),

where k refers to the period and δi ∈ (0, 1) is the firm’s discount factor. The
deviation from cooperation is observed immediately so that the firms can react
to the deviations in the next period.

The proportional scheme works in the repeated setting as follows. After having
observed that the other firm has deviated, i.e., exceeded the cooperative out-
put, the firm punishes the deviator by choosing the output in the next period
according to the proportional scheme. Simultaneous deviations are, however,
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neglected and the firms continue as if none of them had deviated. Moreover,
the firms accept that their deviations are punished but the punishment output
should not exceed the output given by the proportional scheme. The deviat-
ing firm should return to cooperation after a deviation, i.e., it should choose
the cooperative output. If the punishment output has, however, exceeded the
proportional scheme, the roles of the original deviator and the punisher are
changed; i.e., exceeding the proportional scheme is interpreted as a deviation
from the cooperative point qλ.

We say that a firm has played conventionally if its behavior does not give a
reason to punish it. The only reasons to punish firm i are that it has unilater-
ally exceeded the cooperative output qλ

i , or it has punished the other firm too
harshly, i.e., qk

i > L(qk−1
−i , α−i) = qλ

i +α−i · (qk−1
−i − qλ

−i). Formally, the strategy
is to choose q0

i = qλ
i and for k ≥ 1 play as follows:

i) qk
i = qλ

i , if in period k−1 both firms have played conventionally, deviated
simultaneously, or only firm i has not played conventionally.

ii) qk
i = L(qk−1

−i , α−i), if the other firm has not played conventionally in period
k − 1.

The above strategy for firm i with slope α−i is denoted by ωi(α−i). The strategy
profile with both using proportional schemes is ω(α) = (ω1(α2), ω2(α1)) with
α = (α1, α2). The slopes of the proportional schemes are common knowledge,
i.e., both firms know each other’s punishment scheme.

Ehtamo and Hämäläinen (1993) study a similar strategy as ω(α) in a contin-
uous time setting in maintaining Pareto-optimal solution as the outcome of
a resource management game. However, according to their formulation of the
proportional scheme, the players do not return to cooperation immediately
after they have deviated. This is also the case with the linear reaction strate-
gies studied by Kalai and Stanford (1985) and Stanford (1986a). Therefore,
rather than being a reaction function strategy, ωi(α−i) can be seen as a contin-
uous alternative of tit-for-tat strategy, according to which a player conditions
his next action to the other player’s previous move such that the deviator is
punished as long as he keeps deviating.

The following Lemma shows that qk
i = qλ

i , for all k, is the optimal choice of
actions for firm i when the other player uses ω−i(αi) and the slope αi is steep
enough. Hence, the equilibrium outcome of the game with ω(α) is cooperative
play, i.e., qk = qλ for all k. The proof of Lemma 1 is given in Appendix.

Lemma 1. Let us assume that (A1) and (A2) hold for πi. Then the optimal
sequence of actions for firm i is to choose qk

i = qλ
i for all k ≥ 0, when the

other firm follows ω−i(αi) with αi ≥ αλ
i /δi.

The lower bound that is obtained for the slope of the proportional scheme
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for firm −i is the slope of the static equilibrium strategy divided by firm i’s
discount factor. This means that in presence of time lag, the deviator has
to be punished stronger than the static equilibrium strategy would suggest.
Furthermore, the lower bound depends only on the deviating firm’s discount
factor and the point qλ. The larger the discount factor is, the less the equilib-
rium slope of the static setting has to be increased. This is natural since the
smaller the discount factor is, the more the deviator should suffer from the
current punishment.

By following ωi(α−i), with α−i > 0, firm i increases its output when the other
firm has deviated. If we had α−i < 0, then following ωi(α−i) would decrease
firm i’s profits while deviating would be profitable for the other firm since by
(A1) firm −i’s profits are decreasing with respect to qi. It follows that ω(α)
cannot sustain cooperation when ∂πi(q

λ)/∂qi < 0 for either of the firms since
the lower bound αλ

i /δi depends on this partial derivative.

3.1 Credibility

It follows from Lemma 1 that the equilibrium outcome of the game is co-
operative play, when the proportional schemes have sufficiently steep slopes.
However, this does not guarantee that it would actually be optimal for the
punishing firm to follow the proportional scheme, or the deviator to return to
cooperation.

Following Osborne’s original idea we say that ω(α) is credible for firm i if it is
optimal for firm i to follow ωi(α−i) when the deviator returns to cooperation
and accepts punishments not above the line L(qi, αi), i.e., firm −i follows
ω−i(αi). Consequently, if ω(α) is credible for the punishing firm, the other firm
knows that the deviations are really punished according to the proportional
scheme. The notion of credibility, in the sense it is used here, has also been
discussed by Holahan (1978), Rothschild (1981), and Ehtamo and Hämäläinen
(1993). However, in these papers a firm does not need to worry about the
rival’s future actions and credibility rather means that it is better to follow
the proportional scheme than to do nothing.

In the rest of the paper, the interval of acceptable deviations is denoted by
Ii(q̄i) = (qλ

i , q̄i], q̄i > qλ
i , and the interval of acceptable punishments is denoted

by IL
i (q−i) = [0, L(q−i, α−i)]. We need the interval Ii(q̄) because credibility as

well as subgame perfection will be obtained only when restricting to sufficiently
small deviations, here q̄ denotes the upper bound of acceptable deviations.
Formally the credibility of ω(α) for firm i is defined as follows.

Definition 1. ω(α) is credible for firm i on I−i(q̄−i) if it is optimal for firm i to
follow ωi(α−i) after any unilateral deviation by firm −i on I−i(q̄−i), assuming
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that firm −i follows ω−i(αi) after the deviation.

The credibility of ω(α) for firm i means two things: Within the acceptable
range of punishment outputs IL

i (q−i), where q−i is the deviation in the prior
period, it is optimal for firm i to choose the output given by the proportional
rule, and it is better to follow ωi(α−i) than to choose the maximal deviation
and then to be punished. In particular, credibility requires that the firm that
has first deviated punishes the other firm for its unfair punishment outputs
strongly enough. The condition for the optimality of the proportional scheme
within the range of acceptable punishment outputs IL

i (q−i) is

πi

(

L(q−i, α−i), q
λ
−i

)

= max
x∈IL

i
(q−i)

πi(x, qλ
−i). (5)

Let us further define

qL
−i = sup

{

x ∈ R : (5) holds for all q−i ∈ [qλ
−i, x]

}

,

which gives an upper bound for the largest interval where ω(α) is credible for
firm i. When the deviation exceeds qL

i the punishing firm would rather choose
a smaller quantity than the one given by the proportional scheme. Hence, the
greatest upper bound for the credibility interval is obtained from the crossing
point of the best response function and the proportional strategy. This is as
in the static setting of Section 2, see also Figure 2.

The following lemma shows that ω(α) is credible for firm i when the deviations
do not exceed qL

−i and the punishment outputs that exceed L(q−i, α−i) are
treated as deviations. The proof is given in Appendix and technically it is
similar to that of Lemma 1.

Lemma 2. Let us assume that πi satisfies (A1) and (A2), and qL
−i > qλ

−i.
Then the strategy ω(α) is credible for firm i on I−i(q

L
−i) when αi ≥ αλ

i /δi and
α−i > 0.

We can observe that the farther the best response function Ri crosses the line
qi = L(q−i, α−i), the greater qL

i becomes. Furthermore, when the slope α−i

decreases, the upper bound increases. In particular, the slope may decrease
as δi increases. Finally, it is worth noticing that it may happen that firm’s
Cournot quantity is less than qL

i , i.e., in some cases even quite large deviations
can be punished credibly with the proportional scheme.

3.2 Re-establishing Cooperation

In addition to credibility, it should be optimal for the deviator to return to
cooperation when the retaliation follows the proportional scheme. In that case
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the proportional scheme prevents further deviations from cooperative play.
More formally this property is defined as follows.

Definition 2. ω(α) returns firm i to cooperation on Ii(q̄i), if it is optimal for
the firm to follow ωi(α−i) after any of its own unilateral deviations on Ii(q̄i),
assuming that firm −i follows ω−i(αi).

The strategy profile can be shown to return a firm to cooperation for bounded
deviations when the firm’s marginal profit is decreasing with respect to the
other firm’s output. This condition can be formulated for πi as follows:

(A3) ∂πi(q
λ
i , q−i)/∂qi is decreasing with respect to q−i.

In the specific case when πi is of the form (4), the assumption (A3) holds when
∂P (qλ

i , q−i)/∂qi and P (qλ
i , q−i) are decreasing with respect to q−i.

The result on re-establishing cooperation is formulated in the following lemma,
the proof of which is partly based on Lemma 1 and is given in Appendix.

Lemma 3. Let us assume that πi satisfies (A1)–(A3), and αi ≥ αλ
i /δi. Then

ω(α) returns firm i to cooperation on Ii(q
+
i ) with

q+
i = sup

{

x ∈ R : ∂πi

(

qλ
i , L(qi, αi)

)

/∂qi ≥ 0 ∀qi ∈ [qλ
i , x]

}

,

assuming that q+
i > qλ

i .

The explanation for the upper bound q+
i is that if the deviation qk

i is too
large, it becomes optimal for firm i to choose qk+1

i < qλ
i . This happens because

by decreasing the output quantity in the period after the deviation, the firm
can compensate the punishment, which loses its effect as a sufficient threat to
prevent further deviations.

3.3 Subgame Perfection for Bounded Deviations

We have observed that for sufficiently small deviations the proportional scheme
is credible, i.e., it is optimal for the punishing firm to follow the proportional
strategy. Moreover, it returns firms to cooperation for bounded deviations
when marginal profits are decreasing, i.e., it prevents further deviations from
cooperation after sufficiently small unilateral deviations. When these proper-
ties hold simultaneously the strategy profile ω(α) is a subgame perfect equilib-
rium (SPE) for bounded deviations, which means that if the deviations have
been and will be small enough during the history of the play, it is optimal for
both firms to follow ω(α) when they know that the other firm will follow it,
too.
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Within the range of deviations where the equilibrium is subgame perfect, the
strategy profile is also a weakly renegotiation proof equilibrium (WRPE),
which means that in addition to subgame perfection none of the continua-
tion payoffs of ω(α) is Pareto dominated by any other continuation payoff of
ω(α). See Farrell and Maskin (1989) for the concept of WRPE strategies. Con-
tinuation payoffs are the discounted profits that the firms obtain when they
follow ω(α) beginning from a given history of the play. Hence, weak renego-
tiation proofness can be interpreted as the result of the firms negotiating the
original agreement anew in any contingencies.

The following theorem summarizes the assumptions on the profit functions
and the resulting properties of ω(α). Here we denote qα

i = min{qL
i , q+

i }.

Theorem 2. Let us assume that (A1)–(A3) hold for both profit functions and
αi ≥ αλ

i /δi for i = 1, 2. Then ω(α) is a WRPE, when the unilateral deviations
do not exceed qα

i for i = 1, 2.

Proof. If none of the firms has deviated from qλ
i , i.e., qk−1

i ≤ qλ
i , i = 1, 2, or

they have both deviated simultaneously from qλ
i , i.e., qk−1

i > qλ
i , i = 1, 2, then

by Lemma 1 it is optimal for the players to follow ω(α). If firm i has deviated
in period k − 1 while the other firm has played conventionally and qk−1

i ≤ q+
i ,

then by Lemma 3 it is optimal for firm i to return to cooperation as suggested
by ωi(α−i). On the other hand, by Lemma 2 it is optimal for the punishing
firm to choose the output according to ωi(α−i) when q−i ≤ qL

−i. Thus, ω(α) is
a SPE.

Weak renegotiation proofness holds because the deviator’s losses increase as
the deviation gets larger whereas the other firm’s profit increases. Hence, when
comparing the continuation payoffs, one of the firms is always worse off and
one of them is better off after unilateral deviations. Therefore, no continuation
payoffs of ω(α) dominate any other. 2

According to Theorem 2, deviations have to be punished in proportion to the
αλ

i obtained from the static Osborne’s rule times the inverse of the discount
factor δi. The slope of the static equilibrium strategy is obtained as the limit
of the lower bound of the proportional scheme when the discount factor goes
to one. In particular, the line of constant market shares is the limit of both
firms’ proportional schemes when the joint profit maximizing point is to be
supported as the equilibrium outcome. Obtaining the static case in the limit
is natural, since large discount factor could be interpreted as an implication
of an ability to react rapidly to rivals’ output changes. See Kalai and Stanford
(1985) for another approach to consider reaction times.

One interpretation of Theorem 2 is that the equilibrium is subgame perfect
even though large deviations were possible but the firms trust that the other
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firm will not make such deviations intentionally. Actually, we could assume
that only large deviations break the collusion and lead to a launching of a
trigger and small deviations are punished in a continuous manner. Indeed,
if we have a strategy profile that is subgame perfect for all deviations, then
switching to this strategy profile after deviations that exceed qα

i , i = 1, 2, and
using proportional strategies for smaller deviations, is a possible way to sustain
qλ as SPE outcome for all deviations. For example, switching to Cournot
quantities after deviations larger than qα

i , i = 1, 2, would work as a way
to obtain subgame perfection for all deviations. Cournot-trigger is known to
be SPE when πi(q

λ), i = 1, 2, are greater than profits at the Cournot-point
and the discount factors are large enough. The combination of a proportional
strategy and a trigger strategy would be subgame perfect for exactly the same
discount factors as the trigger strategy.

Let us now go to the characterization of those cooperative points that can
be supported as WRPE outcomes for bounded deviations with proportional
schemes. If qλ is a WRPE outcome for bounded deviations under ω(α), we
say that it can be supported locally with ω(α). More formally this property is
defined below.

Definition 3. qλ is locally supportable as a WRPE outcome with proportional
strategies if there are α > 0 and intervals of deviations and punishments such
that ω(α) is WRPE when restricting the possible deviations and punishments
to these intervals.

Note that, as punishments depend continuously on deviations, they are bounded
whenever deviations are bounded. Hence, we could simply define local subgame
perfection by requiring the deviations to be bounded. However, even though
deviations should not exceed qα

i , the punishment outputs may exceed this up-
per bound, i.e., it may happen that L(qα

−i, α−i) > qα
i . The above definition

emphasizes that the deviations and punishments may have different upper
bounds.

The following lemma shows that the upper bound of allowed deviations is
larger than qλ

i when the proportional scheme has a positive slope and πi

is continuously differentiable. Hence, when both firms’ profit functions and
proportional schemes satisfy these conditions, then for any discount factors
δi ∈ (0, 1), i = 1, 2, there are intervals of deviations on which ω(α) is a
WRPE. The proof of the lemma is given in Appendix.

Lemma 4. Let us assume that πi, i = 1, 2, satisfy (A2) and (A3), are con-
tinuously differentiable, and αi > 0 for i = 1, 2. Then qα

i > qλ
i for i = 1, 2.

The set of supportable cooperative points depends on assumptions (A2) and
(A3). Namely, whenever these conditions hold for profit functions at qλ, the
result of Lemma 4 is valid. Hence, ω(α) supports qλ as a locally WRPE out-
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come if the firms’ marginal profits are decreasing with respect to each others
outputs, ∂πi(q

λ)/∂qi > 0, for i = 1, 2, and the slopes αi, i = 1, 2, are steep
enough. Recall that the positivity of the partial derivative is required for αλ

to be positive.

The set of points on which (A2) holds is actually the part of q1, q2-plane that
is below the best response functions, i.e., qλ

i < Ri(q
λ
−i), for i = 1, 2. This is

shown in the following lemma, the proof of which is presented in Appendix.

Lemma 5. When πi satisfies (A1), then (A2) is equivalent to qλ
i < Ri(q

λ
−i).

The above result is intuitive. Namely, when the firm’s cooperative output is
below the best response to the other firm’s output, the firm would like to
increase the output, which means that (A2) holds.

By combining lemmas 4 and 5, and Theorem 2 we obtain the following “folk
theorem” for locally supportable points. Here (A3) is assumed to hold for all
quantity pairs, which means that at any output level the firms’ marginal profits
are decreasing with respect to rival’s output.

Theorem 3. Let us assume that both profit functions are continuously differ-
entiable, satisfy (A1), and ∂πi(q)/∂qi is decreasing with respect to q−i for all
qi > 0 and i = 1, 2. Then any qλ with 0 < qλ

i < Ri(q
λ
−i), for i = 1, 2, is locally

supportable as a WRPE outcome with proportional strategies.

It follows from Theorem 3 that the set of locally supportable outcomes is non-
empty when the Cournot quantities are positive. Namely, at the Cournot point
the firms’ best response functions cross and at least the points that both pre-
fer to the Cournot point are locally supportable. Moreover, all Pareto-optimal
points, except for the firms’ global optima, belong to the set of locally sup-
portable points. The global optima cannot necessarily be supported because at
these points qλ

i = 0 for either of the firms, and then αλ
i may become infinitely

large.

3.4 Example: Symmetric Duopoly with Quadratic Profits

This example illustrates how the upper bound of the allowed deviations is
determined. Let us assume that δi = δ and πi(q) = (a− qi − q−i)qi for i = 1, 2,
which satisfy (A1). The profits are of this form when the inverse demand
function P and the cost functions C1 and C2 are linear. Here a − q1 − q2 is
assumed to be positive so that profits are positive.

The slope of the tangent line for πi at the cooperative point qλ, as defined in
(2), is αλ

i = (a−2qλ
1 −qλ

−i)/q
λ
i . We can see that when qλ

−i is kept fixed and qλ
i is
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increased αλ
i decreases, which means that firm i’s deviations become easier to

prevent with ω(α). As qλ
i goes to zero the slope αλ

i becomes infinitely large, i.e.,
the deviations become more difficult to punish. In particular, no proportional
scheme prevents firm i’ deviations from a point in which it produces nothing.

Let us assume that qλ is the joint profits maximizing point, i.e., qλ = (a/4, a/4).
Note that assumptions (A2) and (A3) are satisfied at this point. The slopes
of the tangent lines are αλ

i = 1, i = 1, 2. Hence, we should have αi ≥ 1/δ,
i = 1, 2, for ω(α) to be a SPE. Let us take αi = 1/δ for i = 1, 2. Then the
proportional scheme for firm i is

L(q−i, α
λ
−i) = (1 − 1/δ)a/4 + q−i/δ.

Now qL
−i is obtained at the intersection of the best response function

Ri(q−i) = (a − q−i)/2

and the line of punishment outputs. The intersection point is at qL
−i = qL

i =
(δ + 1)a/(2δ + 4). Furthermore, the upper bound q+

i of Lemma 3 is obtained
from

∂πi

(

qλ
i , L(qi, αi)

)

/∂qi = a − 2qλ
i − L(qi, αi) ≥ 0,

which gives q+
i = (1 − δ/2)a. Noticing that q+

i ≥ qL
i we have qα

i = qL
i .

Now we can see that the more patients the firms are, the more tolerant they
become to deviations, i.e., the larger qα

i , i = 1, 2, become. Furthermore, as
δ → 1 we have qα

i → a/3, which equals the firms’ Cournot quantities.

4 Proportional Strategy for General Oligopolies

This section formulates the proportional reaction strategy in oligopolistic set-
tings for n > 2 firms. The following assumption on profit functions makes this
setting similar to the duopoly case:

(A4) firm i’s profit is a function of qi and q−i =
∑

j 6=i qj.

As earlier, a firm has played conventionally if it has not deviated unilaterally
or made an unreasonably large punishment after one of the firms has deviated.
In the following fi,j(qj) denotes the largest acceptable punishment for firm i
after firm j has deviated. The functions fi,j are assumed to be continuous,
increasing, and they satisfy fi,j(q

λ
j ) = qλ

i , and
∑

k 6=j fk,j(qj) = L(qj , αj). These
assumptions mean that the total punishment output equals the one given by
the proportional scheme, and the share of outputs is given by functions fi,j.
For example, the total punishment could be shared in proportion to firms’
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market shares. Let us denote f−i,j(qj) = qλ
j +

∑

k 6=i,j fk(qj, αj), i.e., f−i,j(qj) is
the total output of other punishing firms than firm i.

The strategy for firm i is to choose q0
i = qλ

i and for k ≥ 1 play as follows:

i) qk
i = qλ

i , if in period k − 1 all firms have played conventionally, two or more
have deviated simultaneously, or only firm i has not played conventionally.

ii) qk
i = fi,j(q

k−1
j ) if j has unilaterally deviated in period k − 1.

The above strategy for i with slopes α = (α1, . . . , αn) is denoted by ωi(α).
The strategy profile with all firms using proportional schemes is denoted by
ω(α).

Under assumptions (A1)–(A4), lemmas 1 and 3 go through as in the two-firm
case. Moreover, q+

i can be defined as before and the strategy re-establishes
cooperation for bounded deviations. The result on credibility, Lemma 2, also
generalizes to the n-firm case, but the proof is different. Now the upper bound
of firm j’s deviations that firm i can credibly punish, denoted by qL

j,i, is defined
as the largest quantity x for which

∂πi (fi,j(qj), f−i,j(qj)) /∂qi ≥ 0 for all qj ≤ x. (6)

Moreover, we denote qL
j = mini q

L
j,i. Lemma 6 shows that (A1)–(A4) imply

the credibility of ωi(α) for firm j’s deviations on Ij(q
L
j,i). The proof is given in

Appendix and it is similar to that of Lemma 3.

Lemma 6. Let us assume that πi satisfies (A1)–(A4) and qL
j,i > qλ

j , j 6= i.
Then ωi(α) is credible for firm i on Ij(q

L
j,i) when αi ≥ αλ

i /δi.

Lemmas 3 and 6 together imply that ω(α) = (ω1(α1), . . . , ωn(αn)) is a SPE
when αi ≥ αλ/δi for all i and the deviations are small enough. The character-
ization of supportable points is essentially the same as in the duopoly setting.
These results are collected to the following theorem.

Theorem 4. Let qλ satisfy 0 < qλ
i < Ri(q

λ
−i), for i = 1, . . . , n. Let the profit

functions be continuously differentiable, and satisfy (A1), (A3), (A4). Then
qλ is locally supportable as a SPE outcome with ω(α).

Proof. What is left to be shown is that qα
i = min{q+

i , qL
i } > qλ

i for all i,
because then ω(α) is a SPE when qk

i ∈ Ii(q
α
i ) for all i and αi ≥ αλ

i /δi. Here,
qα
i , i = 1, . . . , n, are defined as in the two firm case.

As in the proof of Lemma 4, it can be shown that q+
i > qλ

i for all i. By Lemma
5 we know that condition qλ

i < Ri(q
λ
−i) is equivalent with (A2). By (A2) and

continuous differentiability, there are qL
j,i > qλ

j , for all i, j = 1, . . . , n, i 6= j,
such that (6) holds for all i, j = 1, . . . , n, i 6= j. Hence, we have qα

i > qλ
i for all

i, which concludes the proof. 2

114



If πi(fi,j(qj), f−i,j(qj)), i, j = 1, . . . , n, i 6= j, were increasing with respect to
qj, then the strategy profile would also be a WRPE, since in that case no
continuation payoffs would dominate each other as in the duopoly setting.
However, these profits are not necessarily increasing because it is not clear
whether increasing a punishing firm’s own output compensates the effect that
comes from the other punishing firms increasing their outputs as well.

4.1 Conjectural Variations Equilibria

In this section I discuss a possible way to detect empirically whether an ob-
served market situation can be interpreted as a collusion with proportional
strategies as the supporting mechanisms. This discussion is based on the obser-
vation that proportional strategies are linked to conjectural variations models
of Bowley (1924). The main idea of these models is that each firm believes that
the quantities chosen by its rivals depend on the firm’s own output. Hence,
firm i is assumed to have a conjecture on rivals’ reactions around the car-
tel point. This behavioral assumption is captured in the conjectural variation
parameter νi = dq−i(q

λ
i )/dqi.

As the static Osborne’s rule, conjectural variations models assume that the re-
sponse for deviations is instantaneous. Indeed, in the static setting the slope of
the punishment line L(qi, αi) plays exactly the same role as νi. Hence, αi can be
identified with νi. Consequently, proportional strategies in repeated game give
a rational justification for conjectural variations models; when the conjectural
variations are large enough, a conjectural variations equilibrium corresponds
to a locally subgame perfect equilibrium under proportional strategies. More
specifically, a conjectural variations equilibrium can be interpreted as a locally
SPE with the slopes of proportional schemes equaling the conjectural varia-
tions. Recall, however, that the assumptions (A1)–(A4) should hold for all
firms.

We say that conjectural variations that lead to a local SPE are strategically
consistent. More formally this consistency is defined as follows.

Definition 4. Firm i’s conjectural variation is strategically consistent if νi ≥
αλ

i /δi. If qλ is below the reaction functions and ν1, . . . , vn are strategically con-
sistent, then the conjectural variations equilibrium is strategically consistent.

Other dynamic interpretations of conjectural variations and various consis-
tency concepts have been discussed, e.g., in Figuières et al. (2004, Chapters 2
and 3).

Let us assume that firm i’s profit function is of the form (4) and P (q) =
P (

∑

j qj). With the conjectural variation νi, the necessary conditions for firm
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i’s static profit maximization problem can be written as

1 − C ′
i(q

λ
i )/P (qλ) = 1/|η|(1 + νi), (7)

where |η| = −[∂qi/qi]/[∂P (q)/P (q)], i.e., |η| is the absolute value of the elas-
ticity of demand. The left hand side of (7) is the firm’s Lerner index and it is
denoted by LEi. This index measures the competitiveness of an oligopolistic
market; the larger the Lerner index is, the less competitive the oligopoly is.

Note that as we are not considering a static oligopoly game, condition (7)
need not hold for νi = αi. However, we can derive another relationship for
νi, LEi, and η to obtain strategic consistency. Namely, it can be seen that
αλ

i = LEi/|η| − 1. Hence, strategic consistency, i.e., νi ≥ αλ
i /δi, requires that

δiνi ≥ LEi/|η|−1. By using this inequality we could estimate the lowest strate-
gically consistent conjectures for given discount factors, demand elasticities,
and Lerner indices. Let us also observe that (A2) can be written equivalently
as LEi > 1/|η|, when P (qλ) > 0. Hence, empirically observed Lerner indices
that are greater than 1/|η| could be due to tacit collusion with proportional
strategies.

5 Discussion

This study shows that for sufficiently regular profit functions, using propor-
tional reaction strategies sustains cooperation as a subgame perfect outcome
when the deviations are small enough. Using the strategies is also Nash equi-
librium for all deviations. The slopes of the proportional strategies and the
ranges of acceptable deviations depend on the profit functions and discount
factors in a simple way. Moreover, the cooperative point that is to be sup-
ported as the equilibrium outcome should be in the region below the firms’
best response functions.

The main motivation for the local nature of the results of this paper is that
a linear strategy can be obtained as a linearization from a more general non-
linear equilibrium strategy. Since linearization is reasonably accurate only in
the neighborhood of the cartel point, it is natural that the properties of linear
strategy are also local. Local properties of linear strategies were first analyzed
by Osborne (1976) in static settings. The linearization idea on the other hand
appears in the conjectural variations literature, where the conjectural varia-
tions are explained as slopes of linearized reactions. Indeed, the results of this
paper give new motivation for both Osborne’s model and conjectural varia-
tions. Osborne’s quota rule is obtained as a limiting case from the proportional
equilibrium strategies in repeated game as discount factors approach to one.
For conjectural variations equilibrium these strategies give a possible expla-
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nation: With large enough conjectures the corresponding equilibrium becomes
locally subgame perfect with proportional strategies, where the slopes equal
the conjectural variations.

The local results of this paper show that using linear strategies provides a
simple way to punish small unintentional errors or trembles so that collusion
can be re-established. Moreover, in a duopoly setting the equilibrium is weakly
renegotiation proof, which means that there is no need to renegotiate the
cooperation anew after small deviations. To obtain subgame perfection for all
deviations the proportional scheme can be combined with other equilibrium
strategies, e.g., with trigger strategies such that only large deviations lead to
collapse of the cartel and launch the trigger. In the spirit of forward induction,
deviations can be interpreted as strategic signals: A small deviation signals an
accidental error but a large deviation is a signal of breaking the collusion.

A possible extension for the use of the proportional strategy is to consider
a situation of imperfect monitoring, in which only past prices with possible
random disturbances are observed instead of all production quantities, see,
e.g., Green and Porter (1984) and Abreu et al. (1986). The proportional scheme
could provide a cartel maintaining strategy in such games, too.

Appendix: Auxiliary Proofs

In this appendix Iλ
i = [0, qλ

i ] denotes the interval of acceptable outputs for
firm i, given that the other firm has played conventionally. Recall that Ii(q̄i) =
(qλ

i , q̄i] and IL
i (q−i) = [0, L(q−i, α−i)] is firm i’s set of acceptable punishment

outputs after a deviation q−i by the other firm.

Proof of Theorem 1: Let us first observe that the maximization problem

max
qi≥0

πi (qi, r−i(qi, αi)) ,

where r−i(qi, αi) = max{qλ
−i, L(qi, αi)), has exactly the same solution as the

convex optimization problem

max πi(q)

s.t. q ∈
{

q̂ ∈ R
2 : q̂i ≥ 0, q̂−i ≥ max{qλ

−i, L(q̂i, αi)
}

}.

This is because πi is decreasing with respect to q−i so that at the optimum
we have qi = max{qλ

−i, L(qi, αi)) even though inequality was allowed. The
necessary and sufficient condition of this problem at qλ is that the below
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variational inequality holds for all feasible q:

∇πi(q
λ) · (q − qλ) ≤ 0, (8)

i.e.,
[∂πi(q

λ)/∂qi](qi − qλ
i ) + [∂πi(q

λ)/∂q−i](q−i − qλ
−i) ≤ 0.

For qi > qλ
i condition (8) holds when

[∂πi(q
λ)/∂qi](qi − qλ

i ) + αi[∂πi(q
λ)/∂q−i](qi − qλ

i ) ≤ 0,

because now q−i ≥ L(qi, αi). By (A1) and (A2) αi ≥ αλ
i > 0, and by (A1)

∂πi(q
λ)/∂q−i < 0. Thus,

αi · (qi − qλ
i ) · ∂πi(q

λ)/∂q−i ≤ αλ
i · (qi − qλ

i ) · ∂πi(q
λ)/∂,

which gives the optimality condition.

For qi ≤ qλ
i we have q−i ≥ qλ

−i. Hence, the left hand side of condition (8)
is less than zero if [∂πi(q

λ)/∂qi](qi − qλ
i ) is less than zero. It follows from

(A2) that πi is decreasing with respect to qi. Hence, we obtain the inequality
[∂πi(q

λ)/∂qi](qi − qλ
i ) ≤ 0, i.e., (8) holds for qi ≤ qλ

i . 2

Proof of Lemma 1: Let {qk}k be a sequence of output quantity pairs and
Πi({qk}k) =

∑

k δk
i πi(q

k). The assumption is that q0
−i = qλ

−i, and we need to
show that then it is optimal for firm i to choose qk

i = qλ
i for all k ≥ 0, which

means that qk = qλ for all k is the optimal choice of output quantity pairs for
firm i.

As in Theorem 1, the choice of the output can be written as a convex opti-
mization problem

max Πi({qk}k)

s.t. {qk}k ∈ F (αi),

where

F (αi) =
{

{qk}k : qk
i ≥ 0 ∀k ≥ 0, q0

−i = qλ
−i,

qk
−i ≥ max{qλ

−i, L(qk−1
i , αi)} ∀k ≥ 1

}

.

We assume that in the above optimization problem {qk}k ∈ l∞ × l∞, which
is a Banach-space with the norm ‖{qk}k‖ = maxk |qk

1 |+ maxk |qk
2 |. Hence, the

sequence {qk}k should be bounded, which is not too restrictive assumption
since choosing large outputs usually causes losses for the firms. Moreover, the
results that are based on this lemma require that the outputs stay within
certain ranges.
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Analogously to the static case, the sufficient and necessary condition for the
optimality of {qλ}k is that the variational inequality

∇Πi({qλ}k)({qk}k − {qλ}) ≤ 0 (9)

holds for all {qk}k ∈ F (αi), see, e.g., Aubin (1993, Section 9.8.). Here ∇Πi({qλ}k)
denotes the Fréchet-differential of Πi at {qλ}k. It can be seen that

∇Πi({qλ}k){qk}k =
∑

k

δk
i ∇πi(q

λ) · qk.

In the following we denote I+ = {k : qk
i > qλ

i } and I− = {k : qk
i ≤ qλ

i }. Now
for k ∈ I− we have qk

−i ≥ qλ
−i and for k ∈ I+ we have qk

−i ≥ L(qi, α). The latter
yields qk+1

−i − qλ
−i ≥ αi(q

k
i − qλ

i ) for k ∈ I+. Let us now consider (9) in more
detail:

∇Πi({qλ}k)({qk}k − {qλ}) =
∑

k

δk
i ∇πi(q

λ) · (qk − qλ)

=
∑

k

δk
i [(qk

i − qλ
i )∂πi(q

λ)/∂qi + (qk
−i − qλ

−i)∂πi(q
λ)/∂q−i]

≤
∑

k∈I+

δk
i (q

k
i − qλ

i )∂πi(q
λ)/∂qi +

∑

k∈I+

αiδ
k+1
i (qk

i − qλ
i )∂πi(q

λ)/∂q−i

+
∑

k∈I−

δk
i (qk

i − qλ
i )∂πi(q

λ)/∂qi +
∑

k∈I−

δk
i (q

k
−i − qλ

−i)∂πi(q
λ)/∂q−i

≤
∑

k∈I+

δk
i (q

k
i − qλ

i )∂πi(q
λ)/∂qi +

∑

k∈I+

(αλ
i /δi)δ

k+1
i (qk

i − qλ
i )∂πi(q

λ)/∂q−i = 0,

(10)

where the last equality follows by plugging αλ
i from (2) in the equation. The

second last inequality holds because αi ≥ αλ
i /δi and the terms of the sum with

k ∈ I− are negative. The latter is true because ∂πi(q
λ)/∂q−i < 0 by (A1), and

∂πi(q
λ)/∂qi > 0 by (A2). The above deduction shows the optimality of the

sequence qk
i = qλ

i for all k. 2

Proof of Lemma 2: Because qα
i ≤ qL

i , it is optimal to choose q1
i = L(q0

−i, α−i)
within the acceptable range of punishments IL

i (q0
−i), when q0

−i ∈ I−i(q
L
−i) and

q0
i ∈ Iλ

i . Hence, we only need to show that it is not optimal to make the
maximal deviation from ωi(α−i) and then to be punished. This is the case
because

max
{qk}∈F (αi)

Πi

(

{qk}k

)

= πλ
i /(1 − δi) ≤ πi

(

L(q0
−i, α−i), q

λ
−i

)

+ δiπ
λ
i /(1 − δi),

where the first equality follows from Lemma 1, and the inequality holds be-
cause

πi

(

L(q0
−i, α−i), q

λ
−i

)

≥ πλ
i
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by the choice q0
−i ∈ I−i(q

L
−i). Note that by making an unreasonably large pun-

ishment the firm cannot exceed the profits that maximize Πi

(

{qk}k

)

subject

to {qk} ∈ F (αi) Thus, ω(α) is credible for firm i. 2

Proof of Lemma 3:

Let us denote q̃−i = L(q0
i , αi) and q′ = (qλ

i , q̃−i). It is optimal to choose qk
i = qλ

i

for all k ≥ 1, if the variational inequality

∇πi(q
′) · (q1 − q′) +

∑

k≥2

δk−1
i ∇πi(q

λ) · (qk − qλ) ≤ 0 (11)

holds for all feasible sequences {qk}k, similarly as in the proof of Lemma 1.
This condition can be written as:

S1 + S2 ≤ 0,

where S1 contains the terms that include q1
i and q1

−i, and S2 contains the rest
of the sum. As in the necessary condition (9), we have:

S2 ≤
∑

k∈I+

δk−1
i (qk

i − qλ
i )[∂πi(q

λ)/∂qi] +
∑

k∈I+

αiδ
k
i (qk

i − qλ
i )[∂πi(q

λ)/∂q−i]

+
∑

k∈I−

δk−1
i (qk

i − qλ
i )[∂πi(q

λ)/∂qi] +
∑

k∈I−

δk−1
i (qk

−i − qλ
−i)[∂πi(q

λ)/∂q−i],

where I+ = {k ≥ 2 : qk
i > qλ

i } and I− = {k ≥ 2 : qk
i ≥ qλ

i }. As in the
case q0

i = qλ
i in the proof of Lemma 1, it can be shown that S2 ≤ 0 when

αi ≥ αλ
i /δi.

Hence, to obtain (11) we need to show that S1 ≤ 0. Let us first note that

∇πi(q
′) · (q1 − q′) = [∂πi(q

′)/∂qi](q
1
i − qλ

i )

because q1
−i = q̃−i according to ω−i(αi). From this and the proportional scheme

we obtain

S1 =







[∂πi(q
′)/∂qi](q

1
i − qλ

i ) + αiδi(q
1
i − qλ

i )[∂πi(q
λ)/∂q−i] if q1

i > qλ
i ,

[∂πi(q
′)/∂qi](q

1
i − qλ

i ) if q1
i ≤ qλ

i .

Let us assume that q1
i > qλ

i . By the assumption (A3) we have ∂πi(q
′)/∂qi ≤

∂πi(q
λ)/∂qi and hence

[∂πi(q
′)/∂qi](q

1
i − qλ

i ) ≤ [∂πi(q
λ)/∂qi](q

1
i − qλ

i ).
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It follows that

[∂πi(q
′)/∂qi](q

1
i − qλ

i ) + αiδi(q
1
i − qλ

i )[∂πi(q
λ)/∂q−i] ≤

[∂πi(q
λ)/∂qi](q

1
i − qλ

i ) + αiδi(q
1
i − qλ

i )[∂πi(q
λ)/∂q−i] ≤

[∂πi(q
λ)/∂qi](q

1
i − qλ

i ) + αλ
i (q

1
i − qλ

i )[∂πi(q
λ)/∂q−i] = 0

where the last equality is obtained by plugging αλ
i in the equation. Hence,

S1 ≤ 0 and consequently (11) holds.

Because [∂πi(q
′)/∂qi] ≥ 0 by q0

i ≤ q+
i , we have S1 ≤ 0 also for q1

i ≤ qλ
i . Thus,

(11) holds for all feasible sequences. 2

Proof of Lemma 4: The continuity of ∂πi(q
λ
i , q−i)/∂qi, (A2), and (A3)

imply that q+
i > qλ

i . By (A2) we know that πi is growing at qλ with respect
to its first argument. It then follows from the continuity of the derivative
that there is q̃i > qλ

i such that for all q1
i , q

2
i ∈ [qλ

i , q̃i], with q1
i ≥ q2

i , we have
πi(q

1
i , q

λ
−i) ≥ πi(q

2
i , q

λ
−i), i.e., πi is growing on [qλ

i , q̃i] with respect to qi.

Since αi > 0, there is q̂−i > qλ
−i such that q̃i = L(q̂−i, α−i), i.e., L maps [qλ

−i, q̂−i]
into [qλ

i , q̃i]. Because πi is growing on [qλ
i , q̃i] it follows that for all q0

−i ∈ Ii(q̂−i)
it is optimal to choose q1

i = L(q0
−i, αi). Thus, qL

−i ≥ q̂−i > qλ
−i, and we have

qα
i > qλ

i . 2

Proof of Lemma 5: Let us first observe that ∂πi(q
λ)/∂qi > 0 means that

πi is growing at qλ and hence the best response to qλ
−i is greater than qλ

i , i.e.,
qλ
i < Ri(q

λ
−i).

Let us now assume that qλ
i < Ri(q

λ
−i). By the definition of differential

∂πi(q
λ)/∂qi = lim

ρ→0+

[

πi

(

(1 − ρ)qλ
i + ρRi(q

λ
−i), q

λ
−i

)

− πi(q
λ)

]

/
[

ρ(Ri(q
λ
−i) − qλ

i )
]

,

where ρ → 0+ means that ρ converges to zero from the positive side. When
ρ ∈ (0, 1] the concavity of πi with respect to qi yields

πi

(

(1 − ρ)qλ
i + ρRi(q

λ
−i), q

λ
−i

)

≥ (1 − ρ)πi(q
λ) + ρπi

(

Ri(q
λ
−i), q

λ
−i

)

.

This inequality together with the above formula of the differential gives

∂πi(q
λ)/∂qi ≥ [πi

(

Ri(q
λ
−i), q

λ
−i

)

− πi(q
λ)]/[Ri(q

λ
i ) − qλ

i ].

By the strict concavity of πi with respect qi we know that the best response is
unique and πi

(

Ri(q
λ
−i), q

λ
−i

)

> πi(q
λ). Hence, ∂πi(q

λ)/∂qi > 0, which concludes
the proof. 2

Proof of Lemma 6: The proof goes as in Lemma 3. Now we denote
q′ =

(

fi,j(q
0
j ), f−i,j(q

0
j )

)

and q1
−i = f−i,j(q

0
j ). Again the necessary condition
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for optimality of sequence q1
i = fi,j(q

0
j ), qk = qλ, k ≥ 2, can be written as

S1 + S2 ≤ 0, where S1 contains the terms that include q′ and q1
i , and S2

contains the rest. As earlier, it can be shown that S2 ≤ 0.

Hence, we need to show that S1 ≤ 0. Now

S1 =







[∂πi(q
′)/∂qi](q

1
i − q′i) + αiδi(q

1
i − q′i)[∂πi(q

λ)/∂q−i] if q1
i > fi,j(q

0
j ),

[∂πi(q
′)/∂qi](q

1
i − q′i) otherwise.

Let us assume that q1
i > fi,j(q

0
j ). By the concavity of πi with respect to qi we

know that ∂πi(q)/∂qi is decreasing with respect to qi. Since fi,j is increasing,
we have

∂πi (q
′) /∂qi ≤ ∂πi

(

qλ
i , f−i,j(qj)

)

/∂qi.

It follows from (A3) that

∂πi

(

qλ
i , f−i,j(qj)

)

/∂qi ≤ ∂πi(q
λ)/∂qi,

and thus ∂πi (q
′) /∂qi ≤ ∂πi

(

qλ
)

/∂qi. As qj ≤ qL
j,i, we have ∂πi(q

′)/∂qi ≥ 0
and hence

[∂πi(q
′)/∂qi](q

1
i − q′i) ≤ [∂πi(q

λ)/∂qi](q
1
i − q′i).

As in the proof of Lemma 3 it follows that S1 ≤ 0. We also have S1 ≤ 0
for q1

i ≤ fi,j(q
0
j ), because ∂πi(q

′)/∂qi ≥ 0. Thus, (11) holds for all feasible
sequences. 2
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