
www.elsevier.com/locate/ynimg
NeuroImage 24 (2005) 961–968
Auditory event-related responses are generated independently of

ongoing brain activity
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For researchers and clinical practitioners alike, evoked and event-

related responses measured with MEG and EEG provide the means for

studying human brain function and dysfunction. However, the

generation mechanism of event-related responses remains unclear,

hindering our ability to formulate viable theories of neural information

processing. Event-related responses are assumed to be generated either

(1) separately of ongoing, oscillatory brain activity or (2) through

stimulus-induced reorganization of ongoing activity. Here, we

approached this issue through examining single-trial auditory MEG

data in humans. We demonstrate that phase coherence over trials

observed with commonly used signal decomposition methods (e.g.,

wavelets) can result from both a phase-coherent state of ongoing

oscillations and from the presence of a phase-coherent event-related

response which is additive to ongoing oscillations. To avoid this

problem, we introduce a method based on amplitude variance to

establish the relationship between ongoing oscillations and event-

related responses. We found that auditory stimuli do not give rise to

phase reorganization of ongoing activity. Further, increases in spectral

power accompany the emergence of event-related responses, and the

relationship between spectral power and the amplitude of these

responses can be accounted for by a linear summation of the event-

related response and ongoing oscillation with a stochastically distrib-

uted phase. Thus, on the basis of our observations, auditory event-

related responses are unique descriptors of neural information

processing in humans, generated by processes separate from and

additive to ongoing brain activity.
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Event-related responses (ERRs; bpotentialsQ in EEG and

bfieldsQ in MEG) are separated from ongoing brain activity and

system noise by averaging measurement epochs time-locked to

stimulus presentation. Ongoing activity and brain oscillations have

been linked with various cognitive processes such as attention

(Tiitinen et al., 1993) and sensory integration (Varela et al., 2001).

Moreover, several studies have concluded that averaged ERRs are

not separate from ongoing cortical processes, but rather, are

generated by phase synchronization and partial phase-resetting of

ongoing activity (BaYar, 1980; Jansen et al., 2003; Makeig et al.,

2002; Sayers et al., 1974; see Fig. 1a–d). For example, the spectral

power of unaveraged EEG data appears to be independent of

auditory stimulation, suggesting that ERRs result from reorganiza-

tion of ongoing activity rather than from additional activity being

triggered by the stimulus (Sayers et al., 1974). Further, the power

of cortical oscillations at 8–13 Hz has been shown to correlate with

the amplitude of ERRs (Brandt et al., 1991; Rahn and BaYar,

1993a,b), indicating that the two phenomena are interlinked.

However, both the amplitude of ERRs (Näätänen and Picton,

1987) and the level of ongoing brain activity (Coenen, 1998)

reflect the arousal level (e.g., vigilance) of the subject. Therefore,

as changes in the ERRs and in ongoing cortical activity are likely

to coincide temporally, the conclusion that ongoing activity

directly affects ERRs may be premature.

Methodologically, resolving this issue poses a challenge: for

example, even if ERRs were generated independently of ongoing

activity, the measured MEG or EEG signal would still be the sum of

the two (Fig. 1e and j), and disentangling them would be far from

trivial. Firstly, the oscillatory processes that make up ongoing

activity are nonstationary, that is, their phase and amplitude cannot

be accurately predicted from previous values (as evident in, e.g., the

spontaneous fluctuations of the alpha rhythm; Laufs et al., 2003).

Secondly, in analyzing oscillatory activity, limiting the frequency

band sacrifices the accuracy of temporal information (time-

frequency uncertainty, see e.g., Addison, 2002; Mallat, 1998). As

a direct consequence, when a signal is restricted to a narrow

frequency band through filtering or wavelets, a transient response

whose power is distributed over a wide frequency range will

inevitably affect the phase and amplitude of the ongoing oscillatory



Fig. 1. Simulated data demonstrating the two possible generation mechanisms of the event-related responses (ERRs) and the stochastic summation of additive

transient responses and ongoing oscillation. Reorganization of the phase distribution of ongoing oscillations as a model of ERR generation (a–d): in (a), each

curve (N = 30) represents ongoing brain activity as a composite of four sinusoids with random initial phases and random frequencies in the 4–16 Hz range. At

75 ms, the phases of all the component sinusoids are set to zero. In (b), the averaged waveform of the curves in (a) exhibits a transient response peaking at 100

ms. In (c), the standard deviation of the amplitudes of the 30 curves in (a) is shown for each time point. This can be used as a measure of phase organization of

the data: synchronization of the component sinusoids (t = 75 ms) is indicated by the standard deviation going to zero. The phase of the curves in (a) is obtained

at each time point with a signal decomposition method (complex Morlet-wavelet, wave number = 5, center pass-band frequency 10 Hz) and the standard

deviation of the phases at each time point is shown in (d). The reduced variance of the phases after 75 ms in (d) indicates the phase-coherent state of the

oscillations. Transient response additive to ongoing oscillations as a model of ERR generation (e–j): In (e), a transient response (dotted curve) is triggered

during ongoing, oscillatory activity. The sum of the two (representing the measured EEG or MEG signal) depends on the phase of the oscillatory activity. The

black and grey curves represent the sum wave when the transient response and the oscillation are in the same and opposite phase, respectively. The two cases

differ with respect to the measured peak amplitude and the power of the measured signal. In (f ), the same sinusoidal signal model as in (a) is used for the curves

(N = 30). However, no phase resetting occurs but a constant-amplitude response (a small downward deflection at 25–75 ms, followed by an upward deflection

at 75–125 ms and a small downward deflection at 125–175 ms) is superposed to all trials so that in the averaged signal (g), a transient response is observed. In

(h), the standard deviation of the amplitudes of the 30 curves in (f ) is shown. The additive component does not change the amplitude variance of the signal. The

phase of the curves in (f ) is obtained with the same technique as in (d) and shown in (i). Although the ongoing oscillations are of random phase, a phase-

coherent state similar to the one in (d) is observed at the latency of the transient response. This follows from the decomposition of the signal whereby the

estimated phase at each time point is determined by the phase of both the ongoing oscillation and the additive component. Hence, phase estimation with signal

decomposition techniques is unsuitable for studying the generation mechanisms of the ERRs. In ( j), averages of five trials with highest and lowest power from

(f ) (black and grey curve, respectively) filtered with the Morlet-wavelet are displayed. Because filtering turns transient responses into oscillations and because

stochastic summation occurs between the ongoing oscillations and the transient response, as demonstrated in (e), the oscillatory processes can be interpreted to

contribute to the generation of the ERRs although, in reality, the two are independent of one another. All the panels have the same time scale; the horizontally

aligned panels have the same vertical scale except in (e) and ( j).
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signal in its time-frequency neighborhood. Thus, by introducing

temporal correlations to the signal, filtering results in artefactual

predictability whereby the trial-to-trial amplitude and/or latency

variance of the transient response can be determined from the phase

and amplitude of the preceding ongoing oscillation although, in

reality, the two may be perfectly independent. Thirdly, as demon-

strated in Fig. 1, a phase-coherent state observed with signal

decomposition methods (e.g., wavelets) does not imply a phase-

coherent state of ongoing activity, but rather, can reflect the presence

of an additive, evoked response whose phase is coherent over trials.

Explaining the generation mechanism of ERRs is essential for

understanding neural information processing and the neural

circuits underlying human cognition. However, explaining ERRs

in terms of phase synchronization would appear problematic.

Firstly, if information were contained in the synchronized state of

different oscillatory processes, ongoing oscillations would sto-

chastically (albeit rarely) produce such a state even without the

presentation of a sensory stimulus. Secondly, if information

processing were related to phase resetting, ongoing oscillations

would stochastically be in the phase towards which they would

otherwise be set and thus, the sensory stimulus would have no

effect on brain activity.

Here, using MEG measurements on human subjects, we sought

to establish whether ERRs are generated through phase orga-

nization of ongoing activity or through processes separate from

ongoing activity. We examined the phase distribution of unaveraged

MEG data using a method of amplitude-variance analysis which

avoids the problems inherent in signal decomposition methods and

employed a spatial filtering technique to target activity originating

from auditory cortex. Spectral estimates and single-trial evaluation

techniques were used to examine the influence of ongoing brain

processes on the auditory ERRs.
Methods

Measurements, subjects, and basic data analysis

Nine healthy subjects were studied with their informed and

written consent. The study was approved by the Ethical

Committee of Helsinki University Central Hospital. The subjects

watched a silent film and were under the instruction to ignore the

auditory stimuli. The measurements were carried out in a

magnetically shielded room with a 306-sensor MEG device

(Vectorview, Elekta Neuromag Oy, Finland). The device has 204

planar gradiometer and 102 single-loop magnetometer sensors of

which the gradiometers were used in the analysis because of the

direct relationship between the lead-fields of the planar gradio-

meters and source location (Hämäläinen et al., 1993). The stimuli

were binaurally delivered 750 Hz tones of 100 ms duration with

10 ms linear onset and offset ramps. The noise level inside the

measurement room was 32 dB SPL (sound pressure level, A-

weighted) and the stimuli were adjusted to 80 dB SPL. The

stimuli were presented at least 400 times using an onset-to-onset

interval of 800 ms. Both raw and online-averaged data were

collected using a sampling rate of 600 Hz and a pass-band of

0.03–200 Hz. Trials with horizontal or vertical electrooculograms

(EOGs) exceeding an absolute value of 150 AV were excluded

from the online-averages. The data were filtered with two-way

zero-phase filtering employing Chebyshev type-II infinite impulse

response (IIR) filters with z50 dB stop-band attenuation,
optimized for maximal steepness of the roll-off using the

maximum order of the filter without pass-band ripple. The right-

and left-hemispheric responses were compared using the average

magnitude from all the 54 sensors of the selection shown in Fig.

2 with the selection mirrored to the left hemisphere. Source

visualization was performed from online-averaged data with L1

minimum-norm estimates (Uutela et al., 1999) with no region of

interest (ROI) weighting.

Response source weighting (RSW) filter

The amplitude of the averaged N1m response of each sensor

indicates the sensitivity of that sensor to the source of the response.

This allows one to assign a value to each sensor with which the

unaveraged data are weighted. This set of weights and subsequent

averaging over sensors comprises a response source weighting

(RSW) filter, which can be considered a derivative of signal space

projection (SSP, Tesche et al., 1995) and synthetic aperture

magnetometry (SAM, Vrba and Robinson, 2001). RSW filters

were constructed individually for each subject and employed to the

data prior to further analyses. The N1m latency for the RSW

filtering process was determined from the online-averaged data of

the sensor displaying maximum response amplitude. The ampli-

tudes of the online-averaged responses from the 54 sensors were

divided with the N1m peak amplitude measured at the sensor with

maximum response (Fig. 2). This provided a coefficient for each

sensor, and was used to weight the unaveraged data from the

sensors. The weighted unaveraged data were summed over the 54

sensors. The signal-to-noise ratio (S/N) was determined as the peak

amplitude of the N1m divided by the mean value of the baseline

signal magnitude. The N1m and noise values were taken from

absolute values of unaveraged data of all subjects and the 1–45 Hz

frequency band was used for obtaining the N1m values. In

subsequent analyses, the N1m peak latency was determined from

the RSW-filtered data using stimulus onset time-locked averaging

over all trials.

Spectral estimates, time-frequency analysis, and variance

calculation

To ensure that EOG artefacts do not have different

distributions in the pre- and poststimulus time windows, the

unaveraged data were first divided into 800-ms data windows

(starting 400 ms before stimulus onset), and those windows

coinciding with N100 AV EOG amplitudes were excluded. The

accepted 800-ms samples were then divided into 400-ms pre- and

poststimulus data windows, which were detrended and mean-

removed. Spectral estimation was performed with a nonparame-

tric multitaper method (Percival and Walden, 1993) with zero-

padded data windows (time-band width product, NW = 1.5,

length of the FFT = 1024). The data from the 1–45 Hz

frequency band were used in the spectral pre- and poststimulus

power estimation. The mean spectral power of each specified

frequency band was used when the single-trial data sorting was

performed. The amplitudes and latencies of the N1m responses in

the subaverages were obtained separately for each subject from a

20-ms time window centered using the peak amplitude of the

data averaged over all the trials.

For the time-frequency analysis of the simulations (Fig. 1), we

used a Morlet wavelet with a center frequency of 10 Hz (see, e.g.,

Addison, 2002; Mäkinen et al., 2004; Torrence and Compo, 1998).



Fig. 2. The grand-averaged responses of the MEG gradiometer sensors. The auditory responses were more pronounced in the right hemisphere than in the left.

The bordered area shows the 54 sensors used in response source-weighting (RSW) filter. The sensor depicted in Fig. 3 is encircled.
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This is the central frequency of the simulated oscillations and also

corresponds to the approximate frequency of the transient

responses. The simulation time windows (�1.0 to 1.0 s) were

sufficiently long to avoid edge artefacts within the examined time

window (�100 to 300 ms). The wavelet power spectra from the

MEG data (Fig. 4) were calculated using 1000-ms data windows

(starting 500 ms before stimulus onset) after EOG rejection (see

above). We used second-derivative-of-Gaussian (bMexican hatQ)
wavelets, which have a high temporal resolution. The center pass-

band frequency of the wavelets was set at a spacing of 1 Hz.

Edge artefacts were eliminated by discarding the first and last 100

ms of the wavelet-transformed data as well as the data of the

lowest frequency (1 Hz). The single-trial wavelet power spectra

were averaged over trials and subjects. The data of each

frequency were divided the mean of the prestimulus (�400 to 0

ms) baseline power for that frequency and the data were further

thresholded with a value of 1.3. The wavelet spectral power

increases shown in the colored areas of Fig. 4. were at least seven

times larger than the standard deviations of the baseline power of

the corresponding frequencies (for normally distributed data, this

corresponds to P b 10�12).

For calculating the standard deviations of the amplitude, the

unaveraged data were first band-pass filtered (according to bands

depicted in Fig. 5) and then divided into 800-ms time windows.

EOG artefact rejection was carried out by the procedure described
above. The accepted trials of each subject were collected into a

matrix (each 800-ms trial forms a row of the matrix) from which

the standard deviations were calculated for each time point. For

statistical analyses, the standard deviation at the N1m latency was

obtained separately from each subject by calculating the mean of

the amplitude variance in a 50-ms time window centered at the

peak latency of the grand-averaged N1m. These mean values

were normalized using the mean of the baseline (�400–0 ms) and

compared with the mean values from a 350- to 400-ms time

window normalized in the same manner.
Results

Auditory stimuli elicited a characteristic series of deflections

in the averaged signal, the most prominent being the N1m

response peaking at around 100 ms after stimulus onset (Fig. 3a)

and generated in the auditory cortex (Fig. 3b and c). In all

subjects, the right hemisphere (Fig. 2) generated more prominent

responses than the left (F[1,8] = 13.5, Pb 0.01) and was used in

further analyses. The RSW filter improved the S/N of the N1m

against 50 Hz mains noise (frequency band 47–53 Hz) by 95%,

compared to the average S/N obtained from the sensor pair with

the highest N1m amplitudes in the averaged signal (F[1,8] =

26.9, P b 0.001). In the 1–45 Hz band, the improvement in the



Fig. 3. Grand-averaged activity elicited by auditory stimulation. (a) A single-sensor response above the right temporal area showing a prominent N1m response

peaking at around 100 ms. The sources of the N1m were focal both in the left (b) and right (c) hemispheres.
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S/N rate was 15% (F[1,8] = 12.2, P b 0.01). The RSW filter

was more effective against 50 Hz noise than against activity in

the 1–45 Hz band (F[1,8] = 19.7, P b 0.01), which indicates

that activity in the 1–45 Hz frequency band was mainly of

cortical origin.

In all subjects, auditory stimulation increased the spectral power

of the poststimulus unaveraged data compared to ongoing

prestimulus brain activity (average increase 20%; F[1,8] = 10.8,

P V 0.01). These increases were associated with transient auditory

responses peaking at around 50, 100, and 200 ms (P1m, N1m, and

P2m, respectively), and extending over frequencies 3–40 Hz at the

latency of the N1m response (Fig. 4).

Phase synchronization of ongoing brain activity is one

possible mechanism for the generation of event-related responses.

That is, following the onset of a sensory stimulus the phase

distribution of ongoing activity changes from uniform to one

which is centered around a specific phase (Penny et al., 2002; see

also Fig. 1a–d). Although the phase of a nonstationary broad-

band signal is poorly defined, the phase organization of MEG or

EEG data can be examined by using trial-to-trial amplitude
Fig. 4. Wavelet spectral power characterization of auditory event-related respons

data, was divided with the mean of the baseline power from the same frequency in

at 30% increase in signal power, only the three auditory responses P1m, N1m, and
variance over time: phase synchronization can produce an above-

baseline transient waveform in the averaged signal only if the

amplitudes of the oscillatory processes do not have a uniform

distribution, but rather, one that is reduced compared to that of

the baseline during the transient waveform. Therefore, the trial-to-

trial standard deviations of the signal amplitudes were calculated

over the trial window in the 1–45 Hz frequency band and in the

sub-bands 1–8 Hz, 8–15 Hz, 15–30 Hz, and 30–45 Hz. These

frequency bands correspond approximately to the division into

theta, alpha, beta, and gamma rhythms. In all the frequency

bands, the standard deviations of the amplitudes remained stable

throughout the trial duration (Fig. 5), although in the 1–45 Hz

band an increase of 6% (F[1,8] = 5.6, P b 0.05) was observed at

the latency of the N1m response. Thus, ongoing brain activity is

not in a coherent phase when the auditory ERR occurs, and phase

synchronization can be ruled out as an explanation of ERR

generation.

The relationship between ongoing brain activity and the

N1m response was further investigated by sorting single-trial

MEG responses into low, medium, and high spectral power
es. The power on each frequency, obtained from unaveraged RSW-filtered

order to obtain a frequency-specific signal-to-noise ratio. Using thresholding

P2m are observable (vertical lines indicate their respective peak latencies).



Fig. 5. The standard deviation of amplitudes over trials as a function of time.

In (a), data from all the trials from a single subject at 1–45 Hz band are

shown (black curves). The dotted white curve is the averaged response. The

solid white curve is the standard deviation of the amplitudes of the trials. The

standard deviation does not show a decrease at the time of the event-related

responses which would indicate phase synchronization. The distribution of

the curves resembles that of the additive component model in Fig. 1f rather

than that of the phase reorganization model in Fig. 1a. In (b), the grand-

averaged standard deviation profiles (normalized according to the N1m peak

amplitude) indicate that no phase synchronization and subsequent reduction

in the standard deviation occurs in any of the frequency bands (see Fig. 1).

Instead, there is a slight increase in standard deviation at the 1–45 Hz band at

the latency of the N1m (approximately 100 ms). This increase can be

accounted for by the trial-to-trial variance of the N1m response which is

additional to the variance of the ongoing brain activity.
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groups of equal size. The data were averaged separately for

each group and the peak amplitudes and latencies of the N1m

responses were determined. This procedure was carried out

separately for the pre- and poststimulus time windows in the

five frequency bands defined above. No effect of baseline

spectral power was found in the amplitude or latency of the

N1m response in any of the frequency bands (all P = ns), while

in all frequency bands the spectral power differences were

highly significant between the three spectral-power groups

(F[2,16] z 15, P b 0.001). In examining poststimulus spectral

power, we found that trials with high spectral power coincided

with trials with large N1m amplitude in the 1–45 Hz (F[2,16]

= 44.8, P b 0.001), 1–8 Hz (F[2,16] = 47.0, P b 0.001), 8–15

Hz (F[2,16] = 40.0, P b 0.001) and 15–30 Hz (F[2,16] = 6.5,

P b 0.01) frequency bands. This can be explained through

stochastic superposition of ongoing activity and N1m, which

results in trials of high- and low-spectral power (black and

gray curves in Fig. 1e and j, respectively), with the ongoing

oscillation being in either a dampening or enforcing phase in

relation to the N1m. When the wavelength of the ongoing

oscillation is much shorter than the width of the N1m response

(approximately 60 ms), this effect becomes unobservable and,

consequently, in the 30–45 Hz frequency band we found that

poststimulus spectral power had no effect on the amplitude of

the N1m (P = ns).
Discussion

The relationship between ongoing brain activity and human

auditory event-related responses (ERRs) was explored with MEG.

The spectral power of unaveraged poststimulus activity was 20%

larger than that of prestimulus activity and this increase could be

attributed to the elicitation of ERRs. Importantly, we found that the

phase of ongoing activity was in no coherent phase at any time

before or after stimulus presentation. In the light of these

observations, phase synchronization is an inadequate explanation

of ERR generation, which would appear to be independent of

ongoing brain activity.

By sorting single trials according to poststimulus spectral

power, we observed a strong effect of spectral power on the

amplitude of the N1m response. Such a dependence has

previously been taken to indicate that ERRs and ongoing activity

are interlinked (Makeig et al., 2002). Yet, as shown in Fig. 1e and

j, this effect can also be caused by stochastic superposition of

ongoing activity and independent ERRs. If the two were due to

interrelated processes, prestimulus spectral power should have an

effect on the ERRs. However, we found no such effect on the

N1m amplitude or latency. Thus, our results indicate a high

degree of independence between ongoing brain activity and

auditory ERRs. In conditions where the subject’s vigilance varies

or in cognitive tasks which are reflected in oscillatory brain

responses, however, the mutual sensitivity of ongoing brain

activity and ERRs to the arousal and/or cognitive state may lead

to correlations between the types of brain activity without proving

causality between the two.

For phase synchronization of ongoing brain activity to

underlie the emergence of the N1m response, a decrease in the

trial-to-trial amplitude variance of brain activity should be

observed at the N1m latency. Instead of this, we found a slight

variance increase (Fig. 5), which can be accounted for by the
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trial-to-trial amplitude variance of the N1m which is additional to

that of ongoing activity. This increase was observable only in the

1–45 Hz frequency band which is explained by the N1m

responses being either due to a unitary process or composed of

several processes which are temporally aligned and span a wide

frequency range (Fig. 4). In both cases, when the N1m is

decomposed into several frequency bands, the variances of the

amplitudes gained in the different frequency bands sum linearly

to produce the variance of the amplitude of the original signal. In

contrast, the phases of the ongoing oscillations in different

frequency bands are non-aligned, as shown by the amplitude

variance of the ongoing activity in 1–45 Hz band being less than

the sum of the sub-band amplitude variances (Fig. 5). Therefore,

the variance of the N1m sums linearly over the frequency bands

whereas that of ongoing activity fails to do so, leading to the

observed result.

Previous suggestions that ERRs are produced by phase

synchronization of ongoing activity were based on EEG data

(BaYar, 1980; Jansen et al., 2003; Makeig et al., 2002; Sayers et al.,

1974). The discrepancy between these suggestions and our results

is unlikely to be due to differences between EEG and MEG. Both

reflect the activity of the same primary current generators

(Hämäläinen et al., 1993), and recent evidence indicates that

MEG appears to be sensitive to all but deepest of mass-activity

brain sources (Hillebrand and Barnes, 2002). Previous studies have

drawn on either negative results (Sayers et al., 1974), possibly

caused by a low signal-to-noise ratio (avoided here by the

experimental design and the use of RSW), or have employed

phase analysis methods (Jansen et al., 2003; Makeig et al., 2002)

which fail to discriminate between phase synchronization and

signal modulation due to transient additive responses (see Fig. 1).

Also, it has been pointed out that a correlational link between

ongoing activity and ERRs (BaYar, 1980) does not in itself imply

causality (Jansen et al., 2003). Further, while the brain dynamics of

different sensory modalities may differ from each other, results

gained in the somatosensory system (Bijma et al., 2003) showing

that ongoing activity was unaffected by median nerve stimulation

support our conclusions.

The idea that stimulus-evoked responses are additional to

ongoing activity gains support from intracortical animal studies.

Firstly, cortical cells respond to auditory stimulation by

increasing or decreasing their firing rates (e.g., Brosch and

Schreiner, 1997, 2000). Secondly, multi-unit studies indicate that

ERR generation is due to a complex series of cross-laminar

sink-source configurations triggered by the stimuli and accom-

panied by increases in multi-unit activity (Arezzo et al., 1986;

Vaughan et al., 1986). Thirdly, intracranial (Arieli et al., 1996)

and intracellular (Azouz and Gray, 1999) measurements suggest

that the trial-to-trial variability of evoked responses can be

explained through linear superposition of ongoing activity and

the evoked response, with the ongoing dynamics being

unaffected by the evoked response. Finally, the suggestion that

phase synchronization underlies ERRs is problematic from a

neural information processing perspective because ongoing

oscillations would stochastically, and thus without sensory

stimuli, produce a state analogous to the stimulus-induced

synchronized state. This problem does not arise with stimulus-

evoked responses being additional to ongoing activity. In

resolving the fundamental problem of the relationship between

ongoing and evoked brain activity, our observations and

methodology may turn out to be useful to the future develop-
ment of electrophysiological measures both in basic research and

for practical purposes.
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