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For researchers and clinical practitioners alike, evoked and event-
related responses measured with MEG and EEG provide the means for
studying human brain function and dysfunction. However, the
generation mechanism of event-related responses remains unclear,
hindering our ability to formulate viable theories of neural information
processing. Event-related responses are assumed to be generated either
(1) separately of ongoing, oscillatory brain activity or (2) through
stimulus-induced reorganization of ongoing activity. Here, we
approached this issue through examining single-trial auditory MEG
data in humans. We demonstrate that phase coherence over trials
observed with commonly used signal decomposition methods (e.g.,
wavelets) can result from both a phase-coherent state of ongoing
oscillations and from the presence of a phase-coherent event-related
response which is additive to ongoing oscillations. To avoid this
problem, we introduce a method based on amplitude variance to
establish the relationship between ongoing oscillations and event-
related responses. We found that auditory stimuli do not give rise to
phase reorganization of ongoing activity. Further, increases in spectral
power accompany the emergence of event-related responses, and the
relationship between spectral power and the amplitude of these
responses can be accounted for by a linear summation of the event-
related response and ongoing oscillation with a stochastically distrib-
uted phase. Thus, on the basis of our observations, auditory event-
related responses are unique descriptors of neural information
processing in humans, generated by processes separate from and
additive to ongoing brain activity.
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Event-related responses (ERRs; “potentials” in EEG and
“fields” in MEG) are separated from ongoing brain activity and
system noise by averaging measurement epochs time-locked to
stimulus presentation. Ongoing activity and brain oscillations have
been linked with various cognitive processes such as attention
(Tiitinen et al., 1993) and sensory integration (Varela et al., 2001).
Moreover, several studies have concluded that averaged ERRs are
not separate from ongoing cortical processes, but rather, are
generated by phase synchronization and partial phase-resetting of
ongoing activity (Basar, 1980; Jansen et al., 2003; Makeig et al.,
2002; Sayers et al., 1974; see Fig. 1a—d). For example, the spectral
power of unaveraged EEG data appears to be independent of
auditory stimulation, suggesting that ERRs result from reorganiza-
tion of ongoing activity rather than from additional activity being
triggered by the stimulus (Sayers et al., 1974). Further, the power
of cortical oscillations at 8—13 Hz has been shown to correlate with
the amplitude of ERRs (Brandt et al., 1991; Rahn and Basar,
1993a,b), indicating that the two phenomena are interlinked.
However, both the amplitude of ERRs (N&étinen and Picton,
1987) and the level of ongoing brain activity (Coenen, 1998)
reflect the arousal level (e.g., vigilance) of the subject. Therefore,
as changes in the ERRs and in ongoing cortical activity are likely
to coincide temporally, the conclusion that ongoing activity
directly affects ERRs may be premature.

Methodologically, resolving this issue poses a challenge: for
example, even if ERRs were generated independently of ongoing
activity, the measured MEG or EEG signal would still be the sum of
the two (Fig. le and j), and disentangling them would be far from
trivial. Firstly, the oscillatory processes that make up ongoing
activity are nonstationary, that is, their phase and amplitude cannot
be accurately predicted from previous values (as evident in, e.g., the
spontaneous fluctuations of the alpha rhythm; Laufs et al., 2003).
Secondly, in analyzing oscillatory activity, limiting the frequency
band sacrifices the accuracy of temporal information (time-
frequency uncertainty, see e.g., Addison, 2002; Mallat, 1998). As
a direct consequence, when a signal is restricted to a narrow
frequency band through filtering or wavelets, a transient response
whose power is distributed over a wide frequency range will
inevitably affect the phase and amplitude of the ongoing oscillatory
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Fig. 1. Simulated data demonstrating the two possible generation mechanisms of the event-related responses (ERRs) and the stochastic summation of additive
transient responses and ongoing oscillation. Reorganization of the phase distribution of ongoing oscillations as a model of ERR generation (a—d): in (a), each
curve (N = 30) represents ongoing brain activity as a composite of four sinusoids with random initial phases and random frequencies in the 4—16 Hz range. At
75 ms, the phases of all the component sinusoids are set to zero. In (b), the averaged waveform of the curves in (a) exhibits a transient response peaking at 100
ms. In (c), the standard deviation of the amplitudes of the 30 curves in (a) is shown for each time point. This can be used as a measure of phase organization of
the data: synchronization of the component sinusoids (# = 75 ms) is indicated by the standard deviation going to zero. The phase of the curves in (a) is obtained
at each time point with a signal decomposition method (complex Morlet-wavelet, wave number = 5, center pass-band frequency 10 Hz) and the standard
deviation of the phases at each time point is shown in (d). The reduced variance of the phases after 75 ms in (d) indicates the phase-coherent state of the
oscillations. Transient response additive to ongoing oscillations as a model of ERR generation (e—j): In (e), a transient response (dotted curve) is triggered
during ongoing, oscillatory activity. The sum of the two (representing the measured EEG or MEG signal) depends on the phase of the oscillatory activity. The
black and grey curves represent the sum wave when the transient response and the oscillation are in the same and opposite phase, respectively. The two cases
differ with respect to the measured peak amplitude and the power of the measured signal. In (f), the same sinusoidal signal model as in (a) is used for the curves
(N = 30). However, no phase resetting occurs but a constant-amplitude response (a small downward deflection at 25—75 ms, followed by an upward deflection
at 75—125 ms and a small downward deflection at 125—175 ms) is superposed to all trials so that in the averaged signal (g), a transient response is observed. In
(h), the standard deviation of the amplitudes of the 30 curves in (f) is shown. The additive component does not change the amplitude variance of the signal. The
phase of the curves in (f) is obtained with the same technique as in (d) and shown in (i). Although the ongoing oscillations are of random phase, a phase-
coherent state similar to the one in (d) is observed at the latency of the transient response. This follows from the decomposition of the signal whereby the
estimated phase at each time point is determined by the phase of both the ongoing oscillation and the additive component. Hence, phase estimation with signal
decomposition techniques is unsuitable for studying the generation mechanisms of the ERRs. In (), averages of five trials with highest and lowest power from
(f) (black and grey curve, respectively) filtered with the Morlet-wavelet are displayed. Because filtering turns transient responses into oscillations and because
stochastic summation occurs between the ongoing oscillations and the transient response, as demonstrated in (e), the oscillatory processes can be interpreted to
contribute to the generation of the ERRs although, in reality, the two are independent of one another. All the panels have the same time scale; the horizontally
aligned panels have the same vertical scale except in (e) and (j).
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signal in its time-frequency neighborhood. Thus, by introducing
temporal correlations to the signal, filtering results in artefactual
predictability whereby the trial-to-trial amplitude and/or latency
variance of the transient response can be determined from the phase
and amplitude of the preceding ongoing oscillation although, in
reality, the two may be perfectly independent. Thirdly, as demon-
strated in Fig. 1, a phase-coherent state observed with signal
decomposition methods (e.g., wavelets) does not imply a phase-
coherent state of ongoing activity, but rather, can reflect the presence
of an additive, evoked response whose phase is coherent over trials.

Explaining the generation mechanism of ERRs is essential for
understanding neural information processing and the neural
circuits underlying human cognition. However, explaining ERRs
in terms of phase synchronization would appear problematic.
Firstly, if information were contained in the synchronized state of
different oscillatory processes, ongoing oscillations would sto-
chastically (albeit rarely) produce such a state even without the
presentation of a sensory stimulus. Secondly, if information
processing were related to phase resetting, ongoing oscillations
would stochastically be in the phase towards which they would
otherwise be set and thus, the sensory stimulus would have no
effect on brain activity.

Here, using MEG measurements on human subjects, we sought
to establish whether ERRs are generated through phase orga-
nization of ongoing activity or through processes separate from
ongoing activity. We examined the phase distribution of unaveraged
MEG data using a method of amplitude-variance analysis which
avoids the problems inherent in signal decomposition methods and
employed a spatial filtering technique to target activity originating
from auditory cortex. Spectral estimates and single-trial evaluation
techniques were used to examine the influence of ongoing brain
processes on the auditory ERRs.

Methods
Measurements, subjects, and basic data analysis

Nine healthy subjects were studied with their informed and
written consent. The study was approved by the Ethical
Committee of Helsinki University Central Hospital. The subjects
watched a silent film and were under the instruction to ignore the
auditory stimuli. The measurements were carried out in a
magnetically shielded room with a 306-sensor MEG device
(Vectorview, Elekta Neuromag Oy, Finland). The device has 204
planar gradiometer and 102 single-loop magnetometer sensors of
which the gradiometers were used in the analysis because of the
direct relationship between the lead-fields of the planar gradio-
meters and source location (Hamaéldinen et al., 1993). The stimuli
were binaurally delivered 750 Hz tones of 100 ms duration with
10 ms linear onset and offset ramps. The noise level inside the
measurement room was 32 dB SPL (sound pressure level, A-
weighted) and the stimuli were adjusted to 80 dB SPL. The
stimuli were presented at least 400 times using an onset-to-onset
interval of 800 ms. Both raw and online-averaged data were
collected using a sampling rate of 600 Hz and a pass-band of
0.03-200 Hz. Trials with horizontal or vertical electrooculograms
(EOGs) exceeding an absolute value of 150 uV were excluded
from the online-averages. The data were filtered with two-way
zero-phase filtering employing Chebyshev type-II infinite impulse
response (IIR) filters with >50 dB stop-band attenuation,

optimized for maximal steepness of the roll-off using the
maximum order of the filter without pass-band ripple. The right-
and left-hemispheric responses were compared using the average
magnitude from all the 54 sensors of the selection shown in Fig.
2 with the selection mirrored to the left hemisphere. Source
visualization was performed from online-averaged data with L1
minimum-norm estimates (Uutela et al., 1999) with no region of
interest (ROI) weighting.

Response source weighting (RSW) filter

The amplitude of the averaged N1m response of each sensor
indicates the sensitivity of that sensor to the source of the response.
This allows one to assign a value to each sensor with which the
unaveraged data are weighted. This set of weights and subsequent
averaging over sensors comprises a response source weighting
(RSW) filter, which can be considered a derivative of signal space
projection (SSP, Tesche et al., 1995) and synthetic aperture
magnetometry (SAM, Vrba and Robinson, 2001). RSW filters
were constructed individually for each subject and employed to the
data prior to further analyses. The N1m latency for the RSW
filtering process was determined from the online-averaged data of
the sensor displaying maximum response amplitude. The ampli-
tudes of the online-averaged responses from the 54 sensors were
divided with the N1m peak amplitude measured at the sensor with
maximum response (Fig. 2). This provided a coefficient for each
sensor, and was used to weight the unaveraged data from the
sensors. The weighted unaveraged data were summed over the 54
sensors. The signal-to-noise ratio (S/N) was determined as the peak
amplitude of the N1m divided by the mean value of the baseline
signal magnitude. The N1m and noise values were taken from
absolute values of unaveraged data of all subjects and the 1-45 Hz
frequency band was used for obtaining the N1m values. In
subsequent analyses, the N1m peak latency was determined from
the RSW-filtered data using stimulus onset time-locked averaging
over all trials.

Spectral estimates, time-frequency analysis, and variance
calculation

To ensure that EOG artefacts do not have different
distributions in the pre- and poststimulus time windows, the
unaveraged data were first divided into 800-ms data windows
(starting 400 ms before stimulus onset), and those windows
coinciding with >100 pV EOG amplitudes were excluded. The
accepted 800-ms samples were then divided into 400-ms pre- and
poststimulus data windows, which were detrended and mean-
removed. Spectral estimation was performed with a nonparame-
tric multitaper method (Percival and Walden, 1993) with zero-
padded data windows (time-band width product, NW = 1.5,
length of the FFT = 1024). The data from the 1-45 Hz
frequency band were used in the spectral pre- and poststimulus
power estimation. The mean spectral power of each specified
frequency band was used when the single-trial data sorting was
performed. The amplitudes and latencies of the N1m responses in
the subaverages were obtained separately for each subject from a
20-ms time window centered using the peak amplitude of the
data averaged over all the trials.

For the time-frequency analysis of the simulations (Fig. 1), we
used a Morlet wavelet with a center frequency of 10 Hz (see, e.g.,
Addison, 2002; Mékinen et al., 2004; Torrence and Compo, 1998).
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Fig. 2. The grand-averaged responses of the MEG gradiometer sensors. The auditory responses were more pronounced in the right hemisphere than in the left.
The bordered area shows the 54 sensors used in response source-weighting (RSW) filter. The sensor depicted in Fig. 3 is encircled.

This is the central frequency of the simulated oscillations and also
corresponds to the approximate frequency of the transient
responses. The simulation time windows (—1.0 to 1.0 s) were
sufficiently long to avoid edge artefacts within the examined time
window (—100 to 300 ms). The wavelet power spectra from the
MEG data (Fig. 4) were calculated using 1000-ms data windows
(starting 500 ms before stimulus onset) after EOG rejection (see
above). We used second-derivative-of-Gaussian (“Mexican hat”)
wavelets, which have a high temporal resolution. The center pass-
band frequency of the wavelets was set at a spacing of 1 Hz.
Edge artefacts were eliminated by discarding the first and last 100
ms of the wavelet-transformed data as well as the data of the
lowest frequency (1 Hz). The single-trial wavelet power spectra
were averaged over trials and subjects. The data of each
frequency were divided the mean of the prestimulus (—400 to 0
ms) baseline power for that frequency and the data were further
thresholded with a value of 1.3. The wavelet spectral power
increases shown in the colored areas of Fig. 4. were at least seven
times larger than the standard deviations of the baseline power of
the corresponding frequencies (for normally distributed data, this
corresponds to P < 107'?),

For calculating the standard deviations of the amplitude, the
unaveraged data were first band-pass filtered (according to bands
depicted in Fig. 5) and then divided into 800-ms time windows.
EOG artefact rejection was carried out by the procedure described

above. The accepted trials of each subject were collected into a
matrix (each 800-ms trial forms a row of the matrix) from which
the standard deviations were calculated for each time point. For
statistical analyses, the standard deviation at the N1m latency was
obtained separately from each subject by calculating the mean of
the amplitude variance in a 50-ms time window centered at the
peak latency of the grand-averaged N1m. These mean values
were normalized using the mean of the baseline (—400-0 ms) and
compared with the mean values from a 350- to 400-ms time
window normalized in the same manner.

Results

Auditory stimuli elicited a characteristic series of deflections
in the averaged signal, the most prominent being the NIm
response peaking at around 100 ms after stimulus onset (Fig. 3a)
and generated in the auditory cortex (Fig. 3b and c). In all
subjects, the right hemisphere (Fig. 2) generated more prominent
responses than the left (F[1,8] = 13.5, P< 0.01) and was used in
further analyses. The RSW filter improved the S/N of the N1m
against 50 Hz mains noise (frequency band 47-53 Hz) by 95%,
compared to the average S/N obtained from the sensor pair with
the highest N1m amplitudes in the averaged signal (F[1,8] =
26.9, P < 0.001). In the 1-45 Hz band, the improvement in the



V. Mdkinen et al. / Neurolmage 24 (2005) 961-968 965

3

| Amplitude (fT/cm)

Time (ms)

a b c
5 3
0 ‘
20 0
0 400

Source strength (nAm)

Fig. 3. Grand-averaged activity elicited by auditory stimulation. (a) A single-sensor response above the right temporal area showing a prominent N1m response
peaking at around 100 ms. The sources of the N1m were focal both in the left (b) and right (c) hemispheres.

S/N rate was 15% (F[1,8] = 12.2, P < 0.01). The RSW filter
was more effective against 50 Hz noise than against activity in
the 1-45 Hz band (F[1,8] = 19.7, P < 0.01), which indicates
that activity in the 1-45 Hz frequency band was mainly of
cortical origin.

In all subjects, auditory stimulation increased the spectral power
of the poststimulus unaveraged data compared to ongoing
prestimulus brain activity (average increase 20%; F[1,8] = 10.8,
P < 0.01). These increases were associated with transient auditory
responses peaking at around 50, 100, and 200 ms (P1m, N1m, and
P2m, respectively), and extending over frequencies 3—40 Hz at the
latency of the N1m response (Fig. 4).

Phase synchronization of ongoing brain activity is one
possible mechanism for the generation of event-related responses.
That is, following the onset of a sensory stimulus the phase
distribution of ongoing activity changes from uniform to one
which is centered around a specific phase (Penny et al., 2002; see
also Fig. la—d). Although the phase of a nonstationary broad-
band signal is poorly defined, the phase organization of MEG or
EEG data can be examined by using trial-to-trial amplitude

variance over time: phase synchronization can produce an above-
baseline transient waveform in the averaged signal only if the
amplitudes of the oscillatory processes do not have a uniform
distribution, but rather, one that is reduced compared to that of
the baseline during the transient waveform. Therefore, the trial-to-
trial standard deviations of the signal amplitudes were calculated
over the trial window in the 1-45 Hz frequency band and in the
sub-bands 1-8 Hz, 8-15 Hz, 15-30 Hz, and 30-45 Hz. These
frequency bands correspond approximately to the division into
theta, alpha, beta, and gamma rhythms. In all the frequency
bands, the standard deviations of the amplitudes remained stable
throughout the trial duration (Fig. 5), although in the 1-45 Hz
band an increase of 6% (F[1,8] = 5.6, P < 0.05) was observed at
the latency of the N1m response. Thus, ongoing brain activity is
not in a coherent phase when the auditory ERR occurs, and phase
synchronization can be ruled out as an explanation of ERR
generation.

The relationship between ongoing brain activity and the
NIm response was further investigated by sorting single-trial
MEG responses into low, medium, and high spectral power
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Fig. 4. Wavelet spectral power characterization of auditory event-related responses. The power on each frequency, obtained from unaveraged RSW-filtered
data, was divided with the mean of the baseline power from the same frequency in order to obtain a frequency-specific signal-to-noise ratio. Using thresholding
at 30% increase in signal power, only the three auditory responses P1m, N1m, and P2m are observable (vertical lines indicate their respective peak latencies).
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Fig. 5. The standard deviation of amplitudes over trials as a function of time.
In (a), data from all the trials from a single subject at 1-45 Hz band are
shown (black curves). The dotted white curve is the averaged response. The
solid white curve is the standard deviation of the amplitudes of the trials. The
standard deviation does not show a decrease at the time of the event-related
responses which would indicate phase synchronization. The distribution of
the curves resembles that of the additive component model in Fig. 1f rather
than that of the phase reorganization model in Fig. la. In (b), the grand-
averaged standard deviation profiles (normalized according to the N1m peak
amplitude) indicate that no phase synchronization and subsequent reduction
in the standard deviation occurs in any of the frequency bands (see Fig. 1).
Instead, there is a slight increase in standard deviation at the 1-45 Hz band at
the latency of the N1m (approximately 100 ms). This increase can be
accounted for by the trial-to-trial variance of the N1m response which is
additional to the variance of the ongoing brain activity.

groups of equal size. The data were averaged separately for
each group and the peak amplitudes and latencies of the N1m
responses were determined. This procedure was carried out
separately for the pre- and poststimulus time windows in the
five frequency bands defined above. No effect of baseline
spectral power was found in the amplitude or latency of the
NIm response in any of the frequency bands (all P = ns), while
in all frequency bands the spectral power differences were
highly significant between the three spectral-power groups
(F[2,16] = 15, P < 0.001). In examining poststimulus spectral
power, we found that trials with high spectral power coincided
with trials with large N1m amplitude in the 1-45 Hz (F[2,16]
=448, P < 0.001), 1-8 Hz (F[2,16] = 47.0, P < 0.001), 815
Hz (F[2,16] = 40.0, P < 0.001) and 15-30 Hz (F[2,16] = 6.5,
P < 0.01) frequency bands. This can be explained through
stochastic superposition of ongoing activity and Nlm, which
results in trials of high- and low-spectral power (black and
gray curves in Fig. le and j, respectively), with the ongoing
oscillation being in either a dampening or enforcing phase in
relation to the Nlm. When the wavelength of the ongoing
oscillation is much shorter than the width of the N1m response
(approximately 60 ms), this effect becomes unobservable and,
consequently, in the 30—45 Hz frequency band we found that
poststimulus spectral power had no effect on the amplitude of
the NIm (P = ns).

Discussion

The relationship between ongoing brain activity and human
auditory event-related responses (ERRs) was explored with MEG.
The spectral power of unaveraged poststimulus activity was 20%
larger than that of prestimulus activity and this increase could be
attributed to the elicitation of ERRs. Importantly, we found that the
phase of ongoing activity was in no coherent phase at any time
before or after stimulus presentation. In the light of these
observations, phase synchronization is an inadequate explanation
of ERR generation, which would appear to be independent of
ongoing brain activity.

By sorting single trials according to poststimulus spectral
power, we observed a strong effect of spectral power on the
amplitude of the NIm response. Such a dependence has
previously been taken to indicate that ERRs and ongoing activity
are interlinked (Makeig et al., 2002). Yet, as shown in Fig. le and
j, this effect can also be caused by stochastic superposition of
ongoing activity and independent ERRs. If the two were due to
interrelated processes, prestimulus spectral power should have an
effect on the ERRs. However, we found no such effect on the
NIm amplitude or latency. Thus, our results indicate a high
degree of independence between ongoing brain activity and
auditory ERRs. In conditions where the subject’s vigilance varies
or in cognitive tasks which are reflected in oscillatory brain
responses, however, the mutual sensitivity of ongoing brain
activity and ERRs to the arousal and/or cognitive state may lead
to correlations between the types of brain activity without proving
causality between the two.

For phase synchronization of ongoing brain activity to
underlie the emergence of the N1m response, a decrease in the
trial-to-trial amplitude variance of brain activity should be
observed at the N1m latency. Instead of this, we found a slight
variance increase (Fig. 5), which can be accounted for by the
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trial-to-trial amplitude variance of the N1m which is additional to
that of ongoing activity. This increase was observable only in the
1-45 Hz frequency band which is explained by the Nlm
responses being either due to a unitary process or composed of
several processes which are temporally aligned and span a wide
frequency range (Fig. 4). In both cases, when the NIm is
decomposed into several frequency bands, the variances of the
amplitudes gained in the different frequency bands sum linearly
to produce the variance of the amplitude of the original signal. In
contrast, the phases of the ongoing oscillations in different
frequency bands are non-aligned, as shown by the amplitude
variance of the ongoing activity in 1-45 Hz band being less than
the sum of the sub-band amplitude variances (Fig. 5). Therefore,
the variance of the N1m sums linearly over the frequency bands
whereas that of ongoing activity fails to do so, leading to the
observed result.

Previous suggestions that ERRs are produced by phase
synchronization of ongoing activity were based on EEG data
(Basar, 1980; Jansen et al., 2003; Makeig et al., 2002; Sayers et al.,
1974). The discrepancy between these suggestions and our results
is unlikely to be due to differences between EEG and MEG. Both
reflect the activity of the same primary current generators
(Haméldinen et al., 1993), and recent evidence indicates that
MEG appears to be sensitive to all but deepest of mass-activity
brain sources (Hillebrand and Barnes, 2002). Previous studies have
drawn on either negative results (Sayers et al., 1974), possibly
caused by a low signal-to-noise ratio (avoided here by the
experimental design and the use of RSW), or have employed
phase analysis methods (Jansen et al., 2003; Makeig et al., 2002)
which fail to discriminate between phase synchronization and
signal modulation due to transient additive responses (see Fig. 1).
Also, it has been pointed out that a correlational link between
ongoing activity and ERRs (Basar, 1980) does not in itself imply
causality (Jansen et al., 2003). Further, while the brain dynamics of
different sensory modalities may differ from each other, results
gained in the somatosensory system (Bijma et al., 2003) showing
that ongoing activity was unaffected by median nerve stimulation
support our conclusions.

The idea that stimulus-evoked responses are additional to
ongoing activity gains support from intracortical animal studies.
Firstly, cortical cells respond to auditory stimulation by
increasing or decreasing their firing rates (e.g., Brosch and
Schreiner, 1997, 2000). Secondly, multi-unit studies indicate that
ERR generation is due to a complex series of cross-laminar
sink-source configurations triggered by the stimuli and accom-
panied by increases in multi-unit activity (Arezzo et al., 1986;
Vaughan et al., 1986). Thirdly, intracranial (Arieli et al., 1996)
and intracellular (Azouz and Gray, 1999) measurements suggest
that the trial-to-trial variability of evoked responses can be
explained through linear superposition of ongoing activity and
the evoked response, with the ongoing dynamics being
unaffected by the evoked response. Finally, the suggestion that
phase synchronization underlies ERRs is problematic from a
neural information processing perspective because ongoing
oscillations would stochastically, and thus without sensory
stimuli, produce a state analogous to the stimulus-induced
synchronized state. This problem does not arise with stimulus-
evoked responses being additional to ongoing activity. In
resolving the fundamental problem of the relationship between
ongoing and evoked brain activity, our observations and
methodology may turn out to be useful to the future develop-

ment of electrophysiological measures both in basic research and
for practical purposes.
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