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Using available signal (i.e., spectral and time-frequency) analysis

methods, it can be difficult to detect neural oscillations because of

their continuously changing properties (i.e., nonstationarities) and the

noise in which they are embedded. Here, we introduce fractally scaled

envelope modulation (FSEM) estimation which is sensitive specifically

to the changing properties of oscillatory activity. FSEM utilizes the

fractal characteristic of wavelet transforms to produce a compact, two-

dimensional representation of time series data where signal compo-

nents at each frequency are made directly comparable according to the

spectral distribution of their envelope modulations. This allows the

straightforward identification of neural oscillations and other signal

components with an envelope structure different from noise. For stable

oscillations, we demonstrate how partition-referenced spectral estima-

tion (PRSE) removes the noise slope from spectral estimates, yielding a

level estimate where only peaks signifying the presence of oscillatory

activity remain. The functionality of these methods is demonstrated

with simulations and by analyzing MEG data from human auditory

brain areas. FSEM uncovered oscillations in the 9- to 12-Hz and 15- to

18-Hz ranges whereas traditional spectral estimates were able to detect

oscillations only in the former range. FSEM further showed that the

oscillations exhibited envelope modulations spanning 3–7 s. Thus,

FSEM effectively reveals oscillations undetectable with spectral

estimates and allows the use of EEG and MEG for studying cognitive

processes when the common approach of stimulus time-locked

averaging of the measured signal is unfeasible.
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When a system displays rhythmic activity, one may assume that

there are identifiable dynamics in the operation of the system. A

large portion of cognitive neuroscience has recently focused on

studying oscillations modulated by sensory stimulation and

providing a general framework for understanding the oscillatory

processes of the brain (e.g., Freeman, 2004a,b; Pfurtscheller and

Lopes da Silva, 1999; Varela et al., 2001). The study of the

dynamic properties of brain oscillations has gained momentum

from methodological advances such as time-frequency transforms,

which in principle allow one to observe the approximate frequency

and time course of rhythmic brain processes. Unfortunately, the

detection of neural oscillations is very difficult with the currently

available methods because these oscillations are inherently

unstable and separating them from neural and measurement noise

is problematic: Already the detection of the presence of rhythmic

activity is a major stumbling block for the study of oscillatory

brain processes.

The standard method for detecting noise-buried oscillations is

spectral estimation: the data are typically divided into short

segments whose spectral estimates are averaged to obtain the

averaged power spectral density (PSD) where oscillatory processes

appear as peaks. There are, however, several reasons why neural

oscillations are poorly visible with spectral estimation: (1) Neural

oscillations are nonstationary, that is, their frequency and

amplitude change over time and phase transients can also occur.

Such oscillations are not represented by a single frequency and

their power is spread over a range of frequencies: increasing the

data segment length (over a certain point) does not yield more

accurate information on the frequency of the oscillation, whereas a

high number of short time windows allows one to reduce the

variance of the average PSD. (2) There are no a priori reasons for

assuming that neural oscillations resemble sine waves and the

spectral representation of nonsinusoidal waveforms, even when

stationary, is spread over several frequencies. (3) Neural oscil-

lations occur within a noise profile that has a roughly one-over-

frequency (1/f ) shape (i.e., low frequencies have more power per

frequency unit than high frequencies) and the noise profile can

change along the frequency axis. If the signal-to-noise ratio (SNR)

is not sufficient, random variations within the noise profile can be
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greater than the deflection produced by the oscillations, making the

detection of the latter very difficult. When SNR is high, the PSD

estimate is usually smooth, but one is nonetheless left with an

unknown noise profile upon which a broad deflection of an

unknown shape representing the oscillation is superposed.

Time-frequency estimation methods such as short-time Fourier

transforms, Wigner distributions, adaptive autoregressive moving

average (ARMA) models, and discrete and continuous wavelet

transforms including matching pursuit algorithms (see e.g., Cohen,

1995; Durka, 2003; Krystal et al., 1999; Mallat, 1998; Pardey et al.,

1996) provide, by definition, simultaneous information on the

frequency and time evolution of a process. These methods enable

the detection of even minute event-related power changes in brain

processes. This is achieved by using the prestimulus power level at

each frequency band as a reference against which changes are

detected and through stimulus time-locked averaging of single-trial

time-frequency estimates. However, these two techniques can only

be used for studying oscillations modulated by stimulation in a time-

locked way; any other oscillations, whether modulated or unmodu-

lated, are beyond their scope. Thus, time-frequency estimates are

not especially useful for examining ongoing oscillations; time-

frequency estimates at each time point are derived from data of a

restricted neighborhood of that time point, whereas spectral

estimates are typically derived using much longer data segments

and they will consequently have a higher SNR for detecting

oscillations. Averaging of time-frequency estimates over time

improves SNR in the frequency domain but leads to similar results

as traditional spectral estimates without providing major advan-

tages. Further, recent examinations (Mäkinen et al., 2005; Yeung et

al., 2004) have shown that the currently employed time-frequency

methods are not suitable for distinguishing between modulations of

ongoing oscillations and the emergence of evoked responses.

While nonstationarities of neural oscillations pose a major

problem in spectral estimation, they are, in fact, their characteristic

feature. Here, instead of considering nonstationarity a problem, we

introduce fractally scaled envelope modulation (FSEM) estimation

which exploits this inherent property in the detection and analysis

of neural oscillations. The amplitude envelope of a stationary

oscillation is a line with zero slope, whereas nonstationarities of an

oscillation are manifested as deflections in the envelope curve. In

FSEM, the envelopes for each frequency are obtained via

continuous wavelet transforms and the behavior of the envelope

curves is captured through appropriate spectral estimation. The

method results in a two-dimensional signal representation (fre-

quency vs. envelope modulation frequency) where the examined

frequencies are of equal scale but, importantly, neural oscillations

can be identified by their modulation structure differing from that

of the noise at neighboring frequencies. Although quite different in

implementation, FSEM is functionally closer to spectral estimation

than to time-frequency methods in providing a compact represen-

tation of large amounts of data and in revealing noise-buried

oscillations. However, unlike spectral estimation, FSEM is able to

describe the temporal structure of oscillations. Complementing

FSEM, designed to reveal nonstationary oscillations, we also

develop spectral estimation methodology for brain research

purposes by introducing partition-referenced spectral estimation,

PRSE (for a preliminary exposition, see Mäkinen et al., 2004b), a

technique which removes the 1/f slope of the noise and leaves near-

stationary oscillations as distinct peaks in the estimate. In the

following, we begin by describing spectral estimation and its

extension PRSE, and then proceed to FSEM. The methods are used
to examine ongoing brain activity obtained with MEG from human

auditory brain areas during auditory stimulation. With the focus of

our investigation being on ongoing activity, none of the data

analysis in this study is performed in a stimulus time-locked

manner. We demonstrate that despite this, FSEM can also describe

auditory-evoked activity in virtue of this being a form of

modulation of the MEG signal.
Methods

Measurements, subjects, data collection, and basic analysis

Ten healthy human subjects were studied with their informed and

written consent. The study was approved by the Ethical Committee

of Helsinki University Central Hospital. The measurements were

carried out in a magnetically shielded room with a 306-sensor MEG

device (Elekta Neuromag Oy, Finland). The subjects watched a

silent film and were under instruction to ignore the auditory stimuli.

The stimuli were binaurally delivered 750-Hz tones of 50-ms

duration (with 5-ms linear onset and offset ramps) adjusted to 80 dB

(sound pressure level, A-weighted) and presented >800 times using

an onset-to-onset inter-stimulus interval of 1200 ms (corresponding

to ¨16 min of raw data). Two empty-room measurements with the

same settings were also performed. The data were collected using a

sampling rate of 600 Hz and a pass-band of 0.03–200 Hz. Online

averaging was performed with epochs rejected if the electrooculo-

gram exceeded )150) AVor if the amplitude of the MEG within a

trial exceeded )3000) fT/cm. For each subject, data were analyzed

from the (planar) gradiometer pair which displayed the largest-

amplitude N100m response. All the analyses described below were

carried out for data from each sensor of the pair separately, after

which vector sums x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1ð Þ2 þ x2ð Þ2

q
of the analysis results were

calculated. This was done because each sensor measures only one

orthogonal component of the spatial gradient of the magnetic field

(Knuutila et al., 1993). Data were visually inspected and, in two

subjects, a particularly noisy data segment from a single sensor was

excluded from further analysis. To simplify subsequent analyses, the

data were upsampled to 1000Hz. Spectral estimation was performed

using zero-padded 4096-point FFT periodograms with time win-

dows of 500, 1000, and 2000 ms. With a high number of spectral

estimates providing a smooth average PSD, we focused on the

frequency resolution and used a boxcar window for spectral

estimation. The results of the spectral estimation are of the form

10 � log10(Power) [(fT/cm)2 / Hz] but for convenience are referred

to simply as Power (dB). For artefact rejection, time windows

whose standard deviations (SD) exceeded double the mean SD over

all time windows were rejected from spectral estimation. The data

windows were detrended (with linear least squares fit) prior to

calculation of the spectral estimates. This preprocessing was used in

all following spectral estimates (e.g., within FSEM). The time

windows of the PSD estimation were spaced at half the distance of

their length. The time windows were therefore overlapping, and

while this is partially redundant it also reduces the data loss due to

artefact rejection caused by local disturbances.

Partition-referenced spectral estimation: basic description

Partition-referenced spectral estimation, PRSE, is a new

technique we propose for removing the 1/f noise slope inherent

in spectral estimates of brain activity. It is based on the observation
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that as the length of the time window increases from which a

spectral estimate is calculated, the spectral peaks of approximately

stationary oscillations become sharper and higher in amplitude.

This effect is considered here in more detail using the periodogram,

the basic spectral estimation method which is a magnitude-squared

discrete Fourier transform of a signal with power scaled according

to signal length. The periodogram can be considered to operate by

filtering the signal with sine and cosine functions that match each

estimated frequency. These filters correspond to a bank of band-

pass filters, with the output of each filter producing a frequency

point (bin) in the spectral estimate (see, e.g., Hayes, 1996). The

bandwidth of each filter is inversely proportional to the length of

the signal. When the periodogram is calculated using a short time

window the filters have large bandwidths and several filters of the

periodogram have considerable overlap with any single-frequency

oscillation. Thus, in the obtained spectral estimate, the power of the

oscillation is spread over a wide frequency range. When a longer

time window is used, the filter bandwidths are narrower and hence

the frequency of the oscillation overlaps effectively with fewer

filters. The power is now concentrated around fewer frequency

points with higher amplitude.

The prerequisite for this effect is that the oscillation is

approximately stationary within the time windows from which the

estimate is calculated. If the signal is noise (i.e., each value of the

signal is independent from previous values), the PSD values reflect

stochastic coincidence between signal values and the filters of the

periodogram and are generally independent of the used window

length. Therefore, if we have data where an oscillation occurs

within noise and we divide a PSD estimate of the data with a PSD

obtained using a shorter time window, the slope of the noise is

removed. As the peak of the oscillation is of higher amplitude in the

PSD obtained with the longer time window, a deflection signifying

the presence of rhythmic activity remains even after the division.

In PRSE, we use the PSD of a time window as the nominator

and the average of the PSD estimates calculated from the partitions

of the same time window as the denominator (=reference PSD),

which ensures that the PSD estimate and its reference contain the

same data. The most important factor determining the outcome of

PRSE is the level of stationarity of the oscillations within the

examined signal. That is, when window length is increased and the

peak of an oscillation is no longer observed in PRSE, it indicates

that the oscillation is spread over a wider frequency band than the

filter bandwidth of the partitioned window. Therefore, by using a

range of window lengths, PRSE allows one to obtain a measure of

the duration of the stationarity of an oscillation.

PRSE: implementation and technical considerations

In the current study, PRSEs were calculated using 25 logarithmi-

cally spaced time window lengths in the 500- to 4000-ms range.

Time windows were rejected if their SD exceeded double the mean

SD calculated over 2000-ms time windows for each subject. The

same half-overlapping window spacing as in the direct PSD
estimation was used. For each time window, the reference spectrum

was obtained by halving the time window into two parts prior to

calculating the periodogram. FFT length was selected to be the

closest power of two greater than twice the number of samples of the

nonpartitioned time window. PRSEs calculated using shorter time

windows were upsampled to the length of the PRSE of the longest

time window. This is computationally much more efficient than

using the same FFT length for all time windows.

The lowest oscillation frequency (besides DC) whose power

can be estimated with spectral estimation has a cycle length

(inverse of frequency) equal to the length of the analyzed time

window. Hence, as the reference PSD is not valid for frequencies

with cycle lengths above the length of the partitions, the

corresponding frequency points were discarded from the estimates.

Oscillations have a characteristic shape in PRSE where the peak of

the oscillation is surrounded by power reductions. This follows

from the full-window PSD estimate containing the same power as

the partition reference, but with the power being more concentrated

in the former. This characteristic shape of PRSE has the effect that

peaks not accurately aligned, for example over subjects, effectively

cancel each other out in grand-averaging. To form averages of

PRSEs of heterogenic data, one needs to use a nonlinear transform

which enhances the positive peaks more than the surrounding

power reductions. As the mean value of the PRSE is unity, a

straightforward transformation is to calculate moments (i.e.,

powers) of the data: these have a nonlinear effect in increasing

the >1 values more than reducing the <1 values, which prevents the

cancellation effect in averaging. In the present study, the 10th

moment was used in the grand average. The value of the moment is

arbitrarily selectable, with the higher values emphasizing the peaks

more but also making the estimate more susceptible to noise.

The grand average PRSE for single-sensor data x can be written

as shown in Eq. (1), where P is the number of accepted data

windows with onset times tp, and PSD is the periodogram

algorithm including preprocessing of data. The window length L

is an even number (25 instances were used here; see above), the

moment is m, and N is the number of subjects. For gaining single-

subject probability values for PRSE and FSEM, we used an a priori

assumption that the data are normally distributed. The variance of

this distribution was estimated from the selected baseline (further

validated by the results in Fig. 3 where the data contain no

structure if the signal consists of noise only). The probabilities

were then obtained from the two-tailed complement of the normal

cumulative distribution function. A peak whose amplitude was at

least 3.3 SDs above the mean of the signal (corresponding to P <

0.001) was considered significant. For calculating the SD, the 20-

to 40-Hz range was used because it contained no peaks. Finally, we

might note that the spectral slope can also be removed from the

spectrum of the full-length time window with subtraction of the

reference spectrum rather than with division as used here. After

subtraction, however, the magnitude of the noise in the estimate

remains 1/f-dependent on frequency, which does not facilitate the

meaningful use of nonlinear techniques in grand-averaging.
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V.T. Mäkinen et al. / NeuroImage 28 (2005) 389–400392
Fractally scaled envelope modulation estimation: basic description

Fractals are objects that display self-similarity over different

scales, examples of these being found widely in nature and

mathematics (e.g., Barnsley, 1988). Wavelets exhibit fractal

behavior because, regardless of the scale (i.e., center frequency

or cycle length of a wavelet), the shape of the wavelet remains

the same. In contrast, the filter shape in Fourier analysis changes

with increasing frequency so that it contains more cycles of the

corresponding frequency. With wavelets the filter shape is

constant, but because of the definition of frequency, the
Fig. 1. Flow chart of the calculation stages of FSEM. Th
bandwidth of the filter increases with decreasing scale (increasing

frequency). This is the fundamental difference between Fourier

(e.g., periodogram) and wavelet analysis and serves as the

starting point of fractally scaled envelope modulation (FSEM)

estimation.

The first step in FSEM (Fig. 1) is a continuous wavelet

transform (CWT, e.g., Addison, 2002; Mallat, 1998; Torrence and

Compo, 1998) of the data: If the wavelet is complex, the modulus

of the wavelet coefficients describes the time course of the

amplitude envelope of that frequency. If the wavelet has a real

part only, the amplitude envelope is obtained through Hilbert-
e returning arrows refer to loops in the algorithm.
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transforming the wavelet coefficients and taking the modulus of the

transform. As the CWT is fractally scaled, the envelope fluctua-

tions of the wavelet transform and the cycle length of the

corresponding scale have the same ratio at all scales. That is, the

analysis can be performed to the same resolution at every scale

when the envelopes of the wavelet transform are resampled so that

at all scales the same number of samples corresponds to one cycle.

After this operation, the number of samples at each scale is thus no

longer equal; larger scales (lower frequencies) contain less data

than smaller ones, which is in line with the amount of information

the signal at each scale can have. This can readily be observed

from the densities of the wavelet coefficients per scale in a discrete

wavelet transform (Addison, 2002; Mallat, 1998).

The fluctuation of the amplitude envelopes obtained through

the CWT is efficiently examined with spectral estimation. To retain

fractal scaling, the PSD estimates of the envelopes need to be

calculated using equal-length data windows at each scale. These

PSD estimates are then averaged for each scale. The number of

data windows that are available for the calculation of the PSD

estimates is higher with smaller scales. This does not affect the

shape of the PSD but, after averaging the PSDs at each scale, the

smaller-scale PSDs have a lower noise level. The mean power of

the PSD estimates obtained at larger scales (lower frequencies)

tends to be greater than that obtained at smaller scales, as it

approximately follows the 1/f power distribution of a PSD

calculated directly from the data. However, the actual power is

not of interest but, rather, how this power is distributed in the PSD

estimates of the envelope fluctuations. Therefore, when we

normalize the envelope PSDs at each scale to be of equal mean

power, the outcome is a two-dimensional (frequency vs. envelope

modulation frequency) representation of time series data describing

specifically, for each analyzed frequency (wavelet scale), the

distribution of envelope modulations in respect to its cycle length.

In the following, this distribution is simply referred to as the

structure of the signal at that frequency, where the frequency is the

center pass-band frequency of the used wavelet.

The PSD of a neural signal typically exhibits decreasing power

with increasing frequency as does the PSD of the envelope

modulation, which is likely to represent so-called multifractal

behavior (Mandelbrot, 1999). Thus, the current PSD estimates

have decaying power with increasing envelope modulation (EM)

frequency (modulations per cycle) and the detection of a peak

from the possibly noisy PSD slope can be difficult. However,

unlike with the PSD obtained directly from the data, we now have

a PSD for each frequency. These PSDs differ from each other only

according to the distribution of the spectral power of the envelope

modulations. Thus, the values reflecting modulation structure

differing from that of the noise can be readily identified with

respect to other values of the corresponding EM frequency. The

simplest way of doing this is to subtract the EM frequency values

averaged over the scales from all the values of the corresponding

EM frequency. Here we used SD-based referencing, as it has the

advantage of directly providing a probability value for each

sample (see previous section). The calculation stages described in

this section comprise FSEM estimation and are presented

schematically in Fig. 1. In Fig. 2, we use simulated data to

demonstrate the ability of FSEM to describe the structure of

oscillations. The structure described by EM frequency can be

quantified as follows: Duration of modulation in seconds [s] =

(inverse of modulations-per-cycle [unitless]) � (inverse of

frequency [Hz = 1/s]).
FSEM: implementation and technical considerations

In CWT, the distribution of the wavelet scales (frequencies) is

arbitrarily selectable within the limits of the data record length and

sampling rate. The CWT multiplies the size of the original data

with the number of the scales and may thus pose computational

limits. Here the wavelet scales were set 1 Hz apart. From a signal

decomposition view this is redundant, but the denser the scaling,

the more suitable it is for signal detection purposes. Three wavelets

were employed: a second derivative of Gaussian wavelet (DOG-2)

for high temporal resolution; a complex Morlet wavelet (Morlet-6)

with a wave number of six ( f0 = 0.95) as a compromise between

time and frequency resolution; and a complex Morlet (Morlet-12)

wavelet with a wave number of 12 ( f0 = 1.9) for high frequency

resolution. The calculation of the CWT was performed with the

commonly employed, computationally efficient method of calcu-

lating Fourier transforms of the data (via FFT), multiplying these

by the discretized Fourier transforms of the scaled wavelets (for

which symbolic transforms are known), and then performing an

inverse Fourier transform on the product. The computational cost

of FSEM is, nonetheless, likely to be mainly determined by the

calculation of the CWT (in the current implementation, 80% of the

total calculation time). The CWT was calculated using windows of

50, 100, and 200 cycle lengths of the largest scale used with

additional ten cycles at both ends of the data segments. The data of

the ten cycle lengths at both ends were discarded after CWT to

avoid edge artefacts. The resulting data loss was limited to the ends

of the full-length data record with the data segmentation performed

with overlapping segments according to length of the discarded

data portion. If the SD of the window exceeded double the mean

SDs of all the data windows, it was excluded from analysis. In

order to limit the window length, the examined frequencies were

set to begin from 5 Hz. The highest examined frequency was 100

Hz. All the scales of the CWT data were resampled so that a single

cycle of an oscillation was represented by 10 samples and, as the

wavelets are band-pass filters, no separate low-pass filtering was

required to avoid aliasing in the resampling. The windows used in

the calculation of the envelope modulations were thus 500, 1000,

and 2000 samples corresponding to 50, 100, and 200 cycles,

respectively. The periodograms were calculated using 4096-point

FFTs and the estimates of each scale were subsequently averaged

separately for each subject. The resulting matrixes were normalized

at each EM frequency by subtracting the mean calculated over

scales and then dividing with the SD calculated from the desired

frequency (scale) range.

A central question for the ability of FSEM to identify

oscillatory processes is how the structure of the noise depends

on frequency. For example, is the structure of noise the same at

10 Hz and 100 Hz? We used simulated data to examine

whether the envelope power distribution exhibits frequency

dependence with FSEM. We generated sequences (of the same

length as the current single-sensor MEG data) with different

noise profiles: white noise, 1/f (pink) noise, and two-component

noise whose PSD slope closely resembles that of the MEG data

(Fig. 3a). A close fit to the PSD distribution of MEG noise was

obtained by using noise with a 1/f 1.2 slope up to 50 Hz and

white noise from thereon.

The initial visual inspection of the FSEMs calculated from the

simulated signals suggested no dependence of the noise structure

on frequency. Quantitative analysis was performed by evaluating,

for all EM frequencies, the slope of a linear (least squares) fit



Fig. 2. Analyses of simulated data. (a) A sample of the simulated signal: a 40-Hz oscillation modulated at distances of 8 and 48 cycles corresponding to

envelope modulation (EM) frequencies of 0.125 and 0.021 modulations per cycle, respectively (each modulation is separated by a varying-length, zero-level

signal). The signal is embedded in white noise with standard deviation (SD) of twice the mean peak amplitude of the 40-Hz oscillation. The simulated signal is

of the same length as the single-sensor MEG data of the current study. (b) A sample of the continuous wavelet transform (CWT) of the signal obtained with a

Morlet-6 wavelet is shown. The scaling is arbitrary, and here the wavelets were set to have equal energy at all scales (brighter values signify higher magnitude).

Although traces of the 40-Hz oscillation can be observed, the signal-to-noise ratio is not sufficient for determining the signal structure directly from the CWT.

(c) Spectral estimates with a periodogram using 500-, 1000-, and 2000-ms time windows (solid black, solid gray, and dashed black curves, respectively) contain

a prominent peak at 40 Hz. Because the signal does not comprise a stable 40-Hz oscillation, it is not described by a single frequency and therefore the spectral

peak is broad regardless of the width of the analysis time window. (d) The FSEM plane (Morlet-6 wavelet and 100 cycle length window) clearly shows a

process at 40 Hz whose structure differs from that of noise. Further, unlike in panels b and c, the EM frequencies of the modulations of the oscillation are

revealed.
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over scales (frequencies). Were these slopes systematically to

differ from zero, this would reveal that the structure of noise

depends on frequency according to some (monotonic) function.

The slopes of the fits, plotted in Fig. 3b, are equally distributed

around zero, indicating that there is no dependence of the

structure of noise on frequency. One might emphasize that the

small magnitudes of the slopes (all values are below )10�14))
demonstrate that the current implementation of FSEM provides

consistent estimates. In the case that noise structure in FSEM

would in some manner depend on frequency, the detection of

oscillatory processes could be facilitated by either detrending or

high-pass filtering over scales at each EM frequency to remove

the dependence.
Results

Spectral estimates and basic data characterization

The spectral estimates of MEG data obtained using 0.5-, 1- and

2-s time windows grand-averaged over the subjects as well as the

spectral estimate of the empty-room measurements are shown in
Fig. 4. The 50-Hz mains noise illustrates how increasing the

window length sharpens and increases the spectral peak of an

approximately stationary oscillation. Aside from containing the 50-

Hz peak, the empty-room and grand-averaged spectral estimates

display different slope characteristics and thus the empty-room

spectrum is not likely to be particularly useful as a reference for

data obtained from subjects. The grand-averaged PSDs display the

1/f shape, and a broad peak centered at around 10 Hz is easily

observable. This peak corroborates previous results showing that

human auditory areas exhibit a tau rhythm visible in MEG (Lehtelä

et al., 1997; Bastiaansen et al., 2001). However, if the spectra are

not as smooth as in the current grand average, it may be difficult to

identify peaks from the PSD signifying rhythmic activity and

further their statistical testing is complicated because the absolute

value at a PSD peak is likely to depend more on the underlying

noise slope than on the amplitude of the oscillatory process in

question.

PRSE alleviates these problems in identifying and quantifying

PSD peaks in noise. The grand-averaged PRSEs for the 25

window lengths spanning 0.5–4 s are shown in Fig. 5a. The 50-

Hz noise is seen as a very strong component whose PRSE

magnitude is little affected by window length. The 10-Hz activity



Fig. 4. Grand-averaged spectral estimates of MEG data from the auditory

brain areas. Estimates were obtained with 500-, 1000-, and 2000-ms time

windows (solid black, solid gray, and dashed black curves, respectively)

and an empty-room power spectrum was obtained with a 500-ms time

window (dashed gray curve). The grand-averaged spectra display decreas-

ing power with increasing frequency, a broad peak at 10 Hz, and a

prominent peak of the 50-Hz mains noise.

Fig. 3. FSEM behavior for simulated signals with three noise profiles. (a) The power spectra of the test signals are shown: a white noise signal (dashed gray

curve), a signal with 1/f power distribution (dashed black curve), and a two-component signal consisting of 1/f 1.2 and white noise for frequencies below and

above 50 Hz, respectively (solid black line), which most closely resembles actual MEG data (solid gray curve). The power spectra were obtained with a

periodogram using a 1000-ms time window. FSEM estimates were calculated using the simulated signals in order to examine whether FSEM artefactually

displays structure for noise depending on scale. At each EM frequency the values were normalized to a mean value of 1 and linear fits over scales were calculated.

For all signals, the slope magnitudes were below )10�14) and equally distributed around zero, demonstrated in panel b for the two-component signal (there are

2049 EM frequency bins, as the used FFT length was 4096). Thus, FSEM estimates for noise are independent of scale, and therefore any structure found in the

FSEM plane must be due to processes other than noise.
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is clearly seen with short windows but is poorly visible when the

window length is over 1 s. The amplitude of the 10-Hz neural

oscillation and the 50-Hz noise as a function of window length are

shown in Figs. 5b and c, respectively. The differences in the shape

and magnitude of the curves reflect the differences in the

stationarity of the processes as well as in the accuracy of the

alignment of the processes over subjects. With long time windows

and low frequencies the PRSE values are noisy, which is caused

by the lower number of estimates and the large magnitude

variation of the approximately 1/f-shaped spectrum at low

frequencies. Further, in the periodogram estimation, shorter time

windows correspond to broader filter bands and therefore provide

smoother estimates.

As illustrated in Figs. 5a and b, the 10-Hz neural oscillation is

best observed with the shortest time windows. Hence, the average

from the five shortest window lengths (Fig. 5d) was used to

evaluate the data from individual subjects. Two examples of

single-subject PRSEs are shown in Fig. 5e, demonstrating the

large inter-individual differences: Six of the ten subjects had a

distinct peak in the 9- to 12-Hz range, one displayed a significant

peak at 17 Hz, and three showed no indication of rhythmic

activity. The double peak at around 10 Hz in the grand average

PRSE (Figs. 5a and d) is due to four subjects having a peak at

9–10 Hz while in two subjects the peak was at 11–12 Hz. When

compared to spectral estimation with its difficulty in revealing

oscillation peaks from the 1/f-shaped noise slope, these results
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highlight the ease with which PRSE reveals neural oscillations

and their inter-subject heterogeneity.

Besides ongoing oscillations, we observed prominent auditory-

evoked responses (Fig. 6). As these responses are transient and of

short duration (resembling the impulse response), their power is

spread over a wide frequency range, and thus they are not

effectively characterized via spectral estimates. A detailed descrip-

tion of the auditory event-related processes in the time-frequency
Fig. 6. Grand-averaged auditory-evoked MEG responses. The data are from

the gradiometer sensor exhibiting the largest auditory response (gray curve)

and its orthogonal sensor pair (dashed black curve). Also shown is the

vector sum from this pair (solid black curve). The responses are prestimulus

baseline corrected and unfiltered.

Fig. 5. Partition-referenced spectral estimation (PRSE) of the auditory MEG

data. (a) The plane shows the grand-averaged PRSEs for different window

lengths calculated with 10th moments. The 50-Hz mains noise is prominent

at all window lengths. The 10-Hz oscillation is visible only with window

lengths up to 1.5 s, which provides an estimate of the duration of its

stationarity. The scale of panel a is displayed in panels b–d. (b and c) The

10-Hz and the 50-Hz PRSE magnitudes, respectively, are mapped as a

function of window length. (d) The average PRSE magnitude over the first

five window lengths is shown. The spectral peaks are much more

pronounced than in the spectral estimates (see Fig. 4). (e) Large inter-

individual differences are demonstrated by the PRSEs from two subjects.

One subject (black curve) displays no peaks and the other (green curve) has

peaks at 9.6 Hz and 19.2 Hz (the latter is likely to be a harmonic of the

former). The horizontal dashed lines indicate the individual limits of

significance for the peaks.
plane is provided elsewhere (Mäkinen et al., 2004a). However,

unlike analyses performed with the methods introduced here, these

examinations leave uncharted the brain activity that is not

modulated in a stimulus time-locked fashion.

FSEM estimation of the data

Grand-averaged FSEM planes are presented in Figs. 7a–c.

These planes have three processes with structure differing from

noise: the 50-Hz mains component, auditory-evoked responses,

and neural oscillations. The first two have a specific, known

spectrotemporal structure and they illustrate the general properties

of the FSEM planes: In the plane obtained with the Morlet-12

wavelet of high frequency resolution (Fig. 7a), the power of the

50-Hz mains noise is concentrated in a narrow frequency range

and at low envelope modulation (EM) frequencies. As shown in

Fig. 7a, if oscillatory processes have power concentrated at low

EM frequencies, power at high EM frequencies will be reduced.

This follows from the used normalization which ensures that all

frequencies have equal mean power over EM frequencies. The

effect of the 50-Hz component also leaks into neighboring



Fig. 7. FSEM planes of the MEG data from the auditory brain areas. (a–c) Grand-averaged FSEM planes obtained using 100 cycles at each scale are shown.

The planes are in the order of decreasing frequency resolution and increasing time resolution (from left to right: Morlet-12, Morlet-6, and DOG-2 wavelets used

in the initial time-frequency transformation). A high frequency resolution reveals oscillatory processes of a high level of stationarity (e.g., 50-Hz mains

component), whereas a high temporal resolution emphasizes processes localized in time (e.g., auditory-evoked responses). (c) The constant inter-stimulus

interval of auditory stimulation is represented by the dashed white curve in the FSEM plane. Neural oscillations are visible in all FSEM planes as

concentrations of power at low EM frequencies in the 10- to 20-Hz range. (d) The visibility of oscillatory processes with different wavelets and window lengths

is demonstrated (rows: wavelets DOG-2, Morlet-6, and Morlet-12; columns: 50, 100, and 200 cycle windows). The frequency resolution of the FSEMs

increases from top to bottom and EM frequency resolution increases from left to right. In each panel, the region from the grand-averaged FSEM plane including

oscillatory processes is shown (only values of P < 0.005 are displayed). Oscillatory processes can be observed at approximately 10 Hz and 17 Hz with the level

of detail depending on the FSEM parameters. (e and f) Data from two subjects examined with spectral estimation and FSEM are shown. The top, middle, and

bottom panels display the PSD, the Morlet-6 FSEM, and the Morlet-12 FSEM, respectively. When, as in panel e, the PSD displays a discernible peak (at 11 Hz),

the FSEM plane also shows oscillatory activity in the same frequency range. In contrast, when the PSD contains no identifiable spectral peaks, as in panel f,

FSEM is able to pick up rhythmic activity (at 15 Hz; P < 0.001). (e) The Morlet-6 displays the oscillatory process more effectively than Morlet-12, which

indicates a low level of stationarity and is in line with the broadness of the PSD peak. (1000-ms time window used for spectral estimation, and 100 cycle length

windows for FSEM, the normalization SD was calculated from 20 to 40 Hz range in all FSEMs.)
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frequencies: at low EM frequencies, there are power reductions

flanking the power increase at 50 Hz, and correspondingly, at

high EM frequencies, power increases can be seen on both sides

of the 50-Hz power decrease. (The 100-Hz harmonic component

also gives rise to a pattern similar to the 50-Hz noise, although

lower in magnitude.) In the FSEM plane of the Morlet-6 (Fig. 7b),

the 50-Hz component is spread wider in frequency but is of

considerably lower magnitude. The band-pass of the DOG-2
wavelet is too wide for adequately describing oscillations localized

in frequency, and thus the 50-Hz mains noise is poorly visible in the

FSEM plane obtained with this wavelet (Fig. 7c). The evoked

responses, however, are localized in time rather than in frequency

and therefore are most efficiently picked up with the DOG-2. The

1200-ms constant ISI of the auditory stimulation is a specific

modulation interval and represented by a curve in the FSEM plane

(depicted in Fig. 7c). The evoked activity accurately follows this
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curve and its harmonics. The frequency range of the evoked activity

is in line with previous results (e.g., Mäkinen et al., 2004a, 2005).

Oscillatory processes were observed only in the 10- to 20-Hz

range and their envelope structure differed from that of the noise

specifically in the low EM frequencies. In Fig. 7d, grand-averaged

FSEM planes for the three wavelets and the three window lengths

are displayed. Two processes can be identified from Morlet-6 and

Morlet-12 FSEMs: one coincides with the 9- to 12-Hz tau rhythm

and the other occurs in the 15- to 18-Hz range. The DOG-2

wavelet does not provide sufficient frequency resolution for the

separation of these processes. As indicated in Fig. 7d, the FSEMs

calculated using shorter windows may be more suitable for the

detection of oscillations. This follows from a higher SNR due to

more segments being available for averaging with short windows.

Increasing the window length, however, improves the EM

frequency resolution, thus allowing a more detailed examination

of the modulation structure of the signal. Both Morlet-6 and

Morlet-12 FSEMs appear to yield essentially the same information

on the envelope modulations with both 100 and 200 cycle

windows. The envelope modulations of the 9- to 12-Hz oscillation

have two maxima: one at 0.015 modulations per cycle and the

other at 0.027 modulations per cycle. These correspond to

respective modulation intervals of 6.8 s and at 3.7 s for 10-Hz

oscillations. The 15- to 18-Hz oscillation has one maximum at

0.022 modulations per cycle, corresponding to a modulation

interval of 2.8 s for 16-Hz oscillations.

In spectral estimates, six subjects displayed a peak at 9–12 Hz

and one subject had a peak at 17 Hz. All seven also had prominent

processes at the corresponding frequencies in the FSEM estimates

(Fig. 7e). Importantly, FSEM revealed pronounced oscillatory

processes (Fig. 7f), which were unobservable with spectral

estimation; oscillatory processes could be reliably detected with

FSEM in all 10 subjects (at least five adjacent points of probability

level P < 0.001). Three subjects displayed processes in both 9–12

and 15–18 Hz bands (at least five adjacent points of probability

level P < 0.01). Morlet-12-based FSEM, in general, provided the

clearest results on the oscillations although in some cases Morlet-6

was more effective (Figs. 7e and f), which reflects the dynamics of

the examined oscillations.
Discussion

Here, we introduced new methods for detecting and analyzing

oscillations buried in noise: fractally scaled envelope modulation

(FSEM) estimation, which reveals even highly nonstationary

neural oscillations, and partition-referenced spectral estimation

(PRSE), which considerably enhances the discernibility of spectral

peaks representing rhythmic activity. Envelope analysis, which is

an integral part of FSEM, is commonly used in acoustics,

mechanical engineering, optics, and has also been applied in some

EEG and MEG studies (e.g., Clochon et al., 1996; Linkenkaer-

Hansen et al., 2001, 2004). However, the current use of fractal

scaling of the wavelet envelopes combined with the normalization

over EM frequencies provides a novel and highly efficient method

for the elemental task of detecting oscillatory processes. Moreover,

FSEM yields structural information on neural activity on each

frequency and facilitates compact representation of large data

quantities. PRSE, then again, by removing the noise slope yields a

level spectral estimate where only peaks signifying relatively stable

oscillations remain. Although based on a simple technique, the
current method combined with mapping over window lengths has,

to our knowledge, not been applied in brain research before: PRSE

is a new technique allowing not only the observation of oscillations

buried in noise but also the estimation of their duration of

stationarity.

FSEM is, in several ways, superior to spectral estimation in the

detection of neural oscillations: (1) Unlike spectral estimation,

FSEM provides a reference level against which oscillatory

processes are detected. That is, oscillatory processes are detected

by virtue of the power distribution of their envelope modulations

being different from the reference provided by the power

distribution of noise. (2) In FSEM, each frequency is represented

by a one-dimensional array (representing envelope modulation

values) and the differences between noise and neural oscillation are

not distributed evenly along these arrays but, rather, are likely to

exhibit local maxima which facilitate the detection of oscillations.

(3) FSEM is not restricted to the use of sine and cosine functions

employed in spectral estimation. Rather, it is made inherently

flexible by its employment of wavelets, an open-ended group of

functions which may capture the examined oscillatory processes

more efficiently than the Fourier basis functions. (4) FSEM does

not measure the same thing as spectral estimation. A theoretical,

perfectly stationary oscillation would be ideally suited for detection

with spectral estimation, whereas in FSEM such an oscillation

would be visible in the DC component (first bin) of the envelope

frequencies (which corresponds to the power spectrum except that

the Fourier basis functions are replaced by wavelets). Neural

oscillations, as most natural signals, however, have continuously

changing properties. In FSEM, the detection of these processes is

based specifically on the changes in their properties, which again

are an adverse factor for spectral estimation. However, if the signal

varies over a wide range of frequencies and has irregular amplitude

modulations then, correspondingly, its FSEM representations will

be spread over a wide area in the frequency vs. EM frequency

plane. Hence, a total lack of structure in the signal will make it

unidentifiable with FSEM also.

We used FSEM and PRSE to examine MEG data from the

auditory areas of the human brain. In all subjects, pronounced

oscillatory processes could be detected with FSEM, while spectral

estimates often provided only weak traces of this activity. At the

grand-average level the spectral estimate gained without PRSE had

one broad peak at 10 Hz, whereas PRSE displayed a prominent

double peak (at 9.5 and 12 Hz) reflecting the distribution of single-

subject spectral peaks. PRSE indicated that six out of the ten

subjects displayed 9–12 Hz oscillations and one subject had an

oscillation at 17 Hz. In all 10 single-subject FSEMs, oscillatory

processes were observed at 9–12 or at 15–18 Hz or simulta-

neously in both frequency ranges. Single-subject FSEM data

typically showed more pronounced oscillatory processes than the

grand-averaged data. This follows from the inter-individual

variability of the data, which in FSEM is spread not only along

the frequency but also along the envelope-modulation-frequency

axis. The current data are highly focal to auditory brain areas (via

the use of planar gradiometers; Knuutila et al., 1993), but in future

studies the spatial resolution may be improved by combining

current methods with those developed for localizing oscillatory

processes (Jensen and Vanni, 2002; Lin et al., 2004). At present, it

can be noted that the 15- to 18-Hz rhythm observed here is in line

with previous findings of event-related power reductions (event-

related desynchronization, ERD) in auditory brain areas, which

were most prominent in this frequency range (Mäkinen et al.,
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2004a). Taken together, these results indicate that human auditory

areas exhibit ongoing activity which varies considerably between

individuals and that this activity consists of a 9- to 12-Hz tau

rhythm and of a 15- to 18-Hz oscillation poorly visible in spectral

estimates.

FSEM revealed that both the 9- to 12- and the 15- to 18-Hz

neural oscillations exhibited maxima in their modulations at

intervals of around 50 cycles (i.e., at 0.02 modulations per cycle),

which explains why the modulations were visible only with the

100- and 200-cycle length windows. The locations of these

modulation maxima indicate 3–7 s durations of the oscillatory

states. These states span more than one epoch (but not integer

multiples thereof) and are thus unlikely to be directly related to the

auditory stimulation. More studies are obviously needed to clarify

whether these correspond to the durations of certain perceptual

states. Our results can be seen as complementing and extending

previous results (Linkenkaer-Hansen et al., 2001, 2004) on

envelope modulations of oscillations in sensorimotor areas. These

were shown to have a 1/f type of spectral distribution and to follow

a power-law scaling. Our analyses performed using a high number

of relatively short time windows and normalization procedures

yielded a high SNR, which revealed the fine structure and local

maxima in the envelope modulation spectrum.

We also observed prominent evoked responses elicited by

auditory stimulation. While the frequency range where this activity

occurred was clearly displayed by FSEM, it is likely that time-

frequency transforms provide more informative descriptions of

these processes. The current data suggested no link between

evoked responses and ongoing oscillations. For example, a subject

displaying exceptionally prominent auditory-evoked responses had

a sole weak oscillation at around 15-Hz detectable only with FSEM

(data shown Fig. 7f), whereas another subject with similarly large

evoked responses displayed one of the most prominent tau rhythms

(data shown in Fig. 5e). This is in line with recent findings

showing that the processes generating evoked responses are

distinct from those generating ongoing oscillations (Mäkinen

et al., 2005; Shah et al., 2004).

The magnitude values of spectral estimates are mainly

determined by the underlying noise slope, which varies according

to measurement conditions and the subject. PRSE removes the

noise slope and thus has the practical advantage of allowing the

identification of oscillations by their peak value. This allows

straightforward statistical testing and may prove useful in localizing

oscillatory activity. By using simple nonlinear transforms one can

use PRSE to produce ensemble or grand-averaged estimates which

are not only level but where the spectral peaks are highly

pronounced compared to those gained with traditional grand-

averaged spectral estimates (Figs. 5d and 4, respectively). PRSE

combined with mapping over window lengths may also be used for

determining an effective value for the duration of the stationarity.

These results, however, will be somewhat ambiguous because when

the window length approaches the duration of stationarity, PRSE

results can be affected by nonessential fine structure of the

frequency distribution of the oscillation. Nevertheless, the method

introduced here does provide a first-order estimate of the duration of

the stationarity (i.e., approximately 1 s for the tau rhythm). This

information can be used, for example, for selecting the optimal

window length for spectral estimation.

To conclude, the methods introduced here could prove useful in

a wide range of applications dealing with oscillatory processes

buried in noise. In brain research, FSEM could prove beneficial not
only for the study of oscillatory brain activity per se but more

generally for EEG and MEG research, for example, in the study of

the processing of long-duration continuous sensory streams

(Bregman, 1990). Although a stimulus stream does not have easily

identifiable discrete events and does not facilitate the use of

stimulus time-locked averaging, it is still likely to have a temporal

structure that is represented by brain processes (Patel and Balaban,

2000, 2004). FSEM provides a high-SNR method for revealing

these processes through comparing the temporal structure of the

stimulus stream and the observed modulations of the neural

oscillations.
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Mäkinen, V., May, P., Tiitinen, H., 2004b. Spectral characterization of

ongoing and auditory event-related brain processes. In: Halgren, E.,
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