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PREFACE 
  
 
About the research approach of the thesis: This thesis is concerned with revealing the time, 
frequency, and time–frequency information that is contained in electromagnetic signals measured 
from healthy, functioning human brains. Two main approaches exist for gathering new 
information on the operation of the human brain: one, developing and employing novel analysis 
methods; two, posing novel questions, typically in the form of new measurement paradigms. 
Both approaches were utilized in this thesis. The first approach involves typical engineering work, 
but there is no overarching theoretical framework in this thesis. The avoidance of rigid theoretical 
frameworks is intentional but also due to the signal being generated by a system of tremendous 
complexity. Therefore, modeling was not attempted, although it could be the road to more 
profound understanding. Instead, the main challenge was obtaining an accurate description of the 
neural signals buried in noise. The used data transforms provide informative descriptions, but 
these descriptions are ambiguous: Several explanations can account for any observed 
phenomenon. The underlying signals are, however, not abstract entities; with a combination or a 
battery of analysis methods, the actual constituents of the signals may be revealed, and in so 
doing, answers to some fundamental questions of this research field may be found.  

 
A few matters of form and composition: Regarding statistics, let us consider an example of 
testing whether lottery wins differ significantly from zero (i.e. not having won at all). Taking ten 
consecutive jackpots (period 25.9.2004 – 14.1.2005) of the Finnish national lottery (seven out of 
seven correct, mean prize 1342000 €) and the corresponding lowest scores that yield money (four 
out of seven correct, mean prize 11.2 €), the significances are p = 0.03 and p = 3.0*10–12 for the 
seven correct and four correct, respectively (two-tailed t-test). The jackpot is therefore just barely 
statistically significant, whereas the four correct is overwhelmingly significant. The reason for this 
is that the relative variance of the jackpot is large and that of the four correct is small. In science, 
nevertheless, statistical significance is often the only recognized measure of an effect and used 
without further consideration. Then again, most scientists would probably agree that only by 
understanding the properties of the data can the quantities derived from the data be correctly 
interpreted. Thus, according to a common practice, statistical values, as well as several other 
details, are left to the publications, and the emphasis of this thesis is instead placed on an attempt 
to provide prerequisites for intuition.  

This thesis is written in American English. This preface also illustrates another aspect of 
the composition of this thesis: The text is structured using bolded outline titles. This somewhat 
uncommon layout is used to avoid the otherwise very numerous subsections. In addition, in this 
scheme it is natural to use the same outline titles, which, I hope, helps the reader to notice that 
the same aspects of different data are considered. In general, the thesis composition follows 
scientific convention: The concepts of the thesis title and their relevance to current work are 
systematically described in the introduction, which is followed by methods, results, and 
discussion. However, in order not to disconnect the description of questions from the answers, 
the methods and results of each study follow in succession. This manner of presentation 
indicates that the studies are not totally disjunct, but rather that each was performed to answer 
questions raised in the preceding thesis work. 
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1. INTRODUCTION  
 
 
 
1.1 Signals  
 
 
Some signal basics: Of the many definitions of signal, “a detectable physical quantity or 
impulse (as a voltage, current, or magnetic field strength) by which messages or information can 
be transmitted”1 captures several points relevant for present examination. This thesis is 
concerned with time-series signals that reflect the operation of the human brain, but the used 
methods, per se, are general and suitable, for instance, for interrogating signals that are functions 
of some variable other than time.  

The magnitude of most physical signal sources changes continuously, but all signals of the 
current work were transformed to a discrete digital format prior to analysis. The digital format 
allows efficient and precise manipulation, storage, and transmission of signals; it has been 
essential for the development of current information and communication technology (e.g. Smith, 
2001). Values of digital signals are usually defined only at discrete intervals ∆t (the inverse of 
sampling rate); the signals in this thesis can be presented in the form  
 
 x(n), n = 1,2,3,… N,           [1] 
 
where both n and x(n) have integer values. The assumption is that the range of values that x(n) 
can have is both sufficiently broad and sufficiently dense to accurately describe the examined 
phenomenon. The maximum duration of the ∆t that allows perfect reconstruction of the 
continuous signal is governed by the well-known Nyquist theorem (formulated by Nyquist in 
1928 and formally proved by Shannon in 1949). It states that the sampling rate needs to be higher 
than twice the bandwidth of the sampled signal. With the frequency band of interest usually 
containing the low frequency end, the measured signals need to be low-pass filtered prior to 
sampling in order to avoid aliasing of frequency components above half the sampling rate to the 
intended frequency band (e.g. Lyons, 2001). In this thesis work, the examined frequencies were at 
least an order of magnitude below the sampling rate to avoid practical problems such as the 
requirement to use a reconstruction filter2 for obtaining an accurate shape of the original signal. 

We further restrict our focus to one-dimensional signals. The thesis measurements, 
however, were performed using multiple separate sensors simultaneously, which yielded 
multidimensional signals. The methods examined and developed in this thesis are one-
dimensional in the sense that they do not specifically exploit simultaneous information of signal 
properties from multiple sensors. The methods that do exploit simultaneous information include, 
for example, principal and independent component analysis, and signal source localization with 
respect to some a priori knowledge of the sensor configurations. These multidimensional methods 
have been actively developed specifically in the current brain research field (e.g. Baillet et al., 2001; 
Darvas et al., 2004; Vrba, 2002) and complement the methods that are examined in this thesis. In 

                                                 
1 http://www.merriam-webster.com 
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where f is the sampling frequency. This equation is known as the Nyquist–Shannon interpolation formula.  
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accordance with the single dimension of the examined signals, all studies of this thesis deal with 
the auditory system, where the sensory input signal is essentially a one-dimensional time-series 
(for the use of binaural information by the human auditory system see e.g. Moore, 1995; 
Palomäki, 2005).  

In measuring a physical process, the obtained values are partly attributable to the process 
of interest and partly to the measuring system, a variety of external sources, and possible 
subsidiary processes of the measured object. The first part is signal and the second part is noise. 
In practice, noise, not signal, is often the dominant component. Furthermore, it is typically the 
researcher’s whim that decides what is noise and what is signal. There is also a terminological 
problem in that although the word signal is dedicated to the quantity of interest, it is also the 
word used for the entire measured quantity that contains the signal and the noise. An important 
related quantity is signal-to-noise ratio (SNR), which describes the amount of the desired signal 
and the amount of noise. Properties of the signal often determine how SNR is calculated, but a 
commonly used equation is  

  
SNR = A / σn,             [2] 

 
where A is the amplitude of the signal, and σn is the standard deviation of noise. Improving SNR 
is often the main goal of signal processing and underlies much of this thesis work.  
 
Information and structure in signals: Besides improving the SNR, we want to extract 
information from signals. According to information theory, the amount of information can be 
quantified as a reduction of uncertainty when one of the possible alternatives for an event occurs 
(Shannon, 1948, 1949). It is measured by the entropy function (H) defined by 
 

            [3] k

K

k
k PPH ∑

=

−=
1

log

 
for a source with K alternative outputs with probabilities Pk. This function is useful, for example, 
in describing how much we can compress data for storage: Space can be saved by encoding 
commonly occurring events with shorter code words than those that occur rarely (Huffman, 
1952). Nevertheless, neither equation [3] nor those taking into account the correlations between 
signal values (joint probabilities; e.g. Gonzalez and Woods, 2002) allow us to evaluate the amount 
of relevant information in a signal or facilitate its identification. For example, consider signals 
obtained from two radios, one tuned and another not tuned to a transmission channel. The latter 
is theoretically the more informative signal: It is unpredictable (each sample is independent from 
the previous values), whereas there is a lot of predictability and uneven probability distributions 
in radio programs. In practice, however, both in radio and in brain recordings, the part of the 
signal that has some predictability, or structure, yields information; the rest is considered noise. 

Signal structure (e.g. sinusoidal wave shapes) may be visible in one signal representation but 
not in another, and finding the descriptive representations is one of the tasks of this thesis. There 
are methods that find in someway optimal signal representation (e.g. based on minimization of 
entropy, Coifman and Wickerhauser, 1992), but in general, there is no explicit reason to assume 
that these would best reveal the signal structures of interest, and they typically do not work well 
with low SNR. One general step towards obtaining relevant information can, however, be 
identified: A representation of a brain signal can be cumbersome if not impossible to interpret as 
such, and therefore the task is to obtain a reference representation or a baseline level against 
which the data elements that convey information can be identified.  
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1.2 Electromagnetic brain signals 
 
 
Signaling in the brain: The structural details of the human brain are known to a considerable 
degree (e.g. Kandel et al., 2000), but this knowledge has provided only limited insight into the 
operation of the human brain; it is the signals in the brain, not the brain matter, that matter. 
Uncovering the principles of information processing in the brain can be approached from the 
same direction as the brain receives information, through the pathway of sensory systems. In all 
sensory systems, the information is encoded into electrical activity of some of the 10~11 neurons 
of the brain. The electrical signals are transferred between neurons using chemical transmitters 
(with the exception of gap junctions), but around 99.998% of the distance the signals travels in 
electrical form in the brain3. The importance of electrical activity for brain function is highlighted 
by non-invasive transcranial magnetic stimulation which can, for example, disturb cognitive 
functions (Rossi and Rossini, 2004), and direct invasive electrical stimulation can produce a 
variety of sensations including pleasure (Heath, 1972). The currently dominant view in 
neuroscience regarding short-time-scale information representation in the brain might tentatively 
be summarized in the following way: Information is manifested in the spatiotemporal pattern of 
the membrane potentials of neurons.  

 
Measurable currents and neural activity: The cerebral cortex contains several topographically 
organized areas: Sensory stimuli produce neural activity that is constrained to specific patches of 
the cortex, and the physical stimulus features determine the location of the activity in an orderly 
fashion. Pyramidal neurons are abundant in the cortex and their apical dendrites have a 
preferentially perpendicular orientation to the surface of the cortex (e.g. Kandel et al., 2000). 
These observations indicate that, for example, following sensory stimulation there are favorable 
conditions for local concentration of activity in the cortex that gives rise to a macroscopic net 
current.  

The generation of the currents that can be non-invasively observed from the surface or 
outside of the head has been discussed for example by Baillet et al. (2001), Hämäläinen et al. 
(1993), and Schaul (1998). In brief, the postsynaptic potentials of neurons have dipolar current 
patterns that decay more slowly as function of distance than the quadrupolar patterns of the 
action potentials. The postsynaptic currents also last an order of magnitude longer than the 
action potentials. Hence, it is the temporally overlapping currents in the apical dendrites of the 
pyramidal cells that apparently give rise to a primary current, which underlies the non-invasively 
measurable electrical and magnetic signals (for neural details of the process see Murakami et al., 
2002, 2003). 

The exact neural mechanisms underlying the measured signals are important in, for 
example, interpreting the effects of pharmacological agents on brain processes (e.g. Kähkönen et 
al., 2005). However, it appears that in many cases one can assume that the signal obtained from a 
location reflects approximately linearly the level of activity (including both pre- and postsynaptic 
parts) in the underlying neural circuitry. This is because the activity in a cortical patch is mostly 
recurrent (Douglas et al., 1995) and driven overwhelmingly by surrounding neurons (Shadlen and 
Movshon, 1999), whereby the post- and presynaptic activity are temporally overlapping in the 
patch. In addition, the relationship of the primary current PJ

r
 both to the potential difference 

and to the magnetic field is linear and described by  
 

∫ ⋅= dvrJrV PE
ii )()( rrrL           [4] 

 

                                                 
3 This crude estimate is based on the approximate length of the pyramidal cells in the cerebral cortex (1 mm) and the 
width of the synaptic cleft (20 nm).  
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and 

∫ ⋅= dvrJrb PM
ii )()( rrrL ,          [5] 

 
respectively (Hämäläinen et al., 1993), where  and  are the electric and magnetic lead fields 
that describe the sensitivity of the measurement sensor to a current source within a volume 
(Malmivuo and Plonsey, 1995).  

E
iL M

iL

 
Electro- and magnetoencephalography: In electroencephalography (EEG; for general 
reference see Niedermeyer and Lopes da Silva, 2004), the potential differences on the surface of 
the skull are measured. These typically have a range from a few to a few hundred microvolts 
(µV). The basic scheme of EEG is electrodes attached to the scalp, an amplifier stage, a data 
preprocessing system, and a data storage device (for details on instrumentation see e.g. Geddes 
and Baker, 1989; Virtanen, 1998). Several aspects of EEG systems determine the type of 
information that can be obtained. For example, the relevant frequency range of EEG can be 
from 0 to 1000 Hz, but is limited by the electrodes, amplifier, and used sampling rate. With its 
long history (first recording reported by Berger in 1929) and relatively simple instrumentation, 
EEG has an established role in clinical neuroscience (e.g. Wallace et al., 2001; Nuwer, 1998), but 
much remains unknown about the relationship of EEG signals and cognitive functions as well as 
about the exact mechanisms that generate the EEG signals. 

The first measurements of the magnetic fields produced by the human brain were made 
with room temperature coils by Cohen in 1968, but the advent of magnetoencephalography 
(MEG, for general reference see Hämäläinen et al., 1993) was facilitated by the development of 
reliable superconducting quantum interference devices (SQUIDs, for review see Ryhänen et al., 
1989). The SQUIDs currently used in MEG require a dewar construction, where cooling is 
provided by liquid helium. MEG devices are further placed in magnetically shielded rooms in 
order to attenuate the external fields that are typically several orders of magnitude greater than 
the neural signals, whose magnitudes are in the femto- to picotesla range. A separate flux 
transformer, referred to as pickup coil, provides effective coupling of the SQUID and the 
external magnetic field. The shape of the pickup coil determines the lead field, the profile of the 
source sensitivity. For example, planar gradiometers have focal lead fields and further have the 
practical advantage of showing maximal signal directly above a current dipole (Knuutila et al., 
1993).  

MEG and EEG signals are alike, for example, in reflecting the same primary current 
sources and in providing a millisecond time resolution. However, the interest is generally in the 
differences rather than in the similarities of these two methods. EEG provides portability and 
allows for continuous monitoring, whereas MEG requires less measurement preparation. MEG 
devices and their supporting electronics and facilities, then again, are much more complex and 
expensive than those for EEG. The development of MEG has mainly been driven by the desire 
to localize the sources of the neural signals: The magnetic permeability of the head is 
approximately equal to that of free space and hence has negligible effect on the magnetic fields, 
whereas the electric potentials measured with EEG are determined (distorted) by the 
inhomogeneous conductivity distribution of the head. In practice, EEG rarely matches the 
source localization capability of MEG.  

Even the shortest texts comparing MEG and EEG typically never fail to mention that 
MEG sees tangential but is blind to radial sources, whereas EEG is sensitive to both. It is thus 
often assumed that MEG sees only around half of the cortical sources, which lie in the sulci. 
However, as briefly discussed by Mäkinen (2002) and considered in detail by Hillebrand and 
Barnes (2002), pronounced cortical activations that would be invisible with MEG are unlikely. 
This follows from the spatial span of the activation, the close proximity of the gyri to the MEG 
sensors, and because only around 5% of the cortex is closely radial. Hillebrand and Barnes 
concluded that source depth instead of source orientation is the critical factor in determining the 
source visibility in MEG. Nevertheless, even brainstem responses have been reported with MEG 
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(Parkkonen and Mäkelä, 2002). It may also be noted that while EEG is sensitive to tangential 
current sources, its sensitivity to them is lower than to radial sources.  

Both MEG and EEG have a shortcoming regarding source localization. An infinite number 
of current configurations within a volume can give rise to the exact same electromagnetic pattern 
on the surface (shown already in 1853 by Helmholtz). Hence, the spatial resolution of MEG and 
EEG is dependent on assumptions that can be made of the current source and, subsequently, of 
the method chosen to tackle this inverse problem. The benchmark inverse solution is the 
equivalent current dipole (ECD, see e.g. Hämäläinen et al., 1993). It is highly popular in MEG 
research because of the simplicity of the information that it provides: A neural source is 
accounted for with one or few ECDs, which again are completely determined by location, 
orientation, and strength. Other inverse solutions (e.g. Baillet et al., 2001; Darvas et al., 2004; 
Uutela et al., 1999) tend to provide continuous current distributions of the whole volume of the 
head, which may be difficult to quantify.  

When using MEG and EEG, one might do well in not focusing on the spatial information, 
as positron emission tomography and functional magnetic resonance imaging tend to be superior 
in this respect (e.g. Budinger, 1998; Turner et al., 1998). Instead, MEG and EEG provide time-
resolution beyond these methods, and the signal directly reflects the electrical activity of the 
neurons providing the possibility to draw causal relationships between the neural events and 
cognition. However, it may be noted that a poor spatial resolution of a method can also limit the 
time resolution: When multiple processes have overlapping (and jittering) time courses, the 
spatial summation may act as a low-pass filter in the time-domain. In this respect, the advantage 
of MEG and especially that of the planar gradiometers compared with EEG is the possibility to 
analyze focally generated signals, which is particularly important for the analysis of raw, low-SNR 
signals such as those examined at length in this thesis.  

 
 
 
1.3 Time information in brain signals 
 
 
Averaging: Deflections of the measured signal, produced by neural activity, with an 
approximately fixed time course to identifiable events (e.g. sensory stimuli) are termed event-
related fields (ERFs) in MEG and event-related potentials (ERPs) in EEG. For convenience, 
both are referred in this thesis as event-related responses (ERRs) when no distinction between 
ERFs and ERPs is made. The term ERR is reserved to those event-related processes that can be 
observed with event time-locked (i.e. time-domain) averaging of the measured signal. That is, the 
neural responses need to be both approximately time- and phase-locked to the events in order to 
survive the averaging processes.  

The main reason for employing the event time-locked averaging is the large extent of the 
lead field of an MEG or EEG sensor. That is, besides picking up the activity from the event-
activated patch of the cortex, the sensor picks up other activity such as spontaneous activity of a 
large amplitude generated over large brain areas (Schaul, 1998). This background activity dwarfs 
the event-related activity. According to the traditional model (e.g. Hämäläinen et al., 1993) the 
measurement is of the form measured signal = ERR + uncorrelated noise. In averaging, the 
uncorrelated background activity is attenuated so that the SNR gain G increases in the square 
root of the number of trials Nt (for the derivation of this results see e.g. Mäkinen, 2002), which in 
dB is  

 
G (dB) = 20*log10(Nt

0.5) = 10*log10(Nt).       [6] 
 
However, in contrast to this traditional model, there are an increasing number of studies (e.g. 
Başar, 1980; Gruber et al., 2005; Hamada 2005; Jansen et al., 2003; Karakaş et al., 2000; Klimesch 
et al., 2004; Makeig et al., 2002; Sayers et al., 1974) suggesting that ERRs are not additive 
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components to the background activity, but rather that ERRs result from stimulus-induced phase 
reorganization of the background activity. Determining which is accurate—this new hypothesis 
or the traditional view—is one of the goals of this thesis. 

Regardless of the generation mechanism of the ERRs, it is an unrealistic assumption that 
the human brain produces completely invariant responses to a repeated stimulus. Consequently, 
several different approaches have been adopted to enable the examination of single trials in order 
to reveal the information lost in averaging (e.g. Lugger et al., 1998; Parra et al., 2002; Quian 
Quiroga and Garcia, 2003; Tang et al., 2002; Woody, 1967), and this issue is also considered in 
this thesis. Another issue of averaging is that the typical number of trials used and needed in ERR 
studies ranges from a few dozen to a few hundred. The recording of 100 trials typically takes a 
few minutes and, according to [6], yields a 20 dB increase in SNR when compared to raw signal. 
However, if the reliable detection of a different ERR requires another 20 dB increase in the SNR, 
then presentation of 10000 trials and recording of few hundred minutes is required. This is 
already beyond what is usually considered feasible. Thus, MEG and EEG measurements are 
typically limited to examine ERRs within a rather narrow SNR range.  

 
The auditory ERRs: A variety of 
ERRs have been reported from 
various sensory modalities under 
various conditions (e.g. Regan, 
1989) and also within the auditory 
modality (e.g. Näätänen, 1992). In 
this thesis, the focus is on the 
robust, cortically generated ERRs 
that can be observed with very 
simple measure settings. When 
discrete sound stimuli are separated 
by around 1 second, the stimulus 
time-locked averaging of the MEG 
signal obtained above auditory brain 
areas yields a waveform similar to 
that shown in Figure 1. It has three 
clear deflections: the first downward 
deflection is the P1m (or P50m, 
where m stands for MEG response), 
the next deflection is the N1m 
(N100m), and the last is the P2m 
(P200m, previously considered an 
intrinsic part of the N1(m) but now 
with an increasingly independent 
status; Crowley and Colrain, 2004). All of these deflections are believed to be generated mainly in 
the cortex; Anurova (2005) and Renvall (2003) have recently reviewed the information of the 
pathways from the cochlea to the cortical sites generating the ERRs.  

Fig. 1: Grand-averaged ERR to sine-tone stimulation 
obtained with MEG over temporal area of the right 
hemisphere. The black curve is low-pass filtered at 40 Hz 
and the grey curve is unfiltered.  

The N1(m) is the most conspicuous and the most examined of the auditory ERRs. Its main 
generators lie in the supratemporal auditory cortex (e.g. Godey et al., 2001; Lütkenhöner and 
Steinsträter, 1998). Its behavior as a function of various stimulus parameters has been extensively 
examined (Näätänen and Picton, 1987; Roberts et al., 2000), and sophisticated stimulus 
manipulations have shown its specificity to speech (e.g. Mäkelä et al., 2002, 2004) and direction of 
sound source (Palomäki, 2005). Moreover, neural models of the N1(m) have begun to emerge, 
which account for its behavior as a function of stimulus parameters (May, 1999; May and 
Tiitinen, 2001A). Nevertheless, the relationship between the N1(m) and sound perception 
remains unclear.  
  Evidence supporting the linkage between perception and the N1(m) has been provided, 
for example, by studies of Parasuraman et al. (1980, 1982), where behaviorally detected noise-
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masked sine tones elicited N1 responses, whereas no responses were observed with undetected 
tones. Sanders et al., 2002 showed that a behaviorally measured capability to segment word onsets 
from a continuous sound stream was positively correlated with the amplitude of the N1. In light 
of recent results (May, 1999; May and Tiitinen, 2004) suggesting that the mismatch negativity 
(MMN) response4 is the result of amplitude and latency modulation of the N1(m), the evidence 
indicating that the MMN indexes perceptual sound discrimination (Sams et al., 1985; Tiitinen et 
al., 1994) can also be seen to support the linkage between the N1(m) and perception. However, 
conflicting evidence has also been reported. For example, the latencies of the N1 and behavioral 
reaction times to sound detection have been observed to display different slopes as a function of 
sound intensity (Jaskowski et al., 1994). Eddins and Peterson (1999) observed that as sound 
intensity level decreases, the N1 responses vanish at a level where the sounds could still be 
behaviorally detected. Also, the amplitude behavior of the N1 does not appear to reflect the 
perceptual loudness of the stimuli (Näätänen and Picton, 1987). The mixed nature of the 
evidence, however, does not show that the N1(m) is somehow intangible, but rather implies that 
our capability to observe the effects of stimulation is not matched by our knowledge of the 
methodological issues (e.g. effects of averaging, source localization, filtering) and of the cognitive 
processes involved. Thus, it may be possible to find isolated conditions where an accurate 
relationship between perception and N1m-like ERRs may be established.  
 
 
 
1.4 Frequency information in brain signals  
 
 
About frequency, Fourier transform, and stationarity: Frequency is defined as the number of 
occurrences of a pattern in a unit time. For a process to be associated with a certain frequency, it 
should display approximately the same period over several cycles. That is, the rationale underlying 
the concept of frequency is that if a process displays the same repeating pattern, then describing 
the period of pattern is relevant, whereas time information is not very useful, as the process 
merely repeats the same pattern. In signal processing, the convention is to define frequency via 
sine and cosine functions that are the basis of Fourier transform. For a discrete signal x(n) whose 
length is N, the discrete Fourier transform is written as:  
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The Fourier transform provides a representation, or decomposition, of a signal in frequencies (m) 
that are sinusoidal functions of a certain phase (for details on Fourier transform see e.g. 
Bracewell, 1999). A signal with a constant period but non-sinusoidal shape is not represented by a 
single Fourier frequency (m), yet Fourier transform is extremely useful and well justified: The 
largest magnitude Fourier component will ordinarily be the one that has the period of the signal, 
the original signal shape will be recovered with the inverse transform of the Fourier components, 
and the sinusoid has several favorable properties as a basis function5.  
 A complication of the Fourier basis functions is that in order for a signal to be precisely of 
a single frequency, it should be a stationary sinusoid whose span is from negative infinity to 
infinity. More generally, a process is held stationary if its probability distributions are time-
invariant (e.g. Hayes, 1996). In several studies, it has been estimated that relatively short segments 
(e.g. ~1 s) of MEG or EEG data can be considered stationary (Angelidou et al., 1992; Jansen et 
                                                 
4 The MMN response is obtained by subtracting the ERR elicited by frequently occurring stimulus from the ERR 
elicited by an infrequent stimulus. It has peak latency in the range of 100–250 ms (Näätänen, 1992).  
5 Sine and cosine functions are, for example, smooth with smooth derivatives, depict the location of constant 
velocity object in one coordinate as it progresses along a circular path, and describe the behaviour of many simple 
physical objects (e.g. pendulum). 
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al., 1981; Tseng et al., 1995). Nevertheless, with the measured finite length signals, one can only 
obtain an estimate of the stationarity of the signal, and it appears obvious that sensory events and 
cognitive processes will continuously produce unpredictable changes into the measured signal 
(see also Popivanov and Mineva, 1999). Hence, in brain research as well as in applied signal 
processing, stationarity is usually regarded as a relative concept, often emphasized by referring to 
the level of stationarity. In this thesis, the level of stationarity of an oscillatory process is defined 
to be inversely proportional to the magnitude and rate of changes in the properties (e.g. 
frequency and amplitude) of the oscillation.  
 
Estimation of spectral power: The power spectrum describes signals in terms of power per 
unit of frequency and, unlike Fourier transform, it does not contain phase information. The 
power spectrum of a stochastic process is defined as the Fourier transform of its autocorrelation 
function (e.g. Hayes, 1996). As Fourier transform provides a frequency representation of a signal, 
a straightforward way to obtain a power spectrum is to calculate the magnitude-squared Fourier 
transform of the signal. This calculation method is referred to as the periodogram, which, 
however, provides only an estimate of the power spectrum, because it is based only on one 
realization of the process and in using only a segment of the data makes the implicit assumption 
that the signal is zero beyond the segment. To elaborate, the squared Fourier transform provides 
the frequency representation of a signal within a time window, whereas the goal of spectral 
estimation is to give a frequency description of the actual stochastic processes that generate the 
signal.  

The variance of the periodogram estimate does not converge to zero with increasing length 
of the signal, because the number of estimated frequency points (bins, m in [7]) increases in 
unison with the increase in the number of samples (N). The length of the signal, however, 
determines the frequency resolution of the spectral estimation, which increases with increasing 
data segment length: The periodogram works like a bank of N band-pass filters with the filter 
shape being a sinc function6, where the width of the main lobe is inversely related to the length of 
the data segment. Increasing the frequency resolution of spectral estimation, by increasing the 
length of the estimation window, may however not yield more accurate frequency information of 
brain processes. This is because the processes of the human brain are continuously evolving, and 
are unlikely to be confined to narrow frequency ranges. Using relatively short data windows in 
spectral estimation, then again, yields a high number of estimates, which provides for a smooth, 
high SNR average spectrum. The averaging of power spectra is referred to as incoherent 
averaging (Lyons, 2001), where the gain in SNR (Gincoh) is described by  
 

Gincoh(dB) = 10*log10(Nt
0.5).          [8] 

 
Incoherent averaging increases the SNR more slowly as a function of the number of trials Nt 
than the time-domain averaging. A task of this thesis is to develop a technique for obtaining an 
optimal data window length for spectral estimation of an oscillatory process.  

A wide range of methods has been developed to provide improvements to the 
periodogram in the task of spectral estimation. The improvements are obtained as a trade-off 
between different properties of the spectrum, or require that the processes generating the signal 
can be modeled. Windowing (e.g. Hamming, Hanning) the data prior to calculation of the Fourier 
transform effectively modifies the filter shape of the periodogram in a manner that reduces the 
side lobes but widens the main lobe. This results in a smoother estimate, but the frequency 
resolution in the estimate is reduced (Harris, 1978; Nuttal, 1981). Another technique is to 
calculate the periodograms utilizing overlapping segments of data and subsequently average the 
periodogram estimates (Welch, 1967). Again, a smoother estimate is obtained at the expense of 
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frequency resolution. Of the more recent model-free (nonparametric) methods, the multitaper 
approach is notable; it is suggested to provide an optimal trade-off between resolution and 
variance (Thomson, 1982; Percival and Walden, 1993; Mitra and Pesaran, 1999). In engineering, 
one can typically make assumptions about the processes generating the signal. Autoregressive 
(AR) and autoregressive moving average (ARMA) are the most popular of the model-based 
(parametric) spectral estimation methods (Makhoul, 1975; for other model based spectral 
estimation methods, see e.g. Marple, 1987). With ARMA, a relatively small number of coefficients 
(typically 5–50) are used to form a linear model, or predictor, of a signal. While it is apparent that 
processes generating MEG or EEG signals are beyond accurate description as an ARMA 
process, these methods have also been used widely in the analysis of MEG and EEG (e.g. Tseng 
et al., 1995; Pardey et al., 1996), although their use has also been criticized (Mitra and Pesaran, 
1999). In general, however, the advances in spectral estimation do not solve the problems of 
spectral estimation in MEG and EEG work, where the problems arise from the inherent 
properties of the measured signal.  
 
The frequency scene of MEG and EEG: In frequency-domain analysis of MEG and EEG, 
ongoing (endogenous) oscillations are the processes of interest. The ongoing oscillations, or brain 
rhythms, are categorized according to frequency (< 4, 4–8, 8–13, 13–25 and 25–80 Hz 
oscillations are referred to as delta, theta, alpha, beta, and gamma, respectively; for oscillations 
with higher frequency than gamma see e.g. Ikeda et al., 2005) and also increasingly according to 
their source location. For example, the prominent alpha rhythm, which was described already in 
the first reports of EEG (Berger, 1929; Adrian and Matthews, 1934), now refers specifically to 
the rhythm generated in the posterior, visual brain areas. A rhythm of approximately 10 Hz 
observed in the auditory brain areas is considered separate from the alpha and referred to as the 
tau rhythm (Tiihonen et al., 1991; Lehtelä et al., 1997).  
 It is a general observation that the resting brain produces more oscillatory activity than the 
vigilant brain (e.g. Hari and Salmelin, 1997). A suggested role of ongoing oscillations is idling 
(Kuhlman, 1978), which would be a form of readiness state. Recently, there has been a strong 
trend to find and to emphasize the role 
of oscillations in neural information 
processing. This has reached such an 
extent that there now is “the tantalizing 
conjecture that perception, memory, and 
even consciousness could result from 
synchronized networks” (Buzsáki and 
Draguhn, 2004), referring specifically to 
synchronized oscillatory activity. In line 
with this trend is the suggestion that 
modulation of ongoing oscillations 
underlies the generation of ERRs. In 
this thesis, the role of the oscillations is 
examined more cautiously. 
 When one examines the power 
spectrum of an alert person, it is not the 
spectral peaks of the brain rhythms, but 
rather a generally decreasing power with 
increasing frequency, that is likely to be 
the dominant feature (Freeman et al., 
2000, and Fig. 2). The decrease in power 
with increasing frequency approximately 
follows the inverse of frequency and is 
referred to as 1/f type of spectrum or 
pink noise (white noise would have level 
spectrum). This type of spectrum is 

 

Fig. 2: Grand-averaged spectral estimate of MEG
data from auditory brain areas (black curve) and an 
empty room spectrum (gray curve). The spectrum 
from subjects displays 1/f shape, a peak at 10 Hz, 
and both spectra display a prominent peak at 50 Hz 
produced by the mains power. The scale of power is 
equal to dB/Hz. 
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typical for a large variety of natural phenomena (e.g. Milotti, 2002). 
Hence, the neural oscillations, when present, occur within a prominent noise profile, which 

has ro

.5 Time–frequency information  

he audible description of a signal: The aim of time–frequency analysis is to describe how 

he problems of time–frequency estimation: To appreciate the task of estimating processes 

x(n) = A sin(2πfn+c),           [9] 
 

here A is the amplitude, f is the frequency and c sets the phase. This describes a stationary 

x(n) = A(n) sin(G(n)),          [10] 
 

here A(n) is the modulated amplitude and G(n) is the function determining frequency and 

ughly 1/f shape but different noise characteristics can occur along the frequency axis. This 
noise profile presents several practical problems; for example, the statistical testing of the 
existence of a spectral peak is complicated because the absolute value at any frequency is likely to 
depend more on the underlying noise than on the oscillation peak. The noise profile, then again, 
varies in a manner that need not be correlated with the strength of the oscillation. The 
straightforward solution is to estimate the noise profile and subtract it (Buzsáki and Draguhn, 
2004; Dumermuth and Molinari, 1987), but the shape of the profile can be complex and the 
neural oscillation can be spread along the noise slope. It is not trivial to determine what is noise 
and what is signal in the slope; this issue is engaged in this thesis.  
 
 
 
 
1
 
 
T
frequency components of a signal, representing for example specific brain processes, behave over 
time. Besides signal processing, time–frequency analysis is also related to the sensory modality 
examined in this thesis. We do not hear time-evolution of sound pressure waves directly; instead, 
we hear the time-evolution of the magnitudes of the frequency components. This is a result of 
efficient time–frequency decomposition of the sound signal in the auditory system (see e.g. 
Lewicki, 2002). After the decomposition, information is integrated over time and frequency by 
the neural machinery in order to construct an auditory environment with identifiable objects (see 
e.g. Griffiths and Warren, 2004). In this thesis, time–frequency transforms are used to analyze 
and identify the auditory evoked and ongoing brain processes.  
 
T
that make up a signal at any arbitrary time point (as characterized by frequency), let us begin by 
considering a simple one-component sine signal written in the form  
 

w
oscillation. Brain oscillations undergo amplitude modulations, and with all the brain areas 
receiving transient input from external and internal events, the phase of the oscillation cannot be 
expected to change linearly. Therefore, a one-component brain process is more appropriately 
written in the form  
 

w
phase. Now the problem is that our measurements provide us with x(n), and an infinite amount 
of pairs of A(n) and G(n) can generate the same x(n). In addition, the actual measured signals 
contain noise and, without a priori knowledge, we have no way of determining what part of the 
signal is noise and what represents dynamic behavior of the examined phenomenon. 
Furthermore, the measured signals are often composed of multiple simultaneous components. 
Thus, time–frequency estimation can be considered a type of inverse problem (Cohen, 1995), 
unsolvable without a priori knowledge. A common approach in time–frequency analysis is to find 
a representation of a signal in terms of basis functions that may or may not accurately describe 
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the processes generating the signal. If the used basis functions are not descriptive (e.g. they 
assume too high a level of stationarity), the results can be misleading.  
 This inverse problem of time–frequency estimation is not often considered in MEG and 
EEG work, whereas the so-called time–frequency uncertainty is well known. This uncertainty 
principle occurs in several fields of mathematics (Selig, 2002) and is only distantly related to the 
Heisenberg uncertainty principle. In fact, in signal analysis, the uncertainty principle has been 
considered a misnomer (Cohen, 1995), as it only means that the more accurately we wish to 
localize the signal in time (frequency), the broader its frequency (time) range must be. The 
uncertainty is in the broadness of either time or frequency, and it is typically represented as  
 

π
σσ

4
1

≥frquencytime  ⇔ 
2
1

≥σωσt ,         [11] 

 
where σ is the standard deviation (to one side, i.e. one-tailed) around the center frequency or 
time. The uncertainty is a signal property and not solvable with methodological advances.  
 
The methods of time–frequency estimation: The most widely used of the current time–
frequency methods in applied signal analysis (for mathematical approaches see e.g. Gröchenig, 
2001) are the short-time Fourier transform, continuous and discrete wavelet transform including 
wavelet packets and matching pursuit, family of quadratic distributions developed from Wigner–
Ville distributions, and time-varying (parametric) ARMA models (see e.g. Addison, 2002; Cohen, 
1995; Durka, 2003; Mainardi et al., 2002; Mallat, 1998; Thakor and Tong, 2004; and also Gabor, 
1946). These methods have different advantages, and the properties of the examined signal and 
the goal of the examination determine the method best suited for the analysis.  

In this thesis, the method of choice is continuous wavelet transform (CWT), defined by 
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ψ is the wavelet (a function localized in time and frequency with finite energy and zero mean), s is 
the scale of the wavelet (the center pass-band frequency) and b is the time point where the 
transform is calculated. The calculation of [12] is equal to an inner product and quantifies the 
similarity between wavelet and signal portion with which the wavelet has overlap. By employing a 
range of scale parameters s, the wavelet is dilated (and contracted) so that it corresponds to 
different frequencies, and by further calculating over points b, one obtains a time–frequency 
distribution of the data (see also Addison, 2002; Mallat, 1998; Torrence and Compo, 1998).  

CWT is a redundant transform and not equally suited for computer applications (e.g. data 
compression) as discrete wavelet transform (DWT); however, for the type of data analysis 
performed in this thesis, CWT offers at least the following advantages: 

• CWT has no requirements for the data from which it is calculated and does not require a 
priori knowledge of the signal (although such knowledge can be exploited in CWT 
analysis). Some methods such as time-varying ARMA models tend to require that the data 
properties change smoothly, preferably with a constant rate of change, and may not cope 
well with transient events such as ERRs. CWT does not suffer from the cross-terms (i.e. 
spurious, ghost components) that complicate the interpretation of Wigner–Ville 
distributions. Methods that find the best data description for each short data segment are 
best suited for analysis of high SNR data with few components, whereas CWT is suitable 
for analysis of data with multiple components and low SNR (typical properties of MEG 
and EEG data).  

• CWT is a highly versatile and adaptable time–frequency transform. Wavelets are an open-
ended group of functions facilitating, for instance, complex valued data descriptions as 
well as those with real part only; even a waveform that does not fulfill the expected 
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properties of wavelet can be used as a pseudo-wavelet (Qiu et al., 1995). The trade-off 
between frequency and time resolution is nearly arbitrarily selectable even within the same 
wavelet family such as the Morlets (e.g. Addison, 2002). One can therefore take advantage 
of a priori knowledge of the signal structure by selecting a descriptive wavelet. The 
calculation of CWT is also very flexible; the scales s and time-points b can be selected 
arbitrarily, although if CWT is not calculated at every time point, it is, technically 
speaking, not a continuous wavelet transform.  

• CWT has several favorable properties for highly detailed signal analysis. CWT is time-
shift invariant, a necessity for accurately determining the latency of an event. DWT is not 
time-shift invariant (Durka, 2003) and has been recommended to be used in 
overcomplete form (Bradley and Wilson, 2004), thus making it almost equivalent to 
CWT. For determining the characteristic frequency of a process, CWT offers the 
possibility to use arbitrarily dense frequency spacing, a feature often underappreciated. 
The short-time Fourier transform has an inflexible, constant time–frequency trade-off 
that is usually suited only for analysis of a limited frequency range. Wavelets automatically 
stress high frequency resolution at low frequencies and high time-resolution at high 
frequencies, which corresponds to general distribution of relevant information in a signal. 
A point of considerable importance for the visualization and for the ease of interpretation 
is that CWT is based only on a single basis function.  

• The computation of CWT is more laborious than that of DWT, but there is also an 
efficient algorithm for CWT. As the symbolic Fourier transforms of all the common 
wavelets are known, the arduous calculation of time-domain convolutions can be avoided 
by performing the calculations in the frequency-domain. First, a Fourier transform of the 
data is obtained (with fast Fourier transform, FFT). This is multiplied by the discretized 
Fourier transforms of the scaled wavelets, after which inverse Fourier transforms (with 
inverse FFT) are calculated from the products. This algorithm was used in this thesis.  

 
 
On the time–frequency descriptions of MEG and EEG data: When is a time–frequency 
transform of a signal useful? For instance, for the averaged ERR of Figure 1, the time-domain 
description is the simplest and the easiest to interpret, and therefore in most cases the most 
informative. However, not all brain processes are phase- and time-locked to stimulation or 
suitable for examination with time-domain averaging. Time–frequency methods are well-suited to 
an examination of event-related, non-phase-locked changes in brain processes, where the SNR 
can be improved with averaging, utilizing absolute or squared values (Equation [8]). The 
prerequisites for effectively employing CWT in the analysis of event-related brain processes are 
considered in this thesis.  

Event-related power changes have been under active investigation (e.g. Pfurtscheller and 
Lopes da Silva, 1999A; Schnitzler and Gross, 2005). The power reductions are termed event-
related desynchronization (ERD) and power increases as event-related synchronization (ERS). 
The terminology alludes to the assumed underlying mechanisms, whereby ERD is the result of 
cortical activation and subsequent disruption of the ongoing rhythmic activity and ERS is 
typically regarded as the result of cortical deactivation and idling (Pfurtscheller and Lopes da 
Silva, 1999B). Both ERD and ERS may also easily result from methodological artifacts or 
misinterpretations (e.g. power increase of ERR thought of as ERS). 

A CWT of raw, unaveraged MEG or EEG data theoretically describes the time-evolution 
of the processes in the signal, but in practice is likely to be of too low SNR to yield useful 
information. Thus, one needs a method of gathering information over time to increase the SNR. 
The statistical (i.e. average) behavior of a frequency band (a wavelet scale) can be acquired from 
CWT by first obtaining the envelope of a frequency band and then characterizing its properties, 
for instance, with spectral estimation (see also Linkenkaer-Hansen et al., 2001, 2004). If the 
envelope behavior of a range of frequency bands could be characterized in a scale-free manner so 
that these characterizations were directly comparable, a compact two-dimensional data 
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representation would be obtained. By providing a statistical description of the temporal behavior 
of frequency components, this representation could be a powerful tool for identifying neural 
processes from noisy signals. Apparently, the development of such a data representation was a 
task of this thesis.  
 
 
 
1.6 Objectives of the thesis  
 
 
In the previous introductory sections, several elemental unanswered questions and possibilities 
for developing new methods were described. Below, they are encapsulated as six objectives for 
the thesis. Although they arise from MEG and EEG research, they also concern two more 
general topics: analysis of elusive signals buried in noise and information processing in the human 
brain. The connections between these objectives will, hopefully, become apparent in the 
following chapter and in Section 3.1.  
 
Objective 1: To establish the stimulation conditions where ERRs describe and predict perceptual 
sound detection (Studies I and V). 
  
Objective 2: To resolve whether ERRs are generated by phase reorganization of ongoing brain 
oscillations or by processes additive to ongoing oscillations (Studies II and III).  
 
Objective 3: To obtain a conclusive mapping of auditory event-related processes in time, 
frequency, and spatial domains and to determine the prerequisites for the effective use of CWT 
in this task (Study IV).  
 
Objective 4: To exploit the information on the time–frequency structure of auditory ERRs in 
order to determine whether the amplitude differences in averaged ERRs are due to changes in 
single-trial amplitudes or in their temporal alignment (Study V).  
 
Objective 5: To develop a method that would remove the 1/f noise slope, characteristic for 
spectral estimates of MEG and EEG, thereby enabling the accentuation of the oscillatory 
processes from frequency data (Study VI).  
 
Objective 6: To develop a compact, two-dimensional data representation where the envelope 
spectra between frequency components are directly comparable with one another (Study VI).  
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2. METHODS and RESULTS 
 
 
Notes concerning all measurements: The measurements were performed in the BioMag 
Laboratory of the Helsinki University Central Hospital with the approval of the hospital’s Ethical 
Committee. The subjects (nine in Studies II and V and ten in the other studies) were healthy 
human volunteers. In all recordings, a 306 sensor MEG device (Vectorview, Elekta Neuromag, 
Helsinki, Finland) was used. Auditory stimulation (frequency 750 Hz, duration 100 ms in Studies 
II and IV, 50 ms in Studies III and VI) was binaurally delivered with piezoelectric loudspeakers 
connected to the subjects via air tubes. A-weighted measurements of sound pressure level were 
employed to calibrate the stimulus output (80 dB in Studies II–IV and VI, empty room noise 
level was ~ 30 dB). When the subjects did not have a behavioral task, they either read a book 
(Study I) or watched silent films (Studies II–VI). The stimuli were presented at least 150 (Studies 
I and V), 400 (Study II), or 800 (Studies III, IV, and VI) times.  

In Study I, the sampling rate was 468 Hz, whereas in the rest of the studies it was 601 Hz. 
An anti-alias low-pass filter was set to one-third of the sampling rate. Studies I and V had no 
high-pass filter, and the rest had a 0.03 Hz high-pass cut-off. In all studies, both raw data and 
online averages were collected. The source locations were quantified with ECDs employing 
sensor selections that covered each hemisphere and that consisted of both planar gradiometers 
and magnetometers. The analysis of raw data was performed in Matlab environment using data 
from the gradiometer sensors only. The direct relationship between the lead fields of the planar 
gradiometers and the source locations (Hämäläinen et al., 1993; Knuutila et al., 1993) provides for 
unambiguous data analysis. In addition, the magnetometer sensors rely on signal-space projection 
(SSP, Tesche et al., 1995; Uusitalo and Ilmoniemi, 1997) to provide usable SNR; the calculation of 
SSP would have complicated the analysis.  

In the analysis of raw data, band-pass limiting was performed with infinite impulse 
response (IIR) filters. IIR filters provide better frequency response with fewer computations than 
finite impulse response filters but have a non-linear phase response (e.g. Lyons, 2001). Therefore, 
two-way filtering was used: The signal is passed through the filter once, and then the filtered 
signal is reversed and run back through the filter again. This cancels the phase distortion of the 
first run and yields a zero phase distortion filtered signal. The Chebyshev type II filter was judged 
to provide the best trade-off between properties. It provides a flat pass-band, essential for the 
interpretation of the filtered signal, and a steeper roll-off from the pass-band to the stop-band 
(attenuation > 30 dB in the thesis studies) than, for example, Butterworth filters. Increasing the 
filter order improves the filter’s performance, but the algorithm becomes unstable with too high a 
filter order resulting in, for example, pass-band ripple. The optimal filter order, or the highest 
order without pass-band ripple, was obtained through an iterative search.  
 
 
 
2.1 Linking brain activity to perception via time information  

(Studies I and V)  
 

 
Background (Study I): The relationship between ERRs and perceptual sound detection remains 
unestablished. One complication may be the theoretical approach of dividing ERRs to 
endogenous (non-obligatory) and exogenous responses (Donchin et al., 1978). The brain response 
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reflecting perception should occur for all stimuli (i.e. be exogenous) that the subjects can reliably 
report perceiving. Yet, if perception is treated as a subjective, endogenous phenomenon, this 
theoretical framework appears problematic. Here, the research idea was to make a maximal 
distinction between perception and the acoustical structure of the stimuli (and the consequent 
obligatory ERR). To achieve this, sounds with intensity slowly increasing from inaudible to 
audible were used: The acoustic change is slow and smooth while the perception makes a 
quantum leap when the undetected sound becomes detectable.  

The effect of sound slopes on auditory brain responses has been examined in numerous 
studies (for review see Loveless and Brunia, 1990; Phillips et al., 2002) but it is difficult to draw a 
coherent picture from the obtained results. The sound properties (e.g. frequency) and stimulus 
presentation interval vary from study to study, the type of the sound slope (e.g. linear, 
logarithmically linear, or Hanning) and the onset or the offset intensity levels are often not 
reported. The noise level of the measurement environment and the level at which the subjects 
could detect the stimuli are almost never reported. ERRs are further often filtered with a high-
pass filter, which can severely distort ERR shape with long sound slopes that are likely to elicit 
sustained brain activity (Picton et al., 1978AB). In Study I, the sound slopes were longer and 
increased more slowly than those used in previous studies, but the difference between previous 
and current work is conceptual also: Previous studies have examined the effect of sound onset 
slopes on ERRs, whereas the main goal of Study I was to utilize the high time-resolution of 
MEG in relating the temporal evolution of brain processes to the timing of behaviorally 
measured sound detection.  
 
Stimuli, measurements and data analysis (Study I): Sounds with durations of 1, 1.5, and 2 
seconds were used. The intensity increased across the stimulus duration with a slope that is linear 
in the logarithmic decibel scale corresponding to perceptually linear slope (e.g. Moore, 1995). The 
intensity range (−10 to 60 dB) was set so that the midpoint corresponded with the average 
perceptual sound detection level (acquired with preliminary measurements using constant 
intensity tones). The sounds were presented in active and passive conditions with a random 
offset-to-onset interval of 0.5 to 4.5 seconds. The subjects’ task in the active condition was to 
identify when the sounds became audible by pressing a response key.  
  With time-domain ERRs, determining the baseline is an unambiguous operation (but see 
also May and Tiitinen, 2001B) with a portion of the prestimulus signal (here −200 to 0 ms) 
providing the reference level. The analysis methods used here were those commonly applied in 
the analysis of ERRs, with the exception of selective averaging. That is, to explore whether the 
single-trial MEG responses would vary in a manner that is reflected in behavioral responses, the 
MEG responses were sorted according to reaction times, and those MEG trials corresponding to 
faster and slower half of each subject’s reaction times were averaged separately. This is a 
straightforward application of temporal information from behavioral measures to signal analysis 
of MEG. 
 
Results (Study I): It has been assumed that abrupt changes in sound energy are required for the 
elicitation of cortical ERRs (Clynes, 1969; Näätänen and Picton, 1987). Nevertheless, the smooth 
sound slopes elicited prominent ERRs with an abrupt onset (Fig. 3a), followed by sustained brain 
activity (tracking the intensity envelope of the stimulus) and an offset response. The abrupt onset 
was more pronounced in the active than in passive condition. The onset ERR was localized to 
approximately same areas that generate the N1m (whose location was obtained with 1000 Hz 
control stimuli).  

The latency of the ERR accurately predicted the timing of the behavioral responses. The 
behavioral responses followed the onset peak with a constant delay of around 180 ms with all 
three sounds (correlation between the two time measures r = 0.97). Selective averaging showed 
that the onset ERRs preceding fast behavioral responses occurred earlier than those preceding 
the slow behavioral responses to the same stimuli. This latency difference between the fast and 
slow ERRs increased from around 50 to 100 ms as a function of decreasing sound slope and was 
found to be matched by increase in variation of the behavioral reaction times.  
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Thus, with the ERRs predicting both the behavioral reaction times as well as their trial-to-
trial variation, Study I presents a strong case for the intimate linkage between sound perception 
and noninvasively measurable brain events. The reaction time variance can be explained with 
there being one constant variance component, possibly arising from sensorimotor areas (Hanes 
and Schall, 1996), and the rest of the variance arising from the operation of the auditory system. 
With longer slopes, there is a longer portion of the sound with intensity near the detection 
threshold, where it is susceptible to stochastic events in the nervous system as well as in the 
auditory environment. Thus, with longer slopes, there is more latency jitter in the brain events. 

Finally, while the focus of this examination was specifically on the time information, the 
current data would have been poorly suited for frequency or time–frequency examinations. The 
ERR is a step-like entity (Fig. 3a) that is widespread in frequency. Yet, with the selective 
averaging, the ERRs were found to exhibit considerable latency jitter. This means that despite 
their step-like morphology, they fill a large portion of the time–frequency plane through being 
spread in both frequency and time, thus effectively concealing other event-related brain 
processes.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3: In (a) the grand-averaged ERR of Study I (1 s sound, active condition) displays an abrupt 
beginning followed by sustained activity and a transient offset response. In (b) the systematic behavior 
of the ERRs of Study V (active condition) as a function of sound slope is shown. The dotted black, 
dashed gray, dashed black, solid gray, and solid black display the ERRs to 125, 250, 500, 750 and 
1000 ms sounds, respectively. Only the onsets of the ERRs are shown in order to make them more 
discernible (0–20 Hz pass-band).  
 
 
Background (Study V): The results of Study I indicate that the onset of the ERR elicited by the 
sound slopes is an objective, non-invasive marker of perceptual sound detection. Thus, it holds a 
promise of non-invasive assessment of the functionality of the human auditory system. This 
would be specifically useful when examining hearing development in children and pre-speech 
infants, as well as when examining patients with compromised responsive capabilities. The first 
step towards these goals is the replication of the close correlation between the ERR latencies and 
behavioral responses. In addition, the optimization of this measurement paradigm may be 
initiated: The duration of the measurements should be minimized and the ERRs accentuated. A 
key parameter is sound duration; by using shorter stimuli, the measurements might be hastened 
and the response morphology clarified. Here, the shortest duration sound of Study I (1 s) was the 
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starting point with additional sound durations of 750, 500, 250, and 125 ms used. The offset-to-
onset interval (0.5−2.5 s), as well as the intensity range (0 to 60 dB), was slightly reduced.  
 
Results (Study V): The stimuli elicited prominent ERRs. As in Study I, the responses were of 
higher amplitude in the active condition, but unlike in Study I, the amplitudes decreased with 
increasing sound duration (Fig. 3b). One reason for this is that with the shortest sound durations 
the onset and offset response merged. Despite the changes in response morphology from Study 
I, the latencies of the ERRs were still highly correlated with behavioral reaction times (r = 0.94). 

 These results indicate that sound durations of around 500 ms and above are useful in 
providing a clear ERR peak while allowing for unambiguous separation of the onset and offset 
responses. The shortened stimulus presentation interval may, however, not be recommended as 
the amplitudes of the ERRs were reduced compared to Study I (with corresponding stimulus 
durations). The reduction of amplitude with decreasing stimulus interval is well documented for 
the N1(m) (e.g. Näätänen and Picton, 1987; but see also May and Tiitinen, 2001B). 

In this study, the amplitudes of the averaged ERRs were found to depend on the task 
(attention) as well as on the sound slope. As observed in Study I, ERRs can exhibit considerable 
latency jitter and thus the amplitude differences in the averaged data can reflect amplitude 
differences in single trials but may also arise from changes in the accuracy of the alignment of the 
single-trial ERRs. Resolving this question requires examination of single-trial data. The analysis 
technique developed for this examination is derived from the lessons of Studies II–IV and is 
considered in Section 2.4.  
  
 
 
2.2 Resolving the generation mechanism of event-related responses  

(Studies II and III)  
 
 
Background: Ever since the advent of stimulus time-locked averaging (Dawson, 1951), it has 
been assumed that ERRs are the result of processes additive to the ongoing activity (measured 
signal = ERR + uncorrelated noise, referred here as the additive model of the generation of ERRs). 
However, an alternative hypothesis has emerged. Sensory stimuli could result in phase resetting 
of ongoing oscillations. The subsequent phase coherent state of oscillations would survive the 
averaging process and could thus underlie the ERRs. Here, this alternative is referred to as the 
organized oscillations model. It was first proposed by Sayers et al. in 1974, and since then several 
studies have supported this view (e.g. Başar, 1980; Gruber et al., 2005; Hamada 2005; Jansen et al., 
2003; Karakaş et al., 2000; Klimesch et al., 2004; Makeig et al., 2002).  

If we consider this issue from the viewpoint of Study I, the organized oscillations model 
appears problematic. The ERRs of Study I are unipolar, and it is difficult to explain such a shape 
with organized oscillations model, whereas that shape would be the expected result of increased, 
additive activity. Moreover, in contrast to the results of Study I, the organized oscillations model 
appears to suggest that the ERRs do not reflect neural information processing. That is, if the 
information of sensory stimuli would be represented by phase-coherent states of ongoing 
oscillations, this entails the problem that such states also occur stochastically and without any 
stimuli or phase resetting. The information cannot be readily related to the actual phase resetting 
process either, because when the oscillations were already in the phase towards which they would 
otherwise be set, the brain processes would be uninfluenced by the stimulus. These points, along 
with certain apparent problems in previously used methods, served as the motivation to resolve 
this question. Studies II and III were designed to provide clear N1m responses for this 
examination, but simulations as well as theoretical considerations may be equally important for 
settling this issue.  
 In addition to methods used directly to resolve the generation mechanism of ERRs, a 
signal preprocessing method that combines data over sensors was introduced and employed in 
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Study II. The method, termed response source weighting (RSW), weights and sums raw data 
according to ERR amplitude distribution over sensors: Its operation is analogous to that of a 
neuron in an artificial neural network (see e.g. Haykin, 1999). RSW provided moderate 
improvements to SNR when compared to single-sensor data. Spatial filtering methods that are 
likely to be more effective are available (Hillebrand et al., 2005).  
 
Examining the presence of additive components: If the organized oscillations model 
underlies ERRs, then nothing is added to the signal, and the power of pre- and poststimulus 
unaveraged signals should not differ7. Such negative observations (Jansen et al., 2003; Makeig et 
al., 2002; Sayers et al., 1974) can be explained, for example, with the following:  

• If signal is not properly preprocessed (removing the mean of the signal and detrending) 
before applying spectral estimation methods, the resulting artifacts are likely to dwarf the 
possible small power changes produced by event-related brain processes.  

• The length of the data segment used for examination strongly influences the results. For 
example, Sayers et al. (1974) used a 940 ms time window. As the auditory ERRs are 
mostly confined to a time range of 50–250 ms from stimulus onset (see Fig. 1), they 
cannot make a large contribution to the power of the whole data segment. Moreover, if a 
window function (e.g. Hamming, Hanning) is used with a long data segment, the activity 
occurring at the beginning or end of the segment will be strongly attenuated. 

• When power is examined within relatively narrow frequency bands (obtained with band-
pass filtering or with time–frequency methods), the band-limiting will inevitably spread 
the power of the possible additive components, and consequently, the prestimulus signal 
may not provide a valid baseline.  

• The distribution of artifacts (e.g. eye blinks) may be different in pre- and poststimulus 
signals. For example, artifact rejection is often performed within the poststimulus time-
window according to the expected duration of ERR. This can lead to artificially large 
prestimulus power with the poststimulus data being free of artifacts while the 
corresponding length of the prestimulus is not. To attain matched pairs, the artifact 
rejection should be performed with segments comprising both pre- and poststimulus 
data, after which the accepted segments can be divided into the two parts (the technique 
used in Studies II–IV).  

• A different type of reason is that an event-related dampening of oscillatory activity could 
counter the power increases of additive activity. 

In Study II, the estimation of spectral power on a 1–45 Hz band using a non-parametric 
multitaper spectral estimation method (Percival and Walden, 1993; Mitra and Pesaran, 1999) 
showed that the post-stimulus power was, on average, 20% greater than the prestimulus power 
(400 ms estimation windows). As the interest here is in the power of a broadband signal rather 
than in resolving the spectral components, the power can also be obtained in a straightforward 
manner by limiting the signal to the frequency band of interest and then calculating the 
magnitude-squared value of the samples (i.e. based directly on the definition of signal power). In 
Study III, this technique showed that on a 4–40 Hz band the poststimulus signal power was, on 
average, 27% greater than the prestimulus power (250 ms windows). When the averaged ERR of 
each subject was added to the corresponding unaveraged prestimulus signals, it was found to 
account for 90% of the power increases.  
 It has been observed that the trials with lowest poststimulus power are associated with low-
amplitude ERRs (and high power with high amplitude). This has been taken to be inconsistent 
with the assumption that ERRs are the result of additive activity (Makeig et al., 2002). However, 
when a waveform is added to a stochastic oscillation, the summation results in trials of high and 
low amplitude depending on whether the phase of the oscillation is in enforcing or dampening 

                                                 
7 To be more precise, the phase towards which the phase resetting occurs determines whether there is a slight power 
increase or decrease; nevertheless, such an effect is minimal compared to the magnitude of the power increase if 
ERRs are the result of additive processes. 
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relation with the waveform. Hence, the result that low power trials correspond with low-
amplitude ERRs and vice versa is not inconsistent with the additive model of ERRs but is the 
expected result in the lines of the well-established phenomenon of stochastic resonance (e.g. 
Moss et al., 2004). In Study II, this expected result was obtained by categorizing the trials into 
three groups according to their power at poststimulus (several frequency bands used in the 
categorization) and then averaging the trials and observing the N1m amplitude. When the 
prestimulus power was used in the same sorting procedure, no effect on the N1m amplitude was 
observed. This appears inconsistent with the view that modulation of ongoing oscillations 
underlies the generation of ERRs.  
 

 
Fig. 4: Inter-trial amplitude variation used for examining the generation mechanism of ERRs. Single-
trial, single sensor data (Study II, 1–45 Hz pass-band) was sorted into three groups according to the 
amplitude at 200 ms prestimulus (a) and at the peak latency of the N1m (b) and subsequently 
averaged (and grand-averaged). The variation of amplitudes is equal (the scales are equal) at the two 
examination points, which shows that ongoing activity is not in a coherent state at the latency of the 
N1m, but is biased by an additive constant-amplitude component. The variation is actually slightly 
increased at the latency of the N1m. The improved SNR provided by RSW was useful for examining 
this increase in more detail.  
 
 
Examining phase organization: In some examined frequency bands, an inter-trial phase 
coherent state has been observed at the time of ERRs (Gruber et al., 2005; Hamada 2005; Jansen 
et al., 2003; Klimesch et al., 2004; Makeig et al., 2002). This has been interpreted as direct evidence 
that the neural oscillations are in an organized state at the latency of the ERRs (see also Penny et 
al., 2002). However, an additive component that is phase-coherent over trials will produce an 
uneven phase distribution to all frequencies where it contains power (for elaboration, see 
simulations in Study II). Thus, it appears that with the signal decomposed to narrow bands, it is 
impossible to distinguish between phase modulation of ongoing activity and the presence of 
additive phase-coherent component. However, inter-trial phase coherence of ongoing 
oscillations, which results in a waveform in the averaged data, can equally appropriately be 
defined as inter-trial amplitude coherence; an organized state of ongoing oscillations is marked by 
reduction in inter-trial amplitude variance compared to baseline level. Adding a constant 
waveform to each trial does not effect the inter-trial amplitude variance. Thus, a necessary 
condition for the presence of inter-trial phase coherent state of ongoing oscillations is a reduction 
in the inter-trial amplitude variance of a broadband signal.  

Here, the idea of the inter-trial amplitude variation estimation is illustrated in Figure 4, 
where the trials were sorted according to their amplitude into three groups and then averaged at 
an arbitrary time point (200 ms before stimulus onset) and at the peak latency of the N1m 
(difference between high and low amplitude signals shows the amplitude variation). The 
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variations are equal at the two time points; ongoing activity is not at an organized state at the 
latency of the N1m. The mean amplitudes at the two time points, however, are not equal and 
hence an approximately constant bias, an addition of the size of the N1m, has occurred at the 
single-trial level. In Studies II and III, the appropriate broadband examinations (1–45 Hz and 4–
40 Hz, respectively) showed increases in the inter-trial amplitude variance at the latencies of the 
N1m, in contrast to the decreases expected from the organized oscillations model. These slight 
increases are explained by the trial-to-trial amplitude variance of the N1m.  
 
 
  
 
2.3 The time–frequency composition of auditory event-related processes 

(Study IV) 
 
 
Background: Studies II and III demonstrate that the auditory ERRs are not generated by phase 
resetting of ongoing oscillations. To attain a comprehensive view of auditory ERRs, their 
relationship to possible non-phase-locked event-related responses should also be established. 
This is a complicated task with commonly used moderate or high-frequency resolution time–
frequency methods, which are sensitive not only to individual responses but also to complexes of 
responses, which makes it difficult to distinguish between sequential transient events and 
oscillatory processes.  
  Studies II and III highlight the independence of ERRs from the ongoing oscillations, but 
they do not imply that the ongoing oscillations are unaffected by sensory stimulation. In the 
somatosensory system, event-related power reductions (event-related desynchronization, ERD) 
are a well-established phenomenon (Pfurtscheller and Lopes da Silva, 1999A; Schnitzler and 
Gross, 2005). With auditory stimulation, the character of ERDs has remained unclear; power 
reductions have been observed, but they have been interpreted as reflecting some special 
circumstances or processes subsequent to the actual auditory processing (Bastiaansen et al., 2001; 
Kaiser et al., 2002; Krause, 1999; Sutoh et al., 2000). Here, we sought to obtain a conclusive 
picture of the event-related processes in passive recording conditions with simple sine tone 
stimulation. If power reductions are observed, then they are an integral, unconditional part of the 
auditory event-related processes. Only crude source localization was performed (with a mapping 
of the observed processes to the MEG sensor grid employing planar gradiometers); the emphasis 
was on the time–frequency issues.  
 
Details in the time–frequency plane: Two continuous wavelets are considered here. High time 
resolution was gained with the second derivative of a Gaussian (DOG2, Mexican hat) wavelet 
defined by 
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A Morlet wavelet with a wavenumber of six (Morlet-6, ω0 = 6 ⇔ f0 = 0.95) provided a lower time 
resolution but a better frequency resolution. The Morlet is a complex sinusoid modulated by a 
Gaussian bell curve, defined by  
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Both of these wavelets are just one instance of the family formed by a different order of derivates 
and different wavenumbers (for more details, see Addison, 2002). The Morlet wavelet and its 

 26



sibling Gabor wavelet, which consists of 
the real part only, are the most common 
continuous wavelets. The Morlet 
wavelet (with f0 ≈ 1) is usually considered 
to be of high time resolution, but a 
purpose of the present examination is to 
highlight the differences between CWTs 
obtained through Morlet-6 and those 
obtained through the truly high time 
resolution DOG2. 
  The time resolution (i.e. time 
spreading) of a wavelet can be 
demonstrated by calculating the CWT 
of an impulse response, which displays 
the time-domain shape of the wavelet. 
With 10 Hz DOG2 and Morlet 
wavelets, the impulse response is spread 
to around 100 and 200 ms on both sides 
of the latency of the impulse response. 
The time span of the wavelet gives rise 
to a computational problem at the edges 
of the data segment: The wavelet will 
continue to an area where there is no 
signal. This problem needs to be 
resolved somehow, for example by 
discarding data around the edges (see 
Addison, 2002 for other techniques).  

In examining event-related 
processes, one is not typically interested 
in the general spectral content of the 
signal, but instead on what kind of 
power changes occur as a result of the 
used stimulation. The key point is that 
the processes can be identified within 
each used wavelet scale (the center pass-
band frequency) with respect to a 
baseline level of that scale. Obtaining 
the baseline level entails several 
possibilities for artifacts that are often 
not considered. Because of the time spreading of the CWTs, a poststimulus power increase (or 
decrease) is diffused in time so that it can influence the prestimulus signal. If the immediate 
prestimulus signal is used as a baseline, it can be on an elevated level. With this baseline, the post-
stimulus power increases are reduced, and the real baseline level will appear as a power decrease 
(i.e. ERD). The impulse response simulation allows us to assess how far these effects would 
spread; the baseline needs to be obtained from a signal portion that is sufficiently separated from 
the stimulus onset. This separation distance increases as a function of decreasing frequency 
(increasing wavelength) and increasing frequency resolution of the used wavelet. With short 
stimulus intervals and low frequencies, it may be impossible to find an artifact-free baseline. 
Acquiring the baseline from a separate measurement without stimulation is also problematic, as 
the background activity cannot be assumed equal to that present during stimulation.  

Fig. 5: The DOG2 wavelet transforms of the 
averaged auditory ERRs (a, absolute values) and 
of the same but single trial data (b) are alike; the 
power increases visible in b are accounted for by 
the averaged ERRs in a. The time–frequency data 
is thresholded to depict only the activity that is 
clearly distinguished from noise. The data is from 
Study III. 

 With a functional implementation, artifact-free baseline, and a sufficient number of epochs 
to yield a high SNR (Equation [8]), any deviation from the baseline level marks the event-related 
processes. With the time-series data mapped to two dimensions and with the high number of 
sensors in the current MEG and EEG devices, a practical problem of the analysis is the sheer 
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amount of data. One way to cope with this, employed in Study IV, is volume visualization with 
thresholding, which simultaneously reveals the time, frequency, and spatial distribution of power 
changes (increases and decreases viewed and thresholded separately). 
 
Event-related power changes: Time–frequency transforms with both wavelets showed 
pronounced power increases in the post-stimulus signal. The DOG2 wavelet provides a time 
resolution high enough for simple comparison of time–frequency events and the time-domain 
averaged ERRs. The power increases coincided accurately with the time-domain P1m, N1m, and 
P2m responses. Furthermore, each power increase had a single maximum, as is expected from 
the Fourier representation of a monophasic waveform. Thus, all power increases of notable 
magnitude were accounted for by the phase-locked ERRs. Here, this result is highlighted in 
Figure 5 showing DOG2 transforms of time-domain averaged ERRs (Fig. 5a) and of the same 
but unaveraged data (Fig. 5b). The qualitative appearance of the transforms is the same, although 
the maxima of the transient peaks occur at higher frequencies in the transform obtained from the 
single-trial data. This is because the high frequency part of the transient peaks has a smaller time 
span than the low frequency part and is more easily cancelled in the phase-sensitive time-domain 
averaging processes, as some latency variation is always present.  
  Because the Morlet-wavelet comprises several deflections, it is sensitive to the P50m-
N100m and N100m-P200m complexes rather than to single peaks. The interval between peaks 
provides the frequency where the CWT maxima were found. In addition to these maxima, 
harmonics were observed: When peaks of two non-sinusoidal ERRs coincide with deflections of 
a wavelet with certain frequency (scale), they will also coincide when the wavelet is three times 
that frequency. Further, the Morlet-wavelet spread the evoked activity to prestimulus side to an 
extent that hindered the analysis of low frequency data.  

With both wavelets, small magnitude power decreases (< 3%) were observed with the 
auditory stimulation. These were located to the same brain areas as the auditory evoked activity 
but also to the parietal areas. The decreases were most pronounced at around 17 Hz and 
occurred after the auditory ERRs. However, the actual onset times of the power reductions may 
be concealed by the power increases of the ERRs.  
 
 
 
2.4 Exploiting a priori information of signal structure in single-trial 

analysis (Study V) 
 
 
Background: In Study I, a pronounced latency jitter was observed in the active condition using 
selective averaging of single trials according to behavioral reaction times. In Studies I and V, the 
averaged ERRs were of higher amplitude in the active than in the passive condition. With there 
being no behavioral responses in the passive condition, selective averaging could not be used to 
determine whether the differences in the averaged ERRs were due to differences in the 
amplitudes of the single trial ERRs or with the apparent increase in attention concentrating the 
single-trial responses more accurately in the active condition. In Study V, it was also observed 
that the amplitude of the averaged ERRs decreased as a function of decreasing sound slope. 
Here, the goal was to obtain single-trial-level explanations to the amplitude effects of Study V.  

Several methods based on different a priori assumptions have been developed for single-
trial analysis. Methods that are based on the spatial distribution of ERRs include the use of PCA 
(Lugger et al., 1998), ICA (Tang et al., 2002), spatial filtering (Hillebrand et al., 2005; and also RSW 
of Study II), and linear integration (Parra et al., 2002).8 Of the one-dimensional single-trial analysis 
techniques, template matching is the best known (Woody, 1967). The development of one-

                                                 
8 These multidimensional signal-analysis methods cannot typically be applied to clinical EEG measurements because 
they rely on large sensor arrays. 
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dimensional single-trial analysis methods, however, may have been hampered by the lack of 
knowledge of the generation mechanism of ERRs. For example, if the phase resetting of ongoing 
oscillations produced the ERRs, a good strategy would be to perform a signal decomposition on 
unaveraged data and then reconstruct the single-trial ERR from the coefficients that correlate 
best with the averaged ERR (Quian, Quiroga and Garcia, 2003). However, as the auditory ERRs 
were shown in Studies II and III to be additive to ongoing oscillations, a different strategy, 
presented below, may be more effective.  
 
 

 
 
Fig. 6: Demonstration (simulated data) of the two first steps of CCWW. The measured signal has 
three components: ERR whose peak latency is to be resolved, ongoing oscillation, and noise. The 
cycle length of the ERR and of the oscillation are the same. Wavelet filtering at the frequency of the 
ongoing oscillation essentially removes the noise but reveals no discernible peak. The peak of the 
ERR is made visible by convoluting the wavelet-filtered signal with a square wave whose length is one 
cycle of the center pass-band frequency of the wavelet. 
 
 
Cycle-length convoluted weighted-wavelet (CCWW) method: CCWW is based on the 
properties of CWT, the cancellation of the effect of the incidental phase of the background 
oscillations, and the weighting of the wavelet coefficients to emphasize the evoked activity over 
ongoing activity. These three points are elaborated below.  

• The properties of CWT are suitable for accurate latency examination (see Section 1.5), 
and the wavelet can be selected so that it efficiently captures the signal features of 
interest. As the interest here is in short-duration transient events, the wavelet should be 
of a high time resolution. The already available data and the demonstrated capability of 
the DOG2 to unambiguously describe ERRs (see Fig. 5) favor its selection as the basis of 
the CWT that is the first step of CCWW (DOG2 has recently been used for similar 
purposes by Bostanov and Kotchoubey, 2004).  

• When an ERR occurs in the presence of ongoing oscillations, the wavelet-filtered signal is 
composed of both the oscillation and of the ERR, and thus may not show a discernible 
peak at time of the ERR (see also Section 2.2). Here, the solution is to describe the ERR 
as a local disturbance in the oscillation. Consider first that the mean of a wavelet-filtered 
stationary oscillation over a (moving) cycle-length of the center pass-band frequency of 
the wavelet is zero. Now, when an oscillation is perturbed by an additive component, the 
mean of the wavelet-filtered signal over the cycle-length is not zero but reflects the 
perturbation. This is the result of the span of the wavelet being more than one cycle of its 

 29



center pass-band frequency: The increase in local mean is surrounded by opposing effects 
that bring the total mean back to zero. The disturbance in the local mean can be made 
visible by convoluting the wavelet-filtered signal with an appropriate waveform, the 
simplest of which is a square wave whose length is one cycle of the corresponding 
frequency of the wavelet. The effect of the wavelet filtering and cycle-length convoluting 
is demonstrated with simulated data in Figure 6. Filtering of wavelet coefficients using 
either hard or soft thresholding is a common technique (e.g. Addison, 2002) but the 
current technique of cycle-length-specific convoluting appears to be novel. 

• The final stage of CCWW is the weighting of wavelet coefficients to emphasize ERR 
activity over ongoing activity. All wavelets are first scaled to be of equal magnitude, after 
which they are given an appropriate weight according to the frequency-specific SNR 
determined in Study IV (see also Fig. 5). The coefficients are acquired from the peak 
latency of the N1m, which is taken as a model for the onset of the ERR (see also Section 
3.1). The CCWW signal is obtained by wavelet filtering, cycle-length convoluting, and 
averaging over the weighted coefficients.  

 
CCWW applied: Here, the goal was to examine whether the amplitude effects in the averaged 
ERRs of Study V were attributable to changes in single-trial amplitudes or to latency jitter. To 
this end, the single-trial peak latencies were obtained with CCWW, after which the amplitudes 
were collected at the determined peak latencies from the band-pass-filtered and baseline-
corrected unaveraged data. In this examination, the task of CCWW was to separate the onset 
ERR peaks from the high-magnitude noise, sustained brain activity, and background oscillations.  

The amplitude decrease in the averaged responses with longer sound slopes was not 
reflected in single-trial amplitudes and is therefore likely to result from increased latency jitter. 
This increase in jitter appears inevitable, because with longer sound durations, the sound 
detection is susceptible over a longer period to stochastic events in the neural processes and 
auditory environment. The amplitude increase in the averaged ERRs as a function of task (active 
vs. passive), however, was accompanied by single-trial amplitude increases, indicating that the 
attention directed to the task increases the actual strength of brain activation. To demonstrate 
that the amplitudes obtained from the CCWW-determined latencies reflect the actual ERR 
amplitudes and not random noise values, the single-trial amplitude estimates were correlated with 
the averaged ERR amplitudes of the subjects; the CCWW results accounted for the inter-subject 
variation with notable accuracy (r = 0.96).  
 
 
 
2.5 Accentuating oscillatory processes from frequency data  

(Study VI) 
 
 

Background: In the examinations so far, ongoing brain activity has mainly played the role of 
noise, but the ongoing activity is of considerable interest to neuroscience, and furthermore is an 
important source of information regarding the status of the brain. Spectral estimation is the 
obvious way to examine the ongoing processes, but this is complicated by the 1/f slope (see e.g. 
Freeman et al., 2000, and Fig. 2) which, rather than the oscillatory processes, is the main 
determinant of the spectral values. Another complication to spectral estimation is that the 
spectral peaks signifying the presence of oscillatory processes are often broad and ill-defined. 
Moreover, with the spectral peaks not being accurately aligned in, for example, subject 
population, averaging over data sets additionally spreads the spectral peaks along the 1/f slope. 
Below, we present a solution to the above problems.  
 
Partition-referenced spectral estimation (PRSE): As the 1/f slope is an inherent part of the 
spectrum, the strategy chosen for removing it is not the development of spectral estimation per se, 
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but the exploitation of mutual information in spectral estimates obtained with different window 
lengths from the same data. Here, PRSE (not related to fractional Fourier transform, for which 
see e.g. Ozaktas et al., 1994) employs the periodogram, but it may also be implemented, with 
additional considerations, using other spectral estimation methods.  

The frequency response of the rectangular time-domain window of periodogram is a sinc 
function and the width of its main lobe is inversely related to the time window length9. The 
periodgram can be considered to operate by filtering the examined signal with the sinc-function 
shaped band-pass filters and thereby acquiring the magnitudes of the frequency components. If 
the signal contains a stationary single-frequency oscillation, then the magnitude of the spectral 
peak of the oscillation increases with the narrowing of the main lobe of the sinc function (for 
more details, see e.g. Hayes, 1996). Then again, if a process has a continuous, smooth spectrum 
such as the ideal 1/f noise, the width of the main lobe has little effect on the obtained spectral 
estimate. Now, by calculating the spectrum from a time window (full-length spectrum) and then 
partitioning the window into parts (partition to two parts used here) and taking the mean of the 
spectra calculated from these parts, one obtains a reference spectrum (of the same data) for the 
full-length spectrum. The difference between the reference and full-length spectrum is that the 
spectral peaks of approximately stationary oscillations are sharper and of higher amplitude in the 
full-length spectrum. In addition, the lowest frequencies with a wavelength of the approximate 
length of the full-length data window are not represented in the reference spectrum and hence 
discarded from PRSE. Dividing the full-length spectrum with the reference spectrum removes 
the noise slope and yields a level estimate (mean = 1), where the peaks of the oscillations remain.  

Oscillatory processes have a characteristic shape in the divided spectrum: The spectral 
peaks are broader in the reference spectrum; therefore, in the divided spectrum, the peaks are 
surrounded by downward deflections. This has the practical consequence that when one averages 
over the divided spectra, peaks not accurately aligned effectively cancel each other out. Thus, 
prior to averaging over inhomogeneous data sets, one should use a nonlinear transform that 
enhances the peaks more than the downward deflections. As the mean of the divided spectrum is 
1, a calculation of moments (10th moment used here) transforms the data appropriately. The 
prerequisite for employing moments is an SNR that guarantees that the peaks of the oscillations 
are the prominent components of the divided spectrum. 

 In PRSE, the visibility of an oscillation depends on its level of stationarity. One can attain 
a measure of this level by using several window lengths in the estimation (25 used in Study VI, 
logarithmically spaced between 500–4000 ms). Here, data obtained above the auditory brain areas 
during auditory stimulation were examined with half-overlapping data segmentation (similar to 
the Welch method).  

 
PRSE applied: PRSE expectedly removed the 1/f slope. At low frequencies and long window 
lengths, the approximately 1/f-shaped (original) spectrum has large magnitude variations, the 
main lobes of the periodgram are narrow, and there are fewer estimates available, all of which 
makes this part of the data noisy. Nevertheless, most of the obtained data was highly usable. The 
grand-averaged PRSE calculated over the shortest half of the window lengths displays a double 
peak at around 10 Hz (Fig. 7a), which is the result of four subjects having a peak at 9–10 and two 
at 11–12 Hz. The 9–12 Hz oscillation is in line with previous findings of tau rhythm and its inter-
subject variation (Lehtelä et al., 1997; Bastiaansen et al., 2001). PRSE thus appears effective in 
removing the 1/f slope and accentuating the peaks of the oscillatory processes. 

A mapping of the same PRSEs, but focused on the frequency range of interest, allows us to 
explore the dynamics of the oscillation (Fig. 7b). The 10 Hz activity is clearly seen with short 
windows and exhibits a maximum at around 750 ms but is poorly visible when the window 
length is over 1 second. The maximum indicates a duration over which the process is 
meaningfully describable as a near-stationary oscillation. 
 
                                                 
9 The width of the main lobe of the sinc function at half height is 2∆t/N, where ∆t is the sampling interval and N is 
the number of samples in the rectangular time window. 
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Fig. 7 e grand-averaged PRSE of MEG data obtained from auditory brain areas and averaged over 

.6 Mapping the envelope modulation structure of noise-buried processes  

 

ackground: The methodological starting point of this work was described at the end of Section 

ractally scaled envelope modulation (FSEM): Here we approach FSEM as an extension to 

aw MEG or 
EEG 

                                                

: Th
window lengths of 0.5–1.3 s is displayed in (a). In (b), the oscillatory activity around 10 Hz is 
highlighted by plotting PRSEs according to window length. 
 
 
 
2

(Study VI) 

 
B
1.5: the development of compact two-dimensional data representation where the envelope 
modulation structure of each frequency (as defined by pass-bands of wavelets) would be directly 
comparable with that of the other frequencies. Another goal of the current examination is related 
in Study IV, where event-related power decreases around 17 Hz were observed in the auditory 
brain areas. At that time, examinations with spectral estimates did not reveal the presence of an 
ongoing oscillation around this frequency (hence these attempts were not reported), and here it 
was hoped that the current methodological developments could shed new light on the situation.  
 
F
time–frequency methods. These methods enable the detection of even minute event-related 
power changes because of two factors: a high SNR (obtained with stimulus time-locked 
averaging) and a specific, highly useful baseline (provided by the prestimulus power level at each 
frequency band, see Section 2.3). Neither of these two is directly available for examining the 
ongoing processes but, through a byway, FSEM can be considered to employ both.  

The starting point here is CWT of data. The SNR of CWT obtained from r
data is not usually adequate for meaningful examination and, additionally, the amount of 

data tends to be impractically large. Consequently, the aim is to gather information over time in 
order to improve the SNR in a manner that does not lead to the cancellation of a relevant signal 
and yet retains some information of the temporal evolution of the processes10. Here, this is 
achieved using envelopes of each wavelet scale (modulus of complex CWT or Hilbert transform 
of real CWT). With spectral estimation of envelopes, one can characterize the typical temporal 
patterns that a frequency component exhibits (for application of these techniques to MEG data, 
see Linkenkaer-Hansen et al., 2001, 2004). By examining the envelope spectrum of relatively short 

 
10 One such technique was used in the first published MEG recording, where SNR was improved by averaging 
according to phase of alpha rhythm obtained from simultaneous EEG recording (Cohen, 1968).  
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data segments, one can improve the SNR with averaging but without the time-domain 
cancellation. The time evolution and magnitudes, however, are so different in small and large 
scales (high and low frequencies) that there would not seem to be much of a point in obtaining 
the envelope spectrum from each scale and comparing them. Furthermore, the envelope spectra 
have the same unfavorable properties as the normal power spectrum (e.g. 1/f shape). 

The solution to these problems is, simultaneously, a solution to the goal of acquiring a 
useful

ilarity over a range of scales, and it is often 
custom

SEM applied: Here the examined data are the same as with PRSE (Section 2.5). The CWTs 

rominent entities 
but in

 baseline. The envelopes of each wavelet scale are resampled so that an equal number of 
samples represents one cycle of the center frequency of each scale. That is, the sampling rate is 
adaptively changed and not related to resampling as “wavestrapping” (for wavestrapping see 
Bullmore et al., 2004, where the relationship between DWTs and fractals is also elaborated). The 
spectra obtained from the resampled envelopes with equal sample-size windows are then directly 
comparable according to their frequency content. The spectra are further scaled to be of equal 
mean magnitude. These steps constitute fractal scaling. Its rationale is that if any scale contains 
any processes other than noise, then the distribution of the envelope spectral power differs from 
that of the neighboring scales. The scales without distinct processes provide the baseline. With 
each frequency (wavelet scale) mapped to its own array, the resolution of the examination is 
literally raised to a new dimension when compared to spectral estimation. The relevant signal 
components are made palpable by normalizing the data over scales with respect to each envelope 
modulation frequency. As no scale-dependent trends were observed when tested with simulated 
data in Study VI, it appears that all deviations from the neighboring, normalized values must be 
due to relevant processes being present in the data. 

Finally, fractals are objects that display self-sim
ary to define the fractal property of a phenomenon via the Hurst exponent (Addison, 

2002). Here the Hurst exponent was not used, but the data were scaled so that the (self-)similarity 
of the envelope spectra could be examined over scales, which is enabled by the fractal property 
of the wavelet transform (shape of a wavelet is the same regardless of the scale), warranting the 
term fractal scaling.  
 
F
that underlie the FSEMs were performed with an emphasis on time, frequency, or compromise 
between the two by employing DOG2, Morlet-12, and Morlet-6 wavelets (see Section 2.3), 
respectively. FSEM expectedly provided a description of the two prominent entities known to be 
present in the data: the auditory ERRs and the 50 Hz mains component. The examination was 
not performed in a stimulus time-locked manner, but the used constant stimulus repetition 
interval provided a strong signal modulation that was readily observed with FSEM. As ERRs are 
localized in time rather than in frequency, they were best observed with DOG2-based FSEM. 
The 50 Hz mains noise is a prominent, frequency-localized component and hence clearly visible 
with FSEMs obtained with wavelets emphasizing frequency resolution (Fig. 8).  

The advantages of FSEM, however, do not lie in the analysis of these p
 the analysis of irregular noise-buried signals and more generally in the examination of 

modulations. Here, the 9–12 Hz tau rhythm, observed also with spectral estimates, was evident, 
but, importantly, FSEM revealed an oscillation in the 15–18 Hz range that could not be detected 
by spectral estimation. The frequency range of the latter oscillation coincides exactly with the 
frequency range of the power reductions observed in Study IV. FSEM further showed that the 
oscillations had maxima in the envelope spectra, which indicate that the oscillations exhibited 
modulations in the 3–7 second range. The time course of the oscillations was thus largely 
irrespective of auditory stimulation, although a local maximum can be observed in Figure 8 for 
the 15–18 Hz oscillation that corresponds with the stimulation interval, in accordance with the 
results of Study IV.  
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ig. 8: Grand-averaged FSEM representation (Morlet-6, envelope spectra acquired using data 

 
 
F
windows whose length was 100 cycles) of an MEG signal obtained from the auditory brain reveals, for 
example, ongoing oscillations at around 10 and 17 Hz as well as their modulations (envelope 
modulation axis is logarithmic).  
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3. DISCUSSION  

.1 Meeting the thesis objectives  

his thesis had six objectives (Section 1.6) that were all concerned with the examination of time, 

bjective 1: In Studies I and V, it was found that tones slowly increasing in intensity from 

f the ERR of Studies I and V was generated in the same areas as the N1m but 

 (Section 
1.3), a

bjective 2: The objective was to resolve whether ERRs are generated by stimulus-induced 

 
 
 
3
 
 
T
frequency, and time–frequency structure of MEG and EEG data. How these objectives were met 
is discussed below. In addition to these objectives, this thesis may provide insights into to two 
more general topics: the analysis and processing of elusive signals buried in noise (Section 3.2) 
and the role of transient and ongoing activity in neural information processing (Section 3.3). 
 
O
inaudible to audible give rise to prominent ERRs. The abrupt onset peak of these ERRs contrasts 
with the smooth and gentle intensity increase of the stimuli; instead, it reflects the discrete change 
in perception with the inaudible sound becoming audible. This ERR provides the sought linkage 
between perception and MEG responses by being closely correlated with the behaviorally 
measured sound detection. Previous studies have indicated a link between brain events and 
behavioral sound detection using near-threshold stimuli and a posteriori classification of ERRs 
based on behavioral decision criteria (Hillyard et al., 1971; Parasuraman et al., 1980, 1982; Paul 
and Sutton, 1972). The current results complement these observations in providing a predictive 
temporal linkage. 
 The onset o
can be seen to differ from the N1(m) in that it does not reflect the sound onset typically accorded 
to the N1(m) (Näätänen and Picton, 1987). In defining the N1(m) to be a stimulus-onset 
response, it is not considered that only the part of the stimulus that is at least nearly audible is 
likely to contribute to the generation of the N1(m). By further noting the continuum of response 
morphologies in Study V from the N1(m)-like ERR with short sound slopes to the step-like 
entity with long sound slopes, it appears that the N1(m) and the ERR of Studies I and V are 
generated by the same neural processes. With the used slope stimuli, this ERR appears to be a 
sound onset response—not that of the physical onset, but that of the perceptual onset.  

 The relationship between the N1(m) and perception is, then again, controversial
nd Studies I and V can only do little to clarify this controversy (Section 3.3). Nevertheless, 

by exploiting the high time resolution of MEG, Studies I and V succeed in describing the 
stimulation conditions where MEG indexes behavioral sound detection. These results thus pave 
the way for utilizing non-invasive brain measures in the objective evaluation of the functionality 
and development of the human auditory system. However, the conclusions of several recent 
studies have cast a shadow on the notion that ERRs directly index neural information processing. 
 
O
phase reorganization of ongoing oscillations or by processes additive to ongoing activity. The 
popular idea of organized oscillations (e.g. Başar, 1980; Gruber et al., 2005; Hamada 2005; Jansen 
et al., 2003; Karakaş et al., 2000; Klimesch et al., 2004; Makeig et al., 2002; Sayers et al., 1974) would 
appear to indicate that ERRs do not directly reflect the processing of sensory information in the 
human brain. That is, by its very nature, ongoing activity will stochastically, and without stimuli, 
produce all the states that can be produced with phase resetting. This might suggest that ERRs 
are more of an epiphenomenon than measurable projections of the neural information 
processing. 
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In Studies II and III, the evidence held in favor of the organized oscillations model was 
found to be inconclusive. In particular, an inter-trial phase-coherent state observed at the time of 
ERRs, which has been held to mark the phase coherence of the ongoing oscillations, was found 
to be explainable equally well by additive ERR influencing the phase distribution of the signal. 
This ambiguity will follow all methods that examine the phase of a band-limited signal. The inter-
trial phase coherence, however, would manifest itself also as inter-trial amplitude coherence, 
which can be examined from a broadband signal. In Studies II and III, this broadband 
examination provided unambiguous evidence that auditory stimulation did not result in phase 
reorganization of ongoing oscillations, and, in addition, the presence of additive components that 
accounted for the ERRs could be established.  

Studies supporting the conclusions of this thesis have begun to emerge. In fact, in 1983, 
Jervis et al. had already found evidence that Fourier components at the poststimulus stage had 
greater power than at the prestimulus, and they concluded that the additive model is more 
plausible. However, the study by Jervis et al. has been suggested to provide inconclusive results 
(Jansen et al., 2003) or even to support the organized oscillations model (Hamada, 2005). More 
recently, Shah et al. (2004) have taken a clear stance against the organized oscillations model on 
the basis that, in their intracortical measurements from monkeys, visual responses were found to 
emerge from a baseline where the amplitude of the ongoing activity was only a fraction of the 
amplitude of the evoked response. Kirchfield (2005) reanalyzed Brandt’s (1997) data and 
observed that superposition of visual ERRs to ongoing oscillations without resetting their phase 
accurately accounted for the data. Studies II and III are most closely paralleled by Yeung et al. 
(2004), which meticulously shows, mainly based on simulations, that none of the evidence 
provided by Makeig et al. (2002) distinguishes between the reorganization of ongoing oscillations 
and the additive model. Moreover, Yeung et al. reach the conclusion that this question would 
need to be examined using broadband signals and preferably with spatial weighting; both 
techniques were realized and used in Study II (inter-trial amplitude variance and RSW).  

In conclusion, the reviewed evidence suggests that the additive model is a generally valid 
generation mechanism for the ERRs. Studies II and III, in parallel with Yeung et al., provide an 
explanation for all common results that have been interpreted as supporting the organized 
oscillations model in terms of the additive model. In addition, the inter-trial amplitude variance 
introduced in Study II is, thus far, the only proposed method that can distinguish between an 
inter-trial phase-coherent state of ongoing oscillations and the emergence of phase-coherent 
additive ERRs. However, one might entertain a possibility of various phase-locked and non-
phase-locked induced or dampened oscillatory processes that could account for any observed 
inter-trial amplitude variance result. In order to exclude this possibility one should examine, using 
time–frequency methods, what event-related processes actually are present in the measured 
signal.  
 
Objective 3: In Study IV, a conclusive mapping of auditory event-related processes was sought 
along with prerequisites for the effective use of CWT in this task. It was found that wavelets of 
high time resolutions could be readily used for analysis of auditory ERRs. This is because they are 
sensitive to individual ERR peaks, whereas wavelets of a higher frequency resolution are sensitive 
to wave complexes or oscillations. A central point for the effective application of CWT was 
found to be the frequency (wavelet scale) specific baseline. The most notable problem with the 
baseline is that the wavelets may spread the power of ERRs to an extent that a true baseline level 
may be difficult to acquire.  

Another objective was to clarify the relationship of the time-domain averaged ERRs and 
the processes observed in the time–frequency plane: All the power increases could be accounted 
for by the ERRs, which further supports the conclusions of Studies II and III. Study IV also 
showed that power decreases following the ERRs, while small in magnitude, are an integral part 
of the auditory event-related processes. The effect of auditory stimulation on ongoing oscillations 
thus appears to be a slight intermittent dampening. Study IV, however, did not address the 
relationship between the event-related power decreases and composition of ongoing processes, 
whose efficient examination required further methodological developments (Study VI).  
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Objective 4: Here the objective was to exploit the information obtained in Studies II–IV to 
uncover the single-trial level explanations for the amplitude effects of averaged ERRs in Study V. 
The cycle-length convoluted weighted-wavelet (CCWW) method was devised for this purpose. 
CCWW performed agreeably by showing that the amplitude increase in averaged ERRs as a 
function of task (in the active, or response, condition, the ERRs were of higher amplitude than in 
the passive) was accompanied by increases in single-trial ERR amplitudes. The amplitude 
decrease of averaged ERRs, as a function of decreasing sound slope, then again, could be 
attributed to increased latency jitter of the single-trial ERRs.  
 CCWW employs a novel technique, cycle-length convolution of wavelet-filtered signal, to 
eliminate the effect of the incidental phase of background oscillations. This convolution 
technique may be useful also in other applications, whereas in its current form the full CCWW 
method should only be used for examining single, relatively isolated transient deflections. The 
results of Studies II–IV are likely to be more important for single-trial analysis than the solutions 
of Study V.  
 
Objective 5: Partition-referenced spectral estimation (PRSE), introduced in Study VI, achieves 
the objective of providing an unambiguous representation of the oscillatory processes of MEG 
data. The 1/f slope was removed, and the peaks of oscillations, when SNR was sufficient, could 
be accentuated to an arbitrary degree. PRSE is based on simple manipulations of the spectra, but 
I have not found a record of any closely similar technique. Unlike some methods used for 
removing the 1/f slope (Buzsáki and Draguhn, 2004; Dumermuth and Molinari, 1987), PRSE is 
insensitive to unexpected or non-monotonic shapes of the noise profile and avoids possible over- 
and under-fitting problems as well as the requirement of searching parameters for fitting. Because 
of its simplicity and shown functionality, PRSE may be generally useful in the analysis of noise-
buried oscillations. It should, for example, provide a suitable input, with the artifactual 
contribution of background activity eliminated, for localization algorithms when the goal is to 
determine the sources oscillatory processes (e.g. Jensen and Vanni, 2002). 

Due to removing the noise slope, an inherent part of the spectrum, a PRSE signal 
representation may not be considered a true spectrum. Instead, PRSE describes what is normally 
considered the relevant contents of the spectra. PRSE also provides a measure of stationarity, 
which indicates the optimal window length for spectral estimation in the sense that shorter 
window lengths will yield a blunter spectral peak, while increasing the window length will not 
sharpen the peak but will reduce the SNR. However, when the goal is to obtain a measure of the 
duration of the oscillatory states or to reveal oscillatory processes with a low level of stationarity, 
fractally scaled envelope modulation (FSEM) estimation instead of PRSE may be recommended.  
 
Objective 6: Fractally scaled envelope modulation (FSEM), introduced in Study VI, meets the 
objectives of the desired two-dimensional time-series data representation very well. FSEM 
describes the statistical temporal behavior of each frequency (as defined by pass-bands of 
wavelets) via its envelope spectrum and employs a fractal scaling that makes the envelope spectra 
of different frequencies directly comparable with one another, despite their inherent magnitude 
and time-scale differences. By providing a statistical description of the temporal behavior of the 
frequency components, FSEM achieves an SNR that is beyond that of the non-averaged time–
frequency estimates. Furthermore, by mapping each frequency component to an array and with 
the fractal scaling providing a functional baseline, it achieves a resolution beyond that of the 
spectral estimation.  

Studies I–V and PRSE have all given their separate contributions for elucidating the time 
(ERRs), frequency (ongoing oscillations), and time–frequency (ERD) structure of MEG signals, 
but FSEM manages to describe all these processes simultaneously. It is, however, obvious that 
FSEM is not an ideal method for examining all processes that it manages to reveal, but that a 
preferable alternative may be found from the wide range of current signal processing methods 
(see e.g. Cohen, 1995; Mainardi et al., 2002; Thakor and Tong, 2004). FSEM may, however, be 
recommended for examining signals when SNR is low but plenty of data are available. Its fractal 
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scaling also ensures that it is a generally effective method for examining modulation structure of a 
signal, and for the elemental task of detecting weak, unstable, oscillatory processes, it may be the 
most effective of all currently available methods.  
 
 
 
3.2 On the analysis of elusive signals in noise  
 
 
The level of stationarity and the analysis methods of this thesis: A signal is usually very well 
described if one has an accurate model of the processes generating it and information of the 
conditions that influence the processes. Modeling of the system is, however, often not possible 
because of the complexity of the processes or a lack of knowledge; instead, signal transforms and 
representations are used to uncover the constituents of the signal. In MEG and EEG research, 
there have recently been suggestions that the signal is nonlinear and therefore unsuitable for 
analysis with linear methods such as the Fourier transform (e.g. Freeman et al., 2003). However, 
the Fourier transform and DWT provide frequency and time–frequency representations of a 
signal, respectively, which allow perfect reconstruction of the time-domain signal; hence, they 
certainly are valid signal representations. In addition, the division between linear and non-linear 
methods seems misplaced. That is, while the Fourier transform, CWT, and DWT are linear 
transforms, the derived amplitude and power spectra or the type of time–frequency transforms 
presented in this thesis are all nonlinear data descriptions, yet are often classified as linear (e.g. 
Thakor and Tong, 2004). Therefore, rather than describing signals in terms of linearity and non-
linearity, this thesis work suggests that the stability of processes, or the level of stationarity, is a 
useful concept in evaluating signals.  

Traditional signal analysis has mainly operated under the assumption that the examined 
signal is generated by processes exhibiting a high level of stationarity, whereby spectral estimation 
is a suitable analysis technique (e.g. Hayes, 1996), but the methods introduced in this thesis also 
work with such signals. If the examined process is buried in some other type of noise than white, 
then PRSE, which specifically exploits the stability of oscillatory processes, can be recommended 
for removing the noise slope. An oscillation with a stable modulation structure usually constitutes 
a relatively stationary process. Such processes are well-suited for analysis with FSEM, whose 
fractal scaling allows detecting even small and diffused peaks in the modulation spectrum that 
would easily be missed with conventional envelope analysis techniques.  

When considering pronouncedly nonstationary processes, one may differentiate between 
processes that are relatively stationary over some periods and those that are in a continuous mode 
of change. Speech is an example of a signal that, while definitely nonstationary, contains 
segments that are approximately stationary and are generated by mechanisms that are relatively 
simple (at least when compared to the brain), and thus suitable for linear modeling (e.g. Varho, 
2001). In this thesis, no strict assumptions of the level of stationarity of MEG signals have been 
made; instead, both PRSE and FSEM provide ways to measure the level of stationarity. The 
measure gained with PRSE is derived from the width and morphology of spectral peak, and while 
it is related to the level of stationarity of the oscillation, the relationship may not be a 
straightforward one. FSEM, then again, measures the intervals of the modulations of the 
oscillation, which coincides with the intuitive notion of the duration of the oscillatory state. 
FSEM results were also robust in the sense that the same modulation durations were obtained in 
Study VI with FSEMs employing different wavelets and envelope spectrum estimation window 
lengths. Thus, FSEM may be a useful analysis tool in tasks ranging from those where the goal is 
to detect the presence weak signal sources, such as exposing submarines from the 1/f-distributed 
ocean noise, to those where the goal is to identify the unknown structure of signal, such as in 
radio astronomy. 

The above considers the examination of the whole signal, whereas event-related processes 
of MEG and EEG contribute to the measured signal only intermittently. Approximately time- 
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and phase-locked event-related processes are routinely examined with event time-locked 
averaging, but an approach where they are considered as transient additions to more stationary 
background activity appears useful for obtaining single-trial level descriptions (e.g. Lange et al., 
1997). The cycle-length convoluting of the wavelet-filtered signals, introduced in Study V, is an 
example of this approach; even when an ERR and an ongoing oscillation have opposing phases, 
the cycle-length convolution unambiguously reveals the existence of the additive ERR and 
facilitates the detection of peak latency. In other signal-analysis fields, this approach is often 
applied in an inverse manner; for example, Hadjileontiadis and Panas (1998) used it to separate 
transient heartbeat artifacts from more stationary lung sounds.  

All approximately event-time-locked processes can be examined with time–frequency 
methods, but Study IV highlights some difficulties that arise when a technique (wavelet) suited to 
examining oscillatory processes is used for examining transient events. Without contrary 
information, the event-related processes should be considered to be devoid of stable oscillatory 
structure to an extent that they are best examined using time–frequency methods of the highest 
time resolutions. Indeed, it is a peculiarity of MEG and EEG research that frequency-domain 
methods are commonly used to represent signals not meaningfully described by the concept of 
frequency (a cautious reader may find insights on the above notion from Kramarenko and Tan, 
2002).  
 
On the pitfalls and safe passages of MEG and EEG analysis: One purpose of this thesis text 
has been to provide guidelines for obtaining methodologically solid results. Here, some of that 
material is compressed to ten educational observations. 
 1. Obtaining an undistorted baseline is as important as obtaining the actual signal. A short 
stimulus presentation interval is particularly problematic in this respect.  
2. Negative observations are not a good basis for inferences. Not observing stimulus-related 
power changes with single-trial spectral estimation is a specifically questionable negative result. 
 3. Amplitude changes in averaged ERRs can be accounted for by a number of factors other than 
changes in the single-trial ERR amplitudes (e.g. changes in single-trial latency alignment or 
changes in source visibility with changing source location or orientation). 
4. With averaged ERRs, narrowing of the examined frequency band should only be used for 
emphasizing events already visible in a broadband, preferably unfiltered signal. A related point is 
that the removal of transient events (e.g. ERRs) to uncover hypothesized underlying oscillations 
should not be attempted with frequency-domain methods. 
5. Observing events on a frequency band does not imply that the observed processes are 
oscillatory; frequency and time–frequency representation can be difficult interpret mainly because 
of how they link events separated in time.  
6. Defining brain processes into narrow frequency bands (e.g. < 2 Hz) is likely to yield erroneous 
results.  
7. Inter-trial phase coherence on a frequency band of oscillation does not guarantee that it is the 
oscillation that is in the phase-coherent state. 
8. A power increase in an averaged time–frequency estimate does not readily imply changes in the 
ongoing brain processes whereas a power decrease does (if the baseline is undistorted). 
9. Observing that distinct frequency bands have similar time courses can mean that distinct 
processes are communicating but may also mean that a single process is represented at distinct 
frequencies. 
10. If the possible motor artifacts can be controlled, using same stimulation in two or more 
recording conditions where subjects have different instructions or tasks is one of the most 
reliable ways of obtaining results that actually reflect information processing in the human brain.  
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3.3 Transient and ongoing processes in neural information processing  
 
 
Setting the stage: At an elementary level, the discussion of neural information processing 
focuses on the question of whether the firing rate of neurons or the precise temporal pattern of 
the firings encodes information (e.g. Borst and Theunissen, 1999; deCharms and Zador, 2000). 
The conjecture that the temporal patterns are important for information processing is associated 
with oscillations, because information could be encoded into phase relations between oscillations 
of different neural populations without concomitant change in firing rate. Indeed, there is a 
plethora of articles emphasizing the role of synchronized oscillations in neural information 
processing (for reviews see e.g. Buzsáki and Draguhn, 2004; Schnitzler and Gross, 2005; Varela et 
al., 2001). Nevertheless, the role or even the abundant existence of synchronized oscillations is 
not conclusively established (e.g. Pareti and Palma, 2004), and alternative explanations for the 
results favoring temporal coding with oscillations have emerged. For example, Harris (2005) 
describes how the internal dynamics of the cortical circuit can result in a temporal structure 
beyond what is expected from firing rate coding, despite the rate being the primary means of 
encoding information. Recent evidence (Johansson and Birznieks, 2004) has revived the 
hypothesis that neural coding is performed with first spike timing (Thorpe, 1990). This form of 
coding uses transient spike trains or even single spikes with respect to some available time 
reference to encode information (VanRullen et al., 2005). Shadlen and Movshon (1999) have 
gathered a load of criticism to slow down the bandwagon of synchronized oscillations, but their 
potent argumentation appears to have been ignored rather than defeated.  

In this thesis work, no evidence supporting the role of synchronized oscillations in neural 
information processing was encountered, whereas various examples were met where the effects 
of the transient (non-oscillatory) ERRs could be misinterpreted to reflect oscillatory activity (see 
also Yeung et al., 2004). Moreover, the auditory ERRs were shown to provide for unambiguous 
information representation in not reflecting phase-organized states of ongoing oscillations, which 
entail the problem that they occur stochastically and thus without stimulation. The current results 
highlight the role of transient, non-oscillatory activity in neural information processing. 
 
The possible roles of transient and ongoing processes: The ERR observed in Studies I and 
V is a step-like sign that the subject is able to, within a couple of hundred milliseconds, 
behaviorally indicate that a sound has been detected. The non-proportionality of the onset of the 
ERR compared to the smooth sound slope is in line with the idea that increasing sound intensity 
is an ecologically important signal associated with approaching sound source (Neuhoff, 1998). 
Recurrent excitation of cortical circuits (Douglas et al., 1995), which provides rapid amplification 
of the input signal, has been considered as a neural level mechanism to underlie the generation of 
the N1(m) (May, 1999) and could also account for the ERR of Studies I and V. With such a 
mechanism in place in the cerebral cortex and with the shown correlation between behavioral 
and brain responses, one might suggest that the role of this abrupt cortical activation is to 
provide a representation of the sensory stimuli with its basic features encoded in the location 
according to the topographical organization. This suggestion is supported, for example, by the 
study of Lu et al. (2001), which indicates that in the auditory system of monkeys, a locally 
increased firing rate encodes most auditory stimulus properties and that only slowly varying 
stimulus features are encoded with the modulation of the firing rate. It should, however, be noted 
that although the activity is elicited by the sensory stimuli, the evolution of activity is likely to be 
determined by the organization of the neural circuit, which has been molded by the past life of 
the animal, rather than directly reflecting the dynamics of the stimuli (Fiser et al., 2004; Harris, 
2005).  

The neural representation of the stimulus refers here to the part that is necessary and 
central (but not sufficient alone) among the ensemble of neural events that underlie the 
perception of the stimulus. The complexity of the human brain, however, discourages 

 40



generalizations. That is, the abrupt amplified neural activation is suitable for providing a high 
SNR representation of weak auditory stimuli. However, when sounds are clearly audible, the 
brain may employ a different processing strategy, wherein some neural processes preceding those 
manifested in the N1(m) provide the information of the existence of the stimuli. This would 
explain why the N1(m) type of activity is sometimes found to be linked to perceptual sound 
detection (Parasuraman et al., 1980, 1982; Studies I and V) and sometimes not (e.g. Jaskowski et 
al., 1994). With strong signals, the main role of the neural processes underlying the N1(m) may be 
to mediate information of the more elaborate features of the stimuli (Roberts et al., 2000). 

On the basis of the current data, it is hardly possible to suggest or support any role that 
induced oscillations might have; no induced additive oscillations were observed. It may, however, 
be noted that the coding scheme with transient activity patterns is highly suitable, specifically, for 
the auditory modality. In other sensory modalities, the stimulus features are often less dynamic 
and therefore more suitable to be encoded with more stable activity patterns. For example, it has 
been suggested that a steady-state condition in the somatosensory system is maintained with 
(standing wave) oscillations (Schoffelen et al., 2005). From the visual system, there is evidence 
that stable images produce oscillations, whereas more dynamic stimuli result in transient, non-
oscillatory activity (Kruse and Eckhorn, 1996). 

A small event-related power reduction, or ERD, was observed in Study IV (for possible 
functional roles of ERD, see Neuper and Pfurtscheller, 2001), but, overall, the ongoing 
oscillations appeared highly independent of the ERRs. This, however, does not imply that the 
ongoing activity is irrelevant to neural information processing. On the contrary, the results of this 
thesis are in line with those obtained invasively with voltage sensitive dyes (for a review of the 
method, see Grinvald and Hildesheim, 2004). These have indicated that evoked responses in the 
mammalian visual cortex are accounted for by linear summation of evoked responses and 
ongoing activity (Arieli et al., 1996). This indicates that the ongoing activity affects the evoked 
responses (e.g. their amplitude) in a straightforward manner and, subsequently, neural 
information processing. Several studies have discussed and provided evidence for the possible 
beneficial role of noise in neural information processing (for review, see Moss et al., 2004). These 
studies have mostly referred to the role of noise in enabling a weak stimulus to exceed a 
threshold in a nonlinear mechanism. The current situation, however, appears different; the neural 
responses to stimuli of sufficient intensity are unlikely to require contribution from noise for their 
elicitation. Instead, the role of background oscillations might be to provide variability to the 
neural responses to stimuli. In simple serial computer systems, added variability in the input is 
likely to lower the performance of the system, and may also do so in complex and adaptive 
animal brains in a short time span. However, for long-time survivability of the brain, the variable 
input may be essential in facilitating learning, for example, by preventing us from being stuck on 
a local maximum or minimum while seeking an optimal solution to a problem.  
 
 
 
3.4 Concluding remarks  
 
 
In this thesis, the time–frequency information structure of electromagnetic brain signals has been 
examined via MEG measurements and methodological developments; some elemental questions 
of MEG and EEG research have been tackled along with the topic of processing of noise-buried 
signals. As a scientific endeavor, this thesis work shares features common to contemporary 
research. The work provides for journal articles, but is not an extensive, orderly examination of a 
single question covered by a single scientific discipline. Hence, it is in order to consider the 
consistency and validity of the thesis work.   

Studies I and V examined whether and how the MEG signals reflect human cognitive 
operations. It was found that smooth sound slopes with intensity increasing from undetectable to 
audible elicited event-related responses (ERRs) whose step-like morphology reflected perceptual 
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sound detection rather than the acoustical structure of the stimuli. Moreover, the latencies of the 
ERRs accurately predicted the behavioral reaction times to sound detection. These results should 
contribute to the evidence that provides credibility for MEG and EEG as objective measures of 
human cognition. As the ERR of Study I and its correlation with behavioral measures could be 
replicated in Study V, at least some level of consistency was achieved. In addition, the behavior of 
this ERR was examined using a fair range of sound slopes. Nevertheless, these results provide 
only the starting point for understanding the dynamics of this ERR and for its possible use in 
hearing assessment. 

The examination of the generation mechanism of ERRs can be considered as the most 
thorough part of the thesis work. In Studies II and III, the popular suggestion that ERRs are the 
result of phase resetting and consequent reorganization of ongoing brain oscillations was found 
to originate from inconclusive evidence. Subsequently, in Studies II and III, the presence of 
additive components could be established, and a novel analysis technique showed that auditory 
stimulation does not give rise to a phase-coherent state of ongoing oscillations. In Study IV, a 
detailed time–frequency mapping of auditory event-related processes was performed. An ongoing 
oscillation was found to be slightly and intermittently dampened by stimulation, but more 
importantly, and in line with Studies II and III, the averaged ERRs were found to accurately 
account for the power increases observed in the time–frequency plane. In addition to the results 
of Studies II–IV, the unipolar ERR shapes in Studies I and V as well as the results of Study VI, 
indicating that the modulations of ongoing oscillations were mainly irrespective of stimulation, 
are all evidence that supports the view that the ERRs are additive to ongoing brain oscillations. 
 The methodological work of this thesis was aimed at providing solutions to problems that 
emerged from the analysis of MEG and EEG signals, but this work may also be viewed from a 
broader perspective. Study V introduced the cycle-length convoluted weighted-wavelet (CCWW) 
method that employs a priori information of ERRs to single-trial analysis. The method itself is 
unlikely to find an application outside its intended purpose, but the cycle-length specific 
convolution, which allows effective isolation of perturbations from oscillations, is a persuasive, 
more widely applicable technique.  

Simplicity is usually one of the most important assets of a method when considering its 
overall applicability. Partition-referenced spectral estimation (PRSE), introduced in Study VI, 
scores high in this respect and yet provides a data representation where oscillations are 
accentuated and the noise slope of the spectral estimate is removed. PRSE was not tested very 
extensively in this thesis, but its simplicity should ensure that no serious complications arise if it is 
applied more generally to data analysis. The main methodological development of the thesis, 
fractally scaled envelope modulation (FSEM), introduced in Study VI, requires a number of signal 
processing steps. The added complexity may be justified by the information obtained of the 
modulations of oscillatory processes. Moreover, FSEM revealed oscillations that could not be 
detected with spectral estimation; FSEM may be the most effective method yet for detecting 
unstable oscillatory processes buried in prominent noise. In addition, the idea of a data 
decomposition where all components are made directly comparable despite their inherent scale 
differences, the fractal scaling, is certainly applicable elsewhere.  

To conclude, this thesis is far from being the most focused and concentrated examination 
possible. Nevertheless, Studies I–VI follow in succession from the developments of each 
previous study and offer mutually supportive results that have, I hope, succeeded in providing 
genuinely new insights into various disciplines. Specifically, the examinations of this thesis come 
together for two general propositions: (1) the structures and their duration in signal both 
determine and facilitate the most effective analysis method and (2) transient brain activity, 
reflected in ERRs, is a feasible means of representing information in the human brain.  
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