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ORIGINAL FEATURES 
 

A modern passenger ship is a complex structure containing all essential facilities for convenient 

voyage and at the same time capable of sustaining safely possible extreme sea loads. Passenger 

ships are multi-layer structures, creating an idea that if the hull girder strength is ensured, no need 

exists to study the ultimate strength problem in detail. So far no studies have been reported that 

could prove this approach. The present work concentrates on the behaviour of large passenger ships 

in load cases, where the hull girder reaches its ultimate stage. 

 

The following features of this thesis are believed to be original: 
 

1. The non-linear equations of the Coupled Beams (CB) method for multi-deck structures were 

developed and are presented. The method is based on the assumption that the ship structure 

can be modelled as a set of coupled beams. 

 
2. The coupled beams method enables one to estimate not only the ultimate strength of the hull 

girder, but also its deflections, average strains and stresses for the whole loading path. 

 
3. The structural members describing coupling in shear between beams were developed to 

consider the behaviour of stiffened plate panels. 

 
4. The reverse loading was included into the structural members of the CB-method. 

 
5. The ultimate hull girder strength of a post-Panamax passenger ship was estimated both for 

hogging and for sagging loading conditions with the developed CB-method, taking into 

account the possibility of shear and compression collapse in the stiffened plate panels of the 

hull girder. 

 
6. The non-linear finite element analyses included an estimation of the proper mesh used for 

the analysis of the ultimate strength of the hull girder composed of stiffened plate panels. 

 
7. The prismatic type Finite Element model was analysed on a full scale both in the sagging 

and hogging loading conditions. The buckling of deck, bottom and bulkheads structures in 

compression and in shear were considered. As a result, the Finite Element Analyses allowed 

for a description of the collapse behaviour of the hull girder as a function of the deflection 

both in the hogging and sagging loading cases. The results were exploited in the validation 

of the CB-method. 
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1 INTRODUCTION 
 

1.1 GENERAL 

 

 During the last decades, passenger ships have seen drastic changes. The superstructure 

volume in relation to that of a hull has increased significantly due to a growing need for open spaces 

in restaurants, theatres and atriums. Also, the size of ships has increased, based on the advantage 

offered by the scale of economy. This all has caused a concern of whether the global longitudinal 

strength of the hull girder is sufficient. A modern passenger ship is a complicated structure, which 

has a high and long superstructure with several decks supported by pillars, longitudinal and 

transverse bulkheads on the hull, see Figure 1. The complexity of structural behaviour is increased 

by large openings in the longitudinal structures and by the need to transfer internal loads from one 

longitudinal structure to another, for instance, in the area of lifeboat recess. 

 

 

Figure 1. Modern passenger ship’s cross-section of the hull girder composed of the hull and 
superstructure. 

 
Due to this complex structural behaviour, the ultimate strength of the passenger ship is hardly 

predictable. Today, no information is available about this phenomenon. The design codes for 

passenger ships are based on elastic analysis, where buckling, yield or fatigue limits determine 

scantlings. This approach inherently implies an assumption that there exists an excessive ultimate 

strength capacity in the hull girder. This situation results from structural considerations, i.e. a 

modern passenger ship hull with a superstructure is a high beam with numerous decks, which can 

produce a sufficient internal moment even when some of the decks have collapsed. However, a 
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typical superstructure has low shear stiffness, reducing the effect of the upper decks in the 

longitudinal bending. In addition, the shear buckling reduces this shear stiffness and as a result, the 

shear lag effects become stronger. Thus, the structure may collapse at the load level close to the 

design load. The loads at see are caused by the forces of nature and are statistically determined, 

therefore the ship can sail into waves, where the design bending moment may be exceeded. 

Consequently, in order to keep safety at an acceptable level, a better understanding of the ultimate 

strength of a passenger ship is required. 

 Today a practical tool to solve the response of a passenger ship is the three-dimensional 

(3D) Finite Element (FE) method. However, the drawback of this method is that it is time-

consuming, moreover, it is difficult to acquire a deeper understanding of the structural behaviour. A 

prismatic non-linear FE-model of the passenger ship can be created in two or three weeks. If the 

interest lies only in the linear behaviour, the computation time can be measured in hours. For the 

ultimate strength analysis, the corresponding time will extend to weeks. Additionally, the time spent 

on creating the proper mesh must be included, as certain structural components need a very dense 

mesh. Therefore, simplified and fast analytic methods are useful in the concept design stage and 

also to improve the physical understanding. 

 
 

1.2 SCOPE OF THE WORK 

 
 The background of the present work is based on the linear theory meant for the estimation of 

the hull girder response of ships with large superstructures. This theory called the Coupled Beams 

(CB) method is presented in reference Naar et. al. [23]. In the present work, this theory was 

enlarged in order to cover also the ultimate strength of the hull girder composed of stiffened panels. 

This method allows for a better explanation of the effects of various parameters on the ultimate 

strength of the hull girder in the passenger ships. Also, a practical requirement set up was that the 

method should be fast and easy to use. 

 The basic beam theory is not directly applicable to the problem of hull girder bending in the 

case of ships with a large superstructure. This fact is due to the axial bending strains, which are non-

linearly distributed in the cross-section of the hull girder. The CB-method approximates these 

strains with a piecewise linear and non-continuous distribution. According to the CB-method, the 

whole structural behaviour can be described with so-called coupled beams. For this purpose, the 

whole ship’s cross-section was divided into beams, presenting the structural components 

participating in the longitudinal strength of the hull girder. Each beam was coupled to neighbouring 

beams with distributed springs, presenting the side shells, pillars, and longitudinal bulkheads and 
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transferring the loads between different decks. These distributed springs were named also as vertical 

elongation and longitudinal shear members. 

 The non-linear CB-method required some additional assumptions to enable the loading up to 

the ultimate strength of the hull girder. The stiffness of beams and coupling springs might be 

reduced locally due to the structural collapse during the loading. These springs were assumed also 

to behave non-linearly. Thus, the assumption of a non-prismatic beam must be applied. The 

stiffness of beams and couplings is based on the relation between the normal stress and strain called 

also as the load-end shortening curve. These curves can be determined analytically, based on the 

literature. However, the relation of stress-strain curves in shear must be separately studied due to 

lack of knowledge in the literature. Thus, in the present study, emphasis was placed on the 

development of the shear members. The determination of axial and bending stiffness for each 

individual beam in the cross-section is based on the method presented by Smith [35], where the 

linear strain distribution in the cross-section is assumed. To solve this non-linear problem, an 

incremental approach was needed. 

 The aim of the thesis was also to study the ultimate strength of the hull girder of a large 

passenger ship. Up to now, mainly single-deck ships have been studied. Thus, there is lack of 

knowledge about the structural behaviour of large passenger ships under extreme conditions. The 

non-linear Finite Element (FE) method offered the only tool for the validation, as no ultimate 

strength test results for hull girders of passenger ships exist. However, the calculation resources, 

especially for non-linear FE-analyses, are normally limited. To obtain reliable results, a large 

amount of basic knowledge for the FE-modelling is required. For example, the global FE-model has 

to be refined in critical structural areas and thus, several local test structures with various mesh 

combinations have to be analysed to determine the collapse modes. The FE-method was also used 

for the validation of the behaviour of stiffened panels in compression and in shear needed in the 

CB-method. 

 As the object of the case study, an actual post-Panamax passenger ship was chosen. It had 

all the typical structural features present in modern passenger ships. The hull and the superstructure 

were of equal length and had prismatic geometry and thus, the effect of the fore and after body 

structures was not considered. In addition to this, local structural strengthening outside the midship 

region was not included. The shape of the external loading of the hull girder was based on the 

classification society’s rules. The problem was considered as quasi-static. This case study was 

intended to point out that the low shear stiffness of typical post-Panamax passenger ships, see 

reference Naar et. al. [23], might reduce remarkably the ultimate strength in bending. Therefore, the 

relevant ultimate strength estimation could not be done without taking into consideration the shear 

strength. 
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1.3 STATE OF ART 
 

 

 Full-scale tests will probably produce information that would be most valuable to describe 

the ultimate behaviour of ship structures. Unfortunately these are difficult and extremely expensive 

to conduct. Therefore, only few tests have been conducted with full-scale ships and little data are 

available. Vasta [38] analysed several full-scale tests that have been carried out in the past. He made 

many important conclusions. According to the test results, the hull girder of a ship with deckhouses 

does not behave according to the simple beam theory. Normal stresses may not reach their 

maximum at the top deck. Vasta claimed also that the deckhouse-hull interaction depended on 

several factors, such as on the relative stiffness of the hull and superstructure and on the spring 

stiffness between them. Also, the length of the deckhouse was an important parameter. 

 In contrast to full-scale tests, numerous small-scale tests have been conducted, such as 

those by Dowling [13], Dow [12], Reckling [33], Ostapenko [26], and Mansour et al. [21]. These 

can be divided into ultimate strength tests done with exact small-scale models and those done with 

stiffened box-girders. The small scale-tests do not correspond exactly to real ship structures, as the 

scaling of dimensions and material properties is difficult. Also, the option of several decks is not 

considered. However, the results are still of great importance, as they improve the understanding of 

the failure mechanisms and offer a possibility for validation with theoretical models. 

 The linear response of the multi-layer structure is one of the sub-problems when studying 

the ultimate strength of the passenger ship. Main attention in linear analysis has to be paid to the 

shear lag effects, hull-superstructure interaction and to the large side openings. At present, two 

basic approaches exist to estimate the linear response of a ship with a superstructure in the 

longitudinal bending. These are based on the beam or on the plane stress theory. An excellent 

literature survey has been made by de Oliveira [25]. Crawford [8] was the first to develop a method 

based on the two-beam theory, taking into account the longitudinal shear force and vertical force 

due to the hull-superstructure interaction. Bleich [4] has presented a similar approach, which 

proposes a straightforward computation of stresses for prismatic beams. Terazawa and Yagi [36] 

introduced the shear lag correction to the two-beam theory. The stresses were calculated by the 

energy approach and by assuming certain stress patterns for the structure. Terazawa and Yagi also 

considered the effect of side openings on the structural behaviour. A further development of 

Bleich’s idea based on the coupled beam approach was presented by Naar et. al. [23]. There, the 

whole cross-section is divided into beams coupled to each other with distributed springs. In addition 

to the beam methods, there exists another approach for the estimation of the ship hull and 
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superstructure interaction. This is based on the plane stress theory and it enables one to include the 

shear lag phenomenon in the response model, see Caldwell [5] and Fransman [14]. 

 Several direct methods have been developed to estimate the ultimate strength of single 

deck ship girders. Based on an assumed stress distribution, Caldwell [6] obtained the ultimate 

strength of a hull girder under longitudinal bending. He proved that the buckling strength of 

stiffened panels has an important influence on the ultimate strength. Similar methods have been 

developed by Nishihara [24], Mansour et al. [21] and Paik & Mansour [27]. Smith [35] 

demonstrated that the strength reduction of stiffened panels beyond the ultimate load plays an 

important role in the ultimate strength of hull girders. In this method, the cross-section of the hull 

girder was divided into plate-stiffener members. In addition, average stress-strain relations were 

provided for each member in the progressive collapse analysis of the cross-section. Several 

modifications and applications of the Smith’s method are available, see references Ostapenko [26], 

Gordo and Guedes Soares [16], Gordo et al. [17], Beghin and Jastrzebski [3], and Yao and Nikolov 

[40]. 

 The FE-method offers several possibilities for analysing the ultimate strength problem. The 

material behaviour can be considered in a more exact way. Geometrically non-continuous structures 

can be well described. The effect of stiffeners can be taken into account with a high accuracy. The 

material fracture and the contact between elements can be modelled as well. In their paper, Kutt et 

al. [20]  used the FE-method to estimate the ultimate longitudinal strength for four different types of 

ship structures. 

 The Idealised Structural Unit Method (ISUM) is another example of a simplified approach. 

The basic idea of the ISUM is to exploit large structural units in the element mesh. This reduces 

significantly the computation time. The elements must be able to describe the influence of buckling 

and yielding. Ueda et al. [37] have proposed the elements of an idealised plate and a stiffened plate, 

accurately simulating the buckling and plastic collapse under combined bi-axial compression, 

tension and shear loads. Similar approaches and their applications are presented in references Paik 

& Lee [28], Paik [29], Paik et al. [30], Paik [31], and Bai et al. [1]. 

 Today’s simplified incremental methods to estimate the ultimate strength of hull girders 

are mostly suitable for single deck ships, as there the bending strains are linearly distributed in the 

ship’s cross-section. In the case of passenger ships, this is not necessarily valid. Therefore, together 

with the FE-method the only approach that can be directly applied might be the ISUM. However, 

both methods are fully numerical and need experience and much time for model construction and 

analysis. The plane stress theory seems to be very potential in order to determine stresses and 

deflections in the structure. However, in the case of the ultimate strength analysis, the plane stress 

theory may produce difficulties, as the stiffness parameters of the ship cross-section will change in 
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the case of structural buckling or yield. In conclusion, it can be claimed that the beam-based 

methods, such as developed by Bleich [4], are most promising. These allow for the estimation of 

stresses and deflections and inclusion of non-linear effects caused by structural collapses. In 

addition, some ideas from the routines developed, like Smith’s approach [35], can be made good 

use of. 

 

 

2 NON-LINEAR COUPLED BEAM THEORY 
 

2.1 EQUILIBRIUM EQUATIONS FOR A BEAM 

 

Each beam in a coupled system has to satisfy the force and moment equilibrium. In the 

segment of beam i  presented in Figure 2, internal forces, coupling forces and external loads are 

acting. The internal forces are well known from the basic beam theory. These are axial force iN , 

shear force iQ  and bending moment iM  acting in the cross-section. The coupling forces are 

composed of the vertical distributed force ijp  and the longitudinal shear flow ijs , where the 

subscripts describe the interaction of beam i  with its adjacent beam j . The only external force is 

the distributed vertical line load iq , which arises from the load induced by weights and water 

pressure. The position of the reference line, see Figure 2, is fixed to the deck and it can differ from 

the centroid of the cross-section. In Figure 2 it is assumed that the coupling is affecting the upper 

and lower edge. The distances from the reference line to the upper and lower edge of the beam are 

therefore denoted by ikd  and ije . In general, these distances define the vertical position of coupling 

between beam i  and adjacent beams j  and k . 
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Figure 2. Segment of beam i  with internal forces, coupling forces and external load. 

 

In the simplest case, the coupling between beams is vertical, as shown in Figure 3, where an 

arbitrary deck is coupled only with the upper and lower neighbor. However, for more sophisticated 

ship structures, a mixed coupling is needed, where the cross-section is divided into beam sections 

not only in the vertical direction, but for some decks also in the horizontal direction, see Figure 3. 

 

Figure 3. Types of coupling between beams. 
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Mixed coupling affects the equilibrium equations. In vertical coupling, the beam has two coupling 

forces as the maximum, one in the upper and another in the lower layer of the beam. In the case of a 

mixed coupling, the total coupling force for a beam segment can be a sum of more than two 

individual coupling forces. The following equilibrium equations are written so that an arbitrary 

coupling could be used. The equation of longitudinal equilibrium for beam i  with n  couplings is 

therefore 
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∂
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where iq  is the external force vector and ijp  is the matrix of vertical coupling forces 
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If beams are vertically coupled, the matrices (2) and (4) have values only at diagonals next to the 

main diagonal. The equilibrium of moments about z-axis gives 

0
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where matrix C  is 



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After differentiation of Eq. (5) and substitution of Eq. (3), the relation can be written as 
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The second summation term in Eq. (7) corresponds to the moment caused by the longitudinal shear 

flows jis , .  

To estimate the ultimate strength, the non-linear behaviour of structures has to be 

considered. Therefore, equilibrium Eqs. (1), (3) and (7) must be given in an incremental form, see 

Appendix A, where the derivation is given. For the axial equilibrium, the incremental form is 
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For the vertical equilibrium, 
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, (9) 

where λ∆  is the load proportionality factor for the load increment. The incremental equilibrium of 

moments about z  axis gives 

i
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As the co-ordinate system is fixed to the reference line, which differs from that of the neutral axis, 

the matrix ijC  is constant during the loading. 

 

 

2.2 RELATIONS BETWEEN INTERNAL FORCES AND DISPLACEMENTS 

 

2.2.1 Bending and axial force due to displacements 

 

Using the beam theory, the relations between the internal forces and the displacements are 

defined so that the axial strain in the cross-section of the beam varies linearly. If the axial 

displacement iu  and the deflection induced by the bending deformation M
iv  are known for beam i , 

then the bending moment iM  is, see Crisfield [9] 
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where E  is the Young’s modulus of the material, iiI  is the moment of inertia and iiX  is the first 

moment of the area of beam i  calculated with respect to the reference axis. In the same way, the 

axial internal force in beam i  is approximated as 
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iii ∂
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∂
∂= , (12) 

where iiA  is the cross-section area of beam i . 

Also, those relations must be presented in the incremental form due to the non-linear 

behaviour. Therefore, the incremental increase of the bending moment due to the deflection and 

axial displacement is 
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2

1 , (13) 

where t
iiEI  and t

iiEX  are now tangent stiffness values. In a similar way, the relation for the axial 

force increment is expressed as 
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vEX

x
uEAN

M
it

ii
it

iii ∂
∆∂−+

∂
∆∂=∆ , (14) 

where t
iiEA  is the axial tangent stiffness of the beam. The derivation of tangent stiffness parameters 

is given below in Chapter 3.3. 

 

 

2.2.2 Shear force due to deflection 

 

The shape of the hull girder deflection for a modern passenger ship, see Fransman [14], 

proves that shear deformations are important. The ratio between the length and the height of the hull 

girder is close to six in these ships. According to the beam theory, the shear deformation is 

important when the ratio is less than ten. Therefore, the present method must consider also the 

deflections induced by the shear deformations. The relation between shear force iQ  and deflection 

due to shear Q
iv  is 
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x
vGAQ

Q
iS

iii ∂
∂⋅= , (15) 

where G  is the shear modulus of the material, S
iiA  is the effective cross-section area of the beam in 

shear. The typical cross-section of a beam is shown in Figure 4, where the shear area of the cross-

section S
iiA  consists of the vertical plating of that. This approach for describing shear stiffness is 

also proposed for an I-beam and box beam by Gere & Timoshenko [15]. Comparing these cross-

sections to those presented in Figure 3, a conclusion can be drawn that as a first estimation, this 

approach is possible. The shear stiffness ik  can be expressed more accurately on the basis of the 

shear factor 

∫=
A

i
ii

i dA
Q
Ak 2

2 τ , (16) 

where iτ  is the shear stress in the cross-section of beam i . However, this stress depends on the 

unknown shear flow values at the lower and upper edge of the beam, see Figure 4. Thus, the 

solution procedure of the CB-method would become non-linear with respect to the shear factor. A 

rough study of the shear factor Eq. (16) indicates that the simplified shear factor given as s
iiii AA / -

ratio differs from the exact value by 20 % at the maximum. In the incremental form, Eq. (15) can be 

presented as 

x
vGAQ

Q
itS

iii ∂
∆∂⋅=∆ , , (17) 

where tS
iiGA ,  is the tangential shear stiffness. 

 

Figure 4. Typical cross-section of a beam used in the CB-method. 
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2.2.3 Forces caused by shear coupling 

 

The coupling equations define the interaction between the beams. According to the presented 

assumption, the shear and the vertical coupling are considered important. The shear coupling 

between beams i  and j  is shown in Figure 5. In the case of linear structural behavior, the shear 

member with shear stiffness ijT  and relative displacement u
ijδ  causes shear flow ijs  between the 

beams, see Naar et al. [23]. This shear flow is assumed to be constant over length dx  and thus, the 

force can be described as the response of distributed horizontal springs. The shear stiffness depends 

on the effective height ijH  of the shear member and of the effective shear area. In the case 

presented in Figure 5, the effective height equals the deck spacing. 

 

Figure 5. Shear coupling between beams. 

 

The relative displacement between beam i  and j  can be obtained through the axial displacement u  

and the bending induced deflection Mv  of the beams as follows: 

x
vdu

x
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M
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u
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∂
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By taking into account Eq. (6), this relative displacement becomes 

x
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If the structural behaviour is non-linear, the shear flow ijs  can be given also as a function of relative 

displacement 

The incremental form of Eq. (20) is obtained by differentiating by parts with respect to 

displacement iu  and deflection M
iv . At this point, one should note that the term ijC  is constant. 

Therefore,  



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iji
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t
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where t
ijT  is now the longitudinal tangent shear stiffness 



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=
≠

=
.0 ijif
ijifT

T
t

ijt
ij  (22) 

 

 

2.2.4 Forces caused by vertical coupling 

 

Another coupling type is the vertical coupling of the beams. This becomes substantial when 

the superstructure is weakly supported. Thus, the curvature of the upper structure differs from that 

of the supporting structure, as shown in Figure 6. This phenomenon was well described by Bleich 

[4]. 

 

Figure 6. Vertical coupling between beams. 

 

( )u
ijijij ss δ= . (20) 



 26

According to Bleich, the vertical coupling force ijp  depends on the vertical elongation stiffness ijK  

and on the relative deflection v
ijδ , which is approximated by the difference between beam 

deflections iv  and jv  as follows: 

If the elongation member behaves non-linearly, the vertical coupling force is as in Eq. (20) a 

function of relative deflection v
ijδ  

The coupling force increment is then again obtained by differentiating Eq. (24) by parts with respect 

to deflection variables M
iv  and Q

iv . Accordingly, 

 

( )ij
t
ijij vvKp ∆−∆=∆ , (25) 

where t
ijK  is now the tangent stiffness of the vertical coupling. The tangent stiffness matrix for all 

coupling members is expressed by 



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=
≠

=
.0 ijif
ijifK

K
t
ijt

ij  (26) 

 

 

2.3 TANGENT STIFFNESS MATRIX FOR A COUPLED SYSTEM 

 

The tangent stiffness matrix of the hull girder was needed for the non-linear progressive 

collapse analysis. It describes the relations between the displacement increments and external load 

increment and it has to be updated during the calculation. 

The set of the equilibrium equations consists of Eqs. (8), (9) and (10) given in the incremental 

form. The unknown variables are the incremental axial displacement vector u∆ , the incremental 

beam deflection vector due to bending Mv∆  and due to shear Qv∆ . The tangent stiffness matrix was 

derived with Galerkin’s method. There, the dimensionless co-ordinate ξ  was used in the 

integration. This co-ordinate is related to a ship’s longitudinal co-ordinate x  as 

ij
v
ij vv −=δ . (23) 

( )v
ijijij pp δ= . (24) 



 27

)2//()2/( LLx −=ξ , (27) 

where L  is the total length of the ship. The boundary conditions for a single beam are shown in 

Figure 7. It is assumed that no internal forces exist at the beam boundaries 1−=ξ  and 1=ξ . This is 

due to the vertical line load, which is self-balanced. Thus, there are no supports needed at the 

boundaries. 

 

Figure 7. Boundary conditions for the single beam. 

As the internal forces will vanish at the boundaries, it can be concluded that the incremental forces 

have to do the same. The functional form of equations required by Galerkin’s method was obtained 

by multiplying the equilibrium equations with the weight function and by integrating the result over 

the beam length. Therefore, the axial equilibrium equation, see Eq. (8), will obtain the form 
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where iu  is the unknown axial displacement considered as the weight function. Similarly, the 

equation describing vertical force equilibrium, see Eq. (9) is 
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where Q
iv  is the weight function. The incremental moment equilibrium, see Eq. (10), can be 

expressed by 
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where M
iv  is the corresponding weight function. By integrating Eqs. (28), (29) and (30) by parts, the 

boundary conditions can be used and the resulting equations will have symmetric form. The 
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unknown displacements were approximated as the linear combination of the known shape functions 

( ) ( )mBB ξξ K1  and unknown constants mcc ∆∆ K1 . Thus, the displacement increments are 

and 

where Eq. (31), for example, can be written in an open form as 

 

Thus, the stiffness matrix in a compact form will be 
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where the derivation of the sub-matrices [ ]ijD  and sub-vectors { }MF , { }QF  are presented in more 

detail in Appendix A. 

 

 

2.4 EQUILIBRIUM EQUATIONS FOR A COUPLED SYSTEM 

 

In the present approach, the arc-length method was applied and thus, the equilibrium 

equations for the coupled system were used to correct the solution approximated with tangent 

stiffness. Before the new load increment is applied, the internal forces iN , iM , iQ , the coupling 

forces ijs , ijp  and the external load iq⋅λ  are in equilibrium. The new equilibrium state has to be 
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reached after the increase of the external load ( ) iq⋅∆+ λλ . This is possible only if the internal 

forces and coupling forces have incremental changes iN∆ , iM∆ , iQ∆ , ijs∆ , ijp∆  and are 

determined through incremental displacements. For a straightforward analysis, rearrangement of the 

equilibrium equations as in the tangential stiffness matrix is helpful, see Eq. (35). The equilibrium 

equations, see Eqs. (28)-(30), can be used also in the case of a coupled system. To find the new 

equilibrium state, the internal and coupling force increments are replaced by total forces ii NN ∆+ , 

ii MM ∆+ , ii QQ ∆+ , ijij ss ∆+ , and ijij pp ∆+ . Now again, the boundary conditions can be utilised 

and by substituting displacements (31)-(33) into equilibrium equations (28)-(30), then 
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where the vector components are 
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∑
=

∆=∆
n

j
iji pP

1
, (41) 

are the incremental changes of summed coupling forces and where QandMNPSS C ,,,,  are the 

total summed forces. The final form of the equilibrium equations is 
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where the sub-vectors { }A
iF  and { }B

iF  are presented in Appendix B. 

 

3  IMPLEMENTATION OF THE THEORY 
 

3.1 SHAPE FUNCTIONS FOR DISPLACEMENTS 

 

The approximation of displacements was an important issue, as the accuracy of the solution 

depends on it. The two main parameters, which could be varied, were the type and the number of 

shape functions used in the approximation. According to the boundary conditions, the forces had to 

vanish at the boundaries, see Figure 7. This requirement could be used for the determinations of 

shape functions. These functions have the following form: 
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where 1a , 2a , 3a  and 4a  are the constants, which can be determined in order to satisfy the 

predefined boundary conditions. The parameter iκ  is the wave number. According to the boundary 

conditions of the beam, axial force iN , moment iM  and shear force iQ  will vanish at the 

boundaries, see Figure 7. The first two boundary conditions are described by the axial 

displacements and deflections, see Eqs. (11) and (12). Thus, 

0
0

2

2

0

=
∂

∂=
∂
∂

=

=

=

=

Lx

x

M
i

Lx

x

i

x
v

x
u . (44) 

The shear force iQ  at the boundary can be defined by Eq. (5). Accordingly, the shear force iQ  will 

vanish at the boundary if the first derivative of the bending moment and the longitudinal shear flow 

ijs  are zero at the boundaries. However, this longitudinal shear flow has also to disappear at the free 

boundaries, otherwise shear stress will also be present, see Figure 8. On the other hand, Eq. (1) 
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shows that the longitudinal shear flow will disappear at the free boundary only if the first derivative 

of the axial force is zero. 

 

 

Figure 8. Longitudinal shear flow ijs  at the free boundary. 

 

Thus, the requirement that the first derivative of the axial force and of the bending moment have to 

be zero can be applied in Eqs. (11) and (12), and the boundary conditions for the shear force are 

expressed by 
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An additional boundary condition for the deflection induced by shear deformation can be 

constructed with Eq. (15). Therefore, shear force iQ  at the boundary will disappear only if 
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Now a total of four boundary conditions exist for the axial displacement iu  given in Eqs. (44) and 

(45). Similarly, four boundary conditions for the deflection induced by bending M
iv , are available, 

see Eqs. (44) and (45). Two boundary conditions given in Eq. (46) are used for the deflection 

induced by shear Q
iv . The form of shape functions suitable for the approximation of the bending 

deflections can be obtained by substituting Eq. (43) into the second boundary condition presented in 

Eqs. (44) and (45). As a result, the set of four equations becomes 
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This homogeneous set of equations with arbitrary constants 41 aa K  is satisfied only when the 

determinant of this set has a zero value. Therefore, 

( ) 01)cosh(cos =−ii κκ . (48) 

This equation had no analytical solution and so the parameter iκ  was solved numerically. The first 

twelve values are 
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All the constants from 2a  to 4a  could be written by help of 1a , which itself was taken as a unit. 

Using Eq. (43), the shape functions for the deflection induced by bending can be presented in the 

following way: 
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The first four shape functions are shown in Figure 9. The shape functions with odd index numbers 

are symmetric and those with even numbers are anti-symmetric functions. Together they should be 

able to describe an arbitrary beam deflection. 
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Figure 9. Shape functions for deflection induced by bending deformation. 

 

Shape functions for the axial displacement could be obtained in the similar way. Thus, substituting 

Eq. (43) into the first part of Eqs. (44) and (45), the set of equations will be 
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The determinant for this equation set is the same as in the previous case, which means that the same 

κ  values can be used for the approximation of the axial displacement. Representing again all the 

constants by help of constant 1a , the shape functions for the axial displacement can be written as 
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The first four shape functions are again presented in Figure 10.  
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Figure 10. Shape functions for axial displacement. 

 

For the estimation of the deflections induced by shear deformation, the boundary conditions 

presented in Eq. (46) were used. Additionally, it could be assumed that the third derivative of the 

deflection induced by shear was zero. This condition was chosen in order to determine all four 

constants and it had no theoretical background. Therefore, the set of equation becomes 
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where iκ  is now related to the shear. The determinant gives 

0)sinh()sin( =⋅ ii κκ , (54) 

where 

πκ ii = . (55) 

The shape function for shear deflection is defined as 
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Figure 11 presents these functions for four i  values. 
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Figure 11. Shape functions for the deflection induced by shear deformation. 

 

 

3.2 AXIAL LOAD-END SHORTENING CURVES 

 

3.2.1 Definition 

 

Axial load-end shortening curves define the behaviour of structural elements in axial 

compression or tension. They can also be called averaged stress-strain curves. A sketch of a typical 

load-end shortening curve for stiffened structures in compression is presented in Figure 12. These 

curves for different structural members can be defined numerically, analytically or using regression 

curves based on structural tests. 

 
Figure 12. Load-end shortening curve for a stiffened panel. 
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Load-end shortening curves of various strength members have been formulated in different ways. 

The analytically defined load-end shortening curves used in this investigation are presented in the 

Bureau Veritas rules [2]. These load-end shortening curves have an advantage of easy use in 

practice. Typical structural members are hard corner, longitudinally or transversally stiffened plate 

members. All of these members are presented in Figure 13. 

 

Figure 13. Typical structural members used in a hull girder cross-section. 

 
The load-end shortening curves given in reference [2] typically have the form 

,µσσ ⋅Φ⋅= CCR  (57) 

where Φ  is the edge function, Cσ  is the critical stress for the structural member and µ  is the area 

ratio showing the relative cross-section area effective in loading. The edge function presents the 

material behaviour in compression or tension. An assumption of an elastic, ideally plastic material 

without rupture is used for the load-end shortening curves. Therefore, 
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where Rε  is the relative strain which can be defined as follows: 

,E
Y

R σ
εε =  (59) 

where E  and Yσ  are the Young’s modulus and yield stress for the material and ε  is the average 

strain in a member. The formulae given in reference [2] are based on the discontinuous edge 

function, but in the present study continuous curves were preferred to avoid numerical problems. 

The new modified continuous edge function based on the curve fitting is 
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where the constants 1r  and 2r  with values 0.5  and 0.70  give sufficient curve fitting. Both edge 

functions are presented in Figure 14. 

 

 

Figure 14. Discontinuous and continuous edge functions. 

 

The critical stress Cσ  depends on the loading, the type of the member, and the failure mode. The 

hard corner has only one failure mode by elasto-plastic collapse in compression and tension. A 

longitudinally stiffened structural member has a single failure mode in tension by elasto-plastic 

collapse and several failure modes in compression. This failure is due to beam column buckling, 

lateral-flexural buckling of the stiffener, or local buckling of the stiffener web. The mode producing 

the lowest resistance will be the actual failure mode for the structure. A transversally stiffened 

structural member can fail also by single mode in tension at elasto-plastic-collapse and in 

compression by elasto-plastic plate buckling. 

The critical stress in tension is assumed to be equal to yield stress for all structural members. 

In compression the critical stress varies due to different collapse modes. For the hard corners, the 

only failure mode is the elasto-plastic collapse with the critical stress equal to the yield stress. In the 

case of stiffened members, the yield stress will not be reached often, as the elastic or elasto-plastic 

buckling will take place first. The effective area ratio µ  also depends on the type of the structural 
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member, on loading and on the failure mode. Table 1 presents the critical stresses and effective area 

ratios for various structural members with respect to the loading type and to failure mode. More 

detailed definitions are given in Appendix E. 

 

Table 1. Definition of load-end shortening curves for various structural members. 
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3.2.2 Effect of reverse loading 

 

The reverse loading of structural members in the hull girder might be an important issue for 

the problem of ultimate strength, when the redistribution of stresses during the loading occurs. This 

stress redistribution is a phenomenon, where in some parts of the cross-section, a change between 

compression and tension takes place under monotonically increasing external loading. This change 

of stresses can be observed through the shift of the neutral axis. In the case of single deck ships, the 

location of the neutral axis will not move significantly until the deck or bottom structure collapses. 

In spite of the fact that the collapse influences strongly the ultimate strength, the effect of stress 

redistribution can be normally discarded, as it starts to affect after the ultimate strength has been 

reached. However, in the case of large passenger ships, several upper decks may collapse before the 

ultimate strength is reached and due to this the location of the neutral axis can move remarkably. If 

this happens, then that of the cross-section area where the neutral axis moves will experience 

reverse loading. If this particular area is large, the redistributed stresses may have a strong influence 

on the ultimate bending moment. 

In the present study, analytically defined stress-strain curves were used. Therefore, the stress 

in the structural member is simply defined as a function of strain 

( )εσ f= . (61) 

The reverse can be considered only, if the incremental stress-strain relation is used, as for large 

strain values, the loading path may differ from the unloading path. Based on Eq. (61), the 

incremental form of the stress can be given as 

( ) ε
ε
εσ ∆

∂
∂=∆ f  or εσ ∆=∆ tE , (62) 

where σ∆ , ε∆  are the stress and strain increments and tE  is the tangent stiffness of the structural 

member. This stress-strain relation is valid only for initial loading and due to this not directly useful 

for unloading. In order to include unloading or reverse loading, some additional assumptions had to 

be made. The FE-method could be exploited to validate the simplified loading models. 

The typical stress-strain curve of a structural member has an elastic behaviour in tension and 

in compression up to a certain load level, see Figure 15. Loading in tension will cause yielding and 

hardening, which means that a stress increase after a certain strain point will be small or simply 

zero. The structural behaviour is stable without any strength reduction up to the failure strain. After 

the failure strain, the structural member was eliminated. The behaviour of the structural member is 

different in compression. After the maximum stress is reached, the load level starts to decrease and 
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a further strain increase reduces the stresses. The member maintains residual strength after the loss 

of stability. In order to determine the path for reverse loading in tension and in compression, two 

strain parameters tε  and cε  were introduced, see Figure 15 and Figure 16. The initial stress-strain 

curves are presented in the same figures with the black curve. Figure 15 presents the case where the 

structural member is subjected first to tension and then to compression. In tension, the strength 

member follows the initial stress-strain curve marked as path 1 and 2, see Figure 15. In the case of 

reverse loading, the stress starts to reduce linearly, which is marked as path 3. The parameter tε  

equals to inelastic strain in tension. Under further reverse loading the curve, which describes initial 

stress-strain relations, will be shifted according to tε  as shown with the yellow line in Figure 15. 

This path is marked as 4 and 5. 

 
Figure 15. Sketch of the behaviour of a structural member in tension-compression loading. 

 

Figure 16 presents the case where a structural member is subjected first to compression and then to 

tension loading. Now in compression, the member behaves according to the initial stress-strain 

curve, marked as path 1 and 2, see Figure 16. In the case of reverse loading, the behaviour of the 

structural member is described by curved paths 3 and 4 up to the yield point. Thereafter, the 

member behaves again according to the initial stress-strain curve. The parameter cε  defines the 

point where the unloading in compression starts. The whole loading path is presented as a yellow 

line in Figure 16. 

 



 41

 

Figure 16. Sketch of the behaviour of a structural member in compression-tension loading. 

 

The tangent stiffness value tE  of the structural member depends on the loading path. The important 

indicators showing the state of loading or unloading are the stress value σ  and strain increment 

ε∆ , which point out the direction of the following loading increment. The tangent stiffness can be 

defined separately for four different loading-unloading situations. If 0≥σ  and 0>∆ε  the 

structural member is in tension and the strain increment is increasing. Two stress levels have to be 

calculated in order to decide whether the initial stress-strain curve (subscript 1) or pre-strained 

stress-strain curve (subscript 2) will be used in the stiffness estimation. They are calculated from 

( )
( )




−∆+=
∆+=

tE
f

εεεσ
εεσ

2

1 . (63) 

If 21 σσ <  and 0≥ε , the original curve will be used and the tangential stiffness of the cross-section 

member tE  and parameter tε  are approximated as 
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If 12 σσ ≤  and 0=cε  and 0≥ε , the pre-strained curve will be used and the tangential stiffness 

together with strain parameter are estimated as 
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If the structural member has been previously in compression, the loading path will follow the curve 

described by the third order polynomial, marked with numbers 3 and 4, see Figure 16. This curve is 

described by two points, which present the starting and end-point of load path 3 and 4. The starting 

point is given by the strain value cεε −=3  and by the stress value ( )cf εσ −=3 . The end point is 

determined by the maximum deformation that the strength member has reached in previously 

occurred tension. If the member has not been previously under tension loading, the strain value 

equal to strain at yield will be used. Otherwise, the point is defined by the strain value 
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σεσ 4 . Thus, the tangent stiffness and the strain parameter are 
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and where 

( )
3

434 
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

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Y

E
c εσσσ , (68) 

and 5c  is the shape parameter equal to 2.5. Constants 21,cc  and 3c  are determined from the 

condition that the cubic polynomial has to connect the point where the loading path starts 

( )[ ]3,σεε tc −−  and ends at the point where the member has been stretched in the previous loading 

cycle, which is [ ]4,σσε EYt + , see Figure 15 and Figure 16. If the previous cycle is missing, the 

stretching point will be the yield point. The comparison with the results of the FE-analysis in the 

next chapter shows that the cubic polynomial offers a sufficient fit for this loading path. 
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If the stress in the strength member is 0>σ  and the strain increment is negative 0<∆ε , 

the tensioned member is under unloaded condition. In that case, the tangent stiffness is defined as 





=
=

tt

t EE
εε

. (69) 

In compression loading 0<σ  and 0<∆ε . For this case, stress values are also calculated in 

order to distinguish whether the original or pre-strained curve will be used. Thus, the stresses are  
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If 21 σσ ≥ , the tangential stiffness tE  and parameter cε  can be approximated as 

( ) ( )







∆+=
∆

−−−∆+=

εεε
ε

εεεεε

cc

tt
t

ffE . (71) 

Otherwise, the structure has been in compression and in this case the tangential stiffness is 
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If unloading occurs in compression 0<σ  and 0>∆ε , then  Eq. (66) can be used again for the 

estimation of the tangent stiffness. 

 

3.2.3 Validation with 3D FEM 

 

To validate load-end shortening curves the 3D FE-method was used. Three typical deck 

structures were chosen for this study. All of these three structures were longitudinally stiffened 

panels having scantlings typical of those for passenger ships. The deck structures are presented in 

Figure 17, Figure 18 and Figure 19. The first two deck panels A and B are typical of the upper 

decks of the superstructure. The deck plate thickness is mm0.5 , the spacing between the 

longitudinals is mm680  and the web frame spacing is mm2730 . These web frames have the height 

of mm480  in structure A and mm440  in structure B. The third deck panel is referred to as the 

strength deck of the ship with a plate thickness of mm0.12 , spacing between longitudinals mm825  

and web frame spacing mm3625 . In passenger ships, normal strength steel is often used because 
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structures A and B are made of steel material with a yield strength of MPa235 . In the third 

structure C, the high strength steel is used with a yield strength of MPa360 . 

For the validation of the reverse behaviour, the deck structure D shown in Figure 20 was 

used. This panel has dimensions similar to panel A, except the HP-stiffeners have a larger web 

thickness, which is 8 mm. Also, the yield stress was taken slightly higher, which was MPa250 . 

The validation analysis was conducted using the explicit dynamic FE-code called LS-

DYNA. In all three cases, the FE-model covered the whole structure. The web frames, longitudinal 

girders and the plating were modelled with four-node shell elements and longitudinals were 

modelled using both shell elements and beam elements. The loading was given in the direction of 

the longitudinals as in time prescribed axial displacement of the boundaries. In order to avoid 

dynamic effects, loading speed was taken so low that the kinetic energy was less than five percent 

of the total internal energy. All the structures included additional pillars placed at every second web 

frame. Pillars had a height of mm3000  and were clamped at the ends. The total reaction forces at 

the boundaries gave the load, and average strain was calculated from the relative displacements 

between the web frames bounding the collapsed region. 
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Figure 17. Geometry of structure A. 
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Figure 18. Geometry of structure B. 
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Figure 19. Geometry of structure C. 
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Figure 20. Geometry of structure D. 

 
 
 

The analytical load-end shortening curves for stiffened panels were calculated using the 

equations given in reference [2]. The panel had to be divided into different structural members 

consisting of a plate with the breadth equal to the longitudinal spacing and of longitudinals or 

girders attached to this plate. The strain was considered as an input value. The average stress was 

calculated summing up the reaction forces from each member at a certain strain value and divided 

by the total cross-section area of the panel. Figure 21, Figure 22 and Figure 23 present the 

comparison of the averaged stress-strain curves calculated numerically and analytically. Plate 

buckling and the ultimate load for the panel derived from reference [11] are also presented. The 

results prove that the maximum load level and strength reduction are relatively well approximated 

with the analytic stress-strain curve formulas. The structural stiffness with the small strain values 

given by the analytical approach fits well into those obtained by the FE-method. However, the 

stiffness of structures A and B in the strain region between 05.0  and 1.0  was slightly higher in the 

case of the FE-method compared to that of the load-end shortening curves from reference [2]. This 

might be due to the difference between the boundary conditions used in the FE-analysis and those 

of the analytical approach. Also, the pillars could influence the averaged stress-strain relations. 

However, it can be concluded that the analytical approach provided sufficient accuracy for the 
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ultimate strength estimation of the structural panels used in passenger ships. The strength reduction 

of the panels was approximated within a maximum of 20  % discrepancy, compared to the FE-

method. 

 

Figure 21. Comparison of the averaged analytical stress-strain  and by the FE-method numerically 

calculated curve for structure A. 

 

Figure 22. Comparison of the averaged analytical stress-strain and by the FE-method numerically 

calculated curve for structure B. 
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Figure 23. Comparison of the averaged analytical stress-strain and by the FE-method numerically 

calculated curve for structure C. 

 

The comparison of axial stresses calculated for panel D in the case of tension-compression and 

compression-tension loading is presented in Figure 24 and Figure 25. In both load cases, panel 

behaviour is well estimated, allowing a possible reverse loading to take place in a realistic way. The 

compression-tension loading case indicates that the loading path can be well described with the 

cubic polynomial, see Figure 25. 

 

 

Figure 24. Panel stresses in tension-compression loading calculated with the FE-method and 
analytical equations. 
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Figure 25. Panel stresses in compression-tension loading calculated with the FE-method and 
analytical equations. 

 

3.3 TANGENT STIFFNESS FOR BENDING AND LONGITUDINAL 

ELONGATION 

 

The approximation of tangent bending and axial stiffness of beams for the CB-method was 

done by integrating the normal stress from load-end shortening curves over the beam cross-section. 

The basic assumption is the linearly varying axial strain in the beam cross-section. According to the 

theory presented by Smith [35], the cross-section is divided into smaller structural members and for 

each member, the predefined load-end shortening curve is available, see Figure 26. 

 

Figure 26. Cross-section of the of the beam divided into structural members. 
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The bending of the beam is based on the classical assumption that the cross-section of the beam 

remains plane during deformation. If the axial strain in the cross-section is known, then the tangent 

stiffness of each member of the cross-section can be directly obtained from load-end shortening 

curves as the vertical position of each structural member is fixed. The equations for tangent stiffness 

parameters for bending and axial elongation are presented in Appendix D. The tangent bending 

stiffness for the beam is 
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where iktE ,  is the tangent stiffness of member k  in beam i , ky  is the co-ordinate of the strength 

member measured from the reference line, ikA  is the cross-section area of the member and im  is the 

total number of members in beam i . In the same way, the axial stiffness is obtained 
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The additional cross-term is needed in order to keep the co-ordinates of the beam’s cross-section at 

the reference line 
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The calculation procedure for the parameters of the tangent stiffness is quite simple. The beam has 

to be divided into strength members. Normal strain will vary also in the axial direction of each 

beam. Thus, the estimation of strain must be carried out in several cross-sections. Normally, the 

number of cross-section planes equals that of web frames. For very large structures, probably fewer 

cross-section planes are needed. The tangent stiffness tE  of each individual structural member was 

estimated using Eqs. (64)-(66), (69) or Eqs. (71) and (72), depending on the loading situation. After 

the tangent stiffness has been obtained for each individual structural member, the integration over 

the cross-section of the beam can be completed according to Eqs. (73)-(75). 

 

 

3.4 TANGENT STIFFNESS FOR VERTICAL ELONGATION 

 

The investigated structures describe the behaviour of side shells, longitudinal bulkheads and 

pillar lines. The vertical elongation stiffness was estimated for three different types of structures 
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shown in Figure 27, where openings could also be included. These structures are composed of 

vertically or longitudinally stiffened plate structures. The tangent stiffness for these structures was 

determined by summing up the effect of each structural member inside the web frame spacing. The 

applied load-end shortening curves are presented in Appendix E. The tangent stiffness for each 

member was calculated again using Eqs. (64)-(66), (69) or Eqs. (71) and (72), depending on the 

direction of the loading. The total value of the tangent stiffness is then the sum over each individual 

member. This tangent stiffness is defined per unit length. The vertical strain was estimated from the 

relative deflection vδ  divided by the height of the structure. It was assumed also that the window 

area did not contribute to the vertical deformation. 

 

Figure 27. Different structures for the estimation of vertical stiffness. 

 

3.5 TANGENT STIFFNESS FOR SHEAR COUPLING 

 

3.5.1 Analytical formulation 

 

Three different types of shear members were considered, similar to those presented in Figure 

27. Both, vertically and longitudinally stiffened plate structures were described with the same 

structural model. It was assumed that these stiffened panels subjected to the shear loading would 

collapse due to two different failure modes, see Figure 28. In the case of large window openings, 

plate field between two openings tends to bend and the structure may collapse because of the 

formation of plastic hinges. This failure type was called as the collapse mode A. For small openings 

or if the openings are totally missing, failure can also occur due to the shear buckling of the 

stiffened plate field, marked as collapse mode B. 
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Figure 28. Shear stiffness definition for longitudinally or vertically stiffened shear members. 

 

The shear member presented in Figure 28 was modelled so that the lower boundary of the structure 

was fixed and the shear force was applied on the upper boundary. It was assumed that the model 

could have two possible working stages, which were the elastic or post-ultimate stage. The shear 

member will deform due to the shear and also due to the bending, if the opening is included. In the 

elastic stage, the shear stiffness of the member per unit length is approximated as 
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where H  and L  are the height and length of the shear member. Parameters wH  and wL  are the 

dimensions of the opening and I  is the moment of inertia of the horizontal cross-section between 

two openings. A detailed presentation of Eq. (76) is given in Appendix F. 

The maximum load carrying capacity of the shear member is determined by plate buckling 

or by plastic hinges. After this, the shear member moves from the elastic stage to the post-ultimate 

stage, which covers the post-buckling or the plastic hinge mechanism. Typical stress-strain curves 

for stiffened shear members are presented in Figure 29. Curve 1 corresponds to the shear buckling 

collapse typical of a side structure with a small opening or without any opening. Curve 2 describes 

the plastic hinge mechanism, which is typical of the side structure with a large opening. The shear 

collapse mode starts with the buckling and strength reduction may occur in the post-ultimate stage. 

The plastic hinge mechanism proceeds without strength reduction. 
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Figure 29. Sketch of collapse types for stiffened shear members. Number 1 describes the collapse 
due to shear buckling and number 2 presents the plastic hinge mechanism. 

 
Due to the complex behaviour of the stiffened shear member, the shear flow s  as a function of 

relative axial displacement uδ  is described with a continuous function. Thus, the shear flow is 

given 

,)( 1Φ⋅Φ⋅= uult sign
L

Fs δ  (77) 

where Φ  and 1Φ  are the edge functions having the shape typical of stress-strain curves in shear. 

The term LFult  is the amplitude of edge functions and )( usign δ  defines the sign of the shear flow. 

The edge function Φ  is defined in Eq. (60), where now instead of relative strain Rε , the relative 

displacement should be used Rδ . Thus, 

u
p

u

R δ
δδ = , (78) 

where u
pδ  is the displacement corresponding to the ultimate strength ultF . Assuming that the 

structure stiffness T  behaves elastically, the displacement u
pδ  becomes 

TFult
u
p =δ . (79) 

The edge function 1Φ  describes the strength reduction of the shear member beyond the ultimate 

point. Thus, based on the FE-analysis presented in Section 3.5.2, the edge function for strength 

reduction is expressed by 
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Subscript 1 indicates the failure mode number 1. If this failure mode occurs, the edge function 1Φ  

is included in Eq. (77). The ultimate strength depends on the failure modes based on plate buckling 

or plastic hinge. Therefore, 
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According to Paik [32], the ultimate shear stress Cτ  for a stiffened panel is 
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where Yτ  is the yield strength in shear defined by 

3
Y

Y
στ =  (83) 

and Eτ  is the elastic buckling stress of the plate given by 
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Pillar members were described similarly  to stiffened plate structures. However, the single 

allowable collapse mode is induced by the formation of plastic hinges. The deformation mode is 

shown in Figure 30. Therefore, Eq. (77) can also be used when the ultimate shear force is calculated 

from 

H
M

F p
ult

2
= , (85) 

where pM  is the plastic moment of the cross-section of the pillar. The corresponding deflection is 
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Figure 30. Definition of shear stiffness for a pillar member. 

 

3.5.2 Effect of reverse loading in shear 
 

Also, shear members may be reverse loaded during the strength analysis of the hull girder. It 

is difficult to detect when the reverse loading in shear, occurs but as structural members in axial 

loading included this kind of behaviour, the possibility of reverse loading of shear members was 

supplemented as well. Figure 31 presents a typical behaviour of the shear member in reverse 

loading. In initial loading, the shear member is acting according to Eq. (77), which can be presented 

simply as 

( )ugs δ= . (87) 

After the shear member reaches the ultimate strength, the strength capacity starts to reduce, marked 

as path 1 and 2 in Figure 31. At the end of the loading path, the shear member has a relative 

displacement equal to tδ . The subsequent reverse loading will first unload the structure and then 

deform it in the direction opposite to that of initial loading. As the structure was loaded beyond the 

elastic limit, the initial path marked as 1 and 2 in Figure 31 will not be followed. Instead the elastic 

path marked as 3 in Figure 31 is followed whereupon path 4, which is the rest of the initial loading 

curve turned into the opposite direction, is chosen. 
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Figure 31. Sketch of the reverse loading of the shear member. 

 

The calculation of the tangent stiffness for the shear member is divided into four parts where the 

difference depends on the loading or unloading direction. If the shear member is positively loaded 

and the next loading increment will be positive, then we have a condition, where 0≥s  and 

0≥∆ uδ . If this is the case, it has to be distinguished also whether there will be loading along the 

elastic or inelastic path. Thus, if ( ) ut
ct Tsg δδδ ∆+>+  and 0>cδ , the shear member will be 

loaded elastically and the shear stiffness is  

TT t
c = , (88) 

where T  is obtained from Eq. (76), giving the initial shear stiffness of the structure. Otherwise, the 

structure will be loaded inelastically and the tangent shear stiffness and deformation parameter tδ , 

counting deformations in a positive direction can be obtained as 
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If 0≥s  and 0<∆ uδ , the structure will be elastically unloaded and in that case stiffness is again 

determined by Eq. (88). The structure is loaded in the reversed direction if 0<s  and 0<∆ uδ . Now 

once again it has to be determined whether the elastic or inelastic path will be used. If 

( ) ut
ct Tsg δδδ ∆+<+−  and 0>tδ , the tangent shear stiffness is estimated according to Eq. (88). 
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Otherwise, the load path will be inelastic and tangent stiffness together with the deformation 

parameter is 
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If 0<s  and 0>∆ uδ , elastic unloading occurs and stiffness is again estimated according to Eq. 

(88). 

 

3.5.3 Validation with the 3D FE-method 

 

For the validation, five different side structures were analysed. These were typical 

longitudinally stiffened bulkhead or side shell structures used in passenger ships. All the structures 

had a web frame spacing of mm2700  and a deck height of mm2800 . The spacing between 

stiffeners was mm700 . The web frame was composed of a web of mm7500×  and of a flange 

of mm8200× . Structure A is a typical bulkhead structure. The dimensions of the web frame for 

structure A are somewhat excessive, but the combination of plate thickness mm5  with bulb 

stiffeners 6100×HP  may be used for this purpose. Structure B describes a side or bulkhead 

structure, with a plate thickness of mm8  and stiffeners 8120×HP . Structure C is identical to 

version B, except the window opening with height mm1400  and length mm1700  is included. Also, 

structures D and E are similar, with a plating thickness of mm10 , except the window opening is 

included in version D. The stiffeners in the case of D are bulb profiles of size 8120×HP  and in the 

case of E correspondingly 8140×HP . All of these structures are presented in Figure 32.  

The calculations with the FE-method were conducted by applying pure shear loading on the 

structure. The structure was connected to two rigid decks, where the lower deck was fixed and the 

upper deck was moved longitudinally and kept straight. In order to reduce the effects of free 

boundaries, five web frames were modelled in a row at each FE-model. 
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Structure A Structure B

Structure C Structure D

Structure E

 

Figure 32. Side structures for validation with the FE-method. 

 

 

The FE-analysis indicated that structures A, B and E collapsed due to elasto-plastic shear 

buckling, while the collapse of structures C and D was caused by the formation of plastic hinges. In 

the case of the shear buckling, a clear strength reduction could be observed, see Figure 33. The 

shear strength of the members without openings is very high up to buckling. After buckling, the 

reduction of strength was significant. However, in the case of the structure with an opening, 

structural collapse was caused by the formation of plastic hinges and after that the strength level 

remained constant. The elastic behaviour and ultimate strength of the shear members obtained with 
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analytical formulas corresponded well to the results of the FE-analysis, see Figure 33. For strength 

reduction, no analytic formulas were available, thus it was assumed that the strength reduction is 50 

% for strength members without an opening. 

 

 

Figure 33. Force-displacement curves for structures A, B, C, D and E obtained by the FE-method 
and the semi-analytical approach. 

 

Structure B was used also to validate the reverse loading effects. The analysis was done with the 

FE-method and the results were compared with the semi-analytical approach. For this purpose, the 

upper deck connected to the structure was displaced in the positive and negative horizontal direction 

with respect to the lower deck. In the first case, the maximum displacement of the upper deck was 

80 mm and in the second case 150 mm. The validation shows that the reloading effects are well 

captured, see Figure 34. In the analytical approach, it is difficult to estimate stiffness in the 

unloading phase. As the FE-results show, the shear stiffness of the structure in unloading is two to 

three times smaller than the initial shear stiffness. This depends on the maximum displacement of 

the upper deck. However, it is not considered as a problem, as in reverse loading, the displacement 

in the starting direction is normally very small, which means also that the stiffness will be quite 

similar to the initial one. 
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Figure 34. Structure B subjected to reverse shear loading. 

 

3.6 DESCRIPTION OF THE CB-METHOD 
 

In the present problem, quasi-static loading of the hull girder was used. The structural 

behaviour was non-linear. Geometrical non-linearity was not directly present, but still included 

through material behaviour described with averaged load-end shortening curves. Therefore, the 

structural strength might be reduced rapidly during loading. Thus, it was required to use a 

calculation procedure, which could control displacements and avoid their infinite increase in the 

post-collapse stage. 

The Arc-length method is a suitable tool for solving problems where the response might 

decrease. Figure 35 presents a basic idea of the Arc-length method. Before each load increment, the 

direction of incremental displacements is estimated by calculating the tangent stiffness matrix D . 

An additional condition for the displacements is introduced by assuming that the length of the 

displacement vector cannot exceed predefined l∆  during the load increment. Therefore, the load 

increment is automatically reduced when the incremental displacement vector tends to exceed the 

amplitude l∆ . The equilibrium path is found when the required convergence at each load increment 

is reached. A detailed description of the method can be found presented in references Crisfield [9] 

and [10]. 
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Figure 35. The arc-length method. 

 

The flow chart of the CB-method is presented in Figure 36. The calculation started by 

reading the data from the input file, including the structural data of the hull girder. In the first stage, 

an initial load increment was assumed. Then the tangent stiffness matrix was calculated by using the 

cross-section data and analytically defined stress-strain curves. Thereafter, the new incremental 

displacement vector was approximated using the tangent stiffness matrix and initial loading. The 

calculation of internal forces and the equilibrium check indicated that a new iteration may be 

needed. If the equilibrium with a certain accuracy was not reached, the initial load increment would 

be modified and the equilibrium procedure would be repeated until the equilibrium point would be 

found. Now, the displacements and internal forces were updated and thus, a new bending moment 

value for the hull girder was calculated. The loop of this calculation procedure was repeated until a 

clear strength reduction of the hull girder was achieved. Finally, the ultimate moment could be 

defined from the response curve. 
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Figure 36. Flow chart of the CB-method. 

 

In order to calculate the integrals used in the tangent stiffness matrix and equilibrium 

equations, the numerical integration over the beam length has to be conducted. For that, the hull 

girder was divided into transverse sections with the length of web frame spacing. The present 

integration scheme assumes that the functions are varying slowly between web frames. Therefore, it 

was possible to calculate the integral by summing the integrants. 
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4 CASE STUDIES 
 

4.1 DOWLING’S BOX GIRDER 
 

To demonstrate the validity of the CB-method, the calculated results were compared with the 

experimental test results received by Dowling et al. [13]. In those tests, several steel box girders 

were loaded with a point load or with the pure bending moment up to the ultimate strength. These 

structures can be considered as tanker type ship structures because they are composed of the upper 

and lower flange connected by two side webs. Therefore, the effects common to passenger ships 

with multi-layer decks were absent, but the comparison was intended to verify the calculation 

routine of the CB-method. 

It was decided to use the test results conducted for model No. 2. During the tests, the force 

and displacements were measured. Some difficulties with the comparison were caused by the fact 

that in the structure significant residual stresses and initial deflections existed. These effects were 

not included in the load-end shortening curves. In order to consider these effects, the yield stress of 

the material was reduced. 

 

 

4.1.1 Tested structure 
 

The structure is shown in Figure 37. It consists of a box-type cross-section where the upper 

and lower flange have a thickness of mm88.4 . Both plate fields are stiffened with four L  shape 

stiffeners. The stiffeners have a web height of mm8.50 , a flange breadth of mm9.15  and a 

thickness for the web and flange of mm8.4 . Spacing for web frames is mm4.787 . The structure is 

loaded with the constant moment all over the length of the structure up to collapse. The present 

loading condition can be called as sagging loading. The deflection was measured at the middle of 

the structure with respect to the first and fourth web frame. 
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Figure 37. Box girder with dimensions. Drown based in the picture taken from reference Dowling 
et. al. [13] 

 

The influence of residual stresses and initial deflections is crucial for the flange in compression. 

Therefore, the strength reduction of the compression flange was obtained by reducing the yield 

stress of the material. According to the test, the upper flange will fail at the stress value MPa4.205 . 

Based on load-end shortening curves used in the CB-method, the failure stress for the stiffened 

panel was MPa0.228 . The same load value at failure of the panel can be obtained, if the yield 

stress MPa0.232  is used instead of MPa5.276 . The material parameters are given in Table 2. 

 

Table 2. Properties of box girder. 

Component Dimensions 
 

(mm) 

yσ  for 
structure 
(MPa) 

E  for 
structure 
(MPa) 

yσ  for CB 
model 
(MPa) 

E  for CB 
model 
(MPa) 

Upper flange 88.4  0.298  3105.208 ⋅  5.276  3103.205 ⋅  

Lower flange 88.4  0.298  3105.208 ⋅  5.276  3103.205 ⋅  

Web 38.3  6.211  3102.216 ⋅  5.276  3103.205 ⋅  

Upper Stiffeners L8.49.158.50 ××  5.276  3105.191 ⋅  5.232  3103.205 ⋅  

Other Stiffeners L8.49.158.50 ××  5.276  3105.191 ⋅  5.276  3103.205 ⋅  
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In the CB-method, the only loading possibility was the distributed load. Therefore, the 

loading condition similar to the test load was obtained using a longer test structure. The total length 

of the structure was taken 99  times the web frame spacing and the loading had a cosine shape. In 

this case, in the middle of the structure within 5 web frames, the bending moment value stayed 

almost constant and thus, the structure behaved similar to that of the test structure. 

 

4.1.2 3D FEM analysis 
 

The finite element for a steel box girder was analysed with the LS-DYNA FE-code. The 

structure was modelled in the same way as the structure used in the experiment. Four node shell 

elements were used in the FE-model. The residual stresses and initial deflections were included. 

According to the tests, see reference [13], the value for residual stresses was taken as MPa56  of 

the compression in upper flange plate and MPa208  of the tension in upper flange stiffeners. For 

the FE-model, the initial deflection of mm3.2  downwards was used for the plate field of the upper 

flange. Heading to the side, the deflection was reduced linearly down to zero at the position of the 

webs. The load was increased in time, but the loading speed was taken so small that the kinetic 

energy of the structure did not exceed 5 % of the internal energy. The structural behaviour is shown 

at various load levels in Figure 38. 

 

 

Figure 38. FE-model of a steel box girder. A) Initial state of the structure, B) Structure after plate 
failure, D) Structure after collapse. 

 

4.1.3 Comparison 
 

The curves of the moment as a function of the deflection are shown in Figure 39. The 

ultimate moment obtained in the test was kNm1550  and the CB and FE-method gave kNm1650  

and kNm1730 , respectively. The reason for the overestimates by the FE-method with the ultimate 
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strength of 11% may be due to the poor quality of the element mesh. This is indicated also by the 

shape of the FE-response curve at the collapse point, which differs clearly from that of the tests. 

Also, the longitudinal stiffeners may be too stiff in tripping and therefore the total panel strength 

was increased. Obviously, the FE-results can be improved by using more elements in the 

longitudinal stiffeners. 

The difference between the CB-method and the test result was approximately 7 %, which is 

a good result. The fact that the moment curve by the CB-method and that of the tests are reduced 

with the same slope indicates that the post-collapse behaviour can be well described by the CB-

method. The higher collapse strength in the case of the CB-method depends on the accuracy of the 

applied load-end shortening curves. The test result and the FE-analysis show that the CB-method 

can be well applied for the estimation of the ultimate strength of box-type structures. 

 

Figure 39. Moment-deflection curves of the steel box girder produced by experiment, the CB-
method and the FE-method. 

 

 

4.2 POST-PANAMAX PASSENGER SHIP 
 

In order to test the applicability of the CB-method for a passenger ship with a modern layout, a 

post-Panamax type ship was analysed. The structure was considered as a prismatic beam with a 
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length of 273 m. The use of a prismatic beam compared to a non-prismatic one reveals the ultimate 

strength phenomenon in the hull girder more explicitly. The layout of the midship section is given 

in Figure 40. The analysis was focused on the prismatic hull girder, thus structural dimensions were 

based on the values of the midship section. The distributed load with a cosine shape was applied on 

the hull girder ensuring self-balance. This load described also well that required by Classification 

Societies, as the maximum value of the bending moment was at the midship and that of shear force 

at a quarter length measured from the ends. 

 

4.2.1 Structure 
 

The considered post-Panamax passenger ship has thirteen decks, a double bottom and a recess 

for lifeboats. According to the design, the web frame spacing is taken as mm2730 . The uppermost 

deck is a box structure giving additional strength for the global bending of the hull girder. The 

lower decks are supported by pillars and by the side shell. In the superstructure, the longitudinal 

bulkhead is situated at a distance of mm4000  from the centre line. It starts from the 6th deck and 

continues up to the 12th deck and is vertically supported by the pillar line. The side plating of the 

superstructure has large openings with dimensions 21002200 ×  mm starting from the 6th deck. The 

ship has also twenty transverse watertight bulkheads up to the 4th deck and six fire bulkheads from 

the 4th deck to the uppermost deck. 

In the structure, the shear load is designed to be carried by the side shell between the baseline 

and the 4th deck and above it by the plating in the recess space between the 4th and 6th deck. Above 

it, the shear load is carried by the plating of the 6th deck and by the longitudinal bulkhead between 

the 6th and 11th deck. All of those structural members transferring the shear flow are presented in 

Figure 40 where the path leading the shear flow is marked by ABCDEF. The thickness of the 

external shell plating is mm16  in the bottom area and mm10 between the 2nd and 4th deck. The 

thickness of the side shell in the recess area is 6 mm. Deck plating thickness is generally mm5  

except the first three decks, where the thickness of deck plating is gradually increased from  5 to 

mm5.7 . The longitudinal bulkhead has a plate thickness of mm6 . For the stiffening of decks and 

longitudinal bulkheads, 100HP  profiles are used. Most of the decks have longitudinal deck girders 

with a web of mm8480×  and a flange of mm10200× . 
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Figure 40. Layout of the midship section for the post-Panamax passenger ship. 
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4.2.2 3D FEM analysis 
 

The non-linear FE-analysis for the post-Panamax passenger ship was conducted with the LS-

DYNA FE-code. The 3D FE-model had a total of about 000,300,1  four-node thin shell elements 

and 000,170  two-node beam elements. The critical question for a large FE-model is the smallest 

element size, the element type and the total number of elements used in the model. It is clear that 

too small element size increases rapidly the need of memory capacity and calculation time. On the 

other hand, rough mesh in critical areas will produce a model that is too stiff, causing unrealistically 

high ultimate strength. 

The mesh size problem of the hull girder was divided into two sub problems. The first one 

was related to longitudinal structures under normal stress, and the second one to that under shear 

stress. In order to model the longitudinal structural elements correctly, the test analyses were carried 

out for typical deck structures. In those analyses, deck structures were compressed by moving the 

boundaries, while the corresponding reaction force was calculated, giving as a result, the load-end 

shortening curve for each structure. The deck consisted of one large longitudinal girder, four 

longitudinals and a plating. Dimensions were chosen as mm5  for deck plating with 100HP , bulb 

profile having a spacing of mm680 . The longitudinal girder was taken as T -profile with 

mmmm 8480 ×  for the web and mmmm 10200 ×  for the flange. The first FE model had very dense 

mesh, which was not adequate for the global model. This model had nine four-node shell elements 

for the plate between longitudinals. For the longitudinal deck girder, six shell elements for the web 

and four shell elements for the flange were used. The stiffeners were modelled using four shell 

elements. The bulb region of the stiffener was modelled with a single shell element with linearly 

changing thickness. All the other models contained less dense mesh, which enabled us to save 

calculation time when using them in the global model. In Figure 41 the results from various 

simulations are presented. 
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Figure 41. Comparison of various stiffened plate models in axial compression. 

 

An important conclusion from these analyses is that to simulate proper collapse, at least four shell 

elements have to be used for plating between stiffeners. The longitudinals can be modelled using a 

one shell element for the web and a one beam element for the bulb. Figure 41 reveals that 

longitudinals, which are modelled as a single beam with offset, are clearly overestimating the 

ultimate strength. The reason for this is probably the effect of tripping, as in the case of A  type 

models, the tripping is missing. An adequate mesh size will need 205×  shell elements in the plate 

strip and 205×  shell elements in the girder, of which 203× shell elements are applied in the web 

and 202 ×  in the flange. Thus, for longitudinals, 20  shell and beam elements are required. This 

kind of dense mesh has to be used at the midship, as the axial collapse of stiffened panels is most 

likely to occur. 

The second problem was related to structures under shear loading, like longitudinal 

bulkheads, side structures and decks, for instance, parts BC and DE in Figure 40. These structural 

elements had to be modelled such that the shear buckling of the stiffened plate structure could be 

possible. However, the mesh density described above may enable also the formation of shear 

buckling. Therefore, at the midship, the mesh density determined according to the test calculations 

could be considered sufficient also for side structures. However, for the structures carrying the shear 

load, the mesh density has to be the same all over the ship length, as the collapse induced by shear 

buckling can spread all over the ship length when the loading increases. 
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Therefore, 5x20 elements in the plate bounded by longitudinal stiffeners and transverse web 

frames were used for the hull girder mesh. However, this type of dense mesh could not be used 

everywhere in the model, as problem size might grow quickly beyond the computer capacity. 

Therefore, only critical regions where the collapse was expected were refined. Due to the shape of 

loading, it was assumed that the maximum normal stresses were expected at the midship. Therefore, 

the midship area inside the seven web frames was refined. In Figure 42 the area marked with letter 

B presents the midship region where the mesh was refined. The ship structure suffers also from 

relatively high shear stresses in the region 4/L  and 4/3L , where the shear force has maximum 

values. The high shear stress combined with the normal stress might cause shear failure, which can 

start with a lower load value than axial failure amidships. Therefore, the same element density was 

used in the areas marked with letter A and B, see Figure 42. 

 

 
Figure 42. Mesh density for different model areas. 

 

The FE-model was a quarter model, where the symmetric boundary conditions were used at the 

midship and at the centreline. As axial collapse at the midship was expected, the applied boundary 

conditions could prevent anti-symmetric collapse modes in axial structural components. However, it 

was assume that their effect is small. The loading of the hull girder was considered as a line load, 

see Figure 43. 
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Figure 43. Loading for a ship beam. 

 

The distributed line load was applied as pressure on the ship bottom. During the simulation the load 

shape was fixed and the load amplitude was gradually increased. As the explicit LS-DYNA code 

enables only dynamic analysis, loading speed was again taken so small that the kinetic energy of the 

structure would not exceed five percent of the internal energy. The moment amidships were 

calculated from the normal stresses by a simple routine. Stress values for each element were 

obtained from the database created by the FE-code. The summation of element stresses multiplied 

by element areas and positions will give the value for the moment at each time step. Similarly, the 

FE-database gives the maximum deflection of the hull girder at each time step. 

 

 

4.2.3 Analysis with the CB-method 
 

The midship section of the hull girder was divided into beams for the CB-analysis. The 

geometry of the section was complicated and due to this the mixed coupling between beams had to 

be used. The division of the section to the beams is shown in Figure 44, where the numbering starts 

from the bottom beam. The total number of the beams was 25. The beam marked with number one 

consists of double bottom and two lowest decks, as the continuous side plating is so thick there that 

the shear effect can be neglected. Thus, further division will not improve the results. The rest of the 

midship section was divided into two or three beams per deck, as there the shear flow follows two 

different paths. Normally, the pillars had so small shear stiffness that their influence on the shear 

flow could be neglected. The number sets with small letters, separated by a comma define the 

coupling numbering. For each beam, six shape functions were used, giving the total number of 

degrees of freedom (DOF) in the CB-model as 450. 
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Figure 44. Set of beams for a post-Panamax passenger ship. 

 

4.2.4 Comparison of results 
 

In the sagging loading condition, the upper decks are in compression and the bottom structure 

is in tension. The loading path and failure modes are shown in Figure 45 and Figure 46. Structural 

failure started with shear buckling at the recess area at 4/Lx = , at the same time elastic buckling of 

the upper decks at the midship occurred, marked as 1 and 2 in Figure 45 and Figure 46. At the next 

face, the upper decks failed, marked as number 3. Due to this, the slope of the moment-deflection 

curve changed rapidly. The ultimate strength was reached when the failure progressed to the 3rd 

deck, marked as number 4 in Figure 45 and Figure 46. The ultimate moment value of the hull girder 

in sagging was kNm6103.8 ⋅ . 
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Figure 45. Moment-deflection curves under sagging loading. 

 

The CB-method gave an estimation of the ultimate moment kNm6100.9 ⋅ . The correlation between 

the results calculated with the FE-method and with the CB-method is good. It is important to point 

out that after the failure of the upper deck, marked as number 3, structural stiffness was reduced 

remarkably. At this face, the ultimate shear strength of stiffened plating at the recess area was also 

reached. The CB-method was able to estimate this strength change only where the shear member 

included also strength reduction, see the green curve in Figure 45. 
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Figure 46. Failure modes of hull girder in sagging loading produced by the FE-analysis. 

 

 

The behaviour of the hull girder in the post collapse stage was well estimated also with the CB-

method. The results by the FE-method presented in Figure 45 show that a tremendous strength 

reduction of the hull girder occurred. The same behaviour was obtained by the CB-method. The fact 

that the CB-method overestimated the ultimate strength might be caused by the fact that the normal 

stress was not considered for the shear strength estimation of panels. 

In the hogging case, the upper decks are in tension and bottom structures in compression. 

The upper decks can carry significantly more load in tension than in compression due to the 

slenderness of the structural elements. Therefore, the shear failure in the recess area occurred much 

earlier compared to the compression failure in the longitudinal bulkhead at the midship. These 

failure modes are marked with numbers 1 and 2 in Figure 47 and Figure 48. It might be difficult to 
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understand why the compression failure occurs in the bulkhead at the midship, marked with number 

2 in Figure 47. This could be explained by the fact that as a result of the shear failure of the recess, 

the normal stresses could not be transferred from the hull to the superstructure. Therefore, they both 

bent independently and the lower part of the superstructure could reach the compression stress 

sufficient for panel collapse earlier than the bottom structure. 
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Figure 47. Moment-deflection curves under hogging loading. 

 

Load increase resulted in the bottom girders buckling in the elastic compression mode, marked with 

number 3 in Figure 47 and Figure 48. At that point, the ultimate strength of the structure was 

reached. Finally, the whole bottom structure collapsed, causing the reduction of the bending 

moment. 
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Figure 48. Failure modes of hull girder in hogging loading. 

 

The results of the CB-method indicated that the strength reduction of shear members had a 

tremendous effect on the ultimate strength of the hull girder. When this reduction was considered, 

the moment-displacement curves obtained with the CB-method coincided with those by the FE-

method. If the shear strength reduction was not allowed, the CB-method produced almost 40% 

higher moment value. This effect could be again explained by a situation where the superstructure 

and hull bend separately. 

The comparison of stresses amidships probably provides the best understanding about the 

structural behaviour obtained by different calculation methods. The normal stresses in the sagging 

condition were calculated for the deflection mmv 135= . The CB-method followed well that of the 

FE-method before the shear buckling occurred, see Figure 45. For the deflection mmv 230= , 
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stresses in the lower part of the hull girder still matched well, but those in the upper part had some 

discrepancy. This was caused by too high shear stiffness in the recess area in the case of the CB-

method. The fact that the shear stiffness was too high might be due to the fact that in the case of the 

shear buckling of the side structure, the effect of the normal stress was not taken into account. 

During the load increase, the situation improved as the upper decks collapsed and thereafter had a 

small influence on the equilibrium, see Figure 49. The similarity between the stresses produced by 

the FE- and CB-method was remarkable. The normal stresses in the ultimate stage for the deflection 

mmv 962= , shown in Figure 50, showed clearly that the load-end shortening curves used in the 

CB-method had not responded to the real situation. For example, the longitudinal girders in the 2nd 

deck produced high stress values in the case of large strains. In the ultimate stage, the result 

obtained by the FE-method indicated that the neutral axis had drifted almost 5 m downwards from 

the initial position. This phenomenon was not so strong in the case of the CB-method.  
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Figure 49. Stress distributions at the midship section in the sagging case with the beam deflection 
mmV 135=  and mmV 226= , respectively. 
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Figure 50. Stress distributions at the midship section in the sagging case with the beam deflection 
mmV 732=  and mmV 962= , respectively. 

 

The shifting of the neutral axis is a factor that indicates that the reverse loading in the 

structural members is possible. The member located in the tension zone might encounter 

compression instead of tension after the shift of the neutral axis. This fact can be observed from 

Figure 50 where the distance of the neutral axis from the base line changed from 12 m to 9 m, when 

the bending moment value had increased from kNm6100.6 ⋅  to kNm6102.8 ⋅ . 
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Figure 51. Position of the neutral axis measured from baseline. 

 
 
 

5 DISCUSSION 
 

The ultimate moment values of the hull girder for the post-Panamax passenger ship obtained by 

the FE- and CB-method are presented in Figure 52. The comparison of the ultimate moment values 

can give several interesting results. First of all, the correlation of the results is excellent, proving 

that the CB-method is applicable to the analyses of the ultimate strength for passenger ships when 

the hull girder is considered to be prismatic. In the case of passenger ship, the ultimate strength in 

the hogging loading is about 25 % higher than that of in sagging loading, see Figure 52. 

The shear strength reduction of stiffened panels after the shear buckling is an important issue 

since it has a substantial influence on the ultimate strength of the hull girder. The results by the CB-

method given in Figure 52 show that the ultimate moment of the hull girder in hogging loading 

drops drastically, almost 30 percent, when the shear strength reduction is taken into account. This 

causes strong separation of the superstructure from the hull, especially in the hogging loading. In 

the phase of initial loading, the hull girder behaves more or less like a single structure but after 

reaching the ultimate strength, both structural units tend to bend as individual beams. 
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Figure 52. Results of ultimate strength analyses compared to design loads for the prismatic hull 
girder of the post-Panamax passenger ship. 

 

It is important to compare the results with the design loads given by the Classification Societies. For 

this comparison, DNV rules [11] were used. According to the rules, the design moment consists of 

the sum of the bending moments of still water and the wave. The passenger ships are always in the 

hogging conditions in still water, where buoyancy force is concentrated at the midship area due to 

the low block coefficient and the weight of the ship is more equally distributed. However, it must be 

recognised that the lightweight of the ship plays a more important role than deadweight. During the 

construction process, a need for large cut outs near amidships exists, causing the neutralisation of 

the stresses induced by still water loading. Thus, the total bending moment in the sagging loading 

condition is calculated assuming zero value for the bending moment of still water. Naturally, in the 

hogging loading condition, the maximum value of the bending moment of the hogging still water is 

applied. Based on this, the design moments for sagging and hogging are presented in Figure 52. The 

comparison of the results shows that the ratio between the ultimate and design moment is about 

1.75 for the sagging condition and 1.2 for the hogging condition. The comparison of this design 

moment value in hogging to the moment-deflection curve in Figure 47 reveals that the buckling 
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process had started below the design moment. This exceptional result was due to the selected 

approach of the analysis based on the assumption of the prismatic hull girder. Thus, the local 

structural strengthening for instance in the areas having high shear stresses was excluded. 

The results reported recently [34] on the bending moment of the hull girder for passenger 

ships in a damaged condition indicate that the bending moment of still water in sagging may also 

appear in the accidental loading case based on SOLAS rules. 

 

 

6 CONCLUSIONS 
 

The coupled beams method is a useful tool to estimate the ultimate strength of the hull girder in 

the case of passenger ships with a multi-deck superstructure. This method is based on an 

assumption that the ship structure can be modelled as a set of coupled beams. In this work, the 

theory of the non-linear CB-method was developed and presented. The essential innovation in the 

method is the modelling of the coupling between beams in the hull girder with non-linear springs 

described with the load-displacement curves. Special emphasis was put on the springs carrying 

shear loading, called as shear members. All the coupling members as well as beams are capable of 

considering the non-linear effects caused by material plasticity or the loss of stability. 

 The load-end shortening curves of the structural members used in the beams were validated 

with the 3D FE-analysis for the deck structures typical of a passenger ship. The analysis proved 

clearly that the formulas from the literature are well applicable. A special semi-analytic model of 

the load-displacement curves for the coupling members in shear with opening options was created. 

There, the shear strength reduction included in the load-displacement curves proved to play an 

important role in the ultimate strength of the hull girder, especially in hogging loading. 

Additionally, the possibility of reverse loading included as the FE-analyses of the hull girder 

revealed that this might give a significant contribution to the normal stresses of the hull girder close 

to the ultimate stage. The different reverse loading schemes based on the analytic formulas were 

validated with the FE-analysis. 

In this thesis, the CB-method was applied to the prismatic hull girder of a post-Panamax ship. 

The ultimate strength of the hull girder was estimated both in sagging and hogging loading. The 

Arc-length approach used in the CB-method made it possible to clearly distinguish the ultimate 

stage of the hull girder. This fact can be seen from the load-deflection curves, especially in the area 

where the load level starts to reduce after reaching the ultimate point. Also, the CB-method enables 

one to estimate the deflections, axial displacements and normal stresses in the hull girder. 
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The non-linear FE-method offered an excellent possibility to validate the CB-method and also 

to improve the understanding of the collapse process of the hull girder. A quarter FE-model of the 

hull girder was used for this purpose. In order to optimise the calculation time, an intensive 

suitability study of the finite element mesh was carried out. Based on this, the configuration and 

proper element size for the plating and stiffeners were determined. It was assumed that the critical 

area for the global FE-model was the midship region, as a maximum bending moment occurs there. 

Furthermore, the longitudinal bulkhead and side structures based on the mesh suitability analysis 

were refined all over the ship length, as the shear collapse might have a major influence. 

The ultimate strength of the prismatic hull girder in the case of the post-Panamax passenger 

ship was estimated with the CB-method and with the FE-method. According to the CB method, the 

ultimate bending moment in sagging was kNm6101.9 ⋅ , which is 9  % higher than that according to 

the FE-method - kNm6104.8 ⋅ . In the hogging condition, the ultimate strength values are almost the 

same, having only around 1 % difference. By the CB-method, the value of the ultimate bending 

moment was kNm6104.10 ⋅  and by the FE-method kNm6103.10 ⋅ , correspondingly. Slight 

differences in stresses and deflections could be observed after the first non-linear effects. However, 

the stresses, deflections, and ultimate load can be well estimated with the CB-method, enabling the 

use of the method in the concept stage of the ship project. 

On the basis of the results obtained by the FE- and CB-method, the failure process of the hull 

girder could be described in detail. In the sagging loading, the structural failure starts with the shear 

collapse of the recess area and at the same time, the elastic buckling of the upper decks takes place. 

The ultimate strength is reached when the failure progresses down to the lower decks. In the 

hogging loading, the first failure is induced by the shear buckling at the recess area situated at a 

quarter length from both ends. Thereafter, shear collapse progresses towards the midship section, 

causing the separation of the hull and the superstructure. Next, the longitudinal bulkhead will 

collapse due to the combination of the normal and shear stress. Finally, the ultimate strength is 

reached when the bottom structure fails. The results related to the failure modes show clearly that 

the shear strength of the longitudinal bulkheads and side structures plays a very important role. The 

3D FE-analysis also revealed that the strength increase effect of the transverse bulkheads on the hull 

girder is small. However, the transverse bulkheads might initiate a failure at the joint between the 

bulkhead and the hull girder. This behaviour can be clearly seen in hogging where the collapse 

started at the transverse bulkhead. 

In the present study, a validation was carried out for a single ship. To acquire more reliable 

knowledge, several ships with various midship sections should be investigated. Also, the tests in a 

small-scale could produce valuable validation data. 
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The CB-method proved to be a useful tool for the estimation of the ultimate strength in the case 

of passenger ships with a multi-deck superstructure. This method offers an accuracy below 15 %. 

The main advantage of the CB-method is that it saves time. The input model for the prismatic ship 

was done for the CB-method within one day, when for the 3D FE-method, the modelling time was 

up to one month. Also, the calculation time was much shorter for the CB-method. Instead of 12 

days, using a two processor PC, FE-calculations by the CB-analysis were carried out within 10-15 

minutes using a normal PC. 

The theory of the CB-method developed in this thesis enables one to analyse in principle the 

ultimate strength for a non-prismatic ship structure with structural discontinuities. However, a 

thorough validation must be carried out before the non-prismatic approach can be applied in design 

work. It would be advantageous to understand the effect of the bow and aft part of the ship on the 

ultimate strength. 
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APPENDIX A EQUILIBRIUM EQUATIONS OF THE BEAM IN 
INCREMENTAL FORM 
 

The equation of longitudinal equilibrium for a single beam can be presented also as 
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The incremental relation describes the change of axial force iN∆  when the shear flows ijs∆ will 

change. For incremental relation it has to be assumed that the shear flows are independent from 

each other. Therefore, the derivation of Eq. (A.1) with respect to shear flow 1is  and multiplication 

with increment 1is∆  results 
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The number of shear flows per single beam can be in maximum equal to n  and due to this the total 

number of equations is equal to n  either. All these equations can be summed and thus 
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The left part from the expression located in brackets is the axial force increment iN∆  and due to 

this Eq. (A.3) gets 
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which is the incremental form of the longitudinal equilibrium equation. All other equilibrium 

equations can be derived in a similar way. 

 

APPENDIX B TANGENT STIFFNESS MATRIX 
 

According to Galerkin’s method the equilibrium equations are transferred to functional form. 

Multiplying the equilibrium equations with the weight functions and integrating all over the length 

the functional form can be achieved. Doing so the axial equilibrium equation is modified as 
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where iu  is the unknown axial displacement vector considered as weight function. Similarly the 

equation describing vertical force equilibrium is 
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where Q
iv  is the weight function. Also incremental moment equilibrium results as 
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where M
iv  is corresponding weight function. The first term in Eq. (B.1) can be integrate by parts 

and gives 
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The equation (B.2) can be rewritten after integration as 

ξλξξ dqvdpvdQ
x

vQv i
Q
i

n

j
ij

Q
ii

Q
i

i
Q
i ∫∫ ∑∫

−− =−
−

⋅∆=∆+∆
∂

∂−+∆
1

1

1

1 1

1

1

1

1
)1(  (B.5) 

and Eq. (B.3) as 
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If the boundary conditions are taken into account the Eqs. (B.4), (B.5) and (B.6), will result 
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Before the coupling forces jip ,∆  and jis ,∆  can be substituted into equilibrium equations they have 

to rearranged so that the unknown variables can be easily separated. Therefore, the suitable form for 

summations terms has to be found. By introducing matrices 
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and 

( )





=

≠−
=
∑

=

ijifCT

ijifCCT
T n

k
ik

t
ik

jiij
t

ij
tC

ij

1

2
, , (B.12) 

the following summation terms can be written 
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In the same way by introducing the matrix 
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the summation term consisting vertical coupling force is rearranged. 
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The final set of equilibrium equations can be obtained by substituting Eqs. (13), (14), (17) and 

(B.13), (B.14), (B.16) into Eqs. (B.7), (B.8), (B.9). Thereafter, 
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Above presented equations are written for beam number i . In case of n  beams the total set of 

equations can be given in matrix form as 
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and 



 93

[ ] ( ) [ ]

[ ]{ } [ ]

{ } [ ]{ } { } [ ]{ }

( ) { } { } .1

)1(

1

1

1

1

1

,
1

1

,

1

1

,
1

1

,

1

1
2

21

1
2

2

2

2

ξλ

ξξ

ξξ

ξξ

dqv

dvKvdvKv

d
x
vT

x
vduT

x
v

d
x
uEX

x
vd

x
vEI

x
v

M

MtATMQtATM

M
tC

TM
tB

TM

t
TMM

t
TM

∫

∫∫

∫∫

∫∫

−

−−

−−

−−

∆−=

=∆+∆+

+








∂
∆∂









∂
∂+∆









∂
∂−+

+








∂
∆∂









∂
∂−+









∂
∆∂









∂
∂

 (B.22) 

The unknown variables are approximated as linear combination of known functions ( ) ( )mBB ξξ K1  

and unknown constants mcc ∆∆ K1 . Therefore, the displacement increments are given as 

and 

The tangent stiffness matrix for the total system is obtained by substituting the Eqs. (B.23) - (B.25) 

into equilibrium equations (B.20) - (B.22). Doing so we obtain 
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are the sub-matrices and 
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are the sub-vectors. 

 

APPENDIX C EQUILIBRIUM EQUATIONS FOR TOTAL SYSTEM 
 

 

The final shape of equilibrium equations used in solution correction is given as 
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APPENDIX D TANGENT STIFFNESS FOR BENDING AND 

LONGITUDINAL ELONGATION 
 

 

According to Crisfield [9] the axial displacement in a beam cross-section can be estimated as 
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where 0u  is the axial displacement of the beam measured at reference line. For small 

displacements we can assume that the axial deformation in beam is obtained as 
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By considering Eq. (62) and assuming that previous Eq. can be presented also in an incremental 

forma the relation between the increase of normal stress and displacement can be obtained. 

Hereafter the axial displacement 0u  defined at reference line is marked as u  instead and doing so 
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Now also internal force increments N∆  and M∆  can be estimated on the bases of normal stress as 

follows 
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The comparison of Eqs. (76) and (82) with Eqs. (13) and (14) gives the following definitions for 

tangent stiffness parameters defining bending and axial elongation of beam. Thus 

∫=
A

t
t dAEEA , (D.6) 

∫=
A

t
t ydAEEI  (D.7) 

and 

∫=
A

t
t ydAEEX . (D.8) 

 

 

APPENDIX E LOAD-END SHORTENING CURVES 
 

 

According to reference [2] the equation describing the load-end shortening curve for the elasto-

plastic collapse of hard corners in tension and in compression and longitudinally or transversally 

stiffened plate in tension is to be obtained from the following formula: 

YCR σσ Φ=0 . (E.1) 

The stiffened plate member is composed of stiffener to it attached plate strip. According to 

assumptions the stiffened plate member can collapse due to beam column buckling described with 

Euler column buckling stress, due to torsional buckling or due to web local buckling of ordinary 

stiffener. The relevant collapse mode is chosen as one of three above mentioned collapse modes 

where the mode with minimum stress value will occur. 

The equation describing the load-end shortening curve for the beam column buckling of 

ordinary stiffeners composing the hull girder transverse section is to be obtained from the following 

formula: 

,11 btA
tbA
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where Φ  is the edge function defined in (60), 1Cσ  is the critical stress, eb  is the effective breath of 

the attached shell plating, b  is the stiffeners spacing and t  is the thickness of plating. The critical 

stress can be determined from equation 

where 1Eσ  is the Euler buckling stress which is defined as 

2
2

1 lA
IE
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E
E πσ = , (E.4) 

where EI  is net moment of inertia of ordinary stiffeners with attached shell plating of with 1eb , EA  

is the net sectional area of ordinary stiffeners with attached shell plating of with eb  and l  is the span 

of stiffener. By defining the plate slenderness parameter 

Et
b YR

e
σεβ =  (E.5) 

it is possible to calculate the effective breadth for net moment of inertia and sectional area. The 

effective breadth for net moment of inertia of ordinary stiffeners with attached plating is defined as 
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The effective breadth for net sectional area of ordinary stiffeners with attached plating is defined as 
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The equation describing the load-end shortening curve for the lateral-flexural buckling of 

ordinary stiffeners composing the hull girder transverse section is to be obtained according to the 

following formula 
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where 2Cσ  is the critical stress which is defined according to Eq. (E.3) where 1Eσ  is replaced by 

Euler torsional buckling stress 2Eσ . The stress CPσ  in Eq. (E.9) is the buckling stress of attached 

plating, which is given as 

gYCP ⋅= σσ . (E.10) 

According to theory the Euler torsional buckling stress can be estimated as 
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where wI  is net sectorial moment of inertia of the stiffener about its connection to the attached 

plating and can be calculated for various members like for flat bars: 
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The parameters ft  and wt  define the flange and web plate thickness and fb  and wh  are the breadth 

of the flange plate and the height of the web plate. 

The net polar moment of inertia pI  of the stiffener about its connection to the attached plating can 

be calculated for flat bars as: 
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and for stiffeners with face plate: 
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The St. Venant’s net moment of inertia tI  of the stiffener used in Eq. (E.11) and consisting no 

attached plating, can be estimated for flat bars as: 
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and for stiffeners with flange: 
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The parameter m  in Euler torsional buckling stress equation is the number of half waves is to be 

taken equal to the integer number such that 

( ) ( )2222 11 +<≤− mmKmm C , (E.19) 

where  
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where 0C  is the stiffness of the attached plating and is calculated as 

.
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3

0 b
EtC =  (E.21) 

The equation describing the load-end shortening curve for the web local buckling of flanged 

ordinary stiffeners composing the hull girder transverse section is to be obtained from the following 

formula: 
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where weh  is the effective height of the web given as 
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where  

Et
h YR

w

w
w

σεβ 310= . (E.24) 



 100

The equation describing the load-end shortening curve for the web local buckling of flat bar 

ordinary stiffeners composing the hull girder transverse section is to be obtained from the following 

formula: 
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CwwCP
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+Φ= 4
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σσσ , (E.25) 

where 4Cσ  is the critical buckling stress for stiffener web and can be calculated from Eq. (E.3) 

where instead of buckling stress 4Eσ  the local Euler buckling stress has to be used. This buckling 

stress is obtained as 
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The equation describing the load-end shortening curve for the buckling of transversely 

stiffened panels composing the hull girder transverse section is to be obtained from the following 

formula: 




















+






 −+








−Φ=

2

225
1111.025.125.2

eee
YCR L

b
l
b

βββ
σσ . (E.27) 

 

 

APPENDIX F TANGENT STIFFNESS FOR SHEAR COUPLING 
 

It is assumed that the shear member can function in two possible modes, which are the elastic mode 

and post-buckling mode. In order to model the behaviour both modes have to be described 

analytically. In the present appendix the elastic behaviour is under consideration. It can be supposed 

that the elastic behaviour is cleared when the shear stiffness is successfully determined. The 

stiffened plate field with the opening is presented in Figure 53. This plate structure is working as 

coupling member between two deck structures moving in a parallel direction with respect to each 

other. Therefore the shear force, is applied on the upper boundary and the lower boundary is 

clamped to ground. Stiffeners are not directly considered as there shear stiffness is very small 

compared to stiffness of the plate. According to assumption three deformation fields are present in 

member denoted as 1, 2 and 3 in Figure 53. 
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Figure 53. Deformation mode of the shear member. 

 

The shear stiffness per unit length is defined as 

u

sT
δ

= , (F.1) 

where s  is the shear flow acting as a shear force per unit length in upper boundary of the member 

and uδ  is the total displacement of the upper boundary with respect to the lower boundary. Each 

plate field has to carry the same load but the deformations will be different. The shear deformation 

in field 1 is therefore estimated as 
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The same shear force sF  is producing deformations in regions 1, 2 and 3 and therefore the 

following relations can be presented for those deformation regions 
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where G  is the shear modulus of the plate material and t  is the plate thickness. All the other 

parameters are defined in Figure 53. In case when the window opening is very large the region 2 

becomes narrow and therefore this region could additionally have a bending deformation mode, 

which is producing additional displacement u
bδ  equal to 
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where E  is the elastic modulus and I  is the moment of inertia of the cross-section obtained by 

cutting the area between window openings. For this moment of inertia all vertical members like 

stiffeners and girders placed between window boundaries have to be considered together with 

plating. The total displacement uδ  can be now determined using relations defined in (F.3) and in 

(F.4). Thus 
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Thereafter, by using Eqs. (F.5) and (F.1) the shear stiffness per unit length can be determined as 
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