
Helsinki University of Technology Building Materials Technology Report 19 Teknillinen korkeakoulu Rakennusmateriaalitekniikka Julkaisu 19 Espoo 2005

INFLUENCE OF MOISTURE AND SUBSTRATE ON THE EMISSION OF VOLATILE ORGANIC COMPOUNDS FROM WALL STRUCTURES

Leif Wirtanen

TEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY TECHNISCHE UNIVERSITÄT HELSINKI UNIVERSITE DE TECHNOLOGIE D'HELSINKI Helsinki University of Technology Building Materials Technology Report 19 Teknillinen korkeakoulu Rakennusmateriaalitekniikka Julkaisu 19 Espoo 2005

INFLUENCE OF MOISTURE AND SUBSTRATE ON THE EMISSION OF VOLATILE ORGANIC COMPOUNDS FROM WALL STRUCTURES

Leif Wirtanen

Dissertation for the degree of Doctor of Technology to be presented with due permission for public examination and debate in Auditorium R3 at Helsinki University of Technology (Espoo, Finland) on the 27th of January 2006, at 12 o'clock noon.

Helsinki University of Technology Department of Civil and Environmental Engineering Laboratory of Building Materials Technology

Teknillinen korkeakoulu Rakennus- ja ympäristötekniikan osasto Rakennusmateriaalitekniikan laboratorio Jakelu: Teknillinen korkeakoulu Rakennusmateriaalitekniikan laboratorio PL 2100 02015 TKK Puh. 09-451 3711 Fax. 09-451 3826 E-mail: ennio.zuccaro@tkk.fi

ISBN 951-22-8011-6 ISBN 951-22-8052-3 (PDF) ISSN 1455-5948

Edita Prima Oy Helsinki 2005 Wirtanen, L. 2005. Influence of moisture and substrate on the emission of volatile organic compounds from wall structures. Helsinki University of Technology, Laboratory of Building Materials Technology, Report 19, 194 p. + app. 127 p.

UDC 691.5:628.86:504.064.2:547

Keywords: Volatile Organic Compounds, VOC, emission, moisture, substrate, primer, paint, adhesive, gypsum board, filler, plaster

ABSTRACT

Volatile organic compounds, VOCs, are released from a multitude of different polymer-based building materials. They can cause adverse health effects such as irritation of eyes, nose and throat, headache, fatigue, dizziness, sinus congestion, allergic reactions, and respiratory infections. This study concentrates on the influence of moisture and substrate on the emissions of VOCs from common wall structures. The structures are made up of primers and paints or adhesives applied onto either gypsum board or a combination of filler and plaster (or a single layer of plaster) which is applied onto calcium silicate bricks. An inert substrate, glass, is used as a reference substrate for single layers of paints, adhesives or plasters, and combinations of primer and paint and filler and plaster.

The experimental section of this study is preceded by a literature review where the different factors affecting the emission process is dealt with. The literature review also includes the elaboration of a mathematical model describing the emission process.

Small environmental chambers were developed for the experiments. The relative humidity of the air introduced into the chambers, the air exchange rate, and the air flow velocity over the sample surfaces could be easily controlled. Samples were exposed to different moisture conditions by adjusting the relative humidity of the air introduced into the chambers and by the use of different substrates. The emitted compounds were collected both from the chamber air and from the surface of the samples by using a Field and Laboratory Emission Cell into stainless steel tubes containing Tenax TA adsorbent.

Other tests performed in this study included infrared spectroscopy, mercury intrusion porosimetry, microscopy, and the determination of pH. These tests were mainly performed to derive additional information on the chemical and physical characteristics of the materials studied.

The experimental results demonstrated that the emission of VOCs from a surface layer is affected especially by the substrate, primer included, and by the drying process of both the substrate and the surface layer. The use of gypsum board as a substrate for either combinations of primer and paint or adhesives resulted in the lowest emission rates, while the use of a combination of filler and plaster or a single layer of plaster applied onto calcium silicate brick as a substrate resulted either in higher or lower emission rates compared with the glass (reference substrate) depending on the emission characteristics of the combination of filler and plaster. The experimental results indicated also that a high relative humidity prolongs the drying process, thus affecting the emissions because of interactions of water molecules with other emitting compounds. The consequence of this is that different compounds are emitted at different points of time.

There was a statistically significant difference after the samples had reached moisture equilibrium only in the emission rate of aldehydes at RH 20 % and RH 80 % target relative humidities for samples collected from the test chambers. The emission rate was higher for the higher humidity environment. This result applied only when different combinations of primer and paint were spread onto glass plates.

The experimental results additionally confirmed that TVOC, the total amount of VOCs being released, is not a good estimate of the behaviour of the emission of single compounds, since their behaviour, as regards relative humidity, can not always be determined based on TVOC-values. Nevertheless, it has been proven that it is possible to reach low emission rates, i.e. TVOC-values < 30 μ g/m²·h, in less than two weeks with an appropriate choice of materials and by ensuring good drying conditions.

ACKNOWLEDGMENTS

The present study was carried out at the Laboratory of Building Materials Technology at Helsinki University of Technology during January 2002 and December 2004. The study has been financially supported by the Academy of Finland, the Ministry of Social Affairs and Health, the Jenny and Antti Wihuri Foundation, and the Finnish Work Environment Fund. The financial supporters are gratefully acknowledged.

I would like to thank my supervisor, Professor Vesa Penttala, for his support during the work, which covers a rather new discipline of the laboratory's expertise.

The official referees of my thesis, Professor, Head of Department Anna-Liisa Pasanen at the Kuopio Regional Institute of Occupational Health and Docent, Head of Laboratory, Tapani Tuomi at the Uusimaa Regional Institute of Occupational Health are gratefully acknowledged for their constructive criticism and helpful comments. I would also like to express my gratitude to Dr. Derrick Crump at the Building Research Establishment, Centre for Safety, Health and Environment for agreeing to act as opponent during the defense of the thesis.

I would like to thank Mr. Markku Sivukari, Mr. Pertti Alho and Mr. Jarmo Vihervuori for their help with the design of the environmental chambers. Mr. Pertti Alho also helped me by running the MIP-tests, for which he is warmly acknowledged. Thank you to Mr. Fahim Al-Neshawy who helped me with software issues and made the nice pictures presenting the experimental setup. D.Sc. Andrzej Cwirzen is warmly acknowledged for helping me with ESEM imaging and EDX-analysis.

D.Sc. Minna Nieminen and Ms. Mia Löija are warmly thanked for guiding me with the analysis of the FTIR-spectra. Mr. Jari Pukkila and the staff at the National Bureau of Investigation are acknowledged for carrying out the FTIR-analysis of the primer, paint and adhesive samples.

Mrs. Beatrice Bäck, Mr. Juha Svinhufvud, Ms. Hanna Hovi and the rest of the staff at the Uusimaa Regional Institute of Occupational Health are warmly acknowledged for analysing hundreds of VOC-samples and for the fruitful discussions we had during this project.

Finally, I would like to express my warmest gratitude to Mr. Karri Mäkinen, Ms. Kristina Saarela, Mr. Mika Tulimaa and all my colleagues and friends who have supported me during this work.

Thank you, my parents, Pertti and Brita who made this possible in the first place!

...to Heidi and Ebba, the loves of my life

ABS	STRACT	Γ		3
ACI	KNOWL	.EDGMI	ENTS	5
COl	NTENTS	5		6
ABI	BREVIA	TIONS	AND NOTATIONS	11
1	INTI	RODUC	TION	14
2	MAT	TERIALS	S	15
-	2.1	PAIN		15
			Pigments and fillers	15
		2.1.2	-	16
			2.1.2.1 Alkyd resins	16
			2.1.2.2 Polymer dispersions	17
		2.1.3		17
			Paint additives	18
	2.2	ADHI	ESIVES	19
		2.2.1	Bulk polymers	20
		2.2.2		20
		2.2.3		21
	2.3	FILLI	ERS, PLASTERS AND PLASTERBOARD	22
		2.3.1	Fillers and plasters	22
		2.3.2	Plasterboard	22
3	EMI	SSIONS	FROM MATERIALS AND STRUCTURES	23
	3.1	EVAF	PORATION AND DIFFUSION	24
		3.1.1	Molecular migration	24
		3.1.2	Rate of emission	25
		3.1.3	Factors affecting the emission process	26
		3.1.4		29
	3.2	COM	PUTATIONAL MODELLING	29
		3.2.1	Surface emission	30
		3.2.2	Internal diffusion	32
		3.2.3	1	33
			3.2.3.1 Surface evaporation	33
			3.2.3.2 Internal diffusion	35
			3.2.3.3 Sinks	36
			3.2.3.4 Relative humidity	37
			3.2.3.5 Model parameters	38

4	INFL	UENCE	OF MOISTURE ON EMISSIONS	42
	4.1	POLA	RITY, HYDROPHILICITY AND LIPOPHILICITY	42
	4.2	THE I	NFLUENCE OF MOISTURE ON THE SORPTION OF	43
		ORGA	ANIC COMPOUNDS	
	4.3	THE I	NFLUENCE OF MOISTURE ON EMISSIONS	46
5	OBJE	ECTIVES	S OF THE EXPERIMENTAL STUDY	52
6	MAT	ERIALS	S AND EXPERIMENTAL SETUP	53
	6.1	FOUR	RIER TRANSFORMED INFRARED SPECTROMETRY (FTIR)	55
		6.1.1	Primers, paints and adhesives	55
		6.1.2	Fine mortar, plasters and gypsum board	55
		6.1.3	FTIR-sample analysis	56
	6.2	MICR	OSCOPY	57
		6.2.1	Light microscopy	57
		6.2.2	Environmental Scanning Electron Microscopy (ESEM)	57
	6.3		CURY INTRUSION POROSIMETRY (MIP)	57
	6.4	-	EASUREMENTS	59
	6.5	EMIS	SION TESTING	59
		6.5.1	Sample preparation	59
			6.5.1.1 Primers and paints	59
			6.5.1.2 Adhesives	60
			6.5.1.3 Fillers and plasters	60
		6.5.2	Emission testing methods	60
			6.5.2.1 Emission test chamber	60
			6.5.2.2 Testing conditions	63
			6.5.2.3 Field and Laboratory Emission Cell (FLEC)	64
		6.5.3	VOC-sample collection	65
		6.5.4	VOC-sample analysis	65
		6.5.5	Data handling	66
		6.5.6	Olfactory evaluation	66
7	EXPH	ERIMEN	VTAL RESULTS	68
	7.1	FOUR	RIER TRANSFORMED INFRARED SPECTROSCOPY (FTIR)	68
		7.1.1	Primers and paints	68
		7.1.2	Adhesives	71
		7.1.3	Fillers, plasters and gypsum board	72
	7.2	MICR	OSCOPY	75
		7.2.1	Light microscopy	75
		7.2.2	Environmental Scanning Electron Microscopy (ESEM)	75
	7.3	MERC	CURY INTRUSION POROSIMETRY (MIP)	79
	7.4	pH-M	EASUREMENTS	83

7.5	RELA	TIVE HUMIDITY	84
	7.5.1	Part I. Single material layers on a glass substrate	84
	7.5.2	Part II. Material combinations on a glass substrate	86
	7.5.3	Part III. Material combinations on gypsum board and CSB	88
7.6	WEIG	HT CHANGES	91
	7.6.1	Part I. Single material layers on a glass substrate	91
	7.6.2	Part II. Material combinations on a glass substrate	93
	7.6.3	Part III. Material combinations on gypsum board and CSB	94
7.7	VOC I	EMISSIONS	97
	7.7.1	Background VOC concentrations	97
	7.7.2	Part I. VOC emissions from single material layers on a glass	98
		substrate	
		7.7.2.1 Paint A	98
		7.7.2.2 Paint C	99
		7.7.2.3 Adhesive A	101
		7.7.2.4 Adhesive C	103
		7.7.2.5 Plaster A	104
		7.7.2.6 Plaster C	106
		7.7.2.7 Gypsum board	107
	7.7.3	Part II. VOC emissions from material combinations on a glass	109
		substrate	
		7.7.3.1 Primer A and paint A	109
		7.7.3.2 Primer B and paint B	110
		7.7.3.3 Primer A and paint C	112
		7.7.3.4 Primer C and paint C	114
		7.7.3.5 Filler A and plaster A	116
		7.7.3.6 Filler B and plaster B	118
		7.7.3.7 A 6 mm layer of plaster C	119
		7.7.3.8 Adhesive B	121
	7.7.4	Part III. VOC emissions from material combinations on gypsum	
		board and CSB	122
		7.7.4.1 The combination of primer A and paint A spread onto	123
		gypsum board	
		7.7.4.2 The combination of primer B and paint B spread onto	124
		gypsum board	
		7.7.4.3 Adhesive A applied onto gypsum board	126
		7.7.4.4 Adhesive B applied onto gypsum board	127
		7.7.4.5 The combination of primer A and paint A spread onto	128
		the combination of filler B and plaster B applied onto CSB	
		7.7.4.6 The combination of primer A and paint A spread onto	129
		plaster C applied onto CSB	
		7.7.4.7 The combination of primer B and paint B spread onto	130

		the combination of filler B and plaster B applied onto CSB	
		7.7.4.8 The combination of primer B and paint B spread onto	132
		plaster C applied onto CSB	
		7.7.4.9 Adhesive A applied onto the combination of filler B and	133
		plaster B applied onto CSB	
		7.7.4.10 Adhesive A applied onto plaster C applied onto CSB	134
		77.4.11 Adhesive B applied onto the combination of filler B and	135
		plaster B applied onto CSB	
		7.7.4.12 Adhesive B applied onto plaster C applied onto CSB	136
	7.7.5	The influence of substrate on VOC-emissions from selected	137
		materials and material combinations	
		7.7.5.1 Paint A and the combination of primer A and paint A	138
		spread onto a glass plate	
		7.7.5.2 Paint C, the combination of primer A and paint C and the	139
		combination of primer C and paint C spread onto a	
		glass plate	
		7.7.5.3 Adhesives A and B applied onto a glass plate	141
		7.7.5.4 Filler and plaster B, plaster C, and gypsum board applied	142
		onto a glass plate	
		7.7.5.5 Primer and paint A and primer and paint B spread onto	144
		glass and gypsum board	
		7.7.5.6 Adhesives A and B applied onto glass and gypsum board	146
		7.7.5.7 The combination of primer and paint A spread onto	148
		different substrates	
		7.7.5.8 The combination of primer and paint B spread onto	150
		different substrates	
		7.7.5.9 Adhesive A applied onto different substrates	152
		7.7.5.10 Adhesive B applied onto different substrates	155
	7.7.6	Statistical analysis	157
		7.7.6.1 Statistical analysis of Part I. VOC emissions from single	157
		material layers on a glass substrate	
		7.7.6.2 Statistical analysis of Part II. VOC emissions from	158
		material combinations on a glass substrate	
		7.7.6.3 Statistical analysis of Part III. VOC emissions from	158
		material combinations on gypsum board and CSB	
		7.7.6.4 A comparison of glass and gypsum board as substrates	163
7.8	OLFA	CTORY EVALUATION	164
	USSION		167
8.1		PERTIES OF THE TESTED MATERIALS AND THEIR	167
		VIOUR AT DIFFERENT MOISTURE CONDITIONS	
8.2	VOC 1	EMISSIONS	170

	8.3	MATHEMATICAL MODELLING	176
9	SUM	MARY	178
10	CON	CLUSIONS	181
REFI	ERENC	ES	183
APPI	ENDICI	ES	
APPI	ENDIX	A RESULTS OF THE EDS-ANALYSES	195
APPI	ENDIX	B SAMPLE WEIGHTS	200
APPI	ENDIX	C AREA SPECIFIC EMISSION RATES	202

ABBREVIATIONS AND NOTATIONS

ASAFR	Area Specific Airflow Rate (m ³ /m ² ·h)
DRIFT	Diffuse Reflectance Unit
ESEM	Environmental Scanning Electron Microscope
FLEC	Field and Laboratory Emission Cell
FTIR	Fourier Transformed Infrared Spectroscopy
GC	Gas Chromatograph
MIP	Mercury Intrusion Porosimetre
MS	Mass Spectrometre
PLS	Partial Least Squares
SER _a	Area specific air flow rate of a specific compound ($\mu g/m^2 \cdot h$)
SVOC	Semi-Volatile Organic Compound, boiling point range 240-260380-400 °C
TVOC	Total Volatile Organic Compound, determined as toluene-equivalent
TVOC _{SERa}	Area specific airflow rate of the total amount of VOCs ($\mu g/m^2 \cdot h$)
VOC	Volatile Organic Compound, boiling point range 50-100240-260 °C
А	coefficient of relative humidity (-)
A, A_s	sample area (m ²)
ACH	air exchange rate (h ⁻¹)
В	constant (-)
с, С	concentration (kg/m ³)
c_a	gas-phase concentration (kg/m ³)
C_{a0}	initial gas-phase concentration (kg/m ³)
c_i	gas-phase concentration of a single compound (kg/m ³)
c_{pi}	partial vapour pressure of a single compound expressed as concentration
	(kg/m^3)
C_S	solid-phase concentration (kg/m ³)
C_{V}	equilibrium vapour pressure expressed as concentration (kg/m ³)
C_{vi}	equilibrium vapour pressure of a pure compound (kg/m ³)
${\cal C}_W$	concentration at a surface (kg/m ³)
${\cal C}_{\infty}$	concentration in the bulk air (kg/m ³)
C_m	measured concentration
D	molecular diffusion coefficient (m ² /s)
D_a	average gas-phase diffusivity (m ² /s)
Е	coefficient of temperature (-)
E_{v}	mass emission rate in diffusion (kg/m ² s)
E_w	emission rate in convection (kg/m ² s)
E_{wi}	emission rate of a single compound in convection (kg/m ² s)
Н	test relative humidity (%)
H_0	relative humidity under standardised conditions (%)
$\Delta_{v}H$	enthalpy of vaporisation (J)

$\Delta_{v}H_{m}$	molar enthalpy of vaporisation (J/mol)
J	species flux (kg/m ² s)
k_c	convective mass transfer coefficient (m/s)
k _{ci}	convective mass transfer coefficient of a single compound (m/s)
k_l	linear partition coefficient (-)
k_s	surface/air partition coefficient (kg/s)
<i>L</i> , <i>θ</i>	thickness of a sample (m)
L_c	characteristic length (m)
ln	natural logarithm
m	mass (kg/m^2)
m_i	mass of compound remaining (kg/m ²)
m_0	initial mass (kg/m ²)
M _a	molecular weight of air (g/mol)
$M_{i,}M_{VOC}$	molecular weight of a compound (g/mol)
n	air change rate (h^{-1})
р	pressure (atm/bar)
p_A	partial vapour pressure of a component (atm)
p_L	vapour pressure of a liquid (atm)
P	amount of wet product applied (g)
q	adsorbed surface concentration
Q	volumetric flow of air (m ³ /s)
r	pore radius (m)
Re_L	Reynolds number (-)
RH	relative humidity (%)
R	gas constant (J/K mol)
S	recommended amount of paint usage (m ² /l wet product)
Sc	Schmidt number (-)
Sh	Sherwood number (-)
t	time (s)
Т, Т	temperature (K/°C)
T ₀	temperature at standardised conditions (K)
T_s	dry film thickness recommended by a paint producer (μm)
T_t	dry film thickness for testing (µm)
T_{v}	boiling temperature of a solvent (K/°C)
и	air velocity (m/s)
V	volume of chamber air (m ³)
V_a	molar volume of air (cm ³ /mol)
V_s	solid content of a product (Vol%)
V_{VOC}	molar volume of a compound (cm ³ /mol)
x_A	mole fraction of a component
y S	co-ordinate (m)
δ	density of a wet product (g/cm ³)

δ_{D}	thickness of the diffusion boundary layer (m)
γ	surface tension (N/m ²)
μ	viscosity (g/h m)
ρ	density (g/m ³)
ν	kinematic viscosity (m ² /s)
ω	contact angle (°)
\prod_i	molar amount of a compound (mol)
Π	molar amount of TVOC (mol)

1 INTRODUCTION

Polymeric materials such as vinyl floorings, adhesives, wall-covering materials, plasters, sealants, thermal insulating materials, paints, and varnishes are important sources of volatile organic compound (VOC) emissions in buildings and they can emit a wide range of VOCs. VOCs have been defined by WHO as organic compounds having boiling points from 50-100 °C to 240-260 °C (WHO 1989). Some are solvent residues from the various polymerisation processes of polymer manufacturing; some are the excess unreacted monomers and comonomers left trapped in the polymer structures; some are secondary products from the reactions of some monomers, solvents or plasticisers and some are the plasticisers used in the production of a material. (YU & CRUMP 1998)

VOCs can cause adverse health effects and initiate symptoms of the so-called sick building syndrome (WHO 1983). Common symptoms of sick building syndrome include irritation of the nose, eye and throat, headache, fatigue, dizziness, sinus congestion, allergic reactions, and respiratory infection. Most symptoms are short-term in nature and are relieved upon vacating the premises. Current research effort has, however, not been able to fully characterise the human health risk of a large number of VOCs found in the indoor environment, including the effects of synergism and secondary reactions. Therefore it must be assumed that not all compounds are in concentrations low enough to be considered harmless, particularly in the long term. (ELLACOTT & REED 1999) However, the health issues related to VOCs will not be dealt with in this work. This work concentrates on the joint effect of relative humidity and different material combinations on the VOC-emissions despite the fact that the "traditional" VOC-window, as defined by the WHO, comprises largely non-reactive species and has, thus, lost interest lately. Instead radicals, ozone, semi-volatile organic compounds, and NO_xs have gained increasing attention during the last few years as the primary targets reducing the indoor air quality. However, VOCs are the group of organic compounds that have gained most interest during the last decades, and for which there exists a relatively good international consensus as far as sample collection, analysis, and interpretation of test results are concerned. Furthermore, they are one parameter which national building material labelling schemes are based upon at least in Europe (WOLKOFF 2003).

A small environmental test chamber has been developed that meets the requirements set by the European standards (ENV 13491-1 1999) and by the author, i.e. that the operation and maintenance of the chamber should not be too cumbersome and that the relative humidity of the chamber air should be easily adjusted. The emissions of VOCs from common building materials and material combinations under controlled conditions are examined in order to clarify the joint influence of moisture conditions and substrate on the emission process. This information can undividedly be used by material manufacturers, building designers, contractors, officials and researchers dealing with issues related to indoor air quality, and the general public.

2 MATERIALS

The materials to be tested in this study are commercial products purchased from local hardware stores. Their main characteristics are presented in the following chapters very generally. Due to production secrets the author does not have detailed information on their composition, but rather has to rely on what is noted on the product information sheets provided by the producers for more specific information.

2.1 PAINTS

A pigmented coating material, in liquid, paste or powder form which, when applied to a substrate, forms an opaque film having protective, decorative or specific technical properties is a paint (EN 971-1 1996). All paints are based on the structure shown in Table 1. Major differences between paints occur between the polymers or resins that are formulated for different purposes. This is because of differences between the methods of application and cure, the nature of the substrate, and the conditions of use. The deterioration of paints that occurs in many situations is largely due to changes in the chemical nature of the film former with consequent changes in its mechanical properties.

Non-volatile matter	Volatile matter
pigments	solvents or dispersants
fillers	volatile additives
film formers	(any elimination products from stoving)
non-volatile additives	

Table 1. The structure of paints (BROCK ET AL. 2000).

2.1.1 Pigments and fillers

Pigments are generally finely dispersed particles that are practically insoluble in the application medium and which are used because of their optical, protective or decorative properties (EN 971-1 1996). Examples of pigments include titanium dioxide, carbon black, pearlescent pigments, and zinc phosphate (BROCK ET AL. 2000).

Aiming at improving the quality of paints, a great number of studies have been carried out to understand the role of pigments in paint formulation, fabrication, application, and durability. All the studies indicate that pigment characteristics, such as chemical nature, particle size, state of dispersion, morphology and level of pigmentation, determine the paint properties in its liquid and solid state. (PERERA 2004)

Fillers are granules or powders that are, like pigments, practically insoluble in the application medium. They are used as a constituent of paints to modify or influence certain physical properties. (EN 971-1 1996) Examples of fillers include chalk, talcum, and cellulose fibres (BROCK ET AL. 2000).

Fillers differ from white pigments primarily in their lower refractive index and also in their particle size, which is generally larger than that of pigments. The objective with fillers is to ensure that they build a compact skeleton structure with pigments in the coating material. They are used among others for: reinforcing, improving flexural, adhesive and tensile strength, controlling the degree of gloss of coatings and, since they are generally less expensive than pigments, reducing the price of a coating material. (BROCK ET AL. 2000).

2.1.2 Film formers

A film former forms a cohesive coating or paint film on a given substrate and, where relevant, holds together or embeds the other non-volatile components of the coating, particularly the pigments and fillers. Depending on their origin, film formers can be categorised into natural substances, modified natural substances, and synthetic substances. (BROCK ET AL. 2000) The following review is concentrated on alkyd resins and polymer dispersions, since these are the film formers used exclusively in this study.

2.1.2.1 Alkyd resins

Alkyd resins can be defined as polymers modified with fatty acids or fatty oils or with higher synthetic carboxylic acids. The molecules consist of a polyester backbone from which fatty acid groups project as side chains. Excess (free) hydroxyl and residual carboxyl groups are also present. The polyester component is responsible for physical drying and weather resistance, the oil component for the suppleness of the films and above all for the capacity of oxidative cross-linking. (BROCK ET AL. 2000).

With regard to the oil type or the fatty acid incorporated, alkyd resins can be categorised as drying or non-drying. Long oil alkyds, with an oil content of > 60 to 70 %, are principally used as sole film former for decorator's paints and house paints. Thus, alkyd paints used in this study are most probably long oil alkyds. They are soluble in aliphatic hydrocarbons and they always dry by oxidation. The high oil content promotes good flow, high flexibility and easy manual processing, but also leads to relatively slow drying. If conjugate oil(s) or acid(s) are used in the resin synthesis, faster drying resins are produced. (BROCK ET AL. 2000).

2.1.2.2 Polymer dispersions

A polymer dispersion is formed by emulsion polymerisation. It is usually a relatively lowviscosity liquid. In microscopic terms it is a micro-heterogeneous system essentially consisting of roughly spherical polymer particles ("latex particles") which are evenly distributed in a usually aqueous phase. Non-aqueous dispersions contain highly volatile, aliphatic hydrocarbons as dispersant. The latex particles used in paints are always copolymers. The main types are styrene-butadiene copolymers, vinyl acetate copolymers, pure acrylate copolymers, and styrene-acrylate copolymers. (BROCK ET AL. 2000).

As a minimum, the aqueous phase contains stabilisers such as surfactants and/or protective colloids together with decomposition products of the polymerisation initiator (BROCK ET AL. 2000). Surfactants are low-molecular substances with hydrophilic and hydrophobic molecule sections. They are used to prevent sedimentation and phase separation during polymerisation, film formation, and end-use conditions. (BUTLER ET AL. 2005). The aqueous phase may also contain plasticisers, buffer substances to regulate the pH, de-foaming agents, and preservatives (BROCK ET AL. 2000). Taken together, a water-borne paint formulation is extremely complex with a plethora of low and high molecular weight compounds (HELLGREN ET AL. 1999).

2.1.3 Solvents and dispersants

A solvent is defined as a single liquid or blend of liquids, volatile under specified drying conditions, in which the film former is completely soluble (EN 971-1 1996). Examples of solvents include butyl acetate, butyl glycol, white spirit, and water. Solvents serve primarily to adjust the viscosity of the coating material to the optimum level for a given application, and to control this level during application and film forming. However, solvents affect also e.g. the adhesion to the substrate (BROCK ET AL. 2000).

Dispersants are liquids that do not dissolve the film former(s), but instead hold them in a fine micro-heterogeneous dispersion or emulsion. Examples include water, and in non-aqueous dispersions, hydrocarbons (BROCK ET AL. 2000). Dispersions were dealt with in the preceding chapter.

A number of factors must be taken into account in choosing a solvent, including volatility, rheological behaviour, surface tension, combustibility, toxicity, odour, environmental compatibility, and cost. A solvent is, thus, generally required to be light and colourless, volatile with no residue, neutral, non-reactive or only slightly reactive, to have a slight or at least not unpleasant odour, and generally to be anhydrous, scarcely toxic, biodegradable, and moderately priced. (BROCK ET AL. 2000). Table 2 provides a summary of typical solvent contents in some coating materials.

Coating material	Solvent content (%)
Emulsion paints for interior use	0-2
Latex coatings (environment-friendly)	7 – 9
Alkyd resin coatings, polyester resin coatings, epoxy resin	
coatings, polyurethane coatings, polyester resin coatings,	40 - 50
phenolic/urea/melamine resin coatings	

Table 2. Typical solvent contents of paints and coating materials (BROCK ET AL. 2000).

During application and film forming, the volatile components of a paint are intended to evaporate. The speed at which this occurs influences not only the drying time but also the appearance of the final paint film. The rate of evaporation of a solvent is dependent on vapour pressure, surface tension, specific heat, molecular weight, enthalpy of vaporisation, and humidity. Both vapour pressure and boiling point of a solvent are dependent on the enthalpy of vaporisation, but there is no general correlation between these two quantities. For example, solvents forming hydrogen bridge bonds - like water, alcohols or amines - are less volatile than other solvents with the same boiling point. Since most of the factors that determine the rate of evaporation are in turn dependent on one another, it is almost impossible to make theoretical predictions about the precise extent of solvent release from a coating film. (BROCK ET AL. 2000)

For the optimum drying of a coating film, a blend of different solvents is generally required. In blends, deviations from an ideal behaviour occur which can be attributed to the interactions between the molecules of the blended components and are different for different solvents. Particularly in the case of blends containing water as one of the components, the strong interactions with this component can often lead to marked deviations from the ideal behaviour, which is expressed by Raoult's law, Equation 1.

$$p_A = x_A \cdot p_L \qquad , \qquad (1)$$

where p_A is the partial vapour pressure of a component, x_A is its mole fraction, and p_L is its vapour pressure as a pure liquid. The rate of evaporation of water is at the same time strongly influenced by the relative humidity. For example, if a blend of butyl glycol and water is evaporated, butyl glycol accumulates in the remaining mixture at low RH, whereas water accumulates in the mixture at high RH. At a given RH (the critical relative humidity, which is around 80 % in this case), both components evaporate approximately at the same rate and the composition of the liquid remains constant. (BROCK ET AL. 2000)

2.1.4 Paint additives

Additives are substances that are generally added in small quantities to a coating material to improve or modify one or more specific properties (EN 971-1 1996). Additives are generally

subdivided into various groups, the most important of these being: de-foaming agents, surface-active additives, rheological additives, light stabilisers, dryers and catalysts or accelerators, and biocides. As some additives can influence several properties at the same time, the classification presented before is rather arbitrary. Moreover, the boundary between additives and other coating components is not always very clear, since some film formers, pigments, solvents, or even fillers are occasionally used like additives in terms of both function and of quantity added. (BROCK ET AL. 2000). The different additive groups and the main raw materials used in paints are presented in Table 3.

Coating material	Solvent content (%)	
De-foaming and de-aerating agents	Mineral oil and silicone de-foaming agents	
	Organic polymers, dimethyl polysiloxanes,	
	organically modified polysiloxanes and	
	fluorosilicone de-aerating agents	
Surface-active additives (wetting and dispersion)	Surfactans which include countless substances	
	such as ethoxylates and siloxanes	
Rheological additives		
- thickeners	Cellulose and polyurethane derivatives.	
- thixotropic agents	Phyllosilicates, polyolefins, polyamides etc.	
Light stabilisers	2-hydroxyphenyltriazoles, HALS ¹⁾	
Catalysts and driers	Salts	
Biocides	Formaldehyde and its reaction products, sulphur	
	and nitrogen containing organic compounds	

Table 3. Typical additives used in paints and their main raw materials (BROCK ET AL. 2000).

¹⁾ Hindered Amine Light Stabiliser

2.2 ADHESIVES

An adhesive is defined as a non-metallic substance capable of joining materials by surface bonding (adhesion), and the bond possessing adequate internal strength (cohesion) (EN 923 1998). Thus, there are three requirements that must be met for successful adhesive application. These are: wetting of the substrate surface, solidification of the adhesive, and formation of a joint structure that is resistant to the operating stress and environment. (PETRIE 2000) Adhesives are usually comprised of a bulk polymer or polymer blend acting as a binder, a solvent, and a variety of additional components. In the following chapters is presented different bulk polymers and a short description of solvents and other material components generally used in adhesive formulations. However, the main emphasis is still on the type of adhesives used in this study.

2.2.1 Bulk polymers

Adhesives may be classified according to chemical composition, as presented in Table 4. This is not the only way to classify adhesives, but appropriate in this context. Other classifications are by function, mode of application or reaction, physical form, cost, or end-use (PETRIE 2000).

Classification	Bulk polymers	Most used forms
Thermoplastic	Cellulose derivatives, (poly)vinyl	Liquid
	derivatives, acrylics	
Thermosetting	Urea and melamine formaldehyde,	Liquid, but all forms common
	epoxies, acrylics	
Elastomeric Natural and synthetic rubber, nitrile,		Liquid, some film
	styrene-butadiene, polyurethane	
Alloys (hybrids)	Epoxy and phenolic alloys	Liquid, paste, film

Table 4. Classification of adhesives according to origin (PETRIE 2000).

Thermoplastic adhesives do not cure or set under heat like thermosetting adhesives, but they can rather be melted with application of heat and then applied to the substrate or they can be dissolved in solution and rehardened on evaporation of the solvent. Thermoplastics dissolved in water as latexes or emulsions harden on water evaporation or by water diffusion into a porous substrate (PETRIE 2000). This last group of thermoplastics belong to the common household adhesives and are also used in this study.

2.2.2 Polyvinyl acetate

Polyvinyl acetate, PVAc, is the binder of at least two of the adhesives used in this study. Polyvinyl acetate adhesives are dispersions of small droplets of PVAc in water. They set by loss of moisture, leaving the droplets to coalesce to form a continuous solid film. (TOUT 2000) PVAc dispersions have a reactive solid content of 40 - 70 %. The dispersions must be stabilised with protective colloids or emulsifying agents to prevent separation. When they are used with porous materials the majority of the water is absorbed by the substrates and the remainder, along with the small quantities of solvent which are used to keep the polymer dispersed, evaporate. (PARIS 2000) Thus, the setting times of PVAc adhesives depend on the moisture levels of the components being bonded, and the thickness of the adhesive film, but with optimum bonding conditions, i.e. low moisture content and thin gluelines, a modern PVAc adhesive will develop reasonable bond strength in about 15 minutes at normal ambient temperatures. Damp conditions and thick adhesive film will extend setting times. (TOUT 2000)

Even though PVAc- based adhesives are convenient to use, have low toxicity and a clear glueline, they have some detracting features which limit their application to non-structural uses only. The main detracting features are susceptibility to both moisture and heat, and also

a tendency to creep under load. These deficiencies are primarily due to the inherent mechanical properties of the PVAc polymer and plasticisation of PVAc gluelines by moisture. (GRIGSBY ET AL. 2005) Cross-linking PVAc adhesives or the incorporation of copolymers has improved their moisture and temperature resistances compared with conventional PVAc adhesives (TOUT 2000 and GRIGSBY ET AL. 2005).

2.2.3 Adhesive additives

The properties of an adhesive resin emulsion are derived both from the polymer employed as well as the system used to emulsify the polymer in water. There are several additives necessary to stabilise and protect the emulsion and still other additives are used to adjust tack, drying time, viscosity, storage time etc. (PETRIE 2000). Adhesive additives and their main characteristics are presented in Table 5.

Components	Characteristics
Hardeners and curing agents	Combines chemically with the base resin
Catalysts	Causes the base resin to cross-link and solidify. Typically acids,
	bases, salts, sulphur compounds and peroxides
Accelerators, inhibitors, retarders	Controls curing rate, storage life, and working life
Solvents and water	Affects the consistency during adhesive manufacture and application. They must be completely evaporated prior to cure
Diluents	Diluents lowers the viscosity of an adhesive, but becomes part of the final product contrary to solvents
Thickeners and thixotropic agents	Maintains a reasonable thickness of the glueline through viscosity adjustment
Surfactants and wetting agents	Stabilises the adhesive emulsion
Extenders and fillers	Affects one or several adhesive properties and also reduces the
	concentration of other adhesive components. Common
	properties that can be modified e.g. by fillers are viscosity, shrinkage, strength, and electrical and thermal properties
Plasticisers and film formers	Plasticisers provide flexibility and/or elongation and may also
	reduce viscosity. They are, similar to diluents, non-volatile
	solvents for the base resin. Film formers lowers the glass
	transition temperature of an adhesive emulsion
Tackifiers	Besides increasing tack they also increase peel strength and
	decreases shear strength. Common tackifiers include aliphatic
	and aromatic hydrocarbons, terpenes, and esters
Antioxidants, antihydrolysis	Prolongs the service life of an adhesive
agents, stabilisers, biocides	

Table 5. Adhesive additives and their main characteristics (PETRIE 2000).

However, what was noted in the preceding chapter on paint additives applies also to adhesive additives, i.e. there are thousands of different additives that can be used in adhesive systems and many of them can influence several properties at the same time. Moreover, the boundary between additives and other adhesive components is not always very clear, which makes a classification rather arbitrary.

2.3 FILLERS, PLASTERS AND PLASTERBOARD

What is presented in the following two chapters on fillers, plasters and plasterboard is based on what is said on product information sheets and what the author knows from his own experience.

2.3.1 Fillers and plasters

Fillers and plasters are used e.g. to level interior surfaces of structures. They typically consist of 2-5 % binder that is either an organic substance, an inorganic substance, or a mixture of these, 60- 80 % inorganic filler, and 20-35 % water. The composition of fillers and plasters varies to a great extent according to their properties and purposes.

Fillers and plasters should have a strong adhesion to the substrate, small drying and curing shrinkage, no visible cracks or dents, durability against static and dynamic loading, and resistance against chemicals and water. They should also be grindable after curing.

Adhesion is very important to the performance of a plaster. Factors influencing its adhesion are filler and plaster composition and pre-treatment, smoothness, cleanliness, and strength of the substrate. The adhesion can be improved by using a primer. A primer contains usually a mixture of organic substances, which have good wetting and adhering properties.

A filler and plaster shrinks during curing. This causes two kinds of damage: cracking and denting. The tendency of a filler or plaster to shrink is dependent on temperature and humidity conditions during curing and of the water amount that is added to the powdery product. A surplus of water improves workability, but increases shrinkage leading to cracking. Cracks may damage the coating of a plastered surface.

2.3.2 Plasterboard

Plasterboard consists of a gypsum core (~93 % by weight) covered on both sides by a gypsum board liner (~6 % by weight). The additional one weight-percentage consists of moisture, starch, and other additives. The gypsum normally used originates from natural gypsum stone, recycled gypsum, and/or industrial gypsum gained from the purification of combustion gases. The gypsum that is gained from the purification of combustion gases is even purer than the one gained from the gypsum stone. Plasterboard is fabricated by mixing water, additives and calcined gypsum (flower of gypsum) and then pressing the mixture between two gypsum board liners. The liners overlap each other in a joint, which is glued together.

3 EMISSIONS FROM MATERIALS AND STRUCTURES

Research conducted for more than twenty years indicates that indoor air pollution in nonindustrial buildings is affecting human comfort, health and productivity. (WHO 1983, NORBÄCK ET AL. 1990, SAMET 1990, BERGLUND ET AL. 1992, WARGOCKI ET AL. 1999, WARGOCKI ET AL. 2002) Of the different physical, chemical, and biological factors that occur in indoor air, volatile organic compounds, VOCs, have been shown to cause general discomfort, strong odour, irritation of eyes and throat, increased headache, and drowsiness. (MøLHAVE ET AL. 1986, OTTO ET AL. 1990, MøLHAVE 1991, KJÆRGAARD ET AL. 1991, JOHNSEN ET AL. 1991, HUDNELL ET AL. 1992, NIELSEN ET AL. 1997, WIESLANDER ET AL. 1997, KNUDSEN ET AL. 1999, VILLBERG ET AL. 2004)

There are a number of factors influencing the room air concentration of contaminants, which in turn are affected by long-term emission characteristics of materials. These factors include (ELLACOTT & REED 1999 taken from SPARKS 1992, SOWA 1994, WOLKOFF 1995):

- A) Changes that occur during the course of the emission process due possibly to secondary chemical reactions between VOCs and other air pollutants (e.g. ozone) and adsorption/desorption effects.
- B) Multiple emissions from the same material.
- C) Delay in reaching equilibrium concentration gradients within the material.
- D) Incomplete hardening/curing of a material applied to a surface.
- E) Dilution and flushing of indoor air.
- F) Pre-conditioning of a substrate or material. This may prove to be critical and is often overlooked.
- G) Material inhomogeneity caused by varying thicknesses of a material.
- H) Ambient temperature and humidity.
- I) Possible vapour pressure effects during initial burst of VOC from wet and unconditioned materials.
- J) Human activity patterns, i.e. use of consumer products and location of occupants occupants produce bio-effluents including aldehydes, ketones, and esters.

There are several factors that may have a significant impact on the emission rate of an organic vapour. These include the characteristic source strength of the product, product exposure to various temperatures and humidities, concentration of the organic vapour in the indoor environment, and product age. One aspect of organic sources that has a major impact on emission rates is the generation process of the organic vapour. Possible generation mechanisms influencing emission rates include chemical decomposition of the building material to produce the pollutant, off-gassing of a contaminant in the building material, and evaporation of the organic vapour due to less than equilibrium vapour pressure over the solid or liquid material. Examples of rate-limiting steps in the emission process include: (1) organic vapour production, (2) transport through the bulk phase, (3) transport through a physical barrier, or (4) diffusional transport from the building material into the room air.

Readily measured factors that might affect these steps include temperature, humidity, barrier thickness and permeation rates, face velocities, and room concentration of the organic pollutant. (HAWTHORNE & MATTHEWS 1987)

Thus, material emissions are the result of several processes, which are governed by material specific characteristics and ambient conditions. The interaction of the different processes commonly occurs, but the effects of these interactions on material emissions are somewhat complex. The emission processes and factors governing them will be dealt with in the following.

3.1 EVAPORATION AND DIFFUSION

Evidence from a variety of building investigations and systematic studies suggests that many of the materials used in buildings, either as structural components like floors and walls or as furnishings, are the main source of indoor air pollution. This is due to their large surface area and their permanent exposure to indoor air. The emission rates of indoor contaminants are effected not only by the vaporisable constituents and their concentration and distribution, but also by humidity, surface velocity, air exchange rate, temperature, substrate, and material loading factors. (BERGE ET AL. 1980, TICHENOR & MASON 1988, TICHENOR & GUO 1991, TUCKER 1991, ZHANG & HAGHIGHAT 1997)

3.1.1 Molecular migration

The lower the boiling point the greater is the vapour pressure of an agent and, thus, the higher is its volatility (emission rate). Since the vapour pressure difference between the evaporating molecule and the surrounding air is the driving force for evaporation, the emission rate of a compound increases with decreasing concentration (increased vapour pressure difference) due to dilution and flushing. A decrease in the concentration is caused e.g. by a rise in the air exchange rate. Thus, higher air exchange rates cause higher emission rates. (SOLLINGER ET AL. 1993, GUNNARSEN 1997) Material loading has the opposite effect. As the loading (area of material/volume of room, m²/m³) is increased the concentration increases, and the vapour pressure difference decreases decreasing the emission rate. (TICHENOR & GUO 1991, SOLLINGER ET AL. 1993, JAYJOCK 1994)

The effect of sinks in the indoor environment can also affect the emission rate. As compounds are emitted, they may adsorb to other materials, i.e. sinks. Such adsorption causes a decrease in concentration analogous to an increase in the air exchange rate and occurs as long as the concentration of a specific compound in the air is higher than the gas phase concentration within a material. Re-emission from the sink can also occur when the concentration in the air decreases reversing the concentration difference between the initially

adsorbing material and the surrounding air. (TICHENOR & GUO 1991, NERETNIEKS ET AL. 1993) For similar compounds, the less volatile the compound, the more severe the sink effect (Chang & Guo 1992, Colombo et al. 1993, Chang & Guo 1994, Popa & Haghighat 2003). For instance, semi-volatile organic compounds, SVOCs, which are defined as compounds with vapour pressures from approximately 10⁻² to 10⁻⁸ kPa and a boiling-point range of 240-260 to 380-400 °C at normal ambient temperatures (WHO 1989), have strong sink effects because of their ability to adsorb to surfaces. They exist to a high degree in the condensed phase. The sink strength of materials also increases with increasing polar forces of the sink or the adsorbed species (COLOMBO ET AL. 1993, CHANG ET AL. 1998). COX ET AL. (2001) further noted that sorbed water molecules, water being a strongly polar compound, increase the total uptake of VOC. This may be attributed to at least two causes according to the authors. Firstly, water can exist in substrates in bound or bulk form causing VOCs to dissolve into it. Secondly, water could, in case of a polymer substrate such as vinyl flooring, disrupt the dipole-dipole interactions between relatively polar polymer chains further plasticising the polymer. Additional plastification would increase the void volume within the polymer matrix possibly increasing its sorptive capacity. Thirdly, from a thermodynamic viewpoint, the system free energy of the substrate/solute system could lower the chemical potential of each sorbed species, since the free energy of a mixture of solutes is lower than for a single solute. The overall system equilibrium would then shift to minimise the total substrate/gas-system free energy. The equilibrium shift due to solute interactions would result in more molecules sorbing to the substrate.

The comments presented above regarding adsorption apply also to the desorption process from a sink. TICHENOR ET AL. (1991) noted that different sinks desorb adsorbed compounds at a different rate depending on the characteristics of the sink. There was no significant difference in the desorption rates between the two compounds studied, ethylbenzene and tetrachloroethylene, even though their adsorption rates differed depending on the sink material. JØRGENSEN & BJØRSETH (1999) also studied the sorption of organic compounds using two different VOCs, α -pinene and toluene, and two different sinks, wool and nylon carpet. The authors concentrated on the desorption phase only, because according to earlier experiments (JØRGENSEN ET AL. 1999) the uncertainty of desorption phase experiments is lower than the uncertainty of adsorption phase experiments. This is due to the dosing system used. They noted that the presence of two emitting compounds at the same time gives higher sorption compared to one compound at a time. This indicates that the desorbed masses of individual compounds are additive. Also the combination of two materials at the same time leads to higher sorption than one single material.

3.1.2 Rate of emission

The rate of emission from liquid materials is usually rapid in the beginning and reaches a peak after a short period of time (typically 0.5 - 3 h), which indicates that the emission is

mainly evaporative. The emission rate also declines rapidly and some organic solvent-borne materials decline to a very low emission rate within hours of testing, whereas others, e.g. some water-borne types of paint, decline to a "steady" but still significant level in 1 - 5 days. (TICHENOR & GUO 1991, CHANG & GUO 1992, YU & CRUMP 1998, HUANG & HAGHIGHAT 2002, LEE ET AL. 2003)

In cases where the emission of a compound is not purely evaporative, diffusion of the compound within the source becomes important and starts to control the emission rate. This is the case for e.g. dry solid materials. When the diffusion of a compound to the surface of the source is slower than the evaporation rate, the rate of emission will be reduced. (TICHENOR & GUO 1991, GUNNARSEN 1997) The physical properties, i.e. size and structure (e.g. polar charges) of the migrating molecule, the structure of the material, and temperature and relative humidity, influence molecular migration within a material. The rate of diffusion of a specific compound can be expressed as a function of the diffusion coefficient, or diffusivity. The diffusivity of an individual compound in a mixture is also affected by the composition of the mixture and by any inhomogeneity in the material itself (YU & CRUMP 1998).

3.1.3 Factors affecting the emission process

CLAUSEN (1993) studied the influence of film thickness on the emission of volatile and semivolatile organic compounds from a waterborne paint in a climate chamber. He used three different film thicknesses and the paint he used was applied to tin-plated steel sheets. The results showed that the emission rates decay slower with increasing film thickness. The emission of semi-volatile and volatile organic compounds from a waterborne paint film prior to film formation may be regarded as being controlled by evaporation, i.e. limited by diffusion through a boundary layer above the paint film. The emission after dry film formation might be controlled by either evaporation or by internal diffusion within the paint film. This depends on the emitted compounds and the interactions that occur between them. A thick film of a given paint has a larger VOC and semi-VOC mass than a thin film, but they have the same surface concentration and, thus, also the same characteristic equilibrium vapour pressure (TICHENOR ET AL. 1993). Assuming no influence of the chamber VOC and semi-VOC concentration they will have identical initial emission rates, but the thick film emission decays slower because of the larger VOC and semi-VOC mass. An uneven paint film surface can have very different film thicknesses locally, but the evaporation controlled emission rate decay is the same all over the surface because of the homogenous concentration at the surface of the paint film. This is not the case for the diffusion-controlled emission where the areas with thin film have a faster decrease of VOCs and SVOCs content than areas with thick film. The emission can not be considered as the sum of several independent sources because compounds may diffuse from the thick film to the thin film areas.

LEE ET AL. (2003) studied the influence of film thickness on the VOC emissions from a finishing varnish in a test chamber. Three different film thicknesses were examined. The results showed that the maximum concentration of VOCs in the chamber air increased with increasing film thickness. An increase in the film thickness also caused a decrease in the emission decay; a finding similar to that of Clausen presented above. The authors also noted

that different compounds have different peak concentrations and are depleted at different,

compound specific, emission rates.

WOLKOFF (1995) also stated that the emission process is generally controlled by either evaporation from the building material surface or by internal diffusion within the material itself or a combination thereof. The distinction between the two mechanisms should be reflected to some extent in their dependence on the air velocity and possibly the concentration in the surroundings. Individual VOCs are released, usually, in quite different amounts and with different time dependencies, i.e. different emission rates and different emission mechanisms, the latter may even change during the decay period. STROMBERG & WIND (1968) reached the same conclusion in their study on the evaporation patterns of mixed solvents in water thinnable resins. Thus, the concentration/time profiles may change drastically in particular during the early stage of the emission process (WOLKOFF 1998).

GUO & MURRAY (2000) compared the time dependence of TVOC concentration of a solventsoluble paint and a water-soluble paint and concluded that the concentration of the solventsoluble paint decreased with an increase in the air exchange rate. The TVOC concentration of the water-soluble paint was initially higher for the high air exchange rate (4.42 h⁻¹), but after about six hours, the TVOC concentration was higher for the low air exchange rate (0.885 h⁻¹). This result is similar to the results of the study by TICHENOR & MASON (1988), in which VOC emissions from wet materials under different air exchange rates were evaluated. Tichenor and Mason also noted that within the mixture of organic compounds emitted from a given source, the difference in emission factors for different compounds might be quite large. HANSEN (1974) further stated that different compounds evaporate largely independently from each other.

ZHANG & HAGHIGHAT (1997) studied the impact of surface air movement (air velocity and turbulent fluctuations) on the emissions from a polyurethane plastic finish varnish and a common water-based acrylic paint using a small velocity-controlled test chamber. The emission rates for the varnish decreased rapidly with time during the first few hours. The emission rates were initially higher for a high surface air velocity (v = 0.113 m/s); after 10-15 hours, the rates were higher for the low surface air velocity (v = 0.054 m/s). Thus, the higher surface air velocity caused the material emission to deplete faster. This result is consistent with the findings by KORNUM (1980) who studied the drying of coating films. The result is also consistent with both the flow boundary layer theory and the mass conservation theory. The effects of turbulent fluctuation levels on emission rates from the varnish were smaller compared to that of the surface air velocity; and unlike surface air velocity, the turbulent

fluctuation levels and material emission rates have an inversely proportional relationship. The emission rates and their decay rates of the paint during the initial stage were much smaller than that of varnish; and the emission rates remained higher for the high surface air velocity during the 50-hour experimental period. The effects of turbulent fluctuation on the paint emissions were not obvious due to its weaker effect on boundary layer shear stress. The different behaviour of the VOC emissions from the paint and varnish may be due to the high water content and the relatively low content of VOCs in the paint according to the authors. The release of water vapour from the paint sample impedes the early release of VOCs because water prevents the VOCs in the paint sample from being released due to hydrogen bonding.

VAN NETTEN ET AL. (1989) came to a similar conclusion as Zhang and Haghighat in their studies on temperature and humidity dependence of formaldehyde release from building materials. They stated that the rate of release of formaldehyde from a material is a combination of various actions. These include physical and chemical actions on formaldehyde sources including the formaldehyde that is physically absorbed onto the surface of the material, absorbed by the moisture held by the material, and chemically bound either in a free form or in a polymerised form. The release from different sources is further influenced by, among others, concentration gradient, porosity, humidity, differential geometric configurations, and the bulk of the material under investigation. In order to obtain an index that compares the relative emissions from a material an average release rate can be calculated. Release rate coefficients based on surface area were noted to be a better measure of potential release than release rate coefficients based on weight (PICKRELL ET AL. 1983).

KIRCHNER ET AL. (1995) measured the specific surface of some of the materials they used in a chamber study on the adsorption/desorption of 2-butoxyethanol on indoor surface materials. The measured specific surface (surface readily available for adsorption) of the acoustic tile studied was about 10 times higher than that of a carpet backing (2.3 and 0.28 m²g⁻¹). This was also confirmed by the visual inspection of these two materials by electronic microscopy where the compacted rock-wool fibre structure of the acoustic tile appeared much more favourable for adsorption than the alveolar structure of the carpet latex backing. Therefore, the microstructural characterisation of the acoustic tile and of the carpet was in good agreement with the adsorption experiments. JØRGENSEN ET AL. (1999) discussed the influence of specific surface area on the adsorption capacity of different materials, and speculated that the adsorption capacity of a material increases with increasing surface area.

TOPP ET AL. (2001) studied the emission from building materials in ventilated rooms. They used numerical calculations by computational fluid dynamics (CFD) and full-scale laboratory experiments and found that material emissions are a strong function of air-change rate, local air velocity, and local turbulence, since the mass transfer coefficient increases in proportion to these parameters. They also stated that the mass transfer coefficient increases in proportion to the velocity when the emission is controlled by evaporation and is unaffected by the

velocity when the emission is controlled by diffusion. On the other hand, the emission always involves mass transfer across the boundary layer along the surface, which is affected by the surface air velocity and turbulence. This was noted also by Lundgren and colleagues who stated that for the majority of solid materials the rate of diffusion within the material determines the rate of emission when a reasonable air circulation above the material surface is maintained (LUNDGREN ET AL. 1999).

3.1.4 Substrate effects

GUO & MURRAY (2000) analysed and characterised emissions from both organic solventsoluble and water-soluble paints. They noted that when comparing emissions rates obtained in chamber studies to real indoor environments the possibility of changed emission characteristics from typical substrates has to be considered.

CHANG ET AL. (1997) studied the effect of two different substrates, a stainless steel plate and a gypsum board, on VOC emissions from a latex paint in a test chamber. The test results showed significant differences in emission rates between the VOCs released from the two substrates. After the first two weeks, over 90 % of the VOCs were emitted from the stainless steel plate, but less than 20 % had left the gypsum board. Similar results were obtained by SPARKS ET AL. (1999) who used the same substrate materials as Chang and his colleagues had used. The dominant species also changed when stainless steel was replaced with gypsum board (CHANG ET AL. 1997). WOLKOFF (1998) reached a similar conclusion in his study on the influence of air velocity, temperature, relative humidity and type of gas (air vs. nitrogen) on the chemical emission from different building products. ROSÉN & ANDERSSON (1990), on the other hand, noticed only a minor influence of the substrate on solvent emission from a newly applied paint. The substrates they studied included glass and untreated and previously treated beech-veneer plywood. FORTMANN ET AL. (1998) reached a similar conclusion as Rosén and Andersson. Both studies, however, concentrated on the emissions from alkyd paints.

The development of low emitting products relies on a better understanding of the pollutant transfer at the air/material interface. This transfer will be highly dependent on the type of pollutants and materials (gas/material affinity), but also on other parameters such as the microphysical shape of the materials (porosity, roughness) and the environmental conditions (temperature, humidity) (KIRCHNER ET AL. 1995).

3.2 COMPUTATIONAL MODELLING

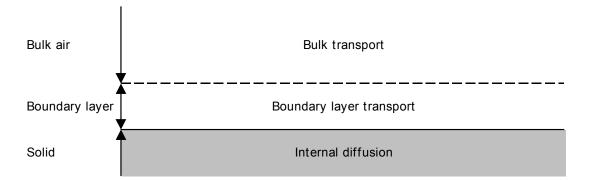
The emission of VOCs from building materials can be generally considered to stem from two major processes: evaporation (surface emission) and diffusion, as was described in the

preceding chapters. The emission process involves diffusion through the bulk material followed by surface evaporation. Depending on which of the two is the limiting process emission is often considered as either evaporative or diffusion-controlled. Emission of VOCs from freshly applied liquid films is typically evaporative although, after an initial period of evaporation, it becomes diffusion-controlled while the emission from carpets and other dry materials is mainly controlled by internal diffusion. These two transport processes will be dealt with mathematically in the following chapters.

The emission model to be presented is based on physical phenomena, because a model that has a physical basis also provides insight into the controlling mechanisms. The applicability of a model to the results achieved in this study will be discussed in Chapter 8.

3.2.1 Surface emission

For freshly applied liquid films, e.g. paint and lacquer, the emission is generally controlled by evaporation from the surface as the drying process progresses. Resistance in the gas phase limits the mass transfer. Thus, the emission process can be described in terms of a convective mass transfer coefficient and the difference between the concentration at the surface of the material and the bulk air


$$E_w = k_c \left(c_w - c_\infty \right) \qquad , \qquad (2)$$

where E_w is the emission rate (kg/m²s), k_c is the convective mass transfer coefficient (m/s), c_w is the concentration at the surface (kg/m³) and c_∞ is the concentration in the bulk air (kg/m³). (TOPP ET AL. 2001)

In liquids the evaporation of a compound is the dominating drying process. Analogously, the vapour pressure of the compounds in a liquid film, such as a freshly applied paint, and of the overlying air, is proportional to their concentrations. The mass transfer coefficient is, on the other hand, dependent upon the environment in which the process is taking place, including the surface air velocity and turbulence, surface characteristics, and the properties of the overlying air, i.e. its temperature and relative humidity. (HAGHIGHAT & DE BELLIS 1998)

Turbulence decreases towards a surface, which has led to the concept of a laminar (or diffusion) boundary layer, Figure 1. No definite thickness can be assigned to such a layer because turbulence changes gradually. Nevertheless, in a very thin layer close to the surface, the air is moving slowly and can be considered stagnant. Throughout this layer, flow normal to the surface corresponds to mass transfer by molecular diffusion, and the velocity gradient is constant. Further away from the surface where the flow becomes turbulent, the velocity gradient is practically zeroed, and the emission is a combined process of both molecular and turbulent diffusion. The thickness of the diffusion boundary layer, δ_D , is defined so that the

layer offers the same resistance to diffusion as encountered in the combined process of molecular and turbulent diffusion. (BEEK ET AL. 1999, TOPP ET AL. 2001) There is a retardation of the fluid particle velocity in the vicinity of a surface. Thus, adjoining fluid particle layers act to retard the motion of the next layer until at a distance $y = \delta_D$ from the surface, the effect becomes negligible. The retardation of fluid motion is associated with shear stresses acting in planes that are parallel to the fluid velocity. Turbulent fluctuations do have an effect on emission rates by affecting the surface shear stress, but the relationship between them is weak. In most cases shear stress is far more affected by surface air velocity and surface roughness than turbulent fluctuation. Thus, increasing air velocities reduce the laminar boundary layer thickness, thereby increasing the mass transfer rate. (BEEK ET AL. 1999, ZHANG & HAGHIGHAT 1997)

Figure 1. Processes involved in the emission of pollutants from building materials and furnishings. (TOPP ET AL. 2001)

Evaluating Fick's first law at $y = \delta_D$ yields

$$J = -D \frac{\partial c}{\partial y} \qquad , \qquad (3)$$

$$E_w = \frac{D}{\delta_D} (c_w - c_\infty) \qquad , \qquad (4)$$

where J is the species flux (kg/m²s), D is the molecular diffusion coefficient (m²/s), c is the concentration (kg/m³), y is the co-ordinate (m), and δ_D is the thickness of the diffusion boundary layer (m). (TOPP ET AL. 2001)

Consequently, the mass transfer coefficient can be written in terms of the diffusion coefficient and the diffusion boundary layer thickness

$$k_c = \frac{D}{\delta_D} \tag{5}$$

Thus, the mass transfer coefficient is dependent on both the local airflow parameters and the source. (TOPP ET AL. 2001)

3.2.2 Internal diffusion

Most emission processes become diffusion controlled after an initial period of evaporative emission. Different compound phases have to be taken into account, as a compound undergoes a change in phase after crossing the physical barrier at the surface-air interface by adsorption or desorption. In the solid material, a compound assumes a solid or adsorbed phase and, in the air, a compound assumes a vapour or gas phase. (TOPP ET AL. 2001)

The fundamental equations in mass transfer within a material are Fick's laws of diffusion. Assuming diffusion in only one direction, Fick's first law, expressing direct proportionality between the concentration gradient and the species flux, is given by Equation 3.

Fick's second law expresses conservation of species

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial y^2} \qquad , \qquad (6)$$

where *t* is the time (s).

Since the VOC concentration in dry materials is usually low, the diffusion coefficient can be assumed to be independent of concentration. Nevertheless, it is a function of pressure and temperature. Each compound has its own diffusion coefficient, which is dependent upon its molecular weight, molecular volume, the characteristics of the material within which the diffusion is occurring, and ambient conditions. (BIRD ET AL. 2002)

At steady state, the rate of internal diffusion balances the emission from the surface and there is, thus, a relation between the compound concentration in the solid phase and the gas-phase. Under isothermal conditions this relation is referred to as an adsorption isotherm. The simplest relation is the linear model

$$c_s = k_l c_a \qquad , \qquad (7)$$

where c_s is the solid-phase concentration (kg/m³), k_l is the linear partition coefficient (-) and c_a is the gas-phase concentration (kg/m³). (TOPP ET AL. 2001)

3.2.3 Model development

What has been discussed in the foregoing will be converted into mathematical expressions in the following. Since most of the tests in this study consist of an initial rapid, evaporation controlled emission followed by a slower diffusion controlled emission, this sequence will be maintained also in the discussion and model development presented in the following.

3.2.3.1 Surface evaporation

TICHENOR ET AL. (1993) developed a mass transfer model for surface coatings, i.e. so called wet materials, whose emissions are controlled by evaporation from the surface. This model, called the VB-model, is based on Equation 4. The model can be applied to both individual compounds or mixed solvents with the following characteristics:

- 1) All freshly applied liquid surfaces have the same equilibrium vapour pressure (expressed as concentration), c_v which is characteristic of that product. c_v is independent of the amount of coating applied.
- 2) As the coated surface ages, the vapour pressures of the remaining VOC gradually decrease. The vapour pressure during the ageing period, c_w is assumed to be proportional to the mass of VOC left, $m. c_w = c_v(m/m_0)$, where m_0 is the initial mass of VOC applied (mg/m²).
- 3) The average gas-phase diffusivity, D_a , of solvent molecules can be represented by the diffusivity of the most abundant component in the solvent mixture and can be obtained e.g. through theoretical calculations.

The emission rate E_w in the VB-model is thus expressed as:

$$E_w = k_c \left(c_v \left(m/m_0 \right) - c_\infty \right) \tag{8}$$

GUO ET AL. (1999) estimated the rate of emissions from solvent-based indoor coating materials based on the knowledge of product formulation. They noted that the decay rate of individual VOC-compounds is related to their vapour pressure. This result was consistent with earlier findings by STROMBERG & WIND (1968), SULLIVAN (1975), and CHANG & GUO (1994).

GUO ET AL. (1998) developed a new model based on the VB-model. They estimated the emission of individual compounds. The result from their work is called the VBX-model, and it is presented in the following paragraphs.

The basic mass transfer process for an individual compound is the same as that for TVOC presented in the VB-model. Thus the mass transfer equation for a single component is:

$$E_{wi} = k_{ci} \left(c_{pi} - c_i \right) \qquad , \qquad (9)$$

where subscript *i* represents component *i* and c_{pi} the partial pressure for i. According to Raoult's law, the partial pressure for an individual component in a solvent mixture is determined by:

$$c_{pi} = c_{vi} x_i \qquad , \qquad (10)$$

where c_{vi} is the vapour pressure for the pure compound *i* (kg/m³) and x_i is the dimensionless molar fraction of *i* in the solvent mixture. By definition,

$$x_i = \left(\frac{\prod_i}{\prod}\right) \qquad , \qquad (11)$$

where \prod_i and \prod are the molar amounts in the source for component *i* and TVOC, respectively, i.e.

$$\prod_i = m_i / M_i \qquad , \qquad (12)$$

$$\prod = \Sigma \prod_i \qquad , \qquad (13)$$

where m_i is the amount of *i* remaining in the (kg/m²) and M_i is the molecular weight of *i* (g/mol). As the source emits, both \prod_i and \prod change. Substituting Equations (10) and (11) into (9) gives:

$$E_{wi} = k_{ci} \left(c_{vi} \left(\frac{\prod_i}{\prod} \right) - c_i \right)$$
(14)

Determining \prod by summing \prod_i for all the individual components is a challenge in analytical chemistry and makes the model very complicated. The authors propose to use the molecular weight of the most dominant species in the solvent mixture to approximate the average molecular weight of the total mixture as was also proposed for the VB-model. (GUO ET AL. 1998)

3.2.3.2 Internal diffusion

The mathematical expression for internal diffusion presented in the following has been elaborated by LITTLE ET AL. (1994) and COX ET AL. (2002). Fick's second law, Equation 6, is the governing equation describing one-dimensional transient diffusion. The initial assumption is that the VOCs are evenly distributed throughout the sample. An additional assumption is that the flux out of the sample occurs only through one plane, i.e. the bottom and the edges of the sample are sealed. A second flux condition is imposed through a mass balance of VOCs in the chamber air. This can be expressed by three terms: the accumulation of VOC in the chamber air, the mass flux diffusing out of the sample, and the VOC leaving the chamber in the out-flowing air steam. This can be expressed as

$$\frac{\partial c_a}{\partial t} V = -DA \left. \frac{\partial c_s}{\partial y} \right|_{y=L} - Q c_a \qquad , \qquad (15)$$

where c_a is the concentration of VOC in the chamber air, Q is the volymetric flow rate of air through the chamber, V is the volume of air in the chamber, and A is the sample area. Equilibrium is assumed to exist between the bulk and surface concentration of the sample and also between the surface concentration of the sample and the chamber air. This results in Equation 16, the assumption of a linear relation between the surface and the gas phase concentration of a specific VOC. Combining Equations 15 and 16 yields the appropriate boundary condition, Equation 17.

$$c_w = k_l c_a \tag{16}$$

$$\left(\frac{V}{A \cdot k_c} \frac{\partial c}{\partial t}\Big|_{y=L} + D \frac{\partial c}{\partial t}\Big|_{y=L} + \left(\frac{Q}{A \cdot k_c}\right)c\Big|_{y=L} = 0 \qquad .$$
(17)

A solution to Equation 17 considering the initial and boundary conditions given is

$$c(y,t) = 2 c_0 \sum_{n=1}^{\infty} \left\{ \frac{\exp(-Dq_n^2 t)(h - kq_n^2)\cos(q_n y)}{\left[L(h - kq_n^2)^2 + q_n^2(L + k) + h\right]\cos(q_n L)} \right\} , \qquad (18)$$

where

$$h = \frac{Q}{ADk_c} \qquad , \qquad (19)$$

$$k = \frac{V}{Ak_c} \qquad , \qquad (20)$$

and the q_n values are the roots of

$$q_n \tan(q_n L) = h - kq_n^2 \qquad . \tag{21}$$

Equation 18 gives the VOC concentration in a sample as a function of distance from the base of the sample and time. An expression for the mass emission rate, E_v , may be derived from that equation according to (COX ET AL. 2002)

$$E_{v} = AJ(y,t)\Big|_{y=L} = -AD \frac{\partial c(y,t)}{\partial y}\Big|_{y=L}$$
(22)

The VOC concentration in the air is obtained from the experimental results and the partition coefficient achieved according to Equation 34, which will be presented in chapter 3.2.3.5 on model parameters. Thus, the VOC concentration at the sample surface may be estimated using Equation 16.

3.2.3.3 Sinks

The models presented above do not take into account the sink effect of the test chamber walls. DUNN & TICHENOR (1988) were among the first to include a sink term in their VOC emission model. Later, TICHENOR ET AL. (1991) modelled indoor sink behaviour assuming mono-molecular adsorption for which the Langmuir isotherm can be applied. Assuming that the occupied adsorption sites are a small fraction of the total available sites, linear adsorption behaviour can be presumed. Their test results (TICHENOR ET AL. 1991) showed that the Langmuir equilibrium was applicable for adsorption at low concentrations while the desorption process showed different behaviour. Nevertheless, COX ET AL. (2002) evaluated the chamber sink effect assuming a linear and instantaneously reversible equilibrium relationship to exist between a stainless steel surface and the chamber air. This can be expressed as

$$k_s = \frac{q}{c_a} \qquad , \qquad (23)$$

where q is the adsorbed surface concentration and k_s is the surface/air partition coefficient. k_s has units of mass per surface area (A_s) /gram per volume (V). A_s is the exposed area of stainless steel within the chamber. The mass balance for VOC in the empty chamber yields

$$\frac{dq}{dt}A_s + \frac{dc_a}{dt}V = -Qc_a \qquad (24)$$

If the gas-phase concentration in the chamber air at time zero is c_{a0} , then combining Equations 23 and 24, and integrating, results in (COX ET AL. 2002)

$$\ln\left(\frac{c}{c_{a0}}\right) = -\left(\frac{Q}{V+k_s A_s}\right)t \quad . \tag{25}$$

Equation 25 can be used to determine the value of k_s from experimental data. A similar analysis may also be applied when a sample is present in the chamber. The incorporation of the adsorbed phase may be expressed simply as an increase in the chamber volume equal in magnitude to k_sA_s . This solution may be applied with Equation 20 as follows (COX ET AL. 2002):

$$k = \frac{V + k_s A_s}{Ak_c} \tag{26}$$

3.2.3.4 Relative humidity

A model that takes into account the relative humidity of the surrounding air was developed by BERGE ET AL. (1980). It was developed for modelling formaldehyde emissions in a closed system, i.e. a space without ventilation or concentration gradients in the surrounding air. The influence of temperature and relative humidity on the steady state formaldehyde concentration, C, is described as:

$$C = \frac{C_{m}}{\left[1 + A(H - H_{0})\right]e^{-E\left(\frac{1}{T} - \frac{1}{T_{0}}\right)}} , \qquad (27)$$

where, C_m is the measured formaldehyde concentration, A is a coefficient of relative humidity whose optimum value is 0.0175, H is the test relative humidity (%), H₀ is the relative humidity under standardised conditions (%), E is a coefficient of temperature whose optimum value is 9799, T is the test temperature (K) and T₀ is the temperature at standardised conditions (K). (BERGE ET AL. 1980) The standardised relative humidity is 50 % and the standardised temperature is 23° C according to ENV 13419. The temperature used in this study was 21° C during sample collection for all samples, which gives a temperature correction factor of 0.798. GODISH & ROUCH (1985) found good agreement between experimentally measured formaldehyde concentrations and the level determined using the Berge equation. Another, empirical, function was presented by DUNN & TICHENOR (1988) to apply for VOCs. It has the following expression:

$$E = -12.28 + 0.6155 T + 32.28 ACH/RH$$
, (28)

where *E* is the emission rate factor (mg/h g), *T* is the temperature (° C), *ACH* is the air change rate (h^{-1}), and *RH* is the relative humidity (%).

3.2.3.5 Model parameters

The variables that are most difficult to specify in the models presented in the foregoing sections are the initial mass of the VOC applied, the thickness of the diffusion boundary layer or alternatively the material/air partition coefficient, and the diffusion coefficient. However, the initial mass of VOC can be approximated from product formulation. Values for the partition and diffusion coefficients can be found in the literature, but the information is rather scarce. They can also be approximated according to the following equations.

In all viscous flows, the controlling parameter is the Reynolds number, which links the inertial force to the viscous force:

$$Re_L = \frac{uL}{v} \qquad , \qquad (29)$$

where Re_L is the Reynolds number (-), u is velocity (m/s), L is a characteristic length (m) and v is the kinematic viscosity (m²/s).

SPARKS ET AL. (1996) derived the correlation between the Sherwood number (Sh) and the Reynolds number (Re) from experimental data:

$$Sh = 0.33 \ Re^{2/3} \tag{30}$$

This result is very close to the expression for mass transfer during laminar flow with a stationary interface and an air-velocity, $v_x = v_{\infty}$ sufficiently far from the interface for which the following applies:

$$Sh = 0.332 \ Re^{1/2} Sc^{1/3} \qquad (31)$$

where Sc is the Schmidt number, which is the measure for the ratio between the thicknesses of the hydrodynamic and concentration boundary layers, i.e. the ratio of viscous diffusion to the diffusion of mass. (BEEK ET AL. 1999) The Schmidt number is expressed as

$$Sc = \frac{v}{D} \qquad , \qquad (32)$$

where v is the kinematic viscosity (m^2/s) and D is the mass diffusivity.

The boundary layer theory for mass transfer defines the Sherwood number as

$$Sh = \frac{k_c L}{D}$$
(33)

where L is the characteristic length of the source, i.e. the square-root of the source area (m) and D is the diffusivity of the pollutant. Combining Equation 33 with the expression for the Reynolds number, Equation 29, and the relation between the Reynolds number and the Sherwood number, Equation 30, gives an expression for the partition coefficient:

$$k_c = 0.33 D_a L_c^{-(1/3)} \left(\frac{u\rho}{\mu}\right)^{2/3}$$
, (34)

where D_a is the diffusivity of VOC in the air (m²/h), L_c is the characteristic length of the source, i.e. the square-root of the source area (m), u is the air-velocity over the source (m/h), ρ is the air density (g/m³), and μ is the viscosity of the air (g/h m). L_c and u can be obtained from the experimental set-up, ρ and μ can be found in the literature, and D_a can be calculated according to the FSG method (FULLER ET AL. 1966):

$$D_a = \frac{10^{-3} T^{1.75} \sqrt{M_r}}{p \left[V_a^{1/3} + V_{VOC}^{1/3} \right]^2} \qquad , \qquad (35)$$

where *T* is the temperature (K), $M_r = (M_a + M_{VOC})/M_aM_{VOC}$, i.e. the molecular weight of air and the specific VOC (g/mol) respectively, *p* is the pressure (atm), V_a is the molar volume of air (cm³/mol) and V_{VOC} is the molar volume of the specific VOC (cm³/mol).

MEININGHAUS ET AL. (2000b) estimated the partition coefficient for combinations of *m*xylene and *n*-octane with several indoor materials using both a micro-balance set-up and a CLIMPAQ-method. The micro-balance set-up gave a linear or almost linear relationship between gas phase concentration and adsorbed mass at steady state. This relationship gave the partition coefficient, K_p , which is dimensionless. There were some discrepancies between the results from the two test set-ups, but these were related to limitations in the micro-balance method and different experimental conditions. The limitations comprised limited sensitivity of the micro-balance, fluctuations in water levels present in the samples that may hide or vary VOC adsorption effects, and errors caused by the analytical process. In another study, MEININGHAUS ET AL. (2000a) used two CLIMPAQs to determine the effective diffusion coefficient, sorption capacities, partition coefficients, and $t_{0.25}$ -values for several different building materials using ethyl acetate and *n*-octane. The $t_{0.25}$ -value indicates the time until the concentration of a compound had dropped to one-fourth of its initial value. The partition coefficients determined from the two studies presented above are shown in Table 6.

Material	Partition coefficient, k _c		
	<i>m</i> -xylene	<i>n</i> -octane	ethyl acetate
wallpaper	1.21	0.211	-
acrylic paint on wallpaper	0.720	0.140	-
carpet (not specified)	1.028	0.226	-
carpet with SBR backing	-	0.381	0.170
PVC	0.360	0.010	-
aerated concrete	0.144	0.043/0.120	>2.614
solid concrete	-	0.031	>0.590
brick wall	-	0.016	0.129
gypsum board	0.010	0.010/0.105	0.133

Table 6. Partition coefficients for different VOCs and building materials according to MEININGHAUS ET AL. (2000a) and MEININGHAUS ET AL. (2000b).

COX ET AL. (2001) also measured the partition and diffusion coefficients for VOCs ranging from n-butanol to n-pentadecane and water vapour in vinyl flooring using a micro-balance. Their studies showed that both the material/air partition coefficients and diffusion coefficients are independent of concentration. For the four alkanes (n-decane, n-dodecane, n-tetradecane, and n-pentadecane) studied, the partition coefficient increased with increasing vapour pressure while the diffusion coefficient decreased with increasing molecular weight. This result was similar to the findings by LITTLE ET AL. (1994) and BODALAL ET AL. (2000). The simultaneous sorption of a binary mixture showed to be non-competitive, which is consistent with the linear partitioning mechanism emphasised also by Meininghaus and his colleagues mentioned before. On the other hand, HE AT AL. (2004) concluded that the diffusion coefficient decreases with increasing molecular weight, but that the partition coefficient decreases with the increase of vapour pressure. They obtained their values for the diffusion and partition coefficients by fitting existing emission data from small-scale chamber measurements through regression.

LITTLE ET AL. (1994) and BODALAL ET AL. (2000) also measured the partition and diffusion coefficients for different materials and VOCs tested based on emission results. Even though the experimental set-ups for these three studies differed, their results were similar and are presented in Table 7. The partition coefficients achieved by Meininghaus and his colleagues differ from that of the three other studies because of the different mathematical expressions used. This also makes it impossible to compare the values in Tables 6 and 7 with each other.

Table 7. Partition and diffusion coefficients for different building materials according to LITTLE ET AL. (1994), BODALAL ET AL. (2000), COX ET AL. (2001), and HE ET AL. (2004).

Experimenter / material	Partition coefficient	Diffusion coefficient
	(-)	(m²/s)
Little et al. / carpets	1 - 450,000	$6.0 \times 10^{-14} - 10.2 \times 10^{-12}$
Cox et al. / vinyl flooring	78 - 420,000	$6.7 \times 10^{-14} - 3.6 \times 10^{-12}$
Bodalal et al. / carpet, vinyl floor tile, and plywood	348 - 27,000	$8.6 \times 10^{-13} - 1.6 \times 10^{-10}$
He et al. / acoustic ceiling tile, carpet, gypsum board, orient stranded board, particle board, plywood, sub floor tile, and under pad	86 - 276,000	$1.5 \times 10^{-13} - 10.5 \times 10^{-10}$

CLAUSEN ET AL. (1993) found that, for a given product, the partition coefficient is related to the film thickness according to:

$$k_c = k_{ce}/\theta \qquad , \qquad (36)$$

$$k_c = k_{cd} / \theta^2 \qquad , \qquad (37)$$

where k_{ce} denotes evaporation-controlled emission, k_{cd} denotes diffusion-controlled emission, and θ is the film thickness (m). Equations 36 and 37 provide a way to adjust k_c when the film thickness changes. CHANG & GUO (1994) noted that, for an individual VOC in a given product, the partition coefficient can be related to its vapour pressure.

$$\frac{k_{c1}}{k_{c2}} = \frac{p_1}{p_2} \tag{38}$$

Based on what has been presented in the preceding chapters, the applicability of a deterministic model based on the mass balance in the climate chamber will be evaluated in this work.

4 INFLUENCE OF MOISTURE ON EMISSIONS

4.1 POLARITY, HYDROPHILICITY AND LIPOPHILICITY

GEHRIG ET AL. (1993) and CHANG ET AL. (1997) noted that compounds with more polar oxygen containing functional groups show lower emissions from a liner-covered gypsum plate and from a wood chip wallpaper than from a glass or stainless steel plate.

WOLKOFF ET AL. (1993) modelled the emission process from different building products using a Field and Laboratory Emission Cell (FLEC) in their tests. They observed that maximum chamber concentrations were generally reached within two hours at an air exchange rate of 342 h^{-1} for non-polar volatile organic compounds or volatile organic compounds having a low boiling point. Polar and high boiling volatile organic compounds required 25-75 hours at the lowest air exchange rate, 171 h^{-1} to reach maximum chamber concentration. According to the authors, one rationale for this result could be that the non-polar, low boiling compound establishes a concentration gradient within the material relatively faster than the more polar, high boiling volatile organic compounds.

COLOMBO ET AL. (1993) studied the adsorption of vapours of different polarity on a carpet made of nylon fibre with a SBR backing, a gypsum board, and a blown vinyl wall coating. Their experiments showed that adsorption seems to occur to at least two different sinks, i.e. adsorption sites with different rate constants in the same material. They also concluded that generally adsorption increases with the boiling point of the compounds, but that it also depends on other physicochemical properties, such as the chemical functionality of the compounds, as well as on the sorbent material. One of the main criteria for the selection of a compound for adsorption testing was the lipophilic or hydrophilic character of the compound, a feature that is more important than polarity according to their experience.

In their study on the retention capacities (RC values), i.e. how strongly a VOC is held back by a building material, for different materials MEININGHAUS ET AL. (1999) showed two evident features of the RC values, which were partly overlapping. These were: an increase of RC values, i.e. the compound is held back by the material more strongly, with increasing boiling point of the compounds, and higher RC values for hydrophilic compared to lipophilic compounds.

The highest RC values were found for the carpet and gypsum board studied, for which the differences between lipophilic and hydrophilic compounds were more pronounced. In this case, presumably the capacity of the compounds to form hydrogen bonds was the discriminating factor. An interesting difference could be noticed between the RC values of linalool and menthol. Although menthol has a higher boiling point, linalool has significantly higher RC values with the exception of gypsum board and a carpet with polyamide tuft and

polypropylene backing where the values were similar. This points to an influence of the molecular structure (linear vs. ring) or the degree of unsaturation as influencing factors according to the authors. (MEININGHAUS ET AL. 1999)

In another study MEININGHAUS ET AL. (2000b) observed different adsorption behaviours of m-xylene and n-octane on typical indoor materials under controlled relative humidity (45 %) and temperature at ambient pressure. The materials included wallpaper, carpet, acrylic paint on wallpaper, PVC, aerated concrete, gypsum board, marble, and wooden parquet. They stated that since m-xylene, in contrast to n-octane, has a weak permanent dipole, and due to the π -electrons of the aromatic structure, it can be easily polarised. Interactions between m-xylene and a material surface will therefore be based on combinations of dispersion, dipole-dipole and dipole-induced dipole interactions, whereas for n-octane only (weak) dispersion interactions will contribute.

KIRCHNER ET AL. (1995) studied the adsorption and desorption behaviour of 2-butoxyethanol on six different building materials in a chamber. They noticed that since 2-butoxyethanol is miscible in water, increasing the liquid water content in the chamber would tend to lower its gas-phase concentration and/or its retention efficiency on the Tenax tubes. Therefore they would rather privilege a kind of "liquid water content effect" (in the chamber and/or the adsorbent sampling tubes) than an "adsorption on the walls effect" to explain their observed chamber sink, i.e. adsorption of volatile compounds on the chamber walls.

4.2 THE INFLUENCE OF MOISTURE ON THE SORPTION OF ORGANIC COMPOUNDS

DUNN & TICHENOR (1988) observed in their study where they modelled chamber sink-effects mathematically that the air change rate of the chamber must be adjusted to compensate for the increasing relative humidity in order to maintain a constant emission rate factor. Increasing the air change rate will increase the emission rate factor more rapidly at a low relative humidity than at a high relative humidity. Increasing relative humidity will, on the other hand, offset the effect of increasing the air change rate, particularly at high air change values. The authors speculated that the reason for the noted effect was that the increasing humidity might have conditioned the adsorptive sites in their test chamber.

GOSS & EISENREICH (1996) studied the influence of relative humidity on the adsorption equilibrium of VOCs from the gas phase onto different minerals and a mineral mixture. They found an exponential decrease of the adsorption coefficients (weaker adsorption) of all tested compounds which included alkanes, aromatic and chloroaromatic compounds, alcohols, ketones, and ethers, between 30 % and 90 % RH. Below 30 %, the influence of the relative humidity was even stronger. They hypothesised, based on this and also their earlier studies (Goss 1992 and 1993), that this result is valid for all minerals in general. They also stated

that the extrapolated adsorption coefficients at 100% RH agrees with those reported for a bulk water surface. At close to 100% RH, the adsorbed water film apparently was thick enough to prevent influence of the mineral surface on adsorption. They also noticed that the adsorption of organic vapours to a mixture of minerals was equal to the sum of the contributions of the single minerals.

The sorption of organic vapours to mineral surfaces may generally occur by three different mechanisms according to PENNELL ET AL. (1992). These are: adsorption from the vapour phase to the pure mineral surface, adsorption on the surface of a water film that is adsorbed on the mineral, or dissolution into an adsorbed water film. The relative importance of these different sorption mechanisms varies with varying humidity. Adsorption at the interface between the mineral and an adsorbed water film as another sorption mechanism can be ruled out since non-polar and most polar organic compounds cannot effectively compete with water for adsorption sites on a pure mineral surface. However, organic matter usually dominates the sorption of organic compounds from the aqueous phase.

The sorbent can affect the adsorption equilibrium in two ways: by the number of available adsorption sites, which is proportional to the specific surface area and linearly related to the adsorption coefficient, and by the affinity that an adsorption site has for the adsorbate. (GOSS & EISENREICH 1996, RUIZ ET AL. 1998) Thus, the actual surface area available for adsorption of any given compound depends on whether the adsorbate molecule can reach the adsorbing sites. The larger the adsorbate molecule relative to the pore size of the adsorbate, the less adsorption is expected to occur at any given relative vapour pressure. (AMALI ET AL. 1994)

GOSS & EISENREICH (1996) also concluded that the adsorption of alkanes is dominated by dispersion interactions (induced dipole interactions with the surface are neglected) and can thus be used to characterise the dispersive component of the surface free energy of the adsorbents. The adsorption interactions of the aromatic compounds are also dominated by dispersion forces, with hydrogen bonds and dipole interactions (where it applies) being of less importance. The oxygen-containing carbohydrates show a stronger deviation from this order. Their adsorption is dominated by the formation of hydrogen bonds with the hydrated surface. RUIZ ET AL. (1998) reached a similar conclusion and stated further that whilst organic compounds compete with water molecules for adsorption sites, due to the strong dipole interactions of the polar water molecules, they displace the non-polar organic molecules such as aliphatic and aromatic hydrocarbons. In the case of polar compounds, the interactions with the adsorption is significant only at low VOC concentrations.

MEININGHAUS ET AL. (2000a) studied the sorption and diffusion of volatile organic compounds in different building materials. They observed large differences in the sorption capacities for n-octane and ethyl acetate especially for different concrete samples. They hypothesised that this was attributed to the ability to form hydrogen bonds, because ethyl

acetate, in contrast to octane, can act as a hydrogen bond base via the oxygen of its ester group. Additionally, the presence of pores and capillaries could be an important parameter according to the authors. At 45% RH, water condensation may take place in the pores. Henry's law constants are a measure for the solubility of a species in water. For *n*-octane and ethyl acetate they differ over several orders of magnitude being 3×10^{-4} M/atm and 5.9-7.4 M/atm, respectively. The solubility of a compound in capillary-condensed water in materials could therefore explain different sorption behaviours. (They also studied whether hydrolysis would explain the differences in the sorption behaviour of *n*-octane and ethyl acetate, and concluded that the hydrolysis reaction does not contribute to the sink effect.)

COX ET AL. (2001) found in their study on the partition and diffusion coefficients for a selection of VOCs and water vapour in a vinyl flooring that water vapour is rapidly absorbed in the flooring compared with the other compounds. It reached equilibrium after about one hour while n-dodecane required about 25 hours and phenol required about 60 hours to reach equilibrium. When the authors compared the individual uptake curves for water vapour and phenol to the curve for their binary system, there was no observable difference in the overall uptake until about three hours. After this, the vinyl flooring specimen exposed to the two-component gas stream took up more mass than would be expected if the sorption processes were completely independent. Similar results were obtained for the n-dodecane and water vapour system. The test results for both systems suggested that sorbed water molecules increase the total uptake of VOCs.

The apparent increase in sorption capacity of VOCs in vinyl flooring in the presence of water may be attributed to several causes according to the authors. Firstly, water can exist in polymers in bound or bulk form (SAMMON ET AL. 1998). Consequently, VOCs could dissolve into bulk water that may be present in the pores of the vinyl flooring. However, the relatively small vinyl flooring/water vapour partition coefficient suggests that little bulk water is present in the vinyl flooring. Even if all the water in the vinyl flooring at equilibrium was in bulk form, calculations using Henry's law constants for phenol and n-dodecane show that the VOC mass absorbed into the bulk water would be small compared to the apparent increase in sorption capacity of the vinyl flooring in the presence of water vapour. Therefore, dissolution in water alone can not account for the observed increase in sorption capacity.

Another possible mechanism is that bound water molecules could disrupt the dipole-dipole interactions between the relatively polar PVC chains effectively further plasticising the PVC in the vinyl flooring (TSUKRUK ET AL. 2000). Additional plastification would increase the void volume within the PVC matrix, possibly increasing its sorptive capacity.

From a thermodynamic viewpoint, the free energy of the vinyl flooring/solute system is lower for the mixture of solutes than for a single solute. System free energy is the sum of the chemical potential of each species present in the system. Molecular interactions between solute species sorbed to the vinyl flooring could lower the chemical potential of each sorbed species. Overall system equilibrium would then shift to total gas/solid system free energy. The equilibrium shift due to solute interactions would result in more molecules sorbed to the vinyl flooring. The higher apparent sorptive capacity of the vinyl flooring/phenol/water system compared to the vinyl flooring/n-dodecane/water system could result from greater affinity between phenol and water. Phenol and water have similar polarities, which may create a lower free energy state compared to the vinyl flooring/water/dodecane system. (TSUKRUK ET AL. 2000)

4.3 THE INFLUENCE OF MOISTURE ON EMISSIONS

Moisture can enable, promote, or change chemical reactions in building materials. Moisture also enables the growth of moulds and other micro-organisms in building materials, and the formation of volatile compounds generated by them. The adverse effects caused by moisture usually require a high and long-standing moisture load. Problems caused by a long-standing and severe moisture load together with an estimate of moisture contents that may cause damage of building materials are presented in Table 8.

Material	RH of the material (%)	Damage and emission
PVC mats and covers in damp	>95	Staining, decomposition reactions,
structures		2-ethyl-1-hexanol
Water-soluble paints	>95	Saponification, material specific
		products of hydrolysis
Water-based glues in damp	>85-95	Saponification, material specific
structures		products of hydrolysis
Urea-formaldehyde based resins in		
lacquers and binding agents in	>60-70	Degradation, formaldehyde
insulations		
Two component paints, injection	Material specific	Inhibition of curing reactions,
resins, plastic fillers		monomer emissions
		Bio-aerosols, volatile organic
Micro-organisms	>85	compounds generated by micro-
		organisms (MVOC)

Table 8. Examples of structures exposed to moisture or alkaline moisture, estimated threshold values leading to damage, and generated emissions (SAARELA 1992 and 1999).

The influence of moisture on materials may consist of hydrolytic degradation reactions and thereby induced emissions. For instance resins used as binding agents may degrade in unfavourable conditions, i.e. when the moisture load is high. This may result in emissions of formaldehyde and higher aliphatic and aromatic aldehydes, such as benzaldehydes and its derivatives, and ketones. (SAARELA 1992)

Moisture that evaporates from wet cement based-materials is alkaline and causes alkalihydrolytic reactions in many polymeric materials. Some phtalic plasticisers included in PVC carpets and also other materials may degrade in damp, alkaline conditions. This kind of degradation results in e.g. 2-ethyl-1-hexanol that gives damaged PVC materials their characteristic, strong smell. Alkaline moisture, especially when it includes ammonia caused by a degradation reaction, also causes staining of materials such as the discoloration of oak, and it may also generate stains observed on PVC carpets. (SAARELA 1992)

Besides the hydrolytic degradation reactions of polymers presented above, moisture also hinders the curing reactions of in situ cured resins. This results in a change in the proportions of the components taking part in the curing reactions and thus leads to incomplete curing and, as a consequence, emission of non-reacted monomers from the resin. (SAARELA 1992)

Water and moisture are often factors of decisive importance in connection with many substances' release from or binding to the surface of a material. The properties of the individual material are often of course important, but under practical circumstances water of some sort is always present, which often is of greater importance to the release of the substances to the surroundings than the material components themselves. Through interaction between the potential decontamination product and water, micro-atmospheres are created where contamination can take place. (NIELSEN 1987)

Acidity of the water, its pH-value, is of importance to the potential pollutants, which can be ionised. If the potential pollutant is an amine, it is bound in a water phase whereas it can be released on an alkaline surface, e.g. concrete. Conversely, the acids will be bound on alkaline surfaces and be released if these are, or become, acid. In addition to the fact that water is of importance to substances, which can be ionised, it might influence other non-ionisable matters too, i.e. those forming azeotropic (a mixture of liquids that has a constant boiling point) mixtures together or with water. These could be water-soluble as well as insoluble. (NIELSEN 1987)

In connection with indoor climate many different substances are often present and it can be difficult to calculate the mechanisms behind the decomposition of a material. The presence of water consequently may have the effect that adsorbent substances from a surface of a material can be "lifted" into a ventilating gas phase. (NIELSEN 1987)

There are two distinct features characterising the studies about the influence of water on the emission of organic compounds from different building materials. One concerns studies conducted mainly in the 1980s, which concentrate on the emission of formaldehyde. The other concerns the correlation between emissions and relative humidity. These are conducted during the 1990s and onwards.

ANDERSEN ET AL. (1975) studied the influence of different climatic parameters on the emission of formaldehyde from a chipboard fabricated using a urea-formaldehyde glue in a climate chamber. They noticed that an increase in the relative humidity from 30 % RH to 70 % RH doubled the formaldehyde concentration in the chamber.

In his study on the importance of potential pollutants to the sick building syndrome, NIELSEN (1987) also observed the release mechanisms of the pollutants. He emphasised the importance of water on the emission of formaldehyde, which has a great affinity to water. The reaction between water and formaldehyde is an equilibrium reaction and is presented in Equation 39:

$$CH_2O + H_2O \rightleftharpoons CH_2(OH)_2 \qquad , \qquad (39)$$

This balance will be strongly shifted in favour of glycol, i.e. formaldehyde will be bound when water is present, for instant on moist walls. (MEYER 1979) As the moisture content of many materials varies according to the moisture content of the air, different materials will form an effective buffer for moisture as well as for formaldehyde and probably for many other substances.

HAWTHORNE & MATTHEWS (1987) also stated that one mechanism that might affect the emission process is water vapour that can decompose a building material and release pollutants. They modelled formaldehyde emission and included product age, the influence of temperature and relative humidity on the generation of emissions, and the influence of temperature and relative humidity on the transport coefficient. The characteristic product concentration was derived from experimental data. According to their model thus developed, the likely seasonal variation in temperature and relative humidity results in a substantial change in the emission rate.

VAN NETTEN ET AL. (1989) found in their studies on the release of formaldehyde from different building materials that based on the response of the various materials to high and low humidity, over the time span used in their study, there appear to be two general categories. One increases formaldehyde release with increasing humidity, i.e. the wood-based products including ceiling tile, shiplap, plywood, and particleboard. The other class includes gypsum board, lath and plaster, terra cotta brick, and cement block. The materials belonging to the latter category decrease formaldehyde release with increasing humidity for the first hours, but this trend reverses after approximately 4 hours. The materials belonging to the latter group had been in contact with urea formaldehyde insulation before testing.

TUCKER (1991) reviewed studies on emissions from indoor surface materials conducted by that time. He concluded that early studies of formaldehyde emissions from pressed-wood products showed that relative humidity was an important factor influencing the emission rate.

He further stated that research studies of other pollutants have, however, shown that their emission rates from various materials are not particularly sensitive to relative humidity, at least for the normal range found indoors. Therefore, only materials that are known to emit highly polar compounds need to be tested at different relative humidities.

Studies on the emissions of compounds other than formaldehyde have concentrated either on the relative humidity of the indoor air or on the moisture content of the material. It seems that the moisture content of the material is affecting the emissions more pronouncedly than the relative humidity of the indoor air.

SOLLINGER ET AL. (1993) studied the organic emissions from textile floor coverings in a climate chamber under static conditions, i.e. with no air exchange. They determined the dependence of concentration of 15 compounds emitted from the same textile floor covering at 0 and 45 % relative humidity. Their results demonstrated that the equilibrium concentrations did not depend on humidity with the possible exception of aniline, the emission of which increased slightly with increasing humidity.

WOLKOFF (1998) studied the influence of two different relative humidities, 0% and 50% RH, on the emission of two volatile organic compounds of concern from five building products: PVC flooring, tufted carpet, water-borne acrylic floor varnish on pre-treated beech-wood parquet, water-borne acrylic wall paint applied onto gypsum board, and an acrylic sealant. He noticed that some of the volatile organic compound emissions were markedly influenced by the relative humidity, and that the dependency was related to building product and the type of volatile organic compound emitted. For example, the results for the wall paint studied showed that while the Texanol time/concentration profile was unchanged by the different relative humidities, the concentration/time profile of propandiol approached zero concentration at 0% RH in less than one day. The low humidity may have resulted in a different film structure due to a faster dry-out process or otherwise, the water vapour itself carries polar substances from the surface. 2-ethylhexanol and dimethyloctanols emitted from the studied carpet and the sealant, respectively showed increased concentration/time profiles at 50% RH. This infers that the plasticisers present may decompose to their corresponding free alcohols already at 50% RH. Thus, he recommended including the relative humidity as an element in the emission testing of building products.

FANG ET AL. (1999) studied the chemical and sensory emissions from the same building materials as used by Wolkoff (see the preceding paragraph). They noticed that the effect of the humidity of the ambient air was significant for the primary emission of total volatile organic compounds (TVOC) emitted from waterborne materials – floor varnish and wall paint. The increased emissions from the materials with increasing relative humidity were also clearly perceivable. The authors proposed that increasing moisture in the air leads to extraction of more hydrophilic VOCs out of the material surface and therefore increases the emission rate of those compounds. This would imply that the moisture level of the material

might influence the rate of emissions. LUNDGREN ET AL. (1999) also stated that high concentrations of volatile organic compounds in indoor air studies may indicate moisture damage of building materials.

HAGHIGHAT & DE BELLIS (1998) studied the impact of temperature and relative humidity on material emission rates. Their experimental set-up was analogous to the one used in this study, which is presented in chapter 6. Haghighat's and de Bellis' emission test chamber design was somewhat different from the one used in this study, but they also mixed humidified and dry air to reach a desired level of relative humidity. The relative humidities used were 3 %, 32 %, and 62 %. A water-based gloss acrylic paint and a polyurethane plastic finish varnish were used in their experiments. It was noted that as the humidity increased, the TVOC emission rates increased for both the paint and varnish, but that it is truly impossible to generalise the behaviour of individual compounds based on the TVOC time-emission rate curve. They further noticed that though the concentration of the varnish was near depletion at the end of the test period, when the test chamber door was opened, a strong odour was still detected.

Though feeding very dry air, 3 % relative humidity, into the test chamber with the paint sample, it was noticed that the release of water vapour from the sample must impede the release of VOCs. As the recorded exit humidity dropped to levels below 30 % relative humidity, which occurred after 12-24 hours, the time-emission rate curve began to behave exponentially as expected. As far as the water-based paint and the relative humidity in the test chamber were concerned, the time-emission rate curves could not be described as exponential decays. The curves reached steady state after approximately 160 hours, but the emission rates were not yet depleted. The emission rates were higher at 32 % relative humidity than at 62 % relative humidity. The relationship between emission rate and relative humidity could not be generalised as either directly or inversely proportional. At 32 % relative humidity the humidity may be such that the vapour pressure of the overlying air encourages, rather than inhibits, the release of VOCs. This is not as evident at the other two levels tested. The emission rates recorded for the 3 % relative humidity test yielded the lowest emission rates and depletion values. The impact of the relative humidity on the different compounds studied was quite extraordinary. Toluene and m,p-xylene were greatly affected by the humidity but at different levels, for instance. As they also have very abundant emission rates, their reaction to the relative humidity must impact the TVOC emission rate profile. The behaviour of the TVOC emission rate was also noticed to be different for the two materials tested. The higher water content of VOCs in the paint may cause this difference. The explanation may be due to the release of water vapour from the paint sample impeding the release of VOCs due to hydrogen bonding. The effects of relative humidity thus can not be summarised into a general trend for the emissions from different materials. (HAGHIGHAT & DE BELLIS 1998)

The varnish had the highest emission rates recorded for the highest humidity level. Though following smoother trends than the paint, the varnish still showed varied effects under the influence of different relative humidities. Its TVOC increased with increasing humidity, but some of its individual compounds showed higher emission rates at RH 32 % than at RH 62 %. (HAGHIGHAT & DE BELLIS 1998)

KORNUM (1980) reached similar conclusions to the ones by Haghighat and de Bellis in his studies on the influence of relative humidity on the evaporation of water and solvents from different water/organic solvent mixtures.

THØGERSEN ET AL. (1993) studied the effect of water-damaged chipboards on the indoor air quality. They stated that during the material decay phase caused by water damage, chemical substances are diffused to the material surface and evaporate. After emissions have stabilised, subsequent decomposition will determine the emission rate. Thus, during water damage the high emission rate is caused by the high water content, which increases the diffusion speed inside the material. The emission rate is also increased by organic compounds being transported into the air along with water during evaporation. A high water content also promotes the dissolution of the glue used in the fabrication of the chipboard. Water damage to chipboards resulted in increased emission of organic compounds even when the chipboards had dried. WOLKOFF ET AL. (1993) showed in their study that wetting linoleum had a marked influence on the qualitative emission of fatty acids, glycol ethers, and 2-decenal.

WIRTANEN ET AL. (2002) studied the influence of moisture damage on the emissions from common floor structures. The results showed that an external moisture load increases the emission of α -pinene from a wood-based parquet composite. An external moisture load increased also the emission of 1,2-propanediol and 2-butoxyethanol originating from a water-borne lacquer applied onto a wooden mosaic parquet (WIRTANEN 2001)

The main objective of the experimental part of this study is to clarify the influence of moisture and substrate on the emission of volatile organic compounds (VOC) from paints and adhesives as a part of a wall structure using environmental test chambers and the Field and Laboratory Emission Cell (FLEC). Earlier studies have, as been shown, concentrated either on a substrate effect, the emissions from a coating spread onto an inert substrate has been compared with the emissions from a coating spread onto gypsum board, or a humidity effect using only a single material layer applied onto an inert substrate. In this study the combined effect of relative humidity and different substrates, i.e. an inert substrate (glass), gypsum board, and plasters applied onto calcium silicate brick, on the emissions from combinations of primer and paint and adhesives will be clarified. This is done by introducing the materials to be tested into environmental chambers into which humidified air having specified relative humidities will be introduced. The emitted compounds, which are analysed using gas chromatography and mass spectrometry, are collected into Tenax TA-tubes both directly from the chamber air and from the surface of the samples by using FLEC, and the results are compared with each other to verify whether the test chambers' inner surfaces have acted as sinks. FLEC samples will be collected only at the end of each testing period. The relative humidity of the chamber air, the olfaction, and the weight change of the samples are also recorded. The information of the composition of different materials provided by their manufacturers is usually rather scarce, thus the physical and chemical characteristics of the different materials will be studied using mercury intrusion porosimetry, infrared spectroscopy, pH-indicator liquid, light microscopy, and environmental scanning electron microscopy (ESEM) equipped with an energy-dispersive spectrometer. The ESEM is, thus, used both for studying the surface of the materials and for performing element analysis.

Another, more practical, objective of the study is to verify if it is possible to achieve a low emission rate using different material combinations. A target value of 30 μ g/m²·h was set based on the study by MØLHAVE ET AL. (1996). This area specific emission rate would result in a target concentration of 200 μ g/m³ attained in a small bedroom 1 year after construction. This value is also the target value for the best indoor climate category according to the Finnish classification of indoor climate (CIC 2000).

Matters that are not dealt with in this study include deterioration of the samples, i.e. hydrolysis and other failure mechanisms, and aging phenomena. Aging is defined in this context as sample ages over 28 days, which is the highest testing age according to the standard ENV 13419 (1999). These exclusions are made since one of the main objectives of this study is to achieve a low emission rate in a short period of time. Another relevant issue, as far as the indoor environment is concerned that is left untreated is the health implications of the VOCs emitted.

6 MATERIALS AND EXPERIMENTAL SETUP

Three products of each material group: primers and paints, adhesives, and fillers and plasters, were chosen according to their popularity among domestic consumers (according to ironmongers' sales personnel's estimate), classification (CIC 2001), and chemical composition as given by the product manufacturer. The substrates were glass (used as reference), gypsum board, and calcium silicate brick together with a combination of filler and plaster B or a single layer of plaster C. The materials used and their main characteristics are presented in Table 9.

Material	Main characteristics	Classification ¹⁾
Primer A	Water-borne acrylic emulsion primer	M1
Paint A	Water-borne acrylic emulsion paint	M1
Primer B	Water-borne acrylic emulsion primer	M1
Paint B	Water-borne acrylic emulsion paint	M1
Primer C	Alkyd resin primer	-
Paint C	Alkyd resin paint	-
Adhesive A	Water-borne PVAc-dispersion glue	-
Adhesive B	Water-borne PVAc-dispersion glue	-
Adhesive C	Water-borne PVC-dispersion glue	-
Filler A	Polymer binder, water mixable	M1
Plaster A	Polymer binder, water mixable	M1
Filler B	Polymer binder, ready-mixed	M1
Plaster B	Polymer binder, ready-mixed	M1
Plaster C ²⁾	Gypsum binder, water mixable	M1
Gypsum board	-	M1
Calcium-silicate brick (CSB)	-	M1

Table 9. The materials used in this study and their main characteristics.

¹⁾ The limit for the emission rate of total volatile organic compounds (TVOC) for M1 products is 200 μ g/m²·h at 28 days. The products should also be odourless. (CIC 2001)

²⁾ Plaster C is not used together with a filler.

A primer is a coating product generally used as a substrate for a paint. One of the main differences between primers and paints is a lower gloss and higher filler content of the former. A filler is a plastering product used for filling holes and levelling a rough substrate such as a brick wall. It forms the substrate for a plaster, which itself forms the substrate for e.g. a paint or wallpaper. Primers and paints as well as adhesives A and B have different manufacturers.

The study was divided into three successive parts and the results from a previous part were used in the following ones. The main objective of Part I was to study the influence of ambient relative humidity on the emission of VOCs from single material layers on an inert substrate (glass). The objective of Part II was to study the VOC-emissions from combinations of

primer and paint or filler and plaster prepared according to the manufacturer's recommendations, on an inert substrate. The least and most emitting materials (adhesives) and material combinations (primer and paint and filler and plaster) according to the results in Part I and Part II were used in Part III, where they were spread onto real substrates, i.e. on gypsum board or CSB. Thus, the objective of Part III of this study was to examine the emissions from real structural components at different ambient relative humidities. Factorial experimental design was used in the set-up regarding the CSB as a substrate in Part III of this study. The materials studied in the different Parts are presented in Figure 2. The relative humidity of the air introduced into the test chambers (measurement of empty chamber) and the time of testing are presented in Table 10.

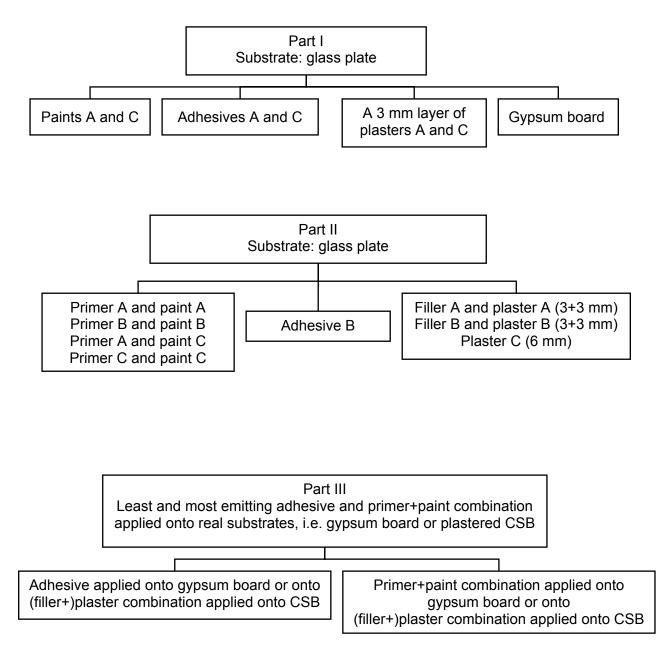


Figure 2. Materials and material combinations studied in the different Parts of this study.

Part	RH (%)	Testing age (d)
Ι	20, 50, 80	1, 14, 28
II	20, 50, 80	1, 7, 14
III	20, 50, 80	1, 7, 14

Table 10. The target relative humidity of the inflowing air and the testing age at the different stages of this study.

The testing age of 28 days was included in Part I, since this is the testing age used in the requirements for building materials in the Finnish classification of indoor climate (CIC 2001).

6.1 FOURIER TRANSFORMED INFRARED SPECTROMETRY (FTIR)

Infrared spectroscopy was used to get a rough estimate of the constituents of the different materials studied. The FTIR-apparatus used by the author consists of a Bomem MB 102 spectrometer with a DTGS detector. The resolution was set to 4 cm⁻¹ and the number of scans depended on the material to be studied ranging from 100 to 400 scans. The method detects substances making up more than 3 weight-% of the sample. However, this is only a rough estimation and may be too low a value for some substances.

6.1.1 Primers, paints and adhesives

All samples in Part I were analysed by FTIR. Paint and adhesive samples were spread onto stainless steel plates, 20×80 mm², and kept in climate chambers on top of the glass plates. Duplicate samples were analysed at the age of 28 days using a grazing angle unit.

However, the spectra had very low absorption intensities and suffered from severe specular reflectance, and the results were later discarded as non-usable. Additional samples, $\sim 30 \times 50$ mm², including primers, paints and adhesives, were spread onto a glass plate, peeled with a scraper and put into airtight plastic vials at the age of one day, and analysed at the crime laboratory of the National Bureau of Investigation at the age of 5-7 days. Before analysis the samples were pressed against a KBr tablet. The FTIR-apparatus used, an AutoIMAGE FTIR microscope system, consists of a Perkin Elmer Spectrum 2000 IR unit and an adjoining Perkin Elmer AutoIMAGE microscope. The samples were collected using 50 scans with a resolution of 4 cm⁻¹.

6.1.2 Fillers, plasters and gypsum board

Samples of the fillers, plasters, and the core of the gypsum board were analysed by the author with the apparatus referred to earlier using a Diffuse Reflectance Unit (DRIFT). The samples

were prepared by crushing them in a mortar and mixing them with KBr. The weight of the material studied was 10 % of the total weight of the sample. Duplicate samples were analysed at the age of 14 or 28 ± 1 days.

6.1.3 FTIR-sample analysis

FTIR-samples are analysed based on data in the following references: AHOLA (1993), WILLIAMS ET AL. (1989), SOCRATES (1980), and NYQUIST ET AL. (1971). The regions in which functional groups absorb are presented in Table 11 to aid in the interpretation of the bands in the different infrared spectra. Furthermore, by examining a spectrum for the absence of bands in a given region, it is possible to exclude particular functional groups and, hence, compounds containing these groups. Table 12 can be used for this purpose.

Table 11. Regions for different functional groups. (WILLIAMS ET AL. 1989 and SOCRATES, 1980)

Wavenumber (cm ⁻¹)	Functional groups
~3700 - 2250	O-H, N-H, C-H stretching
~2250 - 1900	C=C, C=N, X=Y=Z stretching
~1900 - 1400	C=C, C=O, C=N, N=O stretching and N-H bending
~1400 - 650	Other stretching, bending and combination bands. The fingerprint region.
650>	Skeletal vibrations, difficult to interpret and left out in this review

Absorption band	Type of vibration responsible	Type of group or compound absent
absent in region (cm ⁻¹)	for bands in this region	
		Primary and secondary alcohols, amides,
4000-3200	O–H and N–H stretch	organic acids and phenols
3310-3100	C–H stretch (unsaturated)	Alkynes
3100-3000	C–H stretch (unsaturated)	Aromatic and olefinic compounds
3000-2800	C-H stretch (aliphatic)	Methyl, methylene, methyne groups
2500-2000	$X \equiv Y, X \equiv Y \equiv Z \text{ stretch}^{1}$	Alkynes ²⁾ , allenes, cyanate, isocyanate etc.
1879-1550	C=O stretch	Esters, ketones, carboxylic acids etc.
1690-1620	C=C stretch	Olefinic compounds
1680-1610	N=O stretch	Organic nitrite compounds
1655-1610	-O-NO ₂ asymmetric stretch	Organic nitrate compounds
1600-1510	–NO ₂ asymmetric stretch	Organic nitro- compounds
1600-1450	C=C stretch	Aromatic ring system
1490-1150	H–C–H bend	Methyl, methylene
1420-990	S=O stretch	Sulphoxides, sulphates, sulphites etc.
1310-1020	C–O–C stretch	Ethers (aromatic, olefinic, or aliphatic)
1225-1045	C=S stretch	Thiosters, thioureas, thioamides etc.
1000-780	C=C–H deformation	Aliphatic unsaturation
900-670	C–H deformation	Substituted aromatics
850-500	C–X stretch ³⁾	Organohalogenes
730-720	(CH ₂) _{n>3}	Four or more consecutive methylene groups

 Table 12. Negative spectral interpretation table. (SOCRATES 1980)

¹⁾ X,Y, and Z may represent any of the atoms C, N, O, and S.

²⁾ Band may be absent due to symmetry of functional groups.

³⁾ X may be Cl, Br, or I.

6.2 MICROSCOPY

6.2.1 Light microscopy

The paint and adhesive samples that were spread onto $20 \times 80 \text{ mm}^2$ stainless steel plates were also studied by light microscopy at the end of each testing period in Part I in order to check if the different storing conditions caused any visual changes in the samples. The microscope used was a stereo microscope manufactured by Wild Heerbrugg with a 50× magnification power.

6.2.2 Environmental Scanning Electron Microscopy (ESEM)

The ESEM used was a Model E-3 microscope manufactured by Electroscan equipped with an EDX X-ray analyser. The images were made using a secondary electron detector, which is very suitable for imaging the topography and elements of a sample. The accelerating voltage was 15 keV and the chamber pressure was 5 Torr. The element analysis by EDX was done at a working distance of 13.3 mm, a count rate of approximately 1500 counts per second (cps), and 60-second count time. The ESEM was not calibrated separately for the samples used in this study, since the purpose of the element analysis was not for quantification, only for identification.

The samples, primers, paints and adhesives, analysed by ESEM were one day old. They were spread onto sample stubs, ~ 10 mm diameter, by using a paintbrush.

6.3 MERCURY INTRUSION POROSIMETRY (MIP)

Mercury intrusion porosimetry was used to determine the porosity characteristics of the plasters and the core of the gypsum board. The mercury porosimeter manufactured by Carlo Erba Strumentazione used in this study consists of two units. The low-pressure unit, Macropores Unit 120, has a pressure range from 0.15 to 1 bar and it measures pores with a radius from 2,500 to 30,000 nm. The high-pressure unit, Porosimeter 2000 WS, has a pressure range from 1 to 1,990 bar and it measures pores with a radius between 3.7 and 7,500 nm.

The relationship between pressure and pore radius is described by the Washburn equation as

$$pr = 2\gamma \cos \omega$$
 , (40)

where *p* is pressure (bar), *r* is pore radius (nm), γ is surface tension of mercury (mN/m²), and ω is the contact angle (°) between mercury and the material studied. The value of surface tension is 480 mN/m² and the contact angle is 141.3°. Mercury has to be forced into the sample studied by using pressure since its contact is > 90°. The pore size distribution is determined from the volume of mercury intruded at each pressure increment and the total porosity from the total volume intruded. The pores are assumed to be of cylindrical shape and fully accessible for mercury penetration. This is only a rough approximation and may, thus, give rise to erroneous results as regards the true pore size distribution, since instead of the true pore diameter the method detects only the diameters of the entrance throats of the pores.

The pore size distribution and the total porosity of the plasters and the core of the gypsum board were analysed. The MIP-samples were chiselled so that they represented the whole cross-section of the original sample. Chiselling resulted in arbitrary, generally flaky, sample shapes. The samples were put into a desiccator at the end of each test series, i.e. at the age of 28±1 days. Drying the samples in a desiccator can alter their microstructure, but is a necessary modus operandi as regards sample preparation. Duplicate samples were vacuum-stored at room temperature for four weeks before testing.

Nitrogen adsorption was also initially considered as a test means, but it was rejected during the course of the study. The idea of including nitrogen adsorption stemmed from the test results by Pennell and his colleagues (PENNELL ET AL. 1992) who observed that nitrogen adsorbs much in the same way as organic vapours on mineral surfaces. Nitrogen can, moreover, not replace adsorbed water molecules, i.e. the surface area determination with nitrogen is expected to yield the same surface area that is available for adsorption of organic vapours (GOSS & EISENREICH 1996). Nevertheless, the use of nitrogen adsorption for the determination of the pore size distribution and specific surface area of the samples was rejected for several reasons. The main reason was that the moisture content of the samples would alter during sample preparation. Thus, it would not be possible to clarify the influence of the different storing conditions on the pore structure characteristics of the samples. Moisture absorbed in the pores of the samples might also alter the test result if the samples would not be dried before testing, since the samples come into contact with very low temperatures, -67° C or lower, during analysis. Furthermore, the main interest in the analysis of the samples used in this study would be on composite materials such as painted gypsum board. Separating the contribution of a single material on the surface area of a multi-layered sample would require a study of its own. Finally, the analysis of the pore structure was aimed at separating the porosity characteristics of the different substrates and this was achieved quite satisfactory by mercury intrusion porosimetry.

6.4 **pH-MEASUREMENTS**

The pH of the samples used for emission testing was tested at the end of each testing period in Part III of the study by using a full range pH-indicator solution. A few droplets of the solution were spread onto a sample after the finish of the VOC-sample collection by using the Field and Laboratory Emission Cell (FLEC). The pH of the samples and its change with time was recorded by visual inspection.

6.5 EMISSION TESTING

6.5.1 Sample preparation

The surface area of the samples was $220 \times 280 \text{ mm}^2$ in all measurements. The thickness of the samples and the amount of product applied to a substrate varied according to the specifications presented in SAARELA ET AL. (2002) and what was judged to be convenient.

6.5.1.1 Primers and paints

The recommended usage amount of paint is given by the manufacturer in square metres per litre wet product. The resulting dry film thickness is then calculated according to:

$$T_s = (V_s / S) \times 10 \qquad , \qquad (41)$$

where T_s is the dry film thickness recommended by the manufacturer, (μ m), V_s is the solid content of the paint given by the manufacturer, and *S* is the recommended amount of paint usage (m²/l wet product). The classes for the different dry film thicknesses are presented in Table 13.

Class	Supplier's mean thickness, T _s	Dry film thickness for testing, T_t
Minimal	< 5 μm	5 μm
Low	$5-20 \ \mu m$	15 μm
Medium	$20-60 \ \mu m$	40 µm
High	> 60 µm	> 60 µm

Table 13. Classes for dry film thickness (EN 927-1 1996).

The amount of wet product applied to a certain area to receive a specified dry film thickness is calculated according to:

$$P = (T_t \times A \times \delta) / (V_s \times 100) \qquad , \qquad (42)$$

where *P* is the amount of wet product applied, (g), T_t is the dry film thickness for testing (μ m), according to Table 11, *A* is the painted area (cm²), δ is the density of the wet product (g/cm³) given by the manufacturer, and V_s is the solid content of the product (Vol.-%) given by the manufacturer.

The paint film thickness has been shown to influence the emission rate of single (S)VOCs from water-borne paints (CLAUSEN 1993). The dry film thickness in this study was medium, i.e. T_t was 40 µm, for all paints tested and it was kept as constant as possible irrespective of the substrate. CLAUSEN (1993) used a short haired (synthetic) paint roller and noticed that its use resulted in very uneven surfaces. In this study the paint was therefore applied with a foamed plastic paint roller. The roller method gave reproducible results in experiments performed by SPARKS ET AL. (1999) and represents a common method for applying paints on wall and ceiling materials. The test specimens were weighed before and after application.

6.5.1.2 Adhesives

The recommended adhesive weight is 300 ± 15 g/m² according to SAARELA ET AL. (2002). The adhesive to be tested was transferred in an excess of minimum 20 % by weight onto the substrate and spread with a notched spatula completely and uniformly. The adhesive weight was adjusted by adding more or by removing parts of it. All this handling took less than three minutes to perform. The test specimens were weighed before and after the application.

6.5.1.3 *Fillers and plasters*

The water mixable plasters were prepared by using a mixer attached to a power drill according to the manufacturer's recommendations. A uniform layer of the sample was placed on the substrate with a spatula. A stainless steel border was used to adjust the sample thickness of 3 or 6 mm. The test specimens were weighed before and after the application.

6.5.2 Emission testing methods

6.5.2.1 Emission test chamber

The author developed the test chamber used in this study. The chambers were kept in an airconditioned room having a constant temperature of $+21\pm1$ °C. The chamber was designed so that it would meet the requirements set in the European Standard for emission test chambers (ENV 13419-1 1999) and that a Field and Laboratory Emission Cell (FLEC) could also be used for collecting VOC-samples. The chamber consists of a 27-litre stainless steel container ottom of the

61

made for institutional kitchens. On the bottom of the container is a stainless steel wire net. The size of the net is $220 \times 280 \text{ mm}^2$ and its mesh size is $1.0 \times 1.0 \text{ mm}^2$. The thickness of the steel threads is 0.46 mm. It was noticed during the design stage, that both the mesh size and the thickness of the steel thread influence the air velocity over the test sample. A fan was placed on the steel net at the middle of the chamber 15 mm above the net to regulate the air velocity over the test sample and to ensure proper mixing of the chamber air. The air velocity could be adjusted by regulating the voltage of the fan. The samples were placed on four adjustable stainless steel mounts. The height of the surface of the samples was 95 mm measured from the surface of the steel net in all measurements regardless of the thickness of the sample to ensure that the air velocity over the sample was the same irrespective of the height of the sample. The lid of the chamber was made of 8-mm thick glass and there were three holes in it. One hole was for a humidity and temperature measuring probe, one for VOC-sample collection, and one was originally intended for olfactory analysis, but was not taken into use since it would have required an extra fan to achieve proper results. The holes were covered with glass plates when not in use. The lid was made tight by a Viton-tube and the joint of the tube was made tight using laboratory film. Six chambers were in use simultaneously. Each chamber was cleaned according to the regulations presented in ENV 13419-1 (1999), prior to testing with de-ionised water and methanol. All loose metal parts were cleaned with de-ionised water and methanol before heating them to 400 °C and additionally rinsed with methanol before introducing them into the chamber.

The air used was normal compressed air that is used by the whole Department of Civil and Environmental Engineering at Helsinki University of Technology. It was cleaned of impurities by a water-separator, an oil filter, an active-charcoal filter, and a Zero Air generator connected in series. The air was introduced into the chambers by Teflon-tubes. The length of the tubes was the same for all chambers to ensure pressure balance. The relative humidity of the chamber air could be adjusted by mixing dry and humidified air. Leading it through a water-filled gas washing bottle humidified the air. The ventilation rate was 1 h⁻¹, i.e. an air flow rate of 450±5 ml/min was used. A Field-Cal 650 Flow Calibrator manufactured by Humonics Inc. was used to measure the airflow rate. Its accuracy is ± 2 ml/min according to the manufacturer. The measurements were carried out regularly. Pictures of a test chamber and of the experimental setup are shown in Figures 3-5.

Figure 3. An environmental test chamber.

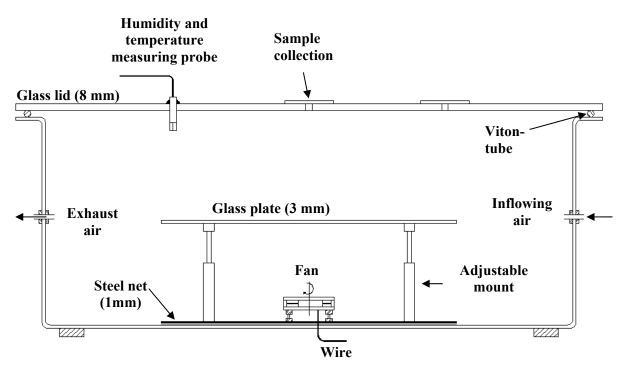


Figure 4. A sketch of an environmental test chamber.

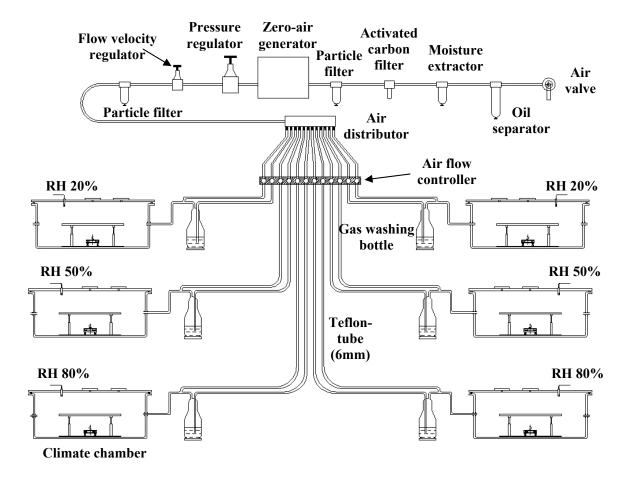


Figure 5. A sketch of the experimental setup.

6.5.2.2 Testing conditions

The air-velocity 1 cm above the surface of the samples is shown in Figure 6. It was measured from nine points, i.e. from each corner, from the centre of each side and from the centre of the sample area, respectively.

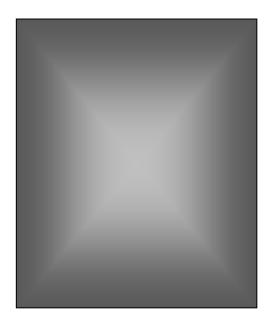


Figure 6. Air-velocity profiles measured 1 cm above the sample surface. A darker shade indicates a higher air-velocity.

The air velocity was measured using an air velocity transducer model 8475, manufactured by TSI Incorporated. The air velocity was 0.15 ± 0.03 m/s at the centre of the sample increasing somewhat (0.01-0.02 m/s) closer to the edges. In Part I of the tests, $20\times80\times3$ mm³ stainless steel plates used for FTIR-measurements were placed at the narrow ends on top of the paint and glue samples. This caused a minor distortion of the velocity field. The velocity of the narrow ends was 0.03-0.05 m/s and at the right-hand side 0.02-0.04 m/s higher than at the centre of the sample. The distortion of the air-velocity profile was caused by the fact that the fans used did not create an independently-oriented flow of air.

The relative humidity of the chambers was measured using one temperature and humidity measuring probe, HMP 233 manufactured by Vaisala, per chamber. The accuracy of the probes is ± 2 RH-% at RH 0-90 % and ± 3 RH-% at RH 90-98 % according to the manufacturer. The probes were calibrated periodically by using saturated salt solutions in a HMK 13 B Humidity Calibrator manufactured by Vaisala. The accuracy of the measured relative humidity compared with the target values were ± 5 % RH for empty chambers.

6.5.2.3 Field and Laboratory Emission Cell (FLEC)

The FLEC was supplied with 5.0-synthetic air with a mixture of 80 % nitrogen and 20 % oxygen. The air was led into the chamber via a FLEC Air Control unit in which it was humidified to RH 50 \pm 5 %. The chamber was cleaned according to (ENV 13419-2 1999) with de-ionised water and methanol before heating it up to 105 °C for one hour and additionally rinsing it with methanol prior to testing. The FLEC was used for trying to neglect the sink effect of the climate chamber.

6.5.3 VOC-sample collection

The area specific airflow rate (ASAFR), which is expressed as n/(A/V), was equal for both the test chamber and the FLEC. This was achieved by adjusting the airflow rate of the FLEC to 130 ± 2 ml/min. The relevant parameters are presented in Table 14.

Parameter	Test chamber	FLEC
Area, A	0.22×0.28 m ²	0.0177 m ²
Volume, V	0.027 m ³	3.5×10 ⁻⁵ m ³
Air changes, n	1 h ⁻¹	222 h ⁻¹
ASAFR	0.438 m ³ /m ² ·h	0.439 m ³ /m ² ·h
Airflow rate	450 ml/min	130 ml/min
Air velocity	0.15±0.03 m/s	0.0047 m/s

Table 14. The area specific airflow rates (ASAFR).

The air velocity inside the FLEC-cell is calculated based on the FLEC chamber volume and airflow rate, which are shown in Table 14. It is to be noted that the air velocity inside the FLEC-chamber is not evenly distributed, even though this effect will average out with homogenous surfaces (UHDE ET AL. 1998)

VOC-samples were collected into Tenax TA-filled stainless steel tubes using a FLEC Air Pump 1001. The air flow rate during sample collection was controlled using the Field-Cal 650 Flow Calibrator and it was measured both from the exhaust air leaving the pump and the air leaving the environmental chamber or FLEC. The sample volumes varied according to the amount of VOC emitted being different for different materials, relative humidity, and sample age. The volumes ranged thus from 0.5 to 10 litres. Two parallel samples were collected from each sample at the respective testing age, except for background measurements, whereas only one sample was collected per climate chamber before each testing period started. This same routine was applied for the FLEC. The FLEC-samples were collected at the end of each testing period, i.e. at 14 or 28 days depending on the length of the testing period. The collected samples were stored in sealed glass jars at room temperature for a maximum of 7 days prior to delivery for sample analysis.

6.5.4 VOC-sample analysis

The VOC-samples were analysed by the Laboratory of Chemistry and Microbiology at the Uusimaa Regional Institute of Occupational Health. The sealed glass jars containing the collected VOC-samples were stored in a refrigerator at the Uusimaa Regional Institute of Occupational Health for a maximum of 8 days prior to sample analysis. The analysis was performed by the GC/MS-method according to (ISO 16000-6 2004). The inaccuracy of the analysis is 15-41 % depending on the compound, being 25 % in average. The uncertainty of

measurement of compounds identified as toluene-equivalents is even higher and the quantification is semi-quantitative. The limit of detection is also compound dependent. An average value is 10 ng/sample, i.e. 1 μ g/m³ for a 10 l sample. The analysis results were given as concentration of VOCs in sampled air expressed as μ g/m³. The background concentrations, i.e. the VOC-concentrations of the empty environmental chambers or the FLEC applied onto a stainless steel plate, were first subtracted from the actual concentrations, i.e the emissions generated by the material samples. Then the results were converted to area specific emission rates, SER_a, expressed as μ g/m²·h according to the equations presented in (ENV 13419-1 and 13419-2 1999), respectively.

6.5.5 Data handling

The VOC-emission data is presented as area specific emission rates for each single material and material combination tested separately. The emission data is also analysed statistically using STATGRAPHICS and MODDE software programs. A Kruskal-Wallis test using the STATGRAPHICS program is applied to clarify the influence of the relative humidity of the surrounding air on the emission rates of single compounds. The compounds are separated according to which chemical group they belong to, i.e. all aromatic hydrocarbons emitted from the samples stored at the three target relative humidities in Part I are compared with each other, and so forth. The same procedure is done when the area specific emission rates of the total volatile organic compound emissions, TVOC_{SERa}, from the two different sample collection methods are compared with each other. The Kruskal-Wallis test was chosen since the test data is not, at least in most cases in this study, normally distributed as a consequence of the fact that the emission rates are very material dependent.

Factorial design was used in order to optimise the number of tests in Part III of this study where primer and paint combinations or adhesives were applied onto filler and plaster combinations which were applied onto calcium silicate brick. The factorial design was performed using a D-optimal design tool in MODDE. The TVOC_{SERa}-values were analysed with the same program using PLS (Partial Least Squares) regression, interaction models, and response prediction plots.

6.5.6 Olfactory evaluation

The olfaction of the samples stored in the environmental chambers was recorded according to SAARELA ET AL. (2002) with three exceptions. First, the olfaction was evaluated by the author only and no evaluation panel was used. Second, no diffuser was used, thus, the airflow rate was 0.0075 l/s instead of the recommended 0.9 l/s. Third, the evaluation was started the day following the introduction of a sample into a climate chamber and it was recorded once a day throughout a testing period. SAARELA ET AL. (2002) recommend that a test specimen should

be conditioned for two days prior to testing. And last, no acceptability scale was used, rather the perception was ranked on a scale from 0 to 5, where 0 denoted no perceptible smell and 5 denoted a strong perception.

The evaluation was performed by placing a glass funnel over the nose, waiting approximately 10 seconds, and then breathing in air through the nose three times in sequence. The funnel was attached to the outlet of the chamber by a teflon-tube. The last recording was made when the lid to the climate chamber was opened. This proved to be a beneficial modus operandi, since you could then quite often sense a rather strong smell even though earlier evaluations had proved a sample to be odourless.

7 EXPERIMENTAL RESULTS

The aim of the following four chapters is to get a rough estimate of the chemical and physical characteristics of the materials studied.

7.1 FOURIER TRANSFORMED INFRARED SPECTROSCOPY (FTIR)

The analysis of the FTIR-spectra gives a rough estimate of the chemical composition of the different samples. Thus, no attempts to estimate the amounts of the different constituents are made, since this would be very laborious and, also, a task outside the scope of this work.

7.1.1 Primers and paints

The FTIR-spectra of primers and paints A and B are shown in Figures 7 and 8 and their main spectral bands are presented in Table 15.

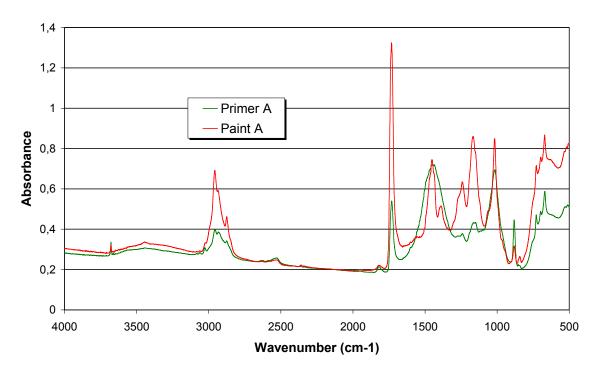


Figure 7. FTIR-spectra of primer A and paint A.

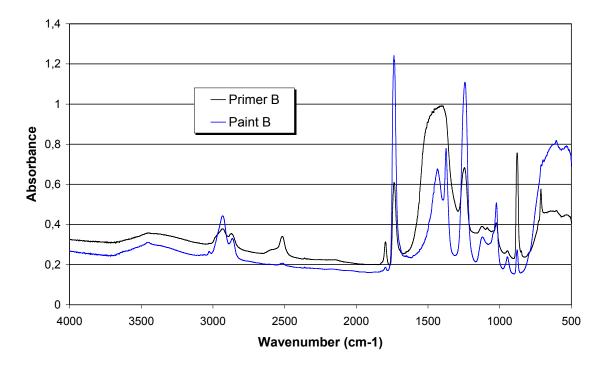


Figure 8. FTIR-spectra of primer B and paint B.

Table 15. The spectral bands of primers and paints A and B and the compounds they assign.

Wavenumber (cm ⁻¹)	Compound
3677, 2524, 1805, 879	CaCO ₃
~3600 - 3100	O–H stretching in water or alcohol
3050 - 3020	could assign aromatics
2950 - 2850	asymmetric C–H stretching in –CH ₂ and –CH ₃ , symmetric stretching in –CH ₃
1731	C=O stretching in ester
1545	could assign aromatics
1450	asymmetric bending in -CH ₃ and/or scissoring in -CH ₂
1385	symmetric bending in –CH ₃
1240, 1160, 1110, 1015	asymmetric and symmetric C–O–C stretching characteristic of ethers and carboxylic esters. The band at 1015 cm ⁻¹ could also assign C–O stretching vibration of alcohol
1050	shoulder assign skeletal vibration of acrylate
963	shoulder assign skeletal wagging of acrylate
940	=CH ₂ wagging of methacrylate
900 - 800	could assign aromatics

The primers' absorption spectrum differs from that of the paints most distinctly at 1600 cm⁻¹ - 1300 cm⁻¹. This assigns CaCO₃, a common filler in paint products. The amount of solids in a primer is usually higher than that in a paint.

The absorption spectra of paints A and B are very similar. There are, however, some differences, which will be dealt with in the following. Paint B lacks the medium intensity band at 3677 cm⁻¹. Moreover it has a rather strong band at 940 cm⁻¹ assigning =CH₂ wagging of methacrylate. The third main difference is that paint B lacks a band at 1160 cm⁻¹ and has,

instead, a medium intensity band at 1110 cm^{-1} . The differences that were observed between the two different paints apply also to the two different primers. The structure of an acrylate monomer is shown in Figure 9.

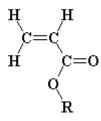


Figure 9. The structure of an acrylate monomer. R stands for any atom or molecule.

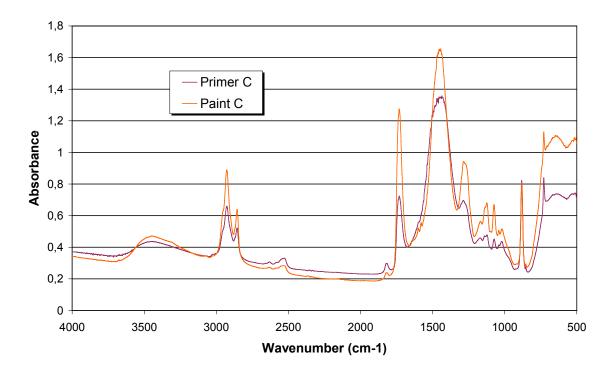


Figure 10. FTIR-spectra of primer C and paint C.

The primer and paint C, which are alkyd-based products, have very similar spectra, as can be seen in Figure 10. The main spectral bands are presented in Table 16.

Wavenumber (cm ⁻¹)	Compound
~3600 - 3100	O–H stretching in alcohol
2950 - 2850	asymmetric and symmetric C-H stretching in -CH ₂
2650 - 2500	could assign O-H stretching in carboxylic acid
1731	C=O stretching in ester
1440	C-H bending in -CH ₃ and/or scissoring in -CH ₂ or CaCO ₃
1270, 1160	asymmetric and symmetric C–O–C stretching characteristic of ethers and carboxylic esters
1120, 1070	could assign C–O asymmetric stretching in phthalate. The band at 1070 cm^{-1} could also assign CaCO ₃
1040, 1010	C–O stretching vibration (in alcohol, ether, carboxylic acid, or ester)
880	CaCO ₃
963	shoulder assign skeletal wagging of acrylate
940	=CH ₂ wagging of methacrylate
900 - 800	could assign aromatics

Table 16. The spectral bands of primer C and paint C and the compounds they assign.

 $CaCO_3$ has a strong band at 1500 to 1400 cm⁻¹. Thus, the band at 1440 cm⁻¹ that assigns C–H bending can also assign CaCO₃, and most probably these bands overlap each other at that wavenumber region.

7.1.2 Adhesives

The FTIR-spectra of the adhesives studied are shown in Figure 11 and their main spectral bands are presented in Table 17. Adhesives A and B are water-borne PVAc-dispersion adhesives, while adhesive C is a water-borne PVC-dispersion adhesive, according to the manufacturers' information.

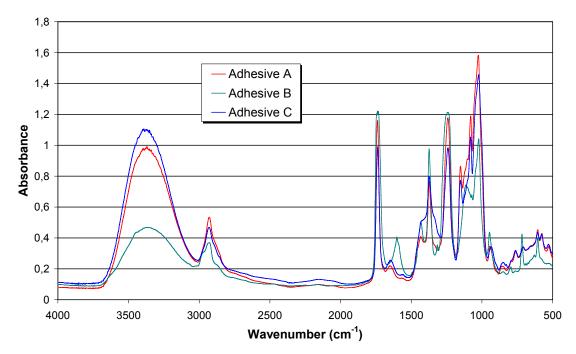
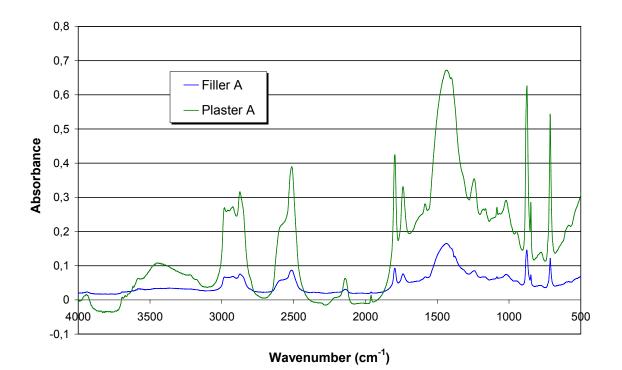


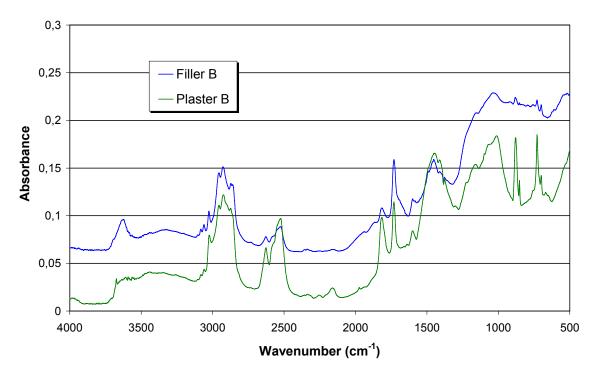
Figure 11. FTIR-spectra of the different adhesives studied.

Wavenumber (cm ⁻¹)	Compound
~3700 - 3100	O–H stretching in water or alcohol
2920	asymmetric C–H stretching in –CH ₂
1730	C=O stretching in ester
1640	C=C stretching in vinyl ether
1600	C=C stretching in C=C conjugated with C=C
1430	symmetric bending in –CH ₃
1370	asymmetric bending in –CH ₃
1240, 1160, 1110	asymmetric and symmetric C-O-C stretching characteristic
1240, 1100, 1110	of ethers and carboxylic esters
1080, 1020	C–O stretching in alcohol or ester
940	C–H out-of-plane deformation of = CH_2 in vinyl hydrocarbon
880 - 700	could assign aromatics

Table 17. The spectral bands of adhesives A, B, and C and the compounds they assign.


There are some differences between the spectral bands of the different adhesives, which will be treated in the following. First, adhesives A and C have a medium strong band at 1640 cm⁻¹, while adhesive B has a medium strong band at 1600 cm⁻¹. These assign C=C stretching in vinyl ether and C=C stretching in C=C conjugated with C=C, respectively. Second, adhesives A and B have a medium strong band at 1430 cm⁻¹, while adhesive C has a shoulder at the same wavelength. Third, adhesives A and C have bands at 1160 cm⁻¹ and 1080 cm⁻¹, while adhesive B has a band at 1110 cm⁻¹. The structure of vinyl monomer and vinyl chloride are shown in Figure 12.

$$\begin{array}{c} CH_2 = CH \\ O \\ CH_2 = O \\ CH_3 \end{array} \qquad H H H \\ CH_3 C = C \\ H C = C \\ H C = C \\ H C = C \\ CH_3 \end{array}$$


Figure 12. Vinyl monomer (to the left) and vinyl chloride (to the right).

7.1.3 Fillers, plasters and gypsum board

The FTIR-spectra of the two plasters with polymer binder and their respective fillers are shown in Figures 13 and 14 and their main spectral bands are presented in Table 18.

Figure 13. FTIR-spectra of filler A and plaster A. The filler (age 14 days) was stored in a climate room (21° C, RH 30 %) and the plaster (age 28 days) was stored in a climate chamber (21° C, RH 50 % target relative humidity).

Figure 14. FTIR-spectra of filler B and plaster B. Both samples were stored in a climate room (21° C, RH 30 %) and analysed at the age of 14 days.

Wavenumber (cm ⁻¹)	Compound
~3600 - 3100	O–H stretching in water or alcohol
3100 - 3020	aromatic C-H stretching vibration
3000 - 2850	asymmetric C–H stretching in $-CH_2$ and $-CH_3$ and symmetric C–H stretching in $-CH_3$. Could also include CaCO ₃ absorption bands
2510, 1450, 880, 710	CaCO ₃
1820, 1790, 1740	could assign C=O stretching in ester
1600	water
1250, 1190, 1170, 1030	asymmetric and symmetric C–O–C stretching characteristic of ethers and carboxylic esters
950	C–H out-of-plane deformation characteristic of a vinyl group
800	C–H out-of-plane deformation characteristic of aromatics
1080, 1020	C–O stretching in alcohol or ester
940	C–H out-of-plane deformation of = CH_2 in vinyl hydrocarbon
880 - 700	could assign aromatics

Table 18. The spectral bands of fillers and plasters A and B.

There are some differences between the spectral bands of the different products, which will be treated in the following. The aromatic C–H stretching vibration is observed only for filler and plaster B. Of the bands assigning C=O stretching in ester the band at 1820 cm⁻¹ is only observed for filler and plaster B, while the band at 1790 cm⁻¹ is only observed for filler and plaster A. Furthermore, the bands assigning C–O–C stretching at 1250 cm⁻¹ and 1190 cm⁻¹ is only observed for filler and plaster A, while the band at 1170 cm⁻¹ is only observed for filler and plaster B. Thus, even though the FTIR-spectra of the two products are quite similar their binders have most probably somewhat different compositions.

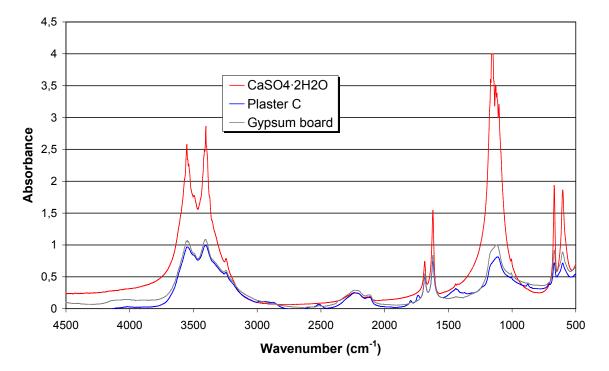


Figure 15. FTIR-spectra of plaster C, the core of the gypsum board and gypsum (pro analysi).

Plaster C consists mainly of gypsum, as is shown in Figure 15. It has a weak band at 2520 cm⁻¹, which assigns CaCO₃. Other differences between plaster C and gypsum occur at 1805 cm⁻¹, 1750 cm⁻¹, 1450 cm⁻¹, and 890 cm⁻¹. The first two bands assign C=O stretching vibration in ester, while the two latter bands assign CaCO₃. The FTIR-spectrum of the core of the gypsum board also presented in Figure 15, indicates that the gypsum of the gypsum board is a rather pure product.

7.2 MICROSCOPY

7.2.1 Light microscopy

All paint and glue samples in Part I were examined by light microscopy. The only difference that could be observed was that the sample of adhesive A, which was stored at the RH 80 % target relative humidity, had air bubbles on the surface. A visual inspection, on the other hand, showed that a sample that had been stored in the RH 80 % target relative humidity looked wet, i.e. there was a thin water layer on top of its surface and the sample also felt soft when touched while a sample that had been stored at RH 20 % target relative humidity looked (and felt) dry. The samples that had been stored at RH 50 % target relative humidity were intermediate.

7.2.2 Environmental Scanning Electron Microscopy (ESEM)

The ESEM was used both for looking at the sample topography and for element analysis. The latter will be dealt with first in the following, since this gives additional information to the preceding chapter on FTIR-spectra. Figures 16-19 show the element analysis of some of the one day old paint and adhesive samples. The other results, including primers, paints, and adhesives not shown here, are presented in Appendix A. The element analysis is applicable only for elements having the molecular weight of oxygen and higher.

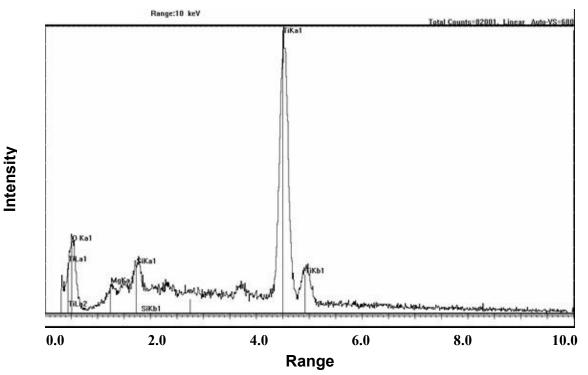


Figure 16. Element analysis of paint A.

Paint A, Figure 16, contains titanium (Ti) that originates from TiO_2 , which is a very common white pigment in paints. Paint A also contains some magnesium (Mg) and silicon (Si). Their origin is most probably the filler used in the paint. Paint C, Figure 17, contains beside titanium and magnesium also calcium (Ca), which originates form CaCO₃ that is used as filler in paints. The aluminium that is observed for topcoat C probably stems from the sample stud that the paint was applied onto.

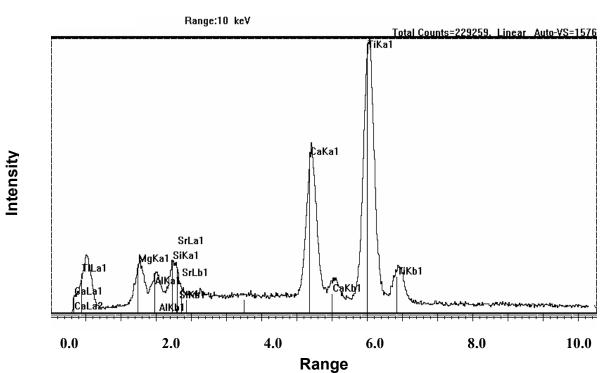


Figure 17. Element analysis of paint C.

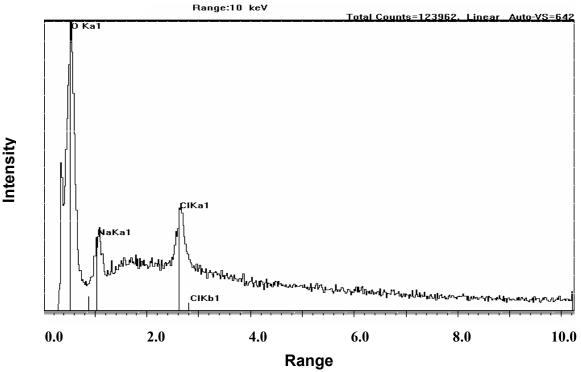


Figure 18. Element analysis of adhesive A.

Adhesive A, Figure 18, contains sodium (Na) and chloride (Cl). Chloride probably derives from the copolymer, which could be a vinyl acetate/vinyl chloride copolymer. Sodium may derive from e.g. a plasticiser. The element analysis of adhesive C, Figure 19, does not show any specific elements except oxygen.

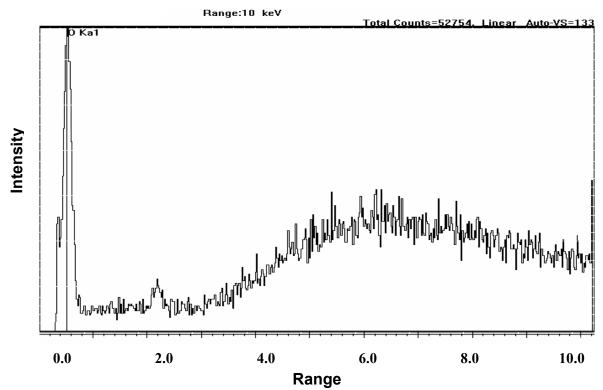


Figure 19. Element analysis of adhesive C.

ESEM-images of the different primers and paints are shown in Figures 20-22. The images clearly demonstrate the coarser structure of a primer compared with its respective paint. It can also be observed that the particle size distribution of a paint film covers several orders of magnitude.

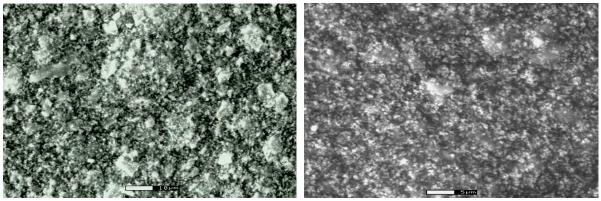


Figure 20. Primer A, ×1000 magnification (left) and paint A, ×2000 magnification (right).

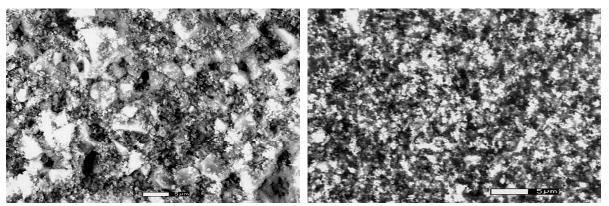


Figure 21. Primer B, ×2000 magnification (left) and paint B, ×2000 magnification (right).

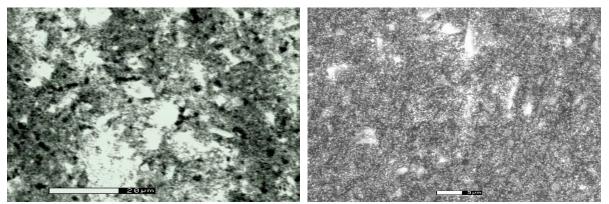
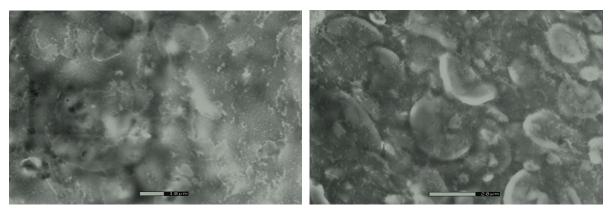
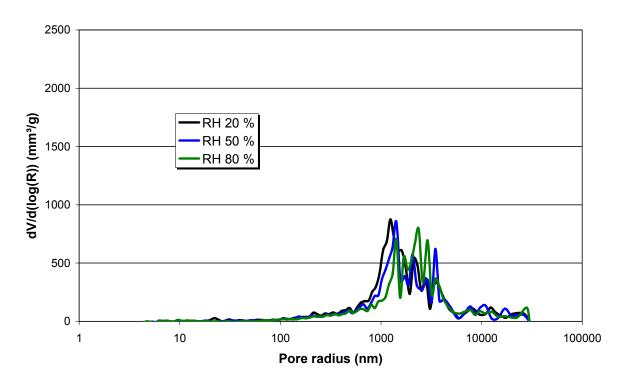


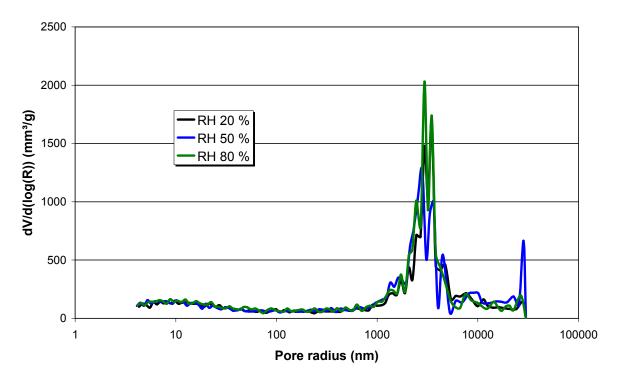
Figure 22. Primer C, ×1000 magnification (left) and paint C, ×2000 magnification (right).

ESEM-images of the different adhesives are shown in Figures 23 and 24. Adhesives A and B appear to have quite similar structures. There structure is somewhat flaky, but more compact

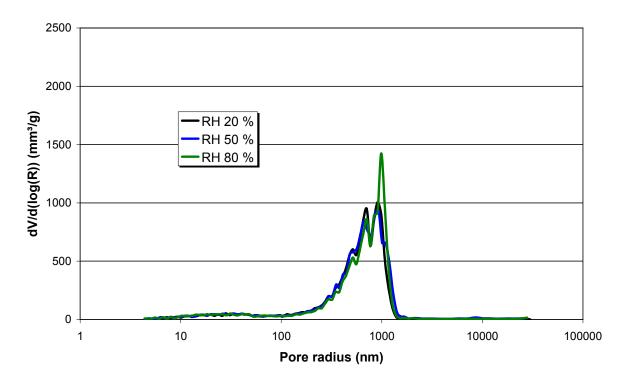
than that of adhesive C. The surface of adhesive C is "bumpy" and appears to contain abundant air voids.





Figure 23. Adhesive A, ×1000 magnification (left) and adhesive B, ×975 magnification (right).


Figure 24. Adhesive C, ×950 magnification.

7.3 MERCURY INTRUSION POROSIMETRY (MIP)


The pore size distribution of the different plasters and the core of the gypsum board are presented in Figures 25-28. The relative humidity, whose measured values are presented in Chapter 7.5, seems to have the greatest impact on plaster A. Its pore size distribution is shifted towards bigger pores with increasing relative humidity of the storing conditions. It is also observed that samples stored at the target relative humidity of RH 80 % have a higher peak, i.e. a bigger pore volume in relation to a specific pore radius, compared with the other two humidities as far as plasters B and C are concerned. The pore radius values corresponding to the strongest peaks are 2950 nm and 3500 nm (plaster B), and 1000 nm (plaster C), respectively. The core of the gypsum board appears to be least affected by the storing conditions.

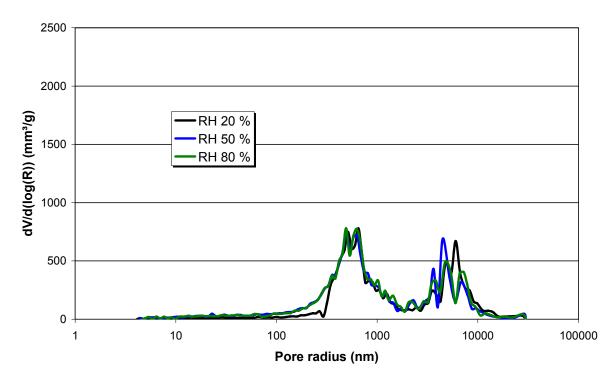

Figure 25. Pore size distribution of plaster A. The legend denotes the target relative humidity of the chamber air, which is also the measured relative humidity of the chamber air ± 5 % RH at the time when the samples were taken out from the environmental chambers for preparation.

Figure 26. Pore size distribution of plaster B. The legend denotes the target relative humidity of the chamber air, which is also the measured relative humidity of the chamber air ± 5 % RH at the time when the samples were taken out from the environmental chambers for preparation.

Figure 27. Pore size distribution of plaster C. The legend denotes the target relative humidity of the chamber air, which is also the measured relative humidity of the chamber air ± 5 % RH at the time when the samples were taken out from the environmental chambers for preparation, except for the RH 80 %, whose measured relative humidity was 100 %.

Figure 28. Pore size distribution of the core of the gypsum board. The legend denotes the target relative humidity of the chamber air, which is also the measured relative humidity of the chamber air ± 5 % RH at the time when the samples were taken out from the environmental chambers for preparation.

The total porosity and the specific surface area of the different samples are presented in Table 19. Even though an increase in the relative humidity caused a shift in the pore size distribution curve of plaster A towards larger pores, this did not cause an increase in its total porosity. On the contrary, its total porosity decreased with increasing relative humidity of the storing conditions. The shift in the pore size distribution could be caused by an increase in the internal moisture content caused by the higher relative humidity of the ambient air. The increase in the total porosity with decreasing relative humidity, on the other hand, could be a consequence of the increased water evaporation. There was, however, no distinct difference in the relative weight changes at the different relative humidities.

The total porosity of plaster B, on the other hand, increased with increasing relative humidity. This could be a consequence of an increase in the internal moisture content. There was, however, no observable shift in the pore size distribution. Plaster C and the core of the gypsum board did not show any definite trends as far as their total porosity at different relative humidities is concerned.

The specific surface area of plaster B increased with increasing relative humidity of the surrounding air. This is the only observable trend, all samples considered, regarding the influence of relative humidity on the specific surface area.

The total porosity and, especially, the specific surface area differ quite much between different plasters. Plaster A has the smallest total porosity and specific surface area, while the total porosities of plasters B and C are fairly equal. The specific surface area is largest for plaster B. Thus, plaster B has considerably more pores and they also encompass a larger pore size distribution than is the case for the other plasters. This can also be observed in Figures 6-8. The total porosity of the core of the gypsum board is higher than that of the plasters, but its specific surface area is intermediate.

Sample	Relative humidity (%)	Total porosity (%)	Specific surface area (m ² /g)
Plaster A	20	54.7	1.2
	50	48.0	0.8
	80	47.7	1.0
Plaster B	20	56.5	24.8
	50	57.0	25.3
	80	59.4	26.1
Plaster C	20	52.9	6.4
	50	55.0	6.5
	100	54.5	6.8
Core of	20	67.2	10.3
gypsum	50	67.1	9.9
board	80	69.2	9.8

Table 19. Total porosity and specific surface area of the plasters and the core of the gypsum board. The relative humidity indicates the target relative humidity value of the environmental chambers at the time when the samples were taken out from the chambers for sample preparation ± 5 % RH.

7.4 pH-MEASUREMENTS

The pH of the products according to their operational safety sheets and the measured values of the top layers one hour and one day after the finish of a test series are presented in Table 20. The structures studied consisted of (from the top to the bottom layer) paint or adhesive, primer (no primer for adhesives), plaster, filler, and CSB. The pH of plaster B applied onto filler B, the pH of plaster C, and the pH of gypsum board are also presented in Table 20.

Material	Declared pH	Measured pH at 1 hour	Measured pH at 1 day
Paint A	-	6 - 8	5
Paint B	7.8 - 8.4	6 - 8	6 - 7
Adhesive A	~6	5 - 7	5
Adhesive B	6.5 - 7.5	5 - 7	5
Plaster B	9	9 ¹⁾	7
Plaster C	7 - 8	4 - 7 ¹⁾	5
Gypsum board	7 - 8	5	5

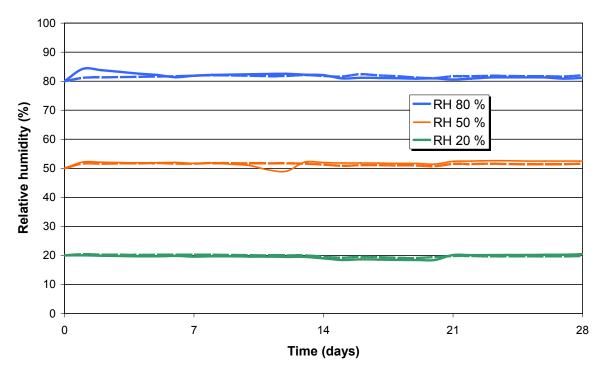
Table 20. The pH-values of the different samples	Table 20.	The pH-values	of the different	samples.
--	-----------	---------------	------------------	----------

¹⁾ The pH-value was determined immediately after the samples had been removed from the test chambers

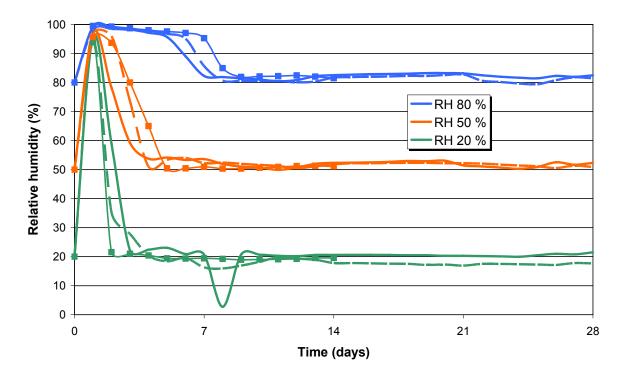
The pH-value of paints A and B was higher the higher the relative humidity of the storing conditions after one hour exposure to room air. The pH-values were somewhat higher on plaster C than on plaster B and higher for paint B than for paint A. The pH of the paints decreased more slowly than that of the adhesives.

Also both adhesives A and B had a higher pH-value the higher the relative humidity of the storing conditions after one hour exposure to room air. The pH-value was again somewhat higher for adhesives spread onto plaster C than was the case for plaster B. The toothing of the spatula that was used for spreading the adhesives caused shifts in the pH-values. The pH-value was usually higher between brows and lower on their top. The phenomenon was more pronounced for samples stored at lower relative humidities.

The pH of plaster B was about 9 immediately after it had been removed from a climate chamber irrespective of the relative humidity it had been stored at. After one hour exposure to room air, its pH-value had dropped to about 8. The corresponding values for plaster C were 4-5, 5, and 7 when stored at RH 20 %, RH 50 %, and RH 80 % target relative humidities (note: the measured value of the RH 80 % chamber was 100 % throughout the testing period), respectively, immediately after it had been removed from a climate chamber. One hour later the pH was about 5 for all three samples.


The pH of the adhesives and paints applied onto gypsum board was not measured, since it was not considered to be as much affected by the substrate. The relative humidity of the room air was between 25 % and 50 % during the measurements presented in the preceding paragraphs.

7.5 RELATIVE HUMIDITY


The relative humidity of the chamber air was recorded for the first hours after a sample had been introduced into a climate chamber and after that once a day until the end of a test series. The results are presented in the following sections in a chronological order.

7.5.1 Part I. Single material layers on a glass substrate

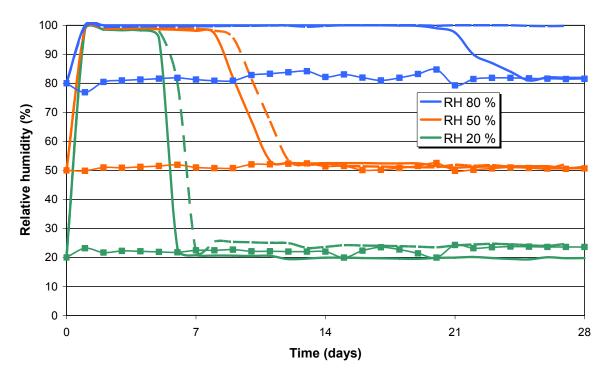
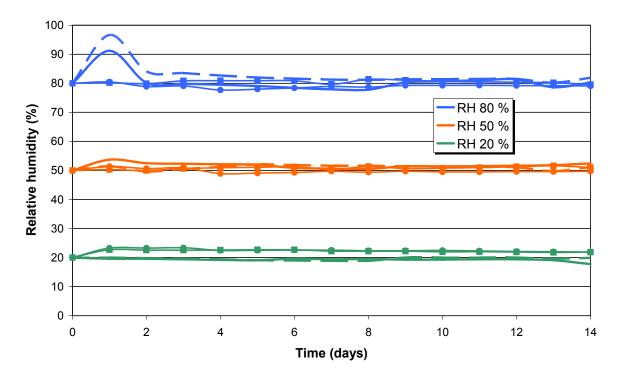
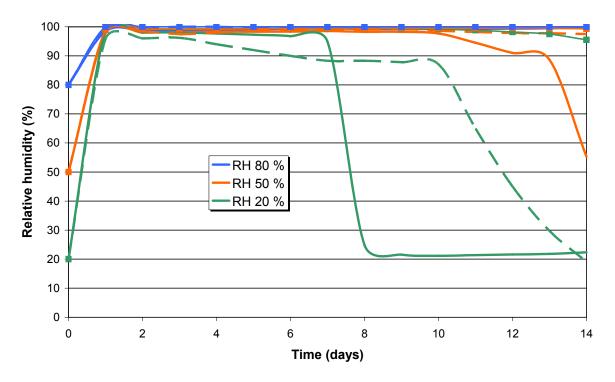

The measured relative humidity of the chamber air as a function of time for paints A and C, all three adhesives, plasters A and C, and the gypsum board on a glass plate in a climate chamber is presented in Figures 29-31. The relative humidity values in the legend boxes denote the target relative humidity, which is also the relative humidity of an empty chamber ± 5 % RH. The start of a test is denoted by time 0. Paints and gypsum board do not affect the relative humidity of the chamber air almost at all, as can be observed in Figures 29 and 31. However, it is to be noted that the second measurement of the relative humidity in the figures is not until day 1, i.e. 24 hours after the introduction of a sample into a chamber. The adhesives, and especially the plasters, do however affect it. A slower drying of adhesives stored at higher relative humidities could also be visually detected, since they turned from white to colourless during the drying process and this change occurred later the higher the relative humidity of the test chamber air.

Figure 29. The measured relative humidity of the test chamber air. Paint A is marked by a solid line and paint C by a dashed line. The legend box indicates the target relative humidity. Duplicate VOC-samples were collected at the age of 1, 14, and 28 days.

Figure 30. The measured relative humidity of the test chamber air. Adhesive A is marked by a solid line and adhesive C by a dashed line. The measurement period for adhesive B (boxed line) was 14 days. The legend box indicates the target relative humidity. Duplicate VOC-samples were collected at the age of 1, 14, and 28 days (adhesives A and C) and at 1, 7, and 14 days (adhesive B).


Figure 31. The measured relative humidity of the chamber air. Plaster A is marked by a solid line and plaster C by a dashed line. The sample thickness of the plasters was 3 mm. The gypsum board is marked by a boxed line. The legend box indicates the target relative humidity. Duplicate VOC-samples were collected at the age of 1, 14, and 29 days (plaster A), at 1, 14, and 27 days (plaster C) and at 1, 14, and 28 days (gypsum board).

Both plasters had condensed moisture on the chamber walls and lid in the RH 50 % and RH 80 % chambers. This condensation was non-observable after 1 day (plaster A) and after 9 days (plaster C) in the RH 50 % chamber. Regarding the RH 80 % chamber, plaster A had no observable condensation after 22 days, while plaster C had condensation throughout the whole testing period of 27 days. The high relative humidity of the storing conditions made the plasters feel soft at the time when they were removed from the test chambers. This could also be noted as reduced cohesion and adhesion during FTIR-sample preparation.


7.5.2 Part II. Material combinations on a glass substrate

The measured relative humidity as a function of time of primers and their respective paints and plasters with their respective fillers (note: plaster C has no filler) spread onto a glass plate and introduced into a climate chamber (time 0) is presented in Figures 32 and 33. Paint C requires a different primer depending on the substrate, which is why its humidity history is presented with both primer A and primer C. Primer A is a water-borne product that is recommended as a primer for both paints A and C and primer C is an alkyd primer recommended for paint C.

The water-borne products affected the relative humidity in the RH 80 % chamber by raising it to 90-95 % during the first day. Otherwise the relative humidity level is unaffected by the paints. (This applies also to the combination of a water-borne primer and alkyd paint). The combinations of filler and plaster A or B and a single, 6 mm layer, of plaster C, on the other hand, kept the relative humidity level high throughout the whole testing period. Only the combinations of filler and plaster A and B in the RH 20 % chamber and filler and plaster A in the RH 50 % chamber had relative humidity values below 95 % before the end of the testing period of 14 days. All samples caused condensation of water on the chamber walls and lid in the RH 50 % and RH 80 % chambers. This condensation was non-observable after 6 days for the combinations of filler and plaster A and B and after 12 days for plaster C in the RH 50 % chamber only. Regarding the RH 20 % chamber, there was no observable condensation for plaster C after 1 day, while the other two product composites caused no observable condensation at all.

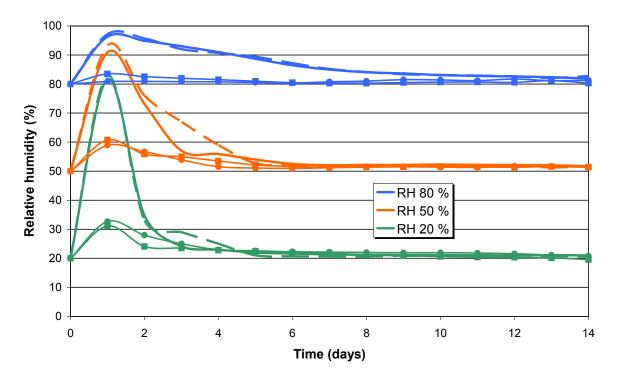
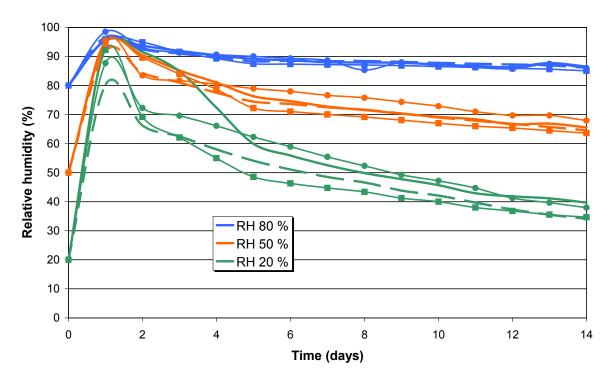

Figure 32. The measured relative humidity of the chamber air. The combination of primer A and paint A is marked by a solid line, primer B and paint B by a dashed line, primer A and paint C by a boxed line, and primer C and paint C by a circled line. The legend box indicates the target relative humidity. Duplicate VOC-samples were collected at the age of 1, 7, and 14 days.

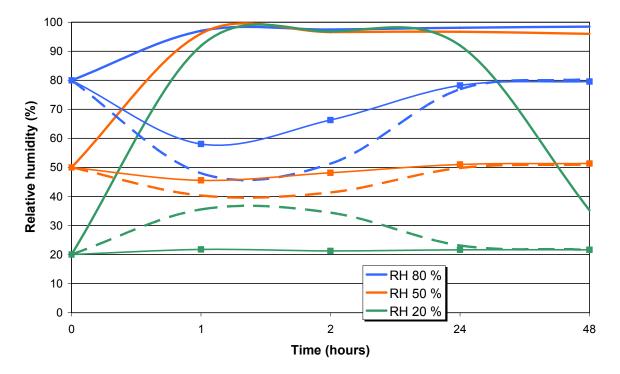
Figure 33. The measured relative humidity of the chamber air. The combination of filler A and plaster A is marked by a solid line, filler B and plaster B by a dashed line, and a 6 mm layer of plaster C by a boxed line. The legend box indicates the target relative humidity. Duplicate VOC-samples were collected at the age of 1, 7, and 14 days.


7.5.3 Part III. Material combinations on gypsum board and CSB

The measured relative humidity as a function of time of the chamber air with adhesives A and B and primers and paints A and B spread onto a gypsum board and introduced into a climate chamber (time 0) is presented in Figure 34. It can be observed that the adhesives caused a higher rise in the relative humidity than does the combinations of primer and paint. The same phenomenon was observed in Figures 30 and 32, where the adhesives and respective combinations of primer and paint were spread onto a glass plate. It can also be observed that the rise is not as high as was the case for the glass plate. This indicates that part of the moisture in the adhesive has been absorbed by the gypsum board. The colour change of the adhesives from white to colourless occurred also earlier than was the case when they were applied onto glass plates. The colour change was more difficult to observe when the adhesives were applied onto plasters because of the colour of the substrate. However, it was noted that adhesive A applied onto the combination of filler and plaster B looked white still after two days in the chamber with the RH 20 % target relative humidity. This can be observed also in Figure 35. It can also be observed regarding the combinations of primer and paint A and B that the gypsum board had absorbed some of the moisture from the primer already during sample preparation and this contributed to the rise in the relative humidity in the chambers with RH 20 % and RH 50 % target relative humidities.

Figure 34. The measured relative humidity of the chamber air. Adhesives A and B spread onto gypsum board are marked by solid and dashed lines, respectively. The combinations of primer A and paint A and primer B and paint B spread onto gypsum board are marked by boxed and circled lines, respectively. The legend box indicates the target relative humidity. Duplicate VOC-samples were collected at the age of 1, 7, and 14 days.

The measured relative humidity as a function of time of the chamber air with adhesives A and B spread onto the combination of filler and plaster B and a 6 mm layer of plaster C and introduced into a climate chamber (time 0) is presented in Figure 35. It can be observed that the humidity level stays higher for a longer period of time than was the case for the gypsum board. This is caused by the moisture evaporating from the plaster (+filler) through the adhesive layer. The humidity level is, however, not as high as it is for plasters without a coating. There are two factors that affect this result. One is that the plasters dried for one day before the application of the moisture in the plaster was most probably absorbed by the calcium silicate brick that the plaster or filler was applied onto. Thus, the measured humidity results indicate that material combinations should be considered as separate entities and no general conclusions should be made based on single structural components. This will be dealt with further in the following chapters.


Figure 35. The measured relative humidity of the chamber air. Adhesive A spread onto the combination of filler and plaster B and a 6 mm layer of plaster C is marked by solid and dashed lines, respectively. Adhesive B spread onto the combination of filler and plaster B and a 6 mm layer of plaster C is marked by boxed and circled lines, respectively. The legend box indicates the target relative humidity. Duplicate VOC-samples were collected at the age of 1, 7, or 14 days depending on the criteria set by the factorial design.

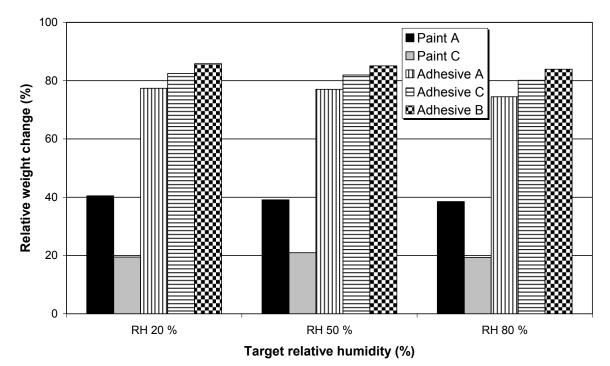
The measured relative humidity as a function of time of the chamber air with the combinations of primer A and paint A and primer B and paint B spread onto the combination of filler B and plaster B and a 6 mm layer of plaster C and introduced into a climate chamber (time 0) is presented in Figure 36.

Figure 36. The measured relative humidity of the chamber air. The combination of primer A and paint A spread onto the combination of filler B and plaster B and a 6 mm layer of plaster C is marked by solid and dashed lines, respectively. The combination of primer B and paint B spread onto the combination of filler B and plaster B and a 6 mm layer of plaster C is marked by boxed and circled lines, respectively. The legend box indicates the target relative humidity. Duplicate VOC-samples were collected at the age of 1, 7, or 14 days depending on the criteria set by the factorial design.

It is to be observed that the second measurement of the relative humidity of the chamber air in Figures 29-36 is at 1 day. Water-borne materials caused a rapid rise of the relative humidity of the chamber air only hours after their introduction into the chamber. This is demonstrated in Figure 37. The relative humidity rises to 90 - 100 % already 1 hour after the introduction of adhesive C spread onto a glass plate irrespective of the initial relative humidity of the chamber air. The relative humidity of the laboratory room at the start of the test was approximately 20 %. The gypsum board causes an initial rise in the humidity level for the first hours at RH 20 % and a small decrease at the other two relative humidities. The relative humidity reaches equilibrium, however, in 24 hours. Paint C also causes an initial decrease of the relative humidity in the RH 50 % and RH 80 % chambers. The relative humidity of the laboratory room at the start of the test was also approximately 30 %. Equilibrium is again reached in about 24 hours.

Figure 37. The measured relative humidity of the chamber air during the first 48 hours of a test. All samples are applied onto a glass plate. Adhesive C is marked by a solid line, gypsum board is marked by a dashed line, and paint C is marked by a boxed line.

7.6 WEIGHT CHANGES


The weight of the samples was recorded during sample preparation and after the chamber measurements were finished for each material/material combination. The results are presented in the following chapters in a chronological order. The numerical values are presented in Appendix B.

7.6.1 Part I. Single material layers on a glass substrate

The relative weight change of paints A and C and adhesives A and C before and after the chamber measurements are shown in Figure 38. The weight change of the water-borne materials (paint A and both adhesives) was smaller the higher the target relative humidity of the chamber air. The weight change of the alkyd resin paint (paint C) was not affected by the relative humidity of the storing conditions. The measured relative humidity values were presented in Figure 30.

The weight change of plasters A and C and the gypsum board are shown in Figure 39. The weight change of plaster A was not affected by the relative humidity of the storing conditions. The weight change of the gypsum board followed that of the water borne materials. This was, on the other hand, an expected result, since the relative humidity of the

laboratory room where the samples were prepared was approximately 30 % at the time of the start of the testing. Thus, the gypsum board absorbed moisture from the surrounding air at RH 80 %, which explains its negative value. The measured relative humidity values were presented in Figure 31.

Figure 38. Relative weight change of paints A and C and adhesives A and C after 28 days and adhesive B after 14 days in respective target relative humidity.

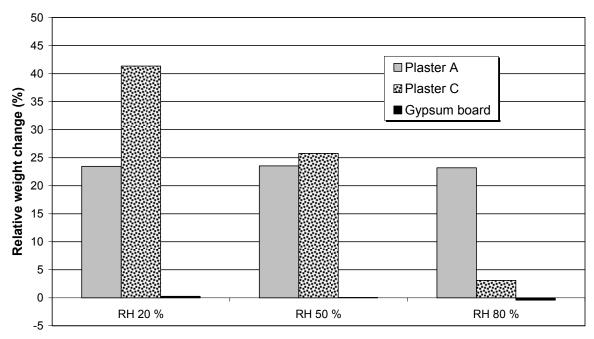
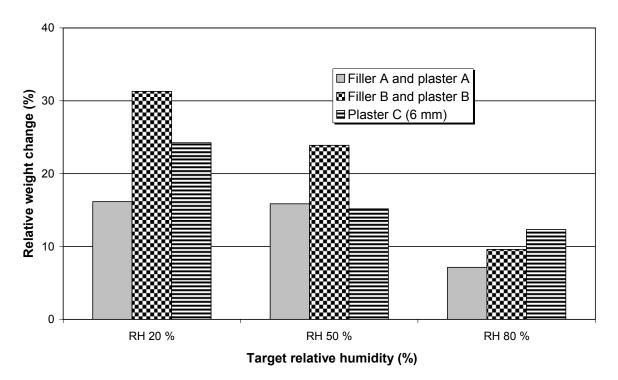


Figure 39. Relative weight change of plasters A and C and the gypsum board after 28 ± 1 day in respective target relative humidity. The thickness of the plaster layer is 3 mm.


7.6.2 Part II. Material combinations on a glass substrate

The relative weight change of the combinations of primer and paint are presented in Figure 40. The relative weight change of the water-borne paints decreased with increasing relative humidity of the storing conditions, as could be expected. The same phenomenon is also observed for the combination of primer A and paint C. This indicates that the paint does not form an impervious layer, but rather an integral product together with its primer. It can also be noted that the relative weight change of the water-borne paints is about 3-times higher than that of the alkyd paint. The measured relative humidity values were presented in Figure 32.

The relative weight change of plasters A and B with their respective fillers and a 6 mm layer of plaster C are presented in Figure 41. The weight change of plaster A was, when used in combination with its filler, affected by the high relative humidity contrary to what was observed for the single layer of the plaster. This indicates that the evaporation from plaster A when applied onto a filler is affected both by the high relative humidity of the surrounding air and by its substrate resulting in a decreased relative weight change. The measured relative humidity values were presented in Figure 33.

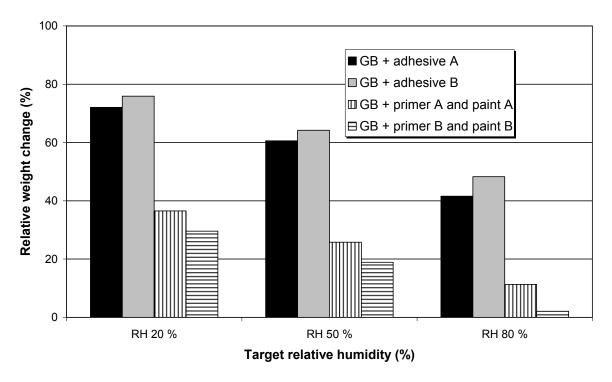
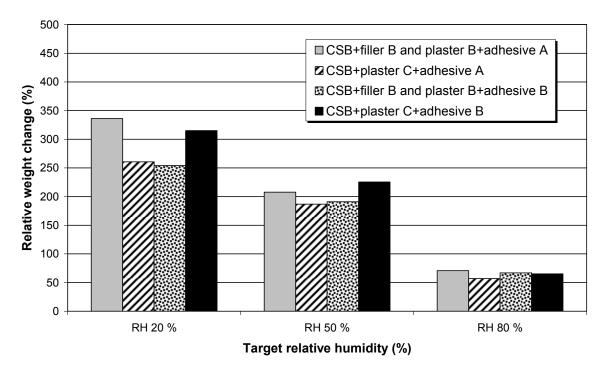
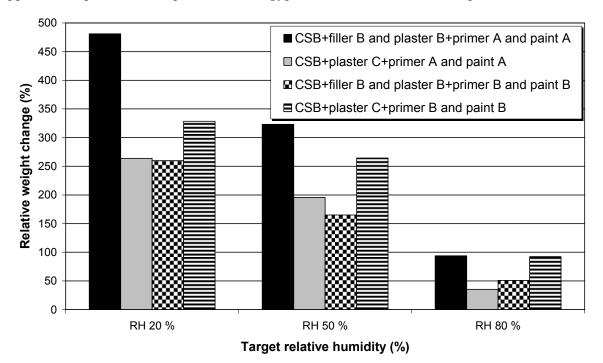

Figure 40. Relative weight change of the different paints after 14 days in respective target relative humidity.

Figure 41. Relative weight change of the different filler and plaster combinations and a 6 mm layer of plaster C after 14 days in respective target relative humidity.


7.6.3 Part III. Material combinations on gypsum board and CSB

The relative weight change of the material combinations applied onto gypsum board (GB) and calcium silicate brick (CSB) are presented in Figures 42-44. The relative weight change of adhesive B applied onto gypsum board is higher than that of adhesive A. The weight change of adhesive B applied onto gypsum board and stored at the different relative humidities is lower and decreases more pronouncedly with increasing relative humidity compared with the glass substrate. This is caused by the fact that the moisture in the adhesive is partly absorbed by the gypsum board. The same observation can be made for the combinations of primer and paint The weight change of the combination of primer A and paint A is higher than that of the combination of primer B and paint B when spread onto gypsum board, as was observed for the glass plate, and the weight change at the different relative humidities is lower and decreases more pronouncedly with increasing relative humidity compared with the glass substrate. The exception to the foregoing is the fact that the relative weight change at the RH 20 % target relative humidity is somewhat higher when primer s and paints are spread onto gypsum board than was the case when they were spread onto glass. This is probably caused by the fact that the gypsum board had absorbed some of the moisture from the primer already during sample preparation and this contributes to the weight change. The measured relative humidity values of material combinations on gypsum board and CSB were presented in Figures 34-36.


Figure 42 Relative weight change of adhesives A and B and the combinations of primer and paint A and B spread onto gypsum board after 14 days in respective target relative humidity.

The combination of filler and plaster B and a 6 mm layer of plaster C cause approximately a 3-4 -times higher relative weight change at the target relative humidities of RH 20 % and RH 50 % when the two adhesives A and B were applied onto them, compared with gypsum board. The difference becomes smaller at the target relative humidity of RH 80 %. The difference in the relative weight change is approximately 8-12 times higher on the combination of filler and plaster B and a 6 mm layer of plaster C applied onto CSB than on the gypsum board as far as the combinations of primer and paint at all three different target relative humidities are concerned. The reason for the difference between paints and adhesives is probably that the paints are more permeable than the adhesives and the contribution from the substrate to the weight change is, thus, bigger.

Figure 43. Relative weight change of adhesives A and B and spread onto filler and plaster B and a 6 mm layer of plaster C applied onto CSB after 14 days in respective target relative humidity.

Furthermore, it can be observed that the combination of filler B and plaster B reverses the internal weight change order between adhesives A and B that was observed for the gypsum board and plaster C. The same is observed for the combinations of primer and paint A and B applied onto plaster C compared with the gypsum board and filler B and plaster B.

Figure 44. Relative weight change of the combinations of primer and paint A and B spread onto the combination of filler and plaster B and a 6 mm layer of plaster C after 14 days in respective target relative humidity.

When comparing the measured relative humidity values, presented in the preceding chapter, with the relative weight changes it can be observed that a higher measured relative humidity corresponds to a bigger relative weight change especially regarding painting products and adhesives independent of the substrate. This is a consequence of water evaporation. Furthermore, there was no observable correlation between relative humidity and the weight change of especially the alkyd paint, but this held, surprisingly, true also for plaster A. Finally, the gypsum board obviously maintained moisture equilibrium with its surroundings.

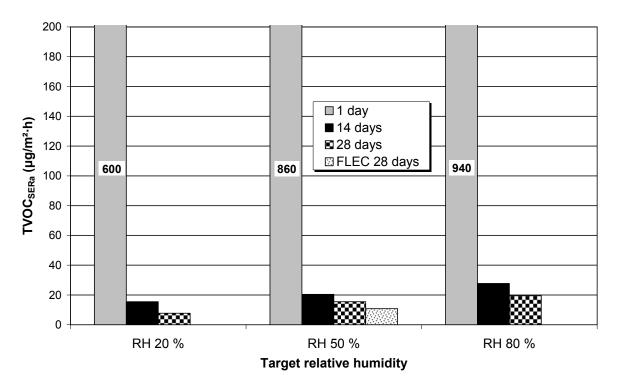
7.7 VOC EMISSIONS

7.7.1 Background VOC concentrations

The background VOC concentrations were measured always before the start of a test series. The results are presented in Appendix C in connection with respective material emission results.

The average background concentration of VOCs of the test chamber air was 21.4 μ g/m³ (81 measurements) and its standard deviation was 14.7 μ g/m³. The average background concentrations were 14.3 μ g/m³, 22.3 μ g/m³, and 27.6 μ g/m³ at RH 20±5 %, RH 50±5 %, and RH 80±5 % target relative humidities, respectively. This could indicate that either the chamber with a higher relative humidity was more difficult to clean due to adsorption of VOCs on the chamber walls or that the deionised water used to adjust the relative humidity of the chamber air was not free of VOCs.

The average background concentration of VOCs measured with the FLEC-cell was 24.9 μ g/m³ (27 measurements) and its standard deviation was 12.9 μ g/m³. However, the result is influenced by the fact that, nevertheless, for some measurements the TVOC concentration was below the detection limit that was the value used in the calculations.


The background concentration was always subtracted from the measured sample concentrations before converting the values into area specific emission rates (SER_a). This might give rise to a small error in the sample concentrations measured at 7, 14, or 28 days from the test chamber air, since the background concentration might decrease with time. However, this was not confirmed.

The area specific emission rates calculated as TVOC (TVOC_{SERa}) and a more detailed study on the behaviour of certain single compounds is presented in the following chapters. All results are calculated as a mean of two consecutively collected (test chamber) or simultaneously collected (FLEC-cell) samples.

7.7.2.1 Paint A

The TVOC_{SERa} of paint A spread onto a glass plate are presented in Figure 45 and the SER_a of the most abundant compounds are presented in Table 21. The TVOC_{SERa} of paint A is higher the higher the relative humidity of the storing conditions irrespective of the point of sample collection when samples are collected from the test chamber. The same trend is observed for the most abundant compounds at 1 day except for 1,2-propanediol. At 14 days the SER_a of all single compounds is $<5 \ \mu g/m^2 \cdot h$ except for 1,2-propanediol at the RH 20 % target relative humidity. At 28 days the SER_a of all single compounds is typically $<1 \ \mu g/m^2 \cdot h$ with a few exceptions. The most conspicuous exception is dichloromethane that is present at the RH 50 % target relative humidity having a SER_a of 29 $\mu g/m^2 \cdot h$. The compound lies, however, outside the TVOC-region and is of unknown origin. What is also noteworthy is that compounds within a chemical group and the number of chemical groups are different at different relative humidities and points of time. The detailed results of samples collected from the test chambers are presented in Appendix C, Tables C2 to C4.

The SER_a of single compounds collected using the FLEC-cell at 28 days is in general so low, $< 2 \mu g/m^2 \cdot h$, that a detailed analysis is superfluous. The only compound with an elevated SER_a is 2-butanone, $6 \mu g/m^2 \cdot h$ emitted from the sample stored at RH 80 % target relative humidity. The samples collected from the environmental chambers also had very low SER_a-values at 28 days, so the results confirm each other. The detailed results of samples collected using the FLEC-cell are presented in Appendix C, Table C110.

Figure 45. TVOC_{SERa} of paint A spread onto a glass plate. The measured relative humidities were 20 ± 5 %, 50 ± 5 %, and 85 ± 2 % at 1 day. At the other sample collection points the measured relative humidities were the same as the target relative humidities $\pm5\%$ RH.

Compound	Te	Test chamber			FLEC-cell		
Compound	20 %	50 %	80 %	20 %	50 %	80 %	
1 day							
1,2-propanediol	570	800	560				
hydrocarbon mixture	260	300	390				
2-(2-ethoxyethoxy)ethanol	130	200	200				
1-dodecene	80	110	210				
texanol	10	15	20				
14 days							
1,2-propanediol	15	2	2				
1-dodecene	4	5	5				
28 days							
1-dodecene	2	2	1	2	2	1	
2-butanone	0	4	0	0	3	6	

Table 21. The most abundant compounds emitted from paint A spread onto a glass plate ($\mu g/m^2 \cdot h$). The relative humidity values indicate the target values of the test chambers.

7.7.2.2 Paint C

The TVOC_{SERa} of paint C spread onto a glass plate are presented in Figure 46 and the SER_a of the most abundant compounds are presented in Table 22. The TVOC_{SERa} of paint C is highest at RH 50 % target relative humidity irrespective of the point of sample collection.

One factor that contributes to the result is the fact that the weight difference between the samples at the start of the test period was quite large. Expressed as factors, the weights of the samples were 1.024, 1.092, and 1.00 at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively. Taking this into consideration it can be deduced that the TVOC_{SERa} of paint C is rather unaffected by the relative humidity of the storing conditions. The main chemical group emitted from paint C at 1 and 14 days is a mixture of hydrocarbons quantified as toluene-equivalents, which contains mainly aliphatic and alicyclic compounds in the boiling point range 130 °C to 250 °C. Their SER_a has the same trend than that of TVOC_{SERa} as regards relative humidity at 1 day, but not anymore at 14 days. Other abundant compounds are different aldehydes and acids. The SER_a of aldehydes is higher the higher the relative humidity of the storing conditions at 1 day, but this trend is not observable later. Acids do not show any trend regarding relative humidity. The most abundant aldehyde is hexanal while the most abundant acid at 1 day is 2-ethylhexanoic acid and later on hexanoic acid. It is also noteworthy that acids with equal or higher boiling points than that of 2ethylhexanoic acid are not present at 1 day but are present later on and that the SER_a of some acids is higher at 28 days than at 14 days. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C6 to C8.

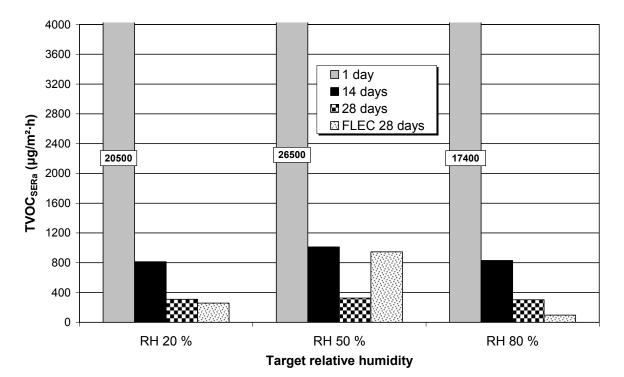
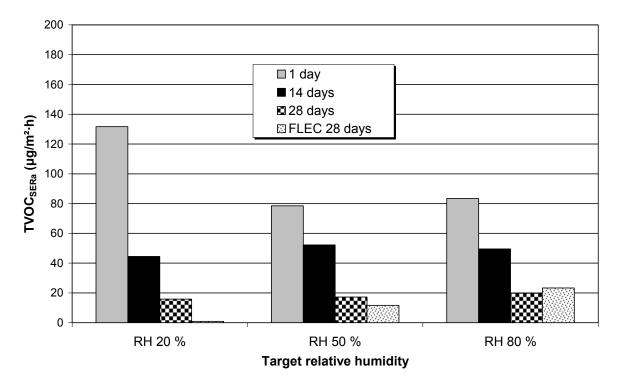


Figure 46. TVOC_{SERa} of paint C spread onto a glass plate. The measured relative humidities were the same as the target relative humidities $\pm 5\%$ RH.

Compound	T	Test chamber			FLEC-cell		
Compound	20 %	50 %	80 %	20 %	50 %	80 %	
1 day							
hydrocarbon mixture	16800	21700	12100				
hexanal	1300	1500	1500				
2-ethylhexanoic acid	800	900	750				
pentanal	450	550	600				
hexanoic acid	350	350	450				
14 days							
hydrocarbon mixture	350	300	250				
hexanoic acid	170	280	240				
2-ethylhexanoic acid	160	170	120				
hexanal	80	100	80	2	2	1	
28 days							
hexanoic acid	320	360	220	280	620	130	
2-ethylhexanoic acid	30	30	30	20	40	10	
hexanal	30	30	30	70	220	25	
pentanoic acid	30	30	15	40	110	10	
acetic acid	15	10	5	75	160	30	


Table 22. The most abundant compounds emitted from paint C spread onto a glass plate ($\mu g/m^2 \cdot h$). The relative humidity values indicate the target values of the test chambers.

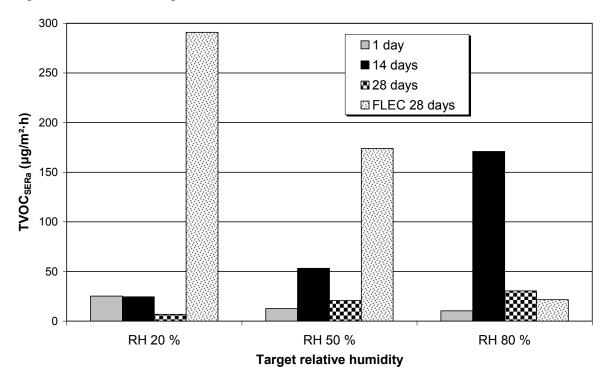
The TVOC_{SERa} of the two different sample collection methods was about equal in size at the target relative humidity of RH 20 %, but FLEC sample collection resulted in a higher TVOC_{SERa} at RH 50 % and a lower TVOC_{SERa} at RH 80 % than what was obtained for test chambers. Hexanoic acid and hexanal were also the most abundant single compounds irrespective of sample collection method at 28 days, but there is quite a big difference in the SER_a-values between the two sample collection methods especially for samples stored at RH 50 % is also the main reason for the differences in TVOC_{SERa}-values between the two sample collection and hexanal and hexanoic acid at RH 50 % is also the main reason for the differences in TVOC_{SERa}-values between the two sample collection and acetic acid was also quite abundant in the samples collected using the FLEC-cell compared with the test chamber. The detailed results of the samples collected using the FLEC-cell are presented in Appendix C, Table C112.

7.7.2.3 *Adhesive A*

The TVOC_{SERa} of adhesive A applied onto a glass plate are presented in Figure 47 and the SER_a of the most abundant compounds are presented in Table 23. There is no clear trend of the TVOC_{SERa} of the adhesive regarding the relative humidity of the storing conditions except for 28 days, when it is higher the higher the relative humidity of the test chamber air irrespective of the sample collection method.

At 1 day the most abundant compounds are acetic acid and propyl benzoate. The SER_a of acetic acid is 1.5-times higher at RH 20 % than at the other two relative humidities. At 14 and 28 days acetic acid is still the most abundant single compound and its SER_a is higher the higher the relative humidity of the storing conditions also for samples collected using the FLEC-cell. Propyl benzoate is no longer observable at 14 days. The number of aliphatic, alicyclic and aromatic compounds increases with time and their SER_a is higher at 28 days than at 14 days, but the SER_a of individual compounds is low, $< 4 \ \mu g/m^2 \cdot h$. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C10 to C12.

Figure 47. TVOC_{SERa} of adhesive A sapplied onto a glass plate. The measured relative humidities were 95 ± 5 %, 97 ± 5 %, and 99 ± 2 % at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively, at 1 day. At the other sample collection points the measured relative humidities were the same as the target relative humidities $\pm5\%$ RH.


The by far most abundant compound in samples collected using the FLEC-cell is acetic acid, as was the case for the samples collected from the test chambers. Its SER_a is also higher the higher the relative humidity of the storing conditions. 2-butanone and butyl phthalate have also somewhat abundant SER_a-values for samples stored at the RH 80 % target relative humidity when collected using the FLEC-cell, i.e. 11 μ g/m²·h and 9 μ g/m²·h, respectively. These compounds were, however, not observed in any of the samples collected from the test chambers. The detailed results of the samples collected using the FLEC-cell are presented in Appendix C, Table C114.

Compound	Test chamber			FLEC-cell		
	20 %	50 %	80 %	20 %	50 %	80 %
1 day						
acetic acid	120	70	75			
propyl benzoate	25	25	30			
14 days						
acetic acid	10	20	70			
p,m-xylene	10	10	10			
28 days						
acetic acid	7	10	25	4	30	55

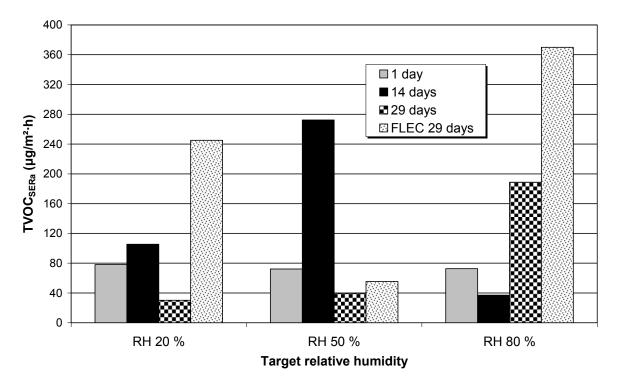
Table 23. The most abundant compounds emitted from adhesive A applied onto a glass plate $(\mu g/m^2 \cdot h)$. The relative humidity values indicate the target values of the test chambers.

7.7.2.4 *Adhesive* C

The TVOC_{SERa} of adhesive C applied onto a glass plate are presented in Figure 48 and the SER_a of the most abundant compounds are presented in Table 24. The TVOC_{SERa} is higher the lower the relative humidity of the storing conditions at 1 day, while the trend is the opposite at 14 and 28 days for samples collected from the test chambers. However, the TVOC_{SERa} is lower the higher the relative humidity of the storing conditions when the samples are collected using the FLEC-cell.

Figure 48. TVOC_{SERa} of adhesive C applied onto a glass plate. The measured relative humidities were 94±5 %, 97±5 %, and 98±2 % at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively, at 1 day. At the other sample collection points the measured relative humidities were the same as the target relative humidities \pm 5% RH.

Compound	Test chamber			FLEC-cell		
	20 %	50 %	80 %	20 %	50 %	80 %
1 day						
acetic acid	340	230	180			
1,2-propanediol	85	40	15			
14 days						
acetic acid	15	60	110			
1,2-propanediol	3	85	230			
28 days						
acetic acid	5	20	30	360	360	50
1,2-propanediol	1	40	50	450	150	55


Table 24. The most abundant compounds emitted from adhesive C applied onto a glass plate $(\mu g/m^2 \cdot h)$. The relative humidity values indicate the target values of the test chambers.

As far as the two most abundant compounds, 1,2-propanediol and acetic acid, are concerned their SER_a follows the same trend as that of TVOC_{SERa} irrespective of time and sample collection method. The SER_a of aldehydes and ketones which were somewhat abundant compounds at 1 day is almost zero at 14 and 28 days. Furthermore it can be noted that the number of aromatic compounds is quite high at 14 and 28 days and that their SER_a is highest at 14 days. The number of chemical groups is higher at 28 days than at 14 days, but the SER_a of the individual compounds is low, < 3 μ g/m²·h for samples collected from the test chambers. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C14 to C16.

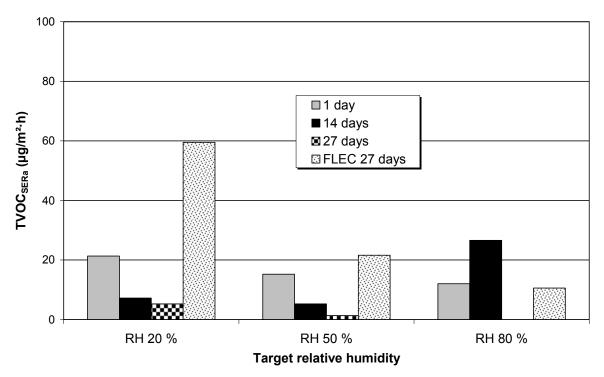
Other significant differences between the two sample collection methods, except the trends of $TVOC_{SERa}$ and the two most abundant species as regards the relative humidity of the storing conditions, are that ketones and esters were observed only using the FLEC-cell. Other chemical groups that are observed only using the FLEC-cell are nitrogen and especially sulphur containing compounds. The detailed results of the samples collected using the FLEC-cell are presented in Appendix C, Table C116.

7.7.2.5 Plaster A

The TVOC_{SERa} of a 3 mm layer plaster A applied onto a glass plate are presented in Figure 49 and the SER_a of the most abundant compounds are presented in Table 25. There is no clear trend of the TVOC_{SERa} of the plaster regarding the relative humidity of the chamber air for samples collected from the test chambers except at 29 days, when it is higher the higher the relative humidity of the storing conditions. However, this trend is not observed for samples collected using the FLEC-cell.

Figure 49. TVOC_{SERa} of a 3 mm layer of plaster A applied onto a glass plate. The measured relative humidities were 99 \pm 5 %, 99 \pm 5 %, and 100 \pm 3 % at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively, at 1 day. The corresponding values were 20 \pm 5 %, 50 \pm 5 %, and 100 \pm 3 % at 14 days, respectively, and at 28 days they were the same as the target relative humidities \pm 5% RH.

Table 25. The most abundant compounds	emitted from plaster A appli	ed onto a glass plate ($\mu g/m^2 \cdot h$).
The relative humidity values indicate the t	arget values of the test chamb	pers.


Compound	Т	est chamb	er	FLEC-cell		
Compound	20 %	50 %	80 %	20 %	50 %	80 %
1 day						
1-methoxy-2-propanol	20	20	20			
1,2-propanediol	10	7	4			
14 days						
1,2-propanediol	160	250	30			
acetic acid	10	15	5			
2-(2-ethoxyethoxy)ethanol	7	35	1			
29 days						
1,2-propanediol	5	20	30	280	50	420
2-(2-ethoxyethoxy)ethanol	3	3	20	8	2	15
bis(2-hydroxypropyl)ether	1	15	30	0	0	5

The SER_a of the other compounds except those presented in Table 25 is $< 5 \ \mu g/m^2 \cdot h$ regardless of the point of sample collection or the sample collection method. The detailed results of the samples collected from the test chambers and by using the FLEC cell are presented in Appendix C, Tables C18 to C20 and Table 118, respectively.

When the TVOC_{SERa} of plaster A and the humidity profiles of the different environmental chambers (Figure 31) is compared, it can be observed that at day 1 the TVOC_{SERa} is relatively low and the relative humidity of all three chambers is approximately 100 %. At 14 days the measured relative humidity of the RH 20 % chamber had been approximately 20 % for seven days, while the measured relative humidity of the RH 50 % chamber had reached the RH 50 % level three days before the time of sample collection. Thus, it is possible that the drying of the plaster in the RH 20 % chamber had lead to a relatively rapid emission process followed by a relatively low and stable, i.e. a diffusion-controlled, emission rate. Thus, the relatively high TVOC_{SERa} of the RH 50 % chamber at 14 days could be a consequence of the drying process that had ended three days before the sample collection. Thus, it is possible that a drying process causes an increase in the SER_a, while a high relative humidity, and possibly also the condensation of water on the chamber walls that was observed and possible sink effects related to it, results in low SER_a.

7.7.2.6 Plaster C

The TVOC_{SERa} of a 3 mm layer of plaster C applied onto a glass plate are presented in Figure 50 and the SER_a of the most abundant compounds are presented in Table 26.

Figure 50. TVOC_{SERa} of a 3 mm layer of plaster C applied onto a glass plate. The measured relative humidities were 99 ± 3 % at all three different target relative humidities at 1 day. The corresponding values were 25 ± 5 %, 50 ± 5 %, and 99 ± 3 % at 14 and 27 days, respectively.

Compound	Test chamber			FLEC-cell		
	20 %	50 %	80 %	20 %	50 %	80 %
1 day						
all compounds	≤ 3	≤ 3	≤ 2			
14 days						
hydrocarbon mixture	0	0	20			
27 days						
p,m-xylene	< 1	< 1	< 1	10	4	1
toluene	-	-	-	15	4	1

Table 26. The most abundant compounds emitted from plaster C applied onto a glass plate ($\mu g/m^2 \cdot h$). The relative humidity values indicate the target values of the test chambers.

The TVOC_{SERa} of plaster C is lower the higher the relative humidity of the storing conditions at 1 and 27 days. The same trend is observed for samples collected using the FLEC-cell at 27 days. At 14 days the TVOC_{SERa} is highest at RH 80 %. This is influenced by a mixture of mainly aliphatic and alicyclic compounds with boiling points between 230 °C and 280 °C, which were quantified as toluene-equivalents. The origin of this hydrocarbon mixture is unknown, but what is interesting is that it is observed also at 14 days at RH 20 % and RH 50 % target relative humidities for the 6 mm layer of the plaster. This will be dealt with in Chapter 7.7.3.6. In general it can be stated that the SER_a of single compounds collected from the test chambers is so low, < 1 μ g/m²·h, that a more detailed analysis is superfluous. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C22 to C24.

The TVOC_{SERa} is about one order of magnitude higher when samples are collected using the FLEC-cell compared with the test chambers. The SER_a of the other compounds except those presented in Table 26 is generally $< 3 \ \mu g/m^2 \cdot h$ irrespective of the storing conditions. The detailed results of the samples collected using the FLEC-cell are presented in Appendix C, Table C120.

As far as plaster C is concerned, it consists of gypsum and probably also of some organic component(s), which was also dealt with in Chapter 7.1.3. However, the amount of organics seems to be small, or at least their effect on the VOC-emissions is negligible in practice, which is also the reason why the connection between relative humidity and emissions referred to in the preceding about plaster A can not be observed.

7.7.2.7 Gypsum board

The TVOC_{SERa} of the gypsum board applied on a sheet of glass are presented in Figure 51 and the SER_a of the most abundant compounds are presented in Table 27.

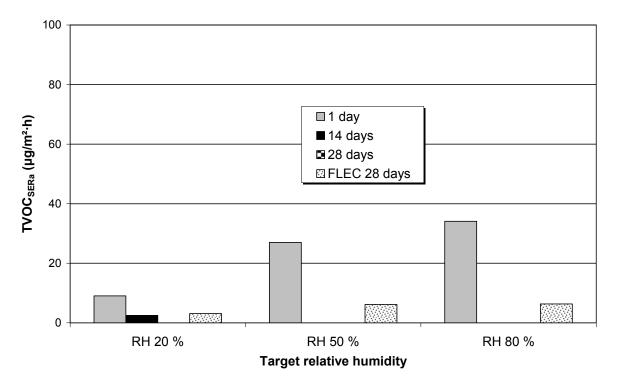


Figure 51. TVOC_{SERa} of the gypsum board applied onto a glass plate. The measured relative humidities were the same as the target relative humidities $\pm 5\%$ RH.

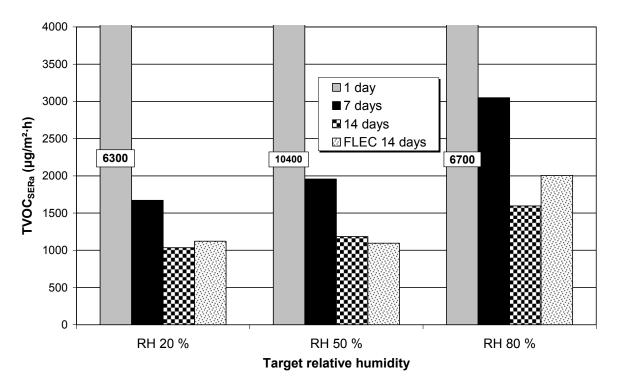
Table 27. The most abundant compounds emitted from the gypsum board applied onto a glass plate
$(\mu g/m^2 \cdot h)$. The relative humidity values indicate the target values of the test chambers.

Compound	T	Test chamber			FLEC-cell			
Compound	20 %	50 %	80 %	20 %	50 %	80 %		
1 day								
hexanal	2	5	10					
halogen containing compounds	5	5	2					
14 days								
all compounds	≤ 1	≤ 1	≤1					
28 days								
all compounds	< 1	< 1	< 1	< 1	≤ 1	≤ 2		

The TVOC_{SERa} of the gypsum board is higher the higher the relative humidity of the storing conditions at 1 day. At 14 and 28 days it is > 0 μ g/m²·h only at RH 20 % at 14 days. The SER_a of the single compounds at 14 and 28 days is so low, $\leq 2 \mu$ g/m²·h, that further analysis is superfluous. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C26 to C28 and the detailed results of the samples collected using the FLEC-cell are presented in Table C122.

A comparison of the TVOC_{SERa}-values at 28 days of the materials studied in Part I with the requirements of the Finnish classification of building materials (CIC 2001) reveal that paint C is the only product not fulfilling the requirement of a TVOC_{SERa}-value $< 200 \ \mu g/m^2 \cdot h$ for

samples collected from the test chamber. All other products, also the adhesives studied although not classified, fulfil the requirement irrespective of the relative humidity of the storing conditions. It is in this context noteworthy that the TVOC_{SERa} of plaster A stored in the RH 80 % chamber is quite close to the reference value. The sample was collected at the age of 29 days. When examining the TVOC_{SERa}-values of the samples collected by using the FLEC-cell, it can be noted that paint C stored in the RH 80 % would fulfil the requirement, while adhesive C stored in the RH 20 % chamber and plaster A stored in the RH 20 % and RH 80 % chambers would not fulfil the requirement.


7.7.3 Part II. VOC emissions from material combinations on a glass substrate

7.7.3.1 Primer A and paint A

The TVOC_{SERa} of the combination of primer A and paint A spread onto a glass plate are presented in Figure 52 and the SER_a of the most abundant compounds are presented in Table 28. The TVOC_{SERa} of the combination of primer A and paint A is higher the higher the relative humidity of the storing conditions for samples collected from the test chamber at 7 and 14 days. At 1 day the TVOC_{SERa} at RH 20 % and RH 80 % target relative humidities is almost equal, while it is approximately 4 mg/m²·h higher at RH 50 %. The differences in the sample weights were less than 2 % at the start of the test, so the reason for the differences in the TVOC_{SERa}-values at 1 day is difficult to explain.

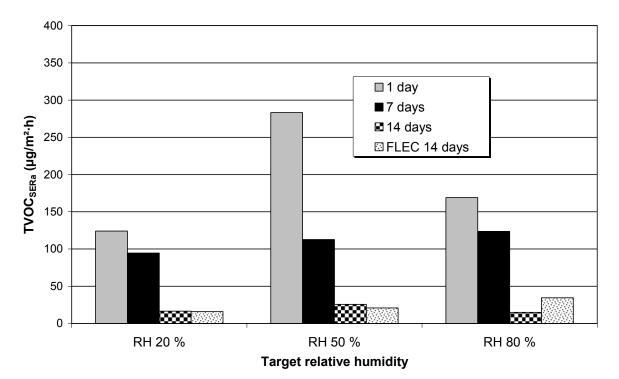
The SER_a of 1,2-propanediol follows that of $TVOC_{SERa}$ regarding the relative humidity of the storing conditions at 1 and 7 days, while the SER_a texanol is higher the higher the relative humidity of the storing conditions. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C34 to C36.

The TVOC_{SERa} of the samples collected by using the FLEC-cell are quite similar to the values obtained from the test chambers. The SER_a of 1,2-propanediol is about twice as high when collected using the FLEC-cell than when collected from the test chamber for samples stored at RH 20 % and RH 80 % target relative humidities. However, the SER_a of texanol and all the other compounds collected are also quite similar irrespective of the sample collection method. The detailed results of the samples collected using the FLEC-cell are presented in Appendix C, Table C126.

Figure 52. TVOC_{SERa} of the combination of primer A and paint A spread onto a glass plate. The measured relative humidities were 20 ± 5 %, 55 ± 5 %, and 90 ± 5 % at 1 day. At the other sample collection points the measured relative humidities were the same as the target relative humidities $\pm5\%$ RH.

Table 28. The most abundant compounds emitted from the combination of primer A and paint A spread onto a glass plate ($\mu g/m^2 \cdot h$). The relative humidity values indicate the target values of the test chambers.

Compound	Te	Test chamber			FLEC-cell		
Compound	20 %	50 %	80 %	20 %	50 %	80 %	
1 day							
1,2-propanediol	3650	5500	2750				
texanol	1700	1800	2000				
2-(2-butoxy-isopropoxy)-2-propanol	110	170	200				
1-dodecene	80	110	190				
7 days							
1,2-propanediol	750	850	1450				
texanol	1100	1150	1350				
14 days							
1,2-propanediol	300	250	650	650	250	1250	
texanol	950	1000	1050	1000	1100	1350	

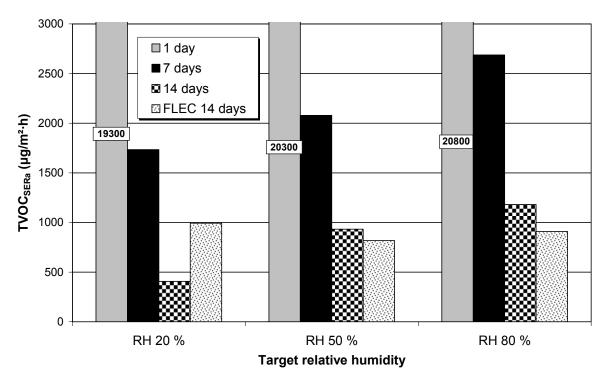

7.7.3.2 Primer B and paint B

The TVOC_{SERa} of the combination of primer B and paint B spread onto a glass plate are presented in Figure 53 and the SER_a of the most abundant compounds are presented in Table

29. The TVOC_{SERa} does not show any clear trend as far as the relative humidity of the storing conditions is concerned for samples collected from the test chamber air. At 1 and 14 days it is highest at RH 50 % and lowest at RH 20 %. At 7 days the TVOC_{SERa} is higher the higher the relative humidity. This holds true also when the samples are collected using the FLEC-cell at 14 days, thus there is a discrepancy in the test results between the two sample collection methods.

The SER_a of the two most abundant compounds, 1,2-propanediol and 2-(2-butoxyethoxy)ethanol, follow the trend of TVOC_{SERa} at 1 and 7 days for samples collected from the test chambers. Acetic acid occurs only at 7 and 14 days. It has a high SER_a-value especially at RH 50 % and RH 80 % target relative humidities. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C38 to C42.

The most abundant compounds are the same irrespective of the sample collection method. However, there is no observable trend regarding the SER_a -values as far as the two methods or the relative humidity of the storing conditions are concerned. The detailed results of the samples collected using the FLEC-cell are presented in Appendix C, Table C128.


Figure 53. TVOC_{SERa} of the combination of primer B and paint B spread onto a glass plate. The measured relative humidities were 20 ± 5 %, 50 ± 5 %, and 95 ± 5 % at 1 day. At the other sample collection points the measured relative humidities were the same as the target relative humidities $\pm5\%$ RH.

Compound	Te	est chamb	oer	FLEC-cell			
	20 %	50 %	80 %	20 %	50 %	80 %	
1 day							
1,2-propanediol	150	600	110				
2-(2-butoxyethoxy)ethanol	20	150	130				
2-(2-ethoxyethoxy)ethanol	15	70	20				
7 days							
1,2-propanediol	60	100	140				
2-(2-butoxyethoxy)ethanol	25	70	90				
2-(2-ethoxyethoxy)ethanol	10	15	20				
acetic acid	0	170	60				
14 days							
1,2-propanediol	25	30	35	70	20	75	
2-(2-butoxyethoxy)ethanol	10	35	35	10	10	25	
2-(2-ethoxyethoxy)ethanol	15	4	3	5	2	5	
acetic acid	30	55	50	40	40	45	

Table 29. The most abundant compounds emitted from the combination of primer B and paint B spread onto a glass plate ($\mu g/m^2 \cdot h$). The relative humidity values indicate the target values of the test chambers.

7.7.3.3 Primer A and paint C

The TVOC_{SERa} of the combination of primer A and paint C spread onto a glass plate are presented in Figure 54 and the SER_a of the most abundant compounds are presented in Table 30. The TVOC_{SERa} is higher the higher the relative humidity of the storing conditions irrespective of the point of sample collection for samples collected from the test chambers, while it is of approximately equal size for samples collected using the FLEC-cell.

Figure 54. TVOC_{SERa} of the combination of primer A and paint C spread onto a glass plate. The measured relative humidities were the same as the target relative humidities $\pm 5\%$ RH at every sample collection point.

Only aldehydes and ketones follow the trend of $\text{TVOC}_{\text{SERa}}$ as regards the relative humidity of the chamber air irrespective of the point of sample collection. Also texanol follows the same trend, but only at 7 and 14 days. The trend of texanol applies also to samples collected using the FLEC-cell. When examining the other results of the samples collected using the FLEC-cell, it can be observed that the hydrocarbon mixture, aldehydes, ketones, and some acids have a lower SER_a the higher the relative humidity of the storing conditions.

A comparison of the results from the two sample collection methods shows that the SER_a of single compounds are approximately of equal size, except that the SER_a of aldehydes are higher and that of acids are lower when collected using the FLEC-cell compared with samples collected from the chamber air. It can also be observed in Table 30 that the SER_a of 1,2-propanediol is distinctly higher for the sample stored at RH 20 % target relative humidity when collected using the FLEC-cell than when collected from the test chamber air. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C42 to C44, and the detailed results of the samples collected using the FLEC-cell are presented in Table C130.

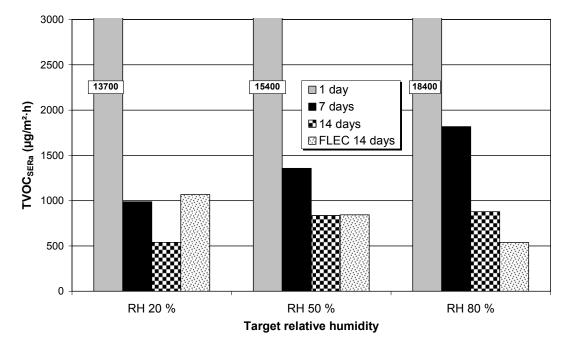

Compound	Te	Test chamber			FLEC-cell			
Compound	20 %	50 %	80 %	20 %	50 %	80 %		
1 day								
hydrocarbon mixture	8100	8700	8500					
1,2-propanediol	7300	7600	7200					
texanol	2500	2600	2550					
hexanal	1750	2000	2500					
undecane	2050	1900	1950					
hexanoic acid	800	1000	900					
7 days								
hydrocarbon mixture	400	450	400					
1,2-propanediol	1200	1200	1850					
texanol	500	650	1000					
hexanal	200	200	250					
undecane	40	40	35					
hexanoic acid	300	400	350					
14 days								
hydrocarbon mixture	130	130	140	200	110	50		
1,2-propanediol	470	450	560	700	460	550		
texanol	210	320	530	210	290	500		
hexanal	70	75	80	150	95	55		
undecane	15	10	10	10	5	2		
hexanoic acid	180	250	230	190	170	150		

Table 30. The most abundant compounds emitted from the combination of primer A and paint C spread onto a glass plate ($\mu g/m^2 \cdot h$). The relative humidity values indicate the target values of the test chambers.

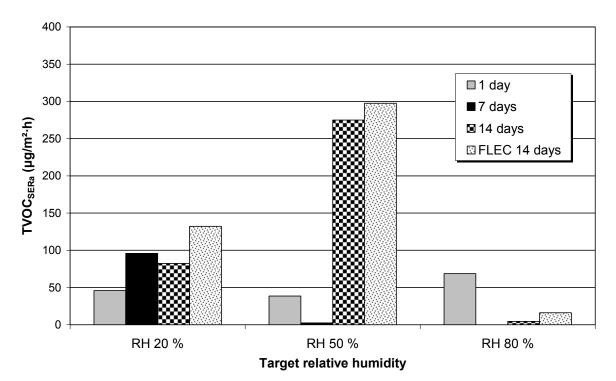
7.7.3.4 Primer C and paint C

The TVOC_{SERa} of the combination of primer C and paint C spread onto a glass plate are presented in Figure 55 and the SER_a of the most abundant compounds are presented in Table 31. The TVOC_{SERa} is higher the higher the relative humidity irrespective of storing conditions or the point of sample collection for samples collected from the test chambers, while the trend is the opposite for samples collected using the FLEC-cell.

The hydrocarbon mixture and aldehydes follow the trend of $TVOC_{SERa}$ as regards the relative humidity of the chamber air for samples collected from the test chamber air. When examining the results of the samples collected using the FLEC-cell, it can be observed that aliphatic hydrocarbons, 1-pentanol, some aldehydes and ketones, and most acids have a lower SER_a the higher the relative humidity of the storing conditions, which is the opposite to what can be observed from the test chamber results as far as the hydrocarbon mixture and aldehydes are concerned. This is also the major reason for the difference in the TVOC_{SERa}-values between the two sample collection methods for samples stored in the RH 20 % and RH 80 % target relative humidity chambers.

Figure 55. TVOC_{SERa} of the combination of primer C and paint C spread onto a glass plate. The measured relative humidities were the same as the target relative humidities $\pm 5\%$ RH at every sample collection point.

Table 31. The most abundant compounds emitted from the combination of primer C and paint C
spread onto a glass plate (μ g/m ² ·h). The relative humidity values indicate the target values of the test
chambers.


Compound	Te	Test chamber			FLEC-cell			
	20 %	50 %	80 %	20 %	50 %	80 %		
1 day								
hydrocarbon mixture	7500	8500	10500					
undecane	2000	2100	2400					
hexanal	1300	1600	2400					
hexanoic acid	1000	1000	800					
2-ethylhexanoic acid	1000	1000	800					
7 days								
hydrocarbon mixture	400	500	750					
undecane	70	80	20					
hexanal	100	160	280					
hexanoic acid	420	560	590					
2-ethylhexanoic acid	150	210	260					
14 days								
hydrocarbon mixture	180	250	330	410	310	180		
undecane	25	30	15	55	25	5		
hexanal	50	90	150	120	110	110		
hexanoic acid	310	430	410	480	420	340		
2-ethylhexanoic acid	70	120	150	70	85	90		

The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C46 to C48, and the detailed results of the samples collected using the FLEC-cell are presented in Table C132.

7.7.3.5 Filler A and plaster A

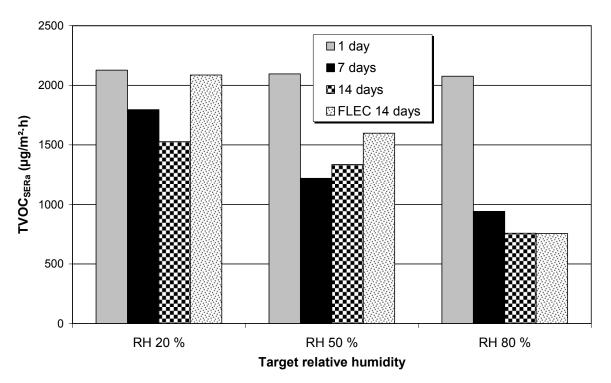
The TVOC_{SERa} of the combination of filler A and plaster A applied onto a glass plate are presented in Figure 56 and the SER_a of the most abundant compounds are presented in Table 32. The TVOC_{SERa} of the combination of filler A and plaster A has no clear trend regarding the relative humidity of the storing conditions irrespective of the point of sample collection or the sample collection method. However, what was noted about the influence of relative humidity and the condensation of moisture on the chamber's inner surfaces on the emission process concerning plaster A (Chapter 7.7.2.5) most probably applies also here. Thus, a moisture content close to 100 % hinders the emission of VOCs and the emission process starts only when the relative humidity of the surrounding air is below a critical value.

The most abundant single compound emitted at 7 and 14 days is 1,2-propanediol and its SER_a is also probably related to the relative humidity of the storing conditions, since its value is quite high already in the RH 20 % chamber at 7 days when the measured relative humidity of the chamber air was approximately 95 %. Since the relative humidity of the RH 50 % chamber has started to decline only three days before the 14 days sample collection point the evaporation of moisture from the sample is probably still quite rapid resulting in a strong emission of 1,2-propanediol. The TVOC_{SERa}-value is also highest at that point for the RH 50 % chamber irrespective of the sample collection method.

Figure 56. TVOC_{SERa} of the combination of filler A and plaster A applied onto a glass plate. The measured relative humidities were 98 ± 3 % at all three different target relative humidities at 1 day. At 7 days the measured values were 95 ± 5 %, 98 ± 3 %, and 98 ± 3 % and at 14 days they were 20 ± 5 %, 55 ± 5 %, and 98 ± 3 % in the RH 20 %, RH 50 %, and RH 80 % chambers, respectively.

Table 32. The most abundant compounds emitted from the combination of filler A and plaster A applied onto a glass plate ($\mu g/m^2 \cdot h$). The relative humidity values indicate the target values of the test chambers.

Compound	Te	Test chamber			FLEC-cell			
Compound	20 %	50 %	80 %	20 %	50 %	80 %		
1 day								
2-(2-butoxyethoxy)ethanol	3	15	50					
1-methoxy-2-propanol	20	15	15					
2-methyl-2-propanol	15	15	25					
7 days								
1,2-propanediol	160	15	0					
1-methoxy-2-propanol	10	8	7					
14 days								
1,2-propanediol	300	600	10	450	800	0		
2-(2-ethoxyethoxy)ethanol	10	55	1	7	35	0		
dipropylene methyl glycol ether	3	25	1	4	25	1		
acetic acid	10	8	5	15	10	8		


When comparing the results from the two sample collection methods it can be observed that the $TVOC_{SERa}$ -values, as well as the SER_a of the single compounds are of equal size, except for 1,2-propanediol, which has approximately 1.5-times higher values when collected using the FLEC-cell compared with that of the samples collected from the chamber air for samples

stored in the RH 20 % and RH 50 % target relative humidity chambers. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C50 to C52, and the detailed results of the samples collected using the FLEC-cell are presented in Table C134.

7.7.3.6 Filler B and plaster B

The TVOC_{SERa} of the combination of filler B and plaster B applied onto a glass plate are presented in Figure 57 and the SER_a of the most abundant compounds are presented in Table 33. The TVOC_{SERa} are of about equal size at 1 day irrespective of the relative humidity of the storing conditions. This probably depends, as was the case for the combination of filler and plaster A, on the fact that the relative humidity of the chamber air was approximately 100 % by the time of sample collection. At 7 and 14 days the TVOC_{SERa} is lower the higher the relative humidity. This trend is observed also for samples collected using the FLEC-cell.

The SER_a of the most abundant compounds follow that of $TVOC_{SERa}$ at 1 and 7 days, except for texanol. At 14 days the most abundant compounds are still the same, but two glycol ethers, 2-(2-ethoxyethoxy)ethanol and 2-(2-butoxyethoxy)ethanol now occur abundantly and their SER_a follow the trend of $TVOC_{SERa}$ irrespective of the sample collection method.

Figure 57. TVOC_{SERa} of filler B and plaster B applied onto a glass plate. The measured relative humidities were 95 ± 3 %, 98 ± 3 %, and 99 ± 3 % at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively, at 1 day. At 7 days the corresponding values were 85 ± 5 %, 99 ± 3 %, and 99 ± 3 % and at 14 days they were 20 ± 5 %, 98 ± 3 %, and 99 ± 3 %.

A comparison of the SER_a of the single compounds as well as the $TVOC_{SERa}$ of the two different sample collection methods shows that the values are somewhat higher when using the FLEC-cell compared with the results from the test chambers. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C54 to C56, and the detailed results of the samples collected using the FLEC-cell are presented in Table C136.

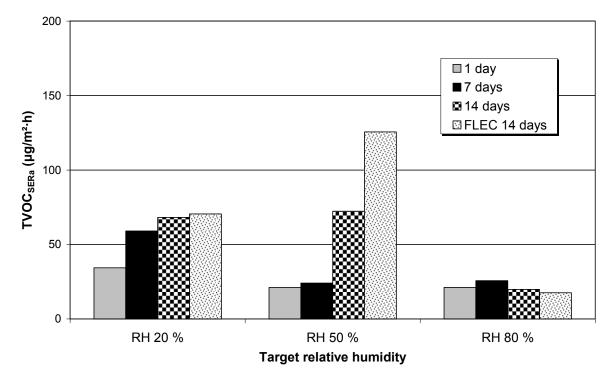

Compound	Te	Test chamber			FLEC-cell			
Compound	20 %	50 %	80 %	20 %	50 %	80 %		
1 day								
2-ethyl-1-hexanol	1300	1200	1200					
4,4-dimethyl-1,3-oxazolidine	530	520	520					
2-methyl-2-propanol	250	210	200					
2-ethylhexyl acetate	150	140	140					
dimethyl perhydro-1,3-oxazine	90	95	90					
7 days								
2-ethyl-1-hexanol	450	400	350					
4,4-dimethyl-1,3-oxazolidine	740	370	270					
texanol	160	150	170					
dimethyl perhydro-1,3-oxazine	130	80	60					
2-ethylhexyl acetate	120	70	50					
14 days								
2-ethyl-1-hexanol	100	140	150	150	170	170		
4,4-dimethyl-1,3-oxazolidine	580	580	300	800	690	220		
texanol	60	150	170	75	150	160		
dimethyl perhydro-1,3-oxazine	100	100	50	130	110	50		
2-ethylhexyl acetate	15	90	40	210	120	50		
2-(2-ethoxyethoxy)ethanol	230	40	10	380	40	6		
2-(2-butoxyethoxy)ethanol	210	140	7	310	170	40		

Table 33. The most abundant compounds emitted from the combination of filler B and plaster B applied onto a glass plate ($\mu g/m^2 \cdot h$). The relative humidity values indicate the target values of the test chambers.

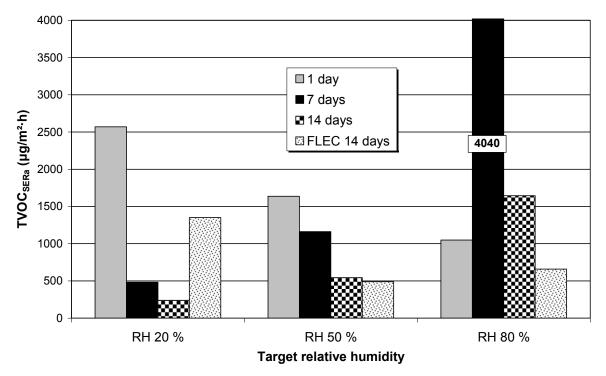
7.7.3.6 *A 6 mm layer of plaster C*

The TVOC_{SERa} of the 6 mm layer of plaster C applied onto a glass plate are presented in Figure 58 and the SER_a of the most abundant compounds are presented in Table 34. The TVOC_{SERa} is generally very low. The number of chemical groups increases with time, but the SER_a-values of the single compounds are still very low. A comparison of the results obtained with the two sample collection methods shows that the results are quite similar. The only exceptions are that the hydrocarbon mixture is only observed in the sample stored at the RH

50 % target relative humidity and that acetic acid is present only when samples are collected using the FLEC -cell.

Figure 58. TVOC_{SERa} of a 6 mm layer of plaster C applied onto a glass plate. The measured relative humidities were 99 ± 3 % at all three different target relative humidities at 1 and 7 days. At 14 days they were 95 ± 3 %, 99 ± 3 %, and 99 ± 3 % at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively.

Compound	T	Test chamber			FLEC-cell		
Compound	20 %	50 %	80 %	20 %	50 %	80 %	
1 day							
acetic acid	40	40	45				
acetone	15	10	15				
7 days							
all compounds	≤4	≤ 3	≤ 3				
14 days							
hydrocarbon mixture	50	55	0	0	65	0	
acetic acid	-	-	-	25	15	25	


Table 34. The most abundant compounds emitted from the 6 mm layer of plaster C applied onto a glass plate ($\mu g/m^2 \cdot h$). The relative humidity values indicate the target values of the test chambers.

A comparison with the emission results from the 3 mm layer of plaster C presented in Chapter 7.7.2.6 shows that the 3 mm layer had no acetic acid-emission at 1 day. The SER_a of acetone was also lower. Neither of these two compounds is included, however, in the TVOC-range. The TVOC_{SERa}-values were about the same irrespective of the layer thickness. The hydrocarbon mixture that was observed at 14 days of the 3 mm layer at RH 80 % is now occurring at 14 days at RH 20 % and RH 50 % target relative humidities. Its origin is unknown, but it could be related to changes in the relative humidity, since the relative

humidity starts to drop a day or two before sample collection (RH 20 % and RH 50 %, 6 mm layer) and there is a small downswing in the relative humidity of the RH 80 % chamber with the 3 mm layer at 14 days. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C58 to C60, and the detailed results of the samples collected using the FLEC-cell are presented in Table C138.

7.7.3.7 *Adhesive B*

The TVOC_{SERa} of adhesive B applied onto a glass plate are presented in Figure 59 and the SER_a of the most abundant compounds are presented in Table 35. The TVOC_{SERa} is lower the higher the relative humidity of the storing conditions at 1 day, while it is higher the higher the relative humidity of the storing conditions at 7 and 14 days for samples collected from the test chambers. The TVOC_{SERa} of the samples collected using the FLEC-cell does not show any trend as regards the relative humidity of the storing conditions.

Figure 59. TVOC_{SERa} of adhesive B applied onto a glass plate. The measured relative humidities were 95 ± 5 %, 95 ± 5 %, 99 ± 3 % at 1 day at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively. The corresponding values at 7 days were 20 ± 5 %, 50 ± 5 %, and 95 ± 3 %, while at 14 days they were the same as the target values ±5 % RH.

The by far most abundant single compound is 2-(2-butoxyethoxy)ethanol. Its SER_a has the same trend as that of the TVOC_{SERa} irrespective of the sample collection method. Other compounds that have elevated SER_a-values are 2-butoxyethanol, 2-(2-butoxyethoxy)ethyl acetate, and acetic acid at 1 day and acetic acid at 7 days. The SER_a of the other compounds is in general $< 2 \mu g/m^2 \cdot h$. The last comment applies to both sample collection methods. The

detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C30 to C32, and the detailed results of the samples collected using the FLEC-cell are presented in Table C124.

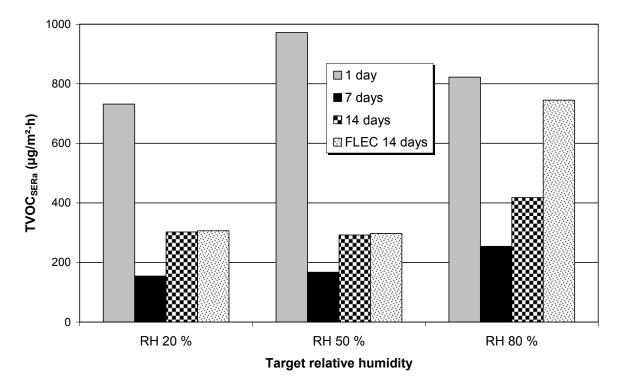
Table 35. The most abundant	compound emitted f	rom adhesive	B applied	onto a	a glass	plate
$(\mu g/m^2 \cdot h)$. The relative humidity	values indicate the targ	et values of the	e test chamb	pers.	-	

Compound	Test chamber			FLEC-cell		
Compound	20 %	50 %	80 %	20 %	50 %	80 %
1 day						
2-(2-butoxyethoxy)ethanol	2850	2000	1350			
7 days						
2-(2-butoxyethoxy)ethanol	790	2140	5890			
14 days						
2-(2-butoxyethoxy)ethanol	380	940	2450	2440	780	1090

7.7.4 Part III. VOC emissions from material combinations on gypsum board and CSB

The materials tested in part III of this study were chosen based on the $TVOC_{SERa}$ -values of the material combinations tested in part II and the $TVOC_{SERa}$ -values of the three adhesives at 14 days. The least and most emitting ones were chosen. The respective $TVOC_{SERa}$ -values are presented in Table 36.

Table 36. TVOC_{SERa}-values of materials and material combinations spread onto a glass plate at 14 days. RH indicates the target relative humidities of the test chambers.


Material or material combination	Те	est chamb	er	FLEC-cell		
Wrater fai of mater fai combination	20 %	50 %	80 %	20 %	50 %	80 %
Primer A and paint A	1040	1180	1600	1122	1095	2005
Primer B and paint B	20	25	15	16	21	35
Primer A and paint C	410	930	1180	994	818	909
Primer C and paint C	540	840	880	1067	844	538
Adhesive A	45	50	50	-	-	-
Adhesive B	240	540	1640	1350	489	659
Adhesive C	25	50	170	-	-	-
Filler A and plaster A	80	280	5	132	298	16
Filler B and plaster B	1530	1340	760	2086	1598	756
6 mm layer of plaster C	70	70	20	71	60	18

The selected materials and material combinations were, thus, the combination of primer A and paint A, the combination of primer B and paint B, adhesive A, adhesive B, the combination of filler B and plaster B, and plaster C. Even though the TVOC_{SERa} of adhesive A was higher than that of adhesive C at the target relative humidity of 20 % (the measured values were the same as the target values ± 5 % RH) the TVOC_{SERa}-values of adhesive A were

more even at the different relative humidities of the storing conditions, which is the reason for its selection.

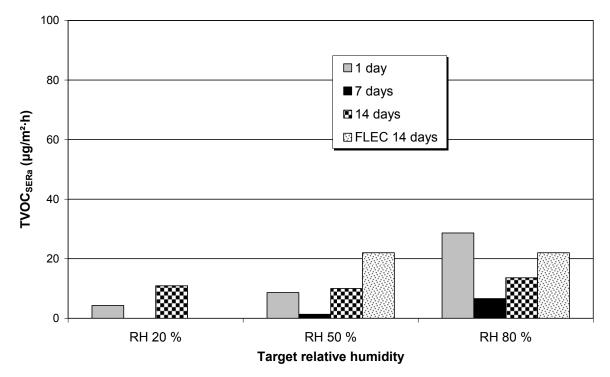
7.7.4.1 The combination of primer A and paint A spread onto gypsum board

The TVOC_{SERa} of primer A and paint A spread onto gypsum board are presented in Figure 60 and the SER_a of the most abundant compounds are presented in Table 37. The TVOC_{SERa} shows no clear trend regarding the relative humidity of the storing conditions irrespective of the point of sample collection or the sample collection method. However, the SER_a of texanol is higher the higher the relative humidity of the storing conditions at 1 day and the same applies to 1,2-propanediol at 14 days when the samples are collected from the test chamber air. Other compounds having SER_a > 10 µg/m²·h at 1 day are 1-dodecene, benzaldehyde, acetone, n-butyl acetate, butyl propanoate, and styrene. The SER_a of butyl ether is higher the higher the relative humidity, while the trend is the opposite for 2-(2-ethoxyethoxy)ethanol and texanol.

Figure 60. TVOC_{SERa} of the combination of primer A and paint A spread onto gypsum board. The measured relative humidities were 30 ± 5 %, 60 ± 5 %, and 85 ± 5 % at 1 day at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively. The corresponding values at 7 and 14 days were the same as the target values ±5 % RH.

Compound	Т	Test chamber			FLEC-cell			
Compound	20 %	50 %	80 %	20 %	50 %	80 %		
1 day								
1,2-propanediol	1550	1680	1150					
texanol	560	670	870					
2-(2-ethoxyethoxy)ethanol	150	140	60					
acetic acid	75	230	40					
7 days								
1,2-propanediol	300	310	450					
texanol	400	380	420					
14 days								
1,2-propanediol	75	160	320	260	170	770		
texanol	350	310	350	290	300	390		

Table 37. The most abundant compounds emitted from the combination of primer A and paint A spread onto gypsum board ($\mu g/m^2 \cdot h$). The relative humidity values indicate the target values of the test chambers.


When comparing the SER_a of the single compounds collected with the two sample collection methods it can be observed that the TVOC_{SERa}, as well as the SER_a of 1,2-propanediol and texanol is of equal size irrespective of the sample collection method especially for samples stored at the RH 50 % target relative humidity. The SER_a of the other compounds observed are in general < 4 μ g/m²·h irrespective of the sample collection method or the relative humidity of the storing conditions, except for acetic acid. Its SER_a is 86 μ g/m²·h for the sample stored at RH 20 % target relative humidity and 24 μ g/m²·h for the sample stored at RH 80 % target relative humidity when collected using the FLEC-cell. This is 10 and 40 - times higher than what was observed for the samples collected from the chamber air, respectively. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C62 to C64, and the detailed results of the samples collected using the FLEC-cell are presented in Table C140.

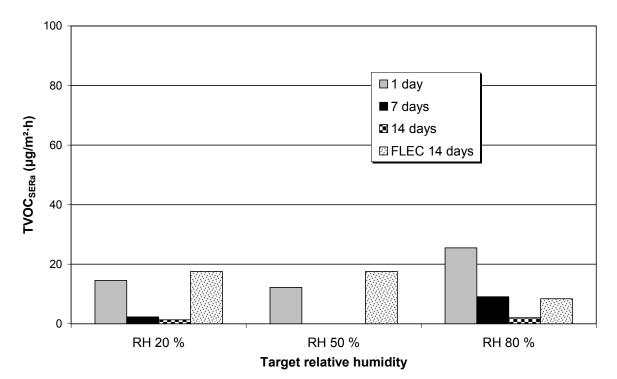
7.7.4.2 The combination of primer B and paint B spread onto gypsum board

The TVOC_{SERa} of primer B and paint B spread onto gypsum board are presented in Figure 61 and the SER_a of the most abundant compounds are presented in Table 38. The TVOC_{SERa} is higher the higher the relative humidity of the storing conditions at 1 day. At 7 and 14 days there is no clear trend regarding the relative humidity, but the TVOC_{SERa} is very low, < 10 μ g/m²·h at 7 days. The values at 14 days in Figure 61 are a bit misleading, since they were, except for one measurement, below the detection limit of 30 μ g/m³, which corresponds to 14 μ g/m²·h irrespective of the sample collection method.

The SER_a of 1,2-propanediol is higher the higher the relative humidity of the storing conditions, while 2-propanol does not have any clear trend regarding relative humidity at 1

day for samples collected from the test chamber air. 2-(2-butoxyethoxy)ethanol is observed only at the target relative humidity of RH 80 %. 2-(2-butoxyethoxy)ethanol and 1,2propanediol have a SER_a > 5 μ g/m²·h at the target relative humidity of RH 80 % at 7 days while it is $\leq 2 \mu$ g/m²·h for the other compounds. At 14 days the SER_a of all compounds, except for acetic acid at RH 50 % and RH 80 %, is $\leq 1 \mu$ g/m²·h.

Figure 61. TVOC_{SERa} of the combination of primer B and paint B spread onto gypsum board. The measured relative humidities were 35 ± 5 %, 60 ± 5 %, and 80 ± 5 % at 1 day at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively. The corresponding values at 7 and 14 days were the same as the target values ±5 % RH.


Table 38. The most abundant compounds emitted from the combination of primer B and paint B spread onto gypsum board ($\mu g/m^2 \cdot h$). The relative humidity values indicate the target values of the test chambers.

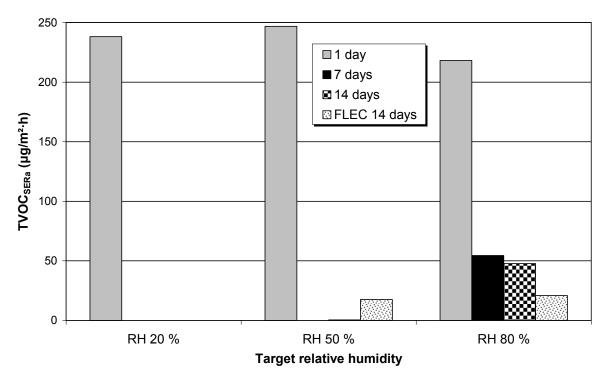
Compound	Te	Test chamber			FLEC-cell		
Compound	20 %	50 %	80 %	20 %	50 %	80 %	
1 day							
2-(2-butoxyethoxy)ethanol	0	0	100				
1,2-propanediol	0	50	70				
2-propanol	20	30	30				
7 days							
2-(2-butoxyethoxy)ethanol	0	0	18				
1,2-propanediol	0	0	9				
14 days							
1,2-propanediol	0	0	5	1	0	2	
acetic acid	1	8	5	0	8	4	

When comparing the results from the two sample collection methods it can be observed that they are very consistent. However, the concentrations of the different compounds are very low. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C66 to C68, and the detailed results of the samples collected using the FLEC-cell are presented in Table C142.

7.7.4.3 Adhesive A applied onto gypsum board

The TVOC_{SERa} of adhesive A applied onto gypsum board are presented in Figure 62 and the SER_a of the most abundant compounds are presented in Table 39.

Figure 62. TVOC_{SERa} of adhesive A applied onto gypsum board. The measured relative humidities were 80 ± 5 %, 90 ± 5 %, and 95 ± 3 % at 1 day at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively. The corresponding values at 7 days were 20 ± 5 %, 50 ± 5 %, and 85 ± 5 %. At 14 days the measured values were the same as the target values ±5 % RH.


The TVOC_{SERa} does not show any clear trend regarding the relative humidity of the storing conditions irrespective of the point of sample collection or the sample collection method, and the level is overall very low. Acetic acid is the most abundant single compound, but its SER_a-values are also low, being highest for the sample stored at the target relative humidity of 80 %. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C70 to C72, and the detailed results of the samples collected using the FLEC-cell are presented in Table C144.

Compound	Te	est chamb	er	FLEC-cell		
Compound	20 %	50 %	80 %	20 %	50 %	80 %
1 day						
acetic acid	15	8	15			
2-methyl-2-propanol	6	7	10			
hexanal	6	6	8			
7 days						
acetic acid	0	3	10			
2-methyl-2-propanol	-	-	-			
hexanal	1	1	1			
14 days						
acetic acid	4	9	15	0	7	15
nonanal	1	1	2	2	2	4
decanal	1	0	1	2	3	6

Table 39. The most abundant compounds emitted from adhesive A applied onto gypsum board $(\mu g/m^2 \cdot h)$. The relative humidity values indicate the target values of the test chambers.

7.7.4.4 Adhesive B applied onto gypsum board

The TVOC_{SERa} of adhesive B applied onto gypsum board are presented in Figure 63 and the SER_a of the most abundant compounds are presented in Table 40.

Figure 63. TVOC_{SERa} of adhesive B applied onto gypsum board. The measured relative humidities were 85 ± 5 %, 95 ± 5 %, and 98 ± 3 % at 1 day at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively. The corresponding values at 7 days were 20 ± 5 %, 50 ± 5 %, and 85 ± 5 %. At 14 days the measured values were the same as the target values ±5 % RH.

Compound	Test chamber			FLEC-cell		
Compound	20 %	50 %	80 %	20 %	50 %	80 %
1 day						
2-(2-butoxyethoxy)ethanol	350	340	290			
acetic acid	15	45	15			
7 days						
2-(2-butoxyethoxy)ethanol	0	4	70			
acetic acid	0	6	15			
14 days						
2-(2-butoxyethoxy)ethanol	0	5	64	0	0	18
acetic acid	5	5	10	0	6	13

Table 40. The most abundant compounds emitted from adhesive B applied onto gypsum board $(\mu g/m^2 \cdot h)$. The relative humidity values indicate the target values of the test chambers.

The TVOC_{SERa} does not show any clear trend regarding the relative humidity of the storing conditions for samples collected from the test chambers. Moreover, it is elevated at 7 and 14 days only for samples stored in the RH 80 % target relative humidity. The same observation can be made also for samples collected using the FLEC-cell, since the value for the RH 50 % chamber is actually below the detection limit, even though the detection limit value has been used in the calculations.

The by far most abundant single compound is 2-(2-butoxyethoxy)ethanol for samples collected from the test chambers. Acetic acid is also quite abundant at all three points of sample collection. These two compounds are also the most abundant ones in the samples collected using the FLEC-cell. The SER_a-values for the other compounds not presented in Table 40 are in general very low irrespective of the point of sample collection or the sample collection method. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C74 to C76, and the detailed results of the samples collected using the FLEC-cell are presented in Table C146.

7.7.4.5 The combination of primer A and paint A spread onto the combination of filler B and plaster B applied onto CSB

The TVOC_{SERa} and the SER_a of the most abundant compounds are presented in Table 41. The TVOC_{SERa}-values are of very equal size irrespective of the sample collection method for each respective storing condition. Of the most abundant compounds 1,2-propanediol, 2-(2-butoxyethoxy)ethanol, and texanol stem mainly from the primer and paint, while 4,4-dimethyl-1,3-oxazolidine and 2-ethyl-1-hexanol stem from the filler and plaster. The SER_a of 1,2-propanediol and 2-(2-butoxyethoxy)ethanol is lower the higher the relative humidity of the storing conditions, opposite to that of TVOC_{SERa}, while the SER_a of texanol, 2-ethyl-1-hexanol and the nitrogen containing compound is higher the higher the relative humidity at 1 day. At 14 days the TVOC_{SERa} and the SER_a of all six compounds is higher the higher the higher the higher the

relative humidity of the storing conditions irrespective of the sample collection method. A comparison of the magnitude of the SER_a -values shows that the sample collection method does not affect the results. This holds true also for the $TVOC_{SERa}$ -values, as been stated above. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C78 to C80, and the detailed results of the samples collected using the FLEC-cell are presented in Table C148.

Table 41. The TVOC_{SERa} and the SER_a of the most abundant compounds emitted from the combination of primer A and paint A spread onto the combination of filler B and plaster B applied onto CSB (μ g/m²·h). The relative humidity values indicate the target values of the test chambers. The measured relative humidities were 80±5 %, 85±5 %, and 90±5 % at 1 day at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively. The corresponding values at 7 and 14 days were 45±5 %, 65±5 %, and 85±5 %.

Compound	Te	Test chamber			FLEC-cell			
Compound	20 %	50 %	80 %	20 %	50 %	80 %		
1 day								
TVOC _{SERa}	3750	-	4830					
1,2-propanediol	2350	-	1750					
texanol	1630	-	1900					
4,4-dimethyl-1,3-oxazolidine	580	-	1150					
2-(2-butoxyethoxy)ethanol	280	-	270					
2-ethyl-1-hexanol	200	-	270					
7 days								
TVOC _{SERa}	-	1600	-					
1,2-propanediol	-	1350	-					
texanol	-	720	-					
4,4-dimethyl-1,3-oxazolidine	-	140	-					
2-(2-butoxyethoxy)ethanol	-	200	-					
2-ethyl-1-hexanol	-	60	-					
14 days								
TVOC _{SERa}	540	-	1140	570	-	1040		
1,2-propanediol	375	-	515	570	-	600		
texanol	285	-	460	295	-	470		
4,4-dimethyl-1,3-oxazolidine	35	-	240	30	-	180		
2-(2-butoxyethoxy)ethanol	85	-	100	85	-	120		
2-ethyl-1-hexanol	35	-	55	50	-	55		

7.7.4.6 The combination of primer A and paint A spread onto plaster C applied onto CSB

The $TVOC_{SERa}$ and the SER_a of the most abundant compounds are presented in Table 42. The $TVOC_{SERa}$ -values are of quite equal size, but the trend regarding the relative humidity of the storing conditions is the opposite for the two sample collection methods. All three of the most

abundant single compounds emitted from primer A and paint A spread onto plaster C applied onto CSB stem from the primer and paint. The SER_a of texanol and 1-dodecene is higher the higher the relative humidity of the storing conditions, similar to that of TVOC_{SERa}, while the SER_a of 1,2-propanediol is lower the higher the relative humidity at 1 day. At 14 days the TVOC_{SERa} and the SER_a of texanol is lower the higher the relative humidity of the storing conditions while the SER_a of 1,2-propanediol has the opposite trend. A comparison of the magnitude of the SER_a-values shows that the samples collected by using the FLEC-cell have higher SER_a-values than those collected from the test chamber air, which contradicts the TVOC_{SERa}-results for samples stored at RH 20 % target relative humidity. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C82 to C84, and the detailed results of the samples collected using the FLEC-cell are presented in Table C150.

Table 42. The TVOC_{SERa} and the SER_a of the most abundant compounds emitted from the combination of primer A and paint A spread onto plaster C applied onto CSB (μ g/m²·h). The relative humidity values indicate the target values of the test chambers. The measured relative humidities were 50±5 %, 75±5 %, and 85±5 % at 1 day at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively. The corresponding values at 7 days were 35±5 %, 65±5 %, and 85±5 % and at 14 days they were 30±5 %, 60±5 %, and 80±5 %.

Compound	Te	Test chamber			FLEC-cell			
Compound	20 %	50 %	80 %	20 %	50 %	80 %		
1 day								
TVOC _{SERa}	2620	3120	-					
1,2-propanediol	2760	2450	-					
texanol	1070	1360	-					
1-dodecene	90	140	-					
butyl ether	50	50	-					
7 days								
TVOC _{SERa}	-	-	940					
1,2-propanediol	-	-	760					
texanol	-	-	570					
1-dodecene	-	-	20					
14 days								
TVOC _{SERa}	450	-	380	390	-	510		
1,2-propanediol	140	-	260	220	-	600		
texanol	300	-	240	330	-	280		
1-dodecene	7	-	10	10	-	10		

7.7.4.7 The combination of primer B and paint B spread onto the combination of filler B and plaster B applied onto CSB

The $TVOC_{SERa}$ and the SER_a of the most abundant compounds are presented in Table 43. The SER_a of 2-ethyl-1-hexanol, 2-(2-butoxyethoxy)ethanol, and 4,4-dimethyl-1,3-oxazolidine is

higher the higher the relative humidity of the storing conditions, while the SER_a of 1,2propanediol and acetic acid is lower the higher the relative humidity of the storing conditions at 1 day, i.e. the SER_a of the two latter compounds has an opposite trend to that of TVOC_{SERa} as regards the relative humidity of the storing conditions. At 14 days the SER_a of the most abundant compounds, acetic acid excluded, follows the trend TVOC_{SERa} being higher the higher the relative humidity of the storing conditions. 1,2-propanediol, (2ethoxyethoxy)ethanol, and 2-(2-butoxyethoxy)ethanol stem from the paint while the other three abundant compounds stem from the plaster.

Table 43. The TVOC_{SERa} and the SER_a of the most abundant compounds emitted from the combination of primer B and paint B spread onto the combination of filler B and plaster B applied onto CSB (μ g/m²·h). The relative humidity values indicate the target values of the test chambers. The measured relative humidities were 55±5 %, 70±5 %, and 85±5 % at 1 day at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively. The corresponding values at 7 days were 35±5 %, 65±5 %, and 85±5 % and at 14 days they were 30±5 %, 60±5 %, and 80±5 %.

Compound	T	est chamb	ber	FLEC-cell			
Compound	20 %	50 %	80 %	20 %	50 %	80 %	
1 day							
TVOC _{SERa}	260	400	1300				
1,2-propanediol	150	110	55				
4,4-dimethyl-1,3-oxazolidine	65	85	820				
2-(2-butoxyethoxy)ethanol	250	420	430				
2-(2-ethoxyethoxy)ethanol	100	200	160				
acetic acid	190	65	0				
2-ethyl-1-hexanol	15	35	160				
7 days							
TVOC _{SERa}	-	-	650				
1,2-propanediol	-	-	35				
4,4-dimethyl-1,3-oxazolidine	-	-	270				
2-(2-butoxyethoxy)ethanol	-	-	260				
2-(2-ethoxyethoxy)ethanol	-	-	80				
acetic acid	-	-	-				
2-ethyl-1-hexanol	-	-	70				
14 days							
TVOC _{SERa}	25	-	320	25	-	320	
1,2-propanediol	8	-	20	25	-	35	
4,4-dimethyl-1,3-oxazolidine	5	-	160	0	-	80	
2-(2-butoxyethoxy)ethanol	45	-	110	15	-	140	
2-(2-ethoxyethoxy)ethanol	7	-	30	6	-	40	
acetic acid	5	-	3	-	-	-	
2-ethyl-1-hexanol	6	-	40	7	-	40	

When comparing the results of the two sample collection methods it can be observed that the TVOC_{SERa}-values are of equal size. This holds quite well true also for the most abundant

single compounds. The major exception is 4,4-dimethyl-1,3-oxazolidine stored at RH 80 % target relative humidity for which the SER_a is twice as high when collected from the chamber air compared with the FLEC-cell. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C86 to C88, and the detailed results of the samples collected using the FLEC-cell are presented in Table C152.

7.7.4.8 The combination of primer B and paint B spread onto plaster C applied onto CSB

The TVOC_{SERa} and the SER_a of the most abundant compounds are presented in Table 44. At 1 day the TVOC_{SERa} and the SER_a of 2-(2-butoxyethoxy)ethanol and 2-propanol is higher the higher the relative humidity of the storing conditions, while the trend is the opposite for 1,2-propanediol. At 14 days the TVOC_{SERa} and the SER_a of the most abundant compounds is higher the higher the relative humidity of the storing conditions irrespective of the sample collection method. The TVOC_{SERa} and the SER_a-values are also of approximately equal size for the two sample collection methods. 2-(2-butoxyethoxy)ethanol and 1,2-propanediol stem from the paint while the origin of 2-propanol, which is quite abundant at 1 day, is unknown. What is also to be noted is that acetic acid is observed in two out of three samples collected using the FLEC-cell while it is not present in the test chamber samples.

Table 44. The TVOC_{SERa} and the SER_a of the most abundant compounds emitted from the combination of primer B and paint B spread onto plaster C applied onto CSB (μ g/m²·h). The relative humidity values indicate the target values of the test chambers. The measured relative humidities were 65±5 %, 80±5 %, and 90±5 % at 1 day at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively. The corresponding values at 7 days were 50±5 %, 70±5 %, and 85±5 % and at 14 days they were 40±5 %, 65±5 %, and 85±5 %.

Compound	Te	Test chamber			FLEC-cell			
Compound	20 %	50 %	80 %	20 %	50 %	80 %		
1 day								
TVOC _{SERa}	55	-	105					
1,2-propanediol	120	-	60					
2-(2-butoxyethoxy)ethanol	100	-	140					
2-propanol	15	-	25					
7 days								
TVOC _{SERa}	10	-	-					
1,2-propanediol	7	-	-					
2-(2-butoxyethoxy)ethanol	15	-	-					
14 days								
TVOC _{SERa}	5	15	20	10	8	40		
1,2-propanediol	2	2	10	1	2	15		
2-(2-butoxyethoxy)ethanol	3	7	20	2	5	30		
acetic acid	-	-	-	0	25	30		

The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C90 to C92, and the detailed results of the samples collected using the FLEC-cell are presented in Table C154.

7.7.4.9 Adhesive A applied onto the combination of filler B and plaster B applied onto CSB

The $\text{TVOC}_{\text{SERa}}$ and the SER_{a} of the most abundant compounds are presented in Table 45. The $\text{TVOC}_{\text{SERa}}$ does not have any clear trend as regards the relative humidity of the storing conditions at 1 day, but at 14 days it is higher the higher the relative humidity irrespective of the sample collection method.

Table 45. The TVOC_{SERa} and the SER_a of the most abundant compounds emitted from adhesive A applied onto the combination filler B and plaster B applied onto CSB (μ g/m²·h). The relative humidity values indicate the target values of the test chambers. The measured relative humidities were 95±3 % at all three different target relative humidities at day 1. At 7 days the measured values were 50±5 %, 70±5 % and 85±5 %at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively. The corresponding values at 14 days were 40±5 %, 65±5 %, and 85±5 %.

Compound	T	est chamb	ber	FLEC-cell			
Compound	20 %	50 %	80 %	20 %	50 %	80 %	
1 day							
TVOC _{SERa}	2750	2950	2750				
4,4-dimethyl-1,3-oxazolidine	1650	1900	1750				
2-ethyl-1-hexanol	670	540	530				
dimethyl perhydro-1,3-oxazine	260	300	270				
2-(2-butoxyethoxy)ethanol	190	210	190				
acetone	80	65	55				
7 days							
TVOC _{SERa}	-	-	950				
4,4-dimethyl-1,3-oxazolidine	-	-	510				
2-ethyl-1-hexanol	-	-	90				
dimethyl perhydro-1,3-oxazine	-	-	60				
2-(2-butoxyethoxy)ethanol	-	-	285				
2-(2-ethoxyethoxy)ethanol	-	-	110				
14 days							
TVOC _{SERa}	130	-	580	100	-	660	
4,4-dimethyl-1,3-oxazolidine	45	-	305	15	-	360	
2-ethyl-1-hexanol	30	-	55	15	-	40	
texanol	3	-	45	4	-	55	
2-(2-butoxyethoxy)ethanol	35	-	150	55	-	180	
2-(2-ethoxyethoxy)ethanol	15	-	50	25	-	55	

The trend of $\text{TVOC}_{\text{SERa}}$ applies also to the most abundant single compounds. However, it is to be noted that the measured relative humidity of all three chambers was approximately equal at 1 day. All five most abundant single compounds at 1 day stem from the filler and plaster. The major differences at 7 and 14 days compared with 1 day is that 2-(2-ethoxyethoxy)ethanol and texanol also become quite abundant. However, these two compounds also stem from the filler and plaster.

When comparing the results from the two sample collection methods with each other, it can be observed that also the SER_a of the most abundant compounds follow the trend of $TVOC_{SERa}$ as regards the relative humidity of the storing conditions and that the emission rates are of approximately equal size. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C94 to C96, and the detailed results of the samples collected using the FLEC-cell are presented in Table C156.

7.7.4.10 Adhesive A applied onto plaster C applied onto CSB

The $TVOC_{SERa}$ and the SER_a of the most abundant compounds are presented in Table 46. The $TVOC_{SERa}$ is higher the higher the relative humidity of the storing conditions at 1 day. This applies also at 14 days irrespective of the sample collection method.

Table 46. The TVOC_{SERa} and the SER_a of the most abundant compounds emitted from adhesive A applied onto plaster C applied onto CSB (μ g/m²·h). The relative humidity values indicate the target values of the test chambers. The measured relative humidities were 80±5 %, 90±5 %, and 95±3 % at 1 day at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively. The corresponding values were 50±5 %, 75±5 % and 90±5 % at 7 days and 35±5 %, 65±5 %, and 85±5 %at 14 days.

Compound	Test chamber			FLEC-cell			
	20 %	50 %	80 %	20 %	50 %	80 %	
1 day							
TVOC _{SERa}	50	-	95				
acetone	15	-	20				
2-propanol	8	-	15				
acetic acid	0	-	25				
7 days							
TVOC _{SERa}	3	-	-				
all compounds	≤ 4	-	-				
14 days							
TVOC _{SERa}	0	0	20	9	10	20	
organic Si-comp.	5	8	8	2	5	6	
acetic acid	0	1	1	10	7	2	
2-propanol	1	1	1	21	2	2	
all other compounds	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	

Besides the three single compounds emitted at 1 day presented in Table 46, also different aldehydes (especially benzaldehyde, nonanal, and decanal) were quite abundant at that point of time. The origin of 2-propanol is unknown to the author while the other compounds stem from both the adhesive and the plaster.

When comparing the results of the two sample collection methods with each other, it can be observed that acetic acid and 2-propanol are quite abundant in the samples collected using the FLEC-cell, while their SER_a-values are ≤ 1 when samples are collected from the test chambers. The origin of the organic Si-compound is unknown to the author. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C98 to C100, and the detailed results of the samples collected using the FLEC-cell are presented in Table C158.

7.7.4.11 Adhesive B applied onto the combination of filler B and plaster B applied onto CSB

The TVOC_{SERa} and the SER_a of the most abundant compounds are presented in Table 47. The TVOC_{SERa} is higher at RH 20 % than at RH 80 % target relative humidities at 1 day, while the result is the opposite at 14 days for samples collected from the test chambers.

The SER_a of 2-(2-butoxyethoxy)ethanol and the nitrogen containing compounds is higher for the samples stored in the RH 20 % target relative humidity chamber than for samples stored in the RH 80 % target relative humidity chamber, as was the case for TVOC_{SERa}. The order of magnitude is the opposite for e.g. 2-ethyl-1-hexanol, acetic acid, ketones and esters. Of the five most abundant single compounds emitted at 1 day 2-(2-butoxyethoxy)ethanol stems mainly from the adhesive, acetic acid from both the adhesive and the combination of filler and plaster, and the other three compounds from the combination of filler and plaster. 2-(2ethoxyethoxy)ethanol that is quite abundant especially at 7 and 14 days stems also from the combination of filler and plaster.

When comparing the results from the two sample collection methods with each other, it can be observed that the results are quite similar. The main difference is that the SER_a of 2-(2butoxyethoxy)ethanol is almost three times higher when collected using the FLEC-cell compared with the sample collected from the test chamber for samples stored at the RH 20 % target relative humidity. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C102 to C104, and the detailed results of the samples collected using the FLEC-cell are presented in Table C160.

Table 47. The TVOC_{SERa} and the SER_a of the most abundant compounds emitted from adhesive B applied onto the combination of filler B and plaster B applied onto CSB (μ g/m²·h). The relative humidity values indicate the target values of the test chambers. The measured relative humidities were 90±5 %, 95±3 %, and 95±3 % at 1 day at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively. The corresponding values were 45±5 %, 70±5 % and 85±5 % at 7 days and 35±5 %, 65±5 %, and 85±5 % at 14 days.

Compound	Te	Test chamber			FLEC-cell			
Compound	20 %	50 %	80 %	20 %	50 %	80 %		
1 day								
TVOC _{SERa}	5100	-	3600					
4,4-dimethyl-1,3-oxazolidine	2350	-	1750					
2-(2-butoxyethoxy)ethanol	2500	-	1700					
2-ethyl-1-hexanol	360	-	600					
dimethyl perhydro-1,3-oxazine	340	-	140					
acetic acid	0	-	110					
7 days								
TVOC _{SERa}	-	1050	-					
4,4-dimethyl-1,3-oxazolidine	-	200	-					
2-(2-butoxyethoxy)ethanol	-	1600	-					
2-ethyl-1-hexanol	-	50	-					
2-(2-ethoxyethoxy)ethanol	-	100	-					
14 days								
TVOC _{SERa}	380	-	1150	850	-	1300		
4,4-dimethyl-1,3-oxazolidine	75	-	280	85	-	330		
2-(2-butoxyethoxy)ethanol	560	-	1500	1450	-	1700		
2-ethyl-1-hexanol	30	-	50	45	-	40		
2-(2-ethoxyethoxy)ethanol	20	-	60	60	-	75		

7.7.4.12 Adhesive B applied onto plaster C applied onto CSB

The TVOC_{SERa} and the SER_a of the most abundant compounds are presented in Table 48. The TVOC_{SERa} is higher at RH 20 % than at RH 50 % target relative humidities at 1 day, while the trend is the opposite at 14 days for samples collected from the test chambers. This applies also to the most abundant single compounds.

The by far most abundant single compound is 2-(2-butoxyethoxy)ethanol, which stems from the adhesive. At 1 day are also aldehydes, acetone, and acetic acid quite abundant. Aldehydes and acetone stem mainly from the plaster, while acetic acid stem from both products.

Table 48. The TVOC_{SERa} and the SER_a of the most abundant compounds emitted from adhesive B applied onto plaster C applied onto CSB (μ g/m²·h). The relative humidity values indicate the target values of the test chambers. The measured relative humidities were 85±5 %, 95±3 %, and 98±3 % at 1 day at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively. The corresponding values were 55±5 %, 75±5 % and 90±5 % at 7 days and 40±5 %, 75±5 %, and 85±5 %at 14 days.

Compound	Te	Test chamber			FLEC-cell		
Compound	20 %	50 %	80 %	20 %	50 %	80 %	
1 day							
TVOC _{SERa}	3300	2400	-				
2-(2-butoxyethoxy)ethanol	7800	5900	-				
acetic acid	110	35	-				
7 days							
TVOC _{SERa}	-	-	850				
2-(2-butoxyethoxy)ethanol	-	-	2150				
14 days							
TVOC _{SERa}	35	-	300	100	-	350	
2-(2-butoxyethoxy)ethanol	85	-	490	200	-	590	
organic Si-comp.	3	-	7	2		12	
all other compounds	≤ 2	-	≤ 3	≤ 2	-	≤ 4	

When comparing the results of the two sample collection methods with each other, it can be observed that the results are quite similar. The main difference is that the SER_a of 2-(2-butoxyethoxy)ethanol is almost three times higher when collected using the FLEC-cell compared with the sample collected from the test chamber for samples stored at the RH 20 % target relative humidity, which is also reflected in the TVOC_{SERa}-values. The detailed results of the samples collected from the test chambers are presented in Appendix C, Tables C106 to C108, and the detailed results of the samples collected using the FLEC-cell are presented in Table C162.

7.7.5 The influence of substrate on VOC-emissions from selected materials and material combinations

The VOC-emissions from selected material combinations will be analysed more thoroughly in the following chapters. This is done to demonstrate the joint influence of the relative humidity of the surrounding air and the different substrates on the emission patterns. FLECresults are not dealt with here, since they were shown to be quite similar to the test chamber results in the preceding chapters.

7.7.5.1 Paint A and the combination of primer A and paint A spread onto a glass plate

The TVOC_{SERa}-values and the SER_a of the most abundant compounds emitted from paint A and the combination of primer A and paint A spread onto glass plates at 1 and 14 days are presented in Table 49. When comparing the results of paint A with those of the combination of primer A and paint A, it is observed that the trend of a higher TVOC_{SERa}-value at a higher relative humidity applies for all other cases except for the combination of primer and paint at day one. The most abundant species are also roughly the same as regards emitted single compounds and chemical groups at 1 day, but the scatter is bigger at 14 days. The main difference is in the SER_a-values, which are one to two orders of magnitude higher for the combination of primer and paint compared to the single paint layer even though both the primer and paint have been classified as low-emitting according to the Finnish classification of indoor climate (CIC 2001).

Table 49. The major emissions from paint A and the combination of primer A and paint A spread onto glass plates, (μ g/m²·h). The relative humidity indicates the target relative humidity of the test chambers. The measured values for paint A were 20±5 %, 50±5 %, and 85±2 % at 1 day and at 14 days they were the same as the target relative humidities ±5% RH. The corresponding values for the combination of primer A and paint A were 20±5 %, 55±5 %, and 90±5 % at 1 day and the same as the target relative humidities ±5% RH at 14 days.

<u> </u>		Relative humidity (%)			
Material	Compound	20	50	80	
Paint A	TVOC	600	850	940	
1 day	1-dodecene	80	110	210	
	hydrocarbarbon mixture	260	300	390	
	1,2-propanediol	570	800	560	
	2-(2-ethoxyethoxy)ethanol	130	200	200	
	texanol	13	14	19	
Paint A	TVOC	15	20	30	
14 days	1,2-propanediol	14	2	2	
	1-dodecene	4	5	5	
	texanol	3	4	4	
Primer and paint A	TVOC	6470	10400	6730	
1 day	1-dodecene	75	110	190	
	hydrocarbarbon mixture	-	-	-	
	1,2-propanediol	3650	5500	2770	
	2-(2-ethoxyethoxy)ethanol	65	115	60	
	2-(2-butoxyethoxy)ethanol	11	165	200	
	texanol	1680	1800	2020	
Primer and paint A	TVOC	1040	1180	1600	
14 days	1,2-propanediol	295	230	630	
	1-dodecene	5	5	4	
	texanol	930	1020	1030	

The hydrocarbon mixture is not present with the combination of primer and paint while 2-(2butoxyethoxy)ethanol is only present for the combination, so its origin is the primer. The two most abundant compounds, 1,2-propanediol and texanol, are the same in both cases and their SER_a regarding relative humidity also behave similarly. However, the SER_a of texanol is distinctly higher than that of 1,2-propanediol at 14 days compared with 1 day for the combination of primer and paint, which is not the case for the single layer of paint. The general trend is that the SER_a of single compounds decrease with time, but different compounds are observed at different points of time. The detailed results are presented in Appendix C, Tables C2 and C3 (paint A), and C34 and C36 (primer A and paint A).

7.7.5.2 Paint C, the combination of primer A and paint C and the combination of primer C and paint C spread onto a glass plate

The $TVOC_{SERa}$ -values and the SER_a of the most abundant compounds emitted from paint C, the combination of primer A and paint C, and the combination of primer C and paint C at 1 and 14 days are presented in Table 50.

Their TVOC_{SERa}-values are roughly of equal size the biggest differences occurring between paint C and the two combinations of primer and paint at RH 20 % at 14 days (Table 50). It can also be observed that the TVOC_{SERa} of the two combinations of primer and paint is higher the higher the relative humidity of the storing conditions, irrespective of age.

However, the most abundant single compounds differ between the different samples. 2ethylhexanoic acid is not observable for the combination of primer A and paint C at 1 day, but it is present at 14 days and its SER_a is of about the same order of magnitude as for the other two samples. 1,2-propanediol and texanol are only present for the combination of primer A and paint C stemming, thus, from the primer. 2-(2-butoxyethoxy)ethanol that was observed for the combination of primer A and paint A, but not paint A (Table 49) is not observed. On the other hand, paint C emitted 2-(2-etoxyethoxy)ethanol at especially 1 day, but this compound is not observed for the combinations of primer A and paint C or primer C and paint C. Paint C emitted also 2-butanone oxime especially at 1 day and this compound is also observed for the combination of primer A and paint C, but not for the combination of primer C and paint C. Acetic acid and especially propanoic acid have elevated SER_a-values for the combination of primer C and paint C. The single layer of paint C and the combination of primer A and paint C also emit them, but the SER_a-values are lower.

Table 50. The major emissions from paint C, the combination of primer A and paint C, and the combination of primer C and paint C spread onto glass plates, $(\mu g/m^2 \cdot h)$. The relative humidity indicates the target relative humidity of the test chambers. The measured values were the same as the target values $\pm 5\%$ RH.

0		Relative humidity (%)		
Material	Compound	20	50	80
Paint C	TVOC	20500	26500	17400
1 day	pentane	410	430	370
	hydrocarbon mixture	16800	21700	12100
	pentanal	440	530	580
	hexanal	1320	1480	1520
	hexanoic acid	370	360	460
	2-ethylhexanoic acid	820	890	760
Paint C	TVOC	810	1010	830
14 days	pentane	1	3	2
J	hydrocarbon mixture	310	290	260
	pentanal	20	35	25
	hexanal	80	100	80
	hexanoic acid	170	280	240
	2-ethylhexanoic acid	160	170	120
Primer A and paint C	TVOC	19300	20300	20800
1 day	pentane	270	280	240
1 duy	hydrocarbon mixture	8100	8700	8500
	pentanal	370	430	560
	hexanal	1750	2000	2500
	hexanoic acid	780	1030	910
	2-ethylhexanoic acid	-	-	-
	1,2-propanediol	7350	7600	7200
	texanol	2500	2600	2550
Primer A and paint C	TVOC	410	930	1180
14 days	pentane	-	-	-
14 days	hydrocarbon mixture	130	130	140
	pentanal	20	25	20
	hexanal	70	80	80
	hexanoic acid	180	250	225
	2-ethylhexanoic acid	40	70	100
	1,2-propanediol	470	450	560
	texanol	210	320	530
Primer C and paint C	TVOC	13700	15400	18400
1 day	pentane	270	290	275
1 udy	hydrocarbarbon mixture	7500	8400	10300
	pentanal	290	310	420
	hexanal	1300	1600	2400
	hexanoic acid	990	1050	780
	2-ethylhexanoic acid	1000	1020	810
	acetic acid	60	250	360
	propanoic acid	270	380	520
	TVOC			
Primer C and paint C		540	840	880
14 days	pentane	20	15	0
	hydrocarbarbon mixture	180	250	330
	pentanal	20	25	40
	hexanal	50	90	150
	hexanoic acid	310	430	410
	2-ethylhexanoic acid	65	120	150
	acetic acid	60	20	20
	propanoic acid	60	65	45

Pentanal and hexanal are the only compounds occurring in all samples having higher SER_a-values the higher the relative humidity of the storing conditions, except for paint C at 14 days. The same trend is observed also for texanol at 14 days as regards relative humidity. Other phenomena that can be observed are that even though the SER_a of the hydrocarbon mixture of the material combinations are lower than that of paint C, they still contain many higher boiling (\geq decane) aliphatic hydrocarbons with high SER_a-values. It can also be observed that the amount of higher boiling aldehydes increases with age especially for the combined products. The highest boiling aldehyde at 1 day is octanal and 2-octenal, while nonanal and higher boiling aldehydes occur at 7 and 14 days. The general trend is that the SER_a-values of the single compounds decrease with age and the same compounds are observed at different ages, contrary to what was observed for the combination of primer A and paint A. The detailed results are presented in Appendix C, Tables C6 and C7 (paint A), C42 and C44 (primer A and paint C), and C46 and C48 (primer C and paint C).

7.7.5.3 Adhesives A and B applied onto a glass plate

The TVOC_{SERa}-values and the SER_a of the most abundant compounds emitted from adhesives A and B applied onto glass plates at 1 and 14 days are presented in Table 51. The TVOC_{SERa} of adhesive A is of equal size irrespective of the relative humidity of the storing conditions or the point of sample collection. The most abundant single compound is acetic acid. Its SER_a is higher the higher the relative humidity of the storing conditions at 14 days, but does not show any distinct trend at 1 day. Another abundant compound at 1 day is propyl benzoate.

The TVOC_{SERa} of adhesive B spread onto glass plates is higher the lower the relative humidity of the storing conditions at 1 day and higher the higher the relative humidity at 14 days. This same trend can also be observed for, by far, the most abundant single compound, 2-(2-butoxyethoxy)ethanol. The SER_a of acetic acid is higher at 7 days than at 1 day, but is depleted by 14 days.

Even though both adhesives are water-borne PVAc-dispersion products, their emission patterns are quite different. The general trend is that the SER_a-values of the single compounds decrease with age, except for acetic acid (see above), and different compounds are being emitted at different ages and relative humidities. This applies to both adhesives, but what is noteworthy is that the SER_a-values of the other occurring compounds, are generally $\leq 3 \mu g/m^2 \cdot h$. The detailed results are presented in Appendix C, Tables C10 and C11 (adhesive A), and C30 and C32 (adhesive B).

Table 51. The major emissions from adhesives A and B applied onto glass plates, ($\mu g/m^2 \cdot h$). The relative humidity indicates the target relative humidity of the test chambers. The measured relative humidities were 95±5 %, 97±5 %, and 99±2 % at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively, at 1 day for adhesive A. The corresponding values for adhesive B were 95±3 %, 95±3 %, 99±3 %. At 14 days the measured values were the same as the target values ±5 % RH for both adhesives.

		Relative humidity (%)		
Material	Compound	20	50	80
Adhesive A	TVOC	60	55	55
1 day	acetic acid	115	70	75
	propyl benzoate	25	25	30
Adhesive A	TVOC	45	50	50
14 days	acetic acid	10	20	70
Adhesive B	TVOC	2570	1640	1050
1 day	acetic acid	40	10	0
	2-(2-butoxyethoxy)ethanol	2850	1985	1350
Adhesive B	TVOC	240	545	1645
14 days	acetic acid	-	-	-
	2-(2-butoxyethoxy)ethanol	385	940	2450

7.7.5.4 Filler and plaster B, plaster C, and gypsum board applied onto a glass plate

The TVOC_{SERa}-values and the SER_a of the most abundant compounds emitted from the combination of filler and plaster B, a 6 mm layer of plaster C, and the gypsum board applied onto glass plates at 1 and 14 days are presented in Table 52. The TVOC_{SERa} of the combination of filler B and plaster B is higher the lower the relative humidity of the storing conditions irrespective of the point of sample collection. The SER_a of the most abundant compounds is also higher the lower the relative humidity, except for 2-ethylhexyl acetate. Its SER_a is of equal size irrespective of the relative humidity. 2-methyl-2-propanol is depleted during the first week, but texanol, 2-(2-ethoxyethoxy)ethanol, and 2-(2-butoxyethoxy)ethanol have elevated SER_a-values at 14 days even though they did not occur at 1 day. The SER_a of 2-(2-ethoxyethoxy)ethanol, and 2-(2-butoxyethoxy)-ethanol is actually higher at 14 days than at 7 days, while the SER_a of texanol is of equal size at 7 and 14 days for samples stored at the RH 50 % and RH 80 % target relative humidities. It had decreased by half the value at the RH 20 % target relative humidity between 7 and 14 days. In general the TVOC_{SERa} decreases with time, but the SER_a- values of single compounds vary with time and relative humidity. Especially at 7 days there are many compounds present that do not occur at 1 or 14 days. The emissions from the combination of filler B and plaster B are, thus, strongly dependent of the drying conditions.

Table 52. The major emissions from the filler and plaster B, the 6 mm layer of plaster C, and the gypsum board applied onto glass plates, ($\mu g/m^2 \cdot h$). The relative humidity indicates the target relative humidity of the test chambers. The measured relative humidities were 95±3 %, 98±3 %, and 99±3 % at the target relative humidities of RH 20 %, RH 50 %, and RH 80 %, respectively, at 1 day for the combination of filler B and plaster B. The corresponding values at 14 days were 20±5%, 98±3%, and 99±3%. The corresponding values for the 6 mm layer of plaster C were 99±3 % at all three different target relative humidities at 1 day and 95±3 %, 99±3 %, and 99±3 % at 14 days while the gypsum board had the same values as the target relative humidities ±5% RH at both points of time.

		Relative humidity (%)		
Material	Compound	20	50	80
Filler B and plaster B	TVOC	2125	2095	2075
1 day	2-ethyl-1-hexanol	1270	1230	1210
	4,4-dimethyl-1,3-oxazolidine	535	520	515
	2-methyl-2-propanol	255	215	205
	2-ethylhexyl acetate	150	145	145
Filler B and plaster B	TVOC	1525	1335	760
14 days	2-ethyl-1-hexanol	105	145	150
	4,4-dimethyl-1,3-oxazolidine	580	580	300
	2-methyl-2-propanol	-	-	-
	2-ethylhexyl acetate	145	85	45
	texanol	65	150	175
	2-(2-ethoxyethoxy)ethanol	225	35	9
	2-(2-butoxyethoxy)ethanol	215	140	7
Plaster C	TVOC	35	20	20
1 day	acetic acid	40	40	45
	acetone	15	10	15
Plaster C	TVOC	70	70	20
14 days	acetic acid	-	-	-
	acetone	1	1	1
	hydrocarbon mixture	50	55	0
Gypsum board	TVOC	9	25	35
1 day	hexanal	2	6	8
	1-chlorodecane	2	7	7
Gypsum board	TVOC	3	0	0
14 days	hexanal	2	1	1
	1-chlorodecane	0.9	0.4	0.1

The TVOC_{SERa} of plaster C is in general low, but higher at 14 days than at 1 day. This result depends mainly on the mixture of hydrocarbons that is emitted at 14 days and seems to be affected by the humidity conditions. Acetic acid is depleted during the first week, while the SER_a of acetone is also very low, approximately 2 μ g/m²·h at 7 days. The number of compounds emitted increases with age, but their SER_a is very low. It should be noted that there is a marked difference in the emission results between the combination of filler and plaster B and a 6 mm layer of plaster C even though all three products have been classified as low-emitting according to CIC (2001).

The TVOC_{SERa} of the gypsum board is also very low. It is higher the higher the relative humidity of the storing conditions at 1 day, but on the whole it is of equal size compared with plaster C. The gypsum board adsorbed moisture from the surroundings at RH 80 %, but this did not seem to affect its emissions. The compounds emitted at different points of time and at different relative humidities vary slightly, but their SER_a-values are very low. The detailed results are presented in Appendix C, Tables C54 and C56 (filler B and plaster B), C58 and C60 (plaster C), and C26 and C27 (gypsum board).

7.7.5.5 Primer and paint A and primer and paint B spread onto glass and gypsum board

The measured relative humidity values of the combinations of primer and paint A and primer and paint B spread onto glass plate and gypsum board are presented in Table 53. The measured relative humidities when the gypsum board was stored at the different target relative humidities were the same as target relative humidities ± 5 % RH. The TVOC_{SERa}values and the SER_a of the most abundant compounds emitted from the combinations of primer A and paint A and primer B and paint B applied onto glass and gypsum board at 1 and 14 days are presented in Table 54. The TVOC_{SERa} of the combination of primer and paint A is lower when spread onto gypsum board than it is when it was spread onto a glass plate, irrespective of age or the relative humidity of the storing conditions. The difference is approximately 5-10 -fold. The most abundant compounds, 1,2-propanediol and texanol, are the same irrespective of substrate. There are, however, more chemical groups present when the substrate is gypsum board even though their SER_a are in general quite low.

		Target relative humidity (%)			
Material	Time	20	50	80	
Primer and paint A	1 day	20±5 %	55±5 %	90±5 %	
on glass	14 days	20±5 %	50±5 %	80±5 %	
Primer and paint A	1 day	30±5 %	60±5 %	85±3 %	
on gypsum board	14 days	20±5 %	50±5 %	80±5 %	
Primer and paint B	1 day	20±5 %	50±5 %	95±5 %	
on glass	14 days	20±5 %	50±5 %	80±5 %	
Primer and paint B	1 day	35±5 %	60±5 %	80±5 %	
on gypsum board	14 days	20±5 %	50±5 %	80±5 %	

Table 53. The measured relative humidities when the combinations of primer and paint A and primer and paint B were spread onto glass and gypsum board.

The $TVOC_{SERa}$ of the combination of primer and paint B is also lower when spread onto gypsum board than it is when it was spread onto a glass plate, irrespective of age or relative humidity. The difference is approximately 10-30 -fold. The most abundant compounds, 1,2-propanediol and 2-(2-butoxyethoxy)ethanol, are the same irrespective of substrate. 2-

propanol is not observed when the paint is spread onto a glass plate. The occurrence of acetic acid at later ages, especially at 14 days, also applies to both substrates.

		Relat	Relative humidity (%)		
Material	Compound	20	50	80	
Gypsum board	TVOC	9	25	35	
1 day	hexanal	2	6	8	
Gypsum board	TVOC	3	0	0	
14 days	hexanal	2	1	1	
Primer and paint A	TVOC	6470	10400	6730	
1 day on glass	1,2-propanediol	3650	5500	2770	
	texanol	1680	1800	2020	
Primer and paint A	TVOC	1040	1180	1600	
14 days on glass	1,2-propanediol	300	230	630	
	texanol	930	1020	1030	
Primer and paint A	TVOC	730	970	820	
1 day on gypsum board	1,2-propanediol	1550	1680	1150	
	texanol	560	670	870	
Primer and paint A	TVOC	300	290	420	
14 days on gypsum board	1,2-propanediol	75	160	320	
	texanol	350	310	350	
Primer and paint B	TVOC	120	280	170	
1 day on glass	1,2-propanediol	150	620	110	
	2-(2-butoxyethoxy)ethanol	20	140	130	
Primer and paint B	TVOC	20	25	15	
14 days on glass	1,2-propanediol	25	30	35	
	acetic acid	30	55	50	
Primer and paint B	TVOC	4	9	30	
1 day on gypsum board	1,2-propanediol	0	50	70	
	2-(2-butoxyethoxy)ethanol	0	0	100	
Primer and paint B	TVOC	11	10	15	
14 days on gypsum board	1,2-propanediol	0	0	5	
	acetic acid	0.5	8	5	

Table 54. The major emissions from gypsum board, and primer A and paint A and primer B and paint B spread onto glass and gypsum board, $(\mu g/m^2 \cdot h)$.

The TVOC_{SERa} is higher the higher the relative humidity of the storing conditions only for the combination of primer and paint A spread onto glass at 14 days and the combination of primer and paint B spread onto gypsum board at 1 day. In the other cases it is highest at RH 50 % target relative humidity, except for both combinations of primer and paint spread onto gypsum board at 14 days when it is lowest at RH 50 %. Even though the TVOC_{SERa}-values and the SER_a-values of the most abundant compounds are lower when emitted from the gypsum board compared with the glass plate at a specific age there are some differences in the SER_a-values regarding relative humidity. For instance, the SER_a of 2-(2-

butoxyethoxy)ethanol emitted from paint B is at 1 day highest at RH 80 % when emitted from the gypsum board, but highest at RH 50 % when emitted from the glass plate. Thus, relative humidity does not have a clear effect on the VOC-emissions from the combinations of primer and paint as far as TVOC and the emission of the most abundant compounds is concerned, but a substrate effect is obvious.

The detailed results are presented in Appendix C, Tables C26 and C27 (gypsum board), C34 and C36 (primer and paint A on glass), C62 and C64 (primer and paint A on gypsum board), C38 and C40 (primer and paint B on glass), and C66 and C68 (primer and paint B on gypsum board).

7.7.5.6 Adhesives A and B applied onto glass and gypsum board

The measured relative humidity values of adhesives A and B applied onto glass plate and gypsum board are presented in Table 55. The measured relative humidities when the gypsum board was stored at the different target relative humidities were the same as target relative humidities ± 5 % RH. The TVOC_{SERa}-values and the SER_a of the most abundant compounds emitted from adhesives A and B applied onto glass and gypsum board at 1 and 14 days are presented in Table 56.

		Target relative humidity (%)			
Material	Time	20	50	80	
Adhesive A	1 day	95±5 %	97±3 %	99±2 %	
on glass	14 days	20±5 %	50±5 %	80±5 %	
Adhesive A	1 day	80±5 %	90±5 %	95±3 %	
on gypsum board	14 days	20±5 %	50±5 %	80±5 %	
Adhesive B	1 day	95±5 %	95±5 %	99±2 %	
on glass	14 days	20±5 %	50±5 %	80±5 %	
Adhesive B	1 day	85±5 %	95±5 %	98±3 %	
on gypsum board	14 days	20±5 %	50±5 %	80±5 %	

Table 55. The measured relative humidities when adhesives A and B were applied onto glass and gypsum board.

The TVOC_{SERa} is of very equal size, irrespective of the relative humidity of the storing conditions at the respective point of sample collection when adhesive A was applied onto a glass plate and the same trend is roughly maintained when the adhesive is applied onto gypsum board. In general, the TVOC_{SERa} is distinctly lower when the substrate is gypsum board compared with the glass plate. The most abundant single compound is acetic acid in both cases irrespective of the point of sample collection. Its SER_a-value, especially at 7 and 14 days, is higher the higher the relative humidity of the storing conditions when the adhesive is applied onto a glass plate while the trend is the opposite with the gypsum board as substrate. Other abundant compounds emitted when adhesive A is applied onto glass or

gypsum board are propyl benzoate and 2-methyl-2-propanol, respectively. Since propyl benzoate emits from the adhesive when it is spread onto a glass plate, it can be deduced to be characteristic for the adhesive. The origin of 2-methyl-2-propanol is, however, unknown. A fourth compound emitted from adhesive A with an elevated SER_a-value, i.e. > 5 μ g/m²·h, at 1 day is hexanal. It was not observed when the adhesive was applied onto a glass plate and stems, thus, from the gypsum board.

		Relative humidity (%)		
Material	Compound	20	50	80
Gypsum board	TVOC	9	25	35
1 day	hexanal	2	6	8
Gypsum board	TVOC	3	0	0
14 days	hexanal	2	1	1
Adhesive A	TVOC	60	55	55
1 day on glass	acetic acid	120	70	75
	propyl benzoate	25	25	30
Adhesive A	TVOC	45	50	50
14 days on glass	acetic acid	10	20	70
	propyl benzoate	-	-	-
Adhesive A	TVOC	15	10	25
1 day on gypsum board	acetic acid	15	8	15
	2-methyl-2-propanol	6	7	10
Adhesive A	TVOC	1	3	2
14 days on gypsum board	acetic acid	4	9	16
	2-methyl-2-propanol	-	-	-
Adhesive B	TVOC	2570	1640	1050
1 day on glass	acetic acid	40	10	0
	2-(2-butoxyethoxy)ethanol	2850	1990	1350
Adhesive B	TVOC	240	540	1640
14 days on glass	acetic acid	-	-	-
	2-(2-butoxyethoxy)ethanol	380	940	2450
Adhesive B	TVOC	240	250	220
1 day on gypsum board	acetic acid	15	45	15
	2-(2-butoxyethoxy)ethanol	350	340	290
Adhesive B	TVOC	0	0	50
14 days on gypsum board	acetic acid	5	5	10
	2-(2-butoxyethoxy)ethanol	0	5	65

Table 56. The major emissions from gypsum board, and adhesives A and B applied onto glass and gypsum board, $(\mu g/m^2 \cdot h)$.

The $TVOC_{SERa}$ of adhesive B applied onto glass is lower the higher the relative humidity of the storing conditions at 1 day, while it is higher the higher the relative at 14 days. There is

only one result > 0 μ g/m²·h when the adhesive is applied onto gypsum board at 14 days, i.e. at the RH 80 % target relative humidity. The TVOC_{SERa}-values are lower on the gypsum board compared with the glass plate at a specific point of time, but there are some differences in the SER_a-values and the most abundant compounds.

The SER_a of 2-(2-butoxyethoxy)ethanol emitted from adhesive B is higher the lower the relative humidity of the storing conditions at 1 day and higher the higher the relative humidity at 14 days, irrespective of substrate. It can be concluded that the relative humidity does not have a clear effect on the VOC-emissions from adhesives applied onto glass or gypsum board as far as TVOC is concerned, but it seems to affect the emissions of the most abundant single compounds and a substrate effect is also obvious.

The detailed results are presented in Appendix C, Tables C26 and C27 (gypsum board), C10 and C11 (adhesive A on glass), C70 and C72 (adhesive A on gypsum board), C30 and C32 (adhesive B on glass), and C74 and C76 (primer and paint B on gypsum board).

7.7.5.7 The combination of primer and paint A spread onto different substrates

The measured relative humidity values of the combination of primer and paint A spread onto glass plate, gypsum board, the combination of filler and plaster B, and plaster C are presented in Table 57. The TVOC_{SERa}-values and the SER_a of the most abundant compounds emitted from primer and paint A spread onto different substrates and the emissions from the combination of filler and plaster B and plaster C at 1 and 14 days are presented in Table 58. The dependence of TVOC_{SERa} on the relative humidity of the storing conditions is difficult to deduce from Table 56 partly because of the factorial design that was applied, but there seems to be no clear trend of the TVOC_{SERa} of primer and paint A regarding relative humidity.

		Target relative humidity (%)			
Material	Time	20	50	80	
Primer and paint A	1 day	20±5 %	55±5 %	90±5 %	
on glass	14 days	20±5 %	50±5 %	80±5 %	
Primer and paint A	1 day	30±5 %	60±5 %	85±3 %	
on gypsum board	14 days	20±5 %	50±5 %	80±5 %	
Primer and paint A	1 day	80±5 %	85±5 %	90±5 %	
on filler and plaster B	14 days	45±5 %	65±5 %	85±5 %	
Primer and paint A	1 day	50±5 %	75±5 %	85±5 %	
on plaster C	14 days	30±5 %	60±5 %	80±5 %	

Table 57. The measured relative humidities when the combination of primer and paint A was spread onto different substrates.

Table 58. The major emissions from primer and paint A spread onto different substrates and the emissions from the combination of filler B and plaster B, and plaster C, $(\mu g/m^2 \cdot h)$. The relative humidity indicates the target relative humidity of the test chambers. The measured relative humidities were presented in Table 55.

the presented in Table 55.		Relative humidity (%)		
Material	Compound	20	50	80
Primer and paint A	TVOC	6500	10400	6700
1 day on glass	1,2-propanediol	3660	5500	2770
	texanol	1680	1800	2020
Primer and paint A	TVOC	1040	1180	1600
14 days on glass	1,2-propanediol	295	230	630
	texanol	930	1020	1030
Primer and paint A	TVOC	730	970	820
1 day on gypsum board	1,2-propanediol	1550	1680	1150
	texanol	560	670	870
Primer and paint A	TVOC	300	290	420
14 days on gypsum board	1,2-propanediol	75	150	320
	texanol	350	310	350
Primer and paint A	TVOC	3750	-	4830
1 day on plaster B	1,2-propanediol	2360	-	1750
	texanol	1630	-	1910
Primer and paint A	TVOC	540	-	1140
14 days on plaster B	1,2-propanediol	370	-	510
	texanol	280	-	460
Primer and paint A	TVOC	-	2620	3120
1 day on plaster C	1,2-propanediol	-	2760	2450
	texanol	-	1070	1360
Primer and paint A	TVOC	450	-	380
14 days on plaster C	1,2-propanediol	140	-	260
	texanol	300	-	240
Filler and plaster B	TVOC	2130	2100	2080
1 day	2-ethyl-1-hexanol	1270	1230	1210
	4,4-dimethyl-1,3-oxazolidine	530	520	515
Filler and plaster B	TVOC	1530	1340	760
14 days	2-ethyl-1-hexanol	100	140	150
	4,4-dimethyl-1,3-oxazolidine	580	580	300
Plaster C	TVOC	35	20	20
1 day	acetic acid	40	40	45
	acetone	15	10	15
Plaster C 14 days	TVOC	70	70	20
	acetic acid	-	-	-
	acetone	1	1	1

However, what can be deduced is that the TVOC_{SERa} depends on the substrate and increases in the following order: gypsum board < plaster C < filler and plaster B < glass plate, irrespective of time. The only exception is that the TVOC_{SERa} is of approximately equal size when the combination of primer and paint is spread onto gypsum board or plaster C at 14 days. Another noteworthy observation is that 1,2-propanediol and texanol are the two most abundant compounds emitted from the combination of primer and paint, irrespective of the substrate. Thus, the substrate contributes mainly to the TVOC_{SERa}-value. It can additionally be noticed that the SER_a of 1,2-propanediol is higher the higher the relative humidity of the storing conditions at 14 days irrespective of the substrate while the SER_a of texanol is higher the higher the relative humidity of the storing conditions at 1 day irrespective of the substrate. The detailed results are presented in Appendix C, Tables C34 and C36 (primer and paint A on glass), C62 and C64 (primer and paint A on gypsum board), C78 and C80 (primer and paint A on filler and plaster B), and C82 and C84 (primer and paint A on plaster C). The detailed results of the emissions from gypsum board are presented in Appendix C, Tables 26 and 27, filler and plaster B in Tables C54 and C56 and of plaster C in Tables C58 and C60.

7.7.5.8 The combination of primer and paint B spread onto different substrates

The measured relative humidity values of the combination of primer and paint B spread onto glass plate, gypsum board, the combination of filler and plaster B, and plaster C are presented in Table 59. The $TVOC_{SERa}$ -values and the SER_a of the most abundant compounds emitted from primer and paint B spread onto different substrates and the emissions from the combination of filler and plaster B and plaster C at 1 and 14 days are presented in Table 60.

		Target relative humidity (%)			
Material	Time	20	50	80	
Primer and paint B	1 day	20±5 %	50±5 %	95±5 %	
on glass	14 days	20±5 %	50±5 %	80±5 %	
Primer and paint B	1 day	35±5 %	60±5 %	80±3 %	
on gypsum board	14 days	20±5 %	50±5 %	80±5 %	
Primer and paint B	1 day	55±5 %	70±5 %	85±5 %	
on filler and plaster B	14 days	30±5 %	60±5 %	80±5 %	
Primer and paint B	1 day	65±5 %	80±5 %	90±5 %	
on plaster C	14 days	40±5 %	65±5 %	85±5 %	

Table 59. The measured relative humidities when the combination of primer and paint B was spread onto different substrates.

Table 60. The major emissions from primer and paint B spread onto different substrates and the emissions from the combination of filler B and plaster B, and plaster C, $(\mu g/m^2 \cdot h)$. The relative humidity indicates the target relative humidity of the test chambers. The measured relative humidities were presented in Table 57.

•		Relative humidity (%)			
Material	Compound	20	50	80	
Primer and paint B	TVOC	125	285	170	
1 day on glass	1,2-propanediol	150	620	110	
	2-(2-butoxyethoxy)ethanol	20	145	130	
Primer and paint B	TVOC	15	25	15	
14 days on glass	1,2-propanediol	25	30	35	
	acetic acid	30	55	50	
Primer and paint B	TVOC	4	9	30	
1 day on gypsum board	1,2-propanediol	0	50	70	
	2-(2-butoxyethoxy)ethanol	0	0	100	
Primer and paint B	TVOC	11	10	15	
14 days on gypsum board	1,2-propanediol	0	0	5	
	acetic acid	0.5	8	5	
Primer and paint B	TVOC	260	400	1300	
1 day on filler and	2-(2-butoxyethoxy)ethanol	260	420	430	
plaster B	2-(2-ethoxyethoxy)ethanol	100	200	160	
	1,2-propanediol	150	110	55	
Primer and paint B	TVOC	25	-	325	
14 days on filler	2-(2-butoxyethoxy)ethanol	45	-	115	
plaster B	2-(2-ethoxyethoxy)ethanol	7	-	30	
	1,2-propanediol	8	-	20	
Primer and paint B	TVOC	55	-	105	
1 day on plaster C	2-(2-butoxyethoxy)ethanol	100	-	140	
	1,2-propanediol	120	-	60	
Primer and paint B	TVOC	5	15	20	
14 days on plaster C	2-(2-butoxyethoxy)ethanol	3	7	20	
	1,2-propanediol	2	2	10	
Filler and plaster B	TVOC	2130	2100	2080	
1 day	2-ethyl-1-hexanol	1270	1230	1210	
	4,4-dimethyl-1,3-oxazolidine	530	520	515	
Filler and plaster B	TVOC	1530	1340	760	
14 days	2-ethyl-1-hexanol	100	140	150	
	4,4-dimethyl-1,3-oxazolidine	580	580	300	
Plaster C	TVOC	35	20	20	
1 day	acetic acid	40	40	45	
	acetone	15	10	15	
Plaster C	TVOC	70	70	20	
14 days	acetic acid	-	-	-	
•	acetone	1	1	1	

The dependence of TVOC_{SERa} on relative humidity is again difficult to deduce from the table partly because of the factorial design that was applied, but some observations can still be made. The TVOC_{SERa}-values are highest at the RH 50 % target relative humidity when the combination of primer and paint is spread onto a glass plate, higher the higher the relative humidity of the storing conditions when spread onto gypsum board and the combination of filler and plaster B at 1 day and plaster C at 14 days. It can also be deduced that the TVOC_{SERa} of primer and paint B depends on the substrate and increases in the following order: gypsum board < plaster C < glass plate < filler and plaster B irrespective of time.

Another observation that can be made is that the most abundant compounds change with substrate and age. 2-(2-butoxethoxy)ethanol and 1,2-propanediol are the two most abundant compounds emitted when the primer and paint is spread onto glass and gypsum board at 1 day and when it is spread onto the combination of filler and plaster B or plaster C irrespective of the point of time. Acetic acid replaces 2-(2-butoxethoxy)ethanol when the combination of primer and paint is spread onto glass and gypsum board at 14 days. 2-(2-ethoxyethoxy)ethanol is also very abundant when the combination of primer and paint is spread onto filler and plaster B irrespective of the point of time. 4,4-dimethyl-1,3-oxazolidine is also very abundant at the RH 80 % target relative humidity when the combination of primer and paint is spread onto the combination of filler and plaster B. Thus, it can be concluded that the substrate contributes mainly to the TVOC_{SERa}-value and that the occurrence of single compounds depends on the relative humidity.

It is also noteworthy that the $TVOC_{SERa}$ of the combination of primer and paint B is one to two orders of magnitude lower than that of the combination of primer and paint A irrespective of the substrate, even though all four products have been classified as low-emitting in CIC (2001).

The detailed results are presented in Appendix C, Tables C38 and C40 (primer and paint B on glass), C66 and C68 (primer and paint B on gypsum board), C86 and C88 (primer and paint B on filler and plaster B), and C90 and C92 (primer and paint B on plaster C). The detailed results of the emissions from gypsum board are presented in Appendix C, Tables 26 and 27, filler and plaster B in Tables C54 and C56 and of plaster C in Tables C58 and C60.

7.7.5.9 Adhesive A applied onto different substrates

The measured relative humidity values of adhesive A applied onto glass plate, gypsum board, the combination of filler and plaster B, and plaster C are presented in Table 61. The $TVOC_{SERa}$ -values and the SER_a of the most abundant compounds emitted from the adhesive applied onto different substrates and the emissions from the combination of filler and plaster B and plaster C at 1 and 14 days are presented in Table 62.

		Target relative humidity (%)			
Material	Time	20	50	80	
Adhesive A	1 day	95±5 %	97±5 %	99±3 %	
on glass	14 days	20±5 %	50±5 %	80±5 %	
Adhesive A	1 day	80±5 %	90±5 %	95±5 %	
on gypsum board	14 days	20±5 %	50±5 %	80±5 %	
Adhesive A	1 day	95±5 %	95±5 %	95±5 %	
on filler and plaster B	14 days	40±5 %	65±5 %	85±5 %	
Adhesive A	1 day	80±5 %	90±5 %	95±5 %	
on plaster C	14 days	35±5 %	65±5 %	85±5 %	

Table 61. The measured relative humidities when adhesive A was spread onto different substrates.

The dependence of TVOC_{SERa} on the relative humidity of the surrounding air is again difficult to deduce from Table 60 partly because of the factorial design that was applied, however there seems not to exist any clear trend of the TVOC_{SERa} of adhesive A regarding the relative humidity of the storing conditions. On the other hand, what can be deduced is that the TVOC_{SERa} depends on the substrate and increases in the following order: gypsum board < glass plate < plaster C < filler and plaster B at 1 day, and gypsum board < plaster C < glass plate < filler and plaster B at 14 days. Another noteworthy observation is that the most abundant compounds emitted from the adhesive depend strongly on the substrate.

4,4-dimethyl-1,3-oxazolidine and 2-ethyl-1-hexanol are emitted only when the adhesive is applied onto the combination of filler and plaster B. These were also the most abundant compounds emitted when the filler and plaster combination was applied onto glass plates. 2-(2-butoxehtoxy)ethanol is also quite abundant and stems from the combination of filler and plaster B. The major differences at 7 and 14 days compared with 1 day is that 2-(2-ethoxyethoxy)ethanol and texanol also become quite abundant. The same trend was observed when the combination of filler and plaster B was applied onto a glass plate.

Acetone, nonanal, and decanal are the most abundant compounds when the adhesive is applied onto plaster C. They were also emitted when the adhesive was applied onto glass plates, but their SER_a were $\leq 2 \ \mu g/m^2 \cdot h$ at 1 day and practically 0 at 14 days. The origin of 2-propanol is unknown.

What should also be noted is that the SER_a of acetic is lower when the adhesive is applied onto gypsum board compared with the glass plate. The origin of 2-methyl-2-propanol is unknown. Thus, it can be concluded that the substrate is strongly affecting the VOCemissions from adhesive A as far as TVOC and the most abundant compounds are concerned.

Table 62. The major emissions from adhesive A applied onto different substrates and the emissions from the combination of filler B and plaster B, and plaster C, $(\mu g/m^2 \cdot h)$. The relative humidity indicates the target relative humidity of the test chambers. The measured relative humidities were presented in Table 59.

esented in Table 37.		Relative humidity (%)			
Material	Compound	20	50	80	
Adhesive A	TVOC	60	55	55	
1 day on glass	acetic acid	120	70	75	
	propyl benzoate	25	25	30	
Adhesive A	TVOC	45	50	50	
14 days on glass	acetic acid	10	20	70	
	propyl benzoate	-	-	-	
Adhesive A	TVOC	15	10	25	
1 day on gypsum board	acetic acid	15	8	15	
	2-methyl-2-propanol	6	7	10	
Adhesive A	TVOC	1	3	2	
14 days on gypsum board	acetic acid	4	9	15	
	2-methyl-2-propanol	-	-	-	
Adhesive A	TVOC	2770	2970	2740	
1 day on filler and	4,4-dimethyl-1,3-oxazolidine	1640	1920	1750	
plaster B	2-ethyl-1-hexanol	670	540	530	
Adhesive A	TVOC	130	-	580	
14 days on filler and	4,4-dimethyl-1,3-oxazolidine	45	-	310	
plaster B	2-ethyl-1-hexanol	30	-	55	
	2-(2-butoxyethoxy)ethanol	35	-	150	
Adhesive A	TVOC	50	-	95	
1 day on plaster C	acetone	15	-	20	
	2-propanol	8	-	15	
Adhesive A	TVOC	0.5	0	20	
14 days on plaster C	decanal	2	2	2	
	nonanal	1	1	2	
Filler and plaster B	TVOC	2130	2100	2080	
1 day	2-ethyl-1-hexanol	1270	1230	1210	
	4,4-dimethyl-1,3-oxazolidine	530	520	515	
Filler and plaster B	TVOC	1530	1340	760	
14 days	2-ethyl-1-hexanol	100	140	150	
	4,4-dimethyl-1,3-oxazolidine	580	580	300	
Plaster C	TVOC	35	20	20	
1 day	acetic acid	40	40	45	
	acetone	15	10	15	
Plaster C 14 days	TVOC	70	70	20	
	acetic acid	-	-	-	
	acetone	1	1	1	

The detailed results are presented in Appendix C, Tables C10 and C11 (adhesive A on glass), C70 and C72 (adhesive A on gypsum board), C94 and C96 (adhesive A on filler and plaster B), and C98 and C100 (adhesive A on plaster C). The detailed results of the emissions from gypsum board are presented in Appendix C, Tables 26 and 27, filler and plaster B in Tables C54 and C56 and of plaster C in Tables C58 and C60.

7.7.5.10 Adhesive B applied onto different substrates

The measured relative humidity values of adhesive B applied onto glass plate, gypsum board, the combination of filler and plaster B, and plaster C are presented in Table 63.

		Target relative humidity (%)			
Material	Time	20	50	80	
Adhesive A	1 day	95±5 %	95±5 %	99±3 %	
on glass	14 days	20±5 %	50±5 %	80±5 %	
Adhesive A	1 day	85±5 %	95±5 %	98±3 %	
on gypsum board	14 days	20±5 %	50±5 %	80±5 %	
Adhesive A	1 day	90±5 %	95±5 %	95±5 %	
on filler and plaster B	14 days	35±5 %	65±5 %	85±5 %	
Adhesive A	1 day	85±5 %	95±5 %	98±3 %	
on plaster C	14 days	40±5 %	75±5 %	85±5 %	

Table 63. The measured relative humidities when adhesive B was spread onto different substrates.

The TVOC_{SERa}-values and the SER_a of the most abundant compounds emitted from the adhesive applied onto different substrates and the emissions from the combination of filler and plaster B and plaster C at 1 and 14 days are presented in Table 64. The dependence of TVOC_{SERa} on the relative humidity of the surrounding air is difficult to deduce from the table partly because of the factorial design that was applied, however there seems not to exist any clear trend of the TVOC_{SERa} of adhesive B regarding the relative humidity of the storing conditions. What, however, can be deduced is that the TVOC_{SERa} depends on the substrate and increases in the following order: gypsum board < glass plate < plaster C < filler and plaster B at the age of 1 day, and gypsum board < plaster C < glass plate and filler and plaster B, which are difficult to separate, at the age of 14 days. The TVOC_{SERa} of adhesive B spread onto the combination of filler and plaster B applied onto CSB is higher at RH 20 % than at RH 80 % target relative humidities at 1 day, while the result is the oppposite at 14 days. This result is consistent with the case when the adhesive was spread onto a glass plate. The TVOC_{SERa}-value at 1 day is approximately 2-times higher when the adhesive is spread onto the combination of filler and plaster B than onto a glass plate, irrespective of relative humidity of the storing conditions, but the difference evens out during the first seven days.

		Relative humidity (%)		
Material	Compound	20	50	80
Adhesive B	TVOC	2570	1640	1050
1 day on glass	2-(2-butoxyethoxy)ethanol	2860	1990	1350
	acetic acid	40	10	0
Adhesive B	TVOC	240	540	1640
14 days on glass	2-(2-butoxyethoxy)ethanol	380	940	2450
	acetic acid	-	-	-
Adhesive B	TVOC	240	250	220
1 day on gypsum board	2-(2-butoxyethoxy)ethanol	350	340	290
	acetic acid	15	45	15
Adhesive B	TVOC	0	0	50
14 days on gypsum board	2-(2-butoxyethoxy)ethanol	0	5	65
	acetic acid	5	5	10
Adhesive B	TVOC	5060	-	3630
1 day on plaster B	2-(2-butoxyethoxy)ethanol	2480	-	1720
	4,4-dimethyl-1,3-oxazolidine	2360	-	1730
Adhesive B	TVOC	380	-	1150
14 days on plaster B	2-(2-butoxyethoxy)ethanol	580	-	1500
	4,4-dimethyl-1,3-oxazolidine	75	-	280
Adhesive B	TVOC	3270	2380	-
1 day on plaster C	2-(2-butoxyethoxy)ethanol	7840	5860	-
	acetic acid	110	35	-
Adhesive B	TVOC	100	-	510
14 days on plaster C	2-(2-butoxyethoxy)ethanol	85	-	490
	decanal	2	-	3
Filler and plaster B	TVOC	2130	2100	2080
1 day	2-ethyl-1-hexanol	1270	1230	1210
	4,4-dimethyl-1,3-oxazolidine	530	520	515
Filler and plaster B	TVOC	1530	1340	760
14 days	2-ethyl-1-hexanol	100	140	150
	4,4-dimethyl-1,3-oxazolidine	580	580	300
Plaster C	TVOC	35	20	20
1 day	acetic acid	40	40	45
	acetone	15	10	15
Plaster C 14 days	TVOC	70	70	20
	acetic acid	-	-	-
	acetone	1	1	1

Table 64. The major emissions from adhesive B spread onto different substrates and the emissions from the combination of filler and plaster B, and plaster C, $(\mu g/m^2 \cdot h)$.

The most abundant compounds when the adhesive is applied onto the combination of filler and plaster B are 2-(2-butoxyethoxy)ethanol, 2-ethyl-1-hexanol and two nitrogen containing compounds, the same as when adhesive A was applied onto the combination of filler and plaster B. The aforementioned compounds stem from the combination of filler and plaster. The SER_a of 2-(2-butoxyethoxy)ethanol is, however, much higher in the case for adhesive B than for adhesive A. The difference is caused by adhesive B, which emits mainly 2-(2-butoxyethoxy)ethanol based on the emission results when it was spread onto glass.

When adhesive B is spread onto plaster C the $TVOC_{SERa}$ -level is distinctly lower than was the case with the combination of filler and plaster B as substrate. It is still higher than with the glass as substrate at 1 day at RH 20 % and RH 50 % target relative humidities, but after that it is intermediate compared with glass and gypsum board as substrates. Of the three most abundant compounds are acetic acid, and especially decanal, also emitted from the plaster.

What should also be noted is that the SER_a of acetic acid is higher especially at 14 days when the adhesive is applied onto gypsum board compared with the glass plate. This result is opposite to what was observed for adhesive A applied onto gypsum board.

The detailed results are presented in Appendix C, Tables C30 and C32 (adhesive B on glass), C74 and C76 (adhesive B on gypsum board), C102 and C104 (adhesive B on filler and plaster B), and C106 and C108 (adhesive B on plaster C). The detailed results of the emissions from gypsum board are presented in Appendix C, Tables 26 and 27, filler and plaster B in Tables C54 and C56 and of plaster C in Tables C58 and C60.

7.7.6 Statistical analysis

The influence of the relative humidity of the surrounding air on the emission of single compounds separated according to the chemical group they belong to and the conformity of the two sample collection methods were studied using a STATGRAPHICS software program. For the study on the influence of relative humidity a condition that the measured relative humidity of the test chamber air should have reached the target level at least five days prior to sample collection for a result to be included was introduced. This was done in an attempt to minimise the influence of the drying process on the analysis results.

7.7.6.1 Statistical analysis of Part I. VOC emissions from single material layers on a glass substrate

A Kruskal-Wallis test at a 95 % confidence interval indicated that the relative humidity of the surrounding air did not influence the emission rate of single compounds separated according to chemical groups or the $TVOC_{SERa}$ -values for samples collected from the test chambers. This applies also to acetic acid, which was tested separately. Adhesive B was included in the analysis, since it was also applied onto a glass plate as a single material layer.

Furthermore, the same test indicated that there was no statistical difference in the two different sample collection methods when the emission rates of single compounds separated according to chemical groups or the $TVOC_{SERa}$ -values were compared.

7.7.6.2 Statistical analysis of Part II. VOC emissions from material combinations on a glass substrate

A Kruskal-Wallis test at a 95 % confidence interval indicated that the relative humidity of the surrounding air did not influence influenced the TVOC_{SERa}-values for samples collected from the test chambers. However, it did influence the emission rate of aldehydes when their SER_a was $< 200 \ \mu g/m^2 \cdot h$. A Mann-Whitney u Test indicates that the difference was significant between samples stored at RH 20 % and RH 80 % target relative humidities. A Box-and-Whisker plot, Figure 64, shows that the SER_a were higher for the latter storing conditions. The plot also asserts the result from the Mann-Whitney u Test, since the notches in the boxes do not overlap each other.

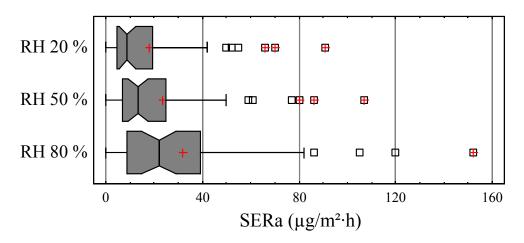
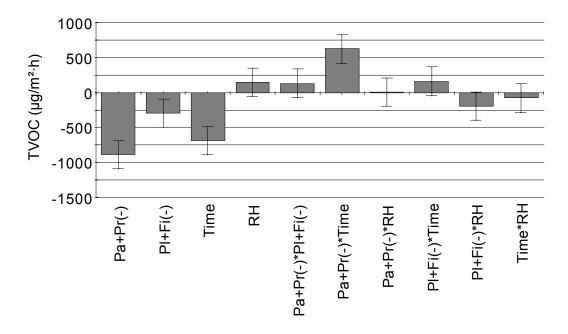


Figure 64. A Box-and-Whisker of the SER_a of aldehydes. The relative humidity values indicate the measured relative humidity of the different test chambers ± 5 % RH.

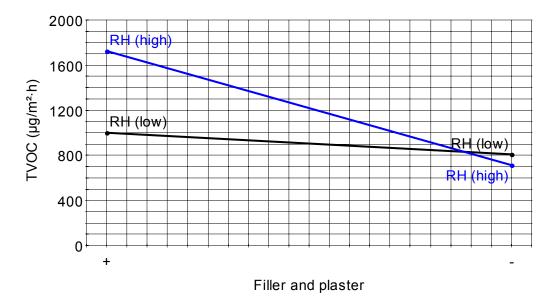
Furthermore, the Kruskal-Wallis test indicated that there was no statistical difference in the two different sample collection methods when the emission rates of single compounds separated according to chemical groups or the TVOC_{SERa}-values were compared.

7.7.6.3 Statistical analysis of Part III. VOC emissions from material combinations on gypsum board and CSB

Factorial design was applied in order to optimise the amount of samples collected when primer A and paint A or primer B and paint B was spread onto filler B and plaster B or a 6


mm layer of plaster C which was applied onto calcium silicate brick (CSB). A statistical analysis of the test results, which has been done by using a software program, MODDE, which was also used to design the experiments by D-Optimal design, is presented in the following paragraphs. The $TVOC_{SERa}$ -values used in the calculations were presented in Tables 41-44.

A multiple linear regression (MLR) analysis performed using MODDE gave the following results presented in Table 65 regarding the combinations of primer and paint applied onto the combination of filler and plaster B or a single layer of plaster C. Partial Least Squares (PLS) - coefficients with confidence intervals and an interaction plot for the influence of the point of sample collection and the relative humidity of the storing conditions on TVOC_{SERa}-values are presented in Figures 65 and 66.


Table 65. ANOVA-table (MLR) of the tests with the combination of primers and paints A or B spread onto the combination of filler and plaster B or a single layer of plaster C applied onto CSB.

TVOC	DF	SS	MS	F	р	SD			
Total	22	6.2×10^{7}	2.8×10^{6}						
Constant	1	2.3×10^{7}	2.3×10^{7}						
Total corrected	21	3.9×10^{7}	1.8×10^{6}			1357			
Regression	10	3.7×10^{7}	3.7×10^{6}	21.8	0.00	1919			
Residual	11	1.8×10^{6}	168600			410			
$R^2 = 0.952$ and $Q^2 = 0.591$. Condition number = 1.360									

By default the PLS-coefficient plot is centred and scaled. The scaling of the data makes the coefficients comparable. The size of the coefficient represents the change in the response when a factor varies from 0 to 1, in coded units, while the other factors are kept at their averages. A PLS-coefficient is significant, i.e. different from the noise, when the confidence interval does not cross zero. It can be observed that the combination of primer and paint, point of time of sample collection, and the combination of filler and plaster, respectively, are three significant factors affecting the TVOC_{SERa}-values. The relative humidity of the surrounding air by itself is insignificant regarding TVOC_{SERa}, but there is a strong interaction of relative humidity and the combination of filler plaster affecting the TVOC_{SERa}.

Figure 65. PLS-coefficients with confidence intervals showing the influence of different factors on $TVOC_{SERa}$. Pa denotes paint, Pr denotes primer, Pl denotes plaster, Fi denotes filler, and Time denotes the point of sample collection.

Figure 66. The interaction of relative humidity (at its low and high level) and the combination of filler and plaster and their effect on $\text{TVOC}_{\text{SERa}}$. "+" and "-" indicates whether the combination of filler and plaster or a single layer of plaster is high emitting (+) or low emitting (-). The interaction is strong, since the two lines cross each other.

Figure 67 presents a response prediction plot of the effect that relative humidity has on the $TVOC_{SERa}$. It can be observed that $TVOC_{SERa}$ tends to increase when the elative humidity of the surrounding air increases.

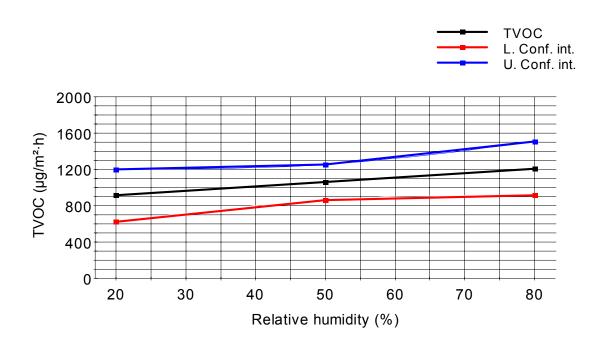


Figure 67. A response prediction plot of the effect of relative humidity on TVOC_{SERa}.

Factorial design was also applied in order to optimise the amount of samples collected when adhesive A or adhesive B was applied onto the combination of filler B and plaster B or a 6 mm layer of plaster C which was applied onto calcium silicate brick (CSB). A statistical analysis of the test results is presented in the following paragraphs. The TVOC_{SERa}-values were presented in Tables 45-48.

A multiple linear regression (MLR) analysis done using MODDE gave the result presented in Table 66. PLS-coefficients with confidence intervals and an interaction plot for the influence of time and relative humidity on $TVOC_{SERa}$ are presented in Figures 68 and 69.

TVOC	DF	SS	MS	F	р	SD			
Total	22	8.4×10^{7}	3.8×10^{6}						
Constant	1	3.7×10^7	3.7×10^7						
Total corrected	21	4.7×10^{7}	2.2×10^{6}			1497			
Regression	10	4.3×10^{7}	4.3×10^{6}	11.8	0.00	2076			
Residual	11	4.0×10^{6}	364000			603			
$R^2 = 0.915$ and $Q^2 = 0.700$. Condition number = 1.552									

Table 66. ANOVA-table (MLR) of the tests with adhesives A and B spread onto the combination of filler and plaster B or a single layer of plaster C applied onto CSB.

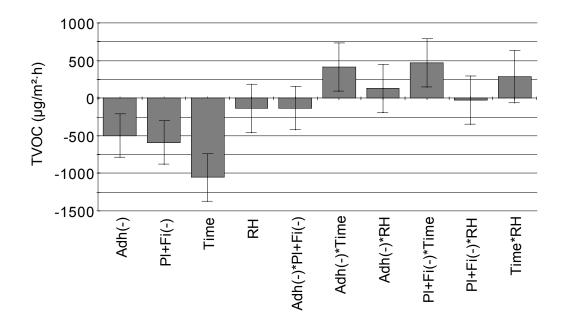


Figure 68. PLS-coefficients with confidence intervals showing the influence of different factors on $TVOC_{SERa}$. Adh denotes adhesive, Pl denotes plaster, Fi denotes filler, and Time denotes the point of sample collection.

It can be observed that the point of time of sample collection, the combination of filler and plaster, and the adhesive, respectively, are the three most significant factors affecting the $TVOC_{SERa}$ -values when an adhesive is applied onto a combination of filler and plaster applied onto CSB. The relative humidity by itself is insignificant regarding $TVOC_{SERa}$, but there is a strong interaction of relative humidity and the point of time of sample collection affecting $TVOC_{SERa}$.

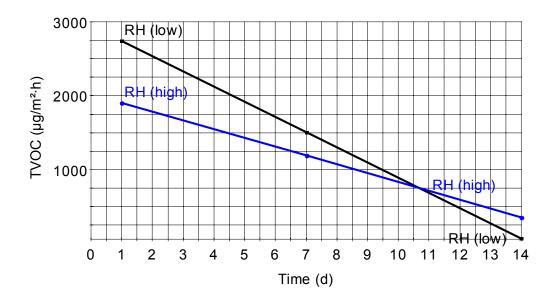


Figure 69. The interaction of relative humidity (at its low and high level) and the point of time of sample collection and their effect on $\text{TVOC}_{\text{SERa}}$. The interaction is strong, since the two lines cross each other.

Figure 70 presents a response prediction plot of the effect that relative humidity has on the $TVOC_{SERa}$. It can be observed that $TVOC_{SERa}$ tends to decrease when the relative humidity of the surrounding air increases, contrary to what was observed for paints.

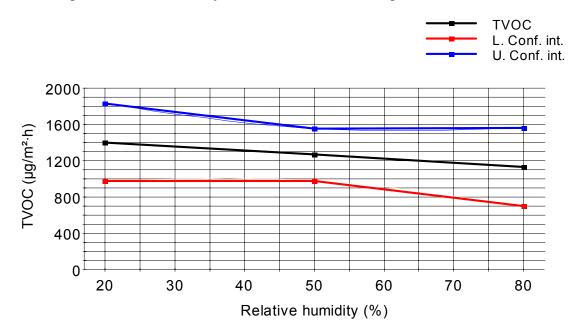


Figure 70. A response prediction plot of the effect of relative humidity on TVOC_{SERa}.

A Kruskal-Wallis test at a 95 % confidence interval performed with the STATGRAPHICS software program indicated that there was no difference in the TVOC_{SERa}-values when the two different sample collection methods were compared with each other. However, the same test indicated that sample collection methods caused a difference in the SER_a of ketones when the combination of primers and paints, or adhesives, was applied onto gypsum board. A Mann-Whitney u Test indicated that the difference was significant between samples stored at RH 20 % target relative humidity. A Box-and-Whisker plot showed that the SER_a were higher for samples collected using the FLEC-cell than for samples collected from the test chamber. The same conclusion could be drawn for both aldehydes and ketones when the combination of primers and paints, or adhesives, were applied onto the combination of filler B and plaster B or a single layer of plaster C applied onto CSB and stored in the RH 20 % target relative humidity. This behaviour could be a consequence of the fact that the air introduced into the FLEC-cell had a relative humidity of 50 ± 5 %.

7.7.6.4 A comparison of glass and gypsum board as substrates

A statistical analysis was performed to compare the emissions from the combinations of primer and paint A and B and adhesives A and B applied onto glass plate and gypsum board after the samples had reached moisture equilibrium with their surroundings. A Kruskal-Wallis test at a 95 % confidence interval indicated that there was a statistically significant

difference in the emission rates of alcohol and phenol ethers emitted from the paint combinations for samples collected from the test chambers. A Mann-Whitney u Test indicated that the difference was significant between samples stored at the RH 20 % target relative humidity and a Box-and-Whisker plot showed that the SER_a were higher for samples spread onto glass plates than gypsum board. The same analysis procedure also indicated that the emission rate of aromatic hydrocarbons emitted from the adhesives was higher when they were applied onto glass plates than onto gypsum board both at the RH 20 % and RH 50 % target relative humidities when samples were collected from the test chambers.

Furthermore, there was a statistically significant difference between the emission rates of aliphatic and alicyclic compounds emitted from the combinations of primer and paint A and B spread onto glass plate and gypsum board for samples stored at the RH 80 % target relative humidity when samples were collected using the FLEC-cell. The emission rates were again higher from the glass plate. Adhesives could not be analysed, since there was not enough data.

7.8 OLFACTORY EVALUATION

The average strength of olfaction of the materials studied in Parts I-III of this study is presented in Tables 67-69, respectively. It was rather difficult to observe any differences between samples stored at different relative humidities. At least during the first 2-3 days the odour seemed to be stronger at higher relative humidity, but this shifted later on, and no definite pattern could be observed. Regarding the end of a testing period when the chamber lid was opened, a more distinct pattern could be observed. Then the olfactory evaluation showed increasing sensation with an increase in the relative humidity of the storing conditions. The difference between the relative humidities was approximately one step on the olfactory scale irrespective of the sample evaluated. This finding is consistent with the results reported by FANG ET AL. (1998), who concluded that the air was perceived as less acceptable with increasing humidity. They used five different building materials, i.e. a PVC flooring, a loomed polyamide carpet, a water-borne floor varnish, a water-borne wall paint, and an acrylic sealant, and a humidity range of 30 % to 70 % RH in their study.

The odours observed were characteristic to the samples in Parts I and II, i.e. paints had a characteristic smell of wet paint with regard to the solvent and adhesives had a characteristic adhesive-like smell. Fillers and plasters A and B had a hint of the characteristic smell of adhesives while plaster C was mainly odourless. When paints and adhesives were spread onto gypsum board the smell could be characterised by a mix of paint or adhesive and the rather tangy smell of the gypsum board. Filler and plaster B as a substrate gave a mix of the adhesive-like smell of the substrate and the surface material, while plaster C did not contribute to the odour sensation of the surface material.

	Age (day)												
Sample	1	2	3	4	5	6	7	11	12	16	17	28	Open
Paint A	4	3	3	2	1	0	0	0	0	0	0	0	1
Paint C	5	4	4	4	3	3	3	3	2	2	1	1	4
Adhesive A	1	1	1	0	0	0	0	0	0	0	0	0	2
Adhesive C	1	1	1	1	1	0	0	0	0	0	0	0	3
Plaster A (3 mm)	1	0	0	0	0	0	0	0	0	0	0	0	1
Plaster C (3 mm)	0	0	0	0	0	0	0	0	0	0	0	0	1
GB ¹⁾	3	2	2	1	1	0	0	0	0	0	0	0	2

Table 67. Average olfactory strength of single materials spread onto glass plate.

¹⁾ GB is gypsum board

Table 68. Average olfactory strength of adhesive B and material combinations spread onto glass plate.

	Age (day)										
Sample	1	2	3	4	5	8	9	11	12	14	Open
Adhesive B	1	0	0	0	0	0	0	0	0	0	2
Primer A and paint A	1	0	0	0	0	0	0	0	0	0	2
Primer B and paint B	0	0	0	0	0	0	0	0	0	0	2
Primer A and paint C	4	4	4	4	3	3	2	2	1	1	3
Primer C and paint C	4	3	3	3	2	2	1	1	1	1	3
Filler A and plaster A ²⁾	2	2	1	1	0	0	0	0	0	0	2
Filler B and plaster B ²⁾	1	1	0	0	0	0	0	0	0	0	3
Plaster C (6 mm)	0	0	0	0	0	0	0	0	0	0	1

²⁾ The thickness of the layers of fillers A and B and plasters A and B was 3 mm

Table 69. Average	olfactory strength of mate	erial combinations spread	l onto gypsum board or CSB.
I able 07. I I elage	onderer strength of mate	liai comomations spicae	i onto gypsum sourd or esp.

	Age (day)										
Sample	1	2	3	4	5	6	7	8	9	14	Open
GB and primer and paint A ³⁾	2	1	1	1	1	1	0	0	0	0	2
GB and primer and paint B ³⁾	1	1	1	0	0	0	0	0	0	0	1
GB and adhesive A ³⁾	3	3	2	2	2	1	1	1	0	0	2
GB and adhesive B ³⁾	3	2	1	1	1	0	0	0	0	0	2
CSB, fi + pl B, and pr + pa $A^{4),5)}$	0	0	0	0	0	0	0	0	0	0	2
CSB, fi + pl B and pr + pa $B^{4),5)}$	0	0	0	0	0	0	0	0	0	0	3
CSB, pl C and pr + pa $A^{4),5)}$	0	0	0	0	0	0	0	0	0	0	2
CSB, pl C and pr + pa $B^{4),5)}$	1	0	0	0	0	0	0	0	0	0	1
CSB, fi + pl B and adhes. $A^{4),5)}$	2	1	0	0	0	0	0	0	0	0	3
CSB, fi + pl B and adhes. $B^{4),5)}$	0	0	0	0	0	0	0	0	0	0	2
CSB, pl C, and adhesive A ^{4),5)}	1	0	0	0	0	0	0	0	0	0	0
CSB, pl C, and adhesive $B^{4),5)}$	1	0	0	0	0	0	0	0	0	0	2

³⁾ GB denotes gypsum board
⁴⁾ CSB denotes calcium silicate brick
⁵⁾ fi denotes filler, pl denotes plaster, pr denotes primer and pa denotes paint

The emissions from materials and material combinations were obviously related to the sensation of smell, even though there were some major exceptions. The combination of primer and paint A had higher TVOC-values than paint C spread onto primer A or primer C even though it did not smell as strongly. The gypsum board also smelled quite strongly, but its emissions were, on the other hand, very low. The fact that the chambers had a stronger smell at higher relative humidities at the end of a testing period when the chamber lids were opened is possibly related to sink effects caused by the high relative humidity in the chambers and consequently of adsorption of water molecules and, hence, VOCs on the inner surfaces of the chambers.

8 **DISCUSSION**

8.1 PROPERTIES OF THE TESTED MATERIALS AND THEIR BEHAVIOUR AT DIFFERENT MOISTURE CONDITIONS

The FTIR-analyses of all three primers and paints demonstrated that they contain CaCO₃, which is used as filler. They also have strong bands assigning C=O stretching in ester and C–O–C stretching in ether or carboxylic ester. One major difference in the absorption bands of the water-borne primers and paints A and B was that primer and paint A had a strong band at 1160 cm⁻¹, while primer and paint B had a strong band at 1110 cm⁻¹ instead. Even though both bands assign asymmetric and symmetric C–O–C stretching in ether and carboxylic ester the products have probably some differences in their film formers. This could be one reason for their different VOC-emissions. They emit partly different compounds when spread onto glass, e.g. ethers and nitrogen containing compounds are emitted only from primer and paint A while 2-ethyl-1-hexanol and acids are emitted only from primer and paint B. Furthermore, their common compounds, e.g. 1,2-propanediol and texanol, have quite different emission rates being higher for primer and paint A.

The water-borne primers and paints differ from the alkyd primer and paint especially in the wavenumber region 1500 cm⁻¹ to 1000 cm⁻¹. The main absorption bands assign the same chemical compounds in that region, but the bands occur at somewhat different wavenumbers indicating that the film formers differ somewhat from each other. There is also a marked difference in the VOC-emissions from water-borne and alkyd paints, since, besides differences in the film formers the products have also different solvents and means of film formation.

The FTIR-spectra of the different adhesives differ mainly in the wavenumber region 1640 cm⁻¹ to 1600 cm⁻¹ and 1160 cm⁻¹ to 1110 cm⁻¹. The first absorption band region assigns C=C stretching vibration and the latter assigns C–O–C stretching characteristic of ethers and carboxylic esters. Adhesives A and C have bands at 1640 cm⁻¹ and 1160 cm⁻¹, while adhesive B have bands at 1600 cm⁻¹ and 1110 cm⁻¹. Adhesives A and C also emit roughly the same compounds when applied onto glass and the emission rates are also similar, 1,2-propanediol emitted from adhesive C being the major exception. Adhesive B emits mainly 2-(2-butoxyethoxyethanol), which adhesives A and C emit only at 28 days and the emission rate is low, <0.5 μ g/m²·h.

The FTIR-spectra of fillers and plasters with polymer binder were also quite similar. They had absorption bands assigning water (or alcohol), CaCO₃, C=O stretching in ester, and C–O–C stretching characteristic of ether and carboxylic ester. However, the spectral band positions were somewhat different as was the emission rates of their common compounds.

Furthermore, only the combination of filler and plaster A emitted 1,2-propanediol whereas only the combination of filler and plaster B emitted nitrogen containing compounds.

The absorption bands of plaster C, a gypsum-based product, assigned gypsum along with $CaCO_3$ and C=O stretching vibration in ester. It was noted in its operational safety sheet that the product contains a copolymer acetate of vinyl acetate. The core of the gypsum board is rather pure gypsum according to its FTIR-spectra.

The element analysis of primers and paints indicated that they contain TiO_2 that is used as pigment in the products. TiO_2 was also observed in the ESEM-images as small particles evenly distributed in the samples. The element analysis further indicated the presence of $CaCO_3$, a filler used in paints that was observed in the images as coarser particles. The presence of $CaCO_3$ is also in concordance with the FTIR-spectra. The ESEM-images revealed also the coarser structure of primers compared with paints. Furthermore, the element analysis indicated the presence of oxygen in the water-borne primers and paints, but not in the alkyd primer and paint, as expected.

The element analysis of adhesive A indicated the presence of Cl^- and Na^+ . Cl^- could derive from the adhesive binder, which according to the manufacturer is a PVAc -copolymer and, thus, probably a vinyl acetate - vinyl chloride copolymer, while Na^+ may derive, for instance, from a plasticiser.

Storing the different plasters at different relative humidities caused only minor changes in their porosity characteristics, as either a shift in the pore size distribution curve or as higher peak values. However, the major differences between the different plasters studied were in their specific surface areas. This could be a key factor affecting adsorption and absorption phenomena of VOCs, but was not further investigated in this study.

The pH-measurements indicated that the surface of the samples stored at RH 80 % was covered with a layer of water molecules, since their pH was approximately 7 and it decreased when the samples were allowed to dry. Thus, the moisture content of the surrounding air rather than the pH of the plasters affected the pH of the top layers. The reason for the low pH of the gypsum board compared with that reported in its operational safety sheet could be caused by the fact that the colour of the surface of the gypsum board made the determination of the pH difficult.

The weight change of the water-borne primers and paints, the adhesives and the gypsumbased plaster spread onto a glass plate was smaller the higher the relative humidity of the storing conditions. This result is consistent with the finding reported by KORNUM (1980), who concluded that the influence of relative humidity on the evaporation of water can be considered to be linear at isothermal conditions, since the products emitted, based on their emission and weight change results, mainly water. The weight change of adhesives was higher than that of the water-borne paint A and they also caused a more pronounced change in the relative humidity of the chamber air when applied onto glass plates. Thus, the water to solid -ratio of adhesives is higher than that of the paint, and probably also of other water-borne paints, but their area specific emission rates were lower especially at one day compared with paint A. The weight change of the alkyd paint spread onto a glass plate was rather unaffected by the relative humidity. This also holds true for the water-mixable plaster with a polymer binder. The gypsum board, which had been stored at approximately RH 30 % before the start of the testing adsorbed moisture from the surroundings when stored at RH 80 %.

The weight change of the combinations of water-borne primer and paint or adhesives applied onto gypsum board was smaller than when the products were applied onto a glass plate. This holds true also for the VOC-emissions. The differences in the relative weight changes were also bigger between the different relative humidities. The cause of this is that the gypsum board had adsorbed some of the water in the primer, paint and adhesive during application, which was released by a rather slow process. When a water-borne primer and paint or an adhesive were spread onto the combination of filler and plaster or a single layer of plaster which were applied onto calcium silicate bricks, the effect of the moisture content of the plaster on the weight change was considerable indicating that the plaster may also influence the VOC-emissions.

The weight change of the different materials and material combinations is, at least as far as water-based products are concerned, related mainly to their drying, i.e. water evaporation from the samples. The evaporation process seems, on the other hand, to be interrelated with the emission of VOCs especially from the plasters, but this seems also to hold true for the other materials. The emissions from e.g. adhesive B was high at RH 80 % target relative humidity at 7 days, when the drying process in the climate chamber was still going on. Otherwise it is difficult to relate the weight change to the emission of VOCs. For instance, the combination of primer and paint A had a bigger relative weight change than the combination of primer and paint B, which indicates that there could be less volatile constituents left at the end of the testing period in the combination of primer and paint A, but the TVOC_{SERa} at 14 days of the combination of primer and paint A was much higher than that of the combination of primer and paint B. This same trend holds true for e.g. the combination of filler and plaster B compared with the single layer of plaster C.

Adhesives applied onto glass plates and gypsum board caused a higher increase in the relative humidity than did the combination of water-borne primers and paints, which was also reflected in the relative weight changes. The water-borne primers and paints spread onto glass plates affected markedly only the relative humidity of the RH 80 % target relative humidity chamber, in contrast to the case when the combinations of primer and paint were spread onto gypsum board. This indicates that the increase in the relative humidity generated by the primer and paint spread onto a glass plate lasts longer in the high relative humidity compared

with the RH 50 % and RH 20 % target relative humidity chambers and also that the gypsum board adsorbs some of the water in the primer, paint and adhesive which is later released. The measured relative humidities were, thus, in concordance with the weight change results. The relative humidity of primer and paint A was unfortunately recorded only for the first two hours after the introduction of the sample into the test chamber. However, it was > 95 % in all three target relative humidities during that time.

Adhesives, and especially plaster C and the combinations of filler and plaster A and B, raised the relative humidity of especially the RH 80 %, but also the RH 50 % target relative humidity chambers, to 100 % for several days. This is consistent with the observed relative weight changes as far as the adhesives are concerned. The chambers of RH 50 % and RH 80 % target relative humidities also had observable condensation on their walls and lid. The high relative humidity caused by the plasters was not reflected as distinctly in their relative weight changes because the mass of the water in relation to the mass of the solids is much smaller in plasters compared with the adhesives. The water to solids ratio for plasters A and C were 0.32 and 0.52, respectively. The average amount of constituents evaporated from adhesives A and C in relation to their initial weight were 0.76 and 0.81, respectively. The water to solids ratio of the adhesives is probably even higher, since they were not completely dry at the end of the testing period.

The relative humidity profiles of the water-borne products were also similar to what has been presented in the literature on the emission profile during evaporation (TICHENOR & GUO 1991, CHANG & GUO 1992, YU & CRUMP 1998, HUANG & HAGHIGHAT 2002, LEE ET AL. 2003), i.e. a rapid increase followed by a rapid decrease and that the peak value is achieved during the first hours of the emission process. This was valid especially for materials spread onto dry surfaces, i.e. glass or gypsum board. The humidity profiles also revealed that the higher the relative humidity of the surrounding air the longer was the drying process of water-based materials, as expected. However, this affects also the emission profiles, since the TVOC_{SERa}, of adhesive C was higher at 14 and even 28 days when stored at RH 50 % and RH 80 % target relative humidities than at RH 20 %. This also holds true for plaster A and adhesive B at 7 and 14 days.

8.2 VOC EMISSIONS

The behaviour of single material layers on substrates including glass, aluminium, stainless steel, wood products, and gypsum board has been studied extensively during the last years (JØRGENSEN ET AL. 1995, ROACHE ET AL. 1996, CHANG ET AL. 1997, SPARKS ET AL. 1999, KWOK ET AL. 2003) There have also been also quite many studies on the emissions from actual buildings, e.g. (BLUYSSEN ET AL. 1996, PEJTERSEN ET AL. 2001, TUOMAINEN ET AL. 2001, SAARELA ET AL. 2003, PARK & IKEDA 2004, RAW ET AL. 2004), but no attempts to study the behaviour of several material layers on different substrates, as is the case in actual

structural components, in controlled laboratory conditions has been done so far, floors excluded.

Furthermore, only two reports where the influence of the relative humidity of the surrounding air on the emissions from structures in actual buildings have been found. FELLIN & OTSON (1994) conducted a nationwide study of indoor air in Canadian residences. They found only a weak correlation between indoor relative humidity and VOC concentration levels. The result was valid for individual VOCs also. However, the authors did not give any detailed information of the age of the residences or the materials used. The study of JÄRNSTRÖM & SAARELA (2005) on the emissions from structures in eight buildings built according to today's good practice, including humidity control of the structures and selection of low-emitting materials (CIC 2001), showed that higher emissions were measured from building structures than from individual materials tested at laboratory conditions. This was explained by the fact that a material in a real structure is affected by its surroundings, i.e. the humidity and temperature of the structure and its surrounding air.

When single material layers were applied onto glass plates in this present study, the emission pattern of TVOC and single compounds generally fluctuated quite much both with the relative humidity of the storing conditions and the point of time of sample collection and no clear trend between the TVOC_{SERa} and the SER_a of single compounds could be established. This result is consistent with the findings by HAGHIGHAT & DE BELLIS (1998) and applies to all materials studied. There are, however, three trends that could be observed. First, the TVOC_{SERa} of the water-borne paint, paint A, was higher the higher the relative humidity of the surrounding air irrespective of the point of time of sample collection when samples were collected from the test chamber air. Second, the TVOC_{SERa} of the alkyd paint, paint C, was rather unaffected by the relative humidity of the surrounding air, even though there were fluctuations in the emission patterns of single compounds. Third, the emissions from plasters A and C were markedly affected by the condensation of water on the test chambers' inner surfaces that they generated.

CHANG & GUO (1998) found in their study on aldehyde emissions from three different alkyd paints that their main target compound hexanal, as well as other odorous aldehydes, is formed after painting during the air-drying period. The existence of this phenomenon was confirmed based on the results from the bulk analysis of the paints where no hexanal was detected. The emitted amount of hexanal was more than 2 mg/g. They also noticed that each paint studied had a different set of values for the first order reaction rate constants modelling the hexanal formation. Hexanal was not the only aldehyde emitted, as was mentioned. Other aldehyde emissions such as pentanal and propanal were also detected. These compounds have very low odour threshold values. The combination of those aldehydes and indoor sink effects can result in strong and irritating odour that lasts for weeks. This is consistent with the findings in this present study and hexanal was, indeed, the most abundant aldehyde emitted from the alkyd paint.

A statistical analysis confirmed that the emission results of the two sample collection methods, samples collected from the test chamber air and samples collected using the FLEC-cell, did not differ from each other. This applies both to $\text{TVOC}_{\text{SERa}}$ -values and to single compounds, which were separated according to chemical groups in the analysis. The result implies that the test chambers did not act as significant sinks.

When material combinations were applied onto glass plates, the emission pattern of TVOC and single compounds still fluctuated quite much both with the relative humidity of the storing conditions and the point of time of sample collection, and no clear trend between the TVOC_{SERa} and the SER_a of single compounds could be established. There are, however, two results that need special attention. The TVOC_{SERa} of the combination of primer and paint A and the combination of filler and plaster B was markedly elevated still at 14 days, even though the materials have been classified as low-emitting. It can, however, only be speculated what their emission level would be at 28 days, which is the classification time. Nevertheless, the TVOC_{SERa} of paint A spread onto glass plate was 20 µg/m²·h and 15 µg/m²·h at 14 and 28 days for the sample stored at the RH 50 % target relative humidity, while the corresponding value at 14 days for the combination of primer and paint A was 1200 µg/m²·h for samples collected from the test chamber. The TVOC_{SERa} of the combination of primer and paint B was 26 μ g/m²·h at 14 days at the RH 50 % target relative humidity, which is approximately equal to the value of paint A. For comparison, the TVOC_{SERa} of the combination of filler and plaster B at the RH 50 % target relative humidity at 14 days was 1335 µg/m²·h, when the corresponding values for the combination of filler and plaster A and a single layer of plaster C were 275 and 72 μ g/m²·h , respectively. It is, however, to be noted that the measured relative humidities were 98±3 %, 55±5 %, and 99±3 %, respectively, i.e. in two cases quite different from the target relative humidity of 50±5 %. Another interesting result is that the emissions from the combination of primer A and paint C include compounds that are typical for both the water-borne primer and the alkyd paint. It can also be noted that the TVOC_{SERa}value is higher the higher the relative humidity of the storing conditions irrespective of the point of time of sample collection for samples collected from the test chambers.

A statistical analysis indicated that the emission rate of aldehydes was higher for samples stored at the RH 80 % target relative humidity than for samples stored at the RH 20 % target relative humidity. This result was valid only for samples collected from the test chambers. There was no statistical difference in the $TVOC_{SERa}$ -values or the SER_a of single compounds separated according to chemical groups of the two sample collection methods. The result implies that the test chambers did not act as significant sinks.

When the combinations of primer and paint A or B or adhesives A or B were applied onto gypsum board, the emissions were lower than when they were spread onto glass plates. What is, however, noteworthy is that the emissions from the paints spread onto gypsum board were higher at 14 days than at 7 days. This was not the case for the adhesives. The emission pattern concerning the emissions from paints have been studied by CHANG ET AL. (1997), JØRGENSEN

173

ET AL. (1995), and SPARKS ET AL. (1999) among others. Their results also showed that the emissions from an inert substrate, stainless steel and aluminium, were initially higher, but at later ages, i.e. over 30 days, the emissions from the gypsum board could still be significant, or at least higher, than from the inert substrate. Furthermore, CHANG ET AL. (1997) reported that the composition of VOCs emitted were dramatically different on the two substrates studied, i.e. stainless steel and gypsum board. Ethylene glycol dominated the VOC emissions for the first 100 h and Texanol was the dominant VOC thereafter when stainless steel was the substrate. The trend was reversed when gypsum board was the substrate. This trend is, however, not observed in this present study.

A statistical analysis indicated that there was no significant difference in the $TVOC_{SERa}$ -values of the samples collected with the two different sample collection methods. However, the same test indicated there was a difference in the SER_a of ketones being higher for samples collected using the FLEC-cell than for samples collected from the test chambers, when they were stored at the RH 20 % target relative humidity.

When the combinations of primer and paint A or B or adhesives A or B were applied onto the combination of filler and plaster B or a single layer of plaster C, which were applied onto calcium silicate bricks, the emissions were higher when applied onto the combination of filler and plaster B than when applied onto plaster C. Furthermore, the emissions were higher when the combinations of primer and paint or adhesives were applied onto plaster C then when applied onto gypsum board. How much the results are affected by the different retention capacities of the substrates, their porosity characteristics, specific emissions, and moisture conditions is difficult to deduce. WESCHLER & SHIELDS (1997) reported that the relative humidity determines both the gas phase concentration of water and the absence, presence, and thickness of aqueous surface films. The former influences homogenous (gas phase) hydrolysis reactions while the latter influences the surface removal rates of numerous hydrophilic chemicals in the air. They reported further that homogenous processes are influenced by the nature of the surface, i.e. polar surfaces attract polar VOCs and water while non-polar surfaces attract non-polar VOCs and repel water. The emission results from this present study show that the high relative humidity of the surrounding air affects the emission rates, the emission profile of a sample quite often change with time in relation to the measured relative humidity of the test chamber air. However, the polarity of the material surfaces studied and hydrolysis reactions have not been clarified in this project. On the other hand, WON ET AL. (2001) reported that virgin gypsum board was observed to be a significant sink for highly polar VOCs and would, thus, be highly polar itself. This finding is consistent with the results obtained by GEHRIG ET AL. (1993) and CHANG ET AL. (1997) who noticed that compounds with more polar oxygen containing functional groups show lower emissions from gypsum board and wood chip wall paper than from glass or stainless steel. A statistical analysis of the emission results from this present study indicated that the emission rate of alcohol and phenol ethers emitted from the combinations of primer and paint A and B was higher from the glass plate than from the gypsum board for samples stored at RH 20 % target

relative humidity. On the other hand, the emission rate of aromatic hydrocarbons emitted from adhesives A and B was higher when they were applied onto glass plate than onto gypsum board both at the RH 20 % and RH 50 % target relative humidities for samples collected from the test chambers.

The emissions were, especially regarding adhesives, also influenced by the emissions from the substrate, all three substrates, i.e. the combination of filler and plaster B, plaster C, and gypsum board, included. A statistical analysis indicated that there was a strong interaction of filler and plaster and the relative humidity of the surrounding air influencing the TVOC_{SERa} of the structures when the combinations of primer and paint A or B were spread onto the combination of filler and plaster B or a single layer of plaster C that was applied onto calcium silicate brick. A response prediction plot indicated further that the TVOC_{SERa} increases with increasing relative humidity of the surrounding air. The analysis indicated further that there was a strong interaction of relative humidity and the point of time of sample collection on the TVOC_{SERa} of the structures when adhesives A or B were applied onto calcium silicate brick. Contrary to what was observed for the combinations of primer and paint, a response prediction plot indicated that the TVOC_{SERa} decreases with increasing relative humidity of the surrounding air.

It could also be deduced that there was no statistically significant difference between the two sample collection methods regarding $TVOC_{SERa}$. However, there was a difference in that sample collection methods for aldehydes and ketones being higher for samples collected using the FLEC-cell than for samples collected from the test chambers when the structures were stored at the RH 20 % target relative humidity.

The difference in the emission rates of aldehydes and ketones between the two sample collection methods could be a consequence of the higher humidity of the air introduced into the FLEC-cell compared with that of the test chambers. The measured relative humidity of the chamber was the same as the target relative humidity ± 5 % RH when gypsum board was the substrate and it was between 30 % and 45 % when the combination of filler and plaster was the substrate, while the relative humidity of the air introduced into the FLEC-cell was 50 \pm 5 %. On the other hand, this does not explain why there was no statistically significant difference in the results in Parts I and II of this study, when single material layers or material combinations were applied onto glass plate. One possible explanation could be different retention capacities of the different materials.

It can be concluded about the two different sample collection methods that the emission results achieved using the FLEC-cell were in general comparable with samples collected from the environmental chamber air. This finding is consistent with the results obtained by AFSHARI ET AL. (2003) who compared the VOC emission rate of an alkyd paint from three small test chambers, i.e. a 1-m³ chamber, a CLIMPAQ, and the FLEC-cell. Also KNUDSEN ET

AL. (1999) who compared the VOC emissions from five building materials (nylon carpet, PVC flooring, floor varnish, sealant, and a water-borne wall paint) using a CLIMPAQ with the results from a study by WOLKOFF ET AL. (1998) who collected the VOCs from the same materials using a FLEC-cell reached a similar result. However, ROACHE ET AL. (1996) studied the emissions from a floor wax and a latex paint using a 53-litre test chamber and the FLECcell. They reached consistent results for the floor wax applied onto glass with the two different chambers, but the emission rates from the latex paint applied onto gypsum board were not comparable. The emission rate of TVOC for the FLEC was generally higher than that from the test chamber. The discrepancy could be attributed to the freshness of the painted surface and the substrate according to the authors. The tests lasted for two weeks. Nevertheless, the comparability of the test results from the two different sample collection methods in this present study indicates that the test chambers did not act as significant sinks. The only discrepancies occurred, besides to what was referred to in the preceding paragraphs about aldehydes and ketones, also at high SER_a-values of a specific compound, typically 1,2propanediol, aldehydes, and acids. Then the SER_a were generally higher for samples collected using the FLEC-cell. This could be a result of the differences in the relative humidities being introduced into the chambers, i.e. the relative humidity during sample collection from the test chambers was the same as the measured relative humidity of the chamber air ± 5 % RH, while the relative humidity introduced into the FLEC-cell was 50 ± 5 % RH.

Thus, the finding by JÄRNSTRÖM & SAARELA (2005) who concluded that higher emissions were measured from building structures than from individual materials tested at laboratory conditions is probably a result indicated by this present study, i.e. material combinations act as entities, not as the sum of single material layers. A material in a real structure is affected by its surroundings, i.e. the humidity and temperature of the structure and its surrounding air, but also of the physical and chemical characteristics, i.e. porosity, emissions, moisture content, etc. of the materials included.

One of the objectives of the experimental part of this study was to verify if it is possible to achieve a low emission rate with different material combinations. A target value of 30 μ g/m²·h was set. The material combinations that fulfil the target value for samples collected from the test chambers at 14 days were:

- primer and paint B spread onto gypsum board or plaster C applied onto calcium silicate brick irrespective of the storing conditions,
- primer and paint B spread onto the combination of filler and plaster B stored at RH 20 % target relative humidity,
- adhesive A applied onto gypsum board or plaster C which was applied onto calcium silicate brick irrespective of the storing conditions,
- adhesive B spread onto gypsum board and stored at RH 20 % or RH 50 % target relative humidities.

However, even though the TVOC_{SERa}-values were low at 14 days, it is still possible that they increase or stay at least at a significant level for a long period of time, as has been reported by e.g. CHANG ET AL. (1997), YU & CRUMP (1998), and SPARKS ET AL. (1999).

8.3 MATHEMATICAL MODELLING

The emission process of a compound is known to be affected by several factors. In the following paragraphs is presented, as an example, the emission of 2-(2-butoxyethoxy)ethanol from adhesive B applied onto different substrates at 1 day. This example is chosen because 2-(2-butoxyethoxy)ethanol is by far the most abundant compound emitting from adhesive B and the case is simple enough compared e.g. with paints, which has one additional material layer, a primer, compared with adhesives. A third reason is that the emission process at 1 day is quite certainly still, at least partly, evaporation controlled.

The calculations are based on the equations presented in Chapter 3.2. The initial amount of VOC applied is not known, but can be approximated as follows. The emission rate was highest in the RH 20 % chamber at 1 day and highest in the RH 80 % chamber at 7 and 14 days, when the adhesive was applied onto glass plates. Considering that the emission rate reaches a peak followed by a decay, the initial amount of 2-(2-butoxyethoxy)ethanol is approximated based on its maximum SER_a-values. The corresponding SER_a-values were 2855 $\mu g/m^2 \cdot h$, 5886 $\mu g/m^2 \cdot h$, and 2454 $\mu g/m^2 \cdot h$. Thus, the amount of 2-(2butoxyethoxy)ethanol is 2855 μ g/m²·h × 24 h + 5886 μ g/m²·h × 144 h + 2454 μ g/m²·h × 168 $h = 1328 \text{ mg/m}^2$. Considering that the emission process is still continuing, an approximation is made that the initial amount of 2-(2-butoxyethoxy)ethanol was 1400 mg/m². The partition coefficient, k_c, can be obtained from Equation 34 and the diffusivity from Equation 35. The density of air is 1.290 g/m³ and its viscosity is 65.52 g/h m. The molecular weight of air is 28.96 g/mole and its molar volume is approximately 20.1 cm³/mole. The molecular weight of 2-(2-butoxyethoxy)ethanol is 162.23 g/mole and its molar volume can be approximated according to (LYMAN ET AL. 1990). The molecular formula of 2-(2-butoxyethoxy)ethanol is $C_8H_{18}O_3$ and its molar volume is, thus, approximately $8 \times 16.5 + 18 \times 1.98 + 3 \times 5.48 =$ 184.08 cm³/mole. M_r is $(28.96 + 162.23)/(28.96 \cdot 162.23) = 0.041$ g/mole. The air-velocity over the source is 540 m/h and the characteristic length of the source is 0.248 m. Introducing these values into Equations 35 and 34 gives:

$$D_a = \frac{10^{-3} \cdot 294^{1.75} \cdot \sqrt{0.041}}{1 \cdot \left[20.1^{1/3} + 184.08^{1/3}\right]^2} = 0.057 \text{ m}^2/\text{h}$$

$$k_c = 0.33 \cdot 0.057 \cdot 0.248^{-(1/3)} \cdot \left(\frac{540 \cdot 1.29}{65.52}\right)^{2/3} = 0.145 \text{ m/h}$$

Assuming that the concentration at the surface of the sample is the same as its bulk concentration and assuming further, based on the conclusion by HANSEN (1974) that the loss of volatile material from, in his case water-based latex coatings, is a surface phenomenon controlled by surface resistance and not by internal diffusion at least at early age (SULLIVAN 1975), the calculations according to Equation 9 give the following results presented in Table 70.

When examining the results presented in Table 70 it can be observed that the calculated values are higher than the measured ones. At least two factors affect the result: the approximation of the initial amount of 2-(2-butoxyethoxy)ethanol in the product could be too high or the emission process is no longer evaporation controlled. At least one thing supports the latter argument, since the results are closest in size for the case when the adhesive was spread onto plaster C, which caused a higher moisture content in the environmental chamber than when the adhesive was spread onto the combination of filler and plaster B. Two other factors that might affect the result, but which have not been taken into consideration in the calculations, are the retention capacities of the substrates and the sink effects on the chamber walls. The latter one is more troublesome to evaluate, since the influence of adsorbed moisture on the adsorption of 2-(2-butoxyethoxy)ethanol should be clarified first, and is, as such, outside the scope of this study. Partition coefficients based on the studies by Meininghaus for some VOCs were presented in Table 6. The partition coefficients for mxylene, *n*-octane, and ethyl acetate emitted from gypsum board varied from 0.010 to 0.133. respectively. Applying for instance the value of ethyl acetate would give the following results: 995 µg/m²·h, 989 µg/m²·h and 826 µg/m²·h at RH 20 %, RH 50 %, and RH 80 % target relative humidities, respectively. No further efforts to model the emissions are made, since there are so many different factors affecting the emission process and a full model that would take all these factors into consideration simultaneously would require a separate study.

		Ew calculate	ed	$\mathbf{E}_{\mathbf{w}}$ measured				
Substrate	RH 20 %	RH 50 %	RH 80 %	RH 20 %	RH 50 %	RH 80 %		
Glass	8537	6043	4158	2855	1986	1350		
Gypsum board	1085	1078	900	346	343	286		
Filller and plaster B on CSB ¹⁾	7471	-	5260	2480		1720		
Plaster C on CSB ¹⁾	21117	16484	-	17250	12900			

Table 70. The calculated and measured SER_a of 2-(2-butoxyethoxy)ethanol ($\mu g/m^2 \cdot h$) emitted from adhesive B spread onto different substrates. c_w is the concentration at the surface (kg/m^3), c_∞ is the concentration in the bulk air, and E_w is the emission rate ($\mu g/m^2 \cdot h$).

¹⁾ CSB denotes calcium silicate brick

9 SUMMARY

This study has concentrated on the VOC-emissions from paints and adhesives applied onto different substrates and kept at specific relative humidities. The substrates used were glass, gypsum board, and a combination of a filler and plaster or a single layer of plaster applied onto calcium silicate brick. The target relative humidities at the start of a test, i.e. when a sample was introduced into an environmental test chamber, were 20 %, 50 %, and 80 %. These cover the relative humidities normally encountered in the Nordic countries. When houses are heated during the winter season, the relative humidity tends to decrease to approximately 20 %, or even lower. The high relative humidity is encountered, except during the summer time, also during a construction period when water-based materials such as concrete, mortars, and plasters are used.

The first part of this study consists of a theoretical review, which covers the following topics: a general description of the materials studied, VOC emissions from materials and structures, and the influence of moisture on VOC emissions. Mathematical expressions for the emission process were also presented.

The literature study indicated that the emission rate of indoor contaminants is affected by the emitted compounds and their concentration and distribution, humidity, surface velocity, air exchange rate, temperature, substrate, material loading factors, and sinks. The emission process can be roughly divided into two rate limiting steps: evaporation and diffusion. Evaporation occurs from liquid materials and is usually rapid in the beginning reaching a peak after typically 0.5-3 hours. It is expressed as a function of the convective mass transfer coefficient. The peak is followed by a rapid decline and the emissions reach a steady level within hours or some days depending on the material in question. Major factors controlling evaporation are vapour pressure differences, surface velocity, temperature and humidity. Evaporation is followed by a diffusion controlled process, which is also the major rate limiting process for initially dry materials. Diffusion is expressed as a function of the diffusion coefficient. It is a slow process compared with evaporation and major factors controlling it are concentration differences, the size and structure of the migrating molecule, the structure of the material, temperature, and relative humidity.

The interaction of functional groups of the emitting compounds with water molecules on the surface of a substrate also affects the emission process. As a consequence the quantity and composition of compounds emitted to the surrounding air may differ from one case to another depending on moisture content of a material and the substrate it is applied onto and the relative humidity of the surrounding air. These factors are important to include when analysing emission data, since moisture can enable, promote, or change chemical and physical processes in building materials.

Initial experiments were conducted to characterise some physical and chemical properties of the materials studied and to clarify the influence of moisture conditions and substrate on the VOC-emissions. The physical and chemical characterisation included FTIR-analysis, light and electron microscopy, the latter together with element analysis, mercury intrusion porosimetry, and the determination of the pH of selected samples using a pH-indicator liquid. The FTIR-results showed that, even though the spectral bands of similar products, e.g. the two water-borne paints, assigned the same components, the peak values occurred at somewhat different wavenumbers indicating differences in the compositions. Similar products emitted also somewhat different compounds and were, thus, not as similar as could be deduced from their product declarations. Mercury intrusion porosimetry showed that the plasters studied have quite different specific surface areas. It influences at least the amount of available adsorption sites for VOCs and water molecules. However, a relationship between specific factor affecting VOC emissions is its retention capacity, but the retention capacities of the different substrates were not clarified.

Environmental test chambers were designed by the author to meet the requirements in the European standards for VOC emission testing. Other requirements were: the chambers should be easy to assemble and clean, the relative humidity of the chamber air should be easy to adjust, the flow conditions should be easily controlled, and the surface area of the samples should be big enough for the FLEC-cell.

The experiments for the clarification of the effect of moisture and substrate on the VOCemissions included, besides VOC sample collection from test chambers and by using the FLEC-cell, also weighing of the samples studied, recording of the relative humidity of the chamber air during sample storage, and olfactory evaluation.

The emission tests showed that the combination of primer and paint spread onto a glass plate gives rise to elevated emissions compared with only a single paint layer, i.e. that two or more materials in close contact act more like one material rather than two separate materials. This was also indicated by the weight change and the relative humidity measurements. The difference in the emission rates can be up to two orders of magnitude. The emission testing of material combinations also showed that the emissions are made up of the characteristic emissions of both the paint and the primer.

When the combinations of primer and paint or adhesives were applied onto gypsum board, the emissions were lower than when they were spread onto glass plates. What is, however, noteworthy is that the emissions from the combinations of primer and paint spread onto gypsum board were higher at 14 days than at 7 days. This was, however, not the case for the adhesives.

When the combinations of primer and paint or adhesives were applied onto a combination of filler and plaster or a single plaster layer which was applied onto calcium silicate brick, the emission results were strongly affected by the substrate still being higher than when the combinations of primer and paint or adhesives were applied onto gypsum board. The emissions were, especially for adhesives, also influenced by the emissions from the substrate. This holds true for all three substrates.

A statistical analysis indicated that the three most influential factors affecting the TVOCvalue were the emission characteristics of the combination of primer and paint or adhesive applied (did it have low or high emission rates), the emission characteristics of the combination of filler and plaster used, and the sample collection point of time. Furthermore, there was a strong interaction of filler and plaster and the relative humidity of the surrounding air influencing the TVOC_{SERa} of the structures for the different combinations of primer and paint. A response prediction plot indicated that the TVOC_{SERa} increases with increasing relative humidity of the surrounding air. The analysis indicated further that there was a strong interaction of relative humidity and the point of time of sample collection on the TVOC_{SERa} of the structures for the different adhesives. Contrary to what was observed for the combinations of primer and paint, a response prediction plot indicated that the TVOC_{SERa} of the structure decreases with increasing relative humidity of the surrounding air.

It can be concluded about the two different sample collection methods that the emission results achieved using the FLEC-cell were in general comparable with samples collected from the environmental chamber air. This indicates that the test chambers did not act as significant sinks. The most abundant chemicals or chemical groups emitted from the different products applied onto glass plates are presented in Table 71.

Material	Emitted compounds
Primer and paint A, water-borne acrylic latex	1,2-propanediol, texanol, glycol ethers
products	
Primer and paint B, a water-borne acrylic latex	1,2-propanediol, glycol ethers, acetic acid
products	
Primer A and paint C, a water-borne acrylic latex	Aliphatic and alicyclic hydrocarbons, 1,2-
primer and an alkyd resin paint	propanediol, aldehydes, ketones, acids,
	texanol
Primer and paint C, alkyd resin products	Aliphatic and alicyclic hydrocarbons,
	aldehydes, acids
Adhesive A, water-borne PVAc-dispersion product	Acetic acid
Adhesive B, water-borne PVAc-dispersion product	Glycol ethers, acetic acid
Adhesive C, water-borne PVC-dispersion product ¹⁾	1,2-propanediol, acetic acid
Filler and plaster A, polymer binder, water mixable	Alcohols, 1,2-propanediol, glycol ethers
Filler and plaster B, polymer binder, ready-mixed	Alcohols, glycol ethers, esters, nitrogen
	containing compounds
Plaster C, gypsum binder, water mixable	Acetone, acetic acid
Gypsum board	Aldehydes, halogen containing compounds

Table 71. The materials used in this study and their main emissions.

¹⁾ According to the manufacturer's information

10 CONCLUSIONS

The experimental part of this study concentrated on clarifying the influence of the relative humidity of the surrounding air and different substrates on the VOC emissions from paints and adhesives. The main results can be concluded as follows:

- It was confirmed that VOC emissions differ depending on the material included, the emitting compound, time, the relative humidity of the surrounding air, and the substrate. Thus, the TVOC-value should be treated with reservations when the emissions of single compounds are estimated.
- The emissions of VOCs from material combinations are affected strongly by the substrate, i.e. its physical and chemical characteristics have an effect on both the total emissions and the emission of single compounds from material combinations. The substrate effect has been shown to hold true for gypsum board in earlier studies, but in this study it has been shown to hold true for other substrates as well, including primers.
- The emissions from material combinations may not necessarily meet the TVOC-level set for a low emitting material even though the materials included have separately been classified as low-emitting. The last measuring point for material combinations was 14 days in this study, while the testing age for the classification tests is 28 days. The TVOC-value of, for instance, the combination of primer and paint A spread onto a glass plate was approximately 500 to 1000-times higher compared with a single layer of paint A at 14 days and it can only be speculated what the TVOC-value of the combination would be at 28 days.
- The three main factors influencing the emissions from the combination of primer and paint or adhesive applied onto a combination of filler and plaster applied onto calcium silicate bricks were: the emission characteristics from the combination of primer and paint or adhesive, the combination of filler and plaster, and the point of time of sample collection. When primers and paints were used, the emissions tended to increase with increasing relative humidity while adhesives indicated an opposite tendency. There was a strong interaction of the relative humidity and the combination of filler and plaster on the emissions when primers and paints were applied onto them and of relative humidity and time when adhesives were applied onto them.
- As a continuation to the preceding paragraph: when the combinations of primer and paint were applied onto different substrates the most abundant compounds emitted stemmed from the combination of primer and paint, irrespective of the substrate. When adhesives were applied onto different substrates, at least part of the most abundant compounds emitted stemmed from the substrate. However, when adhesives were applied onto gypsum board, the most abundant compounds differed from that when they were spread onto glass, but none of the most abundant compounds stemmed from the gypsum board.

- The influence of moisture on the emissions has been shown to be directed especially on the drying process rather than the relative humidity of the surrounding air. Only aldehydes emitting from different combinations of primer and paint applied onto glass were statistically significantly affected by the relative humidity of the surrounding air. On the other hand, a high relative humidity of the surrounding air prolongs the duration of the drying process, thus affecting the emission process.
- The FLEC-cell gave comparable results to what was obtained when samples were collected from the test chambers. The only statistically significant discrepancies occurred when aldehydes or ketones were emitted from combinations of primer and paint or adhesives were applied onto the combination of filler and plaster and when ketones were emitted from combinations of primer and paint or adhesives applied onto the RH 20 % target relative humidity. This could be a consequence of the higher relative humidity of the air introduced into the FLEC-cell compared with that of the test chamber.
- It is possible to achieve very low emission rates in two weeks even when many different materials are combined in a structure by a proper choice of low emitting materials. The emissions from even a high emitting substrate can be reduced by a dense and low emitting top-layer, but a proper drying of the substrate has to be assured. However, even though the TVOC_{SERa}-values were low at 14 days, it is still possible that they increase or stay at least at a significant level for a long period of time.

Based on the results of this study some suggestions for the future are:

- The relation between the drying process and emissions should be clarified more precisely by continuous monitoring of relative humidity and emissions and the results should be related to material and compound specific data, such as specific surface area and polarity.
- The influence of wetting a substrate should be clarified, i.e. it should be clarified how the emissions change in case of a water-damage. This would include the clarification of the emissions generated by hydrolytic degradation reactions.
- The influence of moisture on the emissions from other, e.g. wood-based, materials should be clarified.
- Material emission testing should encompass the testing of materials and material combinations on real substrates used in buildings instead of single material layers on inert substrates, which is common practice today. Then a concept of low-emitting structural components could be introduced. The emission testing in this case should include different relative humidities of the surrounding air.
- Test results from test chambers with actual structural components should be compared with field measurements.

REFERENCES

AFSHARI, A., LUNDGREN, B. and EKBERG, L.E. (2003) Comparison of three small chamber test methods for the measurement of VOC emission rates from paint. *Indoor Air*, **13**, 2, 156-165.

AHOLA, P. (1993) Chemical and physical changes in paints or painted wood due to ageing. VTT Publications 155. Technical Research Centre of Finland. Espoo. Finland. 90 p.

ANDERSEN, I., LUNDQVIST, G.R. and MØLHAVE, L. (1975) Indoor air pollution due to chipboard used as a construction material. *Atmospheric Environment*, **9**, 12, 1121-1127.

AMALI, S., PETERSEN, L.W. and ROLSTON, D.E. (1994) Modeling multicomponent volatile organic and water vapor adsorption on soils. *Journal of Hazardous Materials*, **36**, 1, 89-108.

BEEK, W. J., MUTTZALL, K.M.K. and VAN HEUVEN, J.W. (1999) Transport Phenomena, 2nd ed., John Wiley & Sons Ltd., England. 329 p.

BERGE, A., MELLEGAARD, B., HANETHO, P. and ORMSTAD, E.B. (1980) Formaldehyde release from particleboard – evaluation of a mathematical model. *Holz als Roh- und Werkstoff*, **38**, 7, 251-255.

BERGLUND, B., BRUNEKREEF, B., KNÖPPEL, H., LINDVALL, T., MARONI, M., MØLHAVE, L. and SKOV, P. 1992. Effects of indoor air pollution on human health. *Indoor Air*, **2**, 1, 2-25

BIRD, R.B., STEWART, W.E. and LIGHTFOOT, E.N. (2002) Transport Phenomena, 2nd ed., John Wiley & Sons Ltd., New York, U.S.A. 895 p.

BLUYSSEN, P.M., DE OLIVEIRA FERNANDES, E., GROES, L., CLAUSEN, G., FANGER, P.O., VALBJØRN, O., BERNHARD, C.A. and ROULET, C.A. (1996) European indoor air quality audit project in 56 office buildings. *Indoor Air*, **6**, 4, 221-238.

BODALAL, A., ZHANG, J.S. and PLETT, E.G. (2000) A method for measuring internal diffusion and equilibrium partition coefficients of volatile organic compounds for building materials. *Building and Environment*, **35**, 2, 101-110.

BROCK, T., GROTEKLAES, M. and MISCHKE, P. (2000) European Coatings Handbook. Vincentz Verlag, Hannover, Germany. 412 p.

BUTLER, L.N., FELLOWS, C.M. and GILBERT, R.G. (2005) Effect of surfactants used for binder synthesis on the properties of latex paints. *Progress in Organic Coatings*. **53**, 2, 112-118.

CALL, F. (1957) The mechanism of sorption of ethylene dibromide on moist soils. *Journal of the Science of Food and Agriculture*, **8**, 630-639.

CHANG, J.S.C. and GUO, Z. (1992) Characterisation of organic emissions from a wood finishing product – wood stain. *Indoor Air*, **2**, 3, 146-153.

CHANG, J.S.C. and GUO, Z. (1994) Modelling of alkane emissions from a wood stain. *Indoor Air*, **4**, 1, 35-39.

CHANG, J.S.C. and GUO, Z. (1998) Emissions of odorous aldehydes from alkyd paint. *Atmospheric Environment*, **32**, 20, 3581-3586.

CHANG, J.S.C., SPARKS, L.E., GUO, Z. and FORTMANN, R. (1998) Evaluation of sink effects on VOCs from a latex paint. *Journal of the Air & Waste Management Association*, **48**, October, 953-958.

CHANG, J.S.C., TICHENOR, B.A., GUO, Z. and KREBS, K.A. (1997) Substrate effects on VOC emissions from a latex paint. *Indoor Air*, **7**, 4, 241-247.

CIC. (2001) Classification of Indoor Climate 2000. Target values, design guidance and product requirements. Finnish Society of Indoor Air Quality and Climate (FiSIAQ). FiSIAQ Publication 5 E, Espoo, Finland. 40 p.

CLAUSEN, P.A. (1993) Emission of volatile and semivolatile organic compounds from waterborne paints – the effect of the film thickness. *Indoor Air*, **3**, 4, 269-275.

COLOMBO, A., DE BETOLI, M., KNÖPPEL, H., PECCHIO, E. and VISSERS, H. (1993) Adsorption of selected volatile organic compounds on a carpet, a wall coating, and a gypsum board in a test chamber. *Indoor Air*, **3**, 4, 276-282.

COX, S., ZHAO, D. and LITTLE, J.C. (2001) Measuring partition and diffusion coefficients for volatile organic compounds in vinyl flooring. *Atmospheric Environment*, **35**, 22, 3823-3830.

COX, S., LITTLE, J.C. and HODGSON, A.T. (2002) Predicting the emission rate of volatile organic compounds from vinyl flooring. *Environmental Science* & *Technology*, **36**, 4, 709-714.

DUNN, J.E. and TICHENOR, B.A. (1988) Compensating for sink effects in emission test chambers by mathematical modeling. *Atmospheric Environment*, **22**, 5, 885-894.

ELLACOTT, M.V. & REED, S. (1999) Development of robust indoor air quality models for the estimation of volatile organic compound concentrations in buildings. *Indoor and Built Environment*, **8**, 6, 345-360.

EN 923. (1998) Adhesives - terms and definitions. Brussels, 48 p.

EN 927-1. (1996) Paints and varnishes. Coating materials and coating systems for exterior wood. Part 1: Classification and selection. Brussels, 10 p.

EN 971-1. (1996) Paints and varnishes - Terms and definitions for coating materials - Part I: General terms. Brussels, 28 p.

ENV 13419-1. (1999) Building products – determination of the emission of volatile organic compounds – Part 1: Emission test chamber method. European Committee for Standardisation. CEN/TC 264. Brussels. 17 p.

ENV 13419-2. (1999) Building products – determination of the emission of volatile organic compounds – Part 2: Emission test cell method. European Committee for Standardisation. CEN/TC 264. Brussels. 19 p.

FANG, L., CLAUSEN, G. and FANGER, P.O. (1998) Impact of temperature and humidity on the perception of indoor air quality. *Indoor Air*, **8**, 2, 80-90.

FANG, L., CLAUSEN, G. and FANGER, P.O. (1999) Impact of temperature and humidity on chemical and sensory emissions from building materials. *Indoor Air*, **9**, 3, 193-201.

FELLIN, P. and OTSON, R. (1994) Assessment of the influence of climatic factors on concentration levels of volatile organic compounds (VOCs) in Canadian homes. *Atmospheric Environment*, **28**, 22, 3581-3586.

FORTMANN, R., ROACHE, N., CHANG, J.S.C. and GUO, Z. (1998) Characterisation of emissions of volatile organic compounds from interior alkyd paint. *Journal of the Air & Waste Management Association*, **48**, October, 931-940.

FULLER, E.N., SCHETTLER, P.D. and GIDDINGS, J.C. (1966) A new method for prediction of binary gas-phase diffusion coefficients. *Industrial and Engineering Chemistry*, **58**, 5, 19-27.

GEHRIG, R., HILL, M., ZELLWEGER and C., HOFER, P. (1993) VOC-emissions from wall paints - a test chamber study. In: Indoor Air '93. Proceedings of the 6th International Conference on Indoor Air Quality and Climate, July 4-8, 1993, Helsinki, Finland. Vol. 2. 431-436.

GIRMAN, J.R., HODGSON, A.T. and NEWTON, A.S. (1986) Emissions of volatile organic compounds from adhesives with indoor application. *Environment International*, **12**, 317-321.

GODISH, T. and ROUCH, J. (1987) An assessment of the Berge equation applied to formaldehyde measurements under controlled conditions of temperature and humidity in a mobile home. *Journal of the Air Pollution Control Association*, **35**, 11, 1186-1187.

GOSS, K-U. (1992) Effects of temperature and relative humidity on the sorption of organic vapors on quartz sand. *Environmental Science & Technology*, **26**, 11, 2287-2294.

GOSS, K-U. (1993) Effects of temperature and relative humidity on the sorption of organic vapors on clay minerals. *Environmental Science & Technology*, **27**, 10, 2127-2132.

GOSS, K-U. and EISENREICH, S.J. (1996) Adsorption of volatile organic compounds from the gas phase to different minerals and a mineral mixture. *Environmental Science & Technology*, **30**, 7, 2135-2142.

GRIGSBY, W.J., FERGUSON, C.J., FRANICH, R.A. and RUSSELL, G.T. (2005) Evaluation of latex adhesives containing hydrophobic cores and poly(vinyl acetate) shells: potential to improve poly(vinyl acetate) performance. *International Journal of Adhesion & Adhesives*, **25**, 2, 127-137.

GUNNARSEN, L. (1997) The influence of area-specific ventilation rate on the emissions from construction products. *Indoor Air*, **7**, 2, 116-120.

GUO, H. and MURRAY, F. (2000) Characterisation of total volatile organic compound emissions from paints. *Clean Products and Processes*, **2**, 1, 28-36.

GUO, Z., SPARKS, L.E., TICHENOR, B.A. and CHANG, J.C.S. (1998) Predicting the emissions of individual VOCs from petroleum-based indoor coatings. *Atmospheric Environment*, **32**, 2, 231-237.

GUO, Z., SPARKS, L.E., CHANG, J.C.S., SPARKS, L.E. and FORTMANN, R.C. (1999) Estimation of the rate of VOC emissions from solvent-based indoor coating materials based on product formulation. *Atmospheric Environment*, **33**, 2, 1205-1215.

HAGHIGHAT, F. and DE BELLIS, L. (1998) Material emission rates: literature review, and the impact of indoor air temperature and relative humidity. *Building and Environment*, **33**, 5, 261-277.

HANSEN, C.M. (1974) The air drying of latex coatings. *Industrial & Engineering Chemistry Product Research and Development*, **13**, 2, 150-152.

HAWTHORNE, A.R. and MATTHEWS, T.G. (1987) Models for estimating organic emissions from building materials: formaldehyde example. *Atmospheric Environment*, **21**, 2, 419-424.

HE, G., YANG, X. and SHAW, C.Y. (2004) Material emission parameters obtained through regression. *Indoor and Built Environment*, 14, 1, 59-68.

HELLGREN, A-C., WEISSENBORN, P. and HOLMBERG, K. (1999) Surfactants in water-borne paints. *Progress in Organic Coatings*. **35**, 1-4, 79-87.

HUANG, H. and HAGHIGHAT, F. (2002) Modelling of volatile organic compounds emission from dry building materials. *Building and Environment*, **37**, 12, 1349-1360.

HUDNELL, H.K., OTTO, D.A., HOUSE, D.E. and MØLHAVE, L. (1992) Exposure of humans to a volatile organic mixture. II. Sensory. *Archives of Environmental Health*, **47**, 1, 31-38.

ISO 16000-6. (2004) Indoor air -- Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS/FID, 25 p.

JAYJOCK, M.A. (1994) Back pressure modeling of indoor air concentrations from volatilizing sources. *American Industrial Hygiene Association Journal*, **55**, 3, 230-235.

JOHNSEN, C.R., HEINIG, J.H., SCHMIDT, K., ALBRECHTSEN, O., NIELSEN, P.A., WOLKOFF, P., NIELSEN, G.D., HANSEN, L.F. and FRANCK, C. (1991) A study of human reactions to emissions from building materials in climate chambers. Part I: clinical data, performance and comfort. *Indoor Air*, **1**, 4, 377-388.

JÄRNSTRÖM, H. and SAARELA, K. (2005) Indoor air quality and material emissions in new buildings. VTT Research Notes 2281, Espoo, Finland. 100 p. (In Finnish)

JØRGENSEN, R.B., BJØRSETH, O. and MALVIK, B. (1995) Emissions from wall paints - the influence of the wall material. In: Healthy Buildings '95. Proceedings of the 5th International Conference on Healthy Buildings, September 10-14, 1995, Milano, Italy. 977-982.

JØRGENSEN, R.B., BJØRSETH, O. and MALVIK, B. (1999) Chamber testing of adsorption of volatile organic compounds (VOCs) on material surfaces. *Indoor Air*, **9**, 1, 2-9.

JØRGENSEN, R.B. and BJØRSETH, O. (1999) Sorption behaviour of volatile organic compounds on material surfaces – the influence of combinations of compounds and materials compared to single compounds and single materials. *Environment International*, **25**, 1, 17-27.

KIRCHNER, S., MAUPETIT, F., QUENARD, D., ROUXEL, P. and GIRAUD, D. (1995) Characterisation of adsorption/desorption of volatile organic compounds of indoor surface materials. In: Proceedings of Healthy Buildings, Milano 10-14 September 1995. Vol. 2. 953-958.

KJÆRGAARD, S.K., MØLHAVE, L. and PEDERSEN, O.F. (1991) Human reactions to a mixture of indoor air volatile organic compounds. *Atmospheric Environment*, **25A**, 8, 1417-1426.

KNUDSEN, H.N., KJÆR, U.D., NIELSEN, P.A. and WOLKOFF, P. (1999) Sensory and chemical characterization of VOC emissions from building products: impact of concentration and air velocity. *Atmospheric Environment*, **33**, 8, 1217-1230.

KORNUM, L.O. (1980) Evaporation and water-dilutable coatings. *Journal of the Oil and Colour Chemists' Association (JOCCA)*, **63**, 3, 103-123.

KWOK, N-H, LEE, S-C, GUO, H. and HUNG, W-T. (2003) Substrate effects on VOC emissions from an interior finishing varnish. *Building and Environment*, **38**, 8, 1019-1026.

LEE, S-C., KWOK, N-H., GUO, H.and HUNG, W-T. (2003) The effect of wet film thickness on VOC emissions from a finishing varnish. *The Science of the Total Environment*, **302**, 1-3, 75-84.

LITTLE, J.C., HODGSON, A.T. and GADGIL, A.J. (1994) Modeling emissions of volatile organic compounds from new carpets. *Atmospheric Environment*, **28**, 2, 227-234.

LUNDGREN, B., JONSSON, B. and EK-OLAUSSON, B. (1999) Materials emission of chemicals-PVC flooring materials. *Indoor Air*, **9**, 3, 202-208.

LYMAN, W.J., REEHL, W.F. and ROSENBLATT, D. H. (1990) Handbook of chemical property estimation methods. Environmental behavior of organic compounds. American Chemical Society, Washington D.C., U.S.A. 960 p. (appr.)

MEININGHAUS, R., SALTHAMMER and T., KNÖPPEL, H. (1999) Interaction of volatile organic compounds with indoor materials – a small-scale screening method. *Atmospheric Environment*, **33**, 15, 2395-2401.

MEININGHAUS, R., GUNNARSEN, L. and KNUDSEN, H.N. (2000a) Diffusion and sorption of volatile organic compounds in building materials. *Environmental Science & Technology*, **34**, 15, 3101-3108.

MEININGHAUS, R., KIRCHNER, S., MAUPETIT, F., SALLÉE, H. and QUENARD, D. (2000b) Gravimetric studies on VOC adsorption by indoor materials under near-ambient conditions. *Indoor and Built Environment*, **9**, 5, 277-283.

MEYER, B. (1979) Urea-formaldehyde resins. Addison-Wesley Publishing Company. Reading, Massachusetts. U.S.A. 423 p.

MØLHAVE, L. (1991) Volatile organic compounds, indoor air quality and health. *Indoor Air*, **1**, 4, 357-376.

MØLHAVE, L., BACH, B. and PEDERSEN, O.F. (1986) Human reactions to low levels of volatile organic compounds. *Environment International*, **12**, 1-4, 167-175.

MØLHAVE, L., SPARKS, L.E., WOLKOFF, P., CLAUSEN, P.A., NIELSEN, P.A. and BERSØ, N.C. (1996) The Danish twin apartment study - part II: Mathematical modeling of the relative strength of sources of indoor pollution. *Indoor Air*, **6**, 1, 18-30.

NERETNIEKS, I., CHRISTIANSSON, J., ROMERO, L., DEGERHOLT, L. and YU, J-W. (1993) Modelling of emission and re-emission from building materials with indoor air applications. *Indoor Air*, **3**, 1, 2-11.

VAN NETTEN, C., SHIRTLIFFE, C. and SVEC, J. (1989) Temperature and humidity dependence of formaldehyde release from selected building materials. *Bulletin of Environmental Contamination and Toxicology*, **42**, 4, 558-565.

NIELSEN, G.D., HANSEN, L.F., HAMMER, M., VEJRUP, K.V. and WOLKOFF, P. (1997) Chemical and biological evaluation of building material emissions. I. A screening procedure based on a closed emission system. *Indoor Air*, 7, 1, 8-16.

NIELSEN, P.A. (1987) Potential pollutants – their importance to the sick building syndrome – and their release mechanisms. In: Proceedings of the 4th International Conference on Indoor Air Quality and Climate, Berlin (West) 17-21 August 1987. Vol. 2, 598-602.

NORBÄCK, D., TORGÉN, M. and EDLING, C. (1990) Volatile organic compounds, respirable dust, and personal factors related to prevalence and incidence of sick building syndrome in primary schools. *British Journal of Industrial Medicine*, **47**, 11, 737-741.

NYQUIST, R.A. and NAGEL, R.O. (1971) Infrared spectra of inorganic compounds. Academic Press. New York. 495 p.

OKAMURA, J.P. and SAWYER, D.T. (1973) Gas chromatographic studies of sorptive interactions of normal and halogenated hydrocarbons with water-modified soil, silica, and Chromosorb W. *Analytical Chemistry*, **45**, 1, 80-84.

ONG, S.K. and LION, L.W. (1991) Mechanisms for trichloroethylene vapor sorption onto soil minerals. *Journal of Environmental Quality*, **20**, 180-188.

OTTO, D., MØLHAVE, L., ROSE, G., HUDNELL, H. K. and HOUSE, D. (1990) Neurobehavioral and sensory irritant effects of controlled exposure to a complex mixture of volatile organic compounds. *Neurotoxicology and Teratology*, **12**, 6, 649-652.

PARIS, J. (2000) Adhesives for paper, board and foils. *International Journal of Adhesion & Adhesives*, **20**, 2, 89-90.

PARK, J.S. and IKEDA, K. (2004) Exposure to the mixtures of organic compounds in homes in Japan. *Indoor Air*, **14**, 6, 413-420.

PEJTERSEN, J., BROHUS, H., HYLDGAARD, C.E., NIELSEN, J.B., VALBJØRN, O., HAUSCHILDT, P., KJÆRGAARD, S.K. and WOLKOFF, P. (2001) Effect of renovating an office building on occupants' comfort and health. *Indoor Air*, **11**, 1, 10-25.

PENNELL, K.D., DEAN RHUE, R., SURESH, P., RAO, C. and JOHNSTON, C.T. (1992) Vapourphase sorption of p-xylene and water on soils and clay minerals. *Environmental Science & Technology*, **26**, 4, 756-763.

PERERA, D.Y. (2004) Effect of pigmentation on organic coating characteristics. *Progress in Organic Coatings*, **50**, 4, 247-262.

PETERSEN, L.W., MOLDRUP, P., EL-FARHAN, Y.H., JACOBSEN, O.H., YAMAGUCHI, T. and ROLSTON, D.E. (1995) The effect of moisture and soil texture on the adsorption of organic vapors. *Journal of Environmental Quality*, **24**, 752-759.

PETRIE, E.M. (2000) Handbook of Adhesives and Sealants. McGraw-Hill. U.S.A. 880 p.

PICKRELL, J.A., MOKLER, B.V., GRIFFIS, L.C. and HOBBS, H. (1983) Formaldehyde release rate coefficients from selected consumer products. *Environmental Science & Technology*, **17**, 12, 753-757.

POPA, J. and HAGHIGHAT, F. (2003) The impact of VOC mixture, film thickness and substrate on adsorption/desorption characteristics of some building materials. *Building and Environment*, **38**, 7, 959-964.

RAW, G.J., COWARD, S.K.D., BROWN, V.M. and CRUMP, D.R. (2004) Exposure to air pollutants in English homes. *Journal of Exposure Analysis and Environmental Epidemiology*, **14**, suppl. 1, S85-S94.

ROACHE, N.F., GUO, F., FORTMANN, R. and TICHENOR, B.A. (1996) Comparing the Field and Laboratory Emission Cell (FLEC) with traditional emission testing chambers. In: Characterizing Sources of Indoor Air Pollution and Related Sink Effects. Edited by B.A. Tichenor. ASTM, STP 1287, U.S.A. 98-111.

ROSÉN, G. and ANDERSSON, I.M. (1990) Solvent emission from newly painted surfaces. *Journal of the Oil and Colour Chemists' Association (JOCCA)*, **73**, 5, 202-211.

RUIZ, J., BILBAO, R. and MURILLO, M.B. (1998) Adsorption of different VOC onto soil minerals from gas phase: influence of mineral, type of VOC, and air humidity. *Environmental Science & Technology*, **32**, 8, 1079-1084.

SAARELA, K. (1992) Organic emissions from building materials and their reduction. Report 3. Ministry of the Environment. Helsinki. 68 p. (In Finnish)

SAARELA, K. (1999) Emission from floor coverings. In: Organic Indoor Air Pollutants. Occurrence-Measurement-Evaluation. Edited by T. Salthammer. Wiley-VCH. 185-202.

SAARELA, K., BJÖRKROTH, M., KUKKONEN, E., SEPPÄNEN, O. and TUOMAINEN, M. (2002) Emission Classification of Building Materials: Protocol for Chemical and Sensory Testing of Building Materials. The Building Information Foundation RTS, Finland. 44 p.

SAARELA, K., TIRKKONEN, T., LAINE-YLIJOKI, J., JURVELIN, J., NIEUWENHUISJEN, M.J. and JANTUNEN, M. (2003) Exposure of population and microenvironmental distributions of volatile organic compound concentrations in the EXPOLIS study. *Atmospheric Environment*, **37**, 39-40, 5563-5575.

SAMET, J.M. (1993) Indoor air pollution: a public health perspective. *Indoor Air*, **3**, 4, 219-226.

SAMMON, C., MURA, C., YARWOOD, J., EVERALL, N., SWART, R. and HODGE, D. (1998) FTIR-ATR studies of the structure and dynamics of water molecules in polymeric matrixes. A comparison of PET and PVC. *The Journal of Physical Chemistry B*, **102**, 18, 3402-3411.

SOCRATES, G. (1980) Infrared characteristic group frequencies. John Wiley & Sons, Chichester, 1-89.

SOLLINGER, S., LEVSEN, K. and WÜNSCH, G. (1993) Indoor pollution by organic emissions from textile floor coverings: climate test chamber studies under static conditions. *Atmospheric Environment*, **28**, 14, 2369-2378.

SOLLINGER, S., LEVSEN, K. and WÜNSCH, G. (1994) Indoor pollution by organic emissions from textile floor coverings. Climate chamber studies under dynamic conditions. *Atmospheric Environment*, **27 B**, 2, 183-192.

SOWA, J. (1994) Man as a stochastic factor in indoor air quality predictions. *Indoor Environment*, **3**, 3, 119-122.

SPARKS, L.E. (1992) Modeling indoor concentrations and exposures. *Annals of the New York Academy of Sciences*, **641**, 102-111.

SPARKS, L.E., TICHENOR, B.A., CHANG, J.S.C. and GUO, Z. (1996) Gas-phase mass transfer model for predicting volatile organic compound (VOC) emission rates from indoor pollutant sources. *Indoor Air*, **6**, 1, 31-40.

SPARKS, L.E., GUO, Z., CHANG, J.C. and TICHENOR, B.A. (1999) Volatile organic compound emissions from latex paint – part 1. Chamber experiments and source model development. *Indoor Air*, **9**, 1, 10-17.

STROMBERG, S.E. and WIND, G.J. (1968) Investigation of the evaporation patterns of mixed solvents in water thinnable resins. *Recent Advances in Water Soluble Coatings*, **40**, 525, 459-467.

SULLIVAN, D.A. (1975) Water and solvent evaporation from latex and latex paint films. *Journal of Paint Technology*, **47**, 610, 60-67.

THØGERSEN, K., GUNNARSEN, L. and NIELSEN, P.A. (1993) The effect on indoor air quality by water-damaged chipboards. In: Proceedings of the 6th International Conference on Indoor Air Quality and Climate, Helsinki 4-8 July 1993. Vol. 2, 537-542.

TICHENOR, B.A. and MASON, M. (1988) Organic emissions from consumer products and building materials to the indoor environment. *The International Journal of Air Pollution Control and Waste Management (JAPCA)*, **38**, 3, 264-268.

TICHENOR, B.A. and GUO, Z. (1991) The effect of ventilation rate on emission rates of wood finishing materials. *Environment International*, **17**, 4, 317-323

TICHENOR, B.A., GUO, Z., DUNN, J.E., SPARKS, L.E. and MASON, M.A. (1991) The interaction of vapor phase organic compounds with indoor sinks. *Indoor Air*, **1**, 1, 23-35.

TICHENOR, B.A., GUO, Z. and SPARKS, L.E. (1993) Fundamental mass transfer model for indoor air emissions from surface coatings. *Indoor Air*, **3**, 4, 263-268.

TOPP, C., NIELSEN, P.V. and HEISELBERG, P. (2001) Influence of local airflow on the pollutant emission from indoor building surfaces. *Indoor Air*, **11**, 3, 162-170.

TOUT, R. (2000) A review of adhesives for furniture. *International Journal of Adhesion & Adhesives*, **20**, 4, 269-272.

TSUKRUK, V.V., GORBUNOV, V.V., HUANG, Z. and CHIZHIK, S.A. (2000) Dynamic microprobing of viscoelastic polymer properties. *Polymer International*, **49**, 5, 441-444.

TUCKER, W.G. (1991) Emission of organic substances from indoor surface materials. *Environment International*, **17**, 357-363.

TUOMAINEN, M., PASANEN, A-L., TUOMAINEN, A., LIESIVUORI, J and JUVONEN, P. (2001) Usefulness of the Finnish classification of indoor climate, construction and finishing:

comparison of indoor climate between two new blocks of flats in Finland. *Atmospheric Environment*, **35**, 2, 305-313.

UHDE, E., BORGSCHULTE, A. and SALTHAMMER, T. (1998) Characterization of the Field and Laboratory Emission Cell – FLEC: flow field and air velocities. *Atmospheric Environment*, **32**, 4, 773-781.

VILLBERG, K., SAARELA, K., TIRKKONEN, T., PASANEN, A-L., KASANEN, J-P., PASANEN, P., KALLIOKOSKI, P., MUSSALO-RAUHAMAA, H., MALMBERG, M., and HAAHTELA, T. (2004) Indoor air quality control. VTT Publications 540. Espoo, Finland. 192 p. (In Finnish)

WARGOCKI, P., LAGERCRANTZ, L., WITTERSEH, T., SUNDELL, J., WYON, D.P. and FANGER, P.O. (2002) Subjective perceptions, symptom intensity and performance: a comparison of two independent studies, both changing similarly the pollution load in an office. *Indoor Air*, **12**, 2, 74-80.

WARGOCKI, P., WYON, D.P., BAIK, Y.K., CLAUSEN, G.and FANGER, P.O. (1999) Perceived air quality, sick building syndrome (SBS) symptoms and productivity in an office with two different pollution loads. *Indoor Air*, **9**, 3, 176-179.

WESCHLER, C.J. and SHIELDS, H.C. (1997) Potential reactions among indoor pollutants. *Atmospheric Environment*, **31**, 21, 3487-3495.

WHO. (1983) Indoor air pollutants: exposure and health effects. EURO Reports and Studies 78. Report on a WHO meeting, Nördlingen 8-11 June 1982. Published by World Health Organization Regional Office for Europe, Copenhagen. 42 p.

WHO. (1989) Indoor air quality: organic pollutants. EURO Reports and Studies 111. Report on a WHO meeting, Berlin (West) 23-27 August 1987. Published by World Health Organization Regional Office for Europe, Copenhagen. 53 p.

WIESLANDER, G., NORBÄCK, D. and EDLING, C. (1997) Airway symptoms among house painters in relation to exposure to volatile organic compounds (VOCs) – a longitudinal study. *Annals of Occupational Hygiene*, **41**, 2, 155-166.

WILLIAMS, D.A. and FLEMING, I. (1989) Spectroscopic methods in organic chemistry. McGraw-Hill Book Company, London, 29-62.

WIRTANEN, L. (2001) The moisture content and emissions of ground slabs and floors between storeys subjected to a moisture load (in Finnish). Licentiate's thesis. Helsinki University of Technology, Building Materials Technology. 136 p. + appendices 25 p.

WIRTANEN, L., ERONEN, J. and PENTTALA, V. (2002) The moisture content and emissions from floors subjected to a moisture load. In: Proceedings of the 9th International Conference on Indoor Air Quality and Climate, Monterey, California, 30 June - 4 July 2002. Vol. 3. 244-249.

WOLKOFF, P. (1995) Volatile organic compounds – sources, measurements, emissions, and the impact on indoor air quality. *Indoor Air*, **Supplement no. 3**. 73 p.

WOLKOFF, P. (1998) Impact of air-velocity, temperature, humidity, and air on long-term VOC emissions from building products. *Atmospheric Environment*, **32**, 14/15, 2659-2668.

WOLKOFF, P. (2003) Trends in Europe to reduce the indoor air pollution of VOCs. *Indoor Air*, **13**, Supplement no. 6, 5-11.

WOLKOFF, P., CLAUSEN, P.A., NIELSEN, P.A. and GUNNARSEN, L. (1993) Documentation of Field and Laboratory Emission Cell "FLEC": identification of emission processes from carpet, linoleum, paint, and sealant by modelling. *Indoor Air*, **3**, 4, 291-297.

WOLKOFF, P., CLAUSEN, P.A., NIELSEN and P.A. (1993) Application of Field and Laboratory Emission Cell "FLEC"-recovery study, case study of damaged linoleum, and liquid wax. In: Proceedings of the 6th International Conference on Indoor Air Quality and Climate, Helsinki 4-8 July 1993. Vol. 2. 543-548.

WON, D., CORSI, R.L. and RYNES, M. (2001) Sorptive interactions between VOCs and indoor materials. *Indoor Air*, **11**, 4, 246-256.

YU, C. and CRUMP, D. (1998) A review of the emission of VOCs from polymeric materials used in buildings. *Building and Environment*, **33**, 6, 357-374.

ZHANG, Y. and HAGHIGHAT, F. (1997) The impact of surface air movement on material emissions. *Building and Environment*, **32**, 6, 551-556.

RESULTS OF THE EDS-ANALYSES

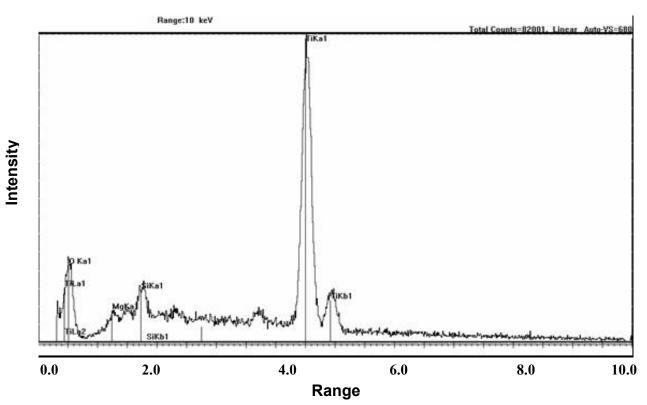


Figure A1. Paint A.

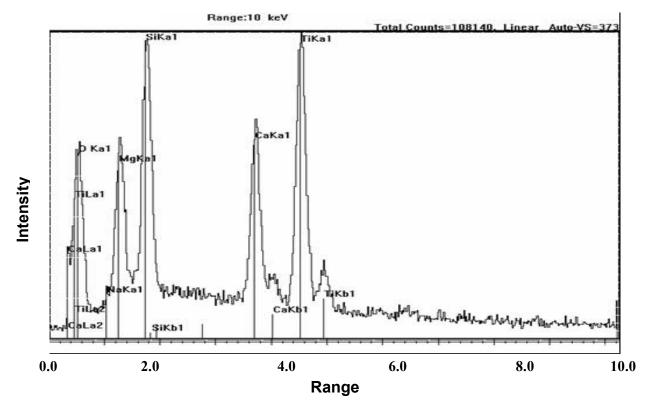


Figure A2. Primer A.

APPENDIX A

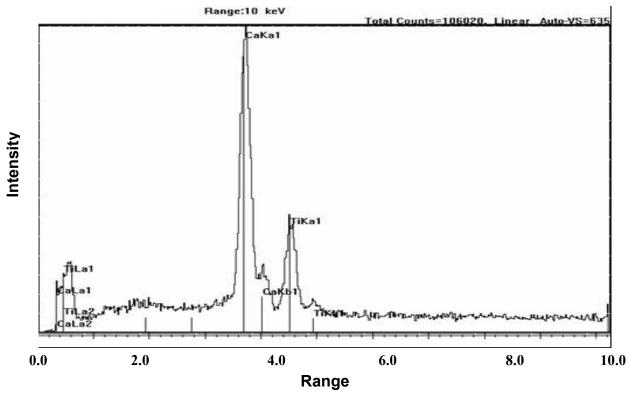


Figure A3. Paint B.

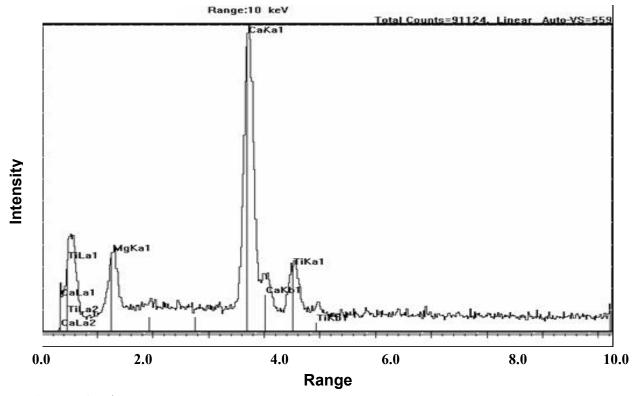


Figure A4. Primer B.

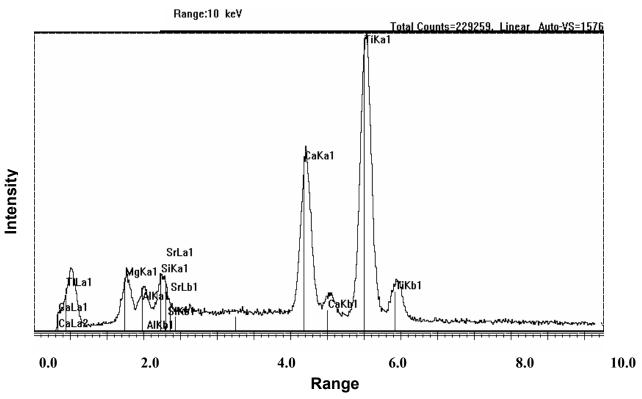


Figure A5. Paint C.

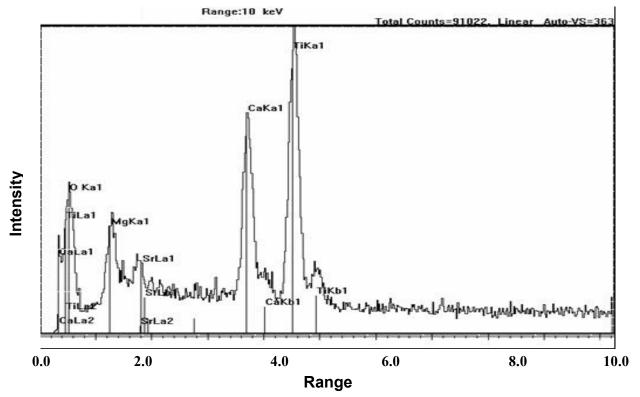


Figure A6. Primer C.

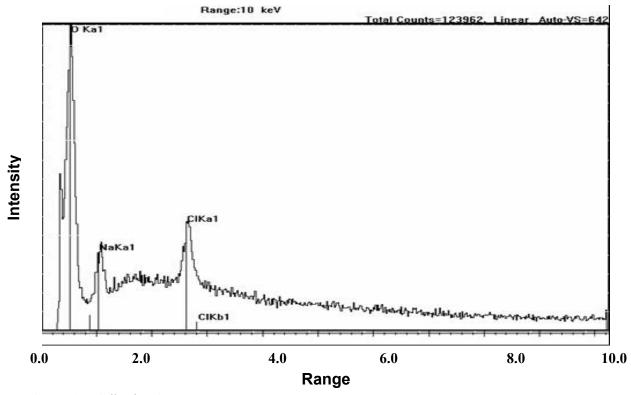


Figure A7. Adhesive A.

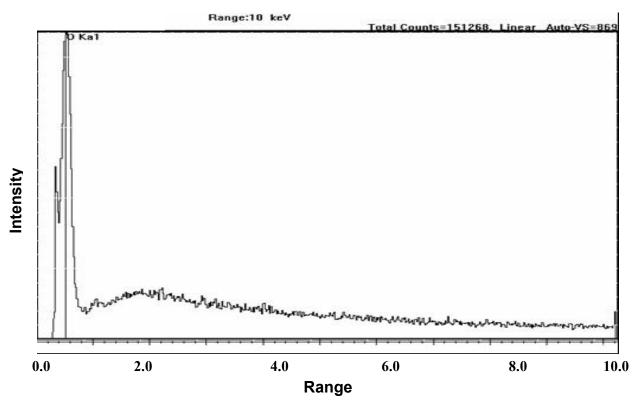


Figure A8. Adhesive B.

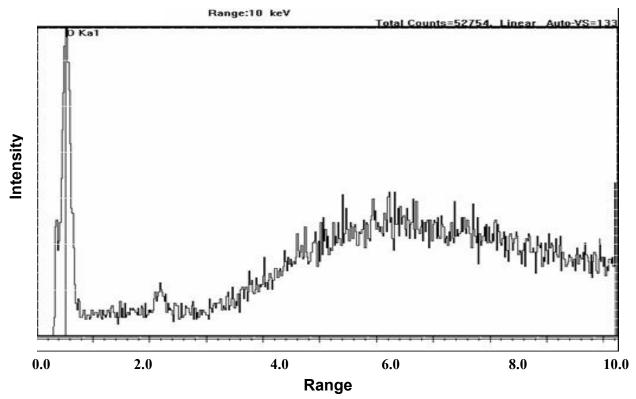


Figure A9. Adhesive C.

SAMPLE WEIGHTS

Material / material combination	RH (%)	Sample weight (g)	Evaporated (g)	Relative weight change (%)
Paint A, 28 d	20	7.98	3.23	40.5
	50	7.95	3.11	39.1
	80	8.00	3.08	38.5
Paint C, 28 d	20	5.35	1.04	19.5
	50	5.84	1.22	21.0
	80	5.48	1.06	19.4
Adhesive A, 28 d	20	18.57	14.37	77.4
, , , , , , , , , , , , , , , , , , ,	50	18.27	14.07	77.0
	80	18.53	13.80	74.5
Adhesive B, 14 d	20	18.65	16.00	85.8
	50	18.62	15.84	85.1
	80	18.52	15.54	83.9
Adhesive C, 28 d	20	18.65	15.38	82.5
	50	18.34	15.03	82.0
	80	18.25	14.62	80.1
Plaster A, 29 d	20	206.63	48.44	23.4
	50	201.66	47.48	23.5
	80	208.59	48.40	23.2
Plaster C, 27 d	20	267.12	110.47	41.4
(3 mm)	50	196.03	50.47	25.7
	80	209.00	6.46	3.1
Gypsum board, 28 d	20	536.97	1.35	0.3
	50	538.08	0.22	0.0
	80	543.93	-2.30	-0.4
Primer and paint A, 14d	20	13.36	4.12	30.84
1 /	50	13.21	3.86	29.22
	80	13.17	3.55	26.96
Primer and paint B, 14d	20	13.80	3.61	26.16
1 /	50	13.74	3.52	25.62
	80	13.90	3.31	23.81
Primer A and paint C, 14d	20	9.76	0.94	9.63
1 ,	50	9.70	0.93	9.59
	80	9.79	0.56	5.72
Primer and paint C, 14d	20	10.19	0.62	6.08
1 ,	50	10.24	0.62	6.05
	80	10.16	0.74	7.28
Filler and plaster A, 14 d	20	445.82	72.02	16.15
• '	50	467.03	74.06	15.86
	80	493.28	35.22	7.14
Filler and plaster B, 14 d	20	365.22	113.44	31.29
r	50	332.76	79.51	23.89
	80	322.56	30.97	9.60

Table B1. Sample weights and the relative weight changes at the different relative humidities. d indicates the age of the sample in days.

Table B1	continues
----------	-----------

Material / material	RH (%)	Sample weight (g)	Evaporated (g)	Relative weight	
combination	iui (70)			change (%)	
Plaster C, 14 d	20	518.18	125.62	24.2	
(6 mm)	50	515.54	78.22	15.2	
	80	518.61	63.94	12.3	
GB and paint A ²⁾ , 14 d	20	14.00	5.11	36.50	
	50	14.12	3.64	25.78	
	80	13.98	1.58	11.30	
GB and paint B ²⁾ , 14 d	20	14.61	4.32	29.57	
	50	14.66	2.77	18.89	
	80	14.76	0.31	2.10	
GB and adh. A ²⁾ , 14 d	20	18.35	13.22	72.04	
	50	18.42	11.16	60.59	
	80	18.52	7.70	41.58	
GB and adh. B ²⁾ , 14 d	20	18.45	14.00	75.88	
	50	18.38	11.80	64.20	
	80	18.48	8.92	48.27	
CSB, plaster B and paint	20	9.84	47.34	481.10	
A ³⁾ , 14 d	50	10.04	32.44	323.11	
	80	11.34	10.64	93.83	
CSB, plaster C and paint	20	13.30	35.10	263.91	
A ³⁾ , 14 d	50	13.17	25.77	195.67	
	80	13.30	4.70	35.34	
CSB, plaster B and paint	20	13.21	34.31	259.73	
$B^{3)}$, 14 d	50	13.55	22.35	164.94	
	80	12.84	6.54	50.93	
CSB, plaster C and paint	20	13.32	43.74	328.38	
$B^{3)}$, 14 d	50	12.23	32.33	264.35	
	80	12.01	4.70	35.34	
CSB, plaster B and adh.	20	18.41	61.91	336.28	
A ³⁾ , 14 d	50	18.48	38.38	207.68	
	80	18.46	13.06	70.75	
CSB, plaster C and adh.	20	18.49	48.19	260.63	
$A^{3)}$, 14 d	50	18.55	34.65	186.79	
,	80	18.59	10.59	56.97	
CSB, plaster B and adh.	20	18.37	46.67	254.06	
$B^{3)}$, 14 d	50	18.35	35.05	191.01	
D, 14 U	-				
	80	18.41	12.31	66.87	
CSB, plaster C and adh. \mathbb{R}^{3}	20	18.37	57.87	315.02	
B ³⁾ , 14 d	50	18.40	41.50	225.54	
	80	18.41	12.01	65.24	

²⁾ GB indicates gypsum board and paint is the combination of primer and paint
 ³⁾ CSB indicates calcium silicate brick, plaster B is the combination of filler and plaster B and paint is the combination of primer and paint

AREA SPECIFIC EMISSION RATES

Bold values in respective columns are the averages.

	· · · 1 0	· · · · · · · · · · · · · · · · · · ·	· , 1 1 1 , ,
I able CI. Background	emission values of	paint A in the env	vironmental chamber test.

$(\mu g/m^3)$	RH 20 %	RH 50 %	RH 80 %
ALIPHATIC AND ALICYCLIC COMPOUNDS			
decane	0.3	0.4	0.4
undecane	0.3	0.3	0.3
dodecane	0	0.3	0
AROMATIC HYDROCARBONS			
aromatic hydrocarcarbons	0.2	0.2	0.3
ethylbenzene	0.3	0.3	0.4
p,m-xylene	1	1	1
o-xylene	0.4	0.4	0.4
styrene	0.5	0.4	0.4
toluene	1	1	2
1,2,4-trimethylbenzene	0.5	0.5	0.6
TERPENES AND THEIR DERIVATIVES			
limonene	0.5	0.6	0.6
α-pinene	0	0.3	0
ALDEHYDES			
hexanal	0	0	0.4
octanal	0.3	0.2	0.4
nonanal	0	0	1
decanal	0	0	2
ESTERS AND LACTONES			
2-(2-butoxy)ethylacetate	0.3	0	0
NITROGEN CONTAINING COMPOUNDS			
1-methyl-2-pyrrolidinone	3	1	0.5
SILICON CONTAINING COMPOUNDS			
organic Si-compounds	2	1	2
Total	10.6	7.9	12.7
TVOC	18	16	22
non-TVOC	3	2 ¹⁾	2

¹⁾ *Italic* font indicates that the value is below the detection limit.

(μg/m²·h)		RH 20 %		RH 50 %			RH 80 %		
ALIPH. AND ALICYCLIC COMPOUNDS									
1-dodecene	82	82	82	114	109	111	214	205	209
A MIXTURE OF HYDROCARBONS									
hydrocarbon-mixture	218	305	261	250	350	300	382	396	389
DIVALENT ALCOHOLS									
1,2-propanediol	559	573	566	786	814	800	564	559	561
ETHERS									
butyl ether	24	22	23	19	19	19	20	17	18
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	132	136	134	191	200	195	200	196	198
ALDEHYDES									
benzaldehyde	5	5	5	4	4	4	6	6	6
decanal	7	0	4	0	0	0	0	0	0
ACIDS									
acetic acid	7	5	6	14	11	13	0	0	0
ESTERS AND LACTONES									
texanol	14	13	13	11	16	14	19	18	19
HALOGEN CONTAINING COMPOUNDS									
1-bromododecane	6	7	7	8	8	8	11	9	10
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	11	8	9	8	8	8	6	5	6
Total	1064	1155	1110	1405	1539	1472	1420	1409	1415
TVOC	569	628	599	775	938	856	931	940	935
non-TVOC	8	8	20	17	22	20	8	8	8

Table C2. Emission values of paint A at 1 day in the environmental chamber test.

Table C3. Emission v	values of paint A	at 14 day	s in the environn	pental chamber test
	and s of paint F	1 al 14 uay	S III UIC CIIVIIOIIII	iciliai chambel iest.

(µg/m²⋅h)		RH 20 %)		RH 50 %	,		RH 80 %	,
ALIPH AND ALICYCLIC COMPOUNDS									
1-dodecene	4	4	4	5	5	5	6	5	5
decane	0	0	0	0	0	0	0	0	0
undecane	0	0	0	0.1	0.1	0.1	0.1	0	0.1
AROMATIC HYDROCARBONS									
ethylbenzene	0.1	0.1	0.1	0.1	0.1	0.1	0	0	0
p,m-xylene	1	1	1	1	1	1	1	1	1
o-xylene	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1
toluene	1	1	1	1	1	1	0	0	0
MONATOMIC ALCOHOLS									
1-butanol	0	0	0	0	0	0	1	1	1
2-ethyl-1-hexanol	0	0	0	0	0	0	1	1	1
1-dodecanol	1	1	1	1	1	1	1	1	1
DIVALENT ALCOHOLS									
1,2-propanediol	13	15	14	1	2	2	2	2	2
ETHERS									İ
butyl ether	0.4	1	0.5	0.4	0.4	0.4	0.1	0.1	0.1
PHENOLS									
phenol	1	1	1	1	1	1	1	1	1
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	4	4	4	2	2	2	2	2	2
KETONES									
2-butanone (MEK)	0	1	0	0	0	0	0	0	0
ACIDS									
methacrylic acid	0.3	0.3	0.3	1	1	1	1	1	1
acetic acid	1	1	1	1	1	1	1	2	1
ESTERS AND LACTONES									
texanol	3	3	3	4	4	4	4	5	4
HALOGEN CONTAINING COMPOUNDS									
1-bromododecane	2	2	2	3	3	3	3	3	3
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	0	1	0.3	1	1	1	0	0	0
2-amino-2-methyl-1-propanol	0	0	0	2	2	2	4	6	5
SILICON CONTAINING COMPOUNDS									
hexamethylcyclotrisiloxane	0	0	0	0	1	0	0	0	0
SULPHUR CONTAINING COMPOUNDS									
2-methyl-3(2H)-isotiatsolon	1	2	2	2	2	2	2	2	2
OTHERS									
unidentified	1	1	1	2	2	2	5	6	5
			T	T	T				1
Total	31	36	34	26	28	27	34	37	35
TVOC	14	17	15	20	21	20	25	31	28
non-TVOC	0	1	0	1	1	1	2	2	2

Table C4. Emission values of paint A	at 28 days in the envir	onmental chamber test.

(µg/m²·h)		RH 20 %)		RH 50 %)		RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
1-dodecene	2	2	2	2	2	2	0	2	1
hexane	0	0	0	0	0	0	0	0	0
decane	0	0	0	0	0	0	0	0	0
cyclohexane	0	0	0	0	0	0	1	0	0
AROMATIC HYDROCARBONS									
benzene	0	0	0	0	0.1	0.1	0	0	0
ethylbenzene	0	0	0	0	0	0	0	0	0
propylbenzene	0	0	0	0	0	0	0	0	0
p,m-xylene	0	0	0	0	0	0	0	0	0
o-xylene	0	0	0	0	0	0	0	0	0
styrene	0	0	0	0	0	0	0	0	0
toluene	1	1	1	1	1	1	0	0	0
1,2,3-trimethylbenzene	0	0	0	0	0.1	0.1	0	0	0
1,2,4-trimethylbenzene	0	0	0	0	0	0	0	0	0
1,3,5-trimethylbenzene	0	0.1	0.1	0.1	0	0.1	0	0	0
1-ethyl-2-methylbenzene	0.1	0.1	0.1	0	0	0	0	0	0
MONATOMIC ALCOHOLS									
1-butanol	0.2	0	0.1	0.3	0.4	0.4	1	1	1
2-ethyl-1-hexanol	0.3	0.3	0.3	1	1	1	1	1	1
DIVALENT ALCOHOLS									
1,2-propanediol	1	1	1	0	0	0	0	0	0
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	0.3	1	0.4	0	0.2	0.1	0	0	0
ALDEHYDES									
hexanal	1	1	1	2	2	2	4	4	4
KETONES									
2-butanone (MEK)	0	0	0	0	9	4	0	0	0
4-methyl-2-pentanone	0	0.1	0.1	0	0	0	0	0	0
TERPENES AND THEIR DERIVATIVES									
limonene	0	0	0	0	0	0	0	0	0
3-carene	0.1	0	0.1	0.1	0	0.1	0	0	0
ESTERS AND LACTONES									
texanol	1	2	2	2	2	2	1	2	2
methylester of 2-propionic acid	0	0	0	0	3	1	0	0	0
HALOGEN CONTAINING COMPOUNDS									
1-bromododecane	1	1	1	1	1	1	0	1	1
dichloromethane	0	0	0	3	55	29	0	0	0
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	0	0	0	0	0	0	0.1	0	0.1
2-amino-2-methyl-1-propanol	0	0	0	0	0	0	3	1	2
4,4-dimethyl-1,3-oxazolidine	0	1	0	1	2	2	4	4	4
Total	7	9	8	13	77	45	14	15	15
TVOC	6	10	8	11	20	15	22	17	20
non-TVOC	0	0	0	2	62	32	0	0	0

$(\mu g/m^3)$	RH 20 %	RH 50 %	RH 80 %
ALIPHATIC AND ALICYCLIC HYDROCARBONS			
hexane	0.3	0	0
heptane	0	0.4	0.3
decane	0.3	0.4	0.4
undecane	0.3	0.4	0.4
dodecane	0.3	0	0.3
AROMATIC HYDROCARBONS			
aromatic hydrocarcarbons, C ₉	0.7	0.8	0.8
benzene	0.3	0	0.3
ethylbenzene	0.7	0.8	0.9
propylbenzene	0.3	0	0.3
p,m-xylene	3	3	3
o-xylene	1	1	1
styrene	0.5	0.6	0.6
toluene	4	4	4
1,2,3-trimethylbenzene	0.3	0	0.3
1,2,4-trimethylbenzene	1	1	1
1,3,5-trimethylbenzene	0	0	0.3
TERPENES AND THEIR DERIVATIVES			
limonene	0.9	1	0.9
ALDEHYDES			
hexanal	0	0	0.3
octanal	0.2	0.4	0.3
ESTERITS AND LACTONES			
2-(2-butoxy)ethylacetate	0.4	0	0
NITROGEN CONTAINING COMPOUNDS			
1-methyl-2-pyrrolidinone	2	2	0.4
SILICON CONTAINIG COMPOUNDS			
organic Si-comp.	1	2	2
Total	17.5	17.8	17.8
TVOC	30	33	32
non-TVOC	3	2	5

Table C5. Background emission values of paint C in the environmental chamber test.

206

Table CO. Emission values of paint C at 1 day in the chynomicinal chamber lest	Table C6. Emission values of p	paint C at 1 day in the e	environmental chamber test.
---	--------------------------------	---------------------------	-----------------------------

(µg/m²⋅h)		RH 20 %)		RH 50 %		RH 80 %			
ALIPH. AND ALICYCLIC HYDROCARBONS										
pentane	409	418	414	441	423	432	341	391	366	
heptane	64	59	61	73	73	73	64	64	64	
octane	68	68	68	77	77	77	68	73	70	
A MIXTURE OF HYDROCARBONS										
hydrocarbon-mixture	17500	16046	16773	21773	21591	21682	12182	11955	12068	
MONATOMIC ALCOHOLS										
1-pentanol	91	96	93	105	105	105	86	100	93	
ALCOHOL AND PHENOL ETHERS										
2-(2-ethoxyethoxy)ethanol	227	255	241	273	300	286	291	300	295	
ALDEHYDES										
propanal	41	46	43	55	55	55	50	59	55	
n-butanal	50	46	48	55	59	57	68	64	66	
pentanal	446	432	439	541	518	530	605	550	577	
hexanal	1346	1291	1318	1477	1491	1484	1536	1514	1525	
heptanal	36	32	34	46	45	45	55	55	55	
octanal	0	0	0	0	0	0	43	45	44	
2-octenal	105	114	109	109	114	111	146	150	148	
nonanal	0	0	0	0	0	0	28	35	31	
KETONES										
2-butanone (MEK)	27	28	28	40	42	41	28	28	28	
ACIDS										
acetic acid	24	40	32	50	40	45	33	44	38	
propanoic acid	55	64	59	82	86	84	82	100	91	
butanoic acid	6	8	7	8	10	9	10	12	11	
pentanoic acid	32	44	38	42	46	44	50	68	59	
hexanoic acid	327	418	373	355	373	364	405	514	459	
2-ethylhexanoic acid	755	896	825	846	927	886	741	786	764	
NITROGEN CONTAINING COMPOUNDS										
2-butanone oxime	77	73	75	114	118	116	73	68	70	
OTHERS										
1,2-epoxy alkane	73	64	68	82	73	77	68	68	68	
Total	21756	20534	21145	26640	26563	26601	17049	17041	17045	
TVOC	20532	20486	20509	26349	26576	26462	17349	17486	17417	
non-TVOC	521	540	530	586	563	574	484	548	516	

$(\mu g/m^2 \cdot h)$		RH 20 %)		RH 50 %)	RH 80 %		
ALIPH. AND ALICYCLIC HYDROCARBONS									
pentane	0.9	0.9	1	2	3	3	2	2	2
heptane	0.9	0.9	1	3	3	3	3	3	3
octane	0.5	0.5	1	3	3	3	2	2	2
A MIXTURE OF HYDROCARBONS									
hydrocarbon-mixture	355	346	350	273	318	295	241	277	259
MONATOMIC ALCOHOLS									
1-pentanol	3	3	3	11	10	10	11	9	10
*									
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	0	0	0	0	0	0	146	0	73
ALDEHYDES	1							T	
propanal	0.4	0.5	0	0.9	0.9	1	0.9	0.9	1
n-butanal	3	4	3	6	6	6	5	5	5
pentanal	21	21	21	32	35	34	27	26	27
hexanal	77	77	77	100	109	105	77	77	77
heptanal	11	11	11	14	15	14	10	10	10
octanal	19	18	18	21	24	22	15	15	15
2-octenal	3	3	3	4	4	4	2	3	3
nonanal	20	19	19	19	21	20	13	13	13
2-decenal	9	9	9	9	10	9	6	6	6
2-undecenal	8	8	8	6	6	6	4	4	4
KETONES									
2-butanone (MEK)	2	2	2	2	3	3	2	2	2
	2	2	2	2	5	5	2	2	2
ACIDS									
acetic acid	1	2	2	3	4	3	3	6	4
propanoic acid	1	2	2	4	4	4	3	4	4
butanoic acid	2	2	2	4	4	4	3	4	4
pentanoic acid	13	13	13	27	30	28	21	26	23
hexanoic acid	168	173	170	273	296	284	223	255	239
2-etylhexanoic acid	159	159	159	164	182	173	109	123	116
heptanoic acid	11	12	11	29	31	30	24	27	25
octanoic acid	11	11	11	32	36	34	30	37	33
nonanoic acid	2	2	2	7	7	7	5	9	7
ESTERS AND LACTONES	+								
caprolactone	5	5	5	7	7	7	6	7	7
A	-	-							
OTHERS									
1,2-epoxy alkane	0.1	0.2	0.2	1	0.9	1	1	1	1
Total	903	903	903	1053	1170	1112	994	953	974
TVOC	805	823	814	976	1049	1012	786	876	831
non-TVOC	11	14	12	23	24	24	20	24	22

Table C8. Emission values of paint C at 28 days in the environment

$(\mu g/m^2 \cdot h)$		RH 20 %)		RH 50 %	•	RH 80 %		
ALIPH. AND ALICYCLIC HYDROCARBONS									
nonane	0	0	0	0	0	0	0	2	1
decane	5	5	5	4	4	4	10	11	11
undecane	5	6	6	6	6	6	10	12	11
dodecane	0.8	1	1	1	1	1	2	2	2
AROMATIC HYDROCARBONS									
ethylbenzene	0	0	0	0	0	0	0	0	0
p,m-xylene	0	0	0	0	0	0	0	0	0
o-xylene	0	0	0	0	0	0	0	0	0
styrene	0	0	0	0	0	0	0	0	0
toluene	0	0	0	0	0	0	0	0	0
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	0	0	0	0	0	0	0	4	2
ALDEHYDES									
pentanal	10	10	10	7	11	9	8	8	8
hexanal	31	33	32	23	33	28	28	29	28
heptanal	5	5	5	5	6	5	4	4	4
octanal	7	0	4	8	10	9	6	7	6
nonanal	7	8	7	9	9	9	6	8	7
decanal	0.9	0.9	1	0.9	0.9	1	0.9	0.9	1
ACIDS									
acetic acid	15	13	14	10	11	11	4	6	5
propanoic acid	11	11	11	9	11	10	3	7	5
butanoic acid	1	2	2	5	5	5	2	3	3
pentanoic acid	27	35	31	33	34	33	13	15	14
hexanoic acid	286	359	323	350	368	359	205	227	216
2-etylhexanoic acid	24	31	28	26	29	28	26	28	27
heptanoic acid	16	20	18	16	18	17	4	4	4
octanoic acid	25	27	26	30	32	31	7	8	8
nonanoic acid	9	12	11	8	11	9	9	12	11
TERPENES AND THEIR DERIVATIVES									
limonene	0	0	0	0	0	0	0	0	0
NITROGEN CONTAINING COMPOUNDS									
2-butanone oxime	0	0	0	0	0	0	0	0.5	0
Total	486	578	532	549	602	575	347	398	372
TVOC	282	378 336	309	303	349	326	272	336	304
non-TVOC	14	11	13	303 9	11	10	272	4	304

Table C9. Background emission values of adhesive A in the environmental chamber test.

(µg/m³)	RH 20 %	RH 50 %	RH 80 %
ALIPHATIC AND ALICYCLIC COMPOUNDS			
decane	0.4	0.4	0.5
undecane	0.3	0.3	0.4
dodecane	0.2	0.2	0.3
aliphatic hydrocarb.			
AROMATIC HYDROCARBONS			
p,m-xylene	1	1	0.9
toluene	3	3	3
1,2,4-trimethylbenzene	0.5	0.5	0.5
MONATOMIC ALCOHOLS			
2-ethyl-1-hexanol	0.6	0.8	2
PHENOLS			
phenol	0.4	0.7	0.9
ALCOHOL AND PHENOL ETHERS			
2-(2-butoxyethoxy)ethanol	0	0	2
ALDEHYDES			
hexanal	0	0	0.2
nonanal	0.3	0.6	0.2
decanal	0.4	1	0.6
KETONES			
acetone	0	0	0.9
ACIDS			
hexanic acid	0.3	0	0
2-etylhexanic-acid	0.5	Ū	Ŭ
TERPENES AND THEIR DERIVATIVES			
limonene	0.8	1	1
ESTERS AND LACTONES			
diethyl phthalate			
NITROGEN CONTAINING COMPOUNDS			
1-methyl-2-pyrrolidinone	0.6	0.4	0.2
SILICON CONTAINING COMPOUNDS			
organic Si-comp.	0.7	0.4	1.4
Total	9.5	10.3	15.6
TVOC	12	15	16
non-TVOC	0.4	0.3 ¹⁾	0.9

¹⁾ *Italic* font indicates that the value is below the detection limit.

(µg/m²·h)		RH 20 %			RH 50 %)	RH 80 %			
ALIPH. AND ALICYCLIC COMPOUNDS										
nonane	0	0	0	0	0	0	0.9	0.5	0.7	
decane	0	0	0	0.3	0	0.2	0	0	0	
ABOMATIC HVDDOCADDONS										
AROMATIC HYDROCARBONS		0	0	0.5	0	0.2	0	0	0	
p,m-xylene	0	0	0	0.5	0	0.3	0	0	0	
toluene	0		-	2	-	-	-	-	0	
1,1'-biphenyl	2	2	2	2	2	2	3	2	3	
MONATOMIC ALCOHOLS										
2-ethyl-1-hexanol	0.2	0.2	0.2	0.5	0.1	0.3	0	0	0	
PHENOLS										
phenol	0.3	0.3	0.3	0	0	0	0	0	0	
ALCOHOL AND PHENOL ETHERS										
1-allyloxy-2-propanol	2	2	2	2	2	2	1	1	1	
ALDEHYDES										
benzaldehyde	0	0	0	0	0	0	0.9	0	0.5	
octanal	0.5	0	0.3	0	0.9	0.5	0.9	0	0.5	
nonanal	1	0	1	0.6	2	1	2	0	1	
decanal	2	0	1	0	1	1	0	0	0	
KETONES										
acetophenone	0.9	0.9	0.9	0.5	0.5	0.5	1	0.9	1	
acetone	2	2	2	2	2	2	1	1	1	
					_		-	_	_	
ACIDS										
acetic acid	91	141	116	73	64	68	68	77	73	
ESTERS AND LACTONES										
2-(2-butoxyethoxy)ethylacetate	0.9	0.9	0.9	0.5	0.9	0.7	0.9	0.5	0.7	
propyl benzoate	28	26	27	26	26	26	29	29	29	
methyl benzoate	0.9	0.9	0.9	0.9	1	1	0.9	0.9	0.9	
ethyl benzoate	3	3	3	3	3	3	3	3	3	
isopropyl benzoate	2	1	2	1	1	1	1	1	1	
allyl benzoate	1	0.9	1	1	0.9	1	1	1	1	
SILICON CONTAINING COMPOUNDS										
hexamethylcyclotrisiloxane	2	0	1	0	0	0	0	0	0	
OTHERS										
unidentified	11	11	11	12	11	11	13	12	13	
Total	151	193	172	127	118	122	128	132	130	
TVOC	63	54	58	57	52	55	56	52	54	
non-TVOC	101	162	132	82	75	79	78	89	83	

(μg/m ² ·h)		RH 20 %	,		RH 50 %		RH 80 %			
ALIPH. AND ALICYCLIC COMPOUNDS										
decane	2	2	2	2	2	2	2	1	1	
undecane	2	2	2	3	2	2	2	2	2	
aliphatic hydrocarb.	0.9	0.9	0.9	0.9	0.9	0.9	0.5	0.9	0.7	
AROMATIC HYDROCARBONS										
ethylbenzene	2	2	2	2	2	2	2	1	2	
propylbenzene	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
p,m-xylene	10	9	9	11	10	10	8	8	8	
o-xylene	4	3	3	4	4	4	3	3	3	
toluene	0.5	0.5	0.5	0.9	0.5	0.7	0	0	0	
1,2,3-trimethylbenzene	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	
1,2,4-trimethylbenzene	3	3	3	4	3	4	3	3	3	
1,3,5-trimethylbenzene	0.9	0.5	0.7	0.9	0.9	0.9	0.5	0.5	0.5	
1-ethyl-2-methylbenzene	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.5	0.7	
C ₃ -alkylbenzene	3	3	3	4	3	4	3	3	3	
C ₄ -alkylbenzene	1	0.5	1	1	1	1	0.9	0.9	1	
MONATOMIC ALCOHOLS										
2-ethyl-1-hexanol	0	0.2	0.1	0.1	0.1	0.1	0	0	0	
2-methyl-1-propanol	2	2	2	2	2	2	1	1	1	
PHENOLS										
phenol	0	0	0	0	0	0	0	0	0	
ALCOHOL AND PHENOL ETHERS										
1-methoxy-2-propanol	0.5	0	0.3	0.5	0.5	0.5	0	0.5	0.3	
ALDEHYDES										
decanal	0	0	0	0	0	0	0	0.2	0.1	
KETONES										
acetone	0	0	0	0	0	0	0	0	0	
ACIDS										
acetic acid	12	9	10	21	23	22	55	82	68	
TERPENES AND THEIR DERIVATIVES										
limonene	0	0	0	0	0	0	0	0	0	
ESTERS AND LACTONES										
2-(2-butoxyethoxy)ethylacetate	0	0	0	0	0	0	0.5	0.5	0.5	
2-ethylhexylacrylate	0.5	0	0.3	0	0	0	0	0	0	
propyl benzoate	0	0	0	0	0	0	0.5	0.5	0.5	
OTHERS										
unidentified	0	0	0	1	2	2	11	11	11	
Total	46	38	42	61	59	60	93	120	107	
TVOC	45	45	45	57	48	52	52	47	50	
non-TVOC	12	9	10	22	24	23	81	90	85	

Table C12. Emission values of adhesive A at 28 days in the environmental chamber tes	ission values of adhesive A at 28 days in the environmental chamber test.
---	---

(μg/m ² ·h)	RH 20 %		RH 50 %			RH 80 %			
ALIPH. AND ALICYCLIC COMPOUNDS									
heptane	0.2	0.2	0.2	0.3	0.2	0.3	0.4	0.2	0.3
nonane	0.2	0.2	0.2	0.2	0	0.1	0	0	0
decane	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.2
undecane	0.3	0.2	0.3	0.3	0.3	0.3	0.2	0.2	0.2
dodecane	0	0	0	0	0.1	0.1	0	0	0
AROMATIC HYDROCARBONS									
ethylbenzene	0.9	0.9	1	0.9	0.9	0.9	0.5	0.5	0.5
propylbenzene	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
p,m-xylene	3	3	3	3	3	3	2	2	2
o-xylene	1	1	1	1	1	1	0.9	0.9	0.9
styrene	0	0	0	0.2	0	0.1	0	0	0
toluene	0	0	0	0.5	0	0	0	0	0
1,2,3-trimethylbenzene	0.3	0.3	0.3	0.4	0.3	0.4	0.3	0.2	0.3
1,2,4-trimethylbenzene	1	0.7	1	1	1	1	0.7	0.7	0.7
1,3,5-trimethylbenzene	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.2
1-ethyl-2-methylbenzene	0.3	0.2	0.3	0.3	0.3	0.3	0.2	0.2	0.2
C ₃ -alkylbenzene	1	1	1	1	1	1	0.8	0.7	0.8
C ₄ -alkylbenzene	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	0.2	0.1	0.2	0.1	0.1	0.1	0	0	0
2-methyl-1-propanol	0.2	0.4	0.3	0.3	0.3	0.3	0.4	0.2	0.3
DIVALENT ALCOHOLS									
1,2-propanediol	0.9	0	0.5	0	0	0	0	0	0
PHENOLS									
phenol	0	0	0	0	0	0	0	0	0
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	0	0	0	0.2	0	0.1	0	0	0
1-methoxy-2-propanol	0	0	0	0.2	0.2	0.2	0.2	0.2	0.2
ALDEHYDES									
octanal	0	0	0	0	0	0	0	0.2	0.1
nonanal	0.1	0.1	0.1	0	0	0	0	0.1	0.1
decanal	0	0	0	0	0	0	0	0.6	0.3
KETONES		1						ł	
acetone	0	0	0	0	0	0	0	0	0
ACIDS									
acetic acid	9	6	7	12	11	11	20	25.5	23
TERPENES AND THEIR DERIVATIVES	1	1					1		
limonene	0	0	0	0	0	0	0	0	0
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethylacetate	0	0	0	0	0	0	0.3	0.3	0.3
SILICON CONTAINING COMPOUNDS	1	1					1	1	
organic Si-comp.	0	0	0	0	0	0	0	0	0
hexamethylcyclotrisiloxane	0	0	0	0	0	0	0.2	0.2	0.2
OTHERS	1						1	1	
unidentified	0	0	0	0.8	0.8	0.8	8	8	8
		1				-			
Total	20	16	18	25	22	23	36	42	39
TVOC	17	15	16	18	16	17	20	20	20
non-TVOC	9	6.2	8	13	11	12	21	27	24

	Table C13. Background	d emission values	s of adhesive C	in the environmenta	al chamber test.
--	-----------------------	-------------------	-----------------	---------------------	------------------

214

(µg/m³)	RH 20 %	RH 50 %	RH 80 %
ALIPHATIC AND ALICYCLIC COMPOUNDS			
decane	1	1	0.7
undecane	2	2	1
dodecane	0.7	0.6	0.5
aliphatic hydrocarb.	0.4	0.5	0.3
AROMATIC HYDROCARBONS			
p,m-xylene	1	1	1
toluene	3	3	3
1,2,4-trimethylbenzene	0.5	0.5	0.4
MONATOMIC ALCOHOLS			
2-ethyl-1-hexanol	0.3	3	0.4
PHENOLS			
phenol	0.4	0.5	0.7
ALDEHYDES			
hexanal	0.4	0.7	0.6
nonanal	0.4	0.9	0.8
decanal	1	0.7	0.8
ACIDS			
hexanic acid	1	2	7
2-etylhexanic-acid			1
TERPENES AND THEIR DERIVATIVES			
limonene	0.8	0.6	0.6
ESTERS AND LACTONES			
diethyl phthalate	0	0	0.8
NITROGEN CONTAINING COMPOUNDS			
1-methyl-2-pyrrolidinone	0.7	0.6	0.6
SILICON CONTAINING COMPOUNDS			
organic Si-comp.	0.5	1	0.9
organie or-comp.	0.5	1	0.7
Total	14.6	18.6	21.1
TVOC	22	28	24
non-TVOC	0.4	0.4	0.7

Table C14. Emission values of adhesive C at 1	l day in the environmental chamber test.
---	--

$(\mu g/m^2 \cdot h)$		RH 20 % RH 50			RH 50 %	% RH 80 %			
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	0.9	0.9	0.9	0.9	0.5	0.7	0	0	0
decane	0.5	0	0.3	0	0	0	0.1	0	0.1
undecane	0	0	0	0	0	0	0.5	0.5	0.5
AROMATIC HYDROCARBONS									
benzene	0	2	1	0	0	0	0	0	0
p,m-xylene	0	0	0	0	0	0	0	0	0
toluene	0	0.5	0.3	0.5	0.5	0.5	0	0.5	0.3
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	0.8	0	0.4	0	0	0	0	0.3	0.2
	0.0	Ű	••••	0	0	Ŭ	0	0.5	0.2
DIVALENT ALCOHOLS									
1,2-propanediol	86	86	86	39	37	38	16	15	15
PHENOLS									
phenol	0.7	0.7	0.7	0.7	0.7	0.7	0.6	0.1	0.4
ALDEHYDES									
benzaldehyde	2	1	2	0.9	1	1	0	0	0
pentanal	0	0	0	0	0.5	0	0	0	0
hexanal	1	1	1	2	2	2	0.6	0.2	0.4
octanal	0	0.9	0.5	1	1	1	0.5	0.5	0.5
nonanal	1	1	1	2	2	2	2	2	2
decanal	3	3	3	5	6	5	5	6	5
			-			_			
KETONES									
acetophenone	0.5	0.9	0.7	0	0.5	0.3	0	0	0
acetone	4	3	4	3	4	3	3	3	3
ACIDS									
acetic acid	314	364	339	259	209	234	136	218	177
hexanoic acid	1	1	1	0.9	0.5	0.7	0.5	0	0
	1	1	1	0.9	0.5	0.7	0.5	0	U
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethylacetate	0.5	0.9	0.7	0.5	0.5	0.5	0.5	0.5	0.5
	0.5	0.7	0.7	0.5	0.5	0.5	0.5	0.5	0.5
SILICON CONTAINING COMPOUNDS									
hexamethylcyclotrisiloxane	0	0	0	0	0	0	6	0	3
octamethylcyclotrisiloxane	0	0	0	0	0	0	0.9	0	0.5
Total	416	469	442	316	265	291	173	246	210
TVOC	26	25	25	16	10	13	13	8	10
non-TVOC	349	398	373	288	238	263	154	242	198

(μg/m²·h)		RH 20 %	,		RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
decane	0	0	0	0	0	0	0	0	0
undecane	0	0	0	0	0	0	0	0	0
AROMATIC HYDROCARBONS									
ethylbenzene	2	2	2	2	2	2	2	2	2
propylbenzene	0.5	0.5	0.5	0	0	0	0	0	0
p,m-xylene	11	10	10	9	11	10	9	11	10
o-xylene	4	3	3	3	4	3	3	4	3
toluene	0	0	0	0.9	0.5	0.7	0.9	0.5	0.7
1,2,3-trimethylbenzene	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
1,2,4-trimethylbenzene	3	3	3	2	3	2	2	3	2
1,3,5-trimethylbenzene	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
1-ethyl-2-methylbenzene	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
C ₃ -alkylbenzene	2	2	2	1	2	2	1	1	1
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	0	0	0	0	0	0	0	0	0
2-methyl-1-propanol	1	1	1	1	1	1	1	2	2
DIVALENT ALCOHOLS									
1,2-propanediol	4	2	3	86	86	86	227	241	234
ALCONOL AND DUDNOL ETHERS									
ALCOHOL AND PHENOL ETHERS	0	0	0	0.5	0.5		0.5	0.0	
1-methoxy-2-propanol	0	0	0	0.5	0.5	0.5	0.5	0.9	0.7
ALDEHYDES									
	0	0	0	0	0.5	0.3	0.1	0	0.1
nonanal	-							0	
decanal	0	0	0	0	0.1	0.1	0.1	0	0.1
KETONES									
acetone	0	0	0	0.5	0	0.3	0.5	0.9	0.7
acetone	0	0	U	0.5	0	0.5	0.5	0.9	0.7
ACIDS									
acetic acid	20	13	16	59	64	61	118	100	109
hexanoic acid	0	0	0	0	0	0	0.5	0.9	0.7
2-etylhexanic-acid	0	0	0	0	0	0	0.5	0.9	0.7
	0	0	v	0	Ŭ	0	0.5	0.7	0.7
HALOGEN CONTAINING COMPOUNDS									
bromnitromethane	0	0	0	0	0	0	1	2	2
		-	Ŭ	-	-	<u> </u>	-	_	_
SULPHUR CONTAINING COMPOUNDS									
5-chloro-2-methyl-3(2H)-isotiatsolon	0	0	0	0	0	0	0.9	0.9	0.9
		-	Ŭ	-	-	<u> </u>			
Total	48	38	43	168	175	172	371	371	371
TVOC	26	23	25	51	56	53	162	180	171
non-TVOC	20	14	17	64	69	66	129	111	120

Table C16. Emission values of adhesive C at 28 days in the environmental	chamber test.
--	---------------

(μg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
heptane	0	0	0	0.2	0.2	0.2	0.2	0.2	0.2
decane	0	0	0	0	0	0	0	0	0
undecane	0	0	0	0	0	0	0	0	0
dodecane	0	0	0	0	0	0	0	0	0
AROMATIC HYDROCARBONS									
ethylbenzene	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
p,m-xylene	2	1	2	2	3	3	2	2	2
o-xylene	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
toluene	0	0	0	0.5	0	0.3	0.5	0	0.3
1,2,3-trimethylbenzene	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.2	0.3
1,2,4-trimethylbenzene	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
1,3,5-trimethylbenzene	0	0	0	0	0.2	0.1	0.2	0	0.1
C ₃ -alkylbenzene	0.7	0.6	0.7	0.7	0.8	0.8	0.7	0.7	0.7
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	0	0	0	0	0	0	0	0	0
2-methyl-1-propanol	0.2	0.3	0.3	0	0.3	0.2	0.2	0.3	0.3
DIVALENT ALCOHOLS									
1,2-propanediol	1	0.9	1	39	43	41	50	55	52
PHENOLS									
phenol	0	0	0	0	0	0	0	0	0
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	0.3	0	0.2	0	0.4	0.2	0.3	0.3	0.3
1-methoxy-2-propanol	0	0	0	0	0.2	0.1	0.3	0.4	0.4
ALDEHYDES									
nonanal	0	0	0	0	0	0	0	0.1	0.1
decanal	0	0	0	0	0	0	0.1	0.1	0
ACIDS									
acetic acid	5	5	5	11	26	18	34	29	31
hexanoic acid	0	0	0	0	0	0	0	0	0
TERPENES AND THEIR DERIVATIVES									
limonene	0	0	0	0	0	0	0	0	0
HALOGEN CONTAINING COMPOUNDS									
bromnitromethane	0	0	0	0	0	0	1	2	2
SILICON CONTAINING COMPOUNDS									
hexamethylcyclotrisiloxane	0	0	0	0	0	0	0.3	0	0.2
OTHERS					1				
unidentified	0	0	0	0	0	0	1	2	2
Total	11	10	11	55	76	66	94	93	94
TVOC	9	5	7	21	21	21	30	31	30
non-TVOC	5	5	5	11	28	20	37	31	34

Table C17. Background emission values of plaster A in the environmental chamber test.

(µg/m ³)	RH 20 %	RH 50 %	RH 80 %
TVOC	6	8	11

Table C18. Emission values of plaster A at 1 day in the environmental chamber test.

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
AROMATIC HYDROCARBONS									
p,m-xylene	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
toluene	0.5	0.5	0.5	0	0	0	0	0	0
MONATOMIC ALCOHOLS	0	0	0	0.5	0		0	0	
2-propanol	0	0	0	0.5	0	0.3	0	0	0
1-pentanol	0.9	1	1	0.9	0.9	0.9	0.9	0.9	0.9
2-ethyl-1-hexanol	3.2	3	3	2.3	2.3	2	2.7	2.3	3
2-methyl-2-propanol	3.2	2	3	3.2	2.3	3	2.7	2.3	3
1-hexanol	2.3	2	2	1.8	1.8	2	2.3	1.8	2
1-heptanol	2.3	2	2	2.3	1.8	2	2.3	1.8	2
1-octanol	4.1	1	3	4.1	4.1	4	4.5	3.6	4
DIVALENT ALCOHOLS									
1,2-propanediol	7.7	9.5	9	5.9	8.6	7	4.1	4.1	4
FTUEDO									
ETHERS bis(2-ethoxyethyl)ether	1.4	1.4	1	1.4	1.4	1	1.8	1.4	2
bis(2-emoxyemyi)emei	1.4	1.4	1	1.4	1.4	1	1.8	1.4	2
ALCOHOL AND PHENOL ETHERS									
1-methoxy-2-propanol	19.5	20	20	17.7	18.6	18	17.7	18.2	18
2-ethoxyethanol	1.4	2	2	1.4	1.8	2	1.4	1.4	1
2-methoxy-1-propanol	1.4	1.4	1	0.9	0.9	1	0.9	0.9	1
ALDEHYDES									
methylbenzaldehyde	0.9	1	1	0.9	0.9	0.9	0.9	0.9	0.9
pentanal	0.9	1	1	0.5	0.9	0.9	0.9	0.9	0.9
hexanal	4.1	5	4	3.2	5	4	5	5.5	5
heptanal	1.8	2	2	1.8	2.3	2	2.3	2.3	2
octanal	2.7	3	3	2.3	3.2	3	3.6	3.2	3
nonanal	3.6	4	4	3.2	3.6	3	4.1	3.6	4
2-nonenal	0.9	1	1	0.9	0.9	0.9	0.9	0.9	0.9
decanal	0.5	1	1	0.9	0.9	0.5	0.9	0.9	0.5
2-decenal	1.4	1	1	1.4	1.4	1	0.9	0.9	0.3
2-400011	1.4	1	1	1.4	1.4	1	0.9	0.9	0.9
KETONES									
acetone	0.9	1	1	0.5	0.5	0.5	0.5	0.5	0.5
cyclohexanone	2.7	3	3	2.7	2.3	3	3.2	2.3	3
2-decanone	1.8	2	2	2.3	1.8	2	1.8	1.4	2
OTHERS									
unidentified	10	10	10	10	10	10	9.1	10	10
Total	80.6	79.6	80	72.6	78.7	76	75	72.5	74
TVOC	78.2	78.2	78	67.7	76.8	72	72.7	72.7	73
non-TVOC	4.1	2.7	3	4.1	2.7	3	3.2	2.7	3

Table C19. Emission values of plaster A at 14 days in the environment	ronmental chamber test.
--	-------------------------

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
dodecane	0	0	0	0	0	0	0.3	0.3	0.3
tetradecane	0	0	0	0	0	0	0.4	0.4	0.4
AROMATIC HYDROCARBONS									
p,m-xylene	1	1	1	1	1	1	1	1	1
toluene	1	1	1	1	1	1	1	1	1
1,2,4-trimethylbenzene	0	0	0	0	1	0	0.4	0.3	0.4
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	1	1	1	0	0	0	0.4	0.4	0.4
DIVALENT ALCOHOLS									
1,2-propanediol	159	159	159	255	250	252	30	29	29
ETHERS									
bis(2-ethoxyethyl)ether	0	0	0	0	0	0	1	2	2
bis[2-(2-ethoxyethoxy)ethyl]ether	0	0	0	3	2.3	3	0.4	0.4	0.4
PHENOLS									
phenol	0	0	0	0	1	0	1	1	1
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	7	8	7	34	39	36	1	1	1
2-(2-butoxyethoxy)ethanol	0	0	0	1	1	1	0	0	0
1-methoxy-2-propanol	0	0	0	0	0	0	0.4	0.4	0.4
dipropylene glycol methyl ether	3	3	3	6	6	6	3	3	3
bis(2-hydroxypropyl) ether	1	1	1	20	21	21	0	0	0
ALDEHYDES									
hexanal	1	1	1	1	1	1	1	1	1
heptanal	0	0	0	0	0	0	1	1	1
octanal	1	1	1	0	1	0	1	1	1
nonanal	1	1	1	1	1	1	1	1	1
decanal	0	0	0	1	0	0	1	1	1
2-decenal	0	0	0	0	0	0	0.3	0.3	0.3
KETONES									
2-butanone (MEK)	0	0	0	1	0	0	0	0.2	0.1
acetone	1	0	0	0	0	0	1	1	1
1-hydroxy-2-propanone	0	0	0	0	0	0	1	1	1
ACIDS									
acetic acid	8	12	10	14	17	15	6	4	5
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	0	0	0	0	0	0	0.7	0.8	0.8
hexamethylcyclotrisiloxane	0	0	0	1	0	0	0	0	0
octamethylcyclotrisiloxane	0	0	0	0	0	0	1	1	1
decamethylcyclopentasiloxane	0	0	0	0	0	0	0.4	0.4	0.4
triethoxypentylsilane	0	0	0	0	0	0	0.3	0.3	0.3
Total	181	187	184	336	340	338	51	50	50
TVOC	106	106	106	272	272	272	38	36	37
non-TVOC	8	12	10	14	17	15	6	4.8	5

Table C20. Emission values of plaster A at 29 days in the environmental ch	chamber test.
---	---------------

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
AROMATIC HYDROCARBONS									
ethylbenzene	0.2	0	0.1	0.2	0.2	0.2	0	0	0
p,m-xylene	1	1	1	1	1	1	1	1	1
o-xylene	0.3	0.3	0.3	0.4	0.4	0.4	0	0	0
styrene	0	0	0	0.2	0.2	0.2	0	0	0
toluene	1	1	1	1	1	1	1	1	1
1,2,4-trimethylbenzene	1	1	1	1	1	1	1	1	1
C ₃ -alkylbenzene	0.3	0.3	0.3	0.3	0.3	0.3	0	0	0
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	1	1	1	1	1	1	1	1	1
DIVALENT ALCOHOLS									
1,2-propanediol	73	96	84	55	55	55	232	246	239
ETHERS									
bis[2-(2-ethoxyethoxy)ethyl]ether	0	0.2	0.1	2	2	2	5	6	6
PHENOLS									
phenol	0	0	0	0.3	0.4	0.4	1	1	1
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	2	3	3	3	3	3	21	23	22
2-[2-(2ethoxy)ethoxy]ethanol	0	0	0	1	0.4	0.5	2	2	2
2-(2-butoxyethoxy)ethanol	0.3	0.3	0.3	1	1	1	1	1	1
1-methoxy-2-propanol	0	0	0	0.3	0.3	0.3	0	0	0
dipropylene glycol methyl ether	1	1	1	0	0	0	1	1	1
bis(2-hydroxypropyl) ether	0.3	1	0.4	13	14	13	28	33	30
dipropyleneglycol-isomer	0	0	0	2	2	2	2	2	2
ALDEHYDES									
benzaldehyde	0	0	0	0.3	0.2	0.3	0	0	0
pentanal	0	0	0	0.2	0	0.1	0	0	0
hexanal	1	1	1	1	1	1	1	1	1
heptanal	0.2	0.3	0.3	0.3	0.3	0.3	0	0	0
octanal	0.3	0.4	0.4	0.4	0.4	0.4	1	0.4	0.5
nonanal	0.3	0.4	0.4	1	1	1	1	1	1
decanal	0	0	0	0.2	1	0.4	1	1	1
KETONES									
acetone	0	0	0	0.2	0.3	0.3	1	1	1
1-hydroxy-2-propanone	0	0	0	0	0	0	1	0.4	0.5
ACIDS									
acetic acid	0	0.3	0.2	0	0.4	0.2	0	0	0
TERPENES AND THEIR DERIVATIVES		1		İ					
limonene	0.2	0.3	0.3	0	0.3	0.3	0	0	0
Total	81	107	94	82	85	83	297	320	308
TVOC	25	36	30	39	41	40	182	196	189
non-TVOC	0	0.3	0.2	0.2	0.6	0.4	1	1	1

Table C21. Background emission values of plaster C in the environmental chamber test.

(µg/m³)	RH 20 %	RH 50 %	RH 80 %
TVOC	14	20	19

Table C22. Emission values of plaster C at 1 day in the environmental chamber test.

ALIPH. AND ALICYCLIC COMPOUNDS 1-nonene decane undecane tetradecane AROMATIC HYDROCARBONS ethylbenzene p,m-xylene o-xylene	0 0.2 0.2 0	0 0.2 0.2 0	0 0.2 0.2	0 0.3	0.3	0.2	0	0	0
decaneundecanetetradecaneAROMATIC HYDROCARBONSethylbenzenep,m-xyleneo-xylene	0.2 0.2 0 0	0.2 0.2	0.2			0.2	0	0	0
undecanetetradecaneAROMATIC HYDROCARBONSethylbenzenep,m-xyleneo-xylene	0.2 0	0.2		0.3	0.2				
tetradecane AROMATIC HYDROCARBONS ethylbenzene p,m-xylene o-xylene 0	0		0.3		0.3	0.3	0	0	0
AROMATIC HYDROCARBONS ethylbenzene p,m-xylene o-xylene	0	0	0.2	0.4	0.4	0.4	0.3	0.2	0.3
ethylbenzene p,m-xylene o-xylene			0	0.2	0.2	0.2	0	0	0
p,m-xylene o-xylene									
o-xylene		0	0	0	0	0	0.2	0.2	0.2
o-xylene	0.5	0.5	0.5	0.5	0.5	0.5	0.9	0.9	0.9
	0.2	0.2	0.2	0	0.2	0.1	0.3	0.3	0.3
toluene	0.5	0.5	0.5	0.4	0.5	0.5	0.4	0.5	0.5
1,2,4-trimethylbenzene	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
MONATOMIC ALCOHOLS									
1-butanol	0	0	0	0	0.2	0.1	0.3	0.2	0.3
2-ethyl-1-hexanol	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.5
benzylalcohol	0.4	0.5	0.5	0.4	0.4	0.4	0.4	0.3	0.4
2-methyl-1-propanol	0.3	0.4	0.4	0	0.4	0.2	0.5	0.4	0.5
2-methyl-2-propanol	0.2	0	0.1	0.2	0.3	0.3	0.5	0.5	0.5
ETHERS									
bis(2-methoxyethyl)ether	0.4	0.4	0.4	0.5	0.3	0.4	0.4	0.3	0.4
1,2-dimethoxybenzene	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.4
ALCOHOL AND PHENOL ETHERS									
1-methoxy-2-propanol	0.4	0.4	0.4	0	0.3	0.2	0.3	0.3	0.3
2-methoxyethanol	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.4	0.4
ALDEHYDES									
benzaldehyde	0.3	0.4	0.4	0.2	0.4	0.3	0.3	0.4	0.4
pentanal	0.2	0	0.1	0	0.3	0.2	0.2	0.2	0.2
hexanal	0.9	0.5	0.7	0.9	0.9	1	0.9	0.9	0.9
heptanal	0	0	0	0.2	0.5	0.4	0.2	0	0.1
octanal	0.2	0.3	0.3	0	0.9	0.5	0.3	0.2	0.3
nonanal	0.9	0.9	0.9	0.9	2	1	0.9	1	1.2
decanal	0	0.9	0	0	0.9	0.5	0	0.5	0.3
KETONES			-						
2-butanone (MEK)	0	0	0	0	2	1	0	0	0
acetone	0	0.3	0.2	0	0.4	0.2	0.3	0.4	0.4
cyclohexanone	0.4	0.4	0.4	0.4	0.3	0.4	0.9	0.5	0.7
6-methyl-5-hepten-2-one	0	0	0	0	0.2	0.1	0	0	0
ESTERS AND LACTONES		-	-	-					
1-methoxy-2-propylacetate	0.9	0.9	0.9	0.9	0.9	0.9	1	0.9	1.2
n-butylacetate	0.2	0	0.1	0	0	0	0	0.2	0.1
methylmetacrylate	0	0	0	0	0.9	0.5	0	0	0
diethyl phthalate	0	0	0	0.5	0	0.3	0.9	0	0.5
2-butoxyethylacetate	0	0	0	0	0	0	0.2	0.2	0.2
NITROGEN CONTAINING COMPOUNDS	-	-	2		-	~			
unidentified nitrile	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	0.9	0.9	0.9	0.5	0.5	0.5	0.5	0.5	0.5
triethoxypentylsilane	3	3	3	3	2	3	2	2	2
	5	5	-			-		-	-
Total	14	14	14	13	21	17	17	15	16
TVOC	22	21	21	13	16	15	13	11	10
non-TVOC	0.2	0.3	0	0.2	3	2	0.8	0.8	12

Table C23. Emission values of plaster C at 14 days in the environmental chamber te	Table C2	23. Emission va	lues of plaster C a	at 14 days in the	environmental of	chamber test
---	----------	-----------------	---------------------	-------------------	------------------	--------------

(µg/m²·h)		RH 20 %			RH 50 %		RH 80 %		
ALIPH. AND ALICYCLIC COMPOUNDS									
decane	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3
undecane	0.1	0.1	0.1	0.4	0.3	0.4	0.3	0.3	0.3
dodecane	0	0	0	0.2	0.1	0.2	0.2	0.2	0.2
tridecane	0	0	0	0	0	0	0.5	0.9	0.7
tetradecane	0	0	0	0.1	0.1	0.1	2	1	2
pentadecane	0	0	0	0	0	0.1	0.4	0.4	0.4
hexadecane	0	0	0	0	0	0	0.1	0.2	0.4
A MIXTURE OF HYDROCARBONS	0	0	U	0	0	U	0.2	0.2	0.2
hydrocarbon-mixture	0	0	0	0	0	0	18	19	19
AROMATIC HYDROCARBONS	0	0	U	0	0	U	10	1)	17
	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
ethylbenzene	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
p,m-xylene									
o-xylene	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
styrene	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
toluene	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
1,2,3-trimethylbenzene	0	0	0	0.1	0.1	0.1	0.1	0	0.1
1,2,4-trimethylbenzene	0.5	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5
C ₃ -alkylbenzene	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
MONATOMIC ALCOHOLS									
1-butanol	0	0	0	0	0	0	0	0.1	0.1
2-ethyl-1-hexanol	0	0	0	0.3	0.3	0.3	0.3	0.5	0.4
benzylalcohol	0	0	0	0.1	0	0.1	0	0	0
2-methyl-1-propanol	0	0	0	0	0.1	0.1	0	0	0
ETHERS									
bis(2-methoxyethyl)ether	0	0	0	0	0.2	0.1	0.5	0.5	0.5
PHENOLS									
phenol	0	0	0	0.1	0.2	0.2	0.3	0.3	0.3
ALCOHOL AND PHENOL ETHERS									
1-methoxy-2-propanol	0	0	0	0.1	0.1	0.1	0.2	0.1	0.2
2-phenoxyethanol	0	0	0	0	0	0	0.1	0.2	0.2
2-methoxyethanol	0	0	0	0	0	0	0.4	0.2	0.3
ALDEHYDES									
benzaldehyde	0	0	0	0	0	0	0.3	0	0.2
hexanal	0	0	0	0.2	0.1	0.2	0	0	0
octanal	0	0	0	0	0	0	0	0.1	0.1
nonanal	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.3	0.3
decanal	0.4	0	0.2	0	0	0	0	0	0
KETONES	0	Ű		0		•	Ŭ		Ů
2-butanone (MEK)	0	0	0	0.2	0.2	0.2	0	0	0
acetone	0	0	0	0.1	0.1	0.2	0.3	0	0.2
ACIDS	0	0	U	0.1	0.1	0.1	0.5	0	0.2
acetic acid	0	2	1	3	2	2	2	2	2
TERPENES AND THEIR DERIVATIVES	0	2	1	5	2	2	2	2	2
limonene	0.2	0.2	0.2	0.2	0.3	0.3	0.2	0.3	0.3
	0.2	0.2	0.2	0.2	0.3		0.2	0.3	
α-pinene	0	0	U	0	0.1	0.1	0	0	0
ESTERS AND LACTONES	0.1	0.1	0.1	0.0	0.0	0.0	0.1	0	0.1
n-butylacetate	0.1	0.1	0.1	0.2	0.2	0.2	0.1	0	0.1
SILICON CONTAINING COMPOUNDS		0			0.1	0.1	0.7	0.1	0.5
organic Si-comp.	0	0	0	0	0.1	0.1	0.5	0.6	0.6
decamethylcyclopentasiloxane	0	0	0	0	0	0	0.2	0.2	0.2
triethoxypentylsilane	0	0	0	0	0	0	2	2	2
					ļ		ļ	<u> </u>	
Total	4	6	5	9	8	8	32	34	33
TVOC	8	7	7	6	5	5	27	26	27
non-TVOC	0	2	1	3	2	3	2	2	2

(μg/m ² ·h)		RH 20 %			RH 50 %		RH 80 %		
ALIPH. AND ALICYCLIC COMPOUNDS									
decane	0	0	0	0.2	0.2	0.2	0.1	0.1	0.1
undecane	0	0	0	0.2	0.2	0.2	0.1	0.2	0.2
dodecane	0	0	0	0.1	0	0.1	0	0.1	0.1
hexadecane	0	0	0	0	0	0	0.1	0	0.1
AROMATIC HYDROCARBONS									
ethylbenzene	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
p,m-xylene	0.9	0.9	0.9	0.9	0.5	0.7	0.9	0.9	0.9
o-xylene	0.3	0.3	0.3	0.4	0.3	0.4	0.3	0.3	0.3
styrene	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
toluene	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
1,2,4-trimethylbenzene	0.3	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5
C ₃ -alkylbenzene	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3
MONATONICAL COUCLO									
MONATOMIC ALCOHOLS	0	0	0	0	0	0	0.2	0.5	0.4
1-butanol	0	0	0	0	0	0	0.3	0.5	0.4
2-ethyl-1-hexanol	0	0	0	0.5	0.4	0.5	0.2	0.4	0.3
ETHERS									
bis(2-methoxyethyl)ether	0	0	0	0	0	0	0.4	0.5	0.5
ALCOHOL AND PHENOL ETHERS									
1-methoxy-2-propanol	0	0	0	0.1	0	0.1	0.1	0.1	0.1
2-butoxyethanol	0	0	0	0.1	0	0.1	0.1	0.1	0.1
	0	0	U	0	0	U	0.2	0.3	0.5
ALDEHYDES									
benzaldehyde	0	0	0	0.2	0.2	0.2	0	0.1	0.1
n-butanal	0	0	0	0	0	0	0.4	0.5	0.5
hexanal	0	0	0	0	0.1	0.1	0	0	0
decanal	0	0	0	0.2	0	0.1	0	0	0
VETONES									
KETONES				0.1		0.1	0.2	0.2	6.2
acetone	0	0	0	0.1	0	0.1	0.3	0.3	0.3
TERPENES AND THEIR DERIVATIVES									
limonene	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3
Total	3	3	3	5	4	5	6	7	6
TVOC	5	5.5	5	1.8	0.9	1	0	0	0
non-TVOC	0	0	0	0.1	0	0.1	0.6	0.8	0.7

Table C25. Background emission values of the gypsum board in the environmental chamber test.

(µg/m³)	RH 20 %	RH 50 %	RH 80 %
TVOC	6	19	20

Table C26. Emission values of the gypsum board at 1	1 day in the environmental chamber test.
---	--

(µg/m²·h)		RH 80 %			RH 50 %			RH 20 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
dodecane	0.2	0.2	0.2	0	0	0	0	0	0
AROMATIC HYDROCARBONS									
p,m-xylene	0.5	0.5	0.5	0.5	0.5	0.5	0.9	0.5	0.7
toluene	0.5	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5
1,2,4-trimethylbenzene	0.4	0.4	0.4	0.5	0	0.3	0	0	0
MONATOMIC ALCOHOLS									
1-butanol	0.9	0.9	0.9	3	3	3	5	5	5
1-pentanol	0	0	0	0	0	0	0.5	0.5	0.5
2-methyl-1-propanol	0.5	0.5	0.5	1	1	1	1	1	1
ALDEHYDES									
benzaldehyde	0	0.3	0.2	1	0.9	1	2	2	2
n-butanal	0.2	0.5	0.1	0	0	0	0	0.5	0.3
pentanal	0.4	0.5	0.5	0.9	0.9	0.9	1	1	1
hexanal	2	2	2	6	6	6	8	8	8
heptanal	0.2	0	0.1	1	1	1	1	1	1
2-heptenal	0	0	0	0	0	0	0.9	0.5	0.7
octanal	0.3	0.3	0.3	0.9	0.9	0.9	2	1	2
2-octenal	0	0	0	0	0	0	0.9	0.9	0.9
nonanal	0.5	0.5	0.5	2	2	2	3	3	3
decanal	0	0	0	0.9	0.9	0.9	0.9	0.9	0.9
KETONES									
acetone	0.3	0.3	0.3	0.9	0.5	0.7	0.9	0.9	0.9
	0.5	0.5	0.5	0.9	0.5	0.7	0.9	0.7	0.7
TERPENES AND THEIR DERIVATIVES									
limonene	0.3	0.3	0.3	0	0	0	0	0	0
ESTERS AND LACTONES									
1-methoxy-2-propylacetate	0	0	0	0	0	0	0.5	0	0.3
n-butylacetate	0.3	0.3	0.3	2	2	2	1	1	1
HALOGEN CONTAINING COMPOUNDS									
1-chlorononane	1	1	1	3	3	3	2	2	2
1-chlorodecane	2	2	2	7	7	7	7	7	7
1-chloroundecane	0.5	0.5	0.5	2	3	3	3	4	3
Total	12	11	11	35	34	35	44	44	44
TVOC	<u> </u>	10	9	33 30	25	27	33	35	44 34
non-TVOC	0.5	0.3	0.4	0.9	0.5	0.7	0.9	35	1

(µg/m²⋅h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS	0.3	0.3	0.3						
undecane	0	0	0	0.4	0.4	0.4	0.3	0.3	0.3
dodecane				0	0.2	0.1	0	0.2	0.1
AROMATIC HYDROCARBONS	0.3	0.3	0.3						
p,m-xylene	0.2	0	0.1	0.3	0.3	0.3	0.3	0.3	0.3
toluene	0.3	0	0.2	0.2	0.2	0.2	0.2	0.2	0.2
1,2,4-trimethylbenzene				0.2	0	0.1	0.2	0	0.1
MONATOMIC ALCOHOLS	0.3	0.3	0.3						
1-butanol	0	0	0	0	0	0	0	0	0
2-ethyl-1-hexanol				0.3	0.3	0.3	0.3	0.2	0.3
PHENOLS	0	0	0						
phenol				0	0	0	0.2	0.2	0.2
ALDEHYDES	0.2	0	0.1						
benzaldehyde	0.4	0.4	0.4	0.3	0.3	0.3	0.4	0.5	0.5
pentanal	2	2	2	0.3	0.4	0.4	0.2	0.3	0.3
hexanal	0	0	0	0.9	1.4	1	0.9	0.9	1
octanal	0	0	0	0.3	0	0.2	0	0	0
nonanal				0.9	0.9	1	0.5	0.9	1
KETONES	0	0	0						
acetone				0	0	0	0.9	0	0.5
ACIDS	0	0	0						
propanic acid	0	0	0	0	0	0	0	0.9	0.5
hexanic acid				0	0	0	0	0.2	0.1
HALOGEN CONTAINING COMPOUNDS	0.2	0.1	0.2						
1-chlorononane	0.9	0.9	0.9	0.1	0.1	0.1	0.1	0.1	0.1
1-chlorodecane	0.4	0.4	0.4	0.3	0.4	0.4	0	0.1	0.1
1-chloroundecane				0.9	0.9	0.9	0.2	0.3	0.3
	5	5	5						
Total	3	2	3	5	6	6	5	6	5
TVOC	12	15	14	0	0	0	0	0	0
non-TVOC				0	0	0	0.9	0	0.5

 Table C27. Emission values of the gypsum board at 14 days in the environmental chamber test.

(µg/m²⋅h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
undecane	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
AROMATIC HYDROCARBONS									
p,m-xylene	0	0	0	0	0	0	0	0.3	0.2
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	0	0	0	0	0	0	0.1	0.3	0.2
PHENOLS									
phenol	0	0	0	0	0	0	0.2	0.2	0.2
ALDEHYDES									
benzaldehyde	0.2	0	0.1	0.1	0.1	0.1	0.3	0.3	0.3
pentanal	0.2	0.1	0.2	0.2	0.1	0.2	0	0	0
hexanal	0.9	0.9	0.9	0.5	0.5	0.5	0.3	0.3	0.3
octanal	0	0	0	0.1	0	0.1	0.1	0.1	0.1
nonanal	0.2	0.1	0.2	0.4	0.4	0.4	0.5	0.5	0.5
decanal	0.4	0	0.2	0	0.4	0.2	0.5	0.4	0.5
KETONES									
acetone	0	0	0	0.1	0	0.1	0.2	0.4	0.3
HALOGEN CONTAINING COMPOUNDS									
1-chlorononane	0.1	0	0.1	0	0	0.0	0	0	0
1-chlorodecane	0.3	0.3	0.3	0.1	0.1	0.1	0	0	0
1-chloroundecane	0.2	0.2	0.2	0.1	0.2	0.2	0	0	0
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	0.1	0	0.1	0	0.1	0.1	0.3	0.3	0.3
hexamethylcyclotrisiloxane	0	0	0	0	0	0	0	0.9	0
octamethylcyclotrisiloxane	0	0	0	0	0	0	0	0.2	0.1
Trimethyl silanol	0	0	0	0	0	0	0	0.1	0.1
Total	3	2	2	2	2	2	3	4	4
TVOC	0	0	0	0	0	0	0	0	0
non-TVOC	0	0	0	0.1	0	0.1	0.2	0.4	0.3

Table C28. Emission values of the gypsum board at 28 days in the environmental chamber test.

(µg/m ³)	RH 20 %	RH 50 %	RH 80 %
ALIPHATIC AND ALICYCLIC COMPOUNDS			
decane	1	0.5	0.7
undecane	2	0.4	1
dodecane	0.5	1	0.4
AROMATIC HYDROCARBONS			
benzene	0	0.2	0.2
ethylbenzene	0.2	0.2	0.2
p,m-xylene	0.6	0.7	0.7
o-xylene	0.2	0.2	0.2
toluene	1	1	1
1,2,4-trimethylbenzene	0.3	0.3	0.3
MONATOMIC ALCOHOLS			
2-ethyl-1-hexanol	0	3	0.8
PHENOLS			
phenol	0	0.2	0.8
ALCOHOL AND PHENOL ETHERS			
2-(2-butoxyethoxy)ethanol	0	0	0.4
2-butoxyethanol	0	0.3	0.5
ALDEHYDES			
benzaldehyde	0.5	0.3	0.3
pentanal	0	0	1
nonanal	0	1	1
ACIDS			
acetic acid	0	3	4
hexanic acid	0	0.3	0
ESTERS AND LACTONES			
texanol	0	0	2
NITROGEN CONTAINING COMPOUNDS			
1-methyl-2-pyrrolidinone	0	0	0.4
Total	6.3	12.6	15.9
TVOC	8	8	13
non-TVOC	0	3	4

Table C29. Background emission values of adhesive B in the environmental chamber test.

Table C30. Emission values of adhesive B at 1 day in the environmental chamber test.

(µg/m²⋅h)		RH 20 %			RH 50 %			RH 80 %	
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	2850	2859	2855	2009	1964	1986	1368	1332	1350
2-butoxyethanol	28	28	28	22	22	22	17	18	17
ALDEHYDES									
nonanal	0	0	0	0	0	0	7	0	4
ACIDS									
acetic acid	33	43	38	20	0	10	0	0	0
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethyl acetate	26	26	26	20	19	19	15	15	15
Total	2937	2956	2947	2070	2005	2038	1407	1364	1385
TVOC	2560	2578	2569	1656	1619	1637	1071	1026	1049
non-TVOC	33	43	38	20	0	10	0	0	0

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
undecane	0	0	0	0	0	0	1	1	1
AROMATIC HYDROCARBONS									
p,m-xylene	0	0	0	0	0	0	0	0	0
toluene	0	0	0	0	0	0	0	1	0
MONATOMIC ALCOHOLS									
1-butanol	0	0	0	0	0	0	0	1	1
2-ethyl-1-hexanol	1	1	1	1	1	1	1	1	1
DIVALENT ALCOHOLS									
1,2-propanediol	0	0	0	0	0	0	7	3	5
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	0	0	0	0	0	0	1	1	1
2-(2-butoxyethoxy)ethanol	777	796	786	2141	2132	2136	5818	5954	5886
2-butoxyethanol	1	1	1	1	1	1	2	2	2
ALDEHYDES									
benzaldehyde	1	1	1	1	0	1	1	0	1
n-butanal	0	1	0	1	0	0	2	2	2
nonanal	0	0	0	0	1	0	1	1	1
decanal	2	2	2	2	2	2	0	0	0
KETONES									
acetophenone	1	1	1	1	0	0	1	1	1
ACIDS									
acetic acid	28	28	28	36	40	38	36	27	32
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethylacetate	2	2	2	4	5	4	16	16	16
texanol	0	0	0	2	2	2	3	3	3
Total	812	832	822	2189	2182	2186	5889	6013	5951
TVOC	483	483	483	1160	1165	1162	3958	4121	4040
non-TVOC	28	28	28	37	40	38	38	29	34

Table C31. Emission values of adhesive B at 7 days in the environmental chamber test.

Table C32. Emission values of adhesive B at 14 days in the environmental chamber test.

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
AROMATIC HYDROCARBONS									
p,m-xylene	0	0	0	0	0	0	0	0	0
toluene	0	0	0	0	0	0	0	1	0
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	1	0	0	1	1	1	0	0	0
DIVALENT ALCOHOLS									
1,2-propanediol	0	0	0	0	0	0	6	6	6
PHENOLS									
phenol	0	0	0	0	0	0	1	1	1
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	0	0	0	0	0	0	1	1	1
2-(2-butoxyethoxy)ethanol	382	386	384	946	932	939	2473	2436	2454
2-butoxyethanol	1	1	1	1	1	1	2	2	2
ALDEHYDES									
benzaldehyde	0	0	0	0	0	0	0	0	0
n-butanal	0	0	0	0	0	0	0	1	0
nonanal	0	0	0	0	0	0	1	0	0
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethylacetate	1	1	1	2	2	2	4	4	4
texanol	1	1	1	1	1	1	1	1	1
Total	385	389	387	950	937	943	2487	2451	2469
TVOC	237	242	240	546	542	544	1658	1631	1644
non-TVOC	0	0	0	0	0	0	0	0	0

(µg/m ³)	RH 20 %	RH 50 %	RH 80 %
AROMATIC HYDROCARBONS			
p,m-xylene	2	0	0
toluene	2	0	0
MONATOMIC ALCOHOLS			
2-ethyl-1-hexanol	2	0	0
DIVALENT ALCOHOLS			
1,2-propanediol	10	0	0
ALCOHOL AND PHENOL ETHERS			
bis(2-hydroxypropyl)ether	0	10	10
ALDEHYDES			
nonanal	1	0	0
Total	17	10	10
TVOC	23	46	43
non-TVOC	0	0	0

Table C33. Background emission values of primer and paint A in the environmental chamber test.

Table C34. Emission values of	primer and	paint A at 1 day	y in the environme	ntal chamber test.
-------------------------------	------------	------------------	--------------------	--------------------

(μg/m ² ·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
1-dodecene	77	77	77	109	109	109	186	186	186
DIVALENT ALCOHOLS									
1,2-propanediol	3586	3723	3655	5455	5546	5500	2727	2818	2773
ETHERS									
butyl ether	28	29	28	27	27	27	23	23	23
ALCIHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	64	68	66	109	118	114	55	64	59
2-(2-butoxy-isopropoxy)-2-propanol, isomers	114	109	111	159	173	166	191	200	195
ALDEHYDES									
benzaldehyde	8	8	8	9	10	10	10	10	10
ESTERS AND LACTONES									
texanol	1682	1682	1682	1773	1818	1795	2000	2046	2023
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	9	11	10	8	10	9	0	0	0
4,4-dimethyl-1,3-oxazolidine	0	0	0	0	0	0	23	30	26
Total	5567	5707	5637	7649	7810	7730	5214	5376	5295
TVOC	6308	6626	6467	10252	10616	10434	6571	6890	6730
non-TVOC	0	0	0	0	0	0	0	0	0

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
1-dodecene	7	7	7	6	7	7	7	8	8
DIVALENT ALCOHOLS									
1,2-propanediol	723	768	745	864	864	864	1409	1455	1432
2,2,4-trimethyl-1,3-pentanediol	0	1	0	3	5	4	0	0	0
ALCIHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	6	8	7	9	10	9	20	22	21
2-(2-butoxy-isopropoxy)-2-propanol, isomers	21	24	23	29	33	31	33	38	36
ESTERS AND LACTONES									
texanol	1091	1091	1091	1136	1182	1159	1318	1364	1341
TXIB	2	2	2	3	3	3	5	6	5
NITROGEN CONTAINING COMPOUNDS									
4,4-dimethyl-1,3-oxazolidine	4	4	4	6	8	7	16	17	17
SULPHUR CONTAINING COMPOUNDS									
2-methyl-3(2H)-isotiatsolon	2	1	2	2	1	2	2	2	2
Total	1855	1906	1881	2057	2112	2085	2811	2910	2860
TVOC	1626	1717	1671	1888	2025	1956	2981	3117	3049
non-TVOC	0	0	0	0	0	0	0	0	0

Table C35. Emission values of primer and paint A at 7 days in the environmental chamber test.

Table C36. Emission values of primer and paint A at 14 days in the environmental chamber test.

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
1-dodecene	5	5	5	5	-	5	4	4	4
AROMATIC HYDROCARBONS									
p,m-xylene	0	0	0	1	-	1	0	0	0
MONATOMIC ALCOHOLS									
1-butanol	1	1	1	1	-	1	1	1	1
2-ethyl-1-hexanol	0	0	0	1	-	1	1	1	1
DIVALENT ALCOHOLS									
1,2-propanediol	300	291	295	232	-	232	627	632	630
2,2,4-trimethyl-1,3-pentanediol	1	2	2	4	-	4	6	0	3
PHENOLS									
phenol	1	1	1	1	-	1	1	1	1
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	2	2	2	2	-	2	7	7	7
2-(2-butoxyethoxy)ethanol	1	1	1	1	-	1	1	1	1
2-(2-butoxy-isopropoxy)-2-propanol, isomers	13	13	13	16	-	16	11	12	12
bis(2-hydroxypropyl)ether	2	2	2	0	-	0	0	0	0
ALDEHYDES									
benzaldehyde	0	0	0	0	-	0	0	1	0
KETONES									
acetone	2	2	2	4	-	4	6	5	5
ESTERS AND LACTONES									
texanol	941	914	927	1018	-	1018	1018	1041	1030
TXIB	3	3	3	4	-	4	5	5	5
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	1	1	1	1	-	1	1	1	1
4,4-dimethyl-1,3-oxazolidine	4	2	3	7	-	7	12	11	11
dimethylperhydro-1,3-oxazine	0	0	0	0	-	0	1	2	2
SILICON CONTAINING COMPOUNDS									
hexamethylcyclotrisiloxane	0	0	0	0	-	0	1	2	2
SULPHUR CONTAINING COMPOUNDS									
2-methyl-3(2H)-isotiatsolon	3	3	3	3	-	3	3	3	3
Total	1279	1240	1260	1299	-	1299	1707	1729	1718
TVOC	1058	1012	1035	1184	-	1184	1571	1621	1596
non-TVOC	2	2	2	4	-	4	6	5	5

(µg/m³)	RH 20 %	RH 50 %	RH 80 %
ALIPHATIC AND ALICYCLIC COMPOUNDS			
nonane	0.3	0.3	0
decane	1	0.8	1
undecane	2	2	2
dodecane	0.6	0.4	0.6
A MIXTURE OF HYDROCARBONS			
hydrocarbon-mixture	15.1	11.5	16.4
AROMATIC HYDROCARBONS			
benzene	0	0.1	0
p,m-xylene	0.3	0.3	0.4
toluene	0.3	0.4	0.4
MONATOMIC ALCOHOLS			
2-ethyl-1-hexanol	0.8	0.7	0.9
PHENOLS			
phenol	0	0.7	0.8
ALCOHOL AND PHENOL ETHERS			
2-(2-ethoxyethoxy)ethanol	0	0	0.5
2-(2-butoxyethoxy)ethanol	0	0.6	2
1-methoxy-2-propanol	0.3	0	0
2-butoxyethanol	0.4	0.3	0.3
ALDEHYDES			
benzaldehyde	0.9	0.8	0.5
pentanal	0.3	0	0
octanal	0	0	0.6
nonanal	1	1	2
KETONES			
acetophenone	0	0.3	0.3
ACIDS			
hexanoic acid			
ESTERS AND LACTONES			
texanol	0	4	7
NITROGEN CONTAINING COMPOUNDS			
1-methyl-2-pyrrolidinone	0	0.5	0
SILICON CONTAINING COMPOUNDS			
organic Si-comp.	$2^{1)}$	4	7
Total	25	29	43
ТУОС	27	27	48
non-TVOC	0	0	0

Table C37. Background emission values of primer and paint B in the environmental chamber test.

(μg/m ² ·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	0	0	0	0	0	0	2	1	2
decane	0	0	0	0	0	0	0.5	0.5	0.5
dodecane	0.6	0	0.3	0	0	0	0	0	0
AROMATIC HYDROCARBONS									
benzene	0	0	0	0	0	0	0.3	0	0.2
isopropylbenzene	0	0	0	0	0	0	1	1	1
p,m-xylene	0	0	0	0	0	0	0.7	1	1
toluene	4	6	5	6	7	6	5	7	6
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	2	1	1	2	1	1	3	1	2
DIVALENT ALCOHOLS									
1,2-propanediol	150	155	152	609	623	616	105	118	111
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	16	13	14	77	68	73	22	18	20
2-(2-butoxyethoxy)ethanol	17	19	18	145	145	145	126	140	133
2-butoxyethanol	0	0	0	0	0	0	6	4	5
ALDEHYDES									
benzaldehyde	4	3	2	2	1	1	7	8	7
	4	0	3	0	0	1	5	8	
n-butanal	0	0	0	0	0	0	5	3	4
KETONES									
acetophenone	0	2	1	0.8	0	0.4	0	0	0
ESTERS AND LACTONES									
texanol	0	0	0	2	2	2	0	0	0
SILICON CONTAINING COMPOUNDS					-			• • 1)	
organic Si-comp.	0	0	0	0	0	0	26	<i>20</i> ¹⁾	23
Total	193	198	195	843	847	845	310	322	316
TVOC	124 ¹⁾	124 ¹⁾	124	261	306	283	178	160	169
non-TVOC	0	0	0	0	0	0	5	3	4

Table C38. Emission values of primer and paint B at 1 day in the environmental chamber test.

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	1	1	1	1	1	1	2	1	1
decane	5	6	5	7	7	7	6	6	6
undecane	6	6	6	6	6	6	6	6	6
dodecane	1	1	1	1	1	1	1	1	1
AROMATIC HYDROCARBONS									
p,m-xylene	0	0	0	1	1	1	0	0	0
toluene	4	5	5	5	6	6	5	5	5
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	1	1	1	1	1	1	1	1	1
DIVALENT ALCOHOLS									
1,2-propanediol	59	55	57	109	91	100	109	164	136
PHENOLS									
phenol	0	0	0	0	0	0	1	1	1
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	8	8	8	16	13	15	17	19	18
2-(2-butoxyethoxy)ethanol	28	26	27	68	68	68	90	95	92
2-butoxyethanol	0	0	0	0	0	0	1	1	1
ACIDS									
acetic acid	0	0	0	209	123	166	0	118	59
ESTERS AND LACTONES									
texanol	0	0	0	1	1	1	0	0	0
SILICON CONTAINING COMPOUNDS									
decamethylcyclopentasiloxane	0	0	0	0	0	0	1	1	1
Total	113	108	111	426	317	371	239	419	329
TVOC	111	79	95	129	97	113	115	133	124
non-TVOC	0	0	0	209	123	166	0	118	59

Table C39. Emission values of primer and paint B at 7 days in the environmental chamber test.

(μg/m²·h)		RH 20 %			RH 50 %		RH 80 %		
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	1	2	1	0	0	0	0	0	0
decane	1	1	1	0	0	0	0	0	0
dodecane	0	0.1	0.1	0	0	0	0	0	0
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	1	2	1	0	0	0	1	1	1
DIVALENT ALCOHOLS									
1,2-propanediol	27	24	25	27	28	28	32	40	36
PHENOLS									
phenol	2	2	2	3	2	3	2	2	2
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	25	4	15	4	4	4	3	3	3
2-(2-butoxyethoxy)ethanol	5	20	12	38	34	36	36	37	36
ALDEHYDES									
benzaldehyde	1	3	2	1	0	0	2	1	1
nonanal	2	1	2	1	2	2	1	1	1
ACIDS									
acetic acid	39	20	30	40	73	56	41	55	48
hexanic acid	2	0	1	2	3	3	0	0	0
ESTERS AND LACTONES									
texanol	2	2	2	1	1	1	0	0	0
Total	108	80	94	118	146	132	118	140	129
TVOC	21	12	17	32	20	26	13	17	15
non-TVOC	39	20	30	40	73	56	41	55	48

Table C41. Background emission values of primer A and paint C in the environmental chamber test.

	(µg/m³)	RH 20 %	RH 50 %	RH 80 %		
	TVOC	12 ¹⁾	12 ¹⁾	12 ¹⁾		
7. 1.	C · · · 1 · ·	1 1 1 1		.1 1 .		

Table C42. Emission values of primer A and paint C at 1 day in the environmental chamber test.

(µg/m²·h)		RH 20 %	1		RH 50 %	Γ		RH 80 %	I
ALIPHATIC AND ALICYCLIC COMPOUNDS									
pentane	268	264	266	282	286	284	246	236	241
hexane	43	42	42	45	43	44	39	37	38
heptane	68	68	68	73	77	75	64	59	61
octane	68	68	68	73	77	75	64	59	61
nonane	29	29	29	30	31	30	17	18	17
decane	459	455	457	477	477	477	441	414	427
undecane	2077	2005	2041	1936	1868	1902	1982	1886	1934
dodecane	800	796	798	764	759	761	796	768	782
tridecane	105	105	105	105	105	105	118	109	114
tetradecane	11	10	10	10	11	10	15	13	14
pentadecane	3	3	3	3	3	3	5	5	5
hexadecane	0	0	0	0	0	0	0	2	1
A MIXTURE OF HYDROCARBONS									
hydrocarbon-mixture	8196	8005	8100	8673	7768	8673	9027	8005	8516
AROMATIC HYDROCARBONS									
benzene	2	2	2	0	0	0	0	2	1
p,m-xylene	7	7	7	7	8	7	4	3	3
1,2,3-trimethylbenzene	12	12	12	12	12	12	12	12	12
1,2,4-trimethylbenzene	28	28	28	29	28	29	26	25	25
1,3,5-trimethylbenzene	6	6	6	6	6	6	5	5	5
MONATOMIC ALCOHOLS	5	5		5	Ŭ			5	
2-propanol	0	0	0	0	2	1	0	0	0
1-butanol	16	15	15	19	18	19	21	21	21
DIVALENT ALCOHOLS	10	15	15	17	10	17	21	21	21
1,2-propanediol	7227	7455	7341	7591	7636	7614	7500	6909	7205
PHENOLS	1221	/433	/341	/391	/030	/014	7300	0909	7205
phenol	4	4	4	5	4	4	6	5	5
ALCOHOL AND PHENOL ETHERS	4	4	4	3	4	4	0	3	5
	0	0	0	0	0	0	0	2	•
1-methoxy-2-propanol	0	0	0	0	0	0	0	3	2
ALDEHYDES	7	11	0	0	0	0	11	14	10
benzaldehyde	7	11	9	8	8	8	11	14	12
n-butanal	40	43	42	50	50	50	64	68	66
pentanal	364	373	368	414	446	430	555	568	561
hexanal	1727	1741	1734	1909	2059	1984	2482	2532	2507
heptanal	64	68	66	77	82	80	105	105	105
2-heptenal	91	91	91	105	109	107	123	118	120
octanal	38	41	39	50	50	50	64	64	64
2-octenal	177	200	189	214	218	216	236	227	232
KETONES									
2-butanone (MEK)	86	82	84	96	96	96	100	96	98
acetone	141	118	130	168	155	161	205	214	209
ACIDS									
acetic acid	200	227	214	418	246	332	232	214	223
propanoic acid	24	46	35	82	41	61	43	26	35
butanoic acid	30	31	31	41	37	39	36	27	32
pentanoic acid	123	127	125	182	155	168	182	127	155
hexanoic acid	759	796	777	1118	941	1030	1105	718	911
ESTERS AND LACTONES									
texanol	2496	2523	2509	2600	2600	2600	2618	2486	2552
TXIB	7	7	7	7	8	8	7	6	7
NITROGEN CONTAINING COMPOUNDS					-	-		-	
2-butanone oxime	59	68	64	59	68	64	44	50	47
SILICON CONTAINING COMPOUNDS	-/		~ •				1		
decamethylcyclopentasiloxane	0	0	0	2	0	1	3	2	2
accumentificgeropentustionane	0	5				1	5		
Total	25859	25966	25913	27736	26586	27161	28595	26256	27425
i oturi									
TVOC	19682	19000	19341	20222	20404	20313	21449	20222	20835

|--|

(µg/m ² ·h)	RH 20 % RH 50 %				RH 80 %				
ALIPH. AND ALICYCLIC COMPOUNDS			1			1			
hexane	3	3	3	2	3	3	0	1	1
heptane	8	8	8	7	8	8	4	4	4
octane	7	7	7	8	8	8	4	4	4
nonane	3	3	3	2	3	3	2	2	2
decane	19	19	19	19	20	19	16	16	16
undecane	42	42	42	41	39	40	34	33	33
dodecane	18	17	17	15	16	15	14	13	13
tridecane	3	3	3	0	3	1	3	3	3
pentadecane	0	1	0	0	0	0	0	1	0
A MIXTURE OF HYDROCARBONS		-	•	-		•		-	
hydrocarbon-mixture	386	374	380	458	410	434	448	399	423
AROMATIC HYDROCARBONS									
benzene	0	0	0	0	0	0	0	1	0
p,m-xylene	1	0	1	0	0	0	0	0	0
1,2,3-trimethylbenzene	1	0	1	0	0	0	0	0	0
MONATOMIC ALCOHOLS		-		-		-		-	-
1-butanol	10	3	6	3	3	3	3	3	3
DIVALENT ALCOHOLS		_		_	_	-	_	_	-
1,2-propanediol	1200	1205	1202	1200	1209	1205	1773	1882	1827
ETHERS									-
2-pentylfuran	0	0	0	0	0	0	6	5	5
PHENOLS		-		-				-	-
phenol	1	2	2	0	1	1	2	2	2
ALDEHYDES				-					
benzaldehyde	2	2	2	1	2	1	4	3	3
n-butanal	9	8	8	9	11	10	11	9	10
pentanal	55	50	52	59	59	59	68	64	66
hexanal	186	177	182	191	196	193	255	241	248
heptanal	13	13	13	18	17	18	24	23	23
octanal	16	16	16	22	22	22	31	29	30
nonanal	17	17	17	21	21	21	35	35	35
decanal	1	1	1	0	0	0	2	3	2
2-decenal	12	11	12	19	18	18	26	24	25
KETONES									
2-butanone (MEK)	3	3	3	3	3	3	3	3	3
acetone	23	21	22	23	25	24	32	30	31
ACIDS									
acetic acid	118	96	107	35	50	43	50	96	73
propanoic acid	8	8	8	9	9	9	0	14	7
butanoic acid	15	15	15	16	16	16	16	18	17
pentanoic acid	41	41	41	64	64	64	55	68	61
hexanoic acid	282	277	280	405	414	409	336	400	368
2-ethylhexanoic-acid	82	77	80	109	109	109	164	177	170
TERPENES AND THEIR DERIVATIVES									
limonene	0	1	1	0	0	0	0	0	0
ESTERS AND LACTONES									
texanol	482	482	482	641	646	643	982	1005	993
TXIB	2	2	2	2	2	2	4	4	4
2-ethylhexyl acrylate	0	1	0	0	0	0	0	0	0
Total	3068	3004	3036	3401	3404	3402	4401	4611	4506
TVOC	1755	1714	1734	2067	2090	2079	2549	2826	2688
non-TVOC	34	31	33	35	39	37	47	41	44

Table C44. Emission values of primer A and paint C at 14 days in the environmental chamber test	i.
---	----

(μg/m ² ·h)		RH 20 %			RH 50 %		RH 80 %			
ALIPH. AND ALICYCLIC COMPOUNDS										
1-decene	0	0	0	0	0.5	0	0	0	0	
hexane	0	0	0	0	0.5	0	0	0	0	
heptane	3	3	3	3	3	3	0	0	0	
octane	3	3	3	2	2	2	0	0	0	
nonane	0	0	0	0	0.9	0	0	0	0	
decane	5	5	5	4	4	4	3	3	3	
undecane	13	13	13	11	11	11	10	10	10	
dodecane	6	6	6	5	5	5	3	3	3	
tridecane	0.9	0.9	1	0.9	0.9	1	0.9	0.9	1	
pentadecane	0	0	0	0	0	0	0	0.9	0	
A MIXTURE OF HYDROCARBONS			-			-				
hydrocarbon-mixture	112	149	131	143	111	127	142	133	138	
MONATOMIC ALCOHOLS			-	_						
1-butanol	0	2	1	2	2	2	0	1	1	
DIVALENT ALCOHOLS							-	-		
1,2-propanediol	482	464	473	464	441	452	559	559	559	
PHENOLS	=									
phenol	0	0.9	0	0.9	0.9	1	0.9	0.9	1	
ALDEHYDES	Ŭ	0.5	Ŭ	0.5	0.5	-	0.5	0.5	-	
benzaldehyde	0	0	0	0	0.9	0	0.5	0.9	1	
n-butanal	4	4	4	4	5	5	3	4	4	
pentanal	22	21	21	25	24	24	21	23	22	
hexanal	73	68	70	77	77	77	82	82	82	
heptanal	7	7	7	10	9	9	11	11	11	
octanal	8	9	9	13	13	13	16	16	16	
nonanal	10	10	10	13	14	13	18	17	10	
decanal	0	0.9	0	0	0.5	0	4	1	3	
2-decenal	5	6	5	7	6	7	10	8	9	
KETONES	Ū.	Ű	0	,	0	,	10	Ű	-	
2-butanone (MEK)	2	2	2	2	2	2	0.9	1	1	
acetone	9	11	10	10	9	10	12	11	11	
ACIDS			10	10	-	10				
acetic acid	40	19	30	29	44	36	15	36	25	
propanoic acid	4	0	2	0	0	0	6	0	3	
butanoic acid	8	8	8	9	9	9	6	8	7	
pentanoic acid	25	25	25	34	35	34	31	31	31	
hexanoic acid	186	173	180	255	246	250	223	227	225	
2-ethylhexanoic-acid	43	40	42	73	64	68	100	96	98	
ESTERS AND LACTONES										
texanol	218	209	214	327	318	323	541	527	534	
TXIB	0.9	0.9	1	1	1	1	2	2	2	
NITROGEN CONTAINING COMPOUNDS			-	-	-	-	_			
1-methyl-2-pyrrolidinone	0	0	0	0	4	2	0	0	0	
	3	, v		, v			5	Ť	, v	
Total	1288	1257	1272	1523	1462	1492	1818	1812	1815	
TVOC	723	91	407	958	908	933	1231	1131	1181	
non-TVOC	55	36	45	45	60	52	31	52	41	

(µg/m³)	RH 20 %	RH 50 %	RH 80 %
ALIPHATIC AND ALICYCLIC COMPOUNDS			
decane	1	1	0.7
undecane	3	3	2
dodecane	0.7	0.7	0.6
A MIXTURE OF HYDROCARBONS			
hydrocarbon-mixture	20	19	19
AROMATIC HYDROCARBONS			
p,m-xylene	0.4	0.5	0
toluene	0.4	0.5	0.5
MONATOMIC ALCOHOLS			
2-ethyl-1-hexanol	0.7	1	1
ALDEHYDES			
benzaldehyde	0.7	0	0.7
nonanal	0	0.9	0.9
ESTERS AND LACTONES			
texanol	0	3	4
PHENOLS			
phenol	0	0.4	0.6
ALCOHOL AND PHENOL ETHERS			
2-(2-butoxyethoxy)ethanol	0	1	2
2-butoxyethanol	0.4	0	0
ACIDS			
hexanic acid	0	0	1
SILICON CONTAINING COMPOUNDS			
organic Si-comp.	0	4	4
Total	27	35	37
TVOC	32	40	38
non-TVOC	0	4	4

Table C45. Background emission values of primer and paint C in the environmental chamber test.

Table C46. Emission values of	primer and	paint C at 1 day	in the environm	nental chamber test.
-------------------------------	------------	------------------	-----------------	----------------------

(μg/m²·h)		RH 20 %			RH 50 %		RH 80 %			
ALIPH. AND ALICYCLIC COMPOUNDS										
pentane	273	264	268	291	282	286	273	277	275	
hexane	42	42	42	45	46	45	46	44	45	
heptane	77	77	77	86	86	86	91	91	91	
octane	73	73	73	82	82	82	91	86	89	
decane	813	777	795	850	818	834	863	836	850	
undecane	2008	1926	1967	2121	2062	2092	2386	2317	2351	
dodecane	477	463	470	518	504	511	627	609	618	
tridecane	68	68	68	73	73	73	91	91	91	
A MIXTURE OF HYDROCARBONS										
hydrocarbon-mixture	7714	7255	7484	8382	8351	8382	10114	10455	10285	
MONATOMIC ALCOHOLS										
1-pentanol	96	91	93	114	114	114	168	159	164	
ALDEHYDES										
n-butanal	41	41	41	45	45	45	59	59	59	
pentanal	286	286	286	305	314	309	427	418	423	
hexanal	1305	1296	1300	1568	1632	1600	2414	2400	2407	
heptanal	55	55	55	59	64	61	86	86	86	
2-octenal	164	173	168	209	177	193	427	250	339	
KETONES										
2-butanone (MEK)	42	43	43	46	46	46	59	59	59	
ACIDS										
acetic acid	291	223	257	305	200	252	332	382	357	
propanoic acid	259	282	270	396	364	380	546	491	518	
butanoic acid	37	36	36	43	38	41	40	44	42	
pentanoic acid	168	159	164	196	173	184	168	155	161	
hexanoic acid	1009	964	986	1105	1000	1052	818	750	784	
2-ethylhexanoic-acid	996	1000	998	1055	986	1020	827	796	811	
Total	16293	15591	15942	17891	17454	17672	20952	20854	20903	
TVOC	13986	13486	13736	15573	15255	15414	18665	18210	18437	
non-TVOC	647	571	609	684	571	627	721	776	748	

(μg/m ² ·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
pentane	39	41	40	37	38	38	21	21	21
hexane	7	7	7	7	7	7	0	0	0
heptane	21	22	21	23	23	23	0	0	0
octane	18	19	18	21	21	21	0	14	7
decane	23	24	23	26	26	26	19	19	19
undecane	67	62	65	76	76	76	58	58	58
dodecane	18	18	18	22	22	22	21	22	21
A MIXTURE OF HYDROCARBONS									
hydrocarbon-mixture	386	403	394	538	466	502	733	782	758
MONATOMIC ALCOHOLS									
1-pentanol	11	12	12	15	16	15	20	21	20
ALDEHYDES									
n-butanal	0	0	0	7	7	7	0	0	0
pentanal	34	32	33	43	43	43	68	73	70
hexanal	105	105	105	168	159	164	273	296	284
heptanal	9	10	9	14	13	13	21	22	22
octanal	14	14	14	19	20	19	29	31	30
2-octenal	8	10	9	14	15	14	23	24	23
nonanal	17	14	15	21	25	23	38	35	37
2-decenal	11	10	10	18	17	18	32	32	32
undecenal	11	9	10	17	16	16	22	26	24
KETONES									
2-butanone (MEK)	0	0	0	9	9	9	0	0	0
2 outmone (MER)			v	,	,	,	0	0	v
ACIDS									
acetic acid	43	55	49	36	43	39	33	35	34
propanoic acid	64	64	64	77	82	80	82	91	86

butanoic acid

pentanoic acid

hexanoic acid

Total

TVOC

non-TVOC

2-ethylhexanoic-acid

Table C47. Emission values of primer and paint C at 7 days in the environmental chamber test.

Table C48. Emission values of	primer and paint C at 14 d	ays in the environmental chamber test.
-------------------------------	----------------------------	--

(μg/m²·h)		RH 20 %			RH 50 %		RH 80 %			
ALIPH. AND ALICYCLIC COMPOUNDS										
pentane	19	19	19	13	14	13	0	0	0	
hexane	5	0	2	0	0	0	0	0	0	
heptane	14	14	14	13	12	13	0	0	0	
octane	12	11	12	12	12	12	0	0	0	
decane	9	9	9	10	10	10	6	6	6	
undecane	25	25	25	29	29	29	14	17	15	
dodecane	7	7	7	10	9	9	6	6	6	
				-	-	-				
A MIXTURE OF HYDROCARBONS										
hydrocarbon-mixture	185	166	175	255	246	251	341	321	331	
MONATOMIC ALCOHOLS										
1-pentanol	8	7	8	11	11	11	14	11	13	
1										
PHENOLS										
phenol	0	0	0	0.9	0.9	0.9	0.9	0	0.5	
*										
ALDEHYDES										
n-butanal	0	0	0	8	6	7	8	9	8	
pentanal	17	18	18	26	26	26	41	41	41	
hexanal	50	50	50	86	86	86	150	155	152	
heptanal	6	6	6	9	9	9	14	14	14	
octanal	9	8	8	12	6	9	20	20	20	
2-octenal	0	0	0	6	7	7	9	9	9	
nonanal	7	9	8	14	15	14	23	21	22	
decanal	0	0	0	0	0	0	5	0	2	
2-decenal	5	5	5	10	9	9	17	14	16	
undecenal	5	5	5	9	10	9	14	16	15	
KETONES										
2-butanone (MEK)	5	5	5	0	0	0	0	0	0	
ACIDS										
acetic acid	64	55	59	20	20	20	12	32	22	
propanoic acid	59	64	61	68	64	66	41	50	46	
butanoic acid	16	16	16	19	18	18	13	15	14	
pentanoic acid	50	50	50	73	68	70	59	68	64	
hexanoic acid	309	305	307	441	427	434	400	422	411	
2-ethylhexanoic-acid	68	64	66	118	114	116	155	150	152	
heptanoic acid	19	20	20	22	21	22	10	11	10	
octanoic acid	19	22	20	29	26	28	12	12	12	
Total	989	956	973	1322	1274	1298	1383	1418	1401	
туос	545	536	540	832	841	836	915	842	878	
non-TVOC	87	227	157	39	43	41	18	39	28	

(µg/m³)	RH 20 %	RH 50 %	RH 80 %
ALIPHATIC AND ALICYCLIC COMPOUNDS			
nonane	0	0.4	0.6
decane	2	5	4
undecane	3	0.3	7
dodecane	0.8	2	2
tridecane	0	0.3	0
hexadecane	0	0	0.2
A MIXTURE OF HYDROCARBONS			
hydrocarbon-mixture	18	56	41
AROMATIC HYDROCARBONS			
benzene			
ethylbenzene	0	0.2	0.2
p,m-xylene	0.6	0.7	0.7
o-xylene	0.2	0.2	0.2
styrene	0	0	0.2
toluene	0.8	0.8	0.8
MONATOMIC ALCOHOLS			
2-ethyl-1-hexanol	0	1	1
PHENOLS			
phenol	0	0	0.6
ALCOHOL AND PHENOL ETHERS			
2-(2-butoxyethoxy)ethanol	0.4	1	0
2-butoxyethanol	0	0.3	0
ALDEHYDES			
benzaldehyde	0.6	0.5	0.8
pentanal	0.2	0	0.9
nonanal	0.7	1	2
decanal	1	1	2
KETONES			
acetophenone	0	0	0.4
ESTERS AND LACTONES			
texanol	0	0	1
NITROGEN CONTAINING COMPOUNDS			
1-methyl-2-pyrrolidinone	0	0.7	0.6
SILICON CONTAINING COMPOUNDS			
organic Si-comp.	2	0	1
Total	30	71	67
TVOC	19	65	54
non-TVOC	0	0	0

Table C49. Background emission values of filler and plaster A in the environmental chamber test.

Table C50. Emission v	alues of filler and p	laster A at 1 day	in the environmental	chamber test
	unues of miler unu p	iustor ri ut i uuy	In the environmental	chumber test.

(µg/m²⋅h)		RH 20 %	,		RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
decane	0	0	0	0	0	0	0	0	0
undecane	0	0	0	4	3	3	0	0	0
dodecane	0	0	0	0	0	0	0	0	0
AROMATIC HYDROCARBONS									
toluene	0	0	0	1	0.5	1	1	0	1
MONATOMIC ALCOHOLS									
ethanol	0	0	0	6	0	3	0	7	3
2-propanol	4	4	4	3	4	3	5	5	5
2-ethyl-1-hexanol	3	6	4	2	2	2	3	3	3
2-methyl-2-propanol	16	16	16	12	15	14	23	25	24
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	4	2	3	27	3	15	82	14	48
1-methoxy-2-propanol	17	18	18	11	17	14	17	16	17
ALDEHYDES									
benzaldehyde	3	3	3	3	3	3	3	4	4
pentanal	0	0	0	0	0	0	2	0	1
hexanal	9	8	8	9	10	9	11	8	10
heptanal	5	5	5	5	6	5	6	0	3
octanal	6	5	5	5	6	6	6	6	6
nonanal	8	7	8	6	10	8	10	7	8
decanal	5	3	4	2	8	5	7	4	6
KETONES									
acetophenone	2	2	2	2	1	2	2	3	2
acetone	7	6	7	9	6	8	7	6	7
cyclohexanone	0	0	0	4	0	2	6	0	3
ACIDS									
acetic acid	0	0	0	0	0	0	25	0	12
ESTERS AND LACTONES									
1-methoxy-2-propylacetate	0	0	0	0.9	0	0	0	0	0
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	0	11	5	0	10	5	0	13	6
Total	90	95	93	112	104	108	216	120	168
TVOC	51	41	46	39	39	39	76	62	69
non-TVOC	27	26	26	30	25	28	60	42	51

Table C51. Emission values of filler and	plaster A at 7 days in the environmental chamber test.
	pluster i t ut / uu s in the environmentul enumber test.

(μg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
decane	0	0	0	0	0	0	0	0	0
undecane	0	0	0	3	3	3	0	0	0
dodecane	1	1	1	0	0	0	0	0	0
tridecane	0	1	0	0	0	0	0	0	0
tetradecane	1	1	1	0	0	0	0	0	0
AROMATIC HYDROCARBONS									
p,m-xylene	1	1	1	1	1	1	1	1	1
toluene	1	1	1	1	1	1	1	1	1
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	1	1	1	1	1	1	1	1	1
DIVALENT ALCOHOLS									
1,2-propanediol	155	164	159	13	13	13	0	0	0
ETHERS									
bis(2-ethoxyethyl)ether	6	6	6	0	0	0	0	0	0
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	13	16	14	0	0	0	0	0	0
1-methoxy-2-propanol	9	10	9	8	8	8	7	7	7
2-ethoxyethanol	3	4	3	0	0	0	0	0	0
dipropylene glycol methyl ether	12	12	12	0	0	0	0	0	0
ALDEHYDES									
benzaldehyde	1	2	1	1	1	1	1	1	1
pentanal	0	1	0	0	0	0	0	0	0
nonanal	6	6	6	5	5	5	3	3	3
decanal	1	2	2	2	0	1	0	3	1
KETONES									
acetophenone	1	1	1	1	0	0	0	1	1
SILICON CONTAINING COMPOUNDS	4	0	2	0	0	0	0	0	•
hexamethylcyclotrisiloxane octamethylcyclotrisiloxane	4	-		0	-	0	-	0	0
decamethylcyclopentasiloxane	2	0	1 0	0	0	0	0	0	0
decamethyleyclopentashoxane	1	0	U	0	0	U	0	0	U
Total	217	226	222	34	31	33	13	16	15
TVOC	91	101	96	5	0	3	0	0	0
non-TVOC	0	0	0	0	0	0	0	0	0

Table ('52 , Emission values of filler and	plaster A at 14 days in the environmental chamber test.
Tuble cont Emission (undes of mile) and	

(μg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
decane	0	0	0	0	0	0	0	0	0
undecane	0	0	0	2	2	2	0	0	0
dodecane	0	0	0	0	0	0	0	0	0
		0	0	Ű	0	Ū	0	Ŭ	v
AROMATIC HYDROCARBONS									
p,m-xylene	0.6	0.6	1	0	0	0	0.6	0.6	1
o-xylene	0	0	0	0	0	0	0.2	0.2	0
toluene	0	0	0	0	0	0	0.5	0.5	1
1,2,4-trimethylbenzene	0	0	0	0	0	0	0.4	0.4	0
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	0	0	0	0	0	0	0	0	0
DIVALENT ALCOHOLS									
1,2-propanediol	296	300	298	582	600	591	10	13	11
ETHERS									
bis(2-ethoxyethyl)ether	0	0	0	3	3	3	0.9	0.9	1
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	11	10	10	55	55	55	0.9	1	1
1-methoxy-2-propanol	0	0	0	0	0	0	2	2	2
dipropylene glycol methyl ether	2	3	3	23	24	24	2	0	1
ALDEHYDES				_					
benzaldehyde	0	0	0	0	0	0	0.1	0.5	0
pentanal	0	0	0	0	0	0	0	0	0
hexanal	1	2	2	0	0	0	0.9	1	1
heptanal	0.9	0.9	1	0	0	0	0	0	0
octanal	0.9	0.9	1	0	0	0	0.9	0.9	1
nonanal	2	2	2	2	2	2	0.9	1	1
decanal	0.9	0.5	1	0	0	0	0	0	0
KETONES									
acetophenone	0	0	0	0	0	0	0.2	0	0
acetophenone	1	1	1	3	4	3	1	0	1
			-					, v	-
ACIDS	1								
acetic acid	9	11	10	9	7	8	6	5	5
OTHERS									
unidentified	0	0	0	9	10	9	0	0	0
Total	325	331	328	688	706	697	28	29	28
TVOC	82	82	82	266	284	275	4	6	5
non-TVOC	10	12	11	12	11	12	7	5	6

(µg/m³)	RH 20 %	RH 50 %	RH 80 %
ALIPHATIC AND ALICYCLIC COMPOUNDS			
nonane	0	0.5	0.6
decane	0.6	0.5	0.6
undecane	1	0.7	1
dodecane	0.4	0.3	0.4
AROMATIC HYDROCARBONS			
benzene	0	0.2	0.2
ethylbenzene	0.4	0.4	0.4
propylbenzene	0.1	0.2	0
p,m-xylene	1	2	2
o-xylene	0.5	0.6	0.5
styrene	0.2	0.3	0.3
toluene	1	1	1
1,2,3-trimethylbenzene	0	0.2	0
1,2,4-trimethylbenzene	0.7	0.8	0.8
1,3,5-trimethylbenzene	0.1	0.2	0.2
1-ethyl-2-methylbenzene	0.1	0.2	0
MONATOMIC ALCOHOLS			
1-butanol	0	0	1
2-ethyl-1-hexanol	0.4	5	0.7
PHENOLS			
phenol	0	0.3	1
ALCOHOL AND PHENOL ETHERS			
2-(2-ethoxyethoxy)ethanol	0	0	0.7
2-(2-butoxyethoxy)ethanol	0	0	94
1-methoxy-2-propanol	0	0.1	0
2-butoxyethanol	0	0.6	0.7
ALDEHYDES			
benzaldehyde	0.8	1	0.9
pentanal	0	0	0.3
nonanal	1	0.8	1
KETONES			
acetophenone	0	0.5	0.4
ACIDS			
acetic acid	0	4	2
TERPENES AND THEIR DERIVATIVES	-		
limonene	0.8	1	0.8
ESTERS AND LACTONES		-	
2-(2-butoxyethoxy)ethylacetate	0	0	0.4
texanol	0	0	2
	Ť	Ŭ	_
Total	9	21	114
TVOC	11	19	87
non-TVOC	0	4	2

Table C53. Background emission values of filler and plaster B in the environmental chamber test.

Table C54. Emission values of filler and	plaster B at 1 day in t	the environmental chamber test.
--	-------------------------	---------------------------------

(μg/m²·h)		RH 20 %	1	RH 50 %			RH 80 %		
ALIPH. AND ALICYCLIC COMPOUNDS									
decane	16	20	18	17	18	17	21	19	20
AROMATIC HYDROCARBONS									
styrene	24	24	24	23	21	23	24	21	22
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	1286	1250	1268	1275	1184	1230	1241	1177	1209
2-methyl-2-propanol	264	246	255	268	159	214	209	200	205
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	28	32	30	31	28	30	0	0	0
ALDEHYDES									
benzaldehyde	59	59	59	59	50	54	59	50	54
KETONES									
acetone	91	68	80	77	50	64	59	55	57
ESTERS AND LACTONES									
texanol	18	26	22	18	31	24	24	28	26
2-ethylhexyl acetate	146	155	150	146	141	143	150	141	145
2-ethylhexyl acrylate	25	27	26	24	24	24	27	23	25
2-ethyl-1-hexyl propionate	34	36	35	36	34	35	35	34	35
NITROGEN CONTAINING COMPOUNDS									
4,4-dimethyl-1,3-oxazolidine	546	523	534	555	482	518	550	482	516
dimethyl perhydro-1,3-oxazine	91	86	89	100	91	95	91	91	91
Total	2624	2550	2587	2627	2311	2469	2489	2319	2404
TVOC	2127	2127	2127	2178	2014	2096	2142	2011	2076
non-TVOC	355	314	334	344	207	275	267	254	260

Table C55. Emission	values of filler and	plaster B at 7 days	s in the environmental	chamber test.
	values of filler and	prubler D ut / uu /		chamber test.

(μg/m ² ·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
decane	3	3	3	3	3	3	3	3	3
undecane	0	2	1	2	2	2	1	1	1
dodecane	0	2	1	0	0	0	0	0	0
AROMATIC HYDROCARBONS									
ethylbenzene	4	4	4	2	2	2	2	0	1
isopropylbenzene	4	4	4	2	2	2	0	0	0
styrene	10	10	10	4	4	4	4	3	3
MONATOMIC ALCOHOLS									
ethanol	3	3	3	2	2	2	2	0	1
2-ethyl-1-hexanol	464	464	464	398	398	398	354	359	357
ETHERS									
bis(2-ethoxyethyl)ether	15	15	15	9	10	9	8	6	7
PHENOLS									
phenol	2	0	1	0	0	0	0	0	0
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	16	19	18	6	7	7	5	4	4
2-(2-butoxyethoxy)ethanol	82	86	84	46	46	46	0	0	0
2-butoxyethanol	4	4	4	3	3	3	2	2	2
ALDEHYDES									
benzaldehyde	3	3	3	2	3	3	2	2	2
nonanal	0	0	0	0	0	0	0	1	1
decanal	0	0	0	0	0	0	0	2	1
KETONES									
acetone	17	15	16	8	8	8	14	11	13
ACIDS									
acetic acid	8	16	12	7	11	9	2	14	8
ESTERS AND LACTONES									
texanol	159	159	159	146	155	150	181	163	172
2-ethylhexyl acetate	123	123	123	73	73	73	50	50	50
2-ethylhexyl acrylate	26	27	26	15	15	15	9	9	9
2-ethyl-1-hexyl propionate	34	35	34	21	21	21	13	14	13
NITROGEN CONTAINING COMPOUNDS									
2-amino-2-methyl-1-propanol	14	28	21	28	40	34	22	50	36
4,4-dimethyl-1,3-oxazolidine	723	755	739	368	382	375	332	209	270
dimethyl perhydro-1,3-oxazine	123	132	127	82	82	82	64	55	59
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	7	4	6	13	7	10	0	0	0
1									
Total	1839	1909	1874	1239	1271	1255	1069	956	1013
TVOC	1754	1836	1795	1201	1237	1219	992	892	942
non-TVOC	27	34	30	16	20	18	18	25	22

	1 0 0 11 1	1 + D + 1 + 1	
I able C56. Emission	values of filler and	plaster B at 14 days in	the environmental chamber test.

(µg/m²⋅h)		RH 20 %			RH 50 %		RH 80 %		
AROMATIC HYDROCARBONS									
styrene	0	0	0	6	6	6	0	0	0
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	104	104	104	143	143	143	145	154	150
ETHERS									
bis(2-ethoxyethyl)ether	15	15	15	14	15	14	7	7	7
ALCOHOL AND PHENOL ETHERS	227	227	227	27	20	27	0	0	0
2-(2-ethoxyethoxy)ethanol	227	227	227	37	38	37 141	9 7	8	9 7
2-(2-butoxyethoxy)ethanol	214	214	214	141	141	141	/	7	/
KETONES									
acetone	5	7	6	6	8	7	16	6	11
ACIDS									
acetic acid	7	7	7	0	0	0	0	0	0
ESTERS AND LACTONES									
texanol	64	64	64	150	155	152	167	181	174
2-ethylhexyl acetate	146	146	146	86	86	86	41	44	43
2-ethylhexyl acrylate	59	59	59	29	29	29	10	10	10
2-ethyl-1-hexyl propionate	50	55	52	31	31	31	12	12	12
NITROGEN CONTAINING COMPOUNDS									
2-amino-2-methyl-1-propanol	13	19	16	16	40	28	9	7	8
4,4-dimethyl-1,3-oxazolidine	591	573	582	600	559	580	291	305	298
dimethyl perhydro-1,3-oxazine	100	96	98	96	96	96	50	46	48
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	64	59	61	9	8	9	0	0	0
Total	1657	1643	1650	1364	1354	1359	765	786	776
TVOC	1536	1643 1518	1050	1304 1332	1334 1337	1335	765	780	758
non-TVOC	1536	1518	1327	5	6	5	16	5	10

Table C57. Background emission values of a 6 mm layer of plaster C in the environmental chamber test.

(µg/m ³)	RH 20 %	RH 50 %	RH 80 %
TVOC	11	8	20

(µg/m²·h)	RH 20 %			RH 50 %			RH 80 %			
AROMATIC HYDROCARBONS										
p,m-xylene	2	2	2	2	2	2	2	2	2	
toluene	2	2	2	2	2	2	2	1	2	
MONATOMIC ALCOHOLS										
2-ethyl-1-hexanol	2	5	3	3	5	4	4	5	4	
2-methyl-2-propanol	7	7	7	6	6	6	6	6	6	
ALDEHYDES										
hexanal	6	6	6	0	4	2	0	0	0	
octanal	3	3	3	2	2	2	3	1	2	
nonanal	8	11	9	7	6	6	9	5	7	
decanal	7	11	9	8	5 ¹⁾	6	9	5 ¹⁾	7	
KETONES										
acetone	13	13	13	12	11	11	14	11	13	
ACIDS										
acetic acid	55	27 ¹⁾	41	46	36	41	64	27 ¹⁾	45	
TERPENES AND THEIR DERIVATIVES										
limonene	0	0	0	0	0	0	0	4	2	
SILICON CONTAINING COMPOUNDS										
organic Si-comp.	3 ¹⁾	3 ¹⁾	3	4	3 ¹⁾	3	4	3 ¹⁾	4	
Total	108	90	99	90	81	85	115	71	93	
TVOC	36	32	34	18	25	21	29	13	21	
non-TVOC	75	47	61	63	53	58	83	44	64	

Table C58. Emission values of a 6 mm layer of plaster C at 1 day in the environmental chamber test.

Table C59. Emission	values of a 6 mm la	ver of plaster C at 7 day	vs in the environmental chamber test	t
	raided of a committee	yer of plubter e ut / uu	ys in the environmental enameder tes	••

$(\mu g/m^2 \cdot h)$		RH 20 %			RH 50 %	-	RH 80 %		
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	0.9	0.5	0.7	0	0	0	0.9	0	0.5
decane	0.5	0.5	0.5	0	0.3	0.2	0	0	0
undecane	1	1	1	0	0	0	0	0	0
dodecane	0.9	0.9	0.9	0.4	0.4	0.4	0.4	0.4	0.4
tridecane	0.9	0.9	0.9	0.3	0.4	0.4	0	0	0
tetradecane	0.9	1	1	0.5	0	0.3	0	0.3	0.2
pentadecane	0	0.5	0.3	0	0	0	0	0	0
aliphatic hydrocarb.	10	10	10	0	0	0	0	0	0
AROMATIC HYDROCARBONS									
benzene	1	0	0	0.2	0	0.1	0.3	0.2	0.3
ethylbenzene	0	0	0	0	0.2	0.1	0	0	0
p,m-xylene	1	1	1	1	1	1	1	1	1
o-xylene	0	0	0	0.3	0.3	0.3	0.3	0.3	0.3
toluene	1	1	1	1	1	1	1	1	1
1,2,4-trimethylbenzene	0	0	0	1	1	1	1	1	1
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	1	1	1	2	2	2	3	3	3
benzylalcohol	1	1	1	0.9	1	1	1	0.9	1
ALCOHOL AND PHENOL ETHERS									
1-methoxy-2-propanol	0.5	0.5	0.5	0.9	0.5	0.7	0	0.9	0.5
2-butoxyethanol	0.5	0	0.3	0.9	0	0.5	0	0	0
2-phenoxyethanol	0.9	0.9	0.9	0.5	0.9	0.7	0.9	0.5	0.7
2-methoxyethanol	0.9	0.9	0.9	0	0	0	0	0	0
ALDEHYDES									
benzaldehyde	1	0	1	0	0	0	2	0	1
n-butanal	0.9	0.4	0.7	0	0	0	0	0.9	0.5
hexanal	0.9	0	0.5	0	0	0	0	0	0
nonanal	3	6	4	2	2	2	3	1	2
decanal	3	4	3	3	3	3	4	0.9	3
KETONES									
acetophenone	0	0	0	0	0	0	0.9	0.9	0.9
acetone	1	3	2	1	2	2	3	3	3
TERPENES AND THEIR DERIVATIVES									
limonene	0	0	0	0	0.4	0.2	0	0	0
ESTERS AND LACTONES									
1-methoxy-2-propylacetate	0	0	0	0.9	0.5	0.7	0.9	0.5	0.7
TXIB	0	0	0	0.1	0	0.1	0	0	0
SILICON CONTAINING COMPOUNDS	Ì								
triethoxypentylsilane	4	3	4	0	2	1	0	0	0
Total	38	39	38	16	18	17	24	16	20
TVOC	50	68	59	14	34	24	34	17	26
non-TVOC	2	3	3	1	2	2	3	4	3

(μg/m²·h)		RH 20 %)		RH 50 %				
ALIPH. AND ALICYCLIC COMPOUNDS									
decane	0	0.2	0.1	0.3	0.3	0.3	0.2	0.2	0.2
undecane	0	0.2	0.1	3	3	3	0.5	0.9	0.7
dodecane	0	0	0	0	0	0	0.2	0.2	0.2
tridecane	0	0	0	0	0	0	0.2	0.2	0.2
tetradecane	0	0	0	0	0	0	0.2	0.2	0.2
hexadecane	0	0	0	0	0	0	0.1	0	0.1
A MIXTURE OF HYDROCARBONS									
hydrocarbon-mixture	50	46	48	50	64	57	0	0	0
AROMATIC HYDROCARBONS									
benzene	0.4	0.3	0.4	0.3	0.3	0.3	0.3	0.4	0.4
ethylbenzene	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
propylbenzene	0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
p,m-xylene	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
o-xylene	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
toluene	0.9	1	1	0.9	0.9	0.9	0.9	0.9	0.9
1,2,4-trimethylbenzene	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
1,3,5-trimethylbenzene	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
1-ethyl-2-methylbenzene	0	0.1	0.1	0.1	0.1	0.1	0.1	0	0.1
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	0	0	0	0	0.5	0.3	2	0	1
benzylalcohol	0.5	0.5	0.5	0	0	0	0	0	0
DIVALENT ALCOHOLS									
1,2-propanediol	0	0	0	0	0	0	0	0.5	0.3
PHENOLS									
phenol	0.9	0.1	0.5	1	0.9	1	1	1	1
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	0.9	0	0.5	0	0	0	0	0	0
2-phenoxyethanol	0.9	0.9	0.9	0	0	0	0	0	0
2-methoxyethanol	2	1	2	0.5	0	0.3	0	0	0
ALDEHYDES									
benzaldehyde	0.9	0.3	0.6	0.9	0.5	0.7	0.9	0.9	0.9
nonanal	1	2	2	0.9	2	2	1	1	1
decanal	1	3	2	1	3	2	0.9	1	1
KETONES									
acetophenone	0	0	0	0	0.2	0.1	0	0	0
acetone	1	1	1	0	2	1	0	1	1
TERPENES AND THEIR DERIVATIVES									
limonene	0	0.3	0.2	0.3	0.3	0.3	0	0.3	0.2
ESTERS AND LACTONES		1			1		Ì	1	
1-methoxy-2-propylacetate	0	0	0	0	0	0	0.1	0	0.1
SILICON CONTAINING COMPOUNDS		1			1		Ì	1	
organic Si-comp.	6	6	6	10	9	9	0.5	2	1
decamethylcyclopentasiloxane	0.5	0.3	0	0.9	0.9	1	0.5	0.5	1
		1	1		1				
Total	70	66	68	72	89	81	13	15	14
TVOC	73	64	68	72	72	72	19	21	20
non-TVOC	1	1	1	0	2	1	0	1	1

Table C61. Background emission values of primer and paint A spread onto gypsum board in the environmental chamber test.

$(\mu g/m^3)$	RH 20 %	RH 50 %	RH 80 %
TVOC	7	11	11

Table C62. Emission values of primer and paint A spread onto gypsum board at 1 day in the environmental chamber test.

(µg/m²·h)		RH 20 %		RH 50 %			RH 80 %			
ALIPH. AND ALICYCLIC COMPOUNDS										
1-dodecene	17	16	17	21	20	20	19.5	20	20	
AROMATIC HYDROCARBONS										
ethylbenzene	6	6	6	7	8	8	7	7	7	
isopropylbenzene	0	0	0	5	5	5	5	5	5	
p,m-xylene	7	7	7	8	8	8	8	8	8	
styrene	21	20	20	29	29	29	27	28	28	
MONATOMIC ALCOHOLS										
ethanol	0	0	0	6	0	3	8	6	7	
2-propanol	5	5	5	9	8	8	11	11	11	
1-butanol	17	17	17	46	45	45	50	55	52	
DIVALENT ALCOHOLS										
1,2-propanediol	1523	1577	1550	1686	1677	1682	1050	1255	1152	
ETHERS										
butyl ether	55	50	52	68	73	70	64	68	66	
ALCOHOL AND PHENOL ETHERS										
2-(2-ethoxyethoxy)ethanol	150	155	152	146	136	141	0	118	59	
ALDEHYDES										
benzaldehyde	10	11	10	11	13	12	18	16	17	
hexanal	0	0	0	0	5	2	5	5	5	
decanal	7	7	7	34	5	20	6	5	5	
KETONES										
	14	7	10	17	11	14	17	11	14	
acetone	14	/	10	17	11	14	17	11	14	
ACIDS										
acetic acid	114	37	75	432	32	232	38	36	37	
	117		13	732	52	252	50	50	51	
ESTERS AND LACTONES										
texanol	546	568	557	655	682	668	818	918	868	
n-butylacetate	0	0	0	10	10	10	10	11	10	
butyl propanoate	9	9	9	13	13	13	12	15	13	
Total	2498	2493	2404	3200	2779	2989	2171	2595	1202	
TVOC	732	732	2496	992		2989 972			2383 822	
non-TVOC	132	49	732 90	463	951 51	257	731 74	913 64	<u>822</u> 69	

Table C63. Emission	values	of primer	and	paint	А	spread	onto	gypsum	board	at	7	days	in	the
environmental chamber	test.													

(μg/m ² ·h)		RH 20 %			RH 50 %		RH 80 %		
ALIPH. AND ALICYCLIC COMPOUNDS									
1-dodecene	1	1	1	1	1	1	1	2	2
decane	0	0	0	1	0	0	0	0	0
hexadecane	0	0	0	7	0	3	0	0	0
AROMATIC HYDROCARBONS									
ethylbenzene	1	0	0	1	1	1	0	0	0
isopropylbenzene	0	1	0	0	0	0	0	0	0
p,m-xylene	1	1	1	1	1	1	1	1	1
o-xylene	1	0	0	0	1	0	0	1	0
styrene	0	1	0	0	0	0	0	0	0
toluene	1	1	1	1	1	1	1	1	1
MONATOMIC ALCOHOLS									
ethanol	0	0	0	0	4	2	4	3	3
2-propanol	1	1	1	1	1	1	1	1	1
1-butanol	2	2	2	8	8	8	0	11	6
	2	2	2	0	0	0	0	11	0
DIVALENT ALCOHOLS									
1,2-propanediol	305	296	300	323	296	309	432	468	450
ETHERS									
butyl ether	3	3	3	3	3	3	2	3	3
ALDEHYDES									
benzaldehyde	2	1	2	2	2	2	3	3	3
n-butanal	0	0	0	0	1	1	0	0	0
pentanal	0	0	0	1	0	0	0	0	0
nonanal	0	0	0	0	0	0	0	3	2
decanal	0	0	0	0	2	1	0	6	3
KETONES									
2-butanone (MEK)	0	0	0	1	0	1	0	0	0
acetone	4	2	3	8	3	5	4	6	5
ESTERS AND LACTONES									
texanol	396	396	396	382	368	375	418	423	420
TXIB	0	0	0	17	0	9	3	0	2
butyl propanoate	1	1	1	1	1	1	1	1	1
	-	-	_	-	-	_	-	-	-
Total	717	705	711	759	694	726	871	931	901
TVOC	159	150	155	183	151	167	241	268	254
non-TVOC	5	3	4	10	9	10	9	9	9

Table C64. Emission	values of primer	and paint	A spread	onto gypsum	board at	14 days in th	ıe
environmental chamber	test.						

environmental chamber test. (μg/m ² ·h)	İ	RH 20 %		İ	RH 50 %		RH 80 %			
ALIPH. AND ALICYCLIC COMPOUNDS			1							
nonane	0	0	0	1	1	1	0.5	0.9	0.7	
tetradecane	0	0	0	0	0	0	0.9	0	0.5	
AROMATIC HYDROCARBONS										
p,m-xylene	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	
toluene	0.5	0.9	0.7	0.9	0.9	0.9	0.9	0.9	0.9	
MONATOMIC ALCOHOLS										
2-propanol	0.5	0	0.3	0	0	0	0	0	0	
1-butanol	1	1	1	5	5	5	5	5	5	
DIVALENT ALCOHOLS										
1,2-propanediol	68	77	73	150	159	155	318	323	320	
ALCOHOL AND PHENOL ETHERS										
2-butoxyethanol	0.5	0.5	0.5	2	1	2	0.9	0.9	0.9	
ALDEHYDES										
benzaldehyde	1	0.9	1	1	1	1	2	2	2	
n-butanal	0	0	0	0	0	0	0	1	1	
pentanal	0	0.5	0.3	0	0.5	0.3	0.5	0	0.3	
hexanal	0	0	0	0.9	0.9	0.9	0.9	0.9	0.9	
nonanal	0	0.9	0.5	0.9	1	1	0.9	1	1	
decanal	1	2	2	2	2	2	2	1	2	
2-furfural	0	0	0	0	0	0	0.5	0	0.3	
KETONES										
acetophenone	0	0	0	0	0	0	1	0.5	0.5	
acetone	2	2	2	3	3	3	3	5	4	
		_	_	-		•			-	
ACIDS										
acetic acid	0	4	2	2	9	5	4	0	2	
ESTERS AND LACTONES										
texanol	346	359	352	314	309	311	346	359	352	
TXIB	0.5	0.5	0.5	0.9	0.9	0.9	0.9	0.9	0.9	
Total	423	451	437	485	497	491	687	703	695	
TVOC	305	300	302	297	288	292	431	404	418	
non-TVOC	2	6	4	5	12	8	7	5	6	

Table C65. Background emission values of primer and paint B spread onto gypsum board in the environmental chamber test.

(µg/m³)	RH 20 %	RH 50 %	RH 80 %
TVOC	4	6	8

Table C66. Emission values of primer and paint B spread onto gypsum board at 1 day in the environmental chamber test.

(μg/m²·h)		RH 20 %		RH 50 %			RH 80 %			
ALIPH. AND ALICYCLIC COMPOUNDS										
octane	0	0	0	0	0.2	0.1	0.2	0.9	0.6	
nonane	0	0	0	0.5	0.5	0.5	0.5	2	1	
AROMATIC HYDROCARBONS										
benzene	0	0	0	0	0	0	0	0.2	0.1	
ethylbenzene	0.9	0.5	0.7	1	0.9	1	2	2	2	
propylbenzene	0	0	0	0.5	0.5	0.5	0.5	0.5	0.5	
isopropylbenzene	0.5	0.5	0.5	0.9	0.9	0.9	1	1	1	
p,m-xylene	1	1	1	2	2	2	4	4	4	
o-xylene	0.5	0.5	0.5	0.9	0.9	0.9	1	1	1	
styrene	0.5	0.5	0.5	1	1	1	2	2	2	
toluene	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
1,2,4-trimethylbenzene	0	0	0	0	0	0	0.2	0.2	0.2	
MONATOMIC ALCOHOLS										
2-propanol	20	20	20	31	30	31	30	30	30	
1-butanol	0.5	0.5	0.5	0.9	0.9	0.9	0.9	0.9	0.9	
2-methyl-2-propanol	0.9	0.9	0.9	1	1	1	1	1	1	
	0.7	0.5		-	-	-	-	-	-	
DIVALENT ALCOHOLS										
1,2-propanediol	0	0	0	50	55	52	64	73	68	
			-			_				
ALCOHOL AND PHENOL ETHERS										
2-(2-ethoxyethoxy)ethanol	0	0	0	0	0	0	21	22	21	
2-(2-butoxyethoxy)ethanol	0	0	0	0	0	0	96	105	100	
· · · ·										
ALDEHYDES										
benzaldehyde	0	0	0	2	2	2	3	6	4	
pentanal	0	0	0	0	0	0	0.5	0	0.3	
hexanal	0.9	0.5	0.7	1	2	2	2	2	2	
nonanal	0	0	0	0	0	0	1	0.9	1	
decanal	0	0	0	0	1	1	2	0	1	
VETONES										
KETONES	0	0	•	0	0	•	0	1	1	
acetophenone	0	0	0 4	0	0 5	0	0	1	1 6	
acetone	4	4	4	5	3	5	7	6	0	
SILICON CONTAINING COMPOUNDS										
hexamethylcyclotrisiloxane	2	0	1	0	0	0	2	0	1	
Total	32	29	30	100	105	102	243	263	253	
TVOC	6 52	3	4	8	9 9	9	243 28	203 29	255	
non-TVOC	24	24	4 24	o 37	36	37	38	37	37	

Table C67.	Emission	values	of prime	and	paint	В	spread	onto	gypsum	board	at	7	days	in	the
environmenta	al chamber	test.													

environmental chamber test. (μg/m²·h)		RH 20 %		1	RH 50 %		RH 80 %			
ALIPH. AND ALICYCLIC COMPOUNDS			l							
heptane	0.2	0	0.1	0	0	0	0	0	0	
nonane	0	0	0	0	0	0	0.2	0	0.1	
AROMATIC HYDROCARBONS										
benzene	0.2	0.1	0.2	0	0	0	0.1	0.1	0.1	
ethylbenzene	0.4	0.4	0.4	0	1	0	0.3	0.3	0.3	
isopropylbenzene	0	0	0	0	0	0	0.2	0	0.1	
p,m-xylene	1	1	1	0	1	1	1	1	1	
o-xylene	0.4	0.4	0.4	0	0.5	0.3	0.4	0.4	0.4	
toluene	1	1	1	0	0.9	0.5	1	1	1	
1,2,4-trimethylbenzene	0.2	0.2	0.2	0	0.3	0.2	0.2	0.2	0.2	
1,3,5-trimethylbenzene	0	0.3	0.2	0	0	0	0	0	0	
MONATOMIC ALCOHOLS										
ethanol	0	0.4	0.2	0	1	1	1	1	1	
2-propanol	3	2	3	0	4	2	3	2	2	
1-butanol	0	0	0	0	0	0	0	0.1	0.1	
DIVALENT ALCOHOLS										
1,2-propanediol	0	0	0	0	0	0	18	0	9	
, r.r.		-	-				-			
ALCOHOL AND PHENOL ETHERS										
2-(2-butoxyethoxy)ethanol	0	0	0	0	0	0	22	15	18	
ALDEHYDES										
benzaldehyde	1	1	1	0	1	0	2	1	1	
n-butanal	0	0	0	0	1	0	0	0	0	
hexanal	0	0	0	0	1	0	1	1	1	
nonanal	0	0	0	0	0	0	1	0	0	
decanal	1	1	1	0	2	1	1	1	1	
KETONES										
acetophenone	0	0	0	0	0	0	0.2	0	0.1	
acetone	1	1	1	0	1	0	2	3	2	
ESTERS AND LACTONES										
1-methoxy-2-propylacetate	0	0	0	0	0	0	0	0.1	0.1	
- more proprietonic	3	Ť	v	Ŭ	Ŭ	, v	Ŭ		5.1	
NITROGEN CONTAINING COMPOUNDS										
1-methyl-2-pyrrolidinone	0	0	0	0	0	0	0	0	0	
J 1 J 1 1 1			-			-			-	
Total	9	9	9	0	14	7	54	26	40	
TVOC	2	2	2	$\theta^{1)}$	3	1	7	6	7	
non-TVOC	4	4	4	0	6	3	6	6	6	

$(\mu g/m^2 \cdot h)$		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
heptane	0	0	0	0	0.2	0.1	0	0	0
octane	0	0	0	0	0.1	0.1	0	0	0
nonane	0.2	0.1	0.2	0	0.1	0.1	0.1	0.3	0.2
decane	0.1	0.1	0.1	0	0.1	0.1	0.1	0.1	0.1
undecane	0	0	0	0	0.1	0.1	0	0	0
dodecane	0	0	0	0	0	0	0.1	0	0.1
AROMATIC HYDROCARBONS									
benzene	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
ethylbenzene	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.2
propylbenzene	0.1	0.1	0.1	0.1	0.1	0.1	0	0	0
isopropylbenzene	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.1	0.1
p,m-xylene	0.9	0.9	0.9	0.9	0.9	0.9	0.5	0.5	0.5
o-xylene	0.3	0.2	0.3	0.3	0.3	0.3	0.2	0.2	0.2
styrene	0.1	0.1	0.1	0.1	0.1	0.1	0	0	0
toluene	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.5
1,2,4-trimethylbenzene	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.2
1,3,5-trimethylbenzene	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
1-ethyl-2-methylbenzene	0	0	0	0	0	0	0	0	0
MONATOMIC ALCOHOLS									
2-propanol	0.9	0.9	0.9	0.5	0.5	0.5	0.1	0.2	0.2
1-butanol	0.1	0.1	0.1	0.2	0.2	0.2	0	0	0
2-ethyl-1-hexanol	0.1	0.1	0.1	0	0.2	0.1	0.2	0.1	0.2
DIVALENT ALCOHOLS									
1,2-propanediol	0	0	0	0	0	0	5	5	5
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	0	0	0	0	1	1	0.3	2	1
1-methoxy-2-propanol	0	0	0	0	0.1	0.1	0.1	0	0.1
2-butoxyethanol	0.1	0.1	0.1	0	0	0	0	0	0
ALDEHYDES									
benzaldehyde	0.1	0.5	0.3	0.5	0.9	0.7	0.9	1	1
n-butanal	0	0	0	0.3	0	0.2	0	0	0
pentanal	0	0.4	0.2	0.3	0	0.2	0.3	0	0.2
hexanal	0.4	0	0.2	0.1	0	0.1	0.9	0.9	0.9
heptanal	0	0	0	0	0.1	0.1	0	0	0
octanal	0	0	0	0.1	0	0.1	0	0	0
nonanal	0	0.4	0.2	0.5	0.5	0.5	0.5	0.5	0.5
decanal	0	0.5	0.3	0.9	0.9	0.9	0.9	0.9	0.9
KETONES									
2-butanone (MEK)	0	0	0	0	0.1	0.1	0.2	0	0.1
acetophenone	0	0	0	0.1	0	0.1	0.2	0.1	0.2
acetone	0.5	0.5	0.5	0.5	0.5	0.5	0.9	0.9	0.9
ACIDS									
acetic acid	0	0.9	0.5	16	0	8	2	7	5
HALOGEN CONTAINING COMPOUNDS									
dichloromethane	0	0	0	0	0	0	0	3	1
Total	5	7	6	23	9	16	15	23	19
TVOC	11 ¹⁾	11 ¹⁾	11	<i>10</i> ¹⁾	<i>10</i> ¹⁾	10	14	14 ¹⁾	14
non-TVOC	1	2	2	17	0.9	9	3	11	7

Table C68. Emission values of primer and paint B spread onto gypsum board at 14 days in the environmental chamber test.

Table C69. Background emission values of adhesive A spread onto gypsum board in the environmental chamber test.

(µg/m ³)	RH 20 %	RH 50 %	RH 80 %
ALDEHYDES			
decanal	-	11	-
TVOC	7	28	14

Table C70. Emission values of adhesive A spread onto gypsum board at 1 day in the environmental chamber test.

(μg/m ² ·h)	1	RH 20 %		1	RH 50 %		1	RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS		KII 20 70			KII 50 70			KII 00 70	
nonane	0	0	0	0	0.5	0	0.3	0.3	0.3
decane	0.2	0	0.1	0.2	0.3	0.3	0.5	0.3	0.2
undecane	0.2	0.2	0.1	0.2	0.3	0.3	0.3	0.3	0.2
dodecane	0.5	0.2	0.0	0.2	0.2	0.2	0.5	0.2	0.0
AROMATIC HYDROCARBONS	0	0	0	0.2	0.2	0.2	0	0.2	0.1
p,m-xylene	0.5	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5
o-xylene	0.5	0.4	0.5	0.2	0.5	0.3	0.5	0.3	0.3
toluene	0.5	0.4	0.5	0.2	0.5	0.1	0.5	0.5	0.2
1,2,4-trimethylbenzene	0.3	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.3
MONATOMIC ALCOHOLS	0.5	0.5	0.5	0.4	0.7	0.4	0.4	0.4	0.4
2-propanol	0.3	0	0.2	0.3	0.3	0.3	0.3	0.4	0.4
1-butanol	0.9	0.9	0.2	1	1	1	2	2	2
2-ethyl-1-hexanol	0.9	0.9	0.9	0.4	0.5	0.5	0.4	0.5	0.5
benzylalcohol	0.4	0.4	0.4	0.4	0.5	0.3	0.4	0.5	0.5
2-methyl-1-propanol	0.5	0	0.2	0.2	0.4	0.1	0.5	0.5	0.5
2-methyl-2-propanol	6	6	6	8	6	7	9	11	10
DIVALENT ALCOHOLS	0	0	U	0	0	1	,	11	10
1,2-propanediol	0.4	0	0.2	0	0.3	0.2	0	0	0
PHENOLS	0.4	0	0.2	0	0.5	0.2	0	0	U
phenol	0.5	0.4	0.5	0.5	0.4	0	0.5	0.3	0.4
ALCOHOL AND PHENOL ETHERS	0.5	0.4	0.5	0.5	0.4	U	0.5	0.5	0.4
2-butoxyethanol	0.3	0	0.2	0	0	0	0	0	0
2-phenoxyethanol	0.5	0	0.2	0	0.2	0.1	0	0	0
ALDEHYDES	0	0	U	0	0.2	0.1	0	0	U
benzaldehyde	0.9	0.9	0.9	2	1	2	2	2	2
pentanal	0.5	0.5	0.5	0.9	0.9	0.9	0	0.9	0.5
hexanal	6	6	6	6	6	6	8	8	8
heptanal	0.9	0.9	0.9	0.9	0.9	0.9	1	0	0 1
octanal	0.9	0.9	0.9	0.5	1	1.0	1	0.9	1
nonanal	3	3	3	2	6	4	5	4	5
decanal	1	2	2	0	0.5	0	3	3	3
2-furfural	0.4	0.3	0.4	0.5	0.5	0.5	0.9	0.9	0.9
KETONES	0.4	0.5	0.7	0.5	0.5	0.5	0.7	0.7	0.7
acetophenone	0.3	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.5
acetone	0.9	0.4	0.4	1	2	2	2	2	2
ACIDS	0.7	0.7	0.7	1	2		2	2	-
acetic acid	17	14	15	11	6	8	14	16	15
hexanoic acid	0	0	0	0	0	0	0	0.5	0
TERPENES AND THEIR DERIVATIVES		0		0	0		0	0.5	
limonene	0	0.2	0.1	0.4	0.3	0.4	0.3	0.3	0.3
3-carene	0.2	0.2	0.1	0.4	0.9	0.4	0.5	0.5	0.5
ESTERS AND LACTONES	0.2	0.2	0.2	0.7	0.7	0.7	0.0	0.0	0.0
n-butyl acetate	1	0.9	1	0.9	0.9	0.9	0	1	1
SILICON CONTAINING COMPOUNDS	1	0.7	-	0.7	0.7	0.7		-	-
decamethylcyclopentasiloxane	0.5	0.3	0.4	0	0.2	0.1	0	0.2	0.1
	0.5	0.5	V.T	0	0.2	V.1	0	0.2	0.1
Total	45	39	42	41	40	41	54	60	57
TVOC	16	14	15	10	14.5	12	26	26	26
non-TVOC	24	20	22	20	14	17	25	30	27

	i	DII 20.0/		i	DH 50.0/		i	DII 00.0/	1
$(\mu g/m^2 \cdot h)$		RH 20 %			RH 50 %	·		RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS	0	0.1		0.1	0	0.1	0	0	0
nonane	0	0.1	0.2	0.1	0	0.1	0	0	0
decane	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
undecane	0	0	0	0	0.1	0.1	0.1	0.1	0.1
dodecane	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
tridecane	0	0	0	0	0.1	0.1	0.1	0.1	0.1
tetradecane	0	0.0	0.0	0	0.1	0.1	0.1	0.1	0.1
pentadecane	0	0.1	0.1	0	0.1	0.1	0.1	0.1	0.1
hexadecane	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
AROMATIC HYDROCARBONS	<u>^</u>		0	<u>^</u>		<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>
benzene	0	0	0	0	0	0	0	0	0
ethylbenzene	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
propylbenzene	0	0	0	0	0	0	0	0	0
p,m-xylene	0.3	0.3	0.3	0.3	0.4	0.4	0.3	0.3	0.3
o-xylene	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
styrene	0	0	0	0	0	0	0	0	0
toluene	0.3	0.4	0.4	0.4	1	0.5	0.4	0.4	0.4
1,2,3-trimethylbenzene	0	0	0	0	0	0	0.1	0.1	0.1
1,2,4-trimethylbenzene	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
1,3,5-trimethylbenzene	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
1-ethyl-2-methylbenzene	0	0	0	0	0	0	0	0	0
MONATOMIC ALCOHOLS									
1-butanol	0	0	0	0.2	0	0.1	0.2	0	0.1
2-ethyl-1-hexanol	0.1	0.1	0.1	0.3	0.2	0.3	0.3	0.3	0.3
benzylalcohol	0	0	0	0.1	0	0.1	0.1	0.1	0.1
DIVALENT ALCOHOLS									
1,2-propanediol	0	0	0	1	0	0.5	0.4	0.4	0.4
PHENOLS									
phenol	0	0	0	0.2	0	0.1	0.4	0.4	0.4
ALCOHOL AND PHENOL ETHERS									
2-butoxyethanol	0	0	0	0.2	0.2	0.2	0.2	0.2	0.2
2-phenoxyethanol	0	0	0	0	0	0	0.2	0.2	0.2
ALDEHYDES									
benzaldehyde	0.0	0.1	0.1	0	0	0	0.4	0.3	0.4
pentanal	0.4	0.4	0.4	0	0	0	0	0	0
hexanal	1	1	1	1	1	1	1	1	1
heptanal	0	0.2	0.1	0.3	0.3	0.3	0.4	0.4	0.4
octanal	0.3	0.4	0.4	1	0.3	0.4	0.4	0.4	0.4
nonanal	1	1	1	1	1	1	2	2	2
decanal	2	1	2	0	0	0	1	1	1
KETONES									
acetophenone	0	0.1	0.1	0	0.1	0.1	0.2	0.1	0.2
acetone	0.2	1	0.4	0.4	0.4	0.4	1	1	1
ACIDS									
acetic acid	0	0	0	1	4	3	13	7	10
propanoic acid	0	0	0	0	0	0	1	1	1
TERPENES AND THEIR DERIVATIVES									
limonene	0.2	0.2	0.2	0.3	0.2	0.3	0.3	0.2	0.3
α-pinene	0.4	0.3	0.4	1	0.3	0.4	1	0.4	0.5
3-carene	0.4	0.4	0.4	1	1	1	1	1	1
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	0	0	0	0	0.1	0.1	0	0	0
SILICON CONTAINING COMPOUNDS									
decamethylcyclopentasiloxane	0	0	0	0.1	0.1	0.1	0.1	0.1	0.1
Total	7	8	8	10	10	10	25	18	21
ТУОС	2	2	2	0	0	0	5	13	9
non-TVOC	0					3	13		

Table C71. Emission values of adhesive A spread onto gypsum board at 7 days in the environmental chamber test.

(μg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS		1011 20 70							
nonane	0.2	0.1	0.2	0	0.1	0.1	0.1	0.2	0.2
decane	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
undecane	0	0	0	0.1	0	0.1	0.1	0.1	0.1
dodecane	0	0	0	0.1	0.1	0.1	0.1	0.1	0.1
tridecane	0	0	0	0	0	0	0.1	0.1	0.1
tetradecane	0	0	0	0	0	0	0.1	0.1	0.1
pentadecane	0	0	0	0	0	0	0.1	0	0.1
AROMATIC HYDROCARBONS									
benzene	0.1	0	0.1	0	0	0	0	0	0
ethylbenzene	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
propylbenzene	0	0	0	0	0	0	0	0	0
p,m-xylene	0.5	0.4	0	0.5	0.5	1	0.5	0.5	1
o-xylene	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
toluene	0.4	0.3	0.4	0.5	0.4	0.5	0.5	0.4	0
1,2,4-trimethylbenzene	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2
1,3,5-trimethylbenzene	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
1-ethyl-2-methylbenzene	0	0	0	0	0	0	0	0	0
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3
benzylalcohol	0	0	0	0.1	0.1	0.1	0.1	0.1	0.1
DIVALENT ALCOHOLS									
1,2-propanediol	0	0	0	0	0	0	0.4	0.3	0.4
PHENOLS									
phenol	0.2	0.1	0.2	0	0	0	0.1	0.4	0.3
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	0	0	0	0.1	0.1	0.1	0	0.1	0.1
2-butoxyethanol	0	0	0	0.1	0.2	0.2	0.2	0.2	0.2
2-phenoxyethanol	0	0	0	0	0	0	0.2	0.2	0.2
ALDEHYDES									
benzaldehyde	0.1	0	0.1	0.1	0.1	0.1	0.2	0.3	0.3
pentanal	0.5	0.5	0.5	0	0	0	0	0	0
hexanal	0.9	0.9	0.9	0.9	0.9	0.9	0.5	0.5	0.5
heptanal	0	0	0	0.2	0.2	0.2	0.2	0.3	0.3
octanal	0	0.3	0.2	0	0.3	0.2	0.3	0.5	0.4
nonanal	0.5	0.9	0.7	0.9	0.9	0.9	1	2	2
decanal	0.9	1	1	0	0	0	0.9	2	1
KETONES				ļ					
acetophenone	0	0	0	0.1	0	0.1	0.2	0.1	0.2
acetone	0.2	0.2	0.2	0.2	0.3	0.3	0.5	0.5	0.5
ACIDS									
acetic acid	7	0	4	4	15	9	18	14	16
propanoic acid	0	0	0	0	0	0	0.9	0.9	1
TERPENES AND THEIR DERIVATIVES				ļ					
limonene	0	0	0	0.1	0.1	0.1	0.1	0.1	0.1
α-pinene	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
3-carene	0	0	0	0.1	0	0.1	0.1	0.1	0.1
SILICON CONTAINING COMPOUNDS				ļ					
decamethylcyclopentasiloxane	0.1	0	0.1	0	0.3	0.2	0	0.2	0.1
Total	13	6	9	9	20	14	27	25	26
ТVОС	3	0	1	0	0	0	0	4	2
non-TVOC	8	0.2		4	15		19	15	

Table C72. Emission values of adhesive A spread onto gypsum board at 14 days in the environmental chamber test.

Table C73. Background emission values of adhesive B spread onto gypsum board in the environmental chamber test.

$(\mu g/m^3)$	RH 20 %	RH 50 %	RH 80 %
TVOC	7	16	17

Table C74. Emission	values of adhesive	B spread onto	gypsum boar	d at 1 day	in the environmental
chamber test.					

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	0.9	0	0.5	0.5	0.3	0.4	0.5	0	0.3
dodecane	0.2	0	0.1	0.2	0	0.1	0.3	0.3	0.3
AROMATIC HYDROCARBONS									
benzene	0	0.2	0.1	0.3	0	0.2	0.2	0	0.1
p,m-xylene	0.5	0.5	0.5	0.9	0.5	0.7	0.5	0.5	0.5
toluene	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
1,2,4-trimethylbenzene	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.4
MONATOMIC ALCOHOLS									
1-butanol	4	4	4	6	6	6	7	7	7
2-ethyl-1-hexanol	0.9	1	1	0.9	0.9	0.9	0.9	0.9	0.9
PHENOLS									
phenol	0	1	1	0.9	1	1	0.9	0.9	0.9
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	346	346	346	336	350	343	282	291	286
2-butoxyethanol	2	2	2	2	2	2	2	2	2
2-phenoxyethanol	0.3	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5
ALDEHYDES									
benzaldehyde	0.3	2	1	2	2	2	2	3	3
hexanal	6	6	6	6	6	6	8	8	8
heptanal	2	0	1	2	0	1	2	2	2
octanal	2	1	2	2	0	1	0	0	0
nonanal	7	3	5	6	4	5	7	5	6
decanal	10	3	6	5	1	3	9	2	6
KETONES									
acetophenone	0.5	0.5	0.5	0.9	0.5	0.7	0.9	0.9	0.9
acetone	3	2	2	4	3	3	4	3	3
ACIDS									
acetic acid	16	10	13	55	33	44	16	10	13
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethyl acetate	1	1	1	1	1	1	0.9	0.9	1
SULPHUR CONTAINING COMPOUNDS		Ì			Ī		Ì		
5-chloro-2-methyl-3(2H)-isotiatsolon	1	1	1	2	2	2	1	1	1
SILICON CONTAINING COMPOUNDS		Ì			Ī		Ì		
decamethylcyclopentasiloxane	0.5	0.5	0.5	0.3	0.9	0.6	0.4	0.4	0.4
Total	405	387	396	435	417	426	347	342	345
TVOC	238	238	238	242	251	247	214	223	218
non-TVOC	19	11	15	58	36	47	19	13	16

0	0.1	0.1						1
0	0.1	0.1						
			0	0	0	0.1	0.2	0.2
	0.1	0.1	0.1	0	0.1	0	0.1	0.1
0	0.1	0.1	0	0	0	0	0.1	0.1
0	0	0	0	0	0	0.2	0.2	0.2
0	0	0	0	0	0	0.2	0.2	0.2
0	-	0	0	0	0	0.2	0.1	0.2
0.1	0.2	0.2	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
1	1	1	1	1	1	1	1	1
0.1	0.1	0.1	0	0.1	0.1	0.1	0.1	0.1
0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
0	0	0	0	0.4	0.2	0.3	0	0.2
0.2	0.2	0.2	0.4	0.4	0.4	1	0.4	0
0	0	0	0	0	0	0.2	0	0.1
0	0	0	0	0	0	1	1	1
-				-	-			
1	0.3	0.4	0	0	0	0.3	0.2	0.3
	0.5		Ů	Ů	v	0.0	0.2	0.0
0	0	0	3	5	4	68	73	70
	-	-						0
	-	*						1
	-	-					-	0.3
0	0	v	0	0	U	0.2	0.5	0.0
0	0	0	0	0.3	0.2	0.4	0	0.2
		-					-	0.2
	-	*			-			1
1	-	-		-		-	-	0.2
	-	-		-	-			1
	-	-		-	-		-	3
								2
1	1	1	2	1	1	2	3	<u> </u>
0	0	0	0.1	0.1	0.1	0.1	0	0.1
-	-	-						
I	1	I	I	1	1	I	1	1
0	0	0	2	0	(12	12	12
0	0	U	3	9	0	15	15	13
0.2	0	0.1	0.2	0.2	0.2	0.2	0.2	0.2
	-							0.2
								0.2
								0.3
0	0.1	0.1	0.0	0.1	0.1	0.1	0	0.1
7	7	7	16	22	19	96	100	98
<i>0</i> ¹⁾	0 ¹⁾	0	$\theta^{1)}$	$\theta^{1)}$	-			55
1	1			*	-			14
	0.1 0 0.1 1 0.1 0 0.1 0.1 0.1 0.1 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.3 0.4 0 7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1 0.2 0.2 0 0 0 0.1 0.1 0.1 1 1 1 1 1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>0.1 0.2 0.2 0 0 0 0 0 0 0.1 0.1 0.1 1 1 1 1 1 1 1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 <!--</td--><td>0.1 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0.4 0.4 0.4 0 <</td><td>0.1 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0.4 0.4 0.4 0.4 0 0 0 0 0 0 0 0 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>0.1 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0.4 0.4 0.4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>0.1 0.2 0.2 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0.4 0.4 0.4 0.4 0.4 0 /td></td></td<>	0.1 0.2 0.2 0 0 0 0 0 0 0.1 0.1 0.1 1 1 1 1 1 1 1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 </td <td>0.1 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0.4 0.4 0.4 0 <</td> <td>0.1 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0.4 0.4 0.4 0.4 0 0 0 0 0 0 0 0 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0.1 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0.4 0.4 0.4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0.1 0.2 0.2 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0.4 0.4 0.4 0.4 0.4 0 /td>	0.1 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0.4 0.4 0.4 0 <	0.1 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0.4 0.4 0.4 0.4 0 0 0 0 0 0 0 0 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0.4 0.4 0.4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0.4 0.4 0.4 0.4 0.4 0

Table C75. Emission values of adhesive B spread onto gypsum board at 7 days in the environmental chamber test.

(μg/m²·h)		RH 20 %	1		RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	0	0	0	0.1	0.1	0.1	0.1	0.1	0.1
decane	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.2	0.2
undecane	0	0	0	0	0	0	0.1	0	0.1
dodecane	0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
AROMATIC HYDROCARBONS									
benzene	0	0	0	0	0	0	0	0	0
ethylbenzene	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
p,m-xylene	0.3	0.4	0.4	0.4	0.5	0.5	0.4	0.5	0
o-xylene	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.1	0.1
styrene	0	0.1	0.1	0	0.1	0.1	0	0	0
toluene	0.2	0.3	0	0.3	0.5	0.4	0.4	0.5	0
1,2,4-trimethylbenzene	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
1,3,5-trimethylbenzene	0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
MONATOMIC ALCOHOLS									
1-butanol	0.2	0	0.1	0	0.3	0.2	0.2	0	0.1
2-ethyl-1-hexanol	0.2	0.2	0.2	0.3	0.3	0.3	0.4	0.4	0.4
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	0	0	0	5	6	5	64	64	64
2-butoxyethanol	0.3	0.3	0.3	0.5	0.5	0.5	0.9	0.9	0.9
2-phenoxyethanol	0	0	0	0	0	0	0.2	0.2	0.2
ALDEHYDES									
benzaldehyde	0	0	0	0	0	0	0	0.2	0.1
pentanal	0.5	0.5	0.5	0.3	0.3	0.3	0.4	0.3	0.4
hexanal	1	1	1	0.9	0.9	0.9	0.9	0.9	0.9
nonanal	0.5	0.4	0.5	0.9	0.9	0.9	1	1	1
decanal	0.9	0.4	0.7	0.5	0.5	0.5	0.5	0.5	0.5
KETONES									
acetophenone	0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
acetone	0.1	0.5	0.3	0.3	0.9	0.6	0.3	0.4	0.4
ACIDS	0.1	0.0	0.0	0.5	0.5	0.0	0.5	0	0.1
acetic acid	11	0	5	5	5	5	13	7	10
propanic acid	0	0	0	0	0	0	1	0.9	1
TERPENES AND THEIR DERIVATIVES	•	Ŭ	v	Ű	Ű	Ū	-	0.9	-
limonene	0	0	0	0.1	0.1	0.1	0	0.2	0.1
α-pinene	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NITROGEN CONTAINING COMPOUNDS	0.1	V.1	V+1	0.1	V.1	Vil	V.1	V.1	
1-methyl-2-pyrrolidinone	0	0	0	0.1	0	0.1	0	0	0
SILICON CONTAINING COMPOUNDS		Ŭ			5		Ť	, , , , , , , , , , , , , , , , , , ,	
decamethylcyclopentasiloxane	0	0	0	0.1	0	0.1	0.1	0	0.1
SULPHUR CONTAINING COMPOUNDS		Ť	, v	0.1	Ť	U+1	0.1	Ť	0.1
5-chloro-2-methyl-3(2H)-isotiatsolon	0	0	0	0	0	0	0.3	0.5	0.4
			U			U U	0.5	0.5	0.4
Total	16	5	10	15	17	16	85	80	82
TVOC	0 ¹⁾	0 ¹⁾	0	0	0.9	0	46	50	48
non-TVOC	11	0.5	6	5	6	5	13	8	10
¹⁾ <i>Italic</i> font indicates that the value			-	-		5	15	0	10

Table C76. Emission values of adhesive B spread onto gypsum board at 14 days in the environmental chamber test.

Table C77. Background emission values of primer and paint A spread onto filler and plaster B applied onto calcium silicate brick in the environmental chamber test.

(µg/m³)	RH 20 %	RH 50 %	RH 80 %
AROMATIC HYDROCARBONS			
p,m-xylene	0	2	0
toluene	0	2	0
MONATOMIC ALCOHOLS			
2-ethyl-1-hexanol	0	2	0
ALCOHOL AND PHENOL ETHERS			
2-(2-butoxyethoxy)ethanol	0	0	23
ALDEHYDES			
nonanal	0	2	0
decanal	0	2	0
ACIDS			
acetic acid	0	22	0
SILICON CONTAINING COMPOUNDS			
organic Si-comp.	0	3	0
ТУОС	8	21	29

Table C78. Emission values of primer and paint A spread onto filler and plaster B applied onto calcium
silicate brick at 1 day in the environmental chamber test.

silicate brick at I day in the environ	Innental			i	D.T. 50.0/		1		
(μg/m ² ·h)		RH 20 %	i		RH 50 %	i		RH 80 %	i
ALIPH. AND ALICYCLIC COMPOUNDS									
1-dodecene	91	100	95	-	-	-	105	105	105
nonane	0	0	0	-	-	-	8	9	8
decane	0	0	0	-	-	-	2	0	1
pentadecane	4	0	2	-	-	-	11	0	5
hexadecane	5	0	2	-	-	-	0	0	0
AROMATIC HYDROCARBONS									
ethylbenzene	10	10	10	-	-	-	8	8	8
propylbenzene	3	3	3	-	-	-	2	2	2
isopropylbenzene	8	8	8	-	-	-	7	7	7
p,m-xylene	7	7	7	-	-	-	7	7	7
o-xylene	4	4	4	-	-	-	4	4	4
styrene	23	24	23	-	-	-	21	20	20
toluene	2	2	2	-	-	-	2	0	1
MONATOMIC ALCOHOLS									
2-propanol	11	11	11	-	-	-	11	11	11
1-butanol	36	36	36	-	-	-	31	29	30
2-ethyl-1-hexanol	196	200	198	-	-	-	264	268	266
benzyl alcohol	0	0	0	-	-	-	6	0	3
DIVALENT ALCOHOLS									
1,2-propanediol	2309	2405	2357	-	-	-	1732	1768	1750
ETHERS									
butyl ether	50	50	50	-	-	-	55	55	55
PHENOLS									
phenol	0	0	0	-	-	-	16	7	12
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	155	159	157	-	-	-	114	118	116
2-(2-butoxyethoxy)ethanol	277	286	282	-	-	-	262	271	267
1-methoxy-2-propanol	0	5	2	-	-	-	0	0	0
2-butoxyethanol	2	2	2	-	-	-	1	2	2
ALDEHYDES									
benzaldehyde	18	21	20	-	-	-	36	22	29
nonanal	8	7	8	-	-	-	10	9	10
KETONES									
acetophenone	8	4	6	-	-	-	3	4	3
acetone	36	31	33	-	-	-	35	32	33
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethyl acetate	3	4	3	-	-	-	5	5	5
texanol	1632	1632	1632	-	-	-	1909	1909	1909
TXIB	2	2	2	-	-	-	2	2	2
2-ethylhexyl acetate	23	21	22	-	-	-	22	23	23
2-ethylhexyl acrylate	6	6	6	-	-	-	5	5	5
butyl propanoate	8	6	7	-	-	-	11	10	10
NITROGEN CONTAINING COMPOUNDS									
4,4-dimethyl-1,3-oxazolidine	573	582	577	-	-	-	1146	1159	1152
dimethyl perhydro-1,3-oxazine	68	73	70	-	-	-	164	168	166
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	68	132	100	-	-	-	77	50	64
Total	5645	5832	5738	-	-	-	6091	6089	6090
туос	3678	3815	3746	-	-	-	4851	4805	4828
non-TVOC	46	42	44	-	-	-	46	43	45

Table C79. Emission values of primer and paint A spread onto filler and plaster B applied onto calcium silicate brick at 7 days in the environmental chamber test.

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
1-dodecene	-	-	-	18	21	20	-	-	-
AROMATIC HYDROCARBONS									
ethylbenzene	-	-	-	2	2	2	-	-	-
isopropylbenzene	-	-	-	3	3	3	-	-	-
p,m-xylene	-	-	-	2	2	2	-	-	-
styrene	-	-	-	6	6	6	-	-	-
MONATOMIC ALCOHOLS				-	-	-			
1-butanol	-	-	-	5	5	5	-	-	-
2-ethyl-1-hexanol	-	-	-	58	63	60	-	-	-
DIVALENT ALCOHOLS									
1,2-propanediol	-	-	-	1332	1364	1348	-	-	-
-									
ETHERS									
butyl ether	-	-	-	3	3	3	-	-	-
bis(2-ethoxyethyl)ether	-	-	-	1	1	1	-	-	-
bis[2-(2-ethoxyethoxy)ethyl]ether	-	-	-	10	10	10	-	-	-
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	-	-	-	105	109	107	-	-	-
2-[2-(2ethoxy)ethoxy]ethanol	-	-	-	6	6	6	-	-	-
2-(2-butoxyethoxy)ethanol	-	-	-	200	205	202	-	-	-
ALDEHYDES									
benzaldehyde	-	-	-	5	6	5	-	-	-
nonanal	-	-	-	2	3	3	-	-	-
KETONES									
acetone	-	-	-	9	10	10	-	-	-
ESTERS AND LACTONES				710	707			-	
texanol	-	-	-	718	727	723	-	-	-
TXIB	-	-	-	2	2	2	-	-	-
2-ethylhexyl acetate	-	-	-	17	17	17	-	-	-
2-ethylhexyl acrylate	-	-	-	6	6	6	-	-	-
NITROGEN CONTAINING COMPOUNDS									
4,4-dimethyl-1,3-oxazolidine	-	-	-	141	136	139	-	-	-
dimethyl perhydro-1,3-oxazine	-	-	-	12	12	12	-	-	-
Total	-	-	-	2661	2719	2690	-	-	-
TVOC	-	-	-	1581	1627	1604	-	-	-
non-TVOC	-	-	-	9	10	10	-	-	-

Table C80. Emission values of primer and paint A spread onto filler and plaster B applied onto calcium silicate brick at 14 days in the environmental chamber test.

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
1-dodecene	7	8	8	-	-	-	9	10	9
AROMATIC HYDROCARBONS									
styrene	2	2	2	-	-	-	0	0	0
		-		-					
MONATOMIC ALCOHOLS	2	2							
1-butanol	3 32	3 33	3 33	-	-	-	6 55	6 55	6 55
2-ethyl-1-hexanol	32			-	-	-	33		
DIVALENT ALCOHOLS									
1,2-propanediol	373	377	375	-	-	-	509	518	514
ETHERS									
butyl ether	1	1	1	-	-	-	2	2	2
bis(2-ethoxyethyl)ether	0.2	0.3	0.3	-	-	-	0.2	0.1	0.2
bis[2-(2-ethoxyethoxy)ethyl]ether	6	6	6	-	-	-	9	9	9
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	22	23	23	-	-	-	34	36	35
2-[2-(2ethoxy)ethoxy]ethanol	4	4	4	-	-	-	5	6	5
2-(2-butoxyethoxy)ethanol	82	86	84	-	-	-	103	103	103
ALDEHYDES									
benzaldehyde	0	0	0	-	-	-	3	3	3
		0	•				5	5	
KETONES									
acetone	0	0	0	-	-	-	5	4	4
ESTERS AND LACTONES									
texanol	282	286	284	-	-	-	459	459	459
TXIB	0	0	0	-	-	-	3	3	3
2-ethylhexyl acetate	8	9	8	-	-	-	12	13	13
2-ethylhexyl acrylate	4	4	4	-	-	-	6	6	6
2-ethyl-1-hexyl propionate	5	5	5	-	-	-	5	5	5
NITROGEN CONTAINING COMPOUNDS									
4,4-dimethyl-1,3-oxazolidine	33	34	33	-	-	-	232	241	236
dimethyl perhydro-1,3-oxazine	3	3	33	-			232	25	230
· · · · · · · · · · · · · · · · · · ·	-	-	-						
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	0	0	0	-	-	-	5	4	4
Total	868	885	876	-	-	-	1483	1504	1494
TVOC	528	546	537	-	-	-	1132	1155	1144
non-TVOC	0	0	0	-	-	-	5	4	4

Table C81. Background emission values of primer and paint A spread onto plaster C applied onto calcium silicate brick in the environmental chamber test.

(µg/m ³)	RH 20 %	RH 50 %	RH 80 %
AROMATIC HYDROCARBONS			
p,m-xylene	0	4	0
ALCOHOL AND PHENOL ETHERS			
2-(2-butoxyethoxy)ethanol	0	0	6
TVOC	20	27	38

Table C82. Emission values of primer and paint A spread onto plaster C applied onto calcium silicate brick at 1 day in the environmental chamber test.

$(\mu g/m^2 \cdot h)$		RH 20 %			RH 50 %		RH 80 %			
ALIPH. AND ALICYCLIC COMPOUNDS										
1-dodecene	91	96	93	96	182	139	-	-	-	
decane	0	1	1	1	2	2	-	-	-	
dodecane	0.9	0.9	0.9	0	0.9	0.5	-	-	-	
AROMATIC HYDROCARBONS	0.2	0.7	0.5	<u> </u>	0.5	0.0				
ethylbenzene	5	5	5	6	6	6	-	-	-	
propylbenzene	1	1	1	1	1	1	-	-	-	
isopropylbenzene	4	4	4	4	4	4	_	-	-	
p,m-xylene	7	8	8	6	6	6	-	-	-	
o-xylene	4	4	4	4	4	4	_	-	-	
styrene	21	21	21	23	23	23	_	-	-	
toluene	0.9	0.5	0.7	0.9	0.9	0.9	_	-	-	
1,2,4-trimethylbenzene	0.9	0.9	0.9	0.9	0.9	0.9	-	-	-	
MONATOMIC ALCOHOLS	0.7	0.7	0.7	0.7	0.7	0.7				
2-propanol	2	2	2	3	3	3	-	-	-	
1-butanol	8	8	8	16	16	16	-	_	_	
2-ethyl-1-hexanol	1	0.9	8 1	3	6	4	-	-		
benzyl alcohol	0	0.5	0	2	0	1	_	_		
DIVALENT ALCOHOLS	0	0	U		0	1		-	-	
1,2-propanediol	2741	2773	2757	2418	2486	2452	-	_	-	
ETHERS	2/41	2115	2131	2410	2400	2432	-	-		
butyl ether	50	50	50	50	55	52	-	_	-	
ALCOHOL AND PHENOL ETHERS	50	50		50	55	32	-	-		
2-(2-ethoxyethoxy)ethanol	4	4	4	3	3	3	-	-	-	
2-(2-butoxyethoxy)ethanol	6	6	6	6	8	7	_	_	-	
2-butoxyethanol	0	15	8	0	0	0	_	_	-	
2-(2-butoxy-isopropoxy)-2-propanol, isomers	46	50	48	55	55	55	_	_		
ALDEHYDES	40	50	40	55	55		-	-	-	
benzaldehyde	2	8	5	11	6	8	-	-	-	
hexanal	0	0	0	3	0	8 1	_	-		
heptanal	0	0	0	0	2	1	-	-	-	
nonanal	0	0	0	2	2	2	-	-	-	
decanal	0	0	0	0	2	1	-	-	-	
KETONES	0	0	U	0	2	1	-	-		
acetophenone	2	2	2	1	1	1	-	-	-	
acetone	11	7	<u>2</u> 9	1	15	16	-	-	-	
ESTERS AND LACTONES	11	/	7	10	13	10	-	-	-	
texanol	1055	1082	1068	1350	1364	1357	-	-	-	
TXIB	0	0	0	2	2	2	-	-	-	
butyl propanoate	6	6	6	6	6	6	-	-	-	
NITROGEN CONTAINING COMPOUNDS	0	0	U	0	0	0		-	-	
1-methyl-2-pyrrolidinone	13	12	12	14	13	13	-	-	-	
SILICON CONTAINING COMPOUNDS	15	12	12	14	13	15	-	-	-	
decamethylcyclopentasiloxane	0	0.5	0.3	0	0	0	-	-	-	
	0	0.5	0.5	0	0	U	-	-	-	
Total	4081	4166	4124	4103	4273	4188	-	-	-	
ТУОС	2582	2659	2620	3051	3183	3117	-	-	-	
non-TVOC	13	9	11	21	17	19	-	-	-	

Table C83. Emission values of primer and paint A spread onto plaster C applied onto calcium silica	ite
brick at 7 days in the environmental chamber test.	

brick at 7 days in the environmenta $(\mu g/m^2 \cdot h)$		RH 20 %			RH 50 %		1	RH 80 %		
ALIPH. AND ALICYCLIC COMPOUNDS		KII 20 70								
1-dodecene	-	-	-	-	-	-	19	19	19	
decane	-	-	-	_	-	-	1	1	1	
undecane	_	-	_	_	_	-	0	1	0	
pentadecane	_	-	_	_	-		1	1	1	
hexadecane	-	-	-	-	-	-	0	1	0	
inexadecane	-	-	-	-	-	-	0	1	U	
AROMATIC HYDROCARBONS										
p,m-xylene	-	-	-	-	-	-	1	1	1	
styrene	-	-	-	-	-	-	1	1	1	
MONATOMIC ALCOHOLS										
2-propanol	-	-	-	-	-	-	1	1	1	
1-butanol	-	-	-	-	-	-	8	8	8	
2-ethyl-1-hexanol	-	-	-	-	-	-	1	2	2	
benzyl alcohol	-	-	-	-	-	-	1	1	1	
DIVALENT ALCOHOLS										
1,2-propanediol	-	-	-	-	-	-	750	764	757	
ETHERS										
butyl ether	-	-	-	-	-	-	4	5	4	
ALCOHOL AND PHENOL ETHERS										
2-(2-ethoxy)ethanol	-	-	-	-	-	-	1	1	1	
2-(2-butoxyethoxy)ethanol	-	-	-	-	-	-	0	2	1	
2-(2-butoxy-isopropoxy)-2-propanol, isomers	-	-	-	-	-	-	6	6	6	
							-	-		
ALDEHYDES										
benzaldehyde	-	-	-	-	-	-	2	1	1	
pentanal	-	-	-	-	-	-	0	1	1	
nonanal	-	-	-	-	-	-	1	2	1	
KETONES				-			_	_		
acetone	-	-	-	-	-	-	7	5	6	
ESTERS AND LACTONES										
texanol	-	-	-	-	-	-	568	568	568	
TXIB	-	-	-	-	-	-	3	3	3	
		1		1						
NITROGEN CONTAINING COMPOUNDS		1					1		-	
1-methyl-2-pyrrolidinone	-	-	-	-	-	-	5	5	5	
Total	-	-	-	-	-	-	1381	1398	1389	
TVOC	-	-	-	-	-	-	946	937	942	
non-TVOC	-	-	-	-	-	-	8	6	7	

Table C84. Emission values of primer and paint A spread onto plaster C applied onto calcium silicate brick at 14 days in the environmental chamber test.

brick at 14 days in the environment $(\mu g/m^2 \cdot h)$		RH 20 %			RH 50 %		RH 80 %		
ALIPH. AND ALICYCLIC COMPOUNDS									
1-dodecene	7	7	7	-	-	-	11	11	11
1-octene	0	0.5	0.3	-	-	-	0	0	0
hexadecane	0.5	0.5	0.5	-	-	-	0	0	0
AROMATIC HYDROCARBONS									
p,m-xylene	0.5	0.5	0.5	-	-	-	0.9	0.5	0.7
toluene	0.5	0.5	0.5	-	-	-	0.5	0.5	0.5
MONATOMIC ALCOHOLS									
2-propanol	0	0	0	-	-	-	0.5	0	0.3
1-butanol	2	2	2	-	-	-	6	6	6
2-ethyl-1-hexanol	0	0.5	0.3	-	-	-	0.5	0.5	0.5
benzyl alcohol	0.5	0	0.3	-	-	-	1	1	1
DIVALENT ALCOHOLS									
1,2-propanediol	146	141	143	-	-	-	259	259	259
2,2,4-trimethyl-1,3-pentanediol	2	3	3	-	-	_	0.9	0.9	0.9
	2	5	5				0.9	0.7	0.9
ETHERS									
butyl ether	0.9	0.9	0.9	-	-	-	2	3	3
	0.7	0.5					_	5	
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	3	3	3	-	-	-	0	0.5	0.3
2-(2-butoxy-isopropoxy)-2-propanol, isomers	4	4	4	-	-	-	0	0	0
ALDEHYDES									
benzaldehyde	0.5	0.5	0.5	-	-	-	1	2	2
hexanal	0	0	0	-	-	-	1	1	1
octanal	0	0	0	-	-	-	1	0	1
nonanal	0.5	0	0.3	-	-	-	3	0.5	2
decanal	0.9	0.5	0.7	-	-	-	2	0	1
VETONES									
KETONES	0	0.5	0				0	0	0
acetophenone	0		0	-	-	-	0	0	0
acetone	0.9	1	1	-	-	-	2	2	2
ESTERS AND LACTONES									
texanol	300	305	302	-	-	-	236	241	239
TXIB	3	3	3	-	-	-	3	3	3
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	0.9	0.9	0.9	_	_	_	2	2	2
4,4-dimethyl-1,3-oxazolidine	0.5	0.5	0.5	_	_	-	3	3	3
., · amoujr i, so matonume	0						5	5	
Total	473	474	473	-	-	-	538	538	538
TVOC	446	459	452	-	-	-	378	387	383
non-TVOC	0.9	1	1	-	-	-	3	2	3

Table C85. Background emission values of primer and paint B spread onto filler and plaster B applied onto calcium silicate brick in the environmental chamber test.

(µg/m³)	RH 20 %	RH 50 %	RH 80 %
DIVALENT ALCOHOLS			
1,2-propanediol	0	6	0
ESTERS AND LACTONES			
texanol	0	0	17
TVOC	20	32	58

Table C86. Emission values of primer and paint B spread onto filler and plaster B applied onto calcium silicate brick at 1 day in the environmental chamber test.

(μg/m²·h)		RH 20 %	-		RH 50 %			RH 80 %)
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	0	3	1	0	0.9	0.5	0	0	0
decane	0	0	0	0	0	0	0	0.9	0.5
dodecane	0	0	0	0	0.9	0.5	0	0	0
AROMATIC HYDROCARBONS									
benzene	0.9	0	0.5	0.5	2	1	0	0	0
ethylbenzene	4	4	4	3	2	3	5	5	5
propylbenzene	1	1	1	0.9	0.9	0.9	2	2	2
isopropylbenzene	3	3	3	2	2	2	4	4	4
p,m-xylene	4	4	4	4	4	4	4	4	4
o-xylene	2	1	2	1	1	1	2	2	2
styrene	4	4	4	3	3	3	7	7	7
toluene	0.9	0.9	0.9	0.9	0.9	0.9	0.9	1	1
1,2,4-trimethylbenzene	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
1,3,5-trimethylbenzene	0	0	0	0	0	0	0	1	1
1-ethyl-2-methylbenzene	0.5	0.5	0.5	0	0	0	0.5	0.5	0.5
MONATOMIC ALCOHOLS									
2-propanol	10	11	10	4	4	4	9	9	9
1-butanol	4	4	4	3	3	3	7	7	7
2-ethyl-1-hexanol	16	16	16	34	34	34	159	159	159
benzyl alcohol	0.9	0	0.5	0	0.5	0.3	0.9	0	0
2-methyl-1-propanol	0	0	0	0	0	0	0	2	1
DIVALENT ALCOHOLS									
1,2-propanediol	150	150	150	179	42	111	64	50	57
ETHERS									
bis(2-ethoxyethyl)ether	0	0	0	0	0	0	10	9	9
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	96	100	98	200	200	200	159	159	159
2-(2-butoxyethoxy)ethanol	250	259	255	427	418	423	427	432	430
2-butoxyethanol	0	0	0	0	2	423	2	0	430

Table C86. Emission values of primer and paint B spread onto filler and plaster B applied onto calcium silicate brick at 1 day in the environmental chamber test. Table continues

silicate brick at 1 day in the environ $(\mu g/m^2 \cdot h)$		RH 20 %			RH 50 %			RH 80 %	
ALDEHYDES									
benzaldehyde	6	2	4	5	5	5	10	6	8
pentanal	0	2	1	0	0	0	0	0	0
octanal	0	2	1	0	0	0	0	0	0
nonanal	0	7	3	0	0	0	0	0	0
decanal	0	0.5	0.3	0	0	0	0	0	0
KETONES									
acetophenone	0.5	2	1	0.9	2	1	1	1	1
acetone	17	21	19	13	55	34	27	24	25
4-methyl-2-pentanone	0	0	0	0	0	0	0	15	8
ACIDS									
acetic acid	168	205	186	132	0	66	0	0	0
TERPENES AND THEIR DERIVATIVES									
limonene	0	0	0	0	0	0	4	4	4
ESTERS AND LACTONES									
texanol	23	8	15	20	16	18	0.9	0.9	0.9
2-ethylhexyl acetate	5	6	6	5	5	5	16	16	16
2-ethylhexyl acrylate	2	1	2	1	1	1	3	4	3
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	13	13	13	13	14	13	3	4	3
2-amino-2-methyl-1-propanol	0	0	0	0	0	0	9	9	9
4,4-dimethyl-1,3-oxazolidine	64	64	64	127	43	85	823	814	818
dimethyl perhydro-1,3-oxazine	7	7	7	13	6	9	96	91	93
SILICON CONTAINING COMPOUNDS									
decamethylcyclopentasiloxane	0.5	0.5	0.5	0.5	0.5	0.5	0.9	1	1
Total	853	904	878	1193	869	1031	1857	1844	1850
TVOC	250	273	261	445	358	401	1310	1287	1299
non-TVOC	195	236	215	149	58	104	36	33	35

Table C87. Emission values of primer and paint B spread onto filler and plaster B applied onto calcium silicate brick at 7 days in the environmental chamber test.

silicate brick at / days in the enviro $(\mu g/m^2 \cdot h)$		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS		1						l	
nonane	-	-	-	-	-	-	1	1	1
decane	-	-	-	-	-	-	1	1	1
dodecane	-	-	-	-	-	-	1	1	1
AROMATIC HYDROCARBONS									
ethylbenzene	-	-	-	-	-	-	1	1	1
propylbenzene	-	-	-	-	-	-	1	1	1
isopropylbenzene	-	-	-	-	-	-	1	1	1
p,m-xylene	-	-	-	-	-	-	1	1	1
o-xylene	-	-	-	-	-	-	1	1	1
styrene	-	-	-	-	-	-	2	2	2
1,2,4-trimethylbenzene	-	-	-	-	-	-	1	0	0
MONATOMIC ALCOHOLS									
2-propanol	-	-	-	-	-	-	1	1	1
1-butanol	-	-	-	-	-	-	4	5	4
2-ethyl-1-hexanol	-	-	-	-	-	-	68	68	68
benzyl alcohol	-	-	-	-	-	-	1	1	1
2-methyl-1-propanol	-	-	-	-	-	-	1	1	1
DIVALENT ALCOHOLS									
1,2-propanediol	-	-	-	-	_	-	33	34	33
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	-	_	-	-	_	-	82	82	82
2-(2-butoxyethoxy)ethanol	-	_	-	_	_	-	255	259	257
2-butoxyethanol	-	-	-	_	_	-	0	1	0
ALDEHYDES								-	•
benzaldehyde	-	-	-	-	-	-	5	5	5
octanal	-	-	-	-	-	-	2	0	1
nonanal	-	-	-	-	_	-	5	2	3
decanal	-	-	-	_	_	-	4	0	2
KETONES								Ŭ	_
acetophenone	-	-	-	_	_	-	1	0	0
acetone	-	-	-	-	-	-	10	9	9
TERPENES AND THEIR DERIVATIVES								-	-
limonene	_	_	_	_	_	_	1	2	2
ESTERS AND LACTONES									-
1-methoxy-2-propylacetate	_	_	_	_	_	_	1	0	0
texanol	-	-	-	-	-	-	27	28	28
2-ethylhexyl acetate	_	-	-	-	-	-	11	11	11
2-ethylhexyl acrylate	_	_	_	_	_	_	5	5	5
NITROGEN CONTAINING COMPOUNDS							~	-	ř
1-methyl-2-pyrrolidinone	_	_	-	_	_	_	1	1	1
2-amino-2-methyl-1-propanol	-	-	-	-	-	-	6	6	6
4,4-dimethyl-1,3-oxazolidine	_	-	_	-	-	-	264	282	273
dimethyl perhydro-1,3-oxazine	_	_	-	-	_		26	28	273
antenyi penyuro 1,5-0xuzine	_	-	-	-	_	-	20	20	
Total	_	-	-	-	-	-	821	840	830
TVOC	-	-	-	-	_	-	728	569	649
non-TVOC	-	-	-	-	-	-	11	11	11

Table C88. Emission values of primer and paint B spread onto filler and plaster B applied onto calcium silicate brick at 14 days in the environmental chamber test.

silicate brick at 14 days in the envir $(\mu g/m^2 \cdot h)$		RH 20 %			RH 50 %		RH 80 %			
ALIPH. AND ALICYCLIC COMPOUNDS			1							
undecane	0.2	0.2	0.2	-	-	-	0	0	0	
dodecane	0	0	0	-	-	-	0	0.9	0.5	
tetradecane	0.4	0	0.2	-	-	-	0	0	0	
pentadecane	0.2	0.3	0.3	-	-	-	0	0	0	
hexadecane	1	0.9	1	-	-	-	0.9	0.9	0.9	
AROMATIC HYDROCARBONS	1	0.5	1				0.9	0.9	0.7	
ethylbenzene	0.3	0.4	0.4	-	-	_	0	0.5	0.3	
propylbenzene	0.2	0.4	0.4	_	_	_	0	0.5	0.5	
isopropylbenzene	0.2	0.2	0.2		_	_	0.5	0.5	0.5	
p,m-xylene	0.4	0.4	0.4				0.9	0.9	0.3	
o-xylene	0.9	0.9		-	-	-	0.9	0.9	0.9	
·	0.4	0.4	0.4	-			0.5	0.5	-	
styrene			0.5	-	-	-			0.5	
	0.5	0.5	0.5	-	-	-	0.5	0.5	0.5	
1,2,4-trimethylbenzene	0.3	0.3	0.3	-	-	-	0	0	0	
MONATOMIC ALCOHOLS	0.1		0.2	+	<u> </u>		0.5	0.5	0.7	
2-propanol	0.4	0	0.2	-	-	-	0.5	0.5	0.5	
1-butanol	0.9	1	1	-	-	-	3	3	3	
2-ethyl-1-hexanol	6	6	6	-	-	-	40	40	40	
benzyl alcohol	0.5	0.5	0.5	-	-	-	1	1	1	
2-methyl-1-propanol	0	0	0	-	-	-	0.9	0.9	0.9	
DIVALENT ALCOHOLS										
1,2-propanediol	8	9	8	-	-	-	20	19	19	
ETHERS										
bis[2-(2-ethoxyethoxy)ethyl]ether	1	1	1	-	-	-	8	9	8	
ALCOHOL AND PHENOL ETHERS										
2-(2-ethoxyethoxy)ethanol	7	7	7	-	-	-	27	28	28	
2-(2-butoxyethoxy)ethanol	44	46	45	-	-	-	114	114	114	
2-butoxyethanol	0.3	0.3	0.3	-	-	-	0	0	0	
ALDEHYDES										
benzaldehyde	1	2	2	-	-	-	3	3	3	
pentanal	0	0	0	-	-	-	0	0.5	0.3	
octanal	0	0	0	-	-	-	0.9	0	0.5	
nonanal	0	0.4	0.2	-	-	-	0.9	0	0.5	
decanal	0.4	0	0.2	-	-	-	0	0	0	
KETONES										
acetophenone	0	0.2	0.1	-	-	-	0	0	0	
acetone	0.9	0.9	0.9	-	-	-	4	3	3	
ACIDS		•15	015				-	-		
acetic acid	0	9	5	-	-	-	6	0	3	
ESTERS AND LACTONES	Ū	,	0				0	Ŭ	Ū	
2-(2-butoxyethoxy)ethylacetate	0	0	0	-	_	-	0	1	1	
texanol	6	3	4	-	_	-	25	25	25	
2-ethylhexyl acetate	1	0.9	4	-	-	-	6	6	6	
2-ethylhexyl acrylate	0.5	0.9	0.5	-	-	-	4	4	4	
NITROGEN CONTAINING COMPOUNDS	0.5	0.5	0.5	-	-	-	+	+	4	
1-methyl-2-pyrrolidinone	0.9	0.9	0.9	+			0.9	0.5	0.7	
2-amino-2-methyl-1-propanol		0.9		-	-	-	0.9 5	0.5		
4,4-dimethyl-1,3-oxazolidine	0 5	-	0	-	-	-		6	5	
		6	5	-	-	-	159	159	159	
dimethyl perhydro-1,3-oxazine	0	0	0	-	-	-	15	16	15	
SILICON CONTAINING COMPOUNDS							-			
organic Si-comp.	0	0	0	-	-	-	4	6	5	
	0.0						4.10	4.1-	4.40	
Total	89	98	94	-	-	-	449	447	448	
TVOC	25	26	25	-	-	-	324	324	324	
non-TVOC	1	10	6	-	-	-	10	3	7	

Table C89. Background emission values of primer and paint B spread onto plaster C applied onto calcium silicate brick in the environmental chamber test.

(µg/m³)	RH 20 %	RH 50 %	RH 80 %
ALCOHOL AND PHENOL ETHERS			
2-(2-butoxyethoxy)ethanol			13
TVOC	6	16	25

Table C90. Emission values of primer and paint B spread onto plaster C applied onto calcium silicate brick at 1 day in the environmental chamber test.

$(\mu g/m^2 \cdot h)$		RH 20 %	,		RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	0	0	0	-	-	-	1	1	1
dodecane	0	0	0	-	-	-	0.5	0	0.3
pentadecane	0	0	0	-	-	-	0.9	0	0.5
hexadecane	0	0	0	-	-	-	1	0.9	1
AROMATIC HYDROCARBONS									
benzene	0	0	0	-	-	-	0	0	0
ethylbenzene	1	1	1	-	-	-	2	2	2
p,m-xylene	3	3	3	-	-	-	5	6	5
o-xylene	0.9	0.9	0.9	-	-	-	2	2	2
styrene	0.9	0.9	0.9	-	-	-	0.9	0.9	0.9
toluene	0.3	0	0.2	-	-	-	0.9	1	1
1,2,4-trimethylbenzene	0	0	0	-	-	-	0.9	0.9	0.9
MONATOMIC ALCOHOLS									
2-propanol	14	14	14	-	-	-	24	28	26
2-ethyl-1-hexanol	1	0.9	1	-	-	-	4	2	3
benzylalcohol	2	2	2	-	-	-	2	2	2
DIVALENT ALCOHOLS									
1,2-propanediol	123	118	120	-	-	-	59	64	61
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	9	9	9	-	-	-	10	12	11
2-(2-butoxyethoxy)ethanol	100	96	98	-	-	-	135	140	137
2-phenoxyethanol	0	0	0	-	-	-	0	0.5	0.3
ALDEHYDES									
benzaldehyde	5	6	5	-	-	-	4	5	4
octanal	0	0	0	-	-	-	4	3	3
nonanal	0	3	2	-	-	-	9	6	8
decanal	0	0.5	0.3	-	-	-	11	5	8
KETONES									
acetophenone	0.2	0.9	0.6	-	-	-	0	2	1
acetone	6	5	5	-	-	-	9	11	10
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	24	23	23	-	-	-	0	0	0
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	0	0	0	-	-	-	9	32	20
decamethylcyclopentasiloxane	0.4	0.4	0.4	-	-	-	0	0	0
Total	291	285	288	-	-	-	295	327	311
ТУОС	56	56	56	-	-	-	102	107	105
non-TVOC	20	19	19	-	-	_	33	39	36

Table C91. Emission values of primer and paint B spread onto plaster C applied onto calcium silicate
brick at 7 days in the environmental chamber test.

brick at / days in the environmenta				1			i		
(µg/m²·h)		RH 20 %	ı — — —		RH 50 %	1		RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	0.2	0	0.1	-	-	-	-	-	-
tetradecane	0.2	0	0.1	-	-	-	-	-	-
pentadecane	0.1	0.2	0.2	-	-	-	-	-	-
hexadecane	0.3	0.3	0.3	-	-	-	-	-	-
AROMATIC HYDROCARBONS									
ethylbenzene	0.2	0.2	0.2	-	-	-	-	-	-
p,m-xylene	1	1	1	-	-	-	-	-	-
o-xylene	0.2	0.2	0.2	-	-	-	-	-	-
toluene	0.3	0.3	0.3	-	-	-	-	-	-
1,2,4-trimethylbenzene	0.1	0.2	0.2	-	-	-	-	-	-
MONATOMIC ALCOHOLS									
2-propanol	0.9	1	1	-	-	-	_	-	-
1-butanol	0.9	0.9	0.9	_	-	_	_	_	-
benzylalcohol	0.3	0.3	0.3	_	_	_	_	_	-
	0.5	0.5	0.5						
DIVALENT ALCOHOLS									
1,2-propanediol	6	7	7	-	-	-	-	-	-
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	0.5	0.5	0.5	_	_	_	_	_	_
2-(2-butoxyethoxy)ethanol	13	13	13	_	_	_	_	_	-
2-butoxyethanol	0.4	0.4	0.4	-		_	_	-	-
2-phenoxyethanol	0.4	0.4	0.4	-		_	_	-	
2-phonoxyemanor	0	0.2	0.1	_	_	_	_	_	
ALDEHYDES									
benzaldehyde	1	0.9	1	_	_	-	-	_	-
nonanal	0.4	0.9	0.7	_	_	_	-	_	-
decanal	0.5	0.9	0.7	-	-	-	-	-	-
KETONES									
acetophenone	0.3	0.3	0.3	-	-	-	-	-	-
acetone	0.9	1	1	-	-	-	-	-	-
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	1	2	2	-	-	-	-	-	-
SILICON CONTAINING COMPOUNDS	0	0.2	0.2						
decamethylcyclopentasiloxane	0	0.3	0.2	-	-	-	-	-	-
Total	29	32	30	-	-	-	-	-	-
TVOC	10	12	11	-	-	-	-	-	-
non-TVOC	0.9	3	2	-	-	-	-	-	-

Table C92. Emission values of primer and paint B spread onto plaster C applied onto calcium silicate
brick at 14 days in the environmental chamber test.

brick at 14 days in the environment $(\mu g/m^2 \cdot h)$		RH 20 %			RH 50 %		RH 80 %		
ALIPH. AND ALICYCLIC COMPOUNDS			1			i			1
nonane	0	0	0	0.5	0.5	0.5	0.9	0.9	0.9
decane	0.3	0.2	0.3	2	2	2	2	2	2
undecane	0.3	0.2	0.3	0.9	1	0.9	0.9	0.9	0.9
dodecane	0.5	0.4	0.4	0.4	0.5	0.5	0.4	0.9	0.5
tridecane	0.1	0.1	0.1	0.4	0.5	0.3	0.4	0.4	0.4
tetradecane	0	0.1	0.1	0.2	0	0.1	0.3	0.4	0.4
pentadecane	0	0.1	0.1	0.2	0	0.1	0.5	0.4	0.4
hexadecane	0	0.2	0.1	0	0	0	0	0	0
AROMATIC HYDROCARBONS	0	0.5	0.2	0	0	U	0	0	U
	0	0.1	0.1	0	0	0	0	0	0
benzene	0.1	0.1		0.3	0.3	0.3	0	0	0
ethylbenzene	0.1	0.1	0.1	0.5	0.5		0.9	0.9	-
p,m-xylene			0.4			0.9			0.9
o-xylene	0.1	0.1	0.1	0.4	0.4	0.4	0.4	0.4	0.4
toluene	0.3	0.4	0.4	0.9	0.9	0.9	0.9	0.9	0.9
1,2,4-trimethylbenzene	0.1	0.1	0.1	0.5	0.5	0.5	0.5	0.5	0.5
1,3,5-trimethylbenzene	0	0	0	0.4	0.4	0.4	0.4	0.4	0.4
MONATOMIC ALCOHOLS		0	0	0.0	0.0	0.0			
2-propanol	0	0	0	0.9	0.9	0.9	1	1	1
1-butanol	0.4	0.4	0.4	0	0	0	0.9	0.9	0.9
2-ethyl-1-hexanol	0.4	0.2	0.3	0.5	0.5	0.5	1	0.5	0.5
benzylalcohol	0.3	0.2	0.3	0.5	0.5	0.5	1	1	1
DIVALENT ALCOHOLS									
1,2-propanediol	1	2	2	3	0.9	2	10	10	10
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	0	0.2	0.1	0	0	0	0.9	0.9	1
2-(2-butoxyethoxy)ethanol	3	3	3	7	7	7	20	21	20
2-butoxyethanol	0.3	0.3	0.3	0	0	0	0	0	0
ALDEHYDES									
benzaldehyde	1	0.9	1	0.9	1	1	0.9	1	1
pentanal	0.3	0	0.2	0	0	0	0	0	0
octanal	0	0	0	1	0	1	0	0	0
nonanal	0.5	0.9	0.7	2	2	2	2	0.9	1
decanal	0.1	0.9	0.5	4	2	3	0.9	1	1
KETONES									
acetophenone	0	0.2	0.1	0	0	0	0	0	0
acetone	0.4	0.5	0.5	0.9	0.9	0.9	0.9	0.9	0.9
TERPENES AND THEIR DERIVATIVES									
limonene	0	0	0	0.9	0.9	0.9	0.9	0.9	0.9
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	0.5	0.5	0.5	0	0	0	0	0	0
SILICON CONTAINING COMPOUNDS									
decamethylcyclopentasiloxane	0	0	0	0	0	0	0.4	0.3	0.4
Total	11	13	12	29	25	27	47	49	48
TVOC	3	7	5	19	13	16	21	20	20
non-TVOC	0.4	0.5	0.5	2	2	2	2	2	2

Table C93. Background emission values of adhesive A spread onto filler and plaster B applied onto calcium silicate brick in the environmental chamber test.

(µg/m³)	RH 20 %	RH 50 %	RH 80 %
ALCOHOL AND PHENOL ETHERS			
2-(2-butoxyethoxy)ethanol	0	0	29
TVOC	7	11	34

Table C94. Emission values of adhesive A spread onto filler and plaster B applied onto calcium silicate brick at 1 day in the environmental chamber test.

(μg/m ² ·h)		RH 20 %			RH 50 %	1		RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
1-octene	0	6	3	0	0	0	0	0	0
dodecane	0	4	2	4	3	3	3	0	2
hexadecane	5	0	2	5	5	5	0	0	0
AROMATIC HYDROCARBONS									
benzene	0.9	0.5	0.7	0.5	0.9	0.7	0	0.9	0.5
ethylbenzene	11	11	11	9	9	9	8	8	8
propylbenzene	5	5	5	5	5	5	5	5	5
isopropylbenzene	10	10	10	9	9	9	8	8	8
p,m-xylene	6	6	6	6	6	6	6	6	6
o-xylene	5	5	5	4	4	4	4	4	4
styrene	19	19	19	15	15	15	13	13	13
toluene	1	1	1	1	0.9	1	0.9	0.9	0.9
MONATOMIC ALCOHOLS									
2-propanol	5	6	5	0	0	0	5	4	4
1-butanol	15	16	15	13	13	13	13	12	13
2-ethyl-1-hexanol	664	682	673	541	532	536	541	527	534
2-methyl-1-propanol	0	7	3	6	6	6	5	0	3
2-methyl-2-propanol	40	46	43	30	31	30	29	26	28
DIVALENT ALCOHOLS				20		•••	_/		
1,2-propanediol	0	13	7	0	0	0	0	0	0
ETHERS	Ŭ	15	,	0		U	Ŭ	0	v
bis(2-ethoxyethyl)ether	17	22	20	19	23	21	19	16	17
PHENOLS	17		20	17	23	21	17	10	17
phenol	1	0	1	0	0	0	0	0	0
ALCOHOL AND PHENOL ETHERS	1	0	1	0		U	0	0	0
2-(2-ethoxyethoxy)ethanol	42	41	42	55	55	55	50	50	50
2-(2-butoxyethoxy)ethanol	196	177	186	209	209	209	187	187	187
1-methoxy-2-propanol	0	6	3	0	6	3	0	0	0
2-ethoxyethanol	10	11	10	9	8	8	6	6	6
2-butoxyethanol	9	10	9	7	7	7	6	7	7
2-phenoxyethanol	0	8	4	0	8	4	0	0	0
ALDEHYDES	0	0	4	0	0	4	0	0	U
benzaldehyde	20	18	19	11	11	11	12	16	14
n-butanal	8	8	8	0	0	0	0	0	0
heptanal	0	0	0	4	0	2	0	0	0
nonanal	6	8	7	7	10	8	9	8	8
decanal	0	2	1	2	3	3	4	2	3
KETONES	0	2	1	2	3	3	4	2	3
acetophenone	0.5	3	2	0.5	0.5	0.5	0	2	1
*	77	82	<u>2</u> 80	64	64	0.5 64	55	55	55
acetone	0				04		19		
4-methyl-2-pentanone ACIDS	0	11	5	15	0	8	19	33	26
	7	20	12	15	20	22	0	20	10
acetic acid	/	38	23	15	30	22	0	20	10
ESTERS AND LACTONES	1.4	10	10	17	16	15	21	21	21
texanol	14	10	12	17	16	17	21	21	21
2-ethylhexyl acetate	59	59	<u>59</u>	50	50	50	50	50	50
2-ethylhexyl acrylate	13	13	13	13	12	13	13	12	13
2-ethyl-1-hexyl propionate	10	11	10	8	8	8	9	9	9

(µg/m²·h)	RH 20 %			RH 50 %			RH 80 %		
NITROGEN CONTAINING COMPOUNDS									
4,4-dimethyl-1,3-oxazolidine	1636	1641	1639	1946	1896	1921	1764	1741	1752
dimethyl perhydro-1,3-oxazine	250	259	255	300	291	295	273	264	268
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	82	59	70	64	82	73	55	25	40
Total	3243	3331	3287	3460	3427	3444	3188	3137	3163
TVOC	2770	2770	2770	2995	2950	2972	2757	2712	2735
non-TVOC	130	171	150	108	124	116	88	105	97

Table C94. Emission values of adhesive A spread onto filler and plaster B applied onto calcium silicate brick at 1 day in the environmental chamber test. Table continues

Table C95. Emission values of adhesive A spread onto filler and plaster B applied onto calcium silicate brick at 7 days in the environmental chamber test.

(μg/m ² ·h)		RH 20 %	1		RH 50 %		RH 80 %		
ALIPH. AND ALICYCLIC COMPOUNDS									
dodecane	-	-	-	-	-	-	2	2	2
AROMATIC HYDROCARBONS									
ethylbenzene	-	-	-	-	-	-	2	2	2
propylbenzene	-	-	-	-	-	-	1	1	1
isopropylbenzene	-	-	-	-	-	-	3	3	3
p,m-xylene	-	-	-	-	-	-	2	2	2
o-xylene	-	-	-	-	-	-	1	1	1
styrene	-	-	-	-	-	-	3	3	3
toluene	-	-	-	-	-	-	1	1	1
1,2,4-trimethylbenzene	-	-	-	-	-	-	1	1	1
1,3,5-trimethylbenzene	-	-	-	-	-	-	1	1	1
MONATOMIC ALCOHOLS									
1-butanol	-	-	-	-	-	-	6	5	5
2-ethyl-1-hexanol	-	-	-	-	-	-	91	91	91
benzylalcohol	-	-	-	-	-	-	4	3	3
2-methyl-1-propanol	-	-	-	-	-	-	0	2	1
2-methyl-1-propanol	-	-	-	-	-	-	0	2	1
DIVALENT ALCOHOLS									
1,2-propanediol	-	-	-	-	-	-	6	6	6
PHENOLS									
phenol	-	-	-	-	-	-	1	2	2
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	_	_	-	-	_	_	109	105	107
2-(2-ethoxy)ethanol	-	-	-	-	-	-	287	282	285
2-(2-6000xychloxy)culation	-	-	-	-	-	-	207	202	203
ALDEHYDES									
benzaldehyde	-	-	-	-	-	-	6	6	6
nonanal	-	-	-	-	-	-	2	2	2
decanal	-	-	-	-	-	-	1	0	1
KETONES									
acetophenone	_	_	-	-	_	_	0	1	0

Table C95. Emission values of adhesive A spread onto filler and plaster B applied onto calcium silicate
brick at 7 days in the environmental chamber test. Table continues.

(µg/m²·h)		RH 20 %)		RH 50 %		RH 80 %			
ACIDS										
acetic acid	-	-	-	-	-	-	9	16	13	
ESTERS AND LACTONES										
2-(2-butoxyethoxy)ethyl acetate	-	-	-	-	-	-	3	3	3	
texanol	-	-	-	-	-	-	37	36	36	
TXIB	-	-	-	-	-	-	2	0	1	
2-ethylhexyl acetate	-	-	-	-	-	-	24	26	25	
2-ethylhexyl acrylate	-	-	-	-	-	-	11	10	10	
NITROGEN CONTAINING COMPOUNDS 1-methyl-2-pyrrolidinone							3	3	3	
4,4-dimethyl-1,3-oxazolidine	-	-	-	-	-	-	509	518	5 514	
dimethyl perhydro-1,3-oxazine	-	-	-	-	-	-	59	59	59	
SILICON CONTAINING COMPOUNDS										
organic Si-comp.	-	-	-	-	-	-	31	13	22	
Total	-	-	-	-	-	-	1217	1206	1211	
TVOC	-	-	-	-	-	-	966	939	953	
non-TVOC	-	-	-	-	-	-	9	16	13	

Table C96. Emission values of adhesive A spread onto filler and plaster B applied onto calcium silicate brick at 14 days in the environmental chamber test.

(μg/m²·h)		RH 20 %	,		RH 50 %		RH 80 %			
ALIPH. AND ALICYCLIC COMPOUNDS										
heptane	0	0	0	-	-	-	0.9	2	1	
dodecane	0.9	0.5	0.7	-	-	-	1	1	1	
AROMATIC HYDROCARBONS										
ethylbenzene	0.5	0.5	0.5	-	-	-	0	0	0	
propylbenzene	0.5	0.5	0.5	-	-	-	0	0	0	
isopropylbenzene	1	1	1	-	-	-	0.9	0.9	0.9	
p,m-xylene	0.5	0.5	0.5	-	-	-	0	0	0	
styrene	1	1	1	-	-	-	0.9	0.9	0.9	
toluene	0	0	0	-	-	-	0	0.5	0.3	
MONATOMIC ALCOHOLS										
1-butanol	1	2	2	-	-	-	4	4	4	
2-ethyl-1-hexanol	29	30	29	-	-	-	55	59	57	
benzylalcohol	0.9	0.5	0.7	-	-	-	1	1	1	
2-methyl-1-propanol	0	0	0	-	-	-	0	0.9	0.5	
DIVALENT ALCOHOLS										
1,2-propanediol	1	0.9	1	-	-	-	1	3	2	
ETHERS										
bis[2-(2-ethoxyethoxy)ethyl]ether	2	2	2	-	-	-	13	13	13	
PHENOLS										
phenol	0.5	0.5	0.5	-	-	-	1	0.9	1	

Table C96. Emission values of adhesive A spread onto filler and plaster B applied onto calcium silicate
brick at 14 days in the environmental chamber test. Table continues.

brick at 14 days in the environment $(\mu g/m^2 \cdot h)$		RH 20 %			RH 50 %		1	RH 80 %	
ALCOHOL AND PHENOL ETHERS		İ	1		İ	1		İ	İ
2-(2-ethoxyethoxy)ethanol	14	14	14	-	-	-	50	50	50
2-[2-(2ethoxy)ethoxy]ethanol	0.9	0.9	0.9	-	-	-	6	6	6
2-(2-butoxyethoxy)ethanol	35	34	34	-	-	-	146	151	148
ALDEHYDES									
benzaldehyde	1	2	2	-	-	-	3	3	3
pentanal	0	0	0	-	-	-	0	0.5	0.3
octanal	0.9	0.9	0.9	-	-	-	0.9	0.9	0.9
nonanal	1	2	2	-	-	-	1	0.9	1
decanal	1	3	2	-	-	-	1	0	1
KETONES									
acetophenone	0	0	0	-	-	-	1	0.5	1
acetone	1	1	1	-	-	-	4	3	4
ACIDS									
acetic acid	59	0	30	-	-	-	0	0	0
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethyl acetate	0	0	0	-	-	-	1	1	1
texanol	3	3	3	-	-	-	44	45	45
2-ethylhexyl acetate	12	12	12	-	-	-	18	16	17
2-ethylhexyl acrylate	6	6	6	-	-	-	8	8	8
2-ethyl-1-hexyl propionate	5	5	5	-	-	-	6	6	6
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	0.5	0.5	0.5	-	-	-	0.9	0.9	0.9
4,4-dimethyl-1,3-oxazolidine	44	44	44	-	-	-	300	309	305
dimethyl perhydro-1,3-oxazine	6	6	6	-	-	-	30	31	30
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	8	8	8	-	-	-	8	10	9
decamethylcyclopentasiloxane	0	0.9	0.5	-	-	-	0	0	0
Total	240	185	212	-	-	-	708	729	718
TVOC	129	133	131	-	-	-	576	589	582
non-TVOC	61	1	31	-	-	-	4	3	4

Table C97. Background emission values of adhesive A spread onto plaster C applied onto calcium silicate brick in the environmental chamber test.

(µg/m ³)	RH 20 %	RH 50 %	RH 80 %
ALCOHOL AND PHENOL ETHERS			
2-(2-butoxyethoxy)ethanol	0	7	0
SILICON CONTAINING COMPOUNDS			
hexamethylcyclotrisiloxane	20	0	0
TVOC	28	35	13

$(\mu g/m^2 \cdot h)$		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
1-octene	0	0	0	-	-	-	3	0	2
nonane	0	0	0	-	-	-	0	2	1
decane	0	0	0	-	-	-	0	0.9	0.5
undecane	0	0	0	-	-	-	0.9	0	0.5
dodecane	0.9	0.9	0.9	-	-	-	0.9	0.9	0.9
tridecane	0.9	0.5	0.7	-	-	-	0.9	0.9	0.9
tetradecane	1	0.9	1	-	-	-	1	0.9	1
hexadecane	0.9	0.5	0.7	-	-	-	0	0	0
AROMATIC HYDROCARBONS									
benzene	0.5	0	0.3	-	-	-	0.9	1	1
ethylbenzene	0	0.5	0.3	-	-	-	0	0	0
p,m-xylene	1	1	1	-	-	-	1	1	1
o-xylene	0.5	0.5	0.5	-	-	-	0.5	0.5	0.5
toluene	0.9	1	1	-	-	-	0.9	0.9	0.9
1,2,4-trimethylbenzene	0.9	0.9	0.9	-	-	-	0.9	0.9	0.9
1,3,5-trimethylbenzene	0	0	0	-	-	-	0	0.5	0.3
MONATOMIC ALCOHOLS									
2-propanol	8	8	8	-	-	-	15	15	15
1-butanol	2	2	2	-	-	-	3	3	3
2-ethyl-1-hexanol	0	0	0	-	-	-	3	0.9	2
benzyl alcohol	1	1	1	-	-	-	2	2	2
DIVALENT ALCOHOLS									
1,2-propanediol	15	0	8	-	-	-	0	0	0
PHENOLS									
phenol	5	7	6	-	-	-	9	7	8
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	0	0	0	-	-	-	6	0	3
2-phenoxyethanol	0.9	0	0.5	-	-	-	1	1	1
ALDEHYDES									
benzaldehyde	5	5	5	-	-	-	8	7	8
n-butanal	0	0	0	-	-	-	0.9	5	3
pentanal	0	0	0	-	-	-	0	3	1
hexanal	0	0	0	-	-	-	3	0	2
heptanal	0	0	0	-	-	-	0	2	1
octanal	0	0	0	-	-	-	0	4	2
nonanal	3	2	3	-	-	-	3	10	7
decanal	5	4	4	-	-	-	4	14	9
KETONES				Ì	1				
acetophenone	0	0	0	-	-	-	0.9	0.9	0.9
acetone	13	14	13	-	-	-	19	20	19
4-methyl-2-pentanone	0	0	0	-	-	-	2	2	2

Table C98. Emission values of adhesive A spread onto plaster C applied onto calcium silicate brick at 1 day in the environmental chamber test.

Table C98. Emission values of adhesive A spread onto plaster C applied onto calcium silicate brick at 1 day in the environmental chamber test. Table continues.

(μg/m²·h)	RH 20 %			RH 50 %			RH 80 %		
ACIDS									
acetic acid	0	0	0	-	-	-	0	50	25
ESTERS AND LACTONES									
propylbenzoate	2	2	2	-	-	-	6	6	6
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	6	3	4	-	-	-	7	6	6
decamethylcyclopentasiloxane	0	0	0	-	-	-	2	0	1
Total	74	55	65	-	-	-	107	167	137
TVOC	51	46	49	-	-	-	71	117	94
non-TVOC	21	22	21	-	-	-	35	39	37

Table C99. Emission values of adhesive A spread onto plaster C applied onto calcium silicate brick at 7
days in the environmental chamber test.

(µg/m²⋅h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
heptane	4	4	4	-	-	-	-	-	-
methylcyclohexane	2	2	2	-	-	-	-	-	-
AROMATIC HYDROCARBONS									
benzene	0.1	0.3	0.2	-	-	-	-	-	-
p,m-xylene	1	1	1	-	-	-	-	-	-
toluene	2	2	2	-	-	-	-	-	-
MONATOMIC ALCOHOLS									
2-propanol	0	2	1	-	-	-	-	-	-
2-ethyl-1-hexanol	0	1	0	-	-	-	-	-	-
PHENOLS									
phenol	0	2	1	-	-	-	-	-	-
ALDEHYDES									
benzaldehyde	0	2	1	-	-	-	-	-	-
n-butanal	0	2	1	-	-	-	-	-	-
octanal	1	1	1	-	-	-	-	-	-
nonanal	2	2	2	-	-	-	-	-	-
decanal	4	4	4	-	-	-	-	-	-
KETONES									
acetophenone	0	1	0	-	-	-	-	-	-
acetone	4	5	4	-	-	-	-	-	-
ACIDS									
acetic acid	0	3	2	-	-	-	-	-	-
Total	20	34	27						
TVOC	0	6	3		1				
non-TVOC	6	10	8						

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
decane	0	0.2	0.1	0	0	0	0	0	0
dodecane	0.1	0	0.1	0	0.3	0.2	0	0.3	0.2
tridecane	0	0	0	0	0	0	0.3	0.3	0.3
tetradecane	0	0	0	0.3	0.3	0.3	0.5	0.5	0.5
hexadecane	0.2	0	0.1	0	0	0	0	0.2	0.1
AROMATIC HYDROCARBONS									
benzene	0.1	0	0.1	0	0	0	0	0	0
ethylbenzene	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
p,m-xylene	0.5	0.5	0.5	0.9	0.9	0.9	0.9	0.5	0.7
o-xylene	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
toluene	0.3	0.4	0.4	0.4	0.4	0.4	0.2	0.4	0.3
1,2,4-trimethylbenzene	0.2	0.2	0.2	0.2	0.2	0.2	0.4	0.2	0.3
MONATOMIC ALCOHOLS									
2-propanol	0.9	0.9	0.9	0.9	0.9	0.9	1	1	1
1-butanol	0	0	0	0	0	0	0.9	0.9	0.9
2-ethyl-1-hexanol	0.5	0.2	0.4	0.9	0.5	0.7	0.4	0.9	0.7
benzyl alcohol	0	0	0	0	0	0	0.9	0.9	0.9
DIVALENT ALCOHOLS									
1,2-propanediol	0	0	0	0	0	0	1	0	1
PHENOLS									
phenol	0	0	0	0	0	0	0.9	0	0.5
ALCOHOL AND PHENOL ETHERS									
2-phenoxyethanol	0	0	0	0.1	0	0.1	0	0	0
ALDEHYDES									
benzaldehyde	0	0.3	0.2	0	0.5	0.3	0.9	0.3	0.6
n-butanal	0	0	0	2	0	1	0	2	1
nonanal	0.9	1	1	2	0.9	1	1	2	2
decanal	1	2	2	3	1	2	2	2	2
KETONES									
acetophenone	0.3	0	0.2	0	0.2	0.1	0	0	0
acetone	0.9	0.5	0.7	1	0.5	1	0.9	1	1
ACIDS									
acetic acid	0	0	0	2	0	1	1	0	1
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	9 ¹⁾	0.9	5	8	8	8	3	<i>14</i> ¹⁾	8
OTHERS									
unidentified	0	0	0	1	0.9	1	3	3	3
Total	16	8	12	23	17	20	21	31	26
TVOC	0.9 ¹⁾	0	0.5	0	0	0	13	24	19
non-TVOC	2	1	2	6	1	4	4	5	4

Table C100. Emission values of adhesive A spread onto plaster C applied onto calcium silicate brick at 14 days in the environmental chamber test.

Table C101. Background emission values of adhesive B spread onto filler and plaster B applied onto calcium silicate brick in the environmental chamber test.

(µg/m ³)	RH 20 %	RH 50 %	RH 80 %
ALCOHOL AND PHENOL ETHERS			
2-(2-butoxyethoxy)ethanol	0	0	10
TERPENES AND THEIR DERIVATIVES			
Limonene	0	3	0
TVOC	12	25	24

Table C102. Emission values of adhesive B spread onto filler and plaster B applied onto calcium silicate brick at 1 day in the environmental chamber test.

$(\mu g/m^2 \cdot h)$		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
1-octene	0	5	2	-	-	-	2	0	1
dodecane	0	2	1	-	-	-	0	0	0
AROMATIC HYDROCARBONS									
benzene	0	0	0	-	-	-	3	2	3
ethylbenzene	5	5	5	-	-	-	1	8	5
propylbenzene	0	0	0	-	-	-	2	3	2
isopropylbenzene	5	5	5	-	-	-	5	7	6
p,m-xylene	2	2	2	-	-	-	2	4	3
o-xylene	0	0	0	-	-	-	2	3	2
styrene	9	9	9	-	-	-	10	16	13
toluene	0	0	0	-	-	-	0.9	3	2
1,2,4-trimethylbenzene	0	0	0	-	-	-	0	0.9	0.5
1,3,5-trimethylbenzene	0	0	0	-	-	-	0.9	2	1
1-ethyl-2-methylbenzene	0	0	0	-	-	-	0	0.9	0.5
MONATOMIC ALCOHOLS									
2-propanol	11	12	11	-	-	-	11	19	15
1-butanol	10	10	10	-	-	-	10	19	14
2-ethyl-1-hexanol	346	373	359	-	-	-	477	727	602
benzyl alcohol	0	3	1	-	-	-	2	0	1
2-methyl-1-propanol	5	3	4	-	-	-	3	0	2
ETHERS									
bis(2-ethoxyethyl)ether	19	26	22	-	-	-	15	14	15
PHENOLS									
phenol	6	13	10	-	-	-	12	4	8
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	55	68	61	-	-	-	23	55	39
2-(2-butoxyethoxy)ethanol	2400	2559	2480	-	-	-	1705	1736	1720
1-methoxy-2-propanol	0	0	0	-	-	-	0	3	2
2-ethoxyethanol	7	8	8	-	-	-	5	6	5
2-butoxyethanol	9	10	10	-	-	-	8	20	14
2-phenoxyethanol	0	0	0	-	-	-	1	3	2
ALDEHYDES									
benzaldehyde	16	22	19	-	-	-	20	26	23
n-butanal	0	0	0	-	-	-	1	25	13
pentanal	0	0	0	-	-	-	0	6	3
hexanal	0	3	1	-	-	-	0	0	0
heptanal	0	2	1	-	-	-	0	0	0
octanal	0	4	2	-	-	-	0	0	0
nonanal	0	3	1	-	-	-	3	6	4
KETONES									
acetophenone	0	0	0	-	-	-	0.9	4	2
acetone	41	44	42	-	-	-	42	68	55

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ACIDS									
acetic acid	0	0	0	-	-	-	45	177	111
TERPENES AND THEIR DERIVATIVES									
limonene	8	10	9	-	-	-	12	21	16
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethyl acetate	7	8	8	-	-	-	6	11	9
texanol	14	16	15	-	-	-	18	36	27
2-ethylhexyl acetate	50	50	50	-	-	-	59	59	59
2-ethylhexyl acrylate	10	11	10	-	-	-	10	18	14
2-ethyl-1-hexyl propionate	15	12	13				12	13	13
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	0	0	0	-	-	-	8	0	4
4,4-dimethyl-1,3-oxazolidine	2282	2436	2359	-	-	-	1718	1736	1727
4,4-dimethyl-2-oxazolidine	7	7	7	-	-	-	7	7	7
dimethyl perhydro-1,3-oxazine	332	350	341	-	-	-	26	255	140
SILICON CONTAINING COMPOUNDS									
hexamethylcyclotrisiloxane	0	0	0	-	-	-	55	0	27
decamethylcyclopentasiloxane	2	3	3	-	-	-	3	3	3
Total	5669	6091	5880	-	-	-	4346	5124	4735
ТУОС	4904	5222	5063	-	-	-	3626	3626	3626
non-TVOC	52	56	54	-	-	-	100	112	106

Table C102. Emission values of adhesive B spread onto filler and plaster B applied onto calcium silicate brick at 1 day in the environmental chamber test. Table continues.

Table C103. Emission values of adhesive B spread onto filler and plaster B applied onto calcium silicate brick at 7 days in the environmental chamber test.

(μg/m²·h)		RH 20 %		1	RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
heptane	-	-	-	5	5	5	-	-	-
dodecane	-	-	-	2	2	2	-	-	-
methylcyclohexane	-	-	-	3	3	3	-	-	-
AROMATIC HYDROCARBONS									
isopropylbenzene	-	-	-	2	2	2	-	-	-
styrene	-	-	-	2	2	2	-	-	-
toluene	-	-	-	2	2	2	-	-	-
MONATOMIC ALCOHOLS									
2-propanol	-	-	-	3	4	3	-	-	-
1-butanol	-	-	-	3	4	3	-	-	-
2-ethyl-1-hexanol	-	-	-	50	50	50	-	-	-
DIVALENT ALCOHOLS									
1,2-propanediol	-	-	-	4	5	4	-	-	-
ETHERS									
bis(2-ethoxyethyl)ether	-	-	-	3	7	5	-	-	-
PHENOLS									
phenol	-	-	-	2	0	1	-	-	-
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	-	-	-	100	105	102	-	-	-
2-[2-(2ethoxy)ethoxy]ethanol	-	-	-	8	9	8	-	-	-
2-(2-butoxyethoxy)ethanol	-	-	-	1564	1646	1605	-	-	-
ALDEHYDES									
benzaldehyde	-	-	-	3	0	2	-	-	-
n-butanal	-	-	-	7	6	6	-	-	-
nonanal	-	-	-	2	0	1	-	-	-
KETONES									
acetone	-	-	-	9	11	10	-	-	-
ACIDS									
acetic acid	-	-	-	31	41	36	-	-	-

Table C103. Emission values of adhesive B spread onto filler and plaster B applied onto calcium silicate
brick at 7 days in the environmental chamber test. Table continues.

(μg/m ² ·h)	RH 20 %			RH 50 %			RH 80 %		
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethyl acetate	-	-	-	2	2	2	-	-	-
texanol	-	-	-	10	11	10	-	-	-
2-ethylhexyl acetate	-	-	-	25	26	26	-	-	-
2-ethylhexyl acrylate	-	-	-	11	11	11	-	-	-
2-ethyl-1-hexyl propionate	-	-	-	9	10	10	-	-	-
NITROGEN CONTAINING COMPOUNDS									
4,4-dimethyl-1,3-oxazolidine	-	-	-	196	196	196	-	-	-
dimethyl perhydro-1,3-oxazine	-	-	-	18	19	18	-	-	-
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	-	-	-	0	40	20	-	-	-
decamethylcyclopentasiloxane	-	-	-	2	3	2	-	-	-
Total	-	-	-	2076	2218	2147	-	-	-
TVOC	-	-	-	989	1125	1057	-	-	-
non-TVOC	-	-	-	50	61	56	-	-	-

Table C104. Emission values of adhesive B spread onto filler and plaster B applied onto calcium silicate brick at 14 days in the environmental chamber test.

(µg/m²·h)	RH 20 %			RH 50 %			RH 80 %		
ALIPH. AND ALICYCLIC COMPOUNDS									
1-octene	0	0.9	0.5	-	-	-	0	0	0
nonane	0	0	0	-	-	-	0	0.9	0.5
decane	0	0	0	-	-	-	0.5	0	0.3
dodecane	0.9	1	1	-	-	-	1	2	2
pentadecane	0	0.5	0.3	-	-	-	0.5	0	0.3
AROMATIC HYDROCARBONS									
isopropylbenzene	0.5	0.5	0.5	-	-	-	0.9	0.9	0.9
p,m-xylene	0.5	0.5	0.5	-	-	-	0.9	0.5	0.7
styrene	0.5	0.5	0.5	-	-	-	0.9	0.9	0.9
MONATOMIC ALCOHOLS									
2-propanol	1	1	1	-	-	-	2	2	2
1-butanol	1	2	2	-	-	-	4	4	4
2-ethyl-1-hexanol	31	33	32	-	-	-	46	50	48
benzyl alcohol	0	0	0	-	-	-	0.9	0.9	0.9
DIVALENT ALCOHOLS									
1,2-propanediol	0	2	1	-	-	-	3	4	4
ETHERS									
bis[2-(2-ethoxyethoxy)ethyl]ether	4	5	4	-	-	-	14	14	14
PHENOLS									
phenol	0.9	0	0.5	-	-	-	2	3	2
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	21	23	22	-	-	-	59	64	61
2-[2-(2ethoxy)ethoxy]ethanol	0.9	1	1	-	-	-	6	7	7
2-(2-butoxyethoxy)ethanol	559	596	577	-	-	-	1477	1518	1498
2-butoxyethanol	0	0.9	0.5	-	-	-	0	0.5	0.3
ALDEHYDES									
benzaldehyde	3	0.9	2	-	-	-	4	4	4
n-butanal	2	3	3	-	-	-	0	0	0
nonanal	0.5	0.9	0.7	-	-	-	2	2	2
decanal	0	2	1	-	-	-	3	0	2
KETONES									
acetophenone	0	0	0	-	-	-	0	0.5	0.3
acetone	2	3	3	-	-	-	4	4	4
4-methyl-2-pentanone	0	0	0	-	-	-	0	0.5	0.3
ACIDS									
acetic acid	5	8	6	-	-	-	0	4	2

(µg/m²•h)		RH 20 %			RH 50 %		RH 80 %			
ESTERS AND LACTONES										
2-(2-butoxyethoxy)ethyl acetate	0.9	0.9	0.9	-	-	-	2	2	2	
1-methoxy-2-propylacetate	0	0	0	-	-	-	0.5	0	0.3	
texanol	13	14	13	-	-	-	42	45	43	
2-ethylhexyl acetate	13	14	13	-	-	-	15	16	15	
2-ethylhexyl acrylate	9	9	9	-	-	-	10	10	10	
2-ethyl-1-hexyl propionate	7	7	7	-	-	-	7	7	7	
NITROGEN CONTAINING COMPOUNDS										
1-methyl-2-pyrrolidinone	0	0.5	0.3	-	-	-	0.9	0.9	0.9	
4,4-dimethyl-1,3-oxazolidine	73	73	73	-	-	-	273	277	275	
dimethyl perhydro-1,3-oxazine	8	9	8	-	-	-	22	23	23	
SILICON CONTAINING COMPOUNDS										
organic Si-comp.	3	0	2	-	-	-	16	18	17	
Total	762	811	786	-	-	-	2021	2086	2053	
TVOC	358	404	381	-	-	-	1126	1171	1148	
non-TVOC	11	15	13	-	-	-	6	10	8	

Table C104. Emission values of adhesive B spread onto filler and plaster B applied onto calcium silicate brick at 14 days in the environmental chamber test. Table continues.

Table C105. Background emission values of adhesive B spread onto plaster C applied onto calcium silicate brick in the environmental chamber test.

(µg/m³)	RH 20 %	RH 50 %	RH 80 %
TVOC	6	9	15

Table C106. Emission values of adhesive B spread onto plaster C applied onto calcium silicate brick at 1
day in the environmental chamber test.

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	3	0	2	5	0	2	-	-	-
tridecane	4	5	4	4	5	4	-	-	-
tetradecane	5	5	5	5	0	2	-	-	-
pentadecane	0	0	0	5	0	2	-	-	-
hexadecane	0	0	0	5	0	3	-	-	-
AROMATIC HYDROCARBONS									
benzene	0.9	0.5	0.7	0.5	0.9	0.7	-	-	-
toluene	0.5	0.5	0.5	0.5	0.5	0.5	-	-	-
MONATOMIC ALCOHOLS									
2-propanol	0	0	0	5	0	2	-	-	-
1-butanol	0	0	0	7	7	7	-	-	-
2-ethyl-1-hexanol	3	4	4	6	6	6	-	-	-
benzyl alcohol	8	9	8	9	8	8	-	-	-
DIVALENT ALCOHOLS									
1,2-propanediol	13	0	6	0	0	0	-	-	-
PHENOLS									
phenol	2	3	3	2	0	1	-	-	-
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	7818	7864	7841	5727	6000	5864	-	-	-
2-butoxyethanol	11	12	12	11	12	12	-	-	-
2-phenoxyethanol	0	9	4	9	0	4	-	-	-
ALDEHYDES									
benzaldehyde	4	3	4	7	3	5	-	-	-
n-butanal	0	0	0	12	6	9	-	-	-
octanal	0	0	0	6	5	5	-	-	-
nonanal	9	10	9	13	11	12	-	-	-
decanal	0	0	0	11	11	11	-	-	-

(µg/m²·h)	RH 20 %				RH 50 %			RH 80 %		
KETONES										
acetophenone	0.9	0	0.5	0.9	0	0.5	-	-	-	
acetone	16	17	16	23	18	21	-	-	-	
ACIDS										
acetic acid	214	0	107	73	0	36	-	-	-	
ESTERS AND LACTONES										
2-(2-butoxyethoxy)ethyl acetate	16	16	16	17	16	17	-	-	-	
SILICON CONTAINING COMPOUNDS										
organic Si-comp.	15	37	26	46	23	34	-	-	-	
Total	8143	7993	8068	6007	6132	6069	-	-	-	
TVOC	3273	3273	3273	2361	2406	2384	-	-	-	
non-TVOC	229	17	123	113	24	68	-	-	-	

Table C106. Emission values of adhesive B spread onto plaster C applied onto calcium silicate brick at 1 day in the environmental chamber test. Table continues.

Table C107. Emission values of adhesive B spread onto plaster C applied onto calcium silicate brick at 7 days in the environmental chamber test.

(µg/m²·h)		RH 20 %)		RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
dodecane	-	-	-	-	-	-	1	0	0
tridecane	-	-	-	-	-	-	1	0	1
tetradecane	-	-	-	-	-	-	2	2	2
hexadecane	-	-	-	-	-	-	1	1	1
AROMATIC HYDROCARBONS									
benzene	-	-	-	-	-	-	1	0	0
p,m-xylene	-	-	-	-	-	-	2	2	2
toluene	-	-	-	-	-	-	1	1	1
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	-	-	-	-	-	-	3	2	2
benzyl alcohol	-	-	-	-	-	-	4	4	4
PHENOLS									
phenol	-	-	-	-	-	-	2	2	2
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	-	-	-	-	-	-	2118	2186	2152
2-phenoxyethanol	-	-	-	-	-	-	3	3	3
ALDEHYDES									
benzaldehyde	-	-	-	-	-	-	3	3	3
octanal	-	-	-	-	-	-	2	0	1
nonanal	-	-	-	-	-	-	2	1	1
decanal	-	-	-	-	-	-	2	0	1
ACIDS									
acetic acid	-	-	-	-	-	-	0	6	3
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethyl acetate	-	-	-	-	-	-	5	5	5
TXIB	-	-	-	-	-	-	2	0	1
HALOGEN CONTAINING COMPOUNDS									
tetrachloroethene	-	-	-	-	-	-	0	2	1
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	-	-	-	-	-	-	18	14	16
Total	-	-	-	-	-	-	2171	2232	2202
TVOC	-	-	-	-	-	-	860	860	860
non-TVOC	-	-	-	-	-	-	0	6	3

Table C108. Emission values of adhesive B spread onto plaster C applied onto calcium silicate brick at
14 days in the environmental chamber test.

$(\mu g/m^2 \cdot h)$		RH 20 %			RH 50 %		RH 80 %		
ALIPH. AND ALICYCLIC COMPOUNDS									
tetradecane	0	0	0	-	-	-	0.5	0.5	0.5
pentadecane	0.5	0.5	0.5	-	-	-	0	0.5	0.3
hexadecane	0	0.5	0.3	-	-	-	0	0	0
AROMATIC HYDROCARBONS									
p,m-xylene	0.3	0.3	0.3	-	-	-	0	0	0
toluene	0.4	0.4	0.4	-	-	-	0	0	0
MONATOMIC ALCOHOLS									
1-butanol	0	0	0	-	-	-	1	1	1
2-ethyl-1-hexanol	0.9	0.4	0.7	-	-	-	0.9	0.9	0.9
benzyl alcohol	0	0	0	-	-	-	1	1	1
DIVALENT ALCOHOLS									
1,2-propanediol	0	0	0	-	-	-	0.9	0	0.5
1,2-propanetion	0	0	U	-	-	-	0.9	0	0.3
PHENOLS									
phenol	0.5	0	0.3	-	-	-	0	0.5	0.3
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	0	0	0	-	-	-	0.5	0	0.3
2-(2-butoxyethoxy)ethanol	86	86	86	-	-	-	477	496	486
1-methoxy-2-propanol	0	0	0	-	-	-	1	1	1
2-butoxyethanol	0.9	0.9	0.9	-	-	-	0	0.5	0.3
ALDEHYDES	0.0	0	0.7				0.0	0.0	
benzaldehyde	0.9	0	0.5	-	-	-	0.9	0.9	1
octanal	0.5	0.9	0.7	-	-	-	0.9	0.9	1
nonanal	0.9	1 3	1	-	-	-	3	23	2
decanal	2	3	2	-	-	-	3	3	3
KETONES									
acetone	0.3	0.9	1	-	-	-	1	0.9	1
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethyl acetate	0	0	0	-	-	-	0.9	0.9	0.9
1-methoxy-2-propylacetate	0.2	0	0.1	-	-	-	0.9	0.9	0.9
	0.2	Ŭ					Ť	ÿ	, , , , , , , , , , , , , , , , , , ,
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	0	6	3	-	-	-	3	11	7
Total	95	101	98	-	-	_	496	523	509
TVOC	95 35	33	34	-		-	296	323 310	303
non-TVOC	0.3	0.9	0.6	-	-	-	1	0.9	1

0

Table C109. Background emission value	es of paint A	A in the FLEC test.	
(µg/m ³)			
ALIPHATIC AND ALICYCLIC COMPOUNDS			
decane	0.1		
AROMATIC HYDROCARBONS			
benzene	0.1	ALDEHYDES	
ethylbenzene	0.5	nonanal	1
p,m-xylene	0.6	decanal	2
o-xylene	0.1	ESTERS AND LACTONES	
styrene	0.2	2-(2-butoxyethoxy)ethylacetate	
toluene	2	ethylacetate	3
MONATOMIC ALCOHOLS		HALOGEN CONTAINING COMPOUNDS	0.3
2-ethyl-1-hexanol	2	trichloroethene	5
ALCOHOL AND PHENOL ETHERS			
2-(2-ethoxyethoxy)ethanol	0.3	Total	25
2-(2-butoxyethoxy)ethanol	1	TVOC	27

7

non-TVOC

Table C109. Background emission values of paint A in the FLEC test.

Table C110. Emission values of paint A at 28 days in the FLEC test.

2-butoxyethanol

(µg/m²·h)		RH 20 %		RH 50 % RH 8			RH 80 %	80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
1-dodecene	2	2	2	2	2	2	0	2	1
undecane	0	0	0	0	0	0	0	0	0
AROMATIC HYDROCARBONS									
benzene	0.1	0	0.1	0.1	0.1	0.1	0	0	0
ethylbenzene	0	0	0	0.2	0.2	0.2	0.1	0.1	0.1
p,m-xylene	0	0	0	0.2	0.2	0.2	0	0	0
o-xylene	0	0	0	0	0	0	0	0	0
toluene	0	0	0	1	1	1	0	0	0
1,2,4-trimethylbenzene	0	0.1	0.1	0.1	0	0.1	0	0	0
MONATOMIC ALCOHOLS									
1-butanol	0.4	0.3	0.4	0	0	0	0	0	0
2-ethyl-1-hexanol	0	0	0	0	0	0	0	0	0
DIVALENT ALCOHOLS									
1,2-propanediol	0	0	0	0	0	0	0	0	0
ALCOHOL AND PHENOL ETHERS									
2-butoxyethanol	0	0	0	0	0	0	0	0	0
ALDEHYDES									
nonanal	0	0	0	1	0	0	0	0	0
KETONES									
2-butanone (MEK)	0	0	0	3	2	3	6	6	6
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethyl acetate	0	0	0	0	0	0	0	0	0
texanol	0	0	0	0	0	0	1	0	1
HALOGEN CONTAINING COMPOUNDS									
1-bromododecane	1	1	1	1	1	1	1	1	1
trichloroethene	0	0	0	2	2	2	0	0	0
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	0.2	0	0.1	0	0	0	0	0	0
Total	5	4	4	12	10	11	8	9	9
TVOC	0	0	0	10	12	11	0	0	0
non-TVOC	0	3	2	3	2	3	6	6	6

Tuble CITT. Duckground chilission vulue	<u>5 01 puint C</u>		
$(\mu g/m^3)$			
ALIPHATIC AND ALICYCLIC COMPOUNDS		ALDEHYDES	
nonane	0.7	benzaldehyde	2
undecane	0.3	hexanal	0.3
AROMATIC HYDROCARBONS		nonanal	2
ethylbenzene	0.3	decanal	3
p,m-xylene	0.3	KETONES	
toluene	1	acetophenone	1
ALCOHOL AND PHENOL ETHERS			
2-butoxyethanol	6	Total	23
HALOGEN CONTAINING COMPOUNDS		TVOC	20
trichloroethene	6	non-TVOC	0

Table C111. Background emission values of paint C in the FLEC test.

Table C112. Emission values of paint C at 28 days in the FLEC test.

($\mu g/m^2 \cdot h$)	RH 20 %		1	RH 50 %		RH 80 %			
ALIPH. AND ALICYCLIC COMPOUNDS									
heptane	0	0	0	5	5	5	0	0	0
octane	0	0	0	0	4	2	0	0	0
decane	1	1	1	13	2	8	1	1	1
undecane	0.2	0.3	0.3	5	6	6	0.7	0.7	0.7
dodecane	0	0.4	0.2	1	1	1	0	0	0
tridecane	0	0	0	0.4	0.9	0.7	0	0	0
AROMATIC HYDROCARBONS							-		
ethylbenzene	0	0.2	0.1	0.4	0.4	0.4	0	0	0
p,m-xylene	0.2	0.2	0.2	0.4	0.4	0.4	0	0	0 0
o-xylene	0.1	0.1	0.1	0.4	0.4	0.4	0	0	0
toluene	0.9	0.9	0.9	0.9	0.9	0.9	0	0	0
MONATOMIC ALCOHOLS	0.9	0.5	0.9	0.9	0.5	0.9	v	Ŭ	U
2-ethyl-1-hexanol	0.4	0	0.2	0.4	0.9	0.7	0	0	0
ALCOHOL AND PHENOL ETHERS	0.1			0.1	0.7	0.7			, v
1-methoxy-2-propanol	0	0.9	0.5	4	4	4	0	0	0
2-butoxyethanol	2	2	2	1	1	1	0	0	0
ALDEHYDES	2				1	1	0	0	U
benzaldehyde	0.9	0.9	0.9	0	0	0	0	0	0
pentanal	19	20	19	84	75	79	6	6	6
hexanal	66	71	68	229	212	220	23	25	24
heptanal	9	9	9	36	33	35	4	3	3
octanal	16	15	15	53	49	51	6	6	6
nonanal	10	13	15	33	34	36	8	6	0 7
decanal		2	2	4	34	30	2	0.4	1
KETONES	1	2	2	4	3	3	Z	0.4	1
acetofenone	0.2	0.3	0.2	0.4	0	0.2	0	0	0
	0.3	0.3	0.3	0.4		0.2	0		0
cyclohexanone	0	0	0	0.9	0.9	0.9	0	0	0
ACIDS		0.2	=2	107	105	1.(1	27	21	
acetic acid	53	93	73	137	185	161	27	31	29
propanoic acid	17	21	19	75	84	79	0	0	0
butanoic acid	9	9	9	30	32	31	3	2	3
pentanoic acid	41	40	40	106	119	112	12	12	12
hexanoic acid	304	264	284	577	661	619	123	128	126
2-etylhexanoic acid	19	19	19	36	49	42	9	8	8
heptanoic acid	4	3	4	2	11	6	1	1	1
octanoic acid	3	4	3	8	14	11	0	0	0
HALOGEN CONTAINING COMPOUNDS									
trichloroethene	2	2	2	2	2	2	0	0	0
NITROGEN CONTAINING COMPOUNDS									
2-butanone oxime	0	0	0	1	0	1	0	0	0
Total	583	590	587	1452	1590	1521	225	229	227
TVOC	256	260	258	926	970	948	97	97	97
non-TVOC	53	93	73	137	185	161	27	31	29

(µg/m³)			
ALIPHATIC AND ALICYCLIC COMPOUNDS		ALDEHYDES	
nonane	0.4	octanal	0.5
decane	0.4	decanal	2
undecane	0.5	ACIDS	
dodecane	0.3	acetic acid	30
AROMATIC HYDROCARBONS		ESTERS AND LACTONES	
benzene	0.3	dibutyl phthalate	3
ethylbenzene	0.4	NITROGEN CONTAINING	
p,m-xylene	2	caprolactam	2
o-xylene	0.6	SULPHUR CONTAINING COMPOUNDS	
toluene	0.8	benzothiazole	1
1,2,4-trimethylbenzene	0.7	SILICON CONTAINING COMPOUNDS	
C ₃ -alkyl benzene	0.4	organic Si-comp.	0.3
MONATOMIC ALCOHOLS		hexamethylcyclotrisiloxane	0.8
2-ethyl-1-hexanol	0.6	OTHERS	
2-methyl-1-propanol	0.6	unidentified	1.1
PHENOLS			
phenol	0.4	Total	52
ALCOHOL AND PHENOL ETHERS		TVOC	17
2-(2-butoxyethoxy)ethanol	0.5	non-TVOC	37
2-butoxyethanol	2		

Table C113. Background emission values of adhesive A in the FLEC test.

Table C114. Emission values of adhesive A at 28 days in the FLEC test.

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	0.0	0.1	0.1	0.3	0.2	0.3	0	0	0.2
decane	0.0	0.0	0	0.3	0.2	0.3	0.3	0.3	0.3
undecane	0.0	0.1	0.1	0.3	0.3	0.3	2	2	2
dodecane	0.0	0.0	0	0	0.2	0.1	0.1	0.3	0.2
tetradecane	0	0	0	0	0.2	0.1	0	0.2	0.1
hexadecane	0	0	0	0.3	0.2	0.3	0	0.1	0.1
AROMATIC HYDROCARBONS									
benzene	0	0	0	0.1	0	0.1	0.1	0.1	0.1
ethylbenzene	0	0	0	0.3	0.2	0.3	0.3	0.3	0.3
p,m-xylene	0	0	0	1	1	1	1	1	1
o-xylene	0.1	0.1	0.1	0.4	0.4	0.4	0.4	0.4	0.4
toluene	0	0	0	0.4	0.4	0.4	0.4	0	0.4
1,2,4-trimethylbenzene	0	0	0	0.4	0.3	0.4	0.4	0.4	0.4
C ₃ -alkyl benzene	0.0	0.2	0.1	0	0	0	0	0	0
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	0	0	0	0	0.4	0.4	0.4	0	0
2-methyl-1-propanol	0.1	0	0.2	0	1	1	0	0	0
PHENOLS									
phenol	0	0	0	0	0	0	0	0	0
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	0	0	0	0	2	1	1	1	1
2-butoxyethanol	0	0	0	1	0	1	0	0	0
ALDEHYDES									
benzaldehyde	0	0.4	0.2	0.4	0	0.2	0.4	0	0.2
heptanal	0	0	0	0	0	0	0	0.3	0.2
octanal	0	0	0	1	0	0	0.3	1	0.6
nonanal	0	0	0	2	0	1	1	2	1
decanal	0	0	0	4	1	2	2	4	3

			2				intinues.	DII 00.0/	
(μg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
KETONES									
2-butanone (MEK)	0	0	0	1	2	1	9	12	11
acetophenone	0	0.3	0.2	0	0	0	0.2	0	0.1
acetone	0	0	0	1	1	1	1	2	2
3-methyl-2-butanone	0	0	0	0	0	0	0	1	1
2-pentanone	0	0	0	0	0	0	2	3	2
3-pentanone	0	0	0	0	0	0	2	3	2
ACIDS									
acetic acid	7	0	4	26	38	32	53	57	55
hexanic acid	0	0	0	0	0	0	0	1	1
ESTERS AND LACTONES									
TXIB	0	0	0	0.3	0	0.2	0	0	0
methyl acetate	0	0	0	0	0	0	0.3	0	0.4
dibutyl phthalate	1	0	1	0	5	2	8	10	9
NITROGEN CONTAINING									
1-methyl-2-pyrrolidinone	0	0	0	0	0	0	2	1	2
SILICON CONTAINING COMPOUNDS									
hexamethylcyclotrisiloxane	2	0	1	0.3	0.4	0.4	1	2	2
octamethylcyclotrisiloxane	0.4	0	0.2	0	0	0	0	0	0
SULPHUR CONTAINING COMPOUNDS									
benzothiazole	0	0	0	0	0	0	0	0	0
OTHERS									
unidentified	0	0	0	0	0	0	4	5	4
Total	11	2	6	41	55	48	94	111	102
TVOC	2	0	1	17	7	12	20	26	23
non-TVOC	10	0	5	30	49	39	86	102	94

Table C114. Emission values of adhesive A at 28 days in the FLEC test. Table continues.

Table C115. Background emission values of adhesive C in the FLEC test.

(µg/m³)			
ALIPHATIC AND ALICYCLIC COMPOUNDS		KETONES	
nonane	0.4	acetone	0.4
decane	0.5		
undecane	0.4	ACIDS	
dodecane	0.3	acetic acid	38
AROMATIC HYDROCARBONS			
benzene	0.3	NITROGEN CONTAINING COMPOUNDS	
ethylbenzene	0.6	caprolactam	2
p,m-xylene	2		
o-xylene	0.8	SILICON CONTAINING COMPOUNDS	
toluene	1	organic Si-comp.	1.1
1,2,4-trimethylbenzene	0.6	hexamethylcyclotrisiloxane	0.7
C ₃ -alkyl benzene	0.3		
MONATOMIC ALCOHOLS		SULPHUR CONTAINING COMPOUNDS	
2-ethyl-1-hexanol	1	benzothiazole	0.9
2-methyl-1-propanol	0.9		
		Total	57
ALCOHOL AND PHENOL ETHERS		TVOC	20
2-(2-butoxyethoxy)ethanol	1	non-TVOC	42
1-methoxy-2-propanol	0.4		
2-butoxyethanol	3		

 Table C116. Emission values of adhesive C at 28 days in the FLEC test.

Table C116. Emission values of a $(\mu g/m^2 \cdot h)$		RH 20 %	uuys III t		RH 50 %		İ	RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	0	0	0	0.9	0	0.5	0.3	0.3	0.3
decane	0	0	0	0.9	0.9	0.9	0.1	0.2	0.2
undecane	4	3	4	23	24	24	0.1	0	0.1
dodecane	0	0	0	0	0	0	0.1	0	0.1
tridecane	0	0	0	8	8	8	0	0	0
tetradecane	0	0	0	12	12	12	0	0	0
pentadecane	0	0	0	3	3	3	0	0	0
AROMATIC HYDROCARBONS		0	U	5	5	5	0	0	0
benzene	0	0	0	0.9	0	0.5	0	0	0
ethylbenzene	0	0	0	0.9	0	0.5	0	0	0
p,m-xylene	1	1	-	2	2	2	0.4	0.4	0.4
1, 2	0	0	1 0	0.9	0.4		0.4	0.4	
o-xylene	÷	-	-			0.7			0.1
toluene	0	0	0	0.9	0.9	0.9	0.4	0.4	0.4
1,2,4-trimethylbenzene	0	0	0	0	0.9	0.5	0.2	0.2	0.2
C ₃ -alkyl benzene	0	0	0	0	0	0	0	0.1	0.1
MONATOMIC ALCOHOLS								L	
1-butanol	0	0	0	0.9	1	1	0	0	0
2-ethyl-1-hexanol	0.9	0.9	0.9	0.9	1	1	0	0	0
2-methyl-1-propanol	2	2	2	2	2	2	0.5	0.5	0.5
DIVALENT ALCOHOLS									
1,2-propanediol	450	450	450	154	154	154	53	62	57
PHENOLS									
phenol	0	0	0	0	0	0	0.3	0.2	0.3
ALCOHOL AND PHENOL ETHERS								1	
2-(2-butoxyethoxy)ethanol	1	1	1	0.9	0.9	0.9	0.4	0	0.2
1-methoxy-2-propanol	3	3	3	2	2	2	0.1	0.2	0.2
2-butoxyethanol	2	2	2	0.9	0.9	0.9	0.1	0.2	0.2
ALDEHYDES	2	2	2	0.9	0.9	0.9	0	0	U
	0	0	0	0	0	0	0.4	0.2	0.2
benzaldehyde	0	0	0	0	0	0	0.4	0.2	0.3
n-butanal	0	0	0	2	3	2	0	0	0
pentanal	0	0	0	0.9	0.9	0.9	0	0	0
hexanal	0	0	0	3	3	3	0	0	0
octanal	0	0	0	0.9	0	0.5	0	0.4	0.2
nonanal	0.9	2	1	0.9	0	0.5	0	0	0
decanal	0.9	3	2	2	0.9	1	0	1	1
KETONES									
2-butanone (MEK)	15	12	14	17	18	17	0	0	0
acetone	3	2	2	2	2	2	0.7	0	0.4
3-methyl-2-butanone	0	0	0	4	4	4	0	0	0
2-pentanone	5	4	4	28	30	29	0	0	0
3-pentanone	4	3	4	24	26	25	0	0	0
ACIDS								1	1
acetic acid	309	419	364	353	357	355	63	41	52
butyric acid	0.9	0.9	0.9	0	0	0	0	0	0
pentanic acid	0.5	0.9	0.5	0	0	0	0	0	0
hexanic acid	2	2	2	0.9	2	1	0.4	0.4	0.4
ESTERS AND LACTONES	<u> </u>	4	-	0.9	2	1	0.4	0.4	0.4
n-butylacetate	0	0	0	0	0.9	0.5	0	0	0
		-	-				÷		-
methyl acetate	0	0	0	2	3	2	0	0	0
methyl butonate	0	0	0	4	5	5	0	0	0
HALOGEN CONTAINING COMPOUNDS					~			<u> </u>	<u> </u>
bromnitromethane	0.9	0.9	0.9	8	9	8	0.9	1	1
NITROGEN CONTAINING COMPOUNDS		L						<u> </u>	<u> </u>
1-methyl-2-pyrrolidinone	3	3	3	0	2	1	0	0	0
caprolactam	0	0	0	1	1	1	0.9	1	1
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	0	0	0	0	0	0	0	0	0
hexamethylcyclotrisiloxane	4	4	4	4	4	4	0	0	0
SULPHUR CONTAINING COMPOUNDS				· ·			-	-	
5-chloro-2-methyl-3(2H)-isotiatsolon	2	2	2	0.9	0.9	0.9	0	0	0
benzothiazole	0	0	0	0.5	0.5	0.5	0	0	0
	0	0	U	0	0	U	0	0	0
Total	012	919	977	671	607	670	122	110	114
Total	813		866	671	687	679	122	110	116
TVOC	207								
TVOC non-TVOC	287 371	295 486	291 428	172 428	176 435	174 432	20 68	23 43	22 55

Tuble effet Buenground ennobien funde			
(µg/m³)			
ALIPHATIC AND ALICYCLIC COMPOUNDS		ALDEHYDES	
nonane	0.4	benzaldehyde	1
undecane	0.3	n-butanal	1
AROMATIC HYDROCARBONS		decanal	6
p,m-xylene	0.7	KETONES	
o-xylene	0.3	acetophenone	0.4
toluene	0.5	acetone	0.8
1,2,4-trimethylbenzene	0.3	ACIDS	
MONATOMIC ALCOHOLS		acetic acid	0.5
1-butanol	0.7	ESTERS AND LACTONES	
2-ethyl-1-hexanol	1	2-(2-butoxyethoxy)ethylacetate	0.5
PHENOLS		NITROGEN CONTAINING COMPOUNDS	
phenol	0.3	1-methyl-2-pyrrolidinone	0.7
ALCOHOL AND PHENOL ETHERS		caprolactam	10
2-(2-butoxyethoxy)ethanol	1	SULPHUR CONTAINING COMPOUNDS	
2-butoxyethanol	2	benzothiazole	1
SILICON CONTAINING COMPOUNDS			
organic Si-comp.	0.9	Total	30
		TVOC	26
		non-TVOC	2.3

 Table C117. Background emission values of plaster A in the FLEC test.

Table C118. Emission values of plaster A at 29 days in the FLEC test.

(μg/m ² ·h)		RH 20 %			RH 50 %		RH 80 %			
ALIPH. AND ALICYCLIC COMPOUNDS										
heptane	0.3	0.2	0.3	0	0	0	0	0	0	
octane	0.2	0	0.1	0	0	0	0	0	0	
nonane	0	0	0	0	0	0	0.4	0	0.2	
decane	0.3	0.3	0.3	0	0.2	0.1	0.2	0	0.1	
undecane	0.1	0.1	0.1	0	0	0	0.3	0.2	0.3	
dodecane	0.4	0.4	0.4	0	0	0	0	0	0	
tetradecane	0	0.3	0.2	0	0	0	0	0	0	
AROMATIC HYDROCARBONS										
benzene	0	0	0	0.2	0	0.1	0	0	0	
ethylbenzene	0	0	0	0.4	0.4	0.4	0.3	0.3	0.3	
p,m-xylene	2	2	2	1	1	1	1	1	1	
o-xylene	1	1	1	0	0	0	0.4	0	0	
styrene	0	0	0	0.4	0.4	0.4	0.3	0.3	0.3	
toluene	2	1	1	1	1	1	1	1	1	
1,2,3-trimethylbenzene	0.2	0.3	0.3	0	0	0	0	0	0	
1,2,4-trimethylbenzene	1	1	1	1	1	1	0	0	0	
1,3,5-trimethylbenzene	0	0.2	0.1	0	0	0	0	0	0	
C ₃ -alkyl benzene	0.7	0.7	0.7	0.5	0.5	0.5	0.4	0.3	0.4	
MONATOMIC ALCOHOLS										
1-butanol	0.1	0.1	0.1	0.4	0	0.4	0	0.2	0.3	
2-ethyl-1-hexanol	2	1	2	0	0	0	0.4	1	0.7	
benzylalcohol	0.3	0.2	0.3	0	0	0	0	0	0	
2-methyl-1-propanol	1	1	1	1	1	1	1	0	1	
DIVALENT ALCOHOLS										
1,2-propanediol	278	291	284	49	44	46	410	423	417	
ETHERS										
bis[2-(2-ethoxyethoxy)ethyl]ether	0.4	0.1	0.3	0.3	0.3	0.3	2	2	2	

Table C118. Emission values of pla $(\mu g/m^2 \cdot h)$		RH 20 %			RH 50 %			RH 80 %	
PHENOLS									
phenol	0	0	0	0.4	0.3	0.4	0	0	0
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	9	8	8	2	2	2	15	19	17
2-(2-butoxyethoxy)ethanol	0	0	0	1	1	1	2	2	2
1-methoxy-2-propanol	1	1	1	1	1	1	1	0	1
2-butoxyethanol	0	0	0	0	0.3	0.2	0	0	0
dipropylene glycol methyl ether	3	3	3	0.4	0.3	0.4	2	3	2
bis(2-hydroxypropyl)ether	0	0	0	0.3	0.3	0.3	5	6	5
dipropylene glycol-isomer	0	0	0	0	0	0	0	0	0
ALDEHYDES									
benzaldehyde	0	0	0	0.4	0.4	0.4	1	0	1
n-butanal	0	0	0	0	0	0	0	0	0
pentanal	0	0	0	0	0	0	0	0	0
hexanal	4	4	4	1	1	1	1	1	1
heptanal	1	1	1	1	1	1	0	0	0
octanal	1	1	1	1	1	1	0	1	1
nonanal	2	2	2	1	0	1	1	0	1
decanal	0	1	1	2	0	1	0	1	1
KETONES									
2-butanone (MEK)	0	0	0	0	0	0	0	0	0
acetone	2	1	2	2	2	2	5	4	4
acetophenone	0	0	0	0	0	0	0.4	0	0.2
1-hydroxy-2-propanone	0	0	0	0	0	0	0	0	0
ACIDS									
acetic acid	0	1	0	0	1	1	0	1	1
TERPENES AND THEIR DERIVATIVES									
limonene	0	0	0	0	0.4	0.4	0.3	0.3	0.3
α-pinene	0.2	0	0.1	0	0	0	0	0	0
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethyl acetate	0	0	0	0	0	0	0.3	0.3	0.3
1-methoxy-2-propyl acetate	0.3	0.4	0.4	0.2	0	0.1	0	0	0
TXIB	0	0	0	0	0	0	0	0.2	0.1
n-butyl acetate	0	0.4	0.2	0	0	0	0	0	0
HALOGEN CONTAINING COMPOUNDS									
dichloromethane	0.3	0.3	0.3	0.3	0	0.2	0.3	0.2	0.3
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	0	0	0	0	0	0	0.2	0.3	0.3
caprolactam	0	0	0	1	1	1	1	1	1
Total	315	327	321	72	65	68	456	473	465
TVOC	94	99	97	28	21	25	159	168	163
non-TVOC	2	2	2	3	4	3	6	5	5

Table C118. Emission values of plaster A at 29 days in the FLEC test. Table continues.

(µg/m³)			
ALIPHATIC AND ALICYCLIC COMPOUNDS		ALDEHYDES	
undecane	0.3	decanal	5
dodecane	0.3	KETONES	
AROMATIC HYDROCARBONS		acetone	1
ethylbenzene	0.3	ESTERS AND LACTONES	
p,m-xylene	1	2-(2-butoxyethoxy)ethylacetate	0.7
o-xylene	0.4	TXIB	0.3
toluene	2	SILICON CONTAINING COMPOUNDS	
1,2,4-trimethylbenzene	0.4	organic Si-comp.	1
MONATOMIC ALCOHOLS			
2-ethyl-1-hexanol	1	Total	16
ALCOHOL AND PHENOL ETHERS		TVOC	14
2-butoxyethanol	2	non-TVOC	1

Table C119. Background emission values of plaster C in the FLEC test.

Table C120. Emission values of plaster C at 27 days in the FLEC test.

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
heptane	0	0	0	0.3	0	0.2	0.2	0	0.1
nonane	0	0	0	0	0	0	0.3	0	0.2
decane	0.9	0.9	0.9	0	0.2	0.1	0	0	0
undecane	1	1	1	0.4	0.4	0.4	0.1	0	0.1
dodecane	0.9	0.9	0.9	0.2	0	0.1	0.1	0	0.1
methylcyclopentane	0	0	0	0.3	0.2	0.3	0	0	0
2-methylpentane	0.4	0.4	0.4	0.4	0.4	0.4	0	0.3	0.2
AROMATIC HYDROCARBONS									
benzene	0.4	0.4	0.4	0.3	0.3	0.3	0.2	0.2	0.2
ethylbenzene	3	3	3	0.9	1	1	0.3	0.3	0.3
propylbenzene	0.9	0.9	0.9	0.4	0.3	0.4	0	0	0
p,m-xylene	11	11	11	4	4	4	0.9	0.9	0.9
o-xylene	4	4	4	2	2	2	0.3	0.7	0.5
styrene	0.9	0.9	0.9	0.3	0.3	0.3	0	0	0
toluene	13	13	13	4	4	4	0.9	0.9	0.9
1,2,3-trimethylbenzene	0.4	0.4	0.4	0.3	0.3	0.3	0	0	0
1,2,4-trimethylbenzene	3	3	3	1	1	1	0.3	0.3	0.3
1,3,5-trimethylbenzene	0.9	0.9	0.9	0.4	0.3	0.4	0	0	0
1-ethyl-2-methylbenzene	0.4	0.4	0.4	0.3	0.3	0.3	0	0	0
C ₃ -alkyl benzene	3	3	3	0.9	0.9	0.9	0.4	0.4	0.4
MONATOMIC ALCOHOLS									
2-propanol	0	0	0	0.3	0.2	0.3	0.2	0.3	0.3
1-butanol	0.4	0.4	0.4	0.3	0.3	0.3	0	0.4	0.2
2-ethyl-1-hexanol	0.4	0.4	0.4	0.4	0.3	0.4	0.4	0	0.2
2-methyl-1-propanol	3	3	3	1	1	1	0.4	0.9	0.7
ETHERS									
bis(2-methoxyethyl)ether	0	0	0	0	0	0	0.4	0.3	0.4
ALCOHOL AND PHENOL ETHERS					I			I	
2-(2-butoxyethoxy)ethanol	0	0	0	0	0	0	0.9	0.9	0.9
1-methoxy-2-propanol	0.9	0.9	0.9	0.4	0.4	0.4	0.3	0.2	0.3
2-butoxyethanol	0	0	0	0	0	0	0	0	0

(μg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALDEHYDES									
benzaldehyde	0	0.4	0.2	0.2	0	0.1	0.4	0	0.2
n-butanal	0	0	0	0	0	0	0	0.9	0.5
hexanal	0.9	0.4	0.7	0.3	0.2	0.3	0	0	0
octanal	0	0	0	0.3	0	0.2	0	0.4	0.2
decanal	0	0	0	2	0	1	0	0.4	0.2
KETONES									
2-butanone (MEK)	1	1	1	5	5	5	0.3	0.3	0.3
acetone	2	2	2	4	3	3	1	2	2
TERPENES AND THEIR DERIVATIVES									
limonene	1	1	1	0.4	0	0.2	0	0	0
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethyl acetate	0	0	0	0	0	0	0.6	0.6	0.6
TXIB	0	0	0	0	0	0	0.2	0.1	0.2
n-butylacetate	0.9	0.4	0.7	0	0	0	0	0	0
HALOGEN CONTAINING COMPOUNDS									
dichloromethan	0	0	0	0.2	0.2	0.2	0	0	0
NITROGEN CONTAINING COMPOUNDS									
caprolactam	0	0	0	0	0	0	0.9	1	1
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	0	0	0	0	0	0	0	0	0
Total	55	54	55	31	28	29	10	13	12
TVOC	62	57	60	24	19	22	11	11	11
non-TVOC	4	4	4	9	9	9	2	4	3

Table C120. Emission values of plaster C at 27 days in the FLEC test. Table continues.

0.8

0.9

2

1

5

8

0.9

Table C121. Background emission values of the gypsum board in the FLEC test.

SILICON CONTAINING COMPOUNDS

SULPHUR CONTAINING COMPOUNDS

(µg/m³)

nonanal

KETONES acetone

organic Si-comp.

benzothiazole

non-TVOC

Total TVOC

Table C122	Emission values	s of the gynsum	n board at 28 da	avs in the FLEC test

(μg/m ² ·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
undecane	0	0	0	0	0.4	0	0	0	0
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	0	0	0	0	0	0	1	1	1
ALDEHYDES									
benzaldehyde	0	0	0	0	0.4	0.2	0.4	0.4	0.4
hexanal	0	0.9	0.5	0.9	0.9	0.9	0.4	0.4	0.4
octanal	0	0	0	0	0	0	0	0.4	0.2
nonanal	0	0	0	0.9	0.4	0.7	0.1	2	1
decanal	0	0	0	2	0	1	0	4	2
KETONES									
2-butanone (MEK)	0	0	0	1	2	2	0	0	0
acetone	0.4	0.9	0.7	0.9	2	1	1	0.9	1
ESTERS AND LACTONES									
texanol	0	0	0	0	0	0	0.9	0.4	0.7
HALOGEN CONTAINING COMPOUNDS									
1-chlorononane	0	0.1	0.1	0.1	0.1	0.1	0	0.1	0.1
1-chlorodecane	0.1	0.2	0.2	0.1	0.1	0.1	0	0	0
1-chloroundecane	0	0.2	0.1	0.1	0.2	0.2	0	0	0
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	0	0	0	0	0	0	0	0	0
hexamethylcyclotrisiloxane	0	0	0	0	0	0	0	1	1
Total	1	2	1	7	6	6	5	11	8
TVOC	3 ¹⁾	3 ¹⁾	3	6	6	6	3	10	6
non-TVOC	0.4	0.9	0.7	2	4	3	1	1	1

¹⁾ *Italic* font indicates that the value is below the detection limit.

$(\mu g/m^3)$	
MONATOMIC ALCOHOLS	
2-ethyl-1-hexanol	1
ALDEHYDES	
decanal	2
ALCOHOL AND PHENOL ETHERS	
2-(2-butoxyethoxy)ethanol	56
2-butoxyethanol	5
Total	64
TVOC	41
non-TVOC	0

 Table C123. Background emission values of adhesive B in the FLEC test.

Table C124. Emission values	of adhesive B at 14 days in the FLEC test.

(μg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	0.4	0.4	0.4	0.4	0.4	0.4	0	0	0
PHENOLS									
phenol	0.9	0.9	0.9	0	0.4	0.2	0.4	0.4	0.4
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	3	3	3	0	0	0	0	0	0
2-(2-butoxyethoxy)ethanol	2377	2501	2439	767	798	782	1080	1093	1086
2-butoxyethanol	1	1	1	3	1	2	0	0.9	0.5
ALDEHYDES									
benzaldehyde	0.9	0.4	0.7	0	0	0	0	0.4	0.2
KETONES									
acetophenone	0.9	0.4	0.7	0	0	0	0	0	0
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethyl acetate	12	12	12	3	2	2	2	2	2
texanol	2	2	2	0	0	0	0	0	0
TXIB	0	0	0	0.4	0	0.2	0	0	0
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	2	2	2	0	0	0	0	0	0
Total	2401	2523	2462	773	802	787	1082	1097	1089
туос	1326	1375	1350	480	498	489	657	661	659
non-TVOC	0	0	0	0	0	0	0	0	0

Table C125. Background emission values of primer and paint A in the FLEC test.

(µg/m ³)	•
TVOC	20

Table C126. Emission values of pri ($\mu g/m^2 \cdot h$)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
1-dodecene	5	5	5	7	5	6	6	6	6
octane	0	0	0	0	0	0	0	0.9	0.5
nonane	0	0	0	0	0	0	0	3	2
decane	0	0	0	0	0	0	0	0.4	0.2
undecane	0	0	0	0	0.4	0.2	0.9	1	1
MONATOMIC ALCOHOLS									
1-butanol	0.9	0.9	0.9	1	1	1	2	1	2
2-ethyl-1-hexanol	0.9	0.4	0.7	0.4	0.4	0.4	0.9	0.4	0.7
DIVALENT ALCOHOLS									
1,2-propanediol	626	635	630	269	264	267	1252	1278	1265
2,2,4-trimethyl-1,3-pentanediol	0	0	0	2	1	2	0	0	0
PHENOLS			-						-
phenol	0.4	0.4	0.4	0.9	0.4	0.7	0.9	0.9	0.9
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	2	2	2	2	1	2	10	11	11
2-(2-butoxyethoxy)ethanol	2	2	2	2	3	2	2	2	2
2-(2-butoxy-isopropoxy)-2-propanol, isomers	11	12	11	13	12	13	10	10	10
bis(2-hydroxypropyl)ether	0	0.4	0.2	0.4	0.2	0.3	0.9	0.9	0.9
ALDEHYDES	Ŭ	0		0	•	•••	0.7	0.5	
benzaldehyde	0	0.4	0.2	0	0	0	0	0.4	0.2
hexanal	0	0	0	0	0	0	0	0.9	0.5
heptanal	0	0	0	0	0	0	0	0.9	0.5
octanal	0	0	0	0	0	0	0	2	1
nonanal	0	0	0	0	3	1	0	5	2
decanal	0	0	0	0	0	0	0	6	3
KETONES	÷	÷	v	Ű	Ů	•	Ŷ	Ũ	
2-butanone (MEK)	0	0	0	0	2	1	4	5	4
acetone	0	0	0	0	0	0	0	3	2
ESTERS AND LACTONES	,	Ŷ	v	Ŭ	Ů	v	Ŷ	5	-
2-(2-butoxyethoxy)ethyl acetate	0	0	0	0.4	0	0	0	0	0
texanol	1014	1049	1031	1111	1142	1126	1309	1380	1344
TXIB	2	2	2	3	3	3	4	4	4
NITROGEN CONTAINING COMPOUNDS		_	-	5	5	•	•	•	-
1-methyl-2-pyrrolidinone	0.9	1	1	0.9	0.9	0.9	1	1	1
4,4-dimethyl-1,3-oxazolidine	0.4	0.4	0.4	0	0.2	0.1	3	2	2
dimethylperhydro-1,3-oxazine	0.1	0.1	0.1	0	0	0	0.3	0.4	0.4
SILICON CONTAINING COMPOUNDS									
hexamethylcyclotrisiloxane	0	0	0	0	0	0	2	2	2
SULPHUR CONTAINING COMPOUNDS	-	-	-		-				
2-methyl-3(2H)-isotiatsolon	0.4	0.9	0.7	0.9	0.9	0.9	2	2	2
								-	-
Total	1666	1713	1689	1413	1440	1427	2610	2732	2671
TVOC	1115	1128	1122	1058	1133	1095	1961	2049	2005
non-TVOC	0	0	0	0	2	1	4	8	6

Table C126. Emission values of primer and paint A at 14 days in the FLEC test.

(µg/m³)	
ALIPHATIC AND ALICYCLIC COMPOUNDS	
nonane	2
MONATOMIC ALCOHOLS	
2-ethyl-1-hexanol	2
ALDEHYDES	
benzaldehyde	2
nonanal	4
PHENOLS	
phenol	0.3
ALCOHOL AND PHENOL ETHERS	
2-butoxyethanol	3
ACIDS	
acetic acid	7
Total	20
TVOC	20
non-TVOC	7

Table C127. Background emission values of primer and paint B in the FLEC test.

Table C128. Emission values of primer and paint B at 14 days in the FLEC test.

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	0	0	0	1	0	1	0.4	1.3	1
AROMATIC HYDROCARBONS									
toluene	0.3	0	0.2	0	0.3	0.2	0	0	0
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	0.4	0	0	2	0.9	1	0.9	0.9	0.9
DIVALENT ALCOHOLS									
1,2-propanediol	66	71	68	22	21	22	71	79	75
PHENOLS									
phenol	0	0	0	0	0	0	0.9	0.9	0.9
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	5	5	5	2	2	2	5	5	5
2-(2-butoxyethoxy)ethanol	10	10	10	10	8	9	23	26	25
2-butoxyethanol	0	0	0	0	0	0	0	0	0
ALDEHYDES									
benzaldehyde	0.9	0.4	0.7	2	1	2	1	2	2
nonanal	2	0.9	1	3	3	3	3	2	2
ACIDS									
acetic acid	34	45	40	38	38	38	38	49	43
hexanoic acid	0	0	0	0	0	0	0.9	2	1
ESTERS AND LACTONES									
texanol	0	0	0	0	0	0	1	1	1
TXIB	0	0	0	0	0	0	0.4	0.9	0.7
Total	119	133	126	80	75	78	145	171	158
TVOC	15	17	16	27	15	21	32	37	35
non-TVOC	34	45	40	38	38	38	38	49	43

(µg/m³)	
ALDEHYDES	
decanal	17
Total	17
TVOC	57
non-TVOC	0

 Table C129. Background emission values of primer A and paint C in the FLEC test.

Table C130. Emission values of primer A and paint C at 14 days in the FLEC test.

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
hexane	2	2	2	0	0.9	0	0	0	0
heptane	7	8	7	3	3	3	0	0	0
octane	7	7	7	3	3	3	0	0	0
nonane	0	0.9	0.5	0	0	0	0	0	0
decane	2	2	2	1	1	1	0	0	0
undecane	12	12	12	5	5	5	2	2	2
dodecane	9	9	9	4	4	4	1	1	1
tridecane	2	2	2	0.9	0.9	0.9	0	0	0
A MIXTURE OF HYDROCARBONS									
hydrocarbon-mixture	186	211	199	112	112	112	54	41	48
MONATOMIC ALCOHOLS									
1-butanol	4	4	4	0	0	0	0	0	0
2-ethyl-1-hexanol	0	0	0	0.9	0	0.5	1	0.9	1
DIVALENT ALCOHOLS									
1,2-propanediol	705	688	696	432	480	456	542	560	551
PHENOLS									
phenol	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	0	0	0	4	4	4	5	6	6
2-butoxyethanol	2	2	2	0	0	0	2	0	1
ALDEHYDES									
benzaldehyde	0.9	0.9	0.9	1	0	1	0	0	0
n-butanal	9	8	9	6	6	6	3	4	3
pentanal	43	44	44	28	29	28	16	18	17
hexanal	145	145	145	97	93	95	53	57	55
heptanal	13	13	13	11	12	11	8	9	9
octanal	17	18	17	17	17	17	12	12	12
nonanal	17	19	18	17	18	17	13	13	13
decanal	0.9	0	0.5	3	2	2	0	0	0
2-decenal	10	10	10	8	8	8	8	8	8
KETONES									
2-butanone (MEK)	5	4	4	2	3	3	0	3	2
acetone	18	17	17	12	11	12	10	9	10
ACIDS									
acetic acid	53	88	71	30	57	44	32	30	31
propanoic acid	7	7	7	0	0	0	0	0	0
butanoic acid	8	8	8	10	11	10	6	6	6
pentanoic acid	44	44	44	34	37	35	26	29	28
hexanoic acid	190	190	190	159	181	170	137	154	145
2-etylhexanoic-acid	27	27	27	29	39	34	49	53	51
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethyl acetate	0	0	0	0	0	0	0.9	0.9	0.9
texanol	216	207	212	287	287	287	498	502	500
TXIB	1	1	1	1	2	2	2	2	2
			-		ł	_			
Total	1765	1797	1781	1318	1424	1371	1483	1521	1502
TVOC	1000	987	994	815	820	818	892	927	909
non-TVOC	84	117	101	51	77	64	45	45	45

(μg/m ³)			
ALIPHATIC AND ALICYCLIC COMPOUNDS		ACIDS	
nonane	0.7	acetic acid	27
MONATOMIC ALCOHOLS			
2-ethyl-1-hexanol	2	Total	35
ALDEHYDES		TVOC	20
benzaldehyde	0.9	non-TVOC	27
ALCOHOL AND PHENOL ETHERS			
2-butoxyethanol	4		

Table C131. Background emission values of primer and paint C in the FLEC test.

Table C132. Emission values of primer and paint C at 14 days in the FLEC test.

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
pentane	34	39	36	14	17	15	0	0	0
hexane	10	9	10	5	5	5	0	0	0
heptane	34	33	34	17	17	17	0	0	0
octane	30	30	30	16	16	16	0	0	0
decane	16	15	15	6	6	6	0	0	0
undecane	57	53	55	27	26	26	5	5	5
dodecane	18	18	18	10	10	10	0	0	0
A MIXTURE OF HYDROCARBONS									
hydrocarbon-mixture	420	395	407	309	320	314	194	175	184
MONATOMIC ALCOHOLS									
1-pentanol	23	23	23	14	15	14	8	8	8
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	0	0	0	0	0	0	6	5	6
ALDEHYDES									
n-butanal	12	9	11	8	9	8	7	5	6
pentanal	42	42	42	33	34	34	30	30	30
hexanal	128	128	128	110	110	110	110	106	108
heptanal	13	13	13	11	11	11	11	11	11
octanal	18	17	17	16	16	16	17	16	16
2-octenal	7	6	7	8	7	7	6	6	6
nonanal	19	19	19	20	16	18	19	19	19
decanal	0	0	0	6	0	3	0	0	0
2-decenal	11	10	11	11	12	11	13	13	13
undecenal	6	6	6	9	9	9	13	13	13
KETONES									
2-butanone (MEK)	11	10	11	8	8	8	0	0	0
2-heptanone	12	16	14	0	0	0	0	0	0
ACIDS									
acetic acid	57	88	73	29	38	33	17	14	15
propanoic acid	159	154	157	79	88	84	33	37	35
butanoric acid	43	40	41	25	26	26	12	12	12
pentanoic acid	119	115	117	84	88	86	57	62	60
hexanoic acid	489	467	478	410	436	423	326	344	335
2-etylhexanoic-acid	71	66	68	84	88	86	88	93	90
heptanoic acid	15	14	15	13	14	13	7	8	7
Total	1873	1835	1854	1382	1441	1411	977	980	978
TVOC	1075	1058	1067	851	837	844	533	542	538
non-TVOC	114	146	130	58	72	65	23	19	21

(µg/m³)			
ALIPHATIC AND ALICYCLIC COMPOUNDS		ALDEHYDIES	
nonane	0.8	benzaldehyde	1
AROMATIC HYDROCARBONS		nonanal	6
toluene	0.5	decanal	7
MONATOMIC ALCOHOLS			
2-ethyl-1-hexanol	1	Total	18
ALCOHOL AND PHENOL ETHERS		ТУОС	12
2-butoxyethanol	2	non-TVOC	0

Table C133. Background emission values of filler and plaster A in the FLEC test.

Table C134. Emission values of filler and plaster A at 14 days in the FLEC test.

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
heptane	5	5	5	3	3	3	0	0	0
nonane	0	0	0	0	0	0	0	0.1	0.1
undecane	1	1	1	2	2	2	0	0	0
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	0	0	0	0	0	0	0.5	0.5	0.5
DIVALENT ALCOHOLS									
1,2-propanediol	450	454	452	767	789	778	0	0	0
ETHERS									
bis(2-ethoxyethyl)ether	0	0	0	2	2	2	1	0.9	1
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	8	6	7	34	35	35	0	0	0
2-(2-butoxyethoxy)ethanol	0	0	0	0	0	0	5	4	5
1-methoxy-2-propanol	0	0	0	0	0	0	2	2	2
dipropylene glycol methyl ether	4	4	4	27	24	26	0.9	0.9	0.9
AROMATIC HYDROCARBONS									
p,m-xylene	1	1	1	0	0	0	0	0	0
toluene	1	1	1	0	0	0	0	0	0
ALDEHYDES									
benzaldehyde	0	0	0	0	0	0	0.9	0.9	0.9
pentanal	0	0	0	0	0	0	0.9	0	0.5
hexanal	3	3	3	3	3	3	1	2	2
octanal	0	0	0	0	0	0	1	2	2
nonanal	4	4	4	4	4	4	0.4	1	1
decanal	0	0	0	3	0	1	0	0	0
KETONES									
acetophenone	0	0	0	0	0	0	0	0.9	0.5
acetone	4	4	4	9	6	7	0	0	0
ACIDS									
acetic acid	15	16	15	10	10	10	9	6	8
ESTERS AND LACTONES									
TXIB	0	0	0	0	0	0	0.2	0.3	0.3
SILICON CONTAINING COMPOUNDS									
decamethylcyclopentasiloxane	0	0	0	0	0	0	0	0.3	0.2
OTHERS									
unidentified	0	0	0	8	8	8	0	0	0
Total	496	500	498	871	885	878	25	22	23
TVOC	132	132	132	291	304	298	15	17	16
non-TVOC	18	20	19	19	15	17	9	6	8

(µg/m³)			
ALIPHATIC AND ALICYCLIC COMPOUNDS		ALDEHYDES	
nonane	1	benzaldehyde	1
AROMATIC HYDROCARBONS		SILICON CONTAINING COMPOUNDS	
toluene	1	organic Si-comp.	8
MONATOMIC ALCOHOLS		Total	17
2-ethyl-1-hexanol	2	TVOC	16
ALCOHOL AND PHENOL ETHERS		non-TVOC	0
2-butoxyethanol	4		

Table C135. Background emission values of filler and plaster B in the FLEC test.

Table C136. Emission values of filler and plaster B at 14 days in the FLEC test.

(μg/m²•h)		RH 20 %			RH 50 %			RH 80 %	
AROMATIC HYDROCARBONS									
styrene	0	0	0	9	9	9	0	0	0
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	153	153	153	172	172	172	172	176	174
ETHERS									
bis(2-ethoxyethyl)ether	20	20	20	17	16	16	6	6	6
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	379	379	379	40	39	39	6	5	6
2-(2-butoxyethoxy)ethanol	313	313	313	168	168	168	43	39	41
KETONES									
acetone	0	0	0	19	11	15	10	10	10
ACIDS									
acetic acid	14	12	13	19	9	14	6	12	9
ESTERS AND LACTONES									
texanol	75	75	75	150	150	150	168	159	163
2-ethylhexylacetate	207	207	207	123	119	121	53	49	51
2-ethylhexylacrylate	79	79	79	38	38	38	12	12	12
2-ethyl-1-hexylpropionate	71	71	71	42	41	42	15	15	15
NITROGEN CONTAINING COMPOUNDS									
2-amino-2-methyl-1-propanol	12	15	13	20	25	22	19	26	22
4,4-dimethyl-1,3-oxazolidine	802	802	802	696	683	690	242	207	225
dimethylperhydro-1,3-oxazine	132	132	132	110	110	110	49	44	46
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	85	85	85	23	23	23	9	2	6
Total	2342	2343	2342	1646	1611	1629	809	761	785
туос	2073	2100	2086	1626	1569	1598	780	732	756
non-TVOC	14	12	13	38	19	29	15	22	19

Table C137. Background emission values of a 6 mm layer of plaster C in the FLEC test.

(µg/m³)	
ALCOHOL AND PHENOL ETHERS	
2-butoxyethanol	12
TVOC	39

Table C138. Emission values of a 6 mm layer of plaster C at 14 days in the FLEC test.

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS		KII 20 70			KII 50 70				İ
decane	0	0	0	0.2	0.3	0.3	0	0	0
undecane	0	0.4	0.2	0	0	0	0	0	0
dodecane	0.3	0	0.2	0.9	0.9	1	0.3	0	0.2
tridecane	0.4	0.4	0.4	3	3	3	0.3	0.4	0.4
tetradecane	3	2	2	4	4	4	0.4	0.4	0
pentadecane	1	1	1	1	1.3	1	0	0	0
hexadecane	1	0.9	1	0.9	0.9	1	0	0	0
2,2,4,6,6-pentamethylheptane	0	0	0	0.9	0.9	1	0.9	0.9	1
aliphatic hydrocarb.	0	0	0	7	7	7	0	0	0
A MIXTURE OF HYDROCARBONS									
hydrocarbon-mixture	0	0	0	70	62	66	0	0	0
AROMATIC HYDROCARBONS									
benzene	0.4	0.2	0.3	0.3	0.2	0.3	0.4	0.2	0.3
ethylbenzene	0.2	0.2	0.2	0	0	0	0	0	0
p,m-xylene	0.9	0.9	1	0.4	0.4	0	0.3	0.3	0.3
o-xylene	0.3	0.3	0.3	0	0	0	0	0	0
toluene	1.8	1.8	2	0.9	0.9	1	0.9	0.9	1
1,2,4-trimethylbenzene	0.4	0.4	0.4	0.2	0	0.1	0	0	0
MONATOMIC ALCOHOLS									
2-propanol	4	4	4	4	4	4	0	0	0
2-ethyl-1-hexanol	0	0	0	0	0	0	0.3	0	0.2
benzyl alcohol	0.9	0.9	1	0	0	0	0	0	0
ETHERS									
bis(2-methoxyethyl)ether	4	4	4	0	0	0	0	0	0
PHENOLS									
phenol	2	0	1	0	0	0	0	2.6	1
ALCOHOL AND PHENOL ETHERS									
2-phenoxyethanol	1	1	1	0.4	0	0	0	0	0
2-methoxyethanol	2	2	2	0.4	0.4	0	0	0	0
ALDEHYDES									
benzaldehyde	2	1	2	1	0.3	0.8	1	2	2
nonanal	3	3	3	3	4	3	3	6	5
decanal	2	2	2	1	2	2	3	4	3
KETONES									
2-butanone (MEK)	0	2	1	0	0	0	0	0	0
acetophenone	0.4	0.9	1	0.3	0	0.2	0.9	0.4	1
acetone	5	5	5	4	4.4	4	4	4	4
ACIDS									
acetic acid	18	35	26	13	13	13	31	18	24
ESTERS AND LACTONES									
1-methoxy-2-propylacetate	0	0	0	0	0	0	0.4	0	0.2
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	0.4	0	0.2	0	0	0	0	0	0
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	7	11	9	20	23	22	13	11	12
decamethylcyclopentasiloxane	0	0	0	0	0	0	0	0.9	0
Total	62	82	72	138	132	135	61	51	56
TVOC	70	71	71	137	115	126	15	20	18
non-TVOC	27	44	35	20	21	21	35	22	28

Table C139. Background emission values of primer and paint A spread onto gypsum board in the FLEC test.

$(\mu g/m^3)$		
TVOC		50 ¹⁾

¹⁾ *Italic* font indicates that the value is below the detection limit.

Table C140. Emission values of primer and paint A spread onto gypsum board at 14 days in the FLEC test.

$\frac{(\mu g/m^2 \cdot h)}{(\mu g/m^2 \cdot h)}$		RH 20 %	,		RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	0	0	0	0.4	0.4	0.4	0.4	0.4	0.4
AROMATIC HYDROCARBONS									
p,m-xylene	0.4	0	0.2	0	0.4	0.2	0	0.4	0.2
toluene	0	0	0	0	0	0	0	0.4	0.2
MONATOMIC ALCOHOLS									
1-butanol	0.9	0.9	0.9	2	2	2	2	2	2
2-ethyl-1-hexanol	0	0	0	0	0	0	0	0.4	0.2
DIVALENT ALCOHOLS									
1,2-propanediol	269	260	264	176	168	172	771	767	769
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	0	0	0	0	0	0	1	2	2
2-butoxyethanol	0	0	0	0.9	0.4	0.7	0.4	0.4	0.4
ALDEHYDES									
benzaldehyde	0.9	1	1	1	1	1	1	2	2
n-butanal	3	0	1	0.9	0.9	0.9	0.9	0.9	0.9
hexanal	0	0.9	0.5	0.9	0.9	0.9	0.9	0.9	0.9
nonanal	0.9	1	1	0.9	0	0.5	2	1	2
decanal	3	2	2	2	3	2	3	2	3
KETONES									
acetone	4	3	4	4	3	3	4	4	4
ACIDS									
acetic acid	168	5	86	10	4	7	26	21	24
propanoic acid	34	0	17	0	0	0	2	0	1
ESTERS AND LACTONES									
1-methoxy-2-propyl acetate	0	0	0	0	0	0	0.4	0	0.2
texanol	287	295	291	304	291	298	392	397	394
TXIB	0.4	0.4	0.4	0.4	0.9	0.7	1	0.9	1
ethyl acetate	1	0	1	0	0	0	0	0	0
HALOGEN CONTAINING COMPOUNDS									
dichloromethane	0.9	1	1	1	0.9	1	0	0	0
Total	771	572	671	506	476	491	1210	1202	1206
туос	304	309	306	300	295	298	740	749	745
non-TVOC	172	10	91	15	8	11	30	24	27

			i
(µg/m ³)			
ALIPHATIC AND ALICYCLIC COMPOUNDS		ALDEHYDES	
nonane	0.9	benzaldehyde	1
decane	2	heptanal	1
undecane	3	decanal	1
dodecane	1	KETONES	
AROMATIC HYDROCARBONS		acetone	0.9
benzene	0.2	ACIDS	
p,m-xylene	0.6	acetic acid	5
toluene	2		
1,2,4-trimethylbenzene	0.2	Total	23.2
MONATOMIC ALCOHOLS		ТУОС	50 ¹⁾
2-ethyl-1-hexanol	0.4	non-TVOC	9.9
HALOGEN CONTAINING COMPOUNDS			
dichloromethane	4		
	1 1	1	•

Table C141. Background emission values of primer and paint B spread onto gypsum board in the FLEC test.

¹⁾ *Italic* font indicates that the value is below the detection limit.

Table C142. Emission values of primer and paint B spread onto gypsum board at 14 days in the FLEC test.

(μg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	0	0	0	0	0.2	0.1	0	0	0
decane	0	0	0	0	0	0	0	0	0
dodecane	0	0	0	0	0	0	0	0	0
hexadecane	0	0.3	0.2	0	0	0	0	0	0
AROMATIC HYDROCARBONS									
benzene	0	0.1	0.1	0.1	0	0.1	0.3	0	0.2
ethylbenzene	0.2	0.3	0.3	0.1	0	0.1	0	0	0
isopropylbenzene	0.2	0.1	0.2	0	0	0	0	0	0
p,m-xylene	0.2	0.2	0.2	0.4	0.4	0.4	0	0.2	0.1
o-xylene	0.2	0.2	0.2	0	0.1	0.1	0	0	0
styrene	0.2	0.1	0.2	0	0	0	0	0	0
toluene	0	0	0	0.3	0.2	0.3	0.2	0.2	0.2
1,2,4-trimethylbenzene	0	0	0	0	0	0	0	0	0
1,3,5-trimethylbenzene	0	0.1	0.1	0	0	0	0	0	0
MONATOMIC ALCOHOLS									
2-propanol	0.1	0	0.1	0.1	0.1	0.1	0	0	0
1-butanol	0	0.2	0.1	0	0.1	0.1	0	0	0
2-ethyl-1-hexanol	0	0	0	0	0	0	0.1	0	0.1
DIVALENT ALCOHOLS									
1,2-propanediol	0.9	0	0.5	0	0	0	4	0.4	2
ALCOHOL AND PHENOL ETHERS									
2-butoxyethanol	0.3	0	0.2	0	0.1	0.1	0	0.1	0.1
ALDEHYDES									
benzaldehyde	0.4	0.4	0.4	0	0.9	0.5	2	1	2
pentanal	0	0	0	0	0	0.0	0	0	0
hexanal	0	0	0	0	0	0	0.4	0	0.2
octanal	0	0.1	0.1	0	0	0	0	0	0
nonanal	0	0.4	0.2	0	0	0	0.9	0.4	0.7
decanal	0.4	0.4	0.4	0.4	1	1	1	0	1

(µg/m²⋅h)		RH 20 %		RH 50 %			RH 80 %		
KETONES									
acetophenone	0	0.1	0.1	0	0	0	0.4	0.1	0.3
acetone	0.5	0.5	0.5	0.2	1	1	1	1	1
ACIDS									
acetic acid	0	0	0	4	12	8	8	0	4
HALOGEN CONTAINING COMPOUNDS									
dichloromethane	0	0	0	0	0.3	0.2	0	0	0
SILICON CONTAINING COMPOUNDS									
decamethylcyclopentasiloxane	0	2	1	0	0	0	0	0	0
Total	4	6	5	5	17	11	19	4	11
TVOC	0 ¹⁾	0 ¹⁾	0	22 ¹⁾	22 ¹⁾	22	22 ¹⁾	22 ¹⁾	22
non-TVOC	0	0	0	4	14	9	9	1	5

Table C142. Emission values of primer and paint B spread onto gypsum board at 14 days in the FLEC test. Table continues.

¹⁾ *Italic* font indicates that the value is below the detection limit.

Table C143. Background emission values of adhesive A spread onto gypsum board in the FLEC test.

(µg/m³)	
ALCOHOL AND PHENOL ETHERS	
2-butoxyethanol	13
ТУОС	40 ¹⁾

¹⁾ *Italic* font indicates that the value is below the detection limit.

Table C144. Emission values of adhesive A spread onto gypsum board at 14 days in the FLEC test.

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	0	0	0	0	0	0	0.9	0	0.5
tetradecane	0.4	0.4	0.4	0.4	0.9	0.7	0	0	0
hexadecane	0	0	0	0	0	0	0	0	0
AROMATIC HYDROCARBONS									
benzene	0	0	0	0	0.1	0.1	0.1	0.1	0.1
p,m-xylene	0	0.2	0.1	0	0	0	0	0	0
toluene	0.3	0.4	0.4	0.4	0.3	0.4	0.2	0.3	0.3
Biphenyls or their derivatives	0	0	0	0	0	0	7	5	6
MONATOMIC ALCOHOLS									
1-butanol	0	0	0	0	0.9	0.5	0	0	0
2-ethyl-1-hexanol	0.9	0.9	0.9	0.9	2	2	2	1	2
PHENOLS									
phenol	0	0	0	0	0.3	0.2	0.4	0.4	0.4
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	0	0	0	0	0	0	0.9	1	1
2-butoxyethanol	2	2	2	2	2	2	0	0	0
ALDEHYDES									
benzaldehyde	0	0	0	0	0.4	0.2	0.4	0.9	0.7
octanal	0	0	0	0	0	0	2	0.4	1
nonanal	1	2	2	3	1	2	7	2	4
decanal	1	2	2	5	1	3	10	1	6

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
KETONES									
acetophenone	0.4	0.3	0.4	0.3	0.4	0.4	0.2	0.9	0.6
acetone	0.4	1	0.9	1	1	1	2	2	2
ACIDS									
acetic acid	0	0	0	8	7	7	17	18	17
ESTERS AND LACTONES									
TXIB	0	0	0	0.2	0.2	0.2	0	0	0
SILICON CONTAINING COMPOUNDS									
decamethylcyclopentasiloxane	0	0	0	0	0	0	0.3	0	0.2
Total	7	9	8	21	19	20	50	33	42
TVOC	<i>18</i> ¹⁾	18 ¹⁾	18	18	18 ¹⁾	18	10	7	8
non-TVOC	0.4	1	1	9	8	9	19	20	19

Table C144. Emission values of adhesive A spread onto gypsum board at 14 days in the FLEC test. Table continues.

¹⁾ *Italic* font indicates that the value is below the detection limit.

Table C145. Background emission values of adhesive B spread onto gypsum board in the FLEC test.

(µg/m³)	
ALCOHOL AND PHENOL ETHERS	
2-butoxyethanol	6
TVOC	40 ¹⁾

¹⁾ *Italic* font indicates that the value is below the detection limit.

Table C146. Emission	values of ac	dhesive B sprea	d onto gypsum	n board at 14 days	s in the FLEC test.

(µg/m²⋅h)		RH 20 %			RH 50 %			RH 80 %	
AROMATIC HYDROCARBONS									
benzene	0	0.2	0.1	0	0.2	0.1	0.1	0	0.1
p,m-xylene	0.3	0.3	0.3	0	0.3	0.2	0.3	0.2	0.3
toluene	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
MONATOMIC ALCOHOLS									
2-ethyl-1-hexanol	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
PHENOLS									
phenol	0	0	0	0	0.3	0.2	0.3	0	0.2
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	0	0	0	0	0.9	0	18	17	18
2-butoxyethanol	0	0	0	0.4	0.9	0.7	0.9	0.9	0.9
2-phenoxyethanol	0	0	0	0.1	0	0.1	0.2	0.2	0.2
ALDEHYDES									
benzaldehyde	0	0	0	0	0.4	0.2	0.4	0	0.2
pentanal	0.9	0.9	0.9	0	0	0	0	0	0
hexanal	2	0	1	0	0	0	0	0	0
nonanal	1	0.9	1	2	2	2	4	2	3
decanal	2	0.9	1	3	3	3	4	1	2
KETONES									
acetophenone	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.2	0.3
acetone	0.9	0.9	0.9	0.9	1	1	2	1	2
ACIDS									
acetic acid	0	0	0	7	4	6	15	11	13
TERPENES AND THEIR DERIVATIVES									
limonene	0	0.4	0.2	0.4	0	0.2	0	0.4	0.2

(µg/m²⋅h)	RH 20 %			RH 50 %			RH 80 %		
SILICON CONTAINING COMPOUNDS									
decamethylcyclopentasiloxane	0	0	0	0	0.1	0.1	0	0.1	0.1
SULPHUR CONTAINING COMPOUNDS									
5-chloro-2-methyl-3(2H)-isotiatsolon	0	0	0	0	0	0	0.4	0.3	0.4
Total	9	6	7	15	15	15	47	36	41
TVOC	0 ¹⁾	0 ¹⁾	0	18 ¹⁾	18 ¹⁾	18	22	20	21
non-TVOC	0.9	0.9	1	8	5	7	17	12	15

Table C146. Emission values of adhesive B spread onto gypsum board at 14 days in the FLEC test. Table continues.

¹⁾ *Italic* font indicates that the value is below the detection limit.

Table C147. Background emission values of primer and paint A spread onto filler and plaster B applied onto calcium silicate brick in the FLEC test.

(µg/m ³)	
TVOC	18

Table C148. Emission values of primer and paint A spread onto filler and plaster B applied onto calcium silicate brick at 14 days in the FLEC test.

(µg/m²·h)		RH 20 %			RH 50 %			RH 80 %	_
ALIPH. AND ALICYCLIC COMPOUNDS									
1-dodecene	8	11	10	-	-	-	10	9	10
AROMATIC HYDROCARBONS									
styrene	3	3	3	-	-	-	2	0	1
MONATOMIC ALCOHOLS									
2-propanol	16	12	14	-	-	-	8	7	7
1-butanol	0	0	0	-	-	-	4	4	4
2-ethyl-1-hexanol	49	49	49	-	-	-	62	53	57
DIVALENT ALCOHOLS									
1,2-propanediol	569	577	573	-	-	-	613	582	597
ETHERS									
butylether	0.4	0.4	0.4	-	-	-	0.4	0.4	0.4
bis[2-(2-ethoxyethoxy)ethyl]ether	3	4	3	-	-	-	8	7	7
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	28	29	28	-	-	-	39	37	38
2-[2-(2ethoxy)ethoxy]ethanol	0.4	0.4	0	-	-	-	0.9	1	1
2-(2-butoxyethoxy)ethanol	84	88	86	-	-	-	119	119	119
ALDEHYDES									
benzaldehyde	2	3	3	-	-	-	3	4	3
KETONES									
acetone	4	4	4	-	-	-	5	4	5
ESTERS AND LACTONES									
texanol	287	304	295	-	-	-	476	463	469
TXIB	0	0	0	-	-	-	2	2	2
2-ethylhexyl acetate	12	13	13	-	-	-	11	10	10
2-ethylhexyl acrylate	7	7	7	-	-	-	6	6	6
2-ethyl-1-hexyl propionate	7	9	8	-	-	-	5	5	5
NITROGEN CONTAINING COMPOUNDS									
4,4-dimethyl-1,3-oxazolidine	31	28	29	-	-	-	185	172	179
dimethylperhydro-1,3-oxazine	3	3	3	-	-	-	16	15	15
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	0	0	0	-	-	-	7	8	7
Total	1113	1143	1128	-	-	-	1581	1507	1544
TVOC	564	582	573	-	-	-	1049	1000	1025
non-TVOC	21	16	18	-	-	-	12	12	12

Table C149. Background emission values of primer and paint A spread onto plaster C applied onto calcium silicate brick in the FLEC test.

TVOC 20 ¹⁾	(µg/m³)				
	TVOC			20 ¹⁾	

¹⁾ *Italic* font indicates that the value is below the detection limit.

Table C150. Emission values of primer and paint A spread onto plaster C applied onto calcium silicate brick at 14 days in the FLEC test.

(µg/m²⋅h)		RH 20 %			RH 50 %	-		RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
1-dodecene	8	11	10	-	-	-	10	11	10
pentadecane	0	0	0	-	-	-	0.9	0	0
hexadecane	1	1	1	-	-	-	1	1	1
AROMATIC HYDROCARBONS									
p,m-xylene	0	0.4	0.2	-	-	-	0	0	0
toluene	0	0.4	0.2	-	-	-	0	0	0
MONATOMIC ALCOHOLS									
2-propanol	5	5	5	-	-	-	0	0	0
1-butanol	1	1	1	-	-	-	3	3	3
2-ethyl-1-hexanol	0	0	0	-	-	-	0.9	0.4	0.7
benzyl alcohol	0.4	0.4	0.4	-	-	-	1	3	2
DIVALENT ALCOHOLS									
1,2-propanediol	238	207	223	-	-	-	599	599	599
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	0	0	0	-	-	-	0	0.4	0.2
2-(2-butoxyethoxy)ethanol	4	6	5	-	-	-	13	13	13
ALDEHYDES									
benzaldehyde	0.4	0.9	0.7	-	-	-	0.4	1	0.9
pentanal	1	0.9	1	-	-	-	0	1	1
hexanal	0	0	0	-	-	-	2	2	2
nonanal	0.9	0	0.5	-	-	-	2	0	1
decanal	2	0	1	-	-	-	3	6	4
KETONES									
acetone	3	9	6	-	-	-	4	4	4
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethyl acetate	0	0	0	-	-	-	0	0.9	0.5
texanol	326	326	326	-	-	-	273	282	278
TXIB	2	2	2	-	-	-	4	4	4
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	0.9	0.9	0.9	-	-	-	4	4	4
SILICON CONTAINING COMPOUNDS									
decamethylcyclopentasiloxane	0.4	0.4	0.4	-	-	-	0.4	1	1
Total	595	573	584	-	-	-	921	937	929
TVOC	392	383	388	-	-	-	502	520	511
non-TVOC	8	14	11	-	-	_	4	4	4

Table C151. Background emission values of primer and paint B spread onto filler and plaster B applied onto calcium silicate brick in the FLEC test.

(µg/m³)	
TVOC	20 ¹⁾

¹⁾ *Italic* font indicates that the value is below the detection limit.

Table C152. Emission values of primer and paint B spread onto filler and plaster B applied onto calcium silicate brick at 14 days in the FLEC test.

$(\mu g/m^2 \cdot h)$		RH 20 %	,		RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
pentadecane	0	0.4	0.2	-	-	-	0	0	0
hexadecane	0.9	1	1	-	-	-	1	0.4	0.9
AROMATIC HYDROCARBONS									
benzene	0	0.3	0.2	-	-	-	0	0.4	0.2
p,m-xylene	0.4	0.4	0.4	-	-	-	0	0	0
styrene	0	0	0	-	-	-	0.4	0	0.2
toluene	0.4	0.4	0.4	-	-	-	0	0	0
MONATOMIC ALCOHOLS									
2-propanol	3	3	3	-	-	-	3	3	3
1-butanol	0	0	0	-	-	-	2	2	2
2-ethyl-1-hexanol	7	7	7	-	-	-	38	37	38
benzyl alcohol	0.9	0	0	-	-	-	1	1	1
DIVALENT ALCOHOLS									
1,2-propanediol	24	24	24	-	-	-	38	34	36
ETHERS									
bis[2-(2-ethoxyethoxy)ethyl]ether	0	0	0	-	-	-	5	5	5
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	5	6	6	-	-	-	40	39	39
2-(2-butoxyethoxy)ethanol	16	19	17	-	-	-	141	141	141
2-butoxyethanol	0.4	0.4	0.4	-	-	-	0.4	0.4	0.4
ALDEHYDES									
benzaldehyde	3	1	2	-	-	-	3	4	4
octanal	0	2	1	-	-	-	2	1	2
nonanal	2	6	4	-	-	-	3	0.9	2
decanal	3	1	2	-	-	-	2	0.4	1
KETONES									
acetophenone	0	0.3	0.2	-	-	-	0	0	0
acetone	4	4	4	-	-	-	5	7	6
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethyl acetate	0	0	0	-	-	-	0.9	0.4	0.7
texanol	9	8	9	-	-	-	35	33	34
2-ethylhexyl acetate	1	1	1	-	-	-	5	5	5
2-ethylhexyl acrylate	0.9	0.9	0.9	-	-	-	4	4	4
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	0.9	0.9	0.9	-	-	-	1	1	1
4,4-dimethyl-1,3-oxazolidine	0	0	0	-	-	-	79	79	79
dimethylperhydro-1,3-oxazine	0	0	0	-	-	-	6	5	6
SILICON CONTAINING COMPOUNDS									
decamethylcyclopentasiloxane	0	0.4	0.2	-	-	-	0.4	0.4	0.4
Total	81	89	85	-	-	-	417	404	411
TVOC	26	28	27	-	-	-	247	383	315
non-TVOC	6	7	7	-	-	-	8	9	9

Table C153. Background emission values of primer and paint B spread onto plaster C applied onto calcium silicate brick in the FLEC test.

(µg/m³)	
TVOC	18

Table C154. Emission values of primer and paint B spread onto plaster C applied onto calcium silicate
prick at 14 days in the FLEC test.

$(\mu g/m^2 \cdot h)$	RH 20 %			RH 50 %		RH 80 %			
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	0	0	0	0	0	0	1	0	1
decane	0	0	0	0	0	0	0	0	0
tridecane	0	0	0	0	0	0	0.2	0	0.1
pentadecane	0.2	0.2	0.2	0	0	0	0	0	0
hexadecane	0.2	0.4	0.3	0	0.4	0.2	0.9	0.4	0.7
AROMATIC HYDROCARBONS									
benzene	0.3	0.2	0.3	0	0	0	0	0	0
p,m-xylene	0.2	0.2	0.2	0.4	0	0.2	0	0	0
toluene	0.1	0.1	0.1	0.4	0.4	0.4	0.4	0.4	0.4
MONATOMIC ALCOHOLS									
2-propanol	0	0	0	0.9	0	0.5	1	0.9	1
2-ethyl-1-hexanol	0.4	0.4	0.4	0.9	0	0.5	1	2	2
benzyl alcohol	0	0	0	0.9	0.9	0.9	1	2	2
DIVALENT ALCOHOLS									
1,2-propanediol	3	0	1	3	2	2	16	15	16
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	0	0	0	0	0	0	2	1	2
2-(2-butoxyethoxy)ethanol	2	2	2	6	4	5	29	30	30
2-phenoxyethanol	0	0	0	0	0	0	0.4	0	0.2
ALDEHYDES									
benzaldehyde	2	2	2	2	3	2	2	2	2
octanal	0	0	0	0	0	0	2	1	2
nonanal	1	2	2	1	0	1	3	0.9	2
decanal	0	0.4	0.2	3	0	1	5	2	4
KETONES									
acetophenone	0.2	0.4	0.3	0	0.4	0.2	0.4	0.9	0.7
acetone	1	0.9	1	2	1	2	3	2	3
ACIDS									
acetic acid	0	0	0	0	53	26	57	0	29
hexanoic acid	0	0	0	0	0	0	18	11	14
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethyl acetate	0	0	0	0	0	0	0.9	0.9	0.9
texanol	0	0	0	0	0	0	0.4	0	0.2
TXIB	0.1	0.1	0.1	0.2	0	0.1	0.4	0.4	0.4
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	0.4	0.4	0.4	0	0	0	0	0	0
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	0	0	0	0	0	0	0	5	2
decamethylcyclopentasiloxane	0.2	0.1	0.2	0	0	0	0.4	2	1
Total	11	10	10	20	66	43	146	80	113
TVOC	8	12	10	10	7	8	37	44	40
non-TVOC	14	12	13	3	54	28	62	3	32

Table C155. Background emission values of adhesive A spread onto filler and plaster B applied onto calcium silicate brick in the FLEC test.

(µg/m³)	
TVOC	15

Table C156. Emission values of adhesive A spread onto filler and plaster B applied onto calcium silicate brick at 14 days in the FLEC test.

$(\mu g/m^2 \cdot h)$		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
dodecane	0.2	0.4	0.3	-	-	-	0	0.9	0.5
pentadecane	0.9	0	0.5	-	-	-	0.9	0.9	0.9
AROMATIC HYDROCARBONS									
ethylbenzene	0.3	0	0.2	-	-	-	0	0	0
propylbenzene	0.2	0.2	0.2	-	-	-	0	0	0
isopropylbenzene	0.4	0.4	0.4	-	-	-	0.4	0.4	0.4
styrene	0.9	0.9	0.9	-	-	-	0.4	0.4	0.4
toluene	0.4	0	0.2	-	-	-	0	0	0
MONATOMIC ALCOHOLS									
2-propanol	0.9	0	0.5	-	-	-	1	0.9	1
1-butanol	0	0	0	-	-	-	3	3	3
2-ethyl-1-hexanol	17	16	17	-	-	-	44	40	42
benzyl alcohol	0.9	0	0.5	-	-	-	0	0	0
DIVALENT ALCOHOLS									
1,2-propanediol	2	3	2	-	-	-	2	3	2
PHENOLS									
phenol	0.9	0.9	0.9	-	-	-	1	0.9	1
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxy)ethanol	16	34	25	-	-	-	57	53	55
2-(2-butoxyethoxy)ethanol	36	71	53	-	-	-	181	181	181
1-methoxy-2-propanol	0	0	0	-	-	-	2	0	1
2-butoxyethanol	0.4	0	0.2	-	-	-	0	0.4	0.2
ALDEHYDES									
benzaldehyde	3	1	2	-	-	-	4	3	3
pentanal	0	2	1	-	-	-	0	0	0
heptanal	0	0	0	-	-	-	0	0.9	0.5
octanal	1	0.9	1	-	-	-	0.9	0	0.5
nonanal	2	1	2	-	-	-	0.9	2	1
decanal	3	1	2	-	-	-	0	2	1
KETONES									
acetophenone	2	0.4	1	-	-	-	1	0.4	1
acetone	2	2	2	-	-	-	6	6	6
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethyl acetate	0	0	0	-	-	-	0.9	1	1
1-methoxy-2-propyl acetate	0.4	0	0.2	-	-	-	0	0	0
texanol	2	5	4	-	-	-	49	57	53
TXIB	0.3	0.2	0.3	-	-	-	0	0	0
2-ethylhexyl acetate	9	8	9	-	-	-	14	11	12
2-ethylhexyl acrylate	4	4	4	-	-	-	7	7	7
2-ethyl-1-hexyl propionate	4	4	4	-	-	-	5	5	5
NITROGEN CONTAINING COMPOUNDS									
1-methyl-2-pyrrolidinone	0	0	0	-	-	-	0.9	0	0.5
4,4-dimethyl-1,3-oxazolidine	11	17	14	-	-	-	361	366	364
dimethylperhydro-1,3-oxazine	2	2	2	-	-	-	36	35	35
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	4	8	6	-	-	-	14	53	34
OTHERS									
phenyl maleinic acid anhydride	2	0	1	-	-	-	0	0	0
		101	4		ļ			0.55	0.17
Total	129	184	156	-	-	-	793	832	813
TVOC	93	106	99	-	-	-	657	661	659
non-TVOC	3	2	2	-	-	-	7	6	7

Table C157. Background emission values of adhesive A spread onto plaster C applied onto calcium silicate brick in the FLEC test.

(µg/m³)	
TVOC	18

Table C158. Emission values of adhesive A spread onto plaster C applied onto calcium silicate brick at 14 days in the FLEC test.

$(\mu g/m^2 \cdot h)$		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	0.9	0	0.5	0	0	0	0	0	0
dodecane	0	0	0	0	0	0	0.4	0.4	0.4
tridecane	0	0	0	0	0	0	0.4	0.4	0.4
tetradecane	0	0	0	0	0	0	0.4	0.4	0.4
hexadecane	0	0.3	0.2	0	0	0	0.4	0	0.2
AROMATIC HYDROCARBONS									
benzene	0.2	0.1	0.2	0.1	0.1	0.1	0	0.4	0.2
toluene	0.3	0.3	0.3	0.1	0.2	0.2	0.2	0.1	0.2
MONATOMIC ALCOHOLS									
2-propanol	20	23	21	2	2	2	2	2	2
2-ethyl-1-hexanol	0.3	0.4	0.4	0.4	1	0.9	1	2	2
benzyl alcohol	0	0	0	0	0	0	0.9	0.9	1
DIVALENT ALCOHOLS									
1,2-propanediol	0	0	0	0	0	0	2	0	1
PHENOLS									
phenol	2	0.9	1	2	1	2	0.9	1	1
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	0	0	0	0	0	0	4	0	2
ALDEHYDES									
benzaldehyde	2	0.9	2	0.9	0.9	0.9	1	2	2
n-butanal	0	0	0	2	0	1	0	2	1
octanal	0.9	0.4	0.7	0.4	0.9	0.7	0.9	0.9	0.9
nonanal	2	0.4	1	0.9	0.9	0.9	1	2	2
decanal	3	0.9	2	0.9	1	1	2	2	2
KETONES									
acetophenone	0.4	0	0	0.4	0	0.2	0.4	0.4	0.4
acetone	3	2	2	3	2	2	2	4	3
ACIDS									
acetic acid	13	8	11	10	4	7	5	0	2
ESTERS AND LACTONES									
TXIB	0	0	0	0.2	0	0.1	0.3	0.4	0.4
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	1	2	2	6	4	5	8	3	6
decamethylcyclopentasiloxane	0	0	0	0	0	0	0.4	0	0.2
Total	49	39	44	29	20	24	35	24	29
TVOC	11	8	9	11	11	11	23	19	21
non-TVOC	36	32	34	17	8	13	8	8	8

Table C159. Background emission values of adhesive B spread onto filler and plaster B applied onto calcium silicate brick in the FLEC test.

(µg/m ³)	
TVOC	18

Table C160. Emission values of adhesive B spread onto filler and plaster B applied onto calcium silicate brick at 14 days in the FLEC test.

$(\mu g/m^2 \cdot h)$		RH 20 %			RH 50 %			RH 80 %	
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	0	0	0	-	-	-	0	0.9	0.5
dodecane	1	0.9	1	-	-	-	1	1	1
tridecane	0	0.4	0.2	-	-	-	0	0	0
pentadecane	0	0.4	0.2	-	-	-	0	0	0
hexadecane	0.4	0.4	0.4	-	-	-	0.4	0.4	0.4
AROMATIC HYDROCARBONS									
propylbenzene	0	0	0	-	-	-	0.4	0.4	0.4
isopropylbenzene	0.4	0.4	0.4	-	-	-	0.9	0.9	0.9
styrene	0.4	0.4	0.4	-	-	-	0.9	0.9	0.9
MONATOMIC ALCOHOLS									
2-propanol	16	15	16	-	-	-	8	9	9
1-butanol	0	0	0	-	-	-	3	3	3
2-ethyl-1-hexanol	44	44	44	-	-	-	38	39	39
benzyl alcohol	0.9	0.9	0.9	-	-	-	1	0.9	1
DIVALENT ALCOHOLS									
1,2-propanediol	5	4	5	-	-	-	4	6	5
ETHERS									
bis[2-(2-ethoxyethoxy)ethyl]ether	12	13	12	-	-	-	13	13	13
PHENOLS									
phenol	2	2	2	-	-	-	0	2	1
ALCOHOL AND PHENOL ETHERS									
2-(2-ethoxyethoxy)ethanol	57	57	57	-	-	-	75	75	75
2-[2-(2ethoxy)ethoxy]ethanol	0.4	0.9	0.7	-	-	-	2	2	2
2-(2-butoxyethoxy)ethanol	1410	1459	1435	-	-	-	1692	1679	1686
2-butoxyethanol	0	0.9	0	-	-	-	0.9	0.9	0.9
ALDEHYDES									
benzaldehyde	3	3	3	-	-	-	3.5	4	4
n-butanal	3	0	1	-	-	-	5	4	5
nonanal	4	3	3	-	-	-	2	3	2
decanal	6	3	4	-	-	-	0	0	0
KETONES									
acetophenone	0	0	0	-	-	-	0.4	1	0.9
acetone	4	4	4	-	-	-	5	5	5
ACIDS									
acetic acid	8	4	6	-	-	-	25	19	22
TERPENES AND THEIR DERIVATIVES									
limonene	1	1	1	-	-	-	0.9	0.9	0.9
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethyl acetate	4	4	4	-	-	-	3	3	3
texanol	28	29	28	-	-	-	53	53	53
2-ethylhexyl acetate	17	18	17	-	-	-	17	16	17
2-ethylhexyl acrylate	13	13	13	-	-	-	12	12	12
2-ethyl-1-hexyl propionate	9	9	9	-	-	-	9	8	9

(μg/m²·h)		RH 20 %			RH 50 %			RH 80 %	
NITROGEN CONTAINING COMPOUNDS									
4,4-dimethyl-1,3-oxazolidine	84	88	86	-	-	-	322	331	326
dimethylperhydro-1,3-oxazine	11	11	11	-	-	-	24	25	24
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	4	7	5	-	-	-	17	13	15
Total	1748	1794	1771	-	-	-	2339	2332	2336
TVOC	837	837	837	-	-	-	1278	1278	1278
non-TVOC	31	23	27	-	-	-	43	38	40

Table C160. Emission values of adhesive B spread onto filler and plaster B applied onto calcium silicate brick at 14 days in the FLEC test. Table continues.

Table C161. Background emission values of adhesive B spread onto plaster C applied onto calcium silicate brick in the FLEC test.

(µg/m³)	
TVOC	15

Table C162. Emission values of adhesive B spread	l onto plaster C applied onto calcium silicate brick at
14 days in the FLEC test.	

$(\mu g/m^2 \cdot h)$	RH 20 %			RH 50 %			RH 80 %		
ALIPH. AND ALICYCLIC COMPOUNDS									
nonane	0.9	0	0	-	-	-	0	0	0
dodecane	0	0.3	0.2	-	-	-	0	0	0
tridecane	0.4	0.4	0.4	-	-	-	0	0	0
tetradecane	0.4	0.4	0.4	-	-	-	0.9	0.9	0.9
pentadecane	0.4	0.9	0.7	-	-	-	0.9	0.4	0.7
hexadecane	0.1	0.4	0.3	-	-	-	0	0	0
AROMATIC HYDROCARBONS									
benzene	0	0.2	0.1	-	-	-	0	0	0
toluene	0.4	0.4	0.4	-	-	-	0	0	0
MONATOMIC ALCOHOLS									
2-propanol	0.9	1	1	-	-	-	0	0	0
1-butanol	0	0	0	-	-	-	2	2	2
2-ethyl-1-hexanol	0.9	0.9	0.9	-	-	-	1	1	1
benzyl alcohol	0	0	0	-	-	-	2	2	2
DIVALENT ALCOHOLS									
1,2-propanediol	0	0	0	-	-	-	2	0	1
PHENOLS									
phenol	0.9	0.9	0.9	-	-	-	2	0.4	1
ALCOHOL AND PHENOL ETHERS									
2-(2-butoxyethoxy)ethanol	106	304	205	-	-	-	560	613	586
1-methoxy-2-propanol	0	0	0	-	-	-	0.9	0	0.5
2-butoxyethanol	0.9	0	0.5	-	-	-	0.9	0.9	0.9
2-phenoxyethanol	0	0	0	-	-	-	0.4	0.4	0.4
ALDEHYDES									
benzaldehyde	0.9	2	1	-	-	-	3	0	1
n-butanal	0	5	2	-	-	-	0	0	0
octanal	1	1	1	-	-	-	1	1	1
nonanal	3	1	2	-	-	-	2	2	2
decanal	4	3	3	-	-	-	4	4	4

(μg/m ² ·h)	RH 20 %			RH 50 %			RH 80 %		
KETONES									
acetophenone	0.4	0	0.2	-	-	-	0.9	0	0.5
acetone	1	0.9	1	-	-	-	3	2	2
ESTERS AND LACTONES									
2-(2-butoxyethoxy)ethyl acetate	0	0.4	0.2	-	-	-	2	1	2
TXIB	0.2	0.2	0.2	-	-	-	0.4	0	0.2
SILICON CONTAINING COMPOUNDS									
organic Si-comp.	2	2	2	-	-	-	19	6	12
Total	124	325	225	-	-	-	606	636	621
TVOC	53	141	97	-	-	-	339	357	348
non-TVOC	2	2	2	-	-	-	3	2	2

Table C162. Emission values of adhesive B spread onto plaster C applied onto calcium silicate brick at 14 days in the FLEC test. Table continues.

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY OF BUILDING MATERIALS TECHNOLOGY PUBLICATIONS

Report 6.	Matala, S., Effects of carbonation on the pore structure of granulated blast furnace slag concrete, 1995.
Report 7.	Mannonen, R., Effects of addition time of sulphonated naphthalene-based superplasticizer on the properties of concrete, 1996.
Report 8.	Eronen, J., Räsänen, V., Wirtanen, L., Penttala, V., Päällystettyjen betonilattioiden emissiot, 1998.
Report 9.	Räsänen, V., Eronen, J., Wirtanen, L., Penttala, V., Tasoitteiden vaikutus betonilattioiden kosteustekniseen toimintaan, 1998.
Report 10.	Wirtanen, L., Eronen, J., Räsänen, V., Penttala, V., Lämpötilan ja suhteellisen kosteuden vaikutus betonin kuivumiseen, 1998.
Report 11.	Tulimaa, M., Eronen, J., Lämpötilan ja suhteellisen kosteuspitoisuuden vaihtelut talviaikana betonisten elementtien ulkokuoressa sekä eristysvillan ulkopinnassa, 1998.
Report 12.	Komonen, J., Betonin pakkasenkestävyystestien kriittinen vertailu, 1999.
Report 13.	Punkki, J., Effects of a high-speed crusher-mixer on the properties of concrete, 2000.
Report 14.	Wirtanen, L., Vasama, M., Itsetiivistyvät betonit, 2001.
Report 15.	Eronen, J., Wirtanen, L., Räsänen, V., Penttala, V., Lattiapäällysteiden vaikutus betonilattioiden kuivumiseen, 2001.
Report 16.	Mannonen, P., Penttala, V., Al-Neshawy, F., Räsänen, V., Itsetiivistyvien betonien suhteitus, valmistustekniikka ja perusominaisuudet, 2004.
Report 17.	Cwirzen, A., Effects of the transition zone and ageing on the frost damage of high strength concretes, 2004.
Report 18.	Tulimaa, M., Wirtanen, L., Holt, E., Kukko, H., Penttala, V., Ympäristöystävälliset ja hyvin säilyvät betonit, 2005.

ISBN 951-22-8011-6 ISBN 951-22-8052-3 (PDF) ISSN 1455-5948