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Abstract

In this work, we use the Boltzmann–Matano method to determine the collective diffusion coefficient, DC(h), as a
function of coverage, h, from scaled coverage profiles obtained from Monte Carlo simulations using a lattice-gas
model of O/W(110). We focus on the temporal behavior of DC(h) as the system approaches equilibrium. We
demonstrate that the effective DC(h) obtained in this fashion depends strongly on the time regime chosen for analysis
of the density profiles, and thus may differ significantly from results obtained from equilibrium simulations within
ordered phases and close to phase boundaries. This is due to the interplay between spreading and phase-ordering
kinetics and is reflected in enhanced particle number fluctuations with respect to the equilibrium case. Also, both the
effective diffusion barriers of DC and the location of phase boundaries, as extracted from the data, depend on time.
© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction tal work is concerned, one of the long-standing
problems regards a variety of experimental tech-
niques, whose results even for the same surfaceThe diffusive motion of adatoms and molecules

on surfaces governs various important surface systems may strongly depend on the technique
used [5]. This is relatively easy to understand inphenomena such as epitaxial growth, ordering,

and spreading [1]. This has inspired a large number extreme cases, when one compares methods that
probe the diffusion process strictly in equilibriumof activities in both theory [1–3] and experiments

[1,4–6 ] to explore and resolve the diffusion proper- with other techniques that operate under condi-
tions far from equilibrium. Various experimentalties of many surface systems. As far as experimen-
and theoretical studies [5–9] have shown that such
non-equilibrium measurements yield results that
are often distinctly different from the equilibrium* Corresponding author. Fax: +45-45-934808.
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determined from the BM data are shifted from
their equilibrium counterparts. To make contact
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An interesting situation arises when there are
only slight deviations from equilibrium, in the

with experimental work, we finally discuss oursense that one might expect the assumption of
results in view of existing experimental measure-local equilibrium to be satisfied and the linear
ments and the difficulties associated with interpre-response theory leading to the diffusion equation
ting non-equilibrium data.to be valid. In such cases, the equilibrium theory

is used to analyze the measurements. This is typi-
cally the case in profile evolution measurements of
surface diffusion [4,10–17]. In situations where

2. Lattice-gas model and methodsthere are no ordered phases present, recent careful
studies [16–19] have shown that a very good

The lattice-gas Hamiltonian employed in thisagreement with the equilibrium results can be
work is a model of the O/W(110) adsorptionobtained. However, in the case of strong inter-
system. The interaction parameters are chosenactions leading to ordered phases, the experiments
[21,22] such that the resulting phase diagram (thatclearly indicate [13,15] that the diffusion behavior
can be found in Ref. [22]) is in close agreementcan be affected by non-equilibrium effects.
with the experimental observations [23–25]. In theIn this work, we concentrate on the case of
present study, we concentrate on the coverage andthe well-established Boltzmann–Matano (BM )
the temperature dependence of DC at a temperaturemethod [5,20], which is commonly used to extract
region around T=590 K, which is characterizedthe collective diffusion coefficient, DC(h), as a
by a disordered phase (DO) at low coverages,function of coverage, h, from scaled coverage
from which one crosses continuously over to anprofiles. We study a lattice-gas model of O/W(110)
ordered p(2×1) phase at h#0.35. At higher cover-[21,22] under conditions where there are several
ages, there is another transition of the secondordered phases present at different coverages. We
order to an ordered p(2×2) phase at h#0.59,

use Monte Carlo simulations to generate the cover-
which in turn crosses continuously over to a disor-

age profiles from which DC(h) is then extracted. dered phase at h#0.78. The model has been extens-
We expect this approach to provide an insight into ively studied, and a complete set of equilibrium
non-equilibrium effects on adatom dynamics in data for DC(h) at various temperatures is available
systems, where the lattice-gas approach is valid to for purposes of comparison in Refs. [21,22].
a good approximation. We focus on the temporal A key point in studies of dynamic processes
behavior of DC(h) as the system approaches equi- with the Monte Carlo method is the choice of
librium starting from a step function density pro- transition probabilities, w

i,f
, from an initial state,

file. We demonstrate that the effective DC(h) i, with energy, E
i
, to a final state, f, with energy,

obtained in this fashion in fact depends strongly E
f

[26 ]. As explained in Ref. [21], in addition to
on the time regime chosen for analysis of the the usual detailed balance condition, w

i,f
should

density profiles, and thus deviates significantly facilitate a realistic description of thermally
from results obtained from equilibrium simulations activated jumps via a transition state. Here, we
[22] within the corresponding ordered phases. This use the so-called transition dynamics algorithm
is due to the interplay between spreading and (TDA), in which a single-particle jump proceeds
phase-ordering kinetics, whose effect is particularly by two successive steps via an intermediate state,
pronounced in particle number fluctuations. Local I, with energy E

I
=D+(E

i
+E

f
)/2 such that w

i,f
=

properties such as the average transition rate of w
i,I

, w
I,f

. The rates have a Metropolis form, w
i,j
=

activated adatom jumps are only weakly affected min{1, exp[−(E
j
−E

i
)/kBT ]}, and the quantity

by the non-equilibrium conditions, however. We D>0 characterizes the effect of the (bare) saddle
furthermore find effective diffusion barriers to vary point of the adiabatic substrate potential. The use
strongly as the system approaches equilibrium, of TDA is supported by recent molecular dynamics

studies [26,27], where it was found that TDA isand notice that the locations of phase boundaries
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qualitatively consistent with the dynamics seen in
a true microscopic model of a system consisting

S
U
R
FA

C
E S

C
IE

N
C
E

LE
TTER

S

of interacting particles. Further details and addi-
tional references can be found in Ref. [21].

In the simulations, we consider the spreading
of a coverage profile h(x, t) in a semi-infinite
system, which ranges from −2 to +2 in the x
direction, and whose width, L

y
, is typically 1000

lattice units in the y direction. For the latter,
periodic boundary conditions are employed. The
coverage profile is initially an ideal step function
at x=0 [h(x, 0)=1 for x<0 and h(x, 0)=0 for
x>0], which evolves in time, t, as the particles
diffuse in the positive x direction. Here, x is the
coordinate with respect to the dividing line x=0,
which accounts for particle number conservation

Fig. 1. Scaled coverage profiles h(x/Et) at three different times
via during the profile evolution process. The time is defined in terms

of one Monte Carlo step (MCS), during which every particle
attempts to jump once on the average. In the data, severalP

0

1
x(h∞) dh∞=0.

profiles from the time regimes 10 000–12 000 MCS, 50 000–
60 000 MCS, and 250 000–300 000 MCS have been collapsed to

To determine the collective diffusion coefficient, obtain the scaled curves. The inset shows details of the profiles
within the developing p(2×1) phase.DC(h), we use the Botzmann–Matano method

[5,20], which is based on the assumption that, in
the long-time limit, the coverage profiles h(x, t)
collapse to a single scaling function when expressed

profile evolution process (10 000–12 000 MCS,as h(x/Et). Under these circumstances, one can
50 000–60 000 MCS, and 250 000–300 000 MCS).use a transformation g=x/Et to write the non-
Demonstrative snapshots of the profiles arelinear diffusion equation as an ordinary differential
furthermore shown in Fig. 2. The coverage profilesequation [28], whose solution reads as:
in Fig. 1 clearly evolve in time and tend towards
some universal curve at late times. The late-time

DC(h)=−
1

2t Adx

dh∞BK
h
P
0

h
x(h∞) dh∞. (1) behavior is particularly interesting since experi-

mentally obtained coverage profiles of similar kind
The Boltzmann–Matano analysis thus enables one have been used to analyze DC (h) by the BM
to calculate the coverage dependence of the collec- technique1. However, as becomes shortly evident
tive diffusion coefficient DC(h) over the whole in the following discussion, even the longest time
coverage range even from a single coverage profile. scales shown in Fig. 1 do not correspond to true
This is a great advantage in experimental work. equilibrium behavior.
However, since Eq. (1) can be applied to any To quantify the deviation from equilibrium
profile to obtain DC(h), great care must be taken during the profile evolution process, we have con-
to ensure that non-equilibrium effects do not affect sidered the time evolution of ordering within the
the data.

1 Recent experimental data [13,15] for h(x/Et) indicate that
the asymptotic region, where scale invariance really holds true,
is very difficult to achieve. These studies undoubtedly consider3. Results and discussion
the long-time behavior, but based on the slight deviations from
scale invariance (see results in Refs. [13,15]), it is not obvious

In Fig. 1, we show the scaled coverage profiles that the profiles analyzed in these works yield a true equilibrium
behavior of DC (h).h(x/Et) at three different time regimes during the



the two phases are energetically equivalent in the
present system, we define the order parameter
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w(t)¬Ew2
2×1(t)+w2

1×2(t) to quantify the approach
towards equilibrium2.

In the present system, we find that although
w(t) approaches the equilibrium behavior at long
times, it has not converged to this limit within the
time scales (t=250 000 MCS) shown above (data
to be shown elsewhere [29]). This implies that
none of the coverage profiles in Fig. 1 is in the
linear response regime of local equilibrium. This
finding is readily supported by the temporal depen-
dence of DC(h) shown in Fig. 3a, which is in
qualitative agreement with recent BM experiments
[13]. These results highlight the important role of
non-equilibrium effects played in the BM experi-
ments. This is particularly true within ordered
phases and close to phase boundaries, where devia-
tions from equilibrium behavior are most
pronounced.

We now discuss the origin of the deviations
from equilibrium behavior in DC(h) (see Fig. 3a).
In the present work, where we are dealing with a
lattice-gas description of surface diffusion, we can
study this problem by decomposing DC as [3,30]

DC(T, h)=
a2

4
j(T, h)C(T, h) fC(T, h). (3)

The first term on the RHS is just a geometric
Fig. 2. Snapshots of profile evolution simulations at times (a)

constant, j is the thermodynamic factor, which is10 000 MCS, (b) 50 000 MCS and (c) 250 000 MCS. Note that
inversely proportional to the compressibility of theonly part of the system is shown here. Also note the appearance

of the p(2×2) phase right below and the p(2×1) phase right adlayer, C describes the average transition rate of
above x=0, where the coordinates are given in lattice units. single-particle jumps, and fC is the correlation
The profiles spread in the [11:1] (or [1:11]) direction on the factor3, which accounts for dynamical correlations
surface.

2 In the profile-spreading simulations, the time-dependent
order parameter, w(t), and the effective jump rate, CBM, havep(2×1) phase in terms of the quantities
been averaged over successive strips of size 2×L

y
to determine

their coverage dependence.
3 In equilibrium, one considers the density–density autocorre-

lation function S(|r−r, |, t)=
dn(r, t)dn(r∞, 0)�, in whichGw
2×1(t)¬

2

L2
∑

i, j=1
L

n
i,j

(t) (−1)i

w
1×2(t)¬

2

L2
∑

i, j=1
L

n
i,j

(t) (−1)j ,

(2) dn(r, t)=n(r, t)−
n(r, t)� with an occupation variable n(r, t)=
0, 1 at a lattice site, r, at time, t. Then, DC can be obtained from
the pole of the corresponding Laplace–Fourier transform
S(k, z) [30], yielding Eq. (3). The correlation factor, fC, comes
from the memory function of S(k, z) and characterizes thewhich define the order parameters of the degener-
extent of correlations between successive displacements in the

ate p(2×1) and p(1×2) phases in a square system center of mass of the system. In the absence of dynamical corre-
of size L×L, where n

i,j
(t)=0, 1 is the occupation lations (the memory function) fC is 1, while correlations lead

to fC≠1.variable of the lattice site at (i, j) at time t. Since
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in the center-of-mass motion of the system [30].
We stress that Eq. (3) is formally an exact descrip-
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tion of DC within the lattice-gas approach in
equilibrium. Here, we will apply Eq. (3) under
non-equilibrium conditions also. In this case, we
formally write

DBMC (T, h)=
a2

4
jBM(T, h)CBM(T, h) f BMC (T, h), (4)

where the superscript BM indicates that the corre-
sponding quantities have been computed during
profile spreading, and thus may not correspond to
their equilibrium counterparts. We emphasize that
Eq. (4) should be regarded as an operational
definition only that reduces to the correct limit
when the quantities are evaluated in equilibrium.

We first focus on the average transition rate
CBM, which can readily be calculated from the
simulations. As is evident from Fig. 4a, CBM(T, h)
only weakly depends on the non-equilibrium con-
ditions and approaches its equilibrium limit,
Ceq(T, h), at long times. The largest deviations
occur close to the ideal coverages of the p(2×1)
and p(2×2) phases. A similar behavior is observed
in the effective barrier, EAC , of C shown in Fig. 4b
(as extracted from the usual Arrhenius descrip-
tion). Within and close to the p(2×1) phase, there
seems to be an ‘over-shooting’ effect [31,32] in C
and in the corresponding effective Arrhenius bar-
rier, which suggests that during the ordering pro-
cess at intermediate times, the local order within
small ordered domains is larger than the average
order in a corresponding system in equilibrium.
This is due to the competition between kinetics of
ordering and approach to equilibrium in the
system.

To obtain the combination jBM(T, h) f BMC (T, h),
we simply use DBMC (T, h), as obtained from the BM
analysis of the density profiles, and divide it by
the factor (a2/4)CBM(T, h) using Eq. (4). These
results are shown in Fig. 3b. As far as the correla-Fig. 3. (a) Coverage dependence of the collective diffusion

coefficient DC(h) at three different time scales during the profile tion factor, fC, is concerned, previous studies
evolution process. The results corresponding to a true equilib- [21,22] have shown that dynamical correlations
rium study [22] are also shown for comparison purposes. (b) are not very important in collective diffusion under
Quantity jfC as obtained using Eqs. (3) and (4). (c) Effective

equilibrium conditions. This is evidently true inactivation barriers, EAC(h), as they arise from an Arrhenius
non-equilibrium, too, and we thus simplyanalysis of DC(T, h). In this case, the error bars for BM simula-

tions are somewhat larger than the size of the symbols. The
dashed lines indicate phase boundaries in equilibrium.



tions of phase boundaries determined from the
BM data. The barrier, EAC , has been a subject of
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many experimental studies [5,10,11,14,15], where
it has been observed that the barriers found in
BM studies are not fully consistent with barriers
extracted from measurements with other tech-
niques [5]. This could be due to defects, whose
role in macroscopic BM experiments is more
important than in microscopic techniques such as
scanning tunneling microscopy. However, as the
results in Fig. 3c demonstrate, the temporal evolu-
tion of the profile prior to the linear response
regime provides another possible explanation for
this difference. Namely, we find that the barriers
EAC determined from BM studies can be signifi-
cantly different from the corresponding equilib-
rium results. This is, again, mainly due to particle
number fluctuations, since the barriers, EAC , in
Fig. 4b cannot explain the differences in Fig. 3c,
and the temperature dependence of fC accounts
typically for only about 10% of the total barrier
[22,33]. Another aspect of experimental interest
regards the locations of phase boundaries, which
are usually determined from the minima5 of j.
Using this approach, the results in Fig. 3a and b
reveal that if one analyzes BM data too early, the
estimated locations of phase boundaries can devi-
ate significantly from the actual equilibrium values.Fig. 4. (a) Average transition rate, CBM(h), of single-particle
This conclusion is supported by our further studiesjumps at various time scales, as in Fig. 2, including equilibrium

results, Ceq(h) from Ref. [22]. (b) Effective activation barriers, of |[∂w(t, T, h)/∂h ]T|, whose maxima characterize
EAC(h), as they arise from an Arrhenius analysis of C(T, h). The phase transition boundaries [29].
dashed lines indicate phase boundaries in equilibrium.

4. Summary and discussionassume4 that f BMC #fC. Our results therefore suggest
that the non-equilibrium nature of diffusion in the

In summary, we have presented results forBM experiments is most strongly manifested in
the collective diffusion coefficient, DC(h), inthe particle number fluctuations.
Boltzmann–Matano studies for a model adsorp-We next discuss two aspects that are of experi-
tion system as the system approaches equilibrium.mental interest in BM studies, namely the effective
In agreement with recent BM experiments [13],barrier for collective diffusion, EAC , and the loca-

5 The actual locations of phase boundaries should be interpre-4 We have carried out additional non-equilibrium studies by
quenching the system from a totally disordered state to a low- ted from response functions such as the compressibility of the

adlayer, kT, which is expected to have a maximum at a (second-temperature p(2×1) ordered phase, and followed the time evo-
lution of dynamical correlations during the equilibration pro- order) phase transition boundary. Due to practical difficulties

in measuring this quantity directly, however, one usually con-cess in terms of directional correlations between two jumps by
the particle [22]. We have found [29] the dynamical correlation siders the thermodynamic factor j=1/(kBThkT) directly (such

as in Gomer’s fluctuation method [5]) or assumes that DC iseffects to be strongest in equilibrium, while under non-equilib-
rium conditions, their effect is less pronounced. dominated by j.
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Chemical Physics of Solid Surfaces and Heterogeneouswe have found that DC (h) obtained in this fashion
Catalysis: Phase Transitions and Adsorbate Restructuringdepends strongly on the time regime analyzed, and

S
U
R
FA

C
E S

C
IE

N
C
E

LE
TTER

S

of Metal Surfaces Vol. 7 Elsevier, Amsterdam, 1994,
may differ significantly from results obtained from Chapter 6.
equilibrium simulations within ordered phases and [7] M.C. Tringides, P.K. Wu, M.G. Lagally, Phys. Rev. Lett.

59 (1987) 315.close to phase boundaries. Based on our results,
[8] M.C. Tringides, R. Gomer, Surf. Sci. 265 (1992) 283.this observation can be traced back to particle
[9] I. Vattulainen, J. Merikoski, T. Ala-Nissila, S.C. Ying,number fluctuations, which are significantly

Surf. Sci. 366 (1996) L697.
enhanced due to the prominent role of non-equilib- [10] R. Butz, H. Wagner, Surf. Sci. 63 (1977) 448.
rium mass transport in BM experiments. [11] E. Suliga, M. Henzler, J. Phys. C Solid State Phys. 16

(1983) 1543.Consequently, various quantities of experimental
[12] A.G. Naumovets, M.V. Paliy, Y.S. Vedula, Phys. Rev.interest such as the effective diffusion barrier of

Lett. 71 (1993) 105.DC also depend strongly on the time regime
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