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Abstract

In the first part of this thesis, we study diffusion of atoms on solid surfaces.
To this end, we carry out Monte Carlo simulations for a lattice-gas model of
O/W(110), first on clean surfaces and then on surfaces containing small con-
centrations of quenched (immobile) impurities. In both cases, we examine
how thermodynamic non-equilibrium affects tracer diffusion and collective
diffusion of atoms on a surface. We find that non-equilibrium effects can
play an important role when there are strong interactions in the system.
These effects persist even when there are only slight deviations from equi-
librium. We also find that even minute impurity concentrations can lead
to major changes in the diffusion coefficients. The combined effect is not,
however, additive. Indeed, we find that the non-equilibrium effects are most
pronounced on clean surfaces, while on surfaces covered by impurities the role
of non-equilibrium conditions is weaker. This is essentially due to the sim-
ilarity between disorder as induced either by the non-equilibrium condition
or by the presence of impurities on the surface.

In the second part of the thesis, we consider methodological aspects of
the dissipative particle dynamics (DPD) technique. First, we address the
question: “How to integrate the equations of motion in DPD simulations?”
We test and analyze several novel DPD integration schemes on an equal
footing through DPD simulations of different model systems. By monitoring
a number of physical observables including temperature, radial distribution
function, radius of gyration for polymers, and tracer diffusion, we find that
the methods by Lowe and Shardlow give the best overall performance and
are superior also to the integrators tested in previous studies.

Second, we study the dynamics of polymer melts. In standard DPD, as
well as in other coarse-grained soft potential models, there is a problem that
polymers can penetrate through themselves. This is a clear artifact, and has
direct consequences on polymer dynamics. To correct this problem, we tune
the conservative forces within the polymer chain so strong that chains cannot
cut through each other. Indeed, if a certain geometric criterion is met, it is
impossible for polymer chains to cross. Through DPD simulations, we show
that our approach is able to reproduce the Rouse-like dynamics for short
chains and reptational dynamics for longer chains. The results are in good
agreement with polymer theories and experiments.
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Tiivistelmä

Tämän väitöskirjan ensimmäisessä osassa tutkitaan atomien diffuusiota kiin-
teillä pinnoilla. Tarkoitusta varten suoritetaan Monte Carlo -simulaatioita
O/W(110)-systeemin hilakaasumallilla; ensin puhtailla pinnoilla ja sen jälkeen
pinnoilla, joihin on lisätty sammutettuja (liikkumattomia) epäpuhtauksia.
Kummassakin tapauksessa tarkastellaan, kuinka termodynaaminen epäta-
sapaino vaikuttaa atomien diffuusioon pinnalla. Tulokseksi saadaan, että
epätasapainoilmiöillä on tärkeä rooli, jos systeemin sisäiset vuorovaikutuk-
set ovat voimakkaita. Vaikka systeemi olisi hyvin lähelläkin tasapainoa,
epätasapainoilmiöiden vaikutus voi tällöin olla merkittävä. Toinen tulos
on, että hyvin pienet epäpuhtauskonsentraatiot voivat johtaa suuriin muu-
toksiin diffuusiotekijöissä. Yhteisvaikutus ei kuitenkaan ole additiivinen:
epätasapainoilmiöt ovat voimakkaimpia puhtailla pinnoilla, kun taas epäpuh-
tailla pinnoilla niiden vaikutus on vähäisempi. Tämä johtuu oleellisesti siitä,
että epäjärjestys, joka systeemiin aiheutetaan, on hyvin samankaltainen, joh-
tuipa se termodynaamisesta epätasapainosta tai pinnalla olevista epäpuh-
tauksista.

Väitöskirjan toisessa osassa tarkastellaan dissipatiivinen partikkelidyna-
miikka (DPD) -menetelmän ominaisuuksia. Ensin pohditaan, kuinka liikeyh-
tälöitä olisi parasta integroida DPD-simulaatioissa. Muutamia uusia integ-
rointialgoritmeja testataan ja analysoidaan suorittamalla DPD-simulaatioita
eri mallisysteemeille. Tarkastelemalla tiettyjä fysikaalisia suureita kuten
lämpötilaa, radiaalista jakaumafunktiota, polymeerien gyraatiosädettä ja
merkkipartikkelin diffuusiota päädytään tulokseen, että tutkituista algorit-
meista Lowen ja Shardlowin ehdottamat toimivat yleisesti ottaen parhaiten
ja ovat myös parempia kuin aiemmin tutkitut algoritmit.

Väitöskirjassa tutkitaan myös polymeerisulan dynamiikkaa. Normaalissa
DPD:ssä, kuten muissakin karkeistetuissa pehmeän potentiaalin malleissa,
ongelmana on, että polymeerit voivat tunkeutua toistensa läpi. Tämä on
virheellistä ja voi johtaa vääränlaiseen polymeeridynamiikkaan. Ongelman
korjaamiseksi konservatiiviset voimat säädetään niin vahvoiksi, että poly-
meeriketjut eivät pysty leikkaamaan toisiaan. Voidaan osoittaa, että jos
tietty geometrinen kriteeri täyttyy, polymeerit eivät yksinkertaisesti pysty
leikkaamaan toisiaan. Suorittamalla DPD-simulaatioita osoitetaan, että käy-
tettävä lähestymistapa tuottaa Rouse-tyyppisen dynamiikan lyhyille ketjuille
ja reptaatiodynamiikan pidemmille ketjuille. Saadut tulokset ovat sopusoin-
nussa vallitsevien polymeeriteorioiden ja kokeiden kanssa.
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Chapter 1

Introduction

Physics is a science that attempts to find the fundamental laws governing the
motion of matter and energy in the universe. The fundamental principles
of physics control everything from quarks to galaxies. By its very nature,
physics is an experimental science, and as such the experimental basis for
any physical theory is extremely important.

Physical problems are in general very difficult to solve exactly. Consider
for example the well-known three-body problem, i.e., three objects interact-
ing through known forces. Although the problem seems very simple, it cannot
be solved analytically [6]. If the number of interacting bodies is further in-
creased, the problem becomes even more complicated. In such a case, one
has to either make approximations or use numerical methods. The solutions
obtained by both of these approaches differ from the true solution. When us-
ing approximations, one reduces the original problem to a new, simpler one.
When using numerical approaches, the solution is not fully exact because of
finite numerical accuracy and related numerical errors. Nevertheless, both
issues can be controlled and accounted for when calculations are done with
sufficient care.

Numerical methods usually make use of thousands of repetitive calcula-
tions. In this task computers are invaluable. Today, computational methods
are the standard tools in almost every field of physics including particle
physics, materials science, and cosmology.

In relation to theory and experiments, computational physics lies some-
where in between the two. If compared to theories, computational methods
are typically able to avoid the often necessary and sometimes even crude
approximations that may be needed in building theories. If compared to
experiments, computational methods can address questions that are beyond
the limits and resolution of experimental techniques. Nevertheless, compu-
tational methods should not be considered as an alternative to theories or

1



2 Chapter 1. Introduction

Figure 1.1: Two atoms adsorbed on a surface. The adsorbed atoms tend to
sit at the high-symmetry sites of the underlying solid.

experiments, but these three approaches complement each other.

Although the computing power is constantly increasing, current methods
are restricted to rather limited length and time scales. For example, ab initio
approaches based on quantum mechanics are restricted to a few hundreds of
atoms and picoseconds; one cannot study everything from quarks to galaxies
with a single method. To fill the gaps between different computational meth-
ods, various coarse-graining procedures have been developed to link them.
One example of methods based on coarse-graining is the dissipative particle
dynamics technique [7, 8], which attempts to fill the gap between atomistic
and continuum methods.

In the future, the role of computational physics will certainly keep grow-
ing. The increase in computing power and algorithmic development has en-
abled studies of more complicated and interesting systems than ever before.

1.1 Surface Diffusion

In the first part of this thesis, we study the diffusion of atoms on solid sur-
faces. When atoms are adsorbed onto a surface, they tend to sit at the
potential energy minima of the underlying solid (Fig. 1.1). These minima
correspond to potential adsorption sites for the adsorbed atoms and are typ-
ically high-symmetry sites of the solid surface. Because adsorbed atoms are
most probably located at their adsorption sites, it is convenient to model the
system as a two-dimensional lattice gas. The problem seems quite simple,
but it is analytically solvable in special cases only. Computational methods
are therefore needed.

The technological importance of surface diffusion is apparent. Indeed,
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surface diffusion plays a key role in various important applications such as the
growth of semiconductor structures for electronic devices, the purification of
exhaust gases in the automotive industry, and the wetting of solid materials
by liquids to reduce friction in mechanical devices [9–11]. Importantly, in
many cases surface diffusion may even constitute the rate limiting step in
the process [1–3]. Therefore, more and more effort has been directed toward
understanding the physical laws that govern the diffusion of atoms and more
complex molecules on solid surfaces.

In this respect, the last few decades have been very successful. Thanks
to a wide range of experimental techniques [11–15] such as scanning tun-
neling microscopy and field ion microscopy, the basic knowledge of surface
structures and related diffusion mechanisms [15–18] is nowadays reasonably
good. Experimental studies have been complemented by theoretical investi-
gations [19–21], which in turn have provided plenty of insight into our under-
standing of the microscopic details of diffusion processes on solid surfaces.
Due to all these activities, it is fair to say that many of the key features of
surface diffusion under ideal conditions in thermodynamic equilibrium are
now well understood.

The situation becomes much more complicated, however, when the system
is no longer in equilibrium or, for example, contains impurities, steps, or other
defects that are typical under realistic conditions [12]. Indeed, there is ample
evidence that non-equilibrium or impurities (and other defects) can, and
often do, play a major role in diffusion processes. Several experimental and
theoretical studies have shown [13,22–31] that non-equilibrium measurements
may yield results that are distinctly different from the equilibrium ones. As
for impurities, experiments have shown that they can strongly affect surface
diffusion processes. For example, impurities can adsorb preferentially to
step edges [10, 11, 32–34], where they may block diffusion and initiate non-
smooth growth. This is undesirable in growing semiconductor structures.
Certain surfactants, on the other hand, have been noticed to have an opposite
effect in stabilizing smooth, layer-by-layer growth [35, 36]. Similarly, some
impurities “poison” surfaces as they block possible reaction sites and thus
inhibit the reaction processes, while others can promote reactions [32,33,37,
38]. Hydrogen, in turn, has been found to either promote or inhibit surface
diffusion of other particles in various systems [39–41]. The objective of the
present work is to shed some light on the above issues.
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Table 1.1: Different length and time scales and typical methods to study
them.

Scale

Macroscale

Atomistic

Example

Transistors

Molecules

Atoms

Length/m

10

10

10

Time/s

Light

Naked eyd

Experiment

10

10

10 Electron

Simulation

Boltzmann

Monte Carlo,

Dissipative particle

microscope molecular dynamics

microscope

sand
Grain of

Mesoscale

Phase field models,
finite element method

dynamics, lattice−

−3

−6

−9

−9

−15

−3

1.2 Dissipative particle dynamics

In the second part of the thesis, we consider the dissipative particle dynamics
(DPD) technique. Before going into to the details of the DPD method, let
us consider different length and time scales that are present in materials
(Table 1.1). In experimental work, the most important length scales are the
sample size and the resolution of the experimental technique. The ratio of
these lengths determines the number of details that can be seen. Of course,
the work required for sample preparation and analysis grows accordingly, and
therefore the number of details cannot be increased without limit. The same
problem is also faced in computer simulations: the CPU time required for a
simulation grows with the number of details.

In soft materials [42–44], such as liquid crystals, colloids, and biomem-
branes, the range of different length and time scales is huge. For example, in
protein folding all scales starting from the atomistic scale and ending to the
macroscopic scale are important. All these scales cannot be studied with a
single experimental technique or modeled using a single simulation approach.
Multiscale modeling aims to unite different methods in a systematic way and
is one of the hottest topics in materials modeling. We will discuss multiscale
modeling more in Sec. 3.4.1.

To systematically bridge and link different methods, various coarse-grain-
ing procedures have been developed. One example of such a method is the
inverse Monte Carlo technique [45], which attempts to link atomistic and
mesoscale methods.
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Typically, the coarse-graining of microscopic interactions results in coarse-
grained “particles” that represent a collection of molecules or molecular
groups rather than individual atoms. These particles interact with each
other through soft forces, which arise directly from coarse-graining of mi-
croscopic interactions. The DPD technique, in particular in its most typical
formulation [46], deals with this kind of particles.

Although coarse-graining might also be considered implicit in Brownian
and Langevin dynamics simulations, the DPD technique offers the explicit
advantage of a proper description of hydrodynamic modes significant in the
physical approach toward a system’s equilibrium. These issues are discussed
in detail in Chapter 3. This is achieved in DPD by implementing a thermo-
stat in terms of pairwise random and dissipative forces such that the total
momentum of the system is conserved. Due to these reasons, DPD has been
used in studies covering a wide range of aspects in soft matter systems, in-
cluding the structure of lipid bilayers [47, 48], self-assembly [49], and the
formation of polymer-surfactant complexes [50].

In this thesis, we will mainly consider methodological aspects of the DPD
technique. DPD is a relatively new method and despite its potential there are
still fundamental and methodological problems related to it. In relation to
the DPD technique, the first topic in this thesis is related to the integration
of the equations of motion. Due to the pairwise coupling of particles through
random and dissipative forces, the integration of the equations of motion
is a nontrivial task. The main difficulty arises from the dissipative force,
which depends explicitly on the relative velocities of the particles, while the
velocities in turn depend on the dissipative forces. An accurate description
of the dynamics requires, at least in principle, a self-consistent solution.

The considerable computational load associated with this task has moti-
vated the development of integration schemes [46, 51–57] which account for
the velocity dependence of dissipative forces in some approximate manner
allowing the integration to be carried out to a sufficient degree of computa-
tional efficiency. The search for a satisfactory integration scheme is ongoing,
since many of the recent proposals have been found to exhibit non-physical
behavior, such as systematic drift in temperature, and artificial structures in
the radial distribution function [53–55].

In order to overcome these problems, a number of new integration schemes
for DPD simulations have been developed in the past few years. Self-con-
sistent determination schemes exist on the one hand [53–55], but these are
rather elaborate and do not necessarily lead to improvements. Alternative
proposals include (i) a parameterization of the integrator based on the spe-
cific application being modeled by den Otter and Clarke [56], (ii) operator
splitting by Shardlow [57], and (iii) an elegant Monte Carlo-based approach
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Figure 1.2: Polymers are long chain-like molecules composed of many repeat-
ing structural units called monomers.

due to Lowe [58] which completely avoids the problems arising from random
and dissipative forces as it does not use random or dissipative forces at all.
In the present work, we apply these schemes respectively to specific model
systems, with the objective of assessing their relative performance.

The second topic in the studies concerning the DPD method focuses on
the dynamics of polymeric liquids. Polymers are long chainlike molecules
composed of many repeating structural units called monomers (Fig. 1.2).
The dynamic properties of polymer solutions and melts are affected by topo-
logical constraints. The origin of these constraints is easy to understand:
polymers can slide past, but not penetrate through each other. This is the
physical origin of the reptation model pioneered by P.-G. de Gennes, M. Doi,
and S. F. Edwards [59–61], which is the most successful theory in describing
the behavior of entangled polymers. Despite active research in the field, en-
tangled polymeric liquids keep posing many challenges to theorists [62–64],
experimentalists [65–67] and computational modelers [68–74]. The impor-
tance of understanding the fundamentals of polymeric liquids can hardly
be overemphasized as they are one of the key issues in novel (bio)materials
science [75,76].

The dynamics of polymer melts is typically described in terms of the
Rouse and reptation models [61]. Short chains are able to move to any
direction and are not entangled. This is the physical origin of the Rouse
model [61,77]. For longer chains, entanglements and uncrossability of chains
cannot be ignored, and the chains become constrained to move in the direc-
tion of the chain backbone. The motion resembles that of a reptating snake;
hence the name reptation model [59–61].

Computer simulations offer a detailed look into polymers and their dy-
namics. As was mentioned earlier, coarse-grained methods, such as DPD,
allow access to much greater length and time scales than atomistic simula-
tion methods do. This is due to the soft potentials and, like everything in
life, they do not come without a price to pay: the softness of the conserva-
tive potentials allows the chains to slide through each other thus strongly
affecting the dynamics of the system. Indeed, the scaling laws obtained from
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DPD simulations of polymer melts [78,79] are not able to describe entangled
liquids. This is a direct consequence of the fact that in DPD simulations,
polymers can penetrate through themselves. Whereas this is not a problem
in studying the equilibrium properties of polymeric liquids, reptation cannot
be studied using the basic DPD model.

To preserve the advantages of coarse-grained models and to take into
account the entanglement effects, there are currently two off-lattice methods
for this purpose. J. T. Padding and W. J. Briels [71] recently introduced an
algorithm that explicitly detects and prevents bond crossings. They consider
bonds as elastic bands that become entangled and use energy minimization
to determine the entanglement positions. This approach is general and very
promising but it is complicated to implement and computationally intensive.
Another promising approach was put forward by G. Pan and C. W. Manke
[80]. They reduce the frequency of bond crossings by introducing segmental
repulsive forces between the points of nearest contact between neighboring
chains. This approach is simple to implement but the introduction of a new
force and a related cutoff increases the computational load, and adds a new
length scale whose physical determination is somewhat ambiguous. In the
present work, we introduce a third alternative.

1.3 Structure of this thesis

This thesis is written in the style of a compilation of several scientific publi-
cations. In the first part of this thesis (Papers [1–3]) we study the diffusion
of atoms on solid surfaces. To this end, we carry out Monte Carlo simula-
tions for a lattice-gas model of O/W(110), first on clean surfaces and then on
surfaces containing small concentrations of immobile, site-blocking impuri-
ties. In both cases, we examine how non-equilibrium condition affects tracer
diffusion and collective diffusion of atoms on a surface.

In the second part, we consider methodological aspects of the dissipative
particle dynamics (DPD) technique. DPD is a relatively new method and
despite its potential there are still fundamental and methodological problems
related to it. First, in Paper [4] we address the question: “How to integrate
the equations of motion in DPD simulations?” To this end, we test several
novel DPD integration schemes on an equal footing through DPD simulations
of three different model systems, with the objective of assessing their relative
performance.

Second, we study the dynamics of polymer melts. Melt is the liquid
state of a polymeric system, from which it is processed into plastics, rubbers,
and many other polymeric materials. The understanding of the dynamics of
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melts is important. In standard DPD, as well as in other coarse-grained soft-
potential models, there is a problem that polymers can penetrate through
themselves. This is possible because with soft potentials it can happen that
two particles are in the same place at the same time. This is a clear artifact,
and has direct consequences on the polymer dynamics. To correct this prob-
lem, in Paper [5] we tune the conservative forces within the polymer chain
so strong that chains cannot cut through each other. Our objective is to
demonstrate that if a certain geometric criterion is met, it is impossible for
polymer chains to cross.

The first three chapters of this thesis give background information on
the research topics. Chapter 2 gives a brief introduction to the essential
physics, including statistical mechanics, hydrodynamics, diffusion, and poly-
mer physics. In Chapter 3 we discuss the simulation methods and models.
We focus on the Monte Carlo and dissipative particle dynamics techniques,
which are the main numerical methods used in this thesis. Finally, in Chap-
ter 4 we summarize the work and draw conclusions.



Chapter 2

Physical Background

2.1 Statistical Mechanics

Statistical mechanics is a framework for relating the microscopic laws govern-
ing individual atoms and molecules to the macroscopic properties of materials
that can be observed in everyday life, therefore explaining thermodynamics
as a natural result of the statistical properties of a very large number (∼ 1024)
of microscopic particles. In particular, it can be used to calculate the macro-
scopic thermodynamic properties of bulk materials from the microscopic data
of individual particles. For a comprehensive approach to statistical mechan-
ics see the books by L. D. Landau and E. M. Lifshitz [81], R. K. Pathria [82],
or K. Huang [83], for example.

2.1.1 Thermodynamic equilibrium

When two systems are put in contact with each other, there will be a net
exchange of energy and/or matter between them unless they are in thermo-
dynamic equilibrium. Qualitatively speaking, two systems are in thermody-
namic equilibrium with each other if they remain the same after being put in
contact. More precisely, thermodynamic equilibrium requires thermal equi-
librium (associated to heat exchange), mechanical equilibrium (associated to
work exchange), and chemical equilibrium (associated to matter exchange).

The definition of equilibrium is that forces ~Fi and torques ~τi must sum
to zero,

∑

i

~Fi = 0 (2.1)

∑

i

~τi = 0, (2.2)

9
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Figure 2.1: Free energy F as a function of the order parameter φ. In ther-
modynamic equilibrium, F is minimized.

chemical potentials of system components i are constant, i.e.,

µi = const, (2.3)

and that the thermodynamic potentials are minimized (Fig. 2.1). In equi-
librium all macroscopic variables (such as pressure and temperature) remain
constant in time.

Non-equilibrium thermodynamics [84] concerns situations where the sys-
tem under study is not in thermodynamic equilibrium. One important class
of non-equilibrium problems is the steady state, where a system is subject
to external forces or torques. If the forces do not vary with time, the sys-
tem quickly approaches steady state, where all macroscopic variables remain
constant in time. Some systems, in turn, are in non-equilibrium because of
the initial condition. These systems approach the thermodynamic equilib-
rium as time goes on. If the system is sufficiently close to equilibrium, it
can be divided into small partitions that are much closer to the equilibrium
than the whole system. In addition, if these partitions are large enough such
that thermodynamics is applicable to them, the system is said to be in local
equilibrium.

2.1.2 Ensemble theory

A microstate of a given classical system may be defined by specifying the
instantaneous positions and momenta of all the particles of the system.
Thus, the definition of a microstate requires the specification of 3N posi-
tions q1, q2, . . . , q3N and 3N momenta p1, p2, . . . , p3N , where N is the num-
ber of particles in the system. The set of coordinates ({qi}, {pi}), where
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i = 1, 2, . . . , 3N , may be regarded as a point in a space of 6N dimensions.
This space is referred to as the phase space.

Of course, the coordinates q = {qi} and p = {pi} are functions of time
t. The time evolution of these coordinates is determined by the canonical
equations of motion,

dqi
dt

=
∂H(q, p)
∂pi

(2.4)

dpi
dt

= −∂H(q, p)
∂qi

, (2.5)

where H(q, p) is the Hamiltonian of the system. During the time evolution
of the system, one can evaluate the time average 〈A〉time of a desired physical
quantity A. This is what is done in a molecular dynamics simulation, see
Sec. 3.3.

Instead of considering a single system at many instants of time, one can
consider a large number of system replicas at a single instant of time. In a
molecular dynamics simulation, this is achieved by starting the simulation of
the system at hand from different initial configurations. The replicas of the
system are chosen in such a way that they represent the same macrostate, but
are in distinctly different microstates. This kind of collection of microstates
is called an ensemble. The average over all microstates forming an ensemble
is called the ensemble average 〈A〉ens. Under certain conditions, i.e., if the
system is ergodic, the time average and the ensemble average are equal,

〈A〉time = 〈A〉ens. (2.6)

In general, the microstates are not equally distributed. This feature is
best described in terms of the distribution function ρ(q, p; t), which tells how
the microstates forming an ensemble are distributed at different instants of
time. In thermodynamic equilibrium, the distribution function is stationary,

∂

∂t
ρ(q, p; t) = 0. (2.7)

The most common equilibrium distribution functions are the canonical and
microcanonical distributions.

In a microcanonical ensemble, the macrostate of the system is defined by
the number of particles N , volume V , energy E, linear momentum ~p, and
the angular momentum ~l. This ensemble describes the statistical properties
of a completely isolated system, i.e., there is no exchange of heat or particles
with the environment. The microcanonical distribution function is given by

ρ(q, p) =
1

Ω
δ(H(q, p)− E), (2.8)
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where the normalization constant Ω is called the microcanonical partition
function. The conservation of linear and angular momenta can also be incor-
porated.

In a canonical ensemble, the macrostate of the system is defined by the
number of particles N , volume V , and the temperature T . This ensemble,
also called the NV T ensemble, describes the statistical properties of a closed
system connected to a heat bath. The canonical distribution function is given
by

ρ(q, p) =
1

Z
exp[−H(q, p)/kBT ], (2.9)

where kB is Boltzmann’s constant, T is the temperature of the heat bath,
and Z is the canonical partition function.

2.1.3 Ergodicity

In the previous subsection, we stated that for an ergodic system the time av-
erage equals the ensemble average if the system is ergodic [Eq. (2.6)]. To clar-
ify the concept of ergodicity, consider the time-averaging process of a given
physical quantity. If the given quantity is averaged only over a short period
of time, the result is biased because it is taken from a non-representative set
of microstates. However, if instead we average over a sufficiently long period
of time, the system may be expected to pass through all its possible mi-
crostates. In this case, the result of the averaging process would depend only
on the macrostate of the system, not on any particular subset of microstates.
A direct consequence of this would be that the time average is equal to the
ensemble average.

The above hypothesis, which states that the system passes through all
its possible microstates in the course of time, is called the ergodic theorem.
According to this theorem, the phase space trajectory of an ergodic system
passes through each and every point of the relevant region of the phase space,
if one only waits long enough. In a strict sense, only very simple systems can
be considered as truly ergodic. One example of a truly ergodic system is the
simple harmonic oscillator (Fig. 2.2a). In a broader sense, it is sufficient that
the phase space trajectory passes through any neighborhood of any point of
the relevant region of the phase space. In this sense, almost all real systems
can be considered as ergodic.

There are, however, systems that are not ergodic even in the broader
sense. They may be either truly non-ergodic or non-ergodic in practice.
For example, a system of N coupled harmonic oscillators will never reach
equilibrium but stays with whatever normal modes it started with [85]. Glass
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Figure 2.2: (a) Eigenstates of a simple harmonic oscillator. (b) Free energy
curve F (φ) of a glass. Variable φ is the order parameter.

(Fig. 2.2b), in turn, is a famous example of a system that is non-ergodic in
practice (i.e., trapped for indefinitely long time).

2.2 Phase transitions

Consider a physical system of N particles at constant pressure P and tem-
perature T . At high temperatures the system is disordered, uncorrelated,
uniform, and isotropic. Assume that this high-temperature state has the
full rotational and translational symmetry of space, as, e.g., in a gas. As
temperature is lowered, at some particular temperature, called the tran-
sition temperature Ttr, a new thermodynamic state emerges. This low-
temperature state is more ordered and correlated than the high-temperature
state. The transition between the disordered high-temperature state and
the ordered low-temperature state is called a phase transition. Examples
of phase transitions are: (i) solid–liquid–gas transitions (melting, boiling,
etc.), (ii) ferromagnetic–paramagnetic transition in magnetic systems, (iii)
conductor–superconductor transition in metals, (iv) superfluid transition in
liquid helium, and (v) separation of fundamental forces in the early universe.
For a comprehensive approach to phase transitions, see the books by J. J.
Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman [86], N. Golden-
feld [87], or P. M. Chaikin and T. C. Lubensky [88], for example.

2.2.1 First-order phase transitions

As a concrete example, let us consider the liquid–gas transition of water. At
high temperatures, water is in the gas phase. Its kinetic energy dominates
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Figure 2.3: A first-order phase transition proceeds by nucleation of small
bubbles of the new phase (white) in the old phase (colored).

its potential energy, and, as a result, it exists in a state that is disordered,
uncorrelated, uniform, and isotropic. Now, let us lower the temperature, i.e.,
the average kinetic energy. As the potential energy becomes more important,
specific intermolecular interactions come into play. For water molecules, the
relevant interactions are the dipole–dipole interaction and hydrogen bonding,
both of which are attractive for a particular configuration. Attraction tends
to enhance density fluctuations: each molecule wants to spend most of its
time in a region where there are other molecules rather than in a region where
there are none. This clustering grow in amplitude and persists for longer
times. Density is still uniform but only when averaged over large regions
of space or over long intervals of time. The end result of these attractive
interactions is the formation of the liquid phase, whose density is greater
than that of the gas phase.

Under ordinary circumstances the phase transitions of water are first-
order phase transitions. First-order transitions are those that involve la-
tent heat: when a substance makes a first-order transition from a high-
temperature phase to the low-temperature phase, a non-zero quantity of heat
is released as the temperature passes the transition temperature Ttr. The la-
tent heat is given out as the substance cools through an infinitesimally small
temperature range around the transition temperature Ttr. The emission of
heat at the transition tells us that the structure of the substance is being
radically changed at Ttr. For example, the latent heat L = 2300 kJ/kg is
released when H2O molecules condense into liquid.

A first-order phase transition proceeds by nucleation of small bubbles
of the new phase in the old phase (Fig. 2.3). These small bubbles grow in
size and coalesce with other bubbles until the old phase has disappeared.
This phenomenon is familiar to anyone who has boiled water in a kettle: the



2.2 Phase transitions 15

T

ρ

gas

T

ρ

c

c

two phase liquid

one phase
coexistence curve

(a)
P

T

CP

liquid
solid

TP gas

(b)

Figure 2.4: (a) Phase diagram of a typical substance at fixed pressure. (b)
Phase diagram of a typical substance at fixed density. (CP = critical point,
TP = triple point)

water does not instantly turn to vapor but forms a mixture of water and
vapor bubbles. The reason for this behavior is the latent heat. Because of
the latent heat, it takes a long time to accumulate the required energy.

Fig. 2.4a shows a portion of the phase diagram of a typical substance. Be-
low the critical temperature Tc, there is a coexistence curve, which separates
the one-phase region from the two-phase regions. Above Tc it is possible to
pass continuously from liquid to gas by increasing density ρ. In this case,
there is no density at which a liquid and a gas coexist. Note that even
starting below Tc it is possible to pass from a liquid to gas without passing
through the two-phase region: simply raise the temperature above Tc, reduce
the density, and then lower the temperature below Tc. Fig. 2.4b shows the
similar process in the temperature–pressure (T–P ) plane. The solid phase,
however, is completely separated by the phase boundary, which means that
there is no way to turn solid to liquid (or gas) continuously.

2.2.2 Continuous phase transitions

The previous section demonstrated that a liquid can be transformed into a
gas continuously if one first raises the temperature above the critical point
Tc, reduces the density, and then lowers the temperature below Tc. What
happens if we pass exactly through the critical point? This situation can be
produced by heating water in a sealed container. As the container is heated,
water steadily turns to vapor, raising the vapor density in the container.
Meanwhile the water expands slightly, so that the density difference between
the water and vapor becomes steadily smaller. If the volume of the container
is just right, the density difference between the water and vapor eventually
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vanishes. At this point the latent heat becomes zero, because it reflects
the different intermolecular binding energies of H2O molecules in liquid and
vapor. The temperature and pressure of water at this point are Tc = 647.4 K
and Pc = 22.1 MPa. These values define the critical point of the liquid–vapor
transition.

First-order phase transitions are generally defined to be those that in-
volve a non-zero latent heat, all other phase transition being considered as
continuous. The name “first order” refers to the fact that in the first order
phase transition the first derivative of the free energy is discontinuous. In the
continuous phase transition, in turn, the first derivative is continuous; hence
the name “continuous”. The vanishing of the latent heat at the critical point
does not ensure that the specific heat of a sample is a smooth function of
temperature, or even finite. In fact the specific heat cp often diverges in the
neighborhood of Tc as

cp ∼ |T − Tc|−α. (2.10)

where α is the critical exponent related to the specific heat. Typically,
0 < α ≤ 0.2. Several thermodynamic quantities other than the specific
heat cp usually diverge at a continuous phase transition. For example, the
isothermal compressibility κT of a container filled with fluid at the critical
density diverges near Tc as

κT ∼ |T − Tc|−γ , (2.11)

where γ is the critical exponent related to the isothermal compressibility.
Typically, 1 ≤ γ ≤ 2. In addition to α and γ, there are four more critical
exponents related to other observables [86–88].

The large value of the isothermal compressibility κT near Tc gives rise to
large fluctuations in the density of the material. In fact, the relation between
the isothermal compressibility and the particle number fluctuations is given
by

〈(δN)2〉
〈N〉 = ρkBTκT , (2.12)

where N is the number of particles, δN is the particle number fluctuation,
ρ is density, and kB is Boltzmann’s constant. As the system approaches the
critical point, the system will no longer be homogeneous: there are regions
with greater and lesser density. As the size of these regions approaches the
wavelength of visible light, scattering increases dramatically. This gives the
fluid a cloudy appearance. This phenomenon is known as critical opalescence.

The state of a system is usually characterized by a physical quantity called
the order parameter. The order parameter is used to distinguish between
different phases, such that above Tc the order parameter is zero and below
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Figure 2.5: Free energy F as a function of the order parameter φ. (a) First-
order phase transition. (b) Continuous phase transition

Tc it has a small but finite value. We will denote the order parameter by the
symbol φ. For example, a suitable order parameter for the liquid–gas phase
transition is φ = ρ−ρc, where ρc is the density of a fluid at the critical point.

The equilibrium state of the system corresponds to the minimum of the
free energy. Fig. 2.5a shows a schematic free energy curve F (φ) for the first-
order phase transition. In the first-order transition, the free energy has two
wells, the left one representing the low-temperature phase and the right one
representing the high-temperature phase. When the system approaches the
transition temperature from below (T < Ttr), the system stays in the left
minimum until the transition temperature Ttr is reached. At Ttr the system
suddenly jumps to the right minimum.

In the continuous phase transition (Fig. 2.5b), there is no barrier between
different phases. For this reason, the system can stay at all times at the lowest
possible value of F (φ), moving continuously from the high-temperature phase
to the low-temperature phase and vice versa. Near the critical temperature
T = Tc, the free energy F (φ) is very flat around the minimum so that small
fluctuations in F correspond to large fluctuations in φ. This is the cause of
critical opalescence observed in liquid–gas phase transitions.

In the case of a first-order transition, F (φ) is never flat so the fluctuations
in φ are never particularly large. As a result there are no critical phenomena.
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What can happen, however, is that the system can become trapped in a
local minimum for long times, and then suddenly jump to the true global
minimum.

To understand the critical behavior in Eqs. (2.10) and (2.11), we introduce
the concept of the correlation length, usually denoted by ξ. The correlation
length sets the scale over which each domain has a significant probability of
finding like domains in excess of the average domain. One can alternatively
interpret ξ as a measure of the average linear size of the domains containing
the minority phase. For example, in a gas, there will be density fluctuations
in thermal equilibrium. In a particular region of the sample, the density
may be higher than the average density. We can choose to think of such
a region as a droplet of near-liquid density floating in the gas. In thermal
equilibrium, there is a distribution of droplet sizes, of course, but it turns out
that there is a well-defined average size, at least away from the critical point
itself. This characteristic size is, roughly speaking, what we mean by the
term correlation length. A more precise definition of this important quantity
is given in Refs. [86–88].

The system fluctuates in all sizes up to size ξ, but fluctuations that are
significantly larger are exceedingly rare. As Tc is approached from either
above or below, ξ grows without limit. In fact, one finds empirically that
near Tc, ξ diverges as

ξ ∼ |T − Tc|−ν (|T − Tc|/Tc ¿ 1), (2.13)

where ν is the critical exponent related to the correlation length. Typi-
cally, 0.5 ≤ ν ≤ 1. The physical picture of this divergence is that of huge
droplets of one phase containing smaller droplets of other phase containing
still smaller droplets of the first phase and so on. This suggests that the sys-
tem is self-similar for a large range of different length scales: if we zoomed
in on part of the system at the phase transition, we would notice that the
resulting picture is essentially indistinguishable from the one presented by
the system as a whole: differences appear only at scales comparable to atom-
istic lengths, which set a natural limit, often called the ultraviolet cutoff.
This scale invariance is exploited in renormalization theory, which has led
to a qualitative and quantitative understanding of critical phenomena and
continuous transitions.

It is remarkable that continuous phase transitions arising in different sys-
tems often have the same set of critical exponents. This phenomenon is
known as universality. As a matter of fact, there is only a limited number
of universality classes. Physically this can be explained the following way:
as the correlation length ξ increases, microscopic properties become less and
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Figure 2.6: Temperature T/Tc as a function of density ρ/ρc for several fluids.
The data collapse implies that the critical exponent β ≈ 1/3 for all fluids.
Figure taken from the article by E. A. Guggenheim [89].

less important. Instead, as ξ becomes large, generic properties such as the
symmetry group of the Hamiltonian, the dimensionality of the system, and
whether or not the forces are short-ranged determine the behavior of the
system. For example, the critical exponents at the liquid–gas phase critical
point have been found to be independent of the chemical composition of the
fluid (Fig. 2.6). More surprisingly, the critical exponents of such very differ-
ent transitions as the liquid–gas transition and the separation of a mixture of
two organic chemicals have been found to be equal within experimental ac-
curacy, which can be understood in terms of the above arguments. Systems
exhibiting same critical exponents are said to be in the same universality
class.
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2.3 Hydrodynamics

Hydrodynamics concerns the macroscopic motion of liquids and gases. At
the macroscopic level, fluids (i.e., liquids and gases) can be considered as a
continuous medium. This means that, instead of individual molecules, fluids
are described with field variables such as mass density, momentum density,
and energy density. Although hydrodynamics is most often applied to fluids,
it can be used to study internal motions in any system including crystalline
solids and spin systems. For a comprehensive approach to hydrodynamics,
see the books by L. D. Landau and E. M. Lifshitz [90], or P. M. Chaikin and
T. C. Lubensky [88], for example.

2.3.1 Continuity equation

The state of a moving fluid can be described in terms of the fluid velocity
~v(~r, t), pressure P (~r, t), and the density ρ(~r, t). Together with the equation
of state, these three quantities define the state of the moving fluid completely.
All these quantities are functions of position ~r and time t. We emphasize
that ~v(~r, t) is the velocity of the fluid at a given point ~r in space at a given
time t, i.e., it refers to fixed points in space and not to specific particles of
the fluid. In the course of time, the latter move about in space. The same
remarks apply to P (~r, t) and ρ(~r, t).

The conservation of the total energy, total momentum, and the total mass
leads to three conservation equations. Let us begin with the equation that
expresses the conservation of mass. Consider some volume V0 of space. The
mass of fluid in this volume is

∫

ρdV , where ρ is the fluid density, and the
integration is taken over the volume V0. The mass of fluid flowing in unit
time through an element d~S of the surface bounding this volume is ρ~v · d~S,
where the magnitude of the vector d~S is equal to the area of the surface
element, and its direction is along the normal. By convention, we take d~S
along the outward normal. Then ρ~v · d~S is positive if the fluid is flowing out
of the volume, and negative if the flow is into the volume. The total mass of
fluid flowing out of the volume V0 in unit time is therefore

∮

ρ~v · d~S, (2.14)

where the integration is taken over the whole closed surface surrounding the
volume in question.

Next, the decrease per unit time in the mass of fluid in the volume V0

can be written

− ∂

∂t

∫

ρdV. (2.15)
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Equating the two expressions, we get

∂

∂t

∫

ρdV = −
∮

ρ~v · d~S. (2.16)

The surface integral can be transformed by Green’s formula to a volume
integral. Thus

∂

∂t

∫

ρdV = −
∫

∇ · (ρ~v)dV (2.17)

∫

[

∂ρ

∂t
+∇ · (ρ~v)

]

dV = 0. (2.18)

Since this equation must hold for any volume, the integrand must vanish,
i.e.,

∂ρ/∂t+∇ ·~j = 0. (2.19)

This equation is called the continuity equation. It states that in a fluid, the
total mass is conserved. The vector

~j = ρ~v (2.20)

is called the mass flux density. Its direction is that of the motion of the fluid,
while its magnitude equals the mass of fluid flowing in unit time through
unit area perpendicular to the velocity.

2.3.2 Euler’s equation

Next we derive the equation that expresses the conservation of momentum.
Consider some volume in the fluid. The total force acting on this volume is
equal to the integral of the pressure,

−
∮

Pd~S, (2.21)

taken over the surface bounding the volume. Transforming it to a volume
integral, we get

−
∮

Pd~S = −
∫

∇PdV. (2.22)

Hence we see that the fluid surrounding any volume element dV exerts on
that element a force −∇PdV . In other words, we can say that a force −∇P
acts on unit volume of the fluid.

We can now write down the equation of motion of a volume element in
the fluid by equating the force −∇P to the product of the mass per unit
volume (i.e., density ρ) and the acceleration d~v/dt:

ρd~v/dt = −∇P. (2.23)
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The derivative d~v/dt which appears here denotes not the rate of change
of the fluid velocity at a fixed point in space, but the rate of change of the
velocity of a given fluid particle as it moves about in space. This derivative
has to be expressed in terms of quantities referring to points fixed in space.
To do so, we expand d~v in terms of the partial derivatives with respect to ~r
and t:

d~v = dt
∂~v

∂t
+ drx

∂~v

∂rx
+ dry

∂~v

∂ry
+ drz

∂~v

∂rz
(2.24)

= dt
∂~v

∂t
+ (d~r · ∇)~v. (2.25)

Dividing both sides by dt, we get

d~v

dt
=
∂~v

∂t
+ (~v · ∇)~v, (2.26)

and substituting this in Eq. (2.23), we find

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇P. (2.27)

This equation is called Euler’s equation. It states that in a fluid the total
momentum is conserved. By combining Euler’s equation with the continuity
equation [Eq. (2.19)] we get

∂(ρ~v)/∂t+∇ ·Π = 0, (2.28)

where the tensor Πik is called the momentum flux density tensor,

Πik = Pδik + ρvivk. (2.29)

Equation (2.28) is often referred to as the momentum continuity equation.

2.3.3 Navier–Stokes equation

The momentum flux given in Eq. (2.29) represents a completely reversible
transfer of momentum, due to the mechanical transport of the different par-
ticles of fluid from place to place and to the pressure forces acting in the
fluid. The viscosity causes another transfer of momentum from points where
the velocity is large to those where it is small. This process is the result
of the thermodynamic irreversibility of the motion, which always occurs to
some extent, and is due to internal friction and thermal conduction.

In order to obtain the equations describing the motion of a viscous fluid,
we have to include some additional terms in the “ideal” momentum flux given
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in Eq. (2.29). Thus we write the momentum flux density tensor of a viscous
fluid in the form

Πik = Pδik + ρvivk − σ′ik (2.30)

= −σik + ρvivk. (2.31)

The tensor σik = −Pδik + σ′ik is called the stress tensor and σ′ik is the
viscous stress tensor. The viscous stress tensor σ′ik is due to the irreversible
“viscous” transfer of momentum in the fluid.

The general form of the tensor σ′ik is given by

σ′ik = η

(

∂vi
∂rk

+
∂vk
∂ri
− 2

3
δik∇ · ~v

)

+ ζδik∇ · ~v, (2.32)

where the constant η is called the shear viscosity and ζ is the bulk viscosity.
Eq. (2.32) is based on following assumptions: (i) the fluid is isotropic, (ii)
velocity gradients in the fluid are small, (iii) pressure and density gradients
are small, (iv) σ′ik vanishes when the whole fluid moves with uniform velocity,
and (v) σ′ik vanishes when the whole fluid is in uniform rotation.

The equations of motion of a viscous fluid can now be obtained by simply
adding the expressions ∇σ′ to Euler’s equation [Eq. (2.27)]. Thus we have

ρ

[

∂~v

∂t
+ (~v · ∇)~v

]

= −∇P + η∆~v + (ζ +
1

3
η)∇∇ · ~v. (2.33)

This equation is called the Navier–Stokes equation. It becomes considerably
simpler if the fluid may be regarded as incompressible. In this case ∇·~v = 0,
as follows from Eq. (2.19). Hence,

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇P +

η

ρ
∆~v. (2.34)

When combined with the continuity equation [Eq. (2.19)], the Navier–Stokes
equations yield four equations with four unknowns, i.e., density ρ and three
components of velocity ~v. These equations are very often treated in a dis-
cretized form on a computer. This field of research is called computational
fluid dynamics [91].

2.4 Diffusion

Consider a drop of ink in water. In the beginning, ink is highly concentrated
at the point where it is inserted. As time goes on, ink steadily spreads, until
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Figure 2.7: Brownian motion. In a pure diffusion process, particles move in
a completely random manner.

the ink is evenly distributed throughout the water. This process is called
diffusion (Fig. 2.7). In a pure diffusion process, there is no systematic force
driving the particles; they move in a completely random manner. The macro-
scopic motion of particles from concentrated regions to non-concentrated re-
gions is a consequence of the second law of thermodynamics: because there
are more microstates available with (nearly) uniform distribution than with
non-uniform distributions, the diffusion process proceeds toward the uniform
concentration. For a comprehensive approach to diffusion, see the book by
J. P. Hansen and I. R. McDonald [92], or the article by R. Gomer [13], for
example.

2.4.1 Fick’s laws of diffusion

Consider a small amount of particles of type A distributed among particles
of type B. If the particles of each type are not evenly distributed, there will
be a net flux of particles from regions of higher concentration toward regions
of lower concentration. The driving force for such a mass transport is the
concentration gradient—the steeper the concentration gradient, the greater
the diffusion. This proportionality is described by the equation

~j(~r, t) = −DC∇θ(~r, t), (2.35)

called Fick’s first law, which states that the net flow of particles ~j is propor-
tional to the concentration gradient ∇θ. The proportionality constant DC in
Eq. (2.35) is called the collective diffusion coefficient. Sometimes DC is called
the inter-diffusion coefficient or the chemical diffusion coefficient. Eq. (2.35)
is sufficient to define DC but for practical purposes it is useful to combine
Eq. (2.35) with the continuity equation [Eq. (2.19)]:

∂θ

∂t
+∇ ·~j = 0, (2.36)
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to obtain
∂θ

∂t
= ∇ · (DC∇θ), (2.37)

This equation is called Fick’s second law or the diffusion equation. Typically,
DC is a function of ~r, t, or θ. Therefore DC cannot be taken outside the
gradient operator. For example, in Sec. 2.4.6 we consider a situation where
DC is a function of θ.

2.4.2 Tracer diffusion

Let us next focus on the motion of a single particle. Its position vector is
given by ~ri(t). As a result of collisions with other particles, the particle will
slowly move away from its starting position ~ri(0). The displacement vector
~ri(t) − ~ri(0) can be used to measure diffusion. Because the particle has the
equal probability to move in any direction,

〈~ri(t)− ~ri(0)〉 = 0. (2.38)

The mean square displacement 〈[~ri(t)− ~ri(0)]2〉 in turn is not zero. To make
this clear, we divide time t into M intervals of equal length τ0 and the
coordinate ~ri correspondingly at times tm = mτ0 with m = 0, 1, . . . ,M .
Then ~ri(t) = ~ri(Mτ0) =

∑M
m=1 δ~ri(tm) + ~ri(0), where δ~ri(tm) = ~ri(tm) −

~ri(tm−1) is the change in the position of the particle between two consecutive
observations at times tm and tm−1. This leads to

〈[~ri(t)− ~ri(0)]2〉 =

〈[

M
∑

m=1

δ~ri(tm)

]2〉

(2.39)

=
M
∑

n=1

M
∑

m=1

〈δ~ri(tn) · δ~ri(tm)〉. (2.40)

At long times displacements δ~ri(tm), m = 1, 2, . . . ,M , are uncorrelated.
Therefore, in the limit |tm−tn| → ∞, 〈δ~ri(tn)·δ~ri(tm)〉 = 〈δ~ri(tn)〉·〈δ~ri(tm)〉 =
0. The last equality results from the fact that the particle has the same prob-
ability to move to any direction [cf. Eq. (2.38)]. Thus we obtain

〈[~ri(t)− ~ri(0)]2〉 =
M
∑

m=1

〈[δ~ri(tm)]2〉 (2.41)

= M〈(δ~ri)2〉 (2.42)

= (t/τ0)〈(δ~ri)2〉. (2.43)

In Eq. (2.42) we assume that 〈(δ~ri)2〉 = 〈[δ~ri(tm)]2〉 for all m = 1, 2, . . . ,M ,
which states that the mean square displacement depends on time difference,
not on time origin.
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From Eq. (2.43) we see that the mean square displacement is propor-
tional to t if t is large. This proportionality is related to the tracer diffusion
coefficient DT :

DT = lim
t→∞

1

2dt
〈[~ri(t)− ~ri(0)]2〉, (2.44)

where d is the dimension of the space. Sometimes DT is called the self-
diffusion coefficient. We can use Eq. (2.44) to estimate the distance r traveled
by a single particle. When t is sufficiently large,

r2 = 2dDT t. (2.45)

The relations like Eq. (2.44) between a transport coefficient and a infinite-
time limit of a mean square quantity are called the Einstein relations. Ein-
stein relations are derived for many transport coefficients such as the shear
viscosity, thermal conductivity, and electrical conductivity. For example, the
Einstein relation for DC is given by

DC = lim
t→∞

ξN

2dt
〈[~Rcm(t)− ~Rcm(0)]

2〉. (2.46)

Here ~Rcm = 1
N

∑N
i=1 ~ri(t) is the center of mass of the diffusing material and

ξ = 〈N〉/〈(δN)2〉 is the so-called thermodynamic factor describing the parti-
cle number fluctuations. The thermodynamic factor is inversely proportional
to the isothermal compressibility κT = 1/kBTθξ of the diffusing material [cf.
Eq. (2.12)].

2.4.3 Green–Kubo relations

In the previous section, we related the diffusion coefficient DT to the mean
square displacement of the particle. One can also use particle velocities ~vi(t)
to measure diffusion. If we write ~ri(t) as the time integral of the velocity, the
mean square displacement becomes

〈[~ri(t)− ~ri(0)]2〉 =

〈

[∫ t

0
dt1~vi(t1)

]2
〉

(2.47)

=
∫ t

0
dt1

∫ t

0
dt2〈~vi(t1) · ~vi(t2)〉 (2.48)

= 2
∫ t

0
dt1

∫ t1

0
dt2〈~vi(t1) · ~vi(t2)〉 (2.49)

= 2
∫ t

0
dt′(t− t′)〈~vi(t′) · ~vi(0)〉. (2.50)
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In the last equation we have defined a new variable t′ = t1− t2 and used the
property

〈~vi(t1) · ~vi(t2)〉 = 〈~vi(t1 − t2) · ~vi(0)〉, (2.51)

which states that the correlations in velocity depend on time difference, not
on time origin. Inserting Eq. (2.50) into the definition of tracer diffusion
[Eq. (2.44)] gives

DT = lim
t→∞

1

2dt
〈[~ri(t)− ~ri(0)]2〉 (2.52)

= lim
t→∞

1

dt

∫ t

0
dt′(t− t′)〈~vi(t′) · ~vi(0)〉 (2.53)

=
1

d

∫ ∞

0
dt′〈~vi(t′) · ~vi(0)〉. (2.54)

Often this quantity is averaged over all particles in the system, summing i
from 1 to N and dividing by N :

DT =
1

dN

N
∑

i=1

∫ ∞

0
dt′〈~vi(t′) · ~vi(0)〉. (2.55)

The diffusion coefficientsDT andDC give two views to the diffusion processes:
microscopic and macroscopic. The relation between DC and DT is derived
in Sec. 2.4.4.

In Eqs. (2.54) and (2.55) the integrand 〈~vi(t′) ·~vi(0)〉 is called the velocity
autocorrelation function. Such relations between a transport coefficient and
an integral over a time-correlation function are called Green–Kubo relations.
Green–Kubo relations have been derived for many transport coefficients, such
as the shear viscosity, thermal conductivity, and electrical conductivity. For
example, the Green–Kubo relation for collective diffusion is given by

DC =
ξ

dN

∫ ∞

0
dt′〈 ~J(t′) · ~J(0)〉. (2.56)

Here ~J(t) =
∑N

i=1 ~vi(t) is the total flux of particles and ξ is the thermody-
namic factor defined in Sec. 2.4.2.

2.4.4 Relation between DC and DT

The relation between DC and DT is obtained by dividing DC in Eq. (2.56)
with the averaged DT in Eq. (2.54). The result is

DC

DT

= ξ

∑

ij

∫∞
0 dt′〈~vi(t′) · ~vj(0)〉

∑

i

∫∞
0 dt′〈~vi(t′) · ~vi(0)〉

(2.57)

= ξ

[

1 +

∑

i6=j

∫∞
0 dt′〈~vi(t′) · ~vj(0)〉

∑

i

∫∞
0 dt′〈~vi(t′) · ~vi(0)〉

]

. (2.58)
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If the concentration is very low (θ → 0) the diffusing particles do not interact
with each other. In this case ξ = 1 and 〈~vi(t′) · ~vj(0)〉 = 0 for all i 6= j.
Therefore, in the limit θ → 0 we have

DC = DT , (2.59)

The result ξ = 1 is obtained by inserting the equation of state of an ideal gas,
pV = NkBT , into the definition κT = −(1/V )(∂V/∂p)T , and then relating
κT = 1/kBTθξ.

2.4.5 Memory expansion

In Secs. 2.4.2 and 2.4.3 we introduced two different ways to measure diffusion
coefficients. There is yet another possible way to measure DT (and DC). Let
us focus on the motion of a single particle. Instead of directly evaluating DT

from the long-time limit of Eq. (2.44), we consider the motion of the particle
at short time scales. The time t is divided into M time intervals of equal
length τ0 and the coordinate ~ri is discretized correspondingly at times tm =
mτ0 with m = 0, 1, . . . ,M . Then ~ri(t) = ~ri(Mτ0) =

∑M
m=1 δ~ri(tm) + ~ri(0),

where δ~ri(tm) = ~ri(tm)−~ri(tm−1) is the change in the position of the particle
between two consecutive observations at times tm and tm−1. This leads to
the expression [93]

DT = lim
M→∞

1

2dMτ0
〈[~ri(Mτ0)− ~ri(0)]2〉 (2.60)

= lim
M→∞

1

2dMτ0

M
∑

n=1

M
∑

m=1

〈δ~ri(tn) · δ~ri(tm)〉 (2.61)

= lim
M→∞

1

2dMτ0

[

M〈[δ~ri(0)]2〉+ 2
M−1
∑

k=1

(M − k)〈δ~ri(tk) · δ~ri(0)〉
]

.(2.62)

In the last equation we have defined a new variable k = n−m and used the
property

〈δ~ri(tn) · δ~ri(tm)〉 = 〈δ~ri(tn − tm) · δ~ri(0)〉. (2.63)

This equation states that displacement correlations depend on time differ-
ence, not on time origin. By denoting CT (tk) = 〈δ~ri(tk) · δ~ri(0)〉, we obtain
the expansion

DT =
1

2dτ0

[

CT (0) + 2
∞
∑

k=1

CT (kτ0)

]

. (2.64)

The application of this equation is called the memory expansion. S. C. Ying
et al. [93] generalized this method to the case of collective diffusion, where
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the memory expansion reads as

DC =
ξN

2dτ0

[

CC(0) + 2
∞
∑

k=1

CC(kτ0)

]

. (2.65)

In this equation, one considers correlation terms CC(tk) = 〈δ ~Rcm(tk)·δ ~Rcm(0)〉,
where ~Rcm = 1

N

∑N
i=1 ~ri(t) is the center of mass of the diffusing material and

δ ~Rcm(tk) = ~Rcm(tk)− ~Rcm(tk−1) is the change in the position of the center of
mass between two consecutive observations at times tk and tk−1.

The advantage of the memory expansion method with respect to corre-
sponding Green–Kubo relations is that memory expansions such as Eqs. (2.64)
and (2.65) do not involve continuous functions. This is beneficial because the
data to be analyzed is usually given as a set of consecutive observations, not
as a continuous function.

2.4.6 Boltzmann–Matano analysis

One of the most common approaches for studying collective diffusion is to
form a highly non-equilibrated concentration distribution, and then to let it
broaden diffusively with time. To determine the collective diffusion coefficient
DC(θ) as a function of concentration θ, one usually applies the Boltzmann–
Matano method, developed by C. Matano in 1933 [94]. The basis of this
method is to start with a step-like initial concentration profile,

θ(~r, t = 0) =

{

1 if rx < 0;
0 otherwise,

(2.66)

and then to let it evolve with time. With this initial condition, provided DC

is a function of θ only, the diffusion equation becomes one-dimensional:

∂θ

∂t
=

∂

∂rx

(

DC(θ)
∂θ

∂rx

)

. (2.67)

L. Boltzmann showed that in this case, θ may be expressed in terms of a
single variable rx/

√
t, so that the diffusion equation may be reduced to an

ordinary differential equation. Let us define a new variable

η =
rx√
t
. (2.68)

Thus we can write
∂θ

∂t
=
dθ

dη

dη

dt
= − rx

2
√
t3
dθ

dη
, (2.69)
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∂θ

∂rx
=
dθ

dη

dη

drx
=

1√
t

dθ

dη
, (2.70)

and

∂

∂rx

(

DC
∂θ

∂rx

)

=
d

dη

(

DC
∂θ

∂rx

)

dη

drx
=

1√
t

d

dη

(

DC
∂θ

∂rx

)

. (2.71)

Inserting Eqs. (2.69), (2.70), and (2.71) into Eq. (2.67) gives

−η
2

dθ

dη
=

d

dη

(

DC(θ)
dθ

dη

)

. (2.72)

This equation is an ordinary differential equation with respect to the variable
η.

By integrating with respect to η, we obtain the following expression for
DC(θ):

DC(θ) = −
1

2

(

dη

dθ′

)

θ

∫ θ

0
ηdθ′. (2.73)

Applying this expression to analyze concentration profiles is called the Boltz-
mann–Matano analysis. It enables one to calculate the concentration depen-
dence of the collective diffusion coefficient DC over the whole concentration
range even from a single concentration profile. This is a great advantage
in experimental work. However, due to the fact that the law rx ∝

√
t [cf.

Eq. (2.45)] holds true only for long times and distances, great care must be
taken when the Boltzmann–Matano method is used.

2.4.7 Surface diffusion

Consider a gas–solid interface in the vicinity of a solid surface. The motion of
an atom (or molecule) is characterized by four different dynamical processes.
First, an atom in a gas may stick (adsorb) to the surface and find a ther-
modynamically stable site, where it may vibrate and interact with substrate
excitations such as phonon modes and electron–hole pair excitations, until
diffusion to another location on a surface takes place. After several such
diffusion events have occurred, the atom may finally detach (desorb) from
the surface. Atoms adsorbed on a surface are called adatoms (Fig. 2.8a).

When an atom adsorbs (chemisorbs) onto a surface, it tends to sit at
the bottom of the potential well of the underlying solid. These minima
correspond to potential adsorption sites for the adatom and are typically
high-symmetry sites of the solid surface. Examples of possible adsorption
sites include a bridge site between two surface atoms and a hollow site in
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xx x1 2

(a)

xx x1 2

V(x)

EA

(b)

Figure 2.8: (a) A substrate (open circles) and two adatoms. (b) Potential
energy curve for an adatom moving parallel to the surface.

the middle of three or four surface atoms. The possible adsorption sites vary
from one adsorption system to another and their precise location is of no
importance for the present discussion.

At low temperatures, adsorbed atoms will remain almost indefinitely on
the surface. This is because the energy required to desorb an adatom is much
greater than the thermal energy at that temperature. The energy barrier EA

(Fig. 2.8b) for surface diffusion is typically much lower, and thus the adatoms
are able to diffuse on the surface even at relatively low temperatures.

When an atom is adsorbed on a surface, it vibrates in the adsorption well
until it tries to jump to the neighboring adsorption site by crossing a saddle
point of the surface potential. Under this condition, diffusion takes place by
thermally activated jumps from one adsorption site to another. It is found
that the diffusion coefficients obey (at least approximately) Arrhenius laws:

DT (T ) = DT,0 exp(−ET
A/kBT ) (2.74)

and

DC(T ) = DC,0 exp(−EC
A/kBT ), (2.75)

where ET
A and EC

A are the activation energies for tracer and collective diffu-
sion, respectively. The effective activation energies are usually determined
from so-called Arrhenius plots (i.e., lnD vs. 1/kBT ) by the equations

ET
A = − ∂ lnDT

∂(1/kBT )
(2.76)

and

EC
A = − ∂ lnDC

∂(1/kBT )
. (2.77)
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networkbranched

linear

Figure 2.9: Several different polymer structures: linear, branched, and net-
work.

In the case of tracer diffusion, it was shown by T. Ala-Nissila and S. C.
Ying [20] that the Arrhenius form of Eq. (2.74) arises from a microscopic
theory at low temperatures in the so-called high friction limit. In the many-
particle case, similar proofs for Eq. (2.75) do not exist, and thus there is no
theoretical reason why the Arrhenius analysis should still work. Still, mostly
because of its simplicity, the Arrhenius analysis is frequently used to analyze
and interpret experimental diffusion data.

2.5 Polymer physics

Polymers are long chainlike molecules composed of many repeating structural
units called monomers (Fig. 1.2). A single polymer molecule may consist
of hundreds to millions of monomers and may have a linear, branched, or
network structure (Fig. 2.9). Covalent bonds hold the atoms in the polymer
molecules together and secondary bonds then hold groups of polymer chains
together to form the polymeric material.

Polymers include natural materials such as rubber and synthetic materials
such as plastics and elastomers. Polymers are very useful materials because
their structures can be altered and tailored to produce materials with a range
of mechanical properties, in a wide spectrum of colors, and with different
transparent properties. For a comprehensive approach to polymer physics,
see the books by M. Doi [95], A. Y. Grosberg and A. R. Khokhlov [96, 97],
or M. Doi and S. F. Edwards [61], for example.
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R

Figure 2.10: End-to-end vector.

2.5.1 Static properties of polymers

Freely jointed chain model

Polymer molecules can take up an enormous number of configurations by
the rotation of chemical bonds. The shape of polymers is therefore usually
described statistically. Let us begin with a very simple polymer model com-
posed of a sequence of N rigid segments, each of length ` and able to point
in any direction independently of each other. In this case, the configuration
of the polymer will be the same as a random flight and so the calculation
we are about to perform can also be applied to the statistical properties of
random walks. Such a model is called the freely jointed chain.

To characterize the size of a polymer, we consider the end-to-end vector
~R of the chain (Fig. 2.10). We denote the radius vector of the beginning of
the ith segment by ~ri and that of its end by ~ri+1. Additionally, we introduce
the bond vectors δ~ri = ~ri+1 − ~ri. Therefore, the end-to-end vector ~R can be
written as

~R =
N
∑

i=1

δ~ri, (2.78)

Clearly, the average value 〈 ~R〉 of ~R is zero, because the end-to-end vector has
the equal probability to point in any direction. Therefore we will calculate
〈~R2〉, the average of the square of ~R, and express the size of the polymer by
taking the square root of this quantity. From Eq. (2.78),

〈~R2〉 =
〈(

N
∑

i=1

δ~ri

)2〉

=
N
∑

i=1

N
∑

j=1

〈δ~ri · δ~rj〉. (2.79)

Because there is no correlation between the directions of different bond vec-
tors, 〈δ~ri · δ~rj〉 = 〈δ~ri〉〈δ~rj〉 = 0 if i 6= j. In addition, 〈(δ~ri)2〉 = `2, and
thus

〈~R2〉 = N`2. (2.80)
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We see that the size of the polymer is proportional to N 1/2, while the total
length measured along the contour of a polymer chain is proportional to N .
This significant conclusion implies that in the set of conformations that a
freely jointed chain takes, stretched or nearly straight conformations consti-
tute a minor fraction; the majority of chain conformations are strongly coiled
in space.

Distribution of the end-to-end vector

Let us calculate the probability distribution of ~R. For the freely jointed chain,
the vector ~R equals the sum of N independent, randomly oriented contribu-
tions δ~ri. According to the central limit theorem of probability theory, such
a quantity has the Gaussian distribution:

PN(~R) =
(

3

2πN`2

)3/2

exp



− 3~R2

2N`2



 , (2.81)

when N À 1. The factor (3/2πN`2)3/2 is found from the normalization

condition
∫

d~rPN(~R) = 1. The Gaussian function in Eq. (2.81) decays at
the distance of order R ≈ N 1/2`, which agrees with Eq. (2.80) defining the
size of the freely jointed chain. Indeed, an accurate calculation of the mean
square using the general formula 〈 ~R2〉 = ∫

d~r ~r 2PN(~R) would yield precisely
the result of Eq. (2.80).

Short-range interactions

In the freely jointed chain model described earlier, we assumed that the orien-
tation of each bond is random and completely independent of the orientation
of the previous bonds. This means that the polymer is able to fold back
on to itself at certain locations, which is physically impossible because two
portions of the polymer cannot occupy the same region in space. In poly-
mer physics two common modifications to the freely jointed approach are
so-called short-range and long-range interactions. Short-range interactions
involve chain units close to each other in terms of the path of the random
flight. Long-range interactions involve interactions which are spatially close
but which involve chain units separated by long distances along the chain
path. Both short-range and long-range interactions involve chain units that
are spatially close to each other.

For both modifications, 〈δ~ri · δ~rj〉 does not vanish for i 6= j. However,
if the interactions are short ranged, 〈δ~ri · δ~rj〉 decreases rapidly as |i − j|
increases. Therefore there is no change in the fundamental result that 〈 ~R2〉
is proportional to N for large N .
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Radius of gyration

The end-to-end vector [Eq. (2.78)] is a useful quantity for describing the size
of the polymer coil. Another measure for the size of the coil is the radius of
gyration Rg, defined as

R2
g =

1

N

N
∑

i=1

〈(~ri − ~rcm)
2〉, (2.82)

where

~rcm =
1

N

N
∑

i=1

~ri (2.83)

is the center of mass of the coil. The radius of gyration is closely related to
the moment of inertia of the object. Substituting Eq. (2.83) into Eq. (2.82)
gives

R2
g =

1

2N2

N
∑

i=1

N
∑

j=1

〈(~ri − ~rj)2〉. (2.84)

Let us calculate the radius of gyration for an ideal chain, i.e., for a freely
jointed chain model. When |i − j| is large, ~ri − ~rj of an ideal chain has a
Gaussian distribution with variance |i− j|`2, which means that

〈(~ri − ~rj)2〉 = |i− j|`2. (2.85)

Therefore

R2
g =

1

2N2

N
∑

i=1

N
∑

j=1

|i− j|`2. (2.86)

For large N the summation can be replaced by an integration:

R2
g =

`2

2N2

∫ N

0
dx
∫ N

0
dy|x− y| = 1

6
N`2 (2.87)

Therefore, for an ideal chain the ratio of R2
g to 〈~R2〉 is 1/6.

There are several advantages to use the radius of gyration Rg rather than

the end-to-end vector ~R. First, because ~R describes mainly the behavior of
the chain ends, it contains very little information about the distribution of the
rest of the monomers. Second, polymers are often studied with scattering
experiments, where Rg is a natural measure for polymer size. Third, for

branched, ring, or star chains ~R has no meaning while Rg is still meaningful.
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Long-range interactions

In the polymers considered earlier, the interaction between the polymer seg-
ments is limited to within a several neighbors in the chain. In reality, however,
segments distant along the chain do interact if they come close to each other
in space. An obvious interaction is the steric effect: because the segment has
finite volume, other segments cannot come into its region. This interaction
swells the polymer; the size of a chain with such an interaction is larger than
that which does not have such an interaction. Even when there are attractive
forces, as long as the repulsive force dominates, the polymer will swell. This
effect is called the excluded volume effect.

The excluded volume effect was first discussed by W. Kuhn [98], and the
modern development was initiated by P. J. Flory [99]. It had been recognized
by these pioneers that the long-range interaction changes the statistical prop-
erties of the chain entirely. For example, in the case of a single polymer in a
“good” solvent (discussed below in more detail) Rg is no longer proportional
to N 1/2 but to a higher power of N

Rg ∝ N ν . (2.88)

The exponent ν is about 0.588 [61], so that the excluded volume effect is
very important for long chains. One interesting point about ν is that it is
essentially of universal nature: in good solvents in three dimensions poly-
mers prefer open coil-like conformations characterized by ν = 0.588. Thus,
chemical details such as polymer sequence are not important. This result
is by no means self-evident from a chemical perspective. Overall, the chain
scaling follows Eq. (2.88), and the value of the exponent depends only on
a few matters such as the dimension of the system and the quality of the
solvent.

In the case of a chain in vacuum one may intuitively understand why
ν > 1/2. Consider building the chain by consecutively adding monomers.
At every step there are on average more monomers in the back than in front
of the last monomer. Therefore the chain can gain entropy by going out,
and being larger than a chain in which the new monomer does not feel its
predecessors.

Effect of solvent

The models of polymers discussed above do not explicitly take into account
the influence of solvent, whereas it is well known that the size of a polymer
will strongly depend on the type of liquid in which it is placed. If there is a
high affinity with the solvent such that the polymer is easily dissolved, the
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(a) (b)

Figure 2.11: A polymer in a solvent. (a) In a good solvent, the polymer is
spread out. (b) In a bad solvent, the polymer is shrunken and compact.

polymer configurations will be very spread out. In this case, the solvent is
called a good solvent. On the other hand, in a solvent which does not dissolve
the polymer, the polymer will be shrunken and compact. In this case, the
solvent is called a bad solvent. To explain this dependence of the polymer size
on the type of solvent we must consider the interaction between the polymer
and solvent molecules.

W. Stockmayer predicted in 1959 that if the attraction between monomers
becomes strong enough, the polymer undergoes a phase transition of the same
sort as the transition from gas to liquid. Bits of the polymer “condense on
to themselves” and instead of a free coil we end up with a dense “drop”, a
polymer globule. This is called the coil–globule transition (Fig. 2.11).

At a very narrow temperature range the coil will not display excluded vol-
ume at all. At this unique temperature the coil in dilute solution will be Gaus-
sian. This temperature is called the theta temperature (or θ-temperature),
which varies from one polymer–solvent pair to another. Sometimes the θ-
temperature is called the Flory temperature.

Polymer solutions and melts

As the concentration in a polymer solution is increased, the polymers start
to overlap and begin to interact with each other. The critical concentration
at which this takes place is called the overlap concentration. Let us write c∗

for the number of segments per unit volume at this concentration, so that
the number of polymers per unit volume is c∗/N . Because the volume of one
polymer is of the order R3

g, we have

c∗

N
R3
g ≈ 1. (2.89)

As was explained above, Rg is proportional to N ν , so we have

c∗ ∝ N1−3ν ≈ N−0.764 (2.90)
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for ν = 0.588 [100]. The value of c∗ is very small if N is large, because it
is proportional to N raised to a negative power. Therefore, polymers with
large molecular weight are almost always in the overlapping state, and are
interacting with each other.

The limiting state of a polymer solution as a concentration is increased
is known as the polymer melt, which is a liquid state composed only of poly-
mers. This is an important state for industrial uses where polymeric liquids
are processed into plastics, rubbers, and many other polymeric materials.

A fundamental question of the conformation theory of polymer solutions
and melts is: “What is the conformation of a test (or labeled) chain in a
dense polymer system?” At first glance, it seems impossible to assert any
universal properties about the conformation of an individual polymer. In
reality, however, this is not the case. There is a significant statement, first
made by P. J. Flory in 1949 called the Flory theorem, which states that a test
chain in a dense polymer system has the conformation of an ideal Gaussian
coil.

The Flory theorem can be understood by the following observation: in
a homogeneous polymer melt, every monomer is isotropically surrounded
by other monomers, and there is no way to decide whether the surrounding
monomers belong to the same chain as the monomer at hand or to a different
one. Consequently there will be no preferred direction and therefore the
polymer melt will have the ideal chain configuration. This is called screening
of the excluded volume interactions.

2.5.2 Polymer dynamics

Until now, we have considered only the static properties of polymer systems.
Polymer systems are also known to possess remarkable dynamic properties.
For example, polymeric liquids (solutions and melts) are usually very vis-
cous, they “keep memory” of their previous history, and often provide a
qualitatively different response to weak and strong action. A fundamental
property of polymeric liquids is viscoelasticity: when exposed to sufficiently
rapidly changing actions, such liquids behave as elastic rubber-like materials,
whereas under slowly varying forces, a flow typical for a viscous liquid sets
in. The understanding of molecular motion in polymer solutions enables us
to understand many non-equilibrium phenomena, such as diffusion, phase
separation, and flow.
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(a) (b)

Figure 2.12: (a) Rouse model. (b) Zimm model.

Rouse model

We now need a model that we can use to calculate dynamical properties of
polymer systems. Our starting point will not be an equation of motion at the
molecular level, because the polymer is such a complex many-bodied system
and is also much larger than the solvent molecules. Earlier, we introduced
several polymer chain models, of which the standard Gaussian bead model
proved to be the most convenient for a theoretical analysis of equilibrium
properties. Therefore we adjust the Gaussian chain such that it serves our
purposes.

Consider a standard Gaussian chain of N segments (Fig. 2.12a). Let us
try to simplify the analysis of such a chain as much as possible. First, we
neglect the volume interactions of the segments, i.e., we assume the chain is
ideal. Second, we do not take into account the motion of the solvent, i.e., we
assume the solvent to be an immobile viscous medium, in which the moving
chain segments (beads) experience friction but which is not carried along
with their motion. Third, the polymer chain we assume to be phantom, i.e.,
we neglect topological constraints on possible chain motions and allow chain
sections to pass freely through each other.

In this model, each segment is subjected to the conservative forces f ch

from the neighboring segments in the chain, to the force f fr of friction against
the solvent, and to the random force f r, which appears when the given seg-
ment collides with solvent molecules. Therefore, the equation of motion for
the ith segment of the polymer chain can be written as

m
∂2~ri
∂t2

= ~f ch
i + ~f fr

i + ~f r
i , (2.91)

where ~ri is the radius vector of the position of the ith segment, ∂2~ri/∂t
2

is the acceleration of the ith segment, and m its mass. For the motion of
the segment in dense solvent, the inertial term is quite insignificant, and the
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equation of motion takes the form

~f ch
i + ~f fr

i + ~f r
i = 0. (2.92)

The force ~f ch
i exerted on the ith segment by neighboring segments in the

chain is
~f ch
i = k(~ri+1 + ~ri−1 − 2~ri). (2.93)

for i = 2, 3, . . . , N − 1, and for i = 0 and i = N ,

~f ch
0 = k(~r1 − ~r0) (2.94)

~f ch
N = k(~rN−1 − ~rN), (2.95)

respectively. If we define ~r−1 and ~rN+1 as

~r−1 = ~r0, ~rN+1 = ~rN , (2.96)

then Eqs. (2.94) and (2.95) can be included in Eq. (2.93). Here k is the spring
constant of the ideal chain.

The friction force ~f fr
i is naturally assumed to be proportional to the ve-

locity,

~f fr
i = −ζ ∂~ri

∂t
, (2.97)

where ζ is the friction coefficient of a bead. Inserting Eqs. (2.93) and (2.97)
into Eq. (2.92) gives

ζ
∂~ri
∂t

= k(~ri+1 + ~ri−1 − 2~ri) + ~f r
i . (2.98)

The model defined in this way is the Rouse model.
In order to proceed with our calculations, we assume that the beads are

continuously distributed along the polymer chain. Let x be a continuous
variable and write ~ri(t) as ~r(x, t). Then Eq. (2.98) takes the form

ζ
∂~r

∂t
= k

∂2~r

∂x2
+ ~g(x, t). (2.99)

Further, the conditions of Eq. (2.96) become the following boundary condi-
tions at x = 0 and x = N :

(

∂~r

∂x

)

x=0

= 0,

(

∂~r

∂x

)

x=N

= 0. (2.100)

Equation (2.99) has the form of a linear harmonic oscillator, and so if we
introduce normalized coordinates we can decompose the motion into inde-
pendent modes. These modes are called the Rouse modes, and they can be
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used to calculate various quantities, such as the diffusion coefficient of the
center of mass of the polymer DT or the maximum relaxation time τ . The
results are

DT =
kBT

Nζ
(2.101)

τ =
ζN2`2

3π2kBT
. (2.102)

The Rouse theory may seem to be a very natural way to describe the
Brownian motion of a polymer chain, but unfortunately its conclusions do
not agree with experiments. As can be seen from Eqs. (2.101) and (2.102),
in the Rouse model the diffusion coefficient of the center of mass and the
maximum (or rotational) relaxation time depend on the polymer length N
as DT ∝ N−1 and τ ∝ N 2, respectively. However, the following dependencies
have been measured experimentally [61,95,97]:

DT ∝ N−1/2, τ ∝ N 3/2, (2.103)

in the θ-state.
The reason for this discrepancy between experiments and the Rouse model

is that in the Rouse model we assume the average velocity of a particular bead
to be determined only by the external force acting on it, and independent of
the motion of the other beads. However, in reality the motion of one bead
is influenced by the motion of the surrounding beads through the solvent.
For example, if one bead moves, the solvent surrounding it will also move,
and as a result other beads will be dragged along. This type of interaction
transmitted by the motion of the solvent is of hydrodynamic origin.

When applied to polymer melts, however, the Rouse model is much more
appropriate, because in polymer melts friction may be thought of as being
caused by the motion of a chain relative to the rest of the material, which to
a first approximation may be taken to be at rest; propagation of a velocity
field like in a normal liquid is highly improbable, meaning that there is no
hydrodynamic interaction. For this reason, the Rouse model is a very useful
model to describe polymer melts.

Zimm model

B. H. Zimm modified the bead–spring model of a polymer to include hydro-
dynamic interaction effects (Fig. 2.12b). In this case, the equation of motion
of the bead–spring polymer of Eq. (2.98) becomes

d~ri
dt

=
∑

j

~Hij · [k(~rj+1 + ~rj−1 − 2~rj) + ~f r
i ]. (2.104)
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Because ~Hij depends on ~ri, Eq. (2.104) is a non-linear in ~ri(t), and is almost

impossible to solve. Zimm’s idea was to replace ~Hij (the factor causing the

non-linearity) by its equilibrium value 〈 ~Hij〉eq. This is called the preaveraging
approximation. At first this may appear to be a very rough approach, but the
preaveraging approximation turns out to be quite good because of the long-
range nature of the hydrodynamic interactions. For example, if we calculate
the diffusion coefficient using this approximation, the result is within 10 %
of the value calculated rigorously.

The results for the diffusion coefficient of the center of mass and the
maximum relaxation time are

DT = 0.196
kBT

ηs
√
N`

(2.105)

τ = 0.325
ηs(
√
N`)3

kBT
, (2.106)

where ηs is the viscosity of the solvent. It is clearly seen that DT and τ
depend on the polymer length N as:

DT ∝ N−1/2, τ ∝ N 3/2. (2.107)

The dependence of these quantities on the polymer length agrees with ex-
periments performed on solutions in the θ-state.

Reptation model

Having considered the basic concepts associated with the dynamic properties
of both an individual polymer chain and dilute solutions of chains, we move
on to the dynamics of concentrated polymer solutions and polymer melts
in which individual polymer coils are strongly overlapped with each other.
As mentioned earlier, the concentration of the polymer solution in this case
exceeds the overlap concentration c∗ of polymer coils.

If the concentration in a polymer solution is well above c∗, the polymer
molecules will begin to entangle. In this state, excluded volume interactions,
hydrodynamic interactions, and entanglement interactions all strongly affect
the molecular motion and the calculations become extremely complicated. A
rigorous treatment of the entanglement interactions is particularly difficult,
and an analysis from first principles is almost impossible. For these reasons,
present theories of the dynamics of concentrated polymer systems are based
on very rough models, which manage to capture some features of the motion
very well, but cannot describe all aspects of the dynamics.
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Figure 2.13: A polymer chain in a concentrated system of other chains.
The chain under consideration is placed on a plane and the other polymers
intersecting the plane are shown by dots.

As a rule, when exceeding the concentration c∗, the dynamic properties
of the polymer solution begin to change: the viscosity grows quickly, the
diffusion coefficients of polymers decrease, and the effects of memory of pre-
vious flow become clearly pronounced. It is easy to realize that these effects
are connected with the uncrossability of chains, because in the system of
entangled coils, the exclusion of chain crossings dramatically reduces the set
of possible motions of polymers. Consequently, the uncrossability of chains
is quite significant in most dynamic phenomena taking place in systems of
entangled polymer coils. In particular, it defines such important character-
istics of a polymer solution as the viscosity η, self-diffusion coefficient of a
single chain DT , the spectrum of relaxation times, and so on.

At the same time, there are some dynamic properties that can be de-
scribed without taking into account the uncrossability of polymer chains.
Concentration fluctuations in a solution of entangled coils belong to this cat-
egory. These effects result from the simultaneous motion of many polymer
chains, and proceed on relatively short times and distances. The uncrossabil-
ity of chains shows most clearly when the motion of one chain is considered
over sufficiently long time intervals, and therefore the entanglement effects
are quite insignificant for the fluctuation dynamics in polymer solutions.

However, when we consider the self-diffusion of the polymers, the entan-
glement effects become very important. If we fix our attention on a single
polymer in a concentrated solution, we see that it diffuses through a network
made by the surrounding polymers (Fig. 2.13). Therefore the self-diffusion
coefficient of a polymer becomes very small due to entanglement effects.

The calculation of the self-diffusion coefficient in concentrated solutions
met with very little success for a long time due to the difficulty of treating
the entanglement effects theoretically. The application of the tube concept
introduced by S. F. Edwards provided the key for solving this problem. P.-
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G. de Gennes thought of the problem in the following way. Assume that a
polymer molecule is undergoing Brownian motion in a fixed network formed
by surrounding polymers.

The fundamental point is that because the chains cannot cross each other,
the movement of a chain in a dense polymer system is highly constrained.
Due to entanglements with other chains, lateral motions of the chain at many
points are highly improbable. Qualitatively we may imagine that the chain is
confined in a tube in which it may move with some freedom. In order to move
over large distances the chain has to leave the tube by means of longitudinal
motions. The concept of a tube clearly has only a statistical meaning. The
tube can change by two mechanisms. First, by means of the motion of the
central chain itself, by which the chain leaves parts of its original tube, and
generates new parts. Second, the tube fluctuates because of the motions of
the chains which built up the tube.

The second cause of tube fluctuations, called tube renewal, is insignificant
in most cases, because it leads to relaxation times much greater than the
motions of the chain along the tube [101]. This is why the mechanism based
on the concept that the chain moves in a tube, is the basic mechanism of
motion for polymers in a concentrated solution or melt.

Polymer motion taking place along a tube is called reptation. The corre-
sponding model of the dynamics of polymer solutions and melts is frequently
referred to as the reptation model. This model was proposed by P.-G. de
Gennes in 1971 and developed further in studies of M. Doi and S. F. Ed-
wards.

Let us now look at the mechanism which allows the chain to move along
the tube axis, which is also called the primitive path. The primitive path is
the main concept in the reptation model. The details of the polymer itself
are to a high extent irrelevant. We may therefore choose a polymer model as
we wish. Therefore we will use the Rouse-type model to describe the motion
of the polymer, and so the self-diffusion coefficient of the polymer should
be expressible in terms of the parameters characterizing the Rouse model,
which are the number of segments N , the segment length `, and the friction
constant of the segment ζ.

Let us discuss in more detail the tube concept in the reptation model.
The effective tube is only a model conception. The tube “walls” are by no
means formed by direct contacts with other chains. In fact, the effective
tube is formed not by all contacts with other chains, but rather by only
a small fraction of them, only those that correspond to entanglements. To
allow for this circumstance, the additional parameter Ne is introduced, which
equals the average number of segments in the chain between two consecutive
entanglements of the given polymer with other chains.
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d

Figure 2.14: Tube model.

A consistent calculation of the parameter Ne is extremely complicated.
Therefore in the modern theory of polymer liquids, the parameter Ne appears
as a phenomenological one. The parameter Ne characterizes the ability of a
polymer chain to become entangled with the other chains and depends, e.g.,
on chain stiffness, the presence of short side branches, and so on. Because the
dynamic characteristics of the melt depend on Ne, the value of this parameter
can be found experimentally. Typical values on Ne fall within the interval of
50 to 500.

As the statistics of the polymer chain in the melt is Gaussian on all scales,
the statistics of the primitive path is also Gaussian. As long as there exists
an average number Ne of segments between two successive entanglements of
a given chain, the characteristic scale d = `N 1/2

e also exists, related to the
spatial distance between these entanglements. It can easily be seen that this
characteristic scale corresponds to the effective tube diameter, because the
tube is formed just by the entanglements (Fig. 2.14).

The total contour length of the primitive path equals

L = dN/Ne = `N/N 1/2
e , (2.108)

because the polymer chain in the melt can be considered as a sequence of
N/Ne subchains, each of which consists of Ne segments and covers a section
of length d along the primitive path.

We now discuss in more detail the reptation mechanism of the motion of
a polymer. First, we estimate the friction coefficient for the polymer diffus-
ing along the tube. It can be shown that the hydrodynamic interaction of
segments is screened in a concentrated system of polymers, with the screen-
ing radius being of the order of the correlation radius ξ. In the melt, the
hydrodynamic interaction is totally screened, and the friction forces of each
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segment are summed so that the resulting coefficient ζ ′ of friction of the chain
diffusing along the tube is ζ ′ = Nζ.

Hence, the self-diffusion coefficient D′T for reptation along the tube can
be calculated using the Einstein relation

D′T =
kBT

ζ ′
=
kBT

Nζ
. (2.109)

In the process of reptational diffusion along the tube axis, the chain leaves
sections of the initial tube and creates new sections. The new sections of the
tube are created by the motion of the ends of the polymer chains. Because
the motion of the ends leaving the tube is random and uncorrelated with
the initial tube conformation, it is natural to expect that the memory of the
initial conformation would be lost completely when the chain entirely leaves
the initial tube. The average time τ taken by the chain to diffuse out of
the initial tube is easy to evaluate on the basis of Eqs. (2.45), (2.108) and
(2.109). The result is

τ =
L2

6D′T
=

`2ζ

6NekBT
N3. (2.110)

Because the memory of the initial conformation of each chain and, conse-
quently, of the whole polymer system is erased after the time interval τ , this
quantity can be identified as the maximum relaxation time of the polymer
solution or melt. The validity of such an identification can be proved by
specific calculations of correlation functions [97].

We now determine the self-diffusion coefficient DT in the polymer melt.
To evaluate DT , note that during the time τ taken by the chain to diffuse
entirely out of the initial tube, it is natural to expect that the center of
mass of the chain shifts over a distance of the order of the size R of the
polymer. On the other hand, displacements of the chain during different
time intervals of duration τ are statistically independent. Therefore, for long
time intervals, diffusive motion of the center of mass of the chain sets in.
According to Eqs. (2.45), (2.80), (2.110), we obtain

DT =
R2

6τ
=
kBTNe

ζN2
. (2.111)

The value of DT decreases with polymer length as N−2. A more rigorous
calculation of the diffusion coefficient DT can be found in Ref. [97].

Near the entanglement molecular weight Ne, there is an abrupt change in
the power-law behavior of DT and τ . The mechanical properties of polymers
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differ above and below this molecular weight. For example, strong thermo-
plastics, such as nylon or polyethylene, become waxy below this molecular
weight [102]. Glassy polymers, in turn, become powdery below Ne.

The reptation model predicts that the self-diffusion coefficient scales as
DT ∝ N−2, which agrees well with experiments. This is not the case, how-
ever, for the corresponding dependence τ ∝ N 3 for the maximum relaxation
time. Usually, the exponent of the experimentally observed dependence is
slightly higher: τ ∝ N 3.4. There are several explanations for this discrep-
ancy. The generally accepted one [95, 103] is associated with fluctuations
of the contour length L of the primitive path. The presence of fluctuations
reduces the lifetime of the initial tube, i.e., the maximum relaxation time τ .
The rigorous calculation carried out by M. Doi in 1981 showed that

τ ∝ N 3
(

1− c

N1/2

)

, (2.112)

where c is a positive constant. According to this equation, the apparent
scaling exponent is higher than 3 when N is finite. The true asymptotic
behavior τ ∝ N 3 still holds as N →∞.
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Chapter 3

Methods and models

This chapter presents the simulation methods and model systems used in
this thesis.

3.1 Overview

There are essentially two alternatives to performing numerical simulations:
stochastic and deterministic. In the field of atomistic and molecular studies,
the most popular stochastic approach is the Monte Carlo method [7, 104–
106] and the most popular deterministic approach is the molecular dynamics
method [7, 104, 105]. The stochastic and deterministic approaches do not
exclude each other, but there are hybrid methods [107–109], which combine
these two approaches. An example of such a method is the shadow hybrid
Monte Carlo [109] used in simulations of large molecules. The hybrid methods
is a fast growing area these days. Stochastic and deterministic approaches
are also combined in many approaches, such as in Langevin and dissipative
particle dynamics, where slow motions are done deterministically and faster
motions are taken care by stochastic fluctuations.

The termMonte Carlo (MC) [7,104–106] covers a wide range of stochastic
methods the common denominator being the repeated use of random num-
bers. The name Monte Carlo refers to the Monte Carlo casino in Monaco,
reflecting the similarities between statistical simulation and gambling. The
MC methods provide approximate solutions to a variety of mathematical
problems by performing statistical sampling experiments on a computer. A
simplistic example of the Monte Carlo method is the estimation of π by di-
rect sampling (Fig. 3.1). In Fig. 3.1, we generate N random points inside
a square of side 1, and count how many of them (M) happen to lie in a
circle of diameter 1. The π is approximately given by π ≈ 4M/N . In the

49
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Figure 3.1: Estimating π with the Monte Carlo method. The ratio of the
number of points falling inside the circle to the total number of points is π/4.

field of atomistic and molecular simulations, the MC methods are used to
generate system configurations from some probability distribution, usually
from a canonical or grand canonical ensemble. In a canonical ensemble, the
expectation value of a variable A is given by

〈A〉 =
1

Z

∫

drdpA(r) exp{−H(r, p)/kBT} (3.1)

=
1

Z

∫

drdpA(r) exp

{

− 1

kBT

[

∑

i

p2
i

2mi

+ V (r)

]}

(3.2)

=
1

Zr

∫

drA(r) exp{−V (r)/kBT}, (3.3)

where H is the Hamiltonian of the system, V is the conservative potential,
kB is Boltzmann’s constant, T is the equilibrium temperature, and Z is the
canonical partition function. The function Zr is the configurational part of
the total canonical partition function Z. In general, the integral in Eq. (3.3)
cannot be evaluated analytically because V (r) includes all the degrees of
freedom and the integral is high-dimensional. On the other hand, common
numerical quadrature techniques such as the trapezoidal rule become ineffi-
cient when the dimensionality of the integral is large.

The MC method provides a way to solve the above problem. By gen-
erating M random configurations rk, k = 1, 2, . . . ,M , from distribution
(1/Zr) exp{−V (r)/kBT}, one can approximate 〈A〉 by

〈A〉 ≈ 1

M

M
∑

k=1

A(rk). (3.4)
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(a)
(b)

(c)

Figure 3.2: (a) Moves between states. (b) A possible MC move in a polymeric
system. (c) Moves in dense system become difficult due to the lack of space,
which can make MC inefficient.

The most important feature of Monte Carlo integration is that the time
requirement to evaluate integrals typically scales as O(d), whereas numerical
quadratures scale worse than O[exp(d)] [7,104,105]. Here d is the dimension
of the integral or, in the case of the integral given in Eq. (3.3), the number of
particles in the system. The MC method is not restricted to any particular
length or time scale, but it can be successfully used to study various numeri-
cal optimization problems, such as the traveling salesman problem [110,111].
In most MC realizations, random numbers determine the sequence of states
through which the system evolves. Due to the stochastic nature of the tech-
nique, the MC method does not necessarily offer a true time evolution of the
system. The important part in the algorithm are the moves from one state to
another. These transitions can be difficult in dense systems, and also in the
case of polymers (Fig. 3.2). One appealing feature of the MC method is that
it allows sampling from a grand canonical ensemble thus allowing the number
of particles to vary. This is important, e.g., in surface growth simulations.

When reformulated properly, the MC method can be used to study dy-
namic phenomena. In kinetic Monte Carlo, the sequence of configurations is
created through moves that correspond to real physical events taking place
in a system (Fig. 3.3). The simulation model is constructed by identifying all
the possible processes which may occur in the system at any stage of the sim-
ulation. After this, the moves from one state to another can be constructed.
Due to the stochastic nature of the technique, the kinetic MC is subject to
the same problem as the regular MC realizations: The MC methods do not
necessarily offer true time evolution of the system. However, the kinetic MC
correctly describes the dynamics at the limit that all processes are activation
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Figure 3.3: Surface growth.
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Figure 3.4: Molecular dynamics simulation crashes if it is run with a too
large time step ∆t.

limited.

In molecular dynamics (MD) [7,104,105], the evolution of an atomistic or
molecular system is governed by Newton’s equations of motion. Equations of
motion are integrated in small steps in time ∆t. During this time the atoms
should not move too much relative to each other—only a small fraction of the
atom diameter. The maximum distance an atom moves during ∆t has to be
restricted to r ∼ 1 pm. The velocities of atoms, or small molecules, at 300 K
are typically v ∼ 100 m/s. Therefore the time step of integration should not
be larger than ∆t ∼ r/v ∼ 10 fs (Fig. 3.4). If the integration is accurate and
the system is purely classical, the MD method offers a true time evolution of
the system. The correct dynamics can be very important in some cases. For
example, if there are collective motions, e.g., waves or vortices [104], in the
system, the time evolution of the system cannot be studied with stochastic
methods. In such a case, the MD approach is the method of choice.

The Langevin dynamics technique [105] resembles the classical MD tech-
nique in many ways. It is based on Newton’s equations of motion, but with
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the difference that there are two additional forces: random and dissipative.
As a consequence, Newton’s second law becomes a Langevin equation, which
is a stochastic differential equation. The origin of the random and dissipa-
tive forces is in coarse-graining (we will discuss this in detail in Sec. 3.4.1).
In the usual Langevin description, a system is described in terms of “slow”
colloidal particles immersed in a solvent consisting of “fast” fluid particles.
Typically, the time scale concerning slow degrees of freedom is of the order of
nanoseconds while for the fast degrees of freedom it is few femtoseconds. Due
to the large difference in time scales it is possible to coarse-grain, or average
over, the fast variables and represent them using their statistical properties.
As a result of the coarse-graining, only slow degrees of freedom are kept, fast
degrees of freedom being replaced with random noise and dissipation. The
random and dissipative forces are coupled through a fluctuation-dissipation
relation [88], for which reason the sequence of states generated by Langevin
dynamics forms a canonical ensemble. Therefore, Langevin dynamics can
be used as a thermostat for any MD simulation—regardless of the level of
coarse-graining.

Dissipative particle dynamics (DPD) [7, 8] is a relatively new method
based on coarse-graining of microscopic forces. The DPD method was ini-
tially developed as a tool for simulating hydrodynamic behavior of colloidal
suspensions [112,113]. The equations of motion are otherwise similar to those
of the Langevin dynamics, but with the difference that the random and dis-
sipative forces are treated pairwise in the DPD method. For this reason, the
DPD method conserves both linear and angular momenta, which is neces-
sary for the emergence of hydrodynamic behavior in macroscopic times and
distances.

The usual DPD description differs from that of the Langevin dynamics.
In the DPD method, the “particles” do not represent a single atom, mole-
cule, or colloid, but a collection of molecules or molecular groups that move
together (Fig. 3.5). The solvent particles, if any, are considered in a similar
manner. In the coarse-graining process, the internal degrees of freedom of
the particles are coarse-grained out such that the motion of the center of
mass only is considered. The particles interact through soft forces, which
arise directly from the coarse-graining process. As in the Langevin dynamics
technique, the random and dissipative forces in the DPD method are coupled
through a fluctuation-dissipation relation. The DPD method can be used as
a momentum conserving thermostat for any MD simulation [114,115].
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(a) (b) (c)

Figure 3.5: Coarse-graining process.

3.2 Monte Carlo (MC)

In this section, we first consider the Monte Carlo (MC) method in detail and
discuss some of its popular realizations. After this we present the lattice-
gas model of O/W(110), which is used in all of our MC simulation studies
(Papers [1–3]). For a comprehensive approach to the MC method see the
books by D. Frenkel and B. Smit [7], M. P. Allen and D. J. Tildesley [104],
J. M. Thijssen [105], or D. P. Landau and K. Binder [106], for example.

3.2.1 The MC method

In Monte Carlo simulations, random numbers are used to generate physical
states with a desired probability distribution. In a canonical ensemble, the
probability distribution is given by

πi =
1

Z
e−Ei/kBT , (3.5)

where Z is the normalizing partition function, Ei is the energy of the mi-
crostate i, kB is Boltzmann’s constant, and T is temperature. Other com-
monly used distributions are the microcanonical and the grand canonical
distribution. See Sec. 2.1.2 for a detailed discussion of distribution func-
tions.

The approach which first comes to mind for generating configurations
with the canonical distribution given in Eq. (3.5) is simply to generate con-
figurations randomly and then accept them with probability exp(−Ei/kBT )
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Figure 3.6: Measuring the depth of the river Nile: a comparison of a conven-
tional quadrature (left), with the Metropolis scheme (right). Figure taken
from the book by D. Frenkel and B. Smit [7].

where the energy scale should be such that the energy is always positive.
However, as the number of configurations with a particular energy increases
rapidly with energy, most of the randomly constructed states have a very
high energy. Hence, for any finite temperature, states will be accepted with
a vanishingly small probability and we spend most of our time generating
configurations which are then rejected, which is obviously inefficient.

N. Metropolis et al. [116] developed an algorithm that is much more
efficient than the approach described above. In this algorithm, the con-
figurations are not constructed statistically independently but through the
so-called Markov chain (Appendix A). Each new configuration is still gen-
erated with a probability distribution proportional to exp(−Ei/kBT ), but
the new configuration is constructed by making small changes to the present
configuration. This approach is called the Metropolis importance sampling
(Appendix A).

Let us try to clarify the Metropolis importance sampling with a simple ex-
ample (Fig. 3.6) given by D. Frenkel and B. Smit [7]. In Fig. 3.6, we compare
two methods to measure the depth of the river Nile, by conventional quadra-
ture (left) and by Metropolis sampling (right). In the conventional quadra-
ture scheme, the value of the integrand is measured at a predetermined set of
points. As the choice of these points does not depend on the value of the inte-
grand, many points may be located in regions where the integrand vanishes.
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In contrast, in the Metropolis scheme, a random walk is constructed through
that region of space where the integrand is non-negligible (i.e., through the
Nile itself). In this random walk, a trial move is rejected if it takes you out
of the water, and is accepted otherwise. After every trial move (accepted or
not), the depth of the water is measured. The (unweighted) average of all
these measurements yields an estimate of the average depth of the Nile.

The above can be summarized in a more algorithmic form. To be precise,
the Metropolis simulation algorithm in the canonical ensemble consists of the
following steps:

1. Specify an initial configuration i for a system.

2. Generate a new configuration j at random.

3. Compute energy difference ∆E = Ej − Ei.

4. Generate a uniform random number r ∈ [0, 1].

5. If r < min(1, exp(−∆E/kBT )), accept the change. Otherwise keep the
old configuration.

6. Compute the desired quantities and return to step 2.

In the above algorithm, each new configuration is generated by using
some updating scheme. One step in such a scheme is called the Monte Carlo
move. In the studies of lattice-gas systems, one typically uses the Kawasaki
dynamics [106], which proceeds as follows. One particle is selected randomly
while the other particles are kept fixed. The new position of the particle is
then chosen randomly from its nearest neighbor lattice sites. If the nearest
site chosen is full, no jump occurs. If it is empty, a jump occurs with the
probability min(1, exp(−∆E/kBT )). Time is measured in Monte Carlo steps
(MCS) per particle, during which every particle attempts to jump once on
the average. MCS is not physical time and does not describe dynamics in any
way and samples an equilibrium distribution. In constructing the updating
scheme, it is important that the transition rate from state i to state j satisfies
the detailed balance condition (Appendix A).

The Metropolis Monte Carlo is not the only possible way to do things but
there are also more sophisticated approaches available. In parallel temper-
ing [7], several independent replicas of a system are simulated simultaneously.
Each replica, or a simulation box, is in a different thermodynamic state—
usually in different temperature, pressure, or chemical potential—or has a
different Hamiltonian [117]. The systems are allowed to interchange config-
urations from time to time, subject to specific acceptance criteria. These
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so-called swap moves can improve sampling of configuration space consider-
ably, particularly in systems having free-energy landscapes with many local
minima. It should be stressed that the swap moves do not disturb the dis-
tribution corresponding to a particular ensemble. One can therefore deter-
mine ensemble averages from every individual ensemble, just as we do in a
Metropolis Monte Carlo simulation.

Multicanonical simulations [7, 106] use an entirely different strategy to
overcome barriers between local free-energy minima. The acceptance criteria
for the transition between two states are manipulated in such a way that
barriers are artificially made lower. In multicanonical simulations, the con-
ventional Boltzmann weight is replaced by a different, non-Boltzmann weight
π(r). The expression for 〈A〉 becomes

〈A〉 =
1

Zr

∫

drA(r)π(r)
exp[−V (r)/kBT ]

π(r)
(3.6)

=

〈

A(r)
exp[−V (r)/kBT ]

π(r)

〉

π

, (3.7)

where the notation 〈· · ·〉π denotes an average over a probability distribution
proportional to π(r). To ensure that all regions of configuration space are
sampled with comparable frequency, functions π(r) and exp[−V (r)/kBT ]
should have significant overlap. The multicanonical simulation is also called
the umbrella sampling, because the distributions π(r) and exp[−V (r)/kBT ]
cover each other at the edges. The multicanonical simulations are very useful
in free energy calculations.

In complex fluids consisting of chain-like molecules, the conventional
Monte Carlo techniques for grand canonical or Gibbs ensemble simulations
often fail. The reason is that if a molecule is inserted into the system at
random, it will almost certainly overlap with some other molecule or mol-
ecules. In the configurational bias Monte Carlo (CBMC) technique [7, 106]
the sampling efficiency is significantly improved by using “unphysical” MC
trial moves which are biased to avoid energetically unfavorable polymer con-
figurations. Biasing an MC trial move means that we are no longer working
with a symmetric trial probability matrix aij. To satisfy detailed balance,
the acceptance rules are also changed. In the CBMC technique, a new chain
conformation is grown atom by atom. Alternative positions are generated
for each atom, and one is chosen with a bias toward avoiding high energy
interactions. This bias is removed by the specially constructed acceptance
rule after the entire molecule has been grown.
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Figure 3.7: Relevant pair and three-body interactions in the O/W(110) sys-
tem. Substrate atoms are denoted by crosses and possible adsorption sites
by open circles.

3.2.2 Lattice-gas model of O/W(110)

In the first part of this thesis (Papers [1–3]), we study the diffusion of atoms
on solid surfaces using the Monte Carlo method. The system under study
is O/W(110), i.e., oxygen on the tungsten (110) surface (Fig. 3.7). In this
system, the W(110) surface provides an array of sites at which it is most
probable to find the oxygen atoms localized. Therefore, it is convenient to
model the system by a two-dimensional lattice-gas which assumes that the
adsorbate atoms can only be found at these sites. The statistical variables
in this model are the site occupation numbers ni which take the value zero
or one according to whether the site is empty or filled. Multiple occupation
of any site is forbidden.

The lattice-gas model

The O/W(110) system is undoubtedly one of the most studied adsorption
systems. Its phase diagram has been determined through experimental stud-
ies [24, 118–120] using low energy electron diffraction (LEED) spot profile
analysis [121], and scanning tunneling microscopy (STM) [122]. Its main
features can be summarized as follows. At temperatures T > 710 K, the
system is in a disordered phase, while at lower temperatures there is a wide
variety of ordered phases at different coverages (surface densities), namely
the p(2 × 1), p(2 × 2) and p(1 × 1) phases corresponding to ideal coverages
of 1/2, 3/4, and 1, respectively. At intermediate coverages, some coexis-
tence regions also exist. The substrate remains unchanged at all coverages,
the oxygen atoms have well-defined adsorption sites on the surface, and des-
orption of oxygen occurs only at temperatures as high as 1600 K or above.
Therefore, this system is a suitable candidate for simulation studies using a
lattice-gas description over a wide temperature range.
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Figure 3.8: Schematic phase diagram of the O/W(110) system in the θ–T
plane. The variable θ is the coverage (surface density) and T is temperature.

We shall use the lattice-gas model constructed by D. Sahu, S. C. Ying,
and J. M. Kosterlitz [123] to describe the main features of the phase diagram
shown in Fig. 3.8. The Hamiltonian includes pair interactions up to fifth
nearest neighbors and certain three-body interactions:

H =
5
∑

m=1

∑

〈ij〉

Jmninj +
2
∑

m=1

∑

〈ijk〉

Jtmninjnk − µ
∑

i

ni. (3.8)

Here ni = 0, 1 is the occupation variable of the lattice site i, 〈ij〉 and 〈ijk〉
denote that each pair and three-body interaction occurs only once in the
summation, and strengths of these interactions are denoted by Jm and Jtm.
Following Ref. [123] we take J2 = J3 = −0.39J1, J4 = 0, J5 = 0.68J1

and Jt1 = Jt2 = −0.72J1. In this work we set the temperature and energy
scales by choosing J1 = −58.3 meV, which reproduces the experimental
value Tc ≈ 710 K of a continuous order-disorder phase transition boundary
at coverage θ = 1/2. An illustration of the relevant interactions is presented
in Fig. 3.7.

In canonical simulations with a constant value of N =
∑

i ni, the term
proportional to µ is irrelevant and one may set µ = 0 in the Hamiltonian.
The resulting phase diagram in the T–θ plane is presented in Fig. 3.8. The
asymmetry about coverage θ = 1/2 is due to the three-body interactions in
the Hamiltonian given in Eq. (3.8).

Having introduced the lattice-gas Hamiltonian, we now discuss two un-
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derlying simplifications in it. First, in our model the oxygen atoms occupy
the hollow sites of the underlying surface. Some STM measurements [119]
together with some LEED results [124] have revealed that the true adsorp-
tion site is the triply coordinated site instead. However, this alone does not
induce serious problems, since the lattice-gas picture is still valid and the
sequence of the ordered phases does not change [125]. The second simplifica-
tion is the absence of interaction between the substrate and the adsorbate in
the Hamiltonian. However, since no strong relaxation effects, such as recon-
struction, are taking place in this system, we expect this interaction to be
reasonably well approximated by a suitable choice of dynamics in the Monte
Carlo simulations, which we shall discuss next.

Microscopic dynamics of the model

The lattice-gas Hamiltonian [Eq. (3.8)] alone does not constitute a complete
model for surface diffusion, because it does not specify any microscopic dy-
namics for how the system evolves in time. In the context of lattice-gas
models, stochastic methods such as Monte Carlo simulations are widely used
for modeling their static and dynamic properties. However, they do not de-
scribe time in the usual sense but rather the order of events taking place in the
system studied. This may be problematic when dynamic processes involving
several time scales, such as diffusion of complex molecules, are studied. A
related ambiguity is associated with the choice of the transition probabili-
ties. Namely, the detailed balance condition πiwif = πfwfi, where wif is the
transition rate from an initial state i to a final state f , and πi and πf are the
equilibrium probabilities corresponding to the Hamiltonian, does not specify
the transition rates uniquely. Nevertheless, Monte Carlo studies [126] sug-
gest that it describes many static and time-dependent properties of simple
adsorption systems rather well, and thus its use in the present context is well
justified. However, if true quantitative information is needed, methods based
on true microscopic dynamics should be used instead.

In the context of diffusion, the fundamental problem with the traditional
choices of the transition probability wif , such as the standard Metropolis
form, is that they do not take into account the effect of the saddle point
of the adiabatic surface potential [127]. One possibility to facilitate a more
realistic description is to introduce an intermediate state I and write the
transition probability of each jump as a product of two probabilities as

wif = wiIwIf . (3.9)

Within this transition dynamics algorithm (TDA) [128], the transition from
the initial state with energy Ei to the final state with energy Ef proceeds
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by two successive steps via an intermediate state with energy EI . Here EI

has to be chosen to describe a jump attempt of a particle in the presence of
interactions as realistically as possible without violating the detailed balance
condition. We use the form [128]

EI =
1

2
(Ei + Ef ) + ∆, (3.10)

where the quantity ∆ characterizes the activation barrier in the zero coverage
limit due to the substrate–adatom interaction. For the rates wiI and wIf any
suitable form satisfying the detailed balance condition is applicable, although
we have taken them both to be of the Metropolis form [Eq. (A.8)]. The
instantaneous activation barrier Ea for a jump attempt from a filled to a
vacant site is then

Ea = max(EI − Ei, Ef − Ei, 0). (3.11)

This illustrates the main advantage of the TDA method. Namely, for ∆ > 0
the rates can be of activated form also for jumps with Ei > Ef . Satisfying the
detailed balance, the TDA method therefore complements the description of
the Hamiltonian given by Eq. (3.8).

For the present study (Papers [1–3]), we chose ∆ = 0.0437 eV. This value
is believed to be much lower than the true value, which should be closer to
the experimentally observed barrier [24] of 0.5 to 0.6 eV in the limit of zero
coverage. Our choice is necessitated by the need to speed up the jump rate
in the numerical simulations at low temperatures. The effect of changing ∆
is estimated in Ref. [125].

3.3 Molecular dynamics (MD)

The molecular dynamics (MD) technique [7, 104, 105] is commonly used to
study equilibrium and transport properties of classical many-body systems.
The MD technique can also be used in non-equilibrium conditions, such as
shear flow, heat flow, or shock waves [104]. In this case the simulations are
called non-equilibrium molecular dynamics simulations (NEMD). In the MD
technique, the nuclear motions of the constituent particles obey the laws of
classical mechanics. The electron motions, in turn, can be treated essentially
in two different ways: either through (i) ab initio methods or (ii) by using a
force-field.

The ab initio (“from the beginning”) methods are based on the Born–
Oppenheimer approximation of the time-dependent Schrödinger equation,
which makes the assumption that the motions of electrons and nuclei are
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separated form each other. The molecular wave function is expressed as a
product of electronic and nuclear wave functions

ΨT (r, R) = Ψe(r, R)ΨN(R), (3.12)

where the electronic wave function Ψe(r, R) depends only parametrically on
the nuclear positions R. The Born–Oppenheimer approximation is based on
the fact that nuclei are much more massive than the electrons. Thus the time
scales involving their motion differ typically by 1000 as the electrons move
ve ∼ 1000 km/s and nuclei move only vN ∼ 1 km/s at 300 K.

The above allows us to make the approximation that the nuclei are nearly
fixed with respect to electron motion. Let us consider the total molecular
Hamiltonian

Ĥ = T̂N(R) + T̂e(r) + V̂NN(R) + V̂eN(r, R) + V̂ee(r), (3.13)

where the Hamiltonian Ĥ consists of the following kinetic energy and poten-
tial energy operators: T̂N(R) is the nuclear kinetic energy as a function of
nuclear positions R, T̂e(r) is the electronic kinetic energy as a function of elec-
tron positions r, V̂NN(R) is the potential energy arising from nucleus–nucleus
interactions, V̂eN(r, R) is the potential energy arising from electron–nucleus
interactions, and V̂ee(r) is the potential energy arising from electron–electron
interactions. For a fixed nuclear configuration, we have

Ĥe = T̂e(r) + V̂eN (r, R) + V̂ee(r), (3.14)

such that we get the following electronic wave equation

ĤeΨe(r, R) = EeΨe(r, R). (3.15)

If we solve this equation for a range of R, we obtain a potential energy curve.
The motions of nuclei are usually treated classically. The Born–Oppenheimer
approximation reduces the computational load considerably compared to the
direct application of the time-dependent Schrödinger equation. Still, despite
the above simplification and reduction in the degrees of freedom, further
approximations [105] are often needed to allow studies of reasonable system
sizes.

The force-field approach describes systems in a considerably more sim-
plified fashion than the ab initio methods. In the force-field approach, the
quantum degrees of freedom are integrated over in such a way that their
effects are incorporated in the classical intramolecular and intermolecular in-
teractions. A method defined in this way is called the classical molecular
dynamics. In classical molecular dynamics simulations one typically applies
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Figure 3.9: Lennard-Jones potential

molecular mechanics force fields. In such force fields, a potential energy
describing a molecular system is usually written as [129,130]

V = VLJ +
∑

bonds

kb
i

2
(`i − `refi )2 +

∑

angles

ka
i

2
(θi − θref

i )2 +

∑

torsions

Vt

2
[1 + cos(nω − γ)] +

∑

i<j

qiqj
4πε0rij

, (3.16)

where VLJ is the Lennard-Jones potential (Fig. 3.9)

VLJ =
∑

i<j

4εij





(

σij
rij

)12

−
(

σij
rij

)6


 (3.17)

used to describe the steep repulsion caused by the Pauli exclusion principle
and the attractive van der Waals interactions resulting from dispersion forces.
In typical MD simulations of simple liquids, the only interaction considered
is usually the pairwise Lennard-Jones interaction. This is satisfactory in two
cases: (i) if the system consists of neutral non-polar atoms or molecules, or
(ii) if one is interested in generic properties of simple liquids.

To define a (molecular mechanics) force field, one must specify not only
the set of potential energy functions but also the force field parameters εij,
σij, k

b
i , k

a
i , Vt, etc. If one of the parameters is changed, the force field is

changed. Force field parameters are determined usually from experiments,
or in some cases from quantum mechanics calculations. For example, the
parameters kb

i and ka
i in bond stretching and bending interactions, can be

determined by spectroscopic techniques [129,130], and the parameters εij and
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σij in the Lennard-Jones interaction can be obtained by fitting parameters
to crystal structures [129, 130]. Even when the parameter fitting process is
done carefully, the obtained force field is never perfect in all possible situa-
tions. Partly due to this reason there are several different force fields to de-
scribe molecular systems, the most popular of them being AMBER [131,132],
CHARMM [133,134], OPLS [135], and GROMOS [136,137].

In classical and ab initio MD methods, the time evolution of atoms (nu-
clei) is given by Newton’s equations of motion

d~ri
dt

= ~vi (3.18)

d~vi
dt

=
~Fi
mi

, (3.19)

where ~ri is position, ~vi is velocity, and mi is mass of an atom i. The classical
or ab initio forces are incorporated into ~Fi, which in general is a function of all
atom positions. In order to integrate Eqs. (3.18) and (3.19), there are several
algorithms available. The most common is the velocity-Verlet algorithm,

~ri(t+∆t) = ~ri(t) + ∆t~vi(t) +
(∆t)2

2mi

~Fi(t) (3.20)

~vi(t+∆t) = ~vi(t) +
∆t

2mi

[~Fi(t) + ~Fi(t+∆t)], (3.21)

where the trajectories of theN atoms are generated iteratively using Eqs. (3.20)
and (3.21). In the algorithm, the most time consuming part of each iteration

is to calculate the forces ~Fi(t) from the positions ~ri.
In the MD method, the total energy E and the total momentum ~p are

invariant with time. Hence, solving Eqs. (3.18) and (3.19) produces a se-
quence of states in the microcanonical (NV E) ensemble. However, it is
often more convenient to perform simulations in other ensembles, e.g., NV T
or NPT ensembles. The reasons for this are [114]: (i) In equilibrium situ-
ations, some thermodynamic relations, such as fluctuation relations for the
specific heat, are often more straightforward to derive and evaluate for an
NV T ensemble than for an NV E ensemble. (ii) The thermostat may re-
move energy drift, which is unavoidable in long NV E simulations. Small
energy drift is present even if the integration scheme is time reversible, be-
cause computers make rounding errors in floating point operations. (iii) In
non-equilibrium molecular dynamics simulations of steady states, the sys-
tem is driven by an external force. The external force pumps energy into
the system, which is dissipated into heat. The thermostat is needed to
remove this heat. There are several thermostats and barostats to control
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temperature and pressure, respectively. The most popular of them are the
Berendsen [104,105,138], Andersen [7,104,105,139], Langevin [105,140], and
Nosé–Hoover thermostats [7, 104,105,141,142].

In the Berendsen thermostat [104, 105, 138] the instantaneous temper-
ature is pushed toward the target temperature T0 by scaling the veloc-
ities at each step. All particle velocities are scaled by the same factor
λ = [1 + (∆t/τ)(T/T0 − 1)]1/2, where ∆t is the time step of integration
and τ the so-called “rise time” of the thermostat, describing the coupling
of the system to the heath bath. This thermostat is very efficient and easy
to implement, but strictly speaking it does not give a canonical distribu-
tion [104,105]. In fact, the distribution that the Berendsen thermostat gives
is distinct from any known statistical ensemble. Typically the Berendsen
thermostat is used with a very large value of τ to prevent long-time energy
drift. The results obtained in this way are very close to those that would be
obtained from an NV E simulation.

The Andersen thermostat [7, 104, 105, 139] is a Monte Carlo scheme to
sample the equilibrium velocity distribution. The Andersen thermostat works
as follows. The velocity of each particle is exchanged for a new velocity drawn
from a Maxwell distribution with a probability Γ∆t. The parameter Γ is a
“bath collision” frequency, which describes how strongly the system interacts
with a heat bath. The Andersen procedure is very efficient and generates
a canonical distribution. However, because the Andersen thermostat is a
stochastic thermostat, it should be applied with caution if the dynamics is
of interest. Another feature of the Andersen thermostat is that it generates
rather strong and localized kicks every now and then, for which reason the
phase space trajectory is not continuous.

In the Langevin thermostat [105,140], the time evolution of atoms is given
by Newton’s equations of motion [Eqs. (3.18) and (3.19)]. In addition to the

conservative force ~FC
i , there is a dissipative force ~FD

i and a random force ~FR
i

acting on particle i:

~FC
i =

∑

i6=j

~F
(c)
ij (3.22)

~FD
i = −γ~vi (3.23)

~FR
i = σ~ζi(t). (3.24)

The variables γ and σ are the strengths of the dissipative and random
forces, respectively. The variable ~ζi(t) is a randomly fluctuating function

with Gaussian statistics: 〈~ζi(t)〉 = 0 and 〈~ζi(t) · ~ζj(t′)〉 = 3δijδ(t − t′). The
parameters γ and σ are coupled through the fluctuation-dissipation relation
σ2 = 2γkBT [105]. In actual simulations, the variable ~ζi(t) is replaced by
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~ξi∆t
−1/2, where ~ξi = (ξix, ξiy, ξiz) are Gaussian random numbers with zero

mean and unit variance, taken independently for each time step. If com-
pared to the Andersen thermostat, the Langevin thermostat has the advan-
tage that it gives a continuous phase space trajectory. However, because
in the Langevin thermostat all particles are involved, the Langevin ther-
mostat is not as efficient as the Andersen thermostat. Both Andersen and
Langevin thermostats are stochastic and do not conserve linear or rotational
momenta, for which reason they should be applied with great care, if the
dynamics is an issue. The Langevin thermostat is often used in simulations
of polymers [115,143–146].

In the Nosé–Hoover thermostat [7,104,105,141,142] the system’s Hamil-
tonian is extended by introducing an additional degree of freedom η, rep-
resenting the coupling to a heat bath. This adds an additional equation to
Newton’s equations of motion [Eqs. (3.18) and (3.19)], such that the new
equations of motion become

d~ri
dt

= ~vi (3.25)

d~vi
dt

=
~Fi
mi

− η~vi (3.26)

dη

dt
=

1

Q
(T − T0). (3.27)

Here T0 is a target temperature and Q is a mass-like parameter which sets
the rate of how strongly the system is thermostatted. The greatest advantage
of the Nosé–Hoover thermostat is that, in most cases, it gives a canonical
distribution without affecting the system’s dynamics too much. The situa-
tions where the Nosé–Hoover thermostat fail are quite exceptional, such as
a single harmonic oscillator or a free particle coupled to the Nosé–Hoover
thermostat [147, 148]. In such cases, the Nosé–Hoover thermostat does not
generate a canonical distribution [147, 148]. The solution to this problem is
to use the method called the Nosé–Hoover chain [149], in which one intro-
duces a sequence of Nosé–Hoover thermostats each coupled to the previous
one, resulting in a chain. Another problem in the Nosé–Hoover thermostat
is that it is not symplectic. To correct this, S. D. Bond, B. J. Leimkuhler,
and B. B. Laird introduced recently a modified version of the Nosé–Hoover
thermostat called the Nosé–Poincaré method [150].

An MD simulation for larger molecules or systems in which solvent mol-
ecules are explicitly taken into account is a computationally intensive task.
Therefore, approximations are frequently made. The most popular ones are
the SHAKE [7,104,105,151], RATTLE [104,152], and LINCS [153] methods
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which in effect freeze vibrations along covalent bonds. These method are also
applied sometimes to valence angles. The reason why these methods are used
and physically justified is that the characteristic time scales associated with
intramolecular motions are typically a factor 10–50 shorter than the other
time scales in the system. Therefore, by eliminating these motions, we are
allowed to increase the time step of integration from ∆t ∼ 1 fs up to ∆t ∼ 10
fs. The total simulation time grows respectively.

Another approximation typically made in biomolecular simulations is the
united-atom approach [129], where the hydrogen atoms are lumped into a
heavier atom to form an “atom” of larger size and mass (e.g., a CH3 group).
This approximation is typically justified as long as hydrogen atoms are not
polarizable. In such a case, intermolecular potentials are nearly correct at
long distances but not close to the molecules. When small molecules are
considered, potentials must be reasonably correct also close to molecules. In
such a case, the united atom approach cannot be used. An example of a
case in which a simple united-atom model is not adequate is the sphingosine
chain in a sphingomyelin molecule, where it is appropriate to describe the
hydrogens close to the head group explicitly, rather than in a united-atom
manner [154].

3.4 Dissipative particle dynamics (DPD)

In this section, we discuss the dissipative particle dynamics (DPD) method,
which is the second subject of this thesis (Papers [4,5]). Before going into the
details of the DPD method, we briefly discuss the concept of coarse-graining.
For an in depth depth discussion of analytical and conceptual aspects of
coarse-graining, see the article by P. Español in Ref. [155]. Comprehensive
approaches to the DPD method can be found from the book by D. Frenkel
and B. Smit [7], or from the article by R. D. Groot [8].

3.4.1 Coarse-graining

Most computer simulation techniques used in these days are based on the
use of effective interaction potentials as described above. These effective
potentials are less detailed and possibly also less reliable than the ab initio
potentials used in quantum mechanics calculations, but they are far more
efficient. Indeed, classical molecular dynamics can deal with hundreds of
thousands of atoms over a timescale of the order of 100 ns, while the ab
initio approaches are restricted to few hundreds of atoms and a timescale
of picoseconds. In many physical phenomena, there is a need for even more
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simplified models.
This implies that a given system of many degrees of freedom may be

described at different spatial or temporal resolutions (Fig. 3.10). Each level
is characterized by a set of relevant variables that specify the state of the
system at that level. The word “level” suggests a hierarchical structure and,
in fact, the levels of description for a given system order themselves in terms
of the amount of information included in the relevant variables.

In any system, among all the possible levels of description two of them
are particularly important because they set the extremes of the hierarchy.
They are the atomistic and macroscopic levels (Fig. 3.11). The atomistic
level has the positions and momenta of all atoms of the system as a set of
relevant variables, the dynamic equations are Hamilton’s equations, and the
time scale is a typical collision or vibration time. The macroscopic level is the
level of thermodynamics where the relevant variables are mass, momentum,
and energy densities. Any other level of description is in between these two
levels and could be named mesoscopic.

To study mesoscopic phenomena, we have to simplify, or coarse-grain,
the classical atomic-scale models. This is usually done by the use of physical
intuition and reasoning. The validity of such coarse-grained model is exam-
ined afterwards—by comparing its predictions with experiments. However,
molecular specificity is usually lost in these phenomenological approaches,
and for this reason such models can only be used to study generic properties
of materials. Only by incorporating atomistic details in the coarse-grained
model, one can expect to relate a coarse-grained model with the underlying
molecular system. Inverse mapping, called fine-graining [156], is also impor-
tant. In the fine-graining process, coarse-grained configurations are used to
reproduce sets of atomistic configurations.

The primary aim in coarse-graining is to bridge different length and time
scales. This is calledmultiscale modeling and it is often referred to as the Holy
Grail of modeling. For example, one may represent a group of atoms with
one interaction center (Fig. 3.5). Although there is no unique way to do the
coarse-graining, the coarse-graining procedure always leads to a reduction of
the number of degrees of freedom and this decreases the computational work.
The challenge is to establish systematic coarse-graining schemes that allow
one to develop simplified model systems in terms of the information extracted
from the underlying microscopic systems. Thus far, various approaches have
been used to coarse-grain atomistic and molecular systems. For a review
of systematic coarse-graining procedures, see the recent article by R. Faller
[157].
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Figure 3.10: Different levels of description in a colloidal suspension. Arrows
denote the direction of coarse graining from the classical mechanics level at
the lower left hand corner to the level of thermodynamics at the top right
hand corner. Figure taken from the article by P. Español [155].
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Figure 3.11: Different time and length scales, typical computational methods
used to study them, and biological entities related to various length scales.
Figure taken from the article by I. Vattulainen and M. Karttunen [158].
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Figure 3.12: Conservative DPD force.

3.4.2 The DPD method

In the mesoscopic level, there are several methods available to simulate ma-
terials. The most popular of them are the lattice Boltzmann [159], stochastic
rotation dynamics (or the Malevanets–Kapral method) [160], and the dissipa-
tive particle dynamics (DPD) [7,8]. The common factor in these methods is
that they work with coarse-grained models and take hydrodynamics properly
into account. Hydrodynamic effects are important in mesoscopic scales and
become more and more important when approaching the continuum limit.

The DPD method describes a system in terms of N particles having
masses mi, positions ~ri, and velocities ~vi. As in molecular dynamics, the time
evolution of particles is given by Newton’s equations of motion [Eqs. (3.18)
and (3.19)]. The total force acting on particle i is given as a sum of conser-
vative, dissipative, and random forces, respectively, as

~Fi =
∑

i6=j

(~FC
ij + ~FD

ij + ~FR
ij ). (3.28)

The conservative force ~FC
ij is independent of the dissipative and random

forces. Typically it takes the form (Fig. 3.12)

~FC
ij =

{

aij(1− rij/rc)~eij if rij < rc;
0 otherwise,

(3.29)

with ~rij ≡ ~ri − ~rj, rij ≡ |~rij|, and ~eij ≡ ~rij/rij. The variable aij describes
the repulsion between particles i and j, and thus produces excluded volume
interactions. The cutoff distance rc sets the length scale for the model.

The dissipative force (Fig. 3.13) is expressed as

~FD
ij = −γωD(rij)(~vij · ~eij)~eij, (3.30)
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F D F D

Figure 3.13: Dissipative force.

where γ is a friction parameter, ωD(rij) is a weight function for the dissipative
force, and ~vij ≡ ~vi − ~vj. The dissipative force slows down the particles by
removing the kinetic energy from them.

This effect is balanced by the random force due to thermal fluctuations,

~FR
ij = σωR(rij)ζij~eij, (3.31)

where σ is the amplitude of thermal noise, ωR(rij) is the weight function for
the random force, and ζij(t) are Gaussian random variables with

〈ζij(t)〉 = 0 (3.32)

and

〈ζij(t)ζkl(t′)〉 = (δikδjl + δilδjk)δ(t− t′). (3.33)

The condition ζij(t) = ζji(t) is required for momentum conservation. This is
a necessary condition for the conservation of hydrodynamics.

The weight functions ωD(rij) and ω
R(rij) cannot be chosen arbitrarily. P.

Español and P. Warren [161] showed that the fluctuation-dissipation relations

ωD(rij) = [ωR(rij)]
2 (3.34)

and

σ2 = 2γkBT (3.35)

must be satisfied for the system to have a canonical equilibrium distribu-
tion (Appendix B). Here T is the temperature of the system and kB is
Boltzmann’s constant. It is important to notice that the original DPD for-
mulation by P. J. Hoogerbrugge and J. M. V. A. Koelman [112,113] does not
obey the fluctuation-dissipation relations of Eqs. (3.34) and (3.35) and hence
does not relax to the canonical distribution. Hence, the DPD formulation by
P. Español and P. Warren [161] should be used.
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The functional form of the weight functions is not defined by the DPD
method but virtually all DPD studies use

ωD(rij) = [ωR(rij)]
2 =

{

(1− rij/rc)
2 if rij < rc;

0 otherwise.
(3.36)

The random and dissipative parts of the DPD method can be thought
of as a momentum conserving thermostat that allows one to study a system
within the NV T ensemble with the correct canonical distribution. This
DPD thermostat is by construction local and Galilean invariant [114] and
therefore preserves hydrodynamics. Coarse-graining in the DPD method
comes in through the soft conservative forces of Eq. (3.29). By “softness”
we mean that the DPD force has a finite value at zero particle separation
(Fig. 3.12), allowing particles to overlap. It was shown by B. M. Forrest
and U. W. Suter [162] that coarse-graining indeed results in soft conservative
forces like that of Fig. 3.12. Importantly, the conservative forces in DPD are
independent of the random and dissipative ones, and thus the latter two can
be used as a thermostat in any MD simulation.

The DPD technique was originally developed by P. J. Hoogerbrugge and
J. M. V. A. Koelman to solve hydrodynamic flow problems in porous media.
Since its introduction in 1992 [112,113], the DPD technique has become the
most used coarse-grained simulation technique in soft matter research, and
several extensions and generalizations of DPD have been developed [163–169].
For example, E. G. Flekkøy et al. developed a systematic and rigorous DPD
framework starting from a microscopic description [163, 164], P. Español,
in turn, generalized the DPD technique to energy conserving systems [167].
The DPD technique has recently been used together with the MD method
to coarse grain aqueous salt solutions [169] in which the effective interactions
used in DPD simulations were obtained from MD simulations by the inverse
Monte Carlo procedure [45].

Despite having its origin in porous media, DPD has gained most of its
merits in simulations of polymers and surfactant systems [50, 170–172] and,
very recently, also in simulations of biological systems [48, 49, 173–176]. To
mention some examples, DPD has been applied to problems ranging from
liquid–gas phase diagrams [177], to rupture of bacterial membranes [48], self-
assembly in Huntington disease [176], and kinetics of microphase separation
of diblock copolymers [170,171]. The last 14 years have been very successful
on both the analytical and the computational fronts—the theoretical basis
of the DPD method is now well established, and the number of applications
has increased at an accelerated pace.

There are still fundamental issues to be solved and clarified. One is the
integration of the equations of motion. In the context of the MD method, the
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present understanding of this issue is well developed. However, in the case
of DPD simulations the situation is more problematic. The main difficulty
arises from the dissipative forces, which depend on the relative velocities of
the particles, while the velocities in turn depend on the dissipative forces.
This difficulty is not present in MD simulations but leads to significant prob-
lems in DPD simulations, such as systematic error in temperature and ar-
tificial structures in the radial distribution function [4, 54, 55, 178, 179]. In
overcome to these problems, a number of integration schemes [46,51–57] for
DPD simulations have been developed in the past few years. Self-consistent
determination schemes exist on the one hand [53–55], but these are rather
elaborate and may lead to undesired effects as well. Most of these algo-
rithms have been tested in Refs. [54, 55], and in this work (Paper [4]) we
have elaborated and detailed many of the outstanding issues.

Another problem of the DPD method is that it simulates fluids with com-
parable diffusion coefficient D and kinematic viscosity ν = η/ρ, resulting in
Schmidt numbers Sc = ν/D close to 1. This value corresponds to a situa-
tion often found in gases, while in fluids the Schmidt number is of the order
of 103 or even larger. Yet another problem relates to the soft conservative
forces. These forces allow access to much larger length and time scales than
the Lennard-Jones-type forces used in MD simulations. Of course, there is
a price to pay: the softness of the conservative forces allows polymer chains
to slide through each other thus strongly affecting the dynamics of the sys-
tem. Indeed, the scaling laws obtained from DPD simulations of polymer
melts [78, 79] are not able to describe entangled liquids. In this thesis (Pa-
per [5]) we present and test a simple criterion that conservative forces should
meet in order to give correct polymer dynamics.

3.4.3 Lowe–Andersen approach

Dissipative particle dynamics (DPD) technique described above can be thought
of as a momentum conserving thermostat that allows one to study a system
within the NVT ensemble with full hydrodynamics [4, 55]. The key features
are therefore momentum and temperature conservation. As discussed above,
momentum conservation arises naturally from the pairwise forces. Tempera-
ture conservation, in turn, arises from the random and dissipative forces that
are chosen to satisfy the fluctuation-dissipation theorem.

An alternative approach to DPD was formulated by C. P. Lowe in 1999.
This method, called the Lowe–Andersen thermostat [58], obeys the same
conservation laws and is similar in spirit to DPD as it is aimed for studies of
coarse-grained models in terms of soft interactions. In the Lowe–Andersen
method, one first integrates Newton’s equations of motion with a time step
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∆t, and then thermalizes the system using the Andersen thermostat for pairs
of particles. The algorithm proceeds as follows. For all pairs of particles for
which rij < rc, one decides with a probability Γ∆t whether to take a new
relative velocity from a Maxwell distribution. For each pair of particles whose
velocities are to be thermalized, one works on the component of the velocity
parallel to the line of centers and generates a relative velocity ~v 0

ij · ~eij from a

distribution ξ
(g)
ij (2kBT/m)1/2. Here ξ

(g)
ij are Gaussian random numbers with

zero mean and unit variance. This approach has its origin in the Andersen
thermostat [139], hence the name Lowe–Andersen method.

The key factor in the Lowe–Andersen method is the parameter 1/Γ which
describes the decay time for relative velocities. Since the condition 0 <
Γ∆t ≤ 1 is obvious, one finds that for Γ∆t = 1 the particle velocities are
thermalized at every time step, while for Γ∆t ≈ 0 the model system is only
weakly coupled to the thermostat. The Lowe–Andersen method produces
the canonical distribution and is by construction local and Galilean invari-
ant. It therefore preserves hydrodynamics, just as the regular DPD method.
Recently, L.-J. Chen et al. [180] have demonstrated that the Lowe–Andersen
technique is able to reproduce certain “classical” DPD results published in
Refs. [46, 78,170].

The Lowe–Andersen approach is appealing for a number of reasons. First
of all, since there are no dissipative forces we can assume that this method
does not suffer from the same drawback as the DPD method: While the
DPD method requires a self-consistent solution of the equations of motion,
the Lowe–Andersen approach is easier to use and most likely performs well
even with integration schemes that are commonly used in classical MD sim-
ulations. Nevertheless, the Lowe–Andersen thermostat also suffers from in-
tegration errors as is shown in this thesis (Paper [4]) and Refs. [178–180].
The second advantage is that the rate of how often the particle velocities
are thermalized may be varied over a wide range, which implies that the dy-
namical properties of the system can be tuned in a controlled fashion. C. P.
Lowe [58], and S. D. Stoyanov and R. D. Groot [181], have demonstrated this
idea by showing how the Schmidt number Sc can be tuned to match values
found in actual fluids. If compared to the regular DPD technique, the most
significant disadvantage of the Lowe–Andersen thermostat is that it produces
non-continuous phase space trajectories. This problem is resolved by E. A.
J. F. Peters [182], who presented an improved version of the Lowe–Andersen
thermostat. This scheme gives correct equilibrium statistics and reduces to
the ordinary DPD equations in the limit of zero time step.
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Chapter 4

Summary of publications and
conclusions

As discussed in earlier chapters, computational methods provide a unique
way to study physical problems. If compared to theories, computational
methods are typically able to avoid the often necessary crude approxima-
tions that are sometimes unavoidable in building theories. If compared to
experiments, computational methods can address questions that are beyond
the limits and resolution of experimental techniques. Nevertheless, compu-
tational methods should not be considered as an alternative to theories or
experiments, but these three approaches complement each other.

In this thesis, we have applied computational methods to two physical
problems. First, we have studied the diffusion of atoms on solid surfaces.
Second, we have considered methodological aspects of a simulation technique
called the dissipative particle dynamics (DPD).

In the first part of this thesis (Papers [1–3]), we have studied the diffusion
of atoms on solid surfaces. To this end, we have carried out Monte Carlo sim-
ulations for a lattice-gas model of O/W(110), first on clean surfaces and then
on surfaces containing small concentrations of immobile, site-blocking impu-
rities. In both cases, we have examined how non-equilibrium condition affects
tracer diffusion and collective diffusion of atoms on a surface. In Paper [1],
we used the Boltzmann–Matano method to determine the collective diffusion
coefficientDC(θ) as a function of coverage θ (surface density) from scaled cov-
erage profiles. The coverage profiles were obtained from Monte Carlo simu-
lations of a clean surface using a lattice-gas model of O/W(110). We focused
on the temporal behavior of DC(θ) as the system approaches equilibrium.
We demonstrated that the effective DC(θ) obtained in this fashion depends
strongly on the time regime chosen for analysis of the density profiles, and
thus may differ significantly from results obtained from equilibrium simula-
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tions. The deviations from equilibrium are most pronounced within ordered
phases and close to phase boundaries, where the non-equilibrium conditions
lead to reduction of order. Based on our results, the non-equilibrium effects
can be traced back to particle number fluctuations, which are significantly
enhanced with respect to the equilibrium case.

In Paper [2], we continued this work and studied how the corresponding
non-equilibrium effects in DC(θ) depend on the initial density gradient and
the initial state from which the spreading starts. To this end, we carried out
extensive Monte Carlo simulations of a clean surface using the lattice-gas
model of the O/W(110) system. Studies of submonolayer spreading from
an initially ordered p(2 × 1) phase at θ = 1/2 revealed that the spreading
and diffusion rates in directions parallel and perpendicular to rows of oxy-
gen atoms are significantly different within the ordered phase. Aside from
this effect, we found that the degree of ordering in the initial phase has a
relatively small impact on the overall behavior of DC(θ). Also, although
we found that non-equilibrium effects are clearly present in submonolayer
spreading profiles, DC(θ) determined from such data approaches its asymp-
totic equilibrium behavior much more rapidly than in case of full spreading.
Nevertheless, in both cases there are noticeable deviations from equilibrium
results that persist even at very long times. We note, however, that all
quantities studied in this work eventually approach their equilibrium limits
at very long times, as expected. The Boltzmann–Matano method therefore
works well and yields the equilibrium behavior of DC(θ) if one is only able
to achieve the actual linear response regime of local equilibrium. To ensure
this, particular care must be taken when profile spreading experiments are
being carried out.

Non-equilibrium effects are one of the problems associated with interpret-
ing the diffusion data, but not the only one. Namely, profile evolution exper-
iments are usually made over macroscopic distances, which implies that the
effects due to impurities and surface defects cannot be entirely eliminated.
To address the significance of these effects, we studied, in Paper [3], how
quenched (immobile) impurities affect the surface diffusion and ordering of
strongly interacting adsorbate atoms on surfaces. To this end, we carried out
Monte Carlo simulations for a lattice-gas model of O/W(110), including small
concentrations of immobile impurities which block their adsorption sites. We
examined the behavior of the diffusion coefficients and order parameters as
a function of coverage at low temperatures. The effects of impurities were
examined under both equilibrium and non-equilibrium conditions, and the
results were compared to the studies on a completely clean surface. We
found that even minute impurity concentrations affect the diffusion behav-
ior considerably in equilibrium. The effects are strongest in ordered phases
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and close to phase boundaries, where quenched impurities lead to a reduc-
tion of order. As the impurity concentration is increased to a level of a few
percent of the total surface area, the reduction in order becomes particu-
larly prominent. Further studies under non-equilibrium conditions revealed
that non-equilibrium effects are strong in the absence of impurities, while
for surfaces covered by impurities the non-equilibrium effects are relatively
weaker.

In the second part of this thesis (Papers [4, 5]), we have considered
methodological aspects of the dissipative particle dynamics (DPD) technique.
The DPD technique is a relatively new simulation technique and is becoming
very popular in studies of biologically motivated soft matter systems. First,
in Paper [4] we addressed the question: “How to integrate the equations of
motion in DPD simulations?” To this end, we tested and analyzed several
novel DPD integration schemes on an equal footing through DPD simula-
tions of three different model systems. By monitoring a number of physical
observables including temperature, radial distribution function, radius of gy-
ration for polymers, and tracer diffusion, we found that the methods by Lowe
and Shardlow give the best overall performance and are superior also to the
integrators tested in previous studies.

Second, we have studied the dynamics of polymer melts. In standard
DPD, as well as in other coarse-grained soft-potential models, there is a
problem that polymers can penetrate through themselves. This is a clear
artifact, and has direct consequences on the polymer dynamics. To correct
this problem, in Paper [5] we tuned the conservative forces within the polymer
chain so strong that chains cannot cut through each other. We demonstrated
that if a certain geometric criterion is met, it is impossible for polymer chains
to cross. Through DPD simulations, we showed that our approach is able
to reproduce Rouse-like dynamics for short polymer chains and reptational
dynamics for longer chains. The results are in good agreement with polymer
theories and experiments.

In the future, the role of computational physics will certainly keep on
growing. The increase in the computing power and algorithmic development
has enabled studies of more complicated and interesting systems than ever
before. As a consequence, computational methods are nowadays the stan-
dard tools in almost every field of physics including particle physics, materi-
als science, and cosmology. In surface science, computational methods have
provided more understanding into surface properties of solid materials. This
understanding is crucial in many technological applications such as semicon-
ductor devices, catalysis, and coatings. The DPD technique, in turn, has
been successfully applied to many soft matter systems, e.g., lipid bilayers,
self-assembly, and the formation of polymer–surfactant complexes. The DPD
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has also been useful as a thermostat for molecular dynamics simulations. The
number of DPD applications is constantly increasing.

Although the computing power is constantly increasing, current meth-
ods are restricted to rather limited length and time scales. Therefore one
cannot study everything from quarks to galaxies with a single method. To
fill the gaps between different methods, various coarse-graining procedures
have been introduced to link the methods. The further development of this
methodology is important in the future.



Appendix A

Metropolis importance
sampling

The Metropolis Monte Carlo method consists of generating a Markov chain
of configurations with a required distribution. In a canonical ensemble, the
probability distribution is given by

πi =
1

Z
e−Ei/kBT , (A.1)

where Z is the normalizing partition function, Ei is the energy of the mi-
crostate i, kB is Boltzmann’s constant, and T is temperature. Other com-
monly used distributions are the microcanonical and the grand canonical
distributions.

The distribution πi should be independent of the position within a Markov
chain and independent of the initial configuration. Under certain conditions,
a Markov chain yields indeed such an invariant distribution, at least for long
times, as it needs some time to “forget” the chosen initial distribution. We
shall not go into details, nor give proofs, but summarize these conditions—
they are [105]: (i) every configuration in the ensemble should be accessible
from every other configuration within a finite number of steps and (ii) there
should be no periodicity.

Let us introduce the function πi(t) which gives us the probability of oc-
currence of configuration i at time step t. The time evolution of this function
is governed by two processes: (i) going from a configuration i at time t to
some other configuration j at time t+1, leading to decrease of πi(t), and (ii)
going from some configuration j at time t to configuration i at time t + 1,
thus causing an increase in πi(t). These mechanisms can be summarized by
the equation

πi(t+ 1)− πi(t) = −
∑

j

πi(t)Pij +
∑

j

πj(t)Pji, (A.2)
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where Pij is the probability for a system to make a transition from configu-
ration i to configuration j. This equation is called the master equation. We
are trying to find the stationary distribution, which is found by requiring
πi(t+ 1) = πi(t), so that we have

∑

j

πi(t)Pij =
∑

j

πj(t)Pji. (A.3)

We omit the t-dependence of π from now on. It is difficult to find the general
solution to this equation, but a particular solution is recognized immediately:

πiPij = πjPji (A.4)

for all pairs of configurations i, j. This solution is called the detailed balance
condition. It makes sure that transition rates between any pair of configura-
tions i, j are balanced.

Let us reformulate the detailed balance condition such as to make it
suitable for practical purposes. We write the transition probability in the
form

Pij = aijwij (A.5)

where aij is a trial transition probability and wij is an acceptance probability.
This means that the algorithm proceeds in two stages. In the first stage, given
a configuration i, we propose a new configuration j with a probability aij.
In the second stage, we accept the transition with a probability wij. In the
Metropolis importance sampling, the matrix aij is symmetric:

aij = aji. (A.6)

Substituting Eqs. (A.5) and (A.6) into Eq. (A.4) gives

wij

wji

=
πj
πi
. (A.7)

This requirement still leaves some ambiguity about the form of wij. A com-
mon choice is the Metropolis form wij = min(πj/πi, 1), which can be written
as

wij =

{

e−(Ej−Ei)/kBT if Ej − Ei > 0;
1 otherwise,

(A.8)

for the canonical ensemble. Other choices of wij are also possible [105].
In the studies of lattice-gas systems, a typical procedure is following. One

particle is selected randomly and the other particles are kept fixed. The new
position of the particle is then chosen randomly from its nearest neighbor
lattice sites. If the nearest site chosen is full, no jump occurs. If it is empty a
jump occurs with the probability given by Eq. (A.8). This updating scheme
is called the Kawasaki dynamics. It is important to note that the Kawasaki
scheme satisfies the detailed balance condition.
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Fluctuation-dissipation relation
for DPD

In this Appendix, we derive the fluctuation-dissipation relation [Eqs. (3.34)
and (3.35)] for the dissipative particle dynamics (DPD) method. The fluctua-
tion-dissipation relation was first derived by P. Español and P. Warren in 1995
[161] using a Fokker–Planck equation, which is at heart of the universally
accepted DPD formulation.

The DPD interactions are composed of pairwise conservative, dissipative,
and random forces exerted on particle i by particle j, respectively, and are
given by

~FC
ij = F

(c)
ij (rij)~eij

~FD
ij = −γωD(rij)(~vij · ~eij)~eij
~FR
ij = σωR(rij)ζij~eij,

(B.1)

where ~rij ≡ ~ri−~rj, rij ≡ |~rij|, ~eij ≡ ~rij/rij, and ~vij ≡ ~vi−~vj. By substituting
these forces into Newton’s equations of motion we obtain a set of Langevin
equations. We write the resulting Langevin equations in the mathematically
well-defined form of stochastic differential equations [183]

d~ri =
~pi
mi

dt (B.2)

d~pi =





∑

j 6=i

~FC
ij (~rij)−

∑

j 6=i

γωD(rij)(~vij · ~eij)~eij


 dt+

∑

j 6=i

σωR(rij)~eijdWij, (B.3)

where dWij = dWji are independent increments of the Wiener process. We
will assume Itô interpretation which implies the Itô calculus rule

dWijdWkl = (δikδjl + δilδjk)dt (B.4)
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i.e., dWij(t) is an infinitesimal of order 1/2 [183].
Our next aim is to derive the Fokker–Planck equation that corresponds

to the above stochastic differential equations. Following standard procedures
[183], one considers the differential df of an arbitrary function f to second
order and substitutes Eqs. (B.2) and (B.3). By using Eq. (B.4) and the fact
that dW is an infinitesimal of order 1/2 one can obtain 〈df/dt〉 and extract the
Fokker–Planck equation governing the temporal evolution of the distribution
function ρ(r, p; t) of the positions and momenta of all the particles [183]. The
resulting Fokker–Planck equation takes the form

∂tρ(r, p; t) = LCρ(r, p; t) + LDρ(r, p; t) (B.5)

where we have defined the operators

LCρ(r, p; t) = −




∑

i

~pi
m

∂

∂~ri
+
∑

i,j 6=i

~FC
ij

∂

∂~pi



 ρ(r, p; t) (B.6)

LDρ(r, p; t) =
∑

i,j 6=i

~eij
∂

∂~pi

[

γωD(rij)(~vij · ~eij)+

σ2

2
[ωR(rij)]

2~eij

(

∂

∂~pi
− ∂

∂~pj

)]

ρ(r, p; t) (B.7)

The operator LC is the usual Liouville operator of a Hamiltonian system
interacting with conservative forces ~FC . The operator LD contains second
derivatives and takes into account the effects of the dissipative and random
forces.

The equilibrium distribution ρeq is given by the steady state solution of
Eq. (B.5): ∂tρ = 0. We now consider the conditions under which the steady
state solution is the canonical ensemble:

ρeq(r, p) =
1

Z
exp{−H(r, p)/kBT} (B.8)

=
1

Z
exp

{

− 1

kBT

[

∑

i

p2
i

2mi

+ V (r)

]}

, (B.9)

where H is the Hamiltonian of the system, V is the potential function that
gives rise to the conservative forces ~FC , kB is Boltzmann’s constant, T is the
equilibrium temperature, and Z is the normalizing partition function. The
canonical ensemble is the equilibrium solution for the conservative system,
i.e., LCρ

eq = 0. In addition, we can satisfy LDρ
eq = 0 by requiring

ωD(r) = [ωR(r)]2 (B.10)

σ2 = 2γkBT. (B.11)

This is the fluctuation-dissipation theorem for the DPD method.
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