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Chapter One 
 

Introduction 
 

 

1.1 Motivation and Objectives  
 

Harmonics and distortion in power system current and voltage waveforms have been 

present for decades.  However, today the number of harmonic producing devices is 

increasing rapidly. These loads use diodes, silicon controlled rectifiers (SCR), power 

transistors, etc. Due to their tremendous advantages in efficiency and controllability, 

power electronic loads are expected to become significant in the future, and can be 

found at all power levels, from low-voltage appliances to high voltage converters. One 

result of this is a significant increase in the level of harmonics and distortion in power 

system networks.  

 

This thesis deals with the effects of power system harmonics on power system 

transformers. The main target is transformer units in transmission substations and 

industrial plants.  
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Many transformers designed to operate at rated frequency have had their loads gradually 

replaced with non-linear loads that inject harmonic currents. These harmonic currents 

will increase losses and hence cause abnormal temperature rises which will decrease the 

expected lifetime. Such conditions require either transformer de-rating to return to the 

normal life expectancy or upgrading with a larger and more economical unit. Therefore 

the need for investigating the harmonic problems is obvious. 

 

The commonly used method to predict the hot spot temperature as the sum of the 

ambient temperature, the top oil rise over ambient and the hot spot rise over top oil is  

described in the IEEE and IEC loading guides [8]-[9]. Their steady state temperature 

relationship is similar.  

 

In the IEC the hot spot temperature rise is taken as the average winding temperature rise 

above the average oil temperature times a hot spot factor H, usually assumed to be 1.3 

for power transformers. The average oil temperature derivation starts from the bottom 

oil temperature. The best method to measure the hot spot would be the direct 

measurement of the actual hot spot with fibre optic sensors. However, this may not be 

practical for existing transformers and difficulty in justifying the added costs has limited 

their use on new transformers. On existing transformers the most common method is to 

simulate the hot spot temperature. The IEC working group proposed a number of 

formulas for calculating the H factor, but no standard formula has been adopted [13]. 

 

The loading guides and recommended practices give a procedure to determine the 

capability of an existing transformer subject to non-sinusoidal load currents.  The 

methodology determines a de-rated current magnitude that allows for the increased 

harmonics based on conservative assumptions [27]-[28]. 

 

The eddy current losses generated by the electromagnetic field are assumed to vary with 

the square of the rms current and the square of the frequency (harmonic order h). 

Actually, due to skin effect, the electromagnetic flux may not totally penetrate the 
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conductors in the winding at high frequencies. It is also assumed that the per unit eddy 

losses at the hot spot location are four times the average per unit eddy losses. 

 

In practice a transformer’s critical point is usually in the upper end of the windings 

where the conductors are exposed to an inclined magnetic field with two components, an 

axial component and a radial component. The eddy current losses are the contribution of 

these two components. The conductor dimensions are found to vary in a wide range. 

This situation requires a more precise prediction when a transformer is subject to non-

sinusoidal load current. A corrected harmonic loss factor to predict transformer 

capability when subject to non-sinusoidal load current is presented in [30] as a more 

accurate estimate. A similar factor is proposed as an alternative method for calculating 

the winding eddy loss enhancement factor [27].   

 

The increased transformer temperatures due to harmonics are estimated based on 

constant harmonic load currents with average daily or monthly temperatures. 

Transformer loading generally changes with time as does the ambient temperature. A 

transformer may operate far below rated load followed by a short period where the rated 

load is exceeded. An accurate and applicable method is needed to estimate the effect of 

harmonics on the transformer temperatures and hence the transformer loss of life. Such a 

method should consider the actual distorted load cycle and temperature variation to 

which a transformer would be subjected while in service.   

 

It should be noted that there is no universal agreement on a “correct” thermal dynamic 

model. The commonly used transient equations are reported in the IEC and IEEE 

loading guides [8]-[9]. The IEEE model does not properly account for variations in 

ambient temperature, which is conservative, and an improved top oil model is proposed 

in [42]. The ambient temperature is included in the top oil rise model where it allows the 

top oil temperature to respond dynamically to changes in ambient temperature. A few 

techniques have been developed to consider the effect of harmonics based on the 

existing loading guides [39], [48]-[49]. 
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In Annex G of the IEEE loading guide, [9] and [41], a more rigorous method is 

suggested. The equations require the use of bottom oil temperature rise over ambient at 

rated conditions. Duct oil temperature is introduced, which may be higher than the top 

oil temperature under certain conditions, leading to a more accurate hot spot temperature 

located at some point in the winding duct. The improved equations consider liquid type, 

cooling mode, resistance and fluid viscosity changes with temperature and ambient 

temperature, and load changes during a load cycle. The temperature equations are based 

on the conservation of energy over any time interval t∆ . Over such an interval, there 

must be a balance between all energy changes in Joules. At each step new calculated 

temperature values are added to the old values. The equations are programmed in Basic 

as documented in [9] and [41].  The total winding loss figure is used in the hot spot 

equation calculation [41] and only the losses due to the dc resistance for a test winding 

[40].  The winding eddy and other stray losses are separated from the losses due to 

winding resistance in the equations to permit a future consideration of oil and winding 

effects due to the increased losses when harmonic currents are present. 

 

A thermal model in the form of an equivalent circuit based on the fundamentals of heat 

transfer theory was proposed by Swift in [44]. The proposed thermal model was 

established to determine the hot spot temperature. The top oil temperature is calculated 

from the oil-to-air model. The top oil temperature becomes the ambient temperature for 

the winding-to-oil model. The top oil model was validated using data from a 250 MVA 

transformer in the field [45].  

 

It is the objective of this research to accurately estimate the increased transformer losses 

and temperature due to harmonic load currents. A FEM (finite element method) model is 

adapted to estimate the losses in each turn/disc to determine the hot spot temperature. A 

corrected loss factor which considers skin effect is proposed and verified 

experimentally. A thermal model which considers a time varying load and temperature is 

developed and verified by factory measurements. The hot spot temperature is used to 

evaluate a transformer loss of life based on an industry accepted formula. 
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1.2 Contributions 

 

The main contributions of this thesis can be summarised as follows: 

 

• A FEM model is adapted and used to predict transformer winding losses. 

Knowledge of the flux density is used with the appropriate conductor dimensions 

to predict the eddy losses for a specific design. The model can be used to locate 

the winding hot spot location, to predict the eddy losses in an individual 

turn/disc, and to calculate the hot spot factor H. Such information is very 

important for winding hot spot determination.  

 

• A corrected eddy current loss factor is derived that considers the field penetration 

in the conductor due to skin effect. The factor can be applied to more accurately 

predict the increased losses due to harmonics and hence the temperature rise. The 

factor is verified experimentally.   

 

• The hot spot equation in Annex G of the IEEE loading guide is modified using 

the calculated winding losses that cause the hot spot. The thermal dynamic model 

is also modified to consider distorted load cycle variation. 

 

• The winding-to-oil model proposed by Swift is developed to predict the hot spot 

temperature based on loading, oil temperature and the estimated losses that cause 

a winding hot spot. The thermal dynamic model is also modified to consider 

distorted load cycle variation. The loss of insulation life function is developed to 

be used to assess a transformer loading capability. 
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1.3 Outline of the thesis 
 

Transformer losses and temperature rises are reviewed in chapter 2. In chapter 3 the 

concepts necessary for understanding the modelling of transformers by numerical 

simulation of the relevant fields by FEM is presented. An adapted transformer 

simulation model, field solution and loss calculation are explained in chapter 4. A 

corrected eddy loss factor developed to predict the transformer losses and the steady 

state temperature for any harmonic spectrum is presented in chapter 5. Chapter 6 re-

examines and reviews the applicability of the existing thermal dynamic models used 

within transformers. Chapter 7 presents the thermal models in the presence of a distorted 

varying load cycle. A test setup and results to validate the corrected loss factor is 

presented in Appendix I. Appendix II gives the input data used in finite element method 

(FEM). Details of the simulink models can be found in Appendix III. 
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Chapter Two 

 

Transformer Losses  

and Temperature Rise 

 
 

Stray losses can be particularly high in power transformers with large ratings.  

Transformer designers today are challenged by high loss evaluation, high reliability 

requirements, and low cost and weight requirements, for which they need advanced 

techniques and tools that lead to optimum design and product performance 

improvements. Among the most important of these calculations and techniques are 

those for winding eddy losses, stray losses in other structural parts and, in general, 

potential regions of excessive heating. All of these can be determined by the strength 

of the electromagnetic leakage field of the transformer winding. This chapter reviews 

transformer losses and the calculation of transformer temperature rise. It also 

presents transformer winding eddy current losses from the point of view of their 

estimation. Such information is important for winding hot spot calculation.   
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Transformer Total  

Losses 

No Load Losses Load Losses 

Pdc   Stray loss 

Winding Eddy Loss Other Stray Loss 

 

2.1 Transformer losses 

 

 

Transformer losses are generally classified into no load or core losses and load losses 

as shown in Fig 2.1.  

 

 

 

 

 

 

 

 

Fig. 2.1 Transformer loss classification 

 

This can be expressed in equation form: 

 

( )
T NL LL

P P P W= +                                                    (2.1) 

where, 

NL
P  are the no load losses. 

LL
P  are the load losses. 

T
P  are the total losses. 

 

NL
P  are the losses due to the voltage excitation of the core. 

LL
P  is, in accordance with 

convention, subdivided into 
dc

P  losses ( 2

dc
I R ) and stray losses caused by 

electromagnetic fields in the windings, core clamps, magnetic shields, enclosure or 

tank walls, etc. 
dc

P  is calculated by measuring the dc resistance of the winding and 

multiplying it by the square of the load current. The stray losses can be further 

divided into winding eddy losses and structural part stray losses. Winding eddy 

losses consist of eddy current losses and circulating current losses, which are all 

considered to be winding eddy current losses. Other stray losses are due to losses in 

structures other than windings, such as clamps, tank or enclosure walls, etc.; this can 

be expressed as:  
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 ( )
LL dc EC OSL

P P P P W= + +  (2.2) 

 

where, 

dc
P  are the losses due to load current and dc winding resistance. 

EC
P  are the winding eddy losses. 

OSL
P  are other stray losses in clamps, tanks, etc. 

 

The total stray losses 
SL

P  are determined by subtracting 
dc

P  from the load losses 

measured during the impedance test, i.e.: 

 

 ( )
SL EC OSL LL dc

P P P P P W= + = −  (2.3) 

 

 

There is no test method to distinguish the winding eddy losses from the stray losses 

that occur in structural parts. 

  

2.2 Structure of core type transformers 

 

Core type power transformers have high voltage HV and low voltage LV windings as 

concentric cylinders surrounding a vertical core leg of rectangular or circular cross-

section. Oil immersed transformers are contained within a steel tank. Fig. 2.2 shows 

the top view of a core type transformer.  

 

 

Windings

inside core

frame

 

Fig.  2.2   Top view of a core type transformer 
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The main parts of a transformer, which are subject to leakage flux, are illustrated in 

Fig 2.3.  

• The magnetic circuit, i.e. the iron core.  

• The primary, secondary and regulating winding. 

• The yoke clamps. 

• The flitch plate. 

• The tank and the tank shields (shunts). 

 

 

Fig. 2.3   A 2-D transformer cross-section illustrates essential parts subject to leakage flux 

 

As mentioned in the previous section, the stray flux has the effect of creating eddy 

current losses within the windings. The eddy current losses are concentrated in the 

end discs due to the radial flux. Flux shunts can be used to divert the flux to avoid 

too large radial components. 

 

On high-current transformers, it is also the case that the generated stray flux can 

give rise to eddy current losses in the tank. In this situation a reduction in the 

magnitude of losses can be obtained by the provision of a flux shunt or shields to 

prevent currents flowing in the tank. This will prevent an excessive temperature 
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rise in the tank. The flux shunts will themselves experience losses but they are 

usually arranged to operate at modest flux density and, like the core, are 

laminated. The stray flux departing radially through the inner surface of the 

winding hits the core and fittings such as the flitch plate mounted in the core for 

holding the core lamination together vertically. Although the losses occurring in 

the flitch plate may not form a significant part of total transformer losses, the loss 

density may attain local levels that may lead to high local temperature if the 

material and type of flitch plate is not selected properly. 

 

A thorough knowledge of the leakage flux is necessary to define the local stray 

losses that cause local hot spots. Due to the fact that transformer loading is based 

on the winding hot spot temperature, the winding losses are the most critical stray 

loss component.    

 

2.3 A review of winding stray loss evaluation in transformers 

 

Many references [3]-[4] on basic eddy current theory have tried to make eddy current 

analysis understandable and practically applicable for solving complex engineering 

problems. These references still give a foundation to researchers for analysis of the 

various stray loss components. 

2.3.1 Winding eddy current loss 

 

2-D FEM is the most commonly used numerical technique to compute winding eddy 

losses. Knowledge of the flux density distribution in the windings can be used in 

choosing the proper axial and radial conductor dimensions. Continuously transposed 

conductors (CTC) can be used in large power transformers with smaller axial and 

radial dimensions to minimise the eddy losses in the low voltage winding. The eddy 

losses in individual turns/discs must be accurately estimated to calculate the hottest 

spot in the transformer, which is generally located at the top of the windings.  

 

Anderson [5] developed a leakage flux program based on a simple form of the finite 

element method and used it to calculate the eddy current losses in the windings due 

to the axial and radial flux components. Komulainen and Nordman [6] used 2-D 
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FEM to get a magneto-static solution for loss calculation. Pavlik et al. [7] have 

approximated leakage flux using a series of 2-D FEM solutions to investigate the 

contribution of different loss components. The authors studied the impact of 

magnetic eddy current shields, placed to cover the tank wall, on the other stray loss 

components, such as flitch plates, core edges and windings.  

 

Analysis of winding eddy losses by 3-D FEM would be more accurate, however, the 

computation cost and complexity would increase. In practice, a reduction to 2-D 

based on construction symmetry is possible without significant loss of accuracy. 

2.3.2 Circulating current losses  

Losses due to circulating currents in the windings are caused by differences in the 

value of the leakage field linking the parallel strands. It is clear that circulating 

current losses depend strongly on the physical location of each strand in the leakage 

field. The losses can be avoided if the location of each conductor is linked with an 

equal amount of leakage flux. Circulating currents can be reduced to a negligibly 

small value by continuous transposition or by employing a number of transpositions 

at pre-determined intervals along the winding height.  

 

2.4 Transformer loading guides 

 

The most common model used for top oil and hot spot temperature calculations is 

described in the IEC 354 Loading Guide for oil immersed transformers [8]. A 

simplified temperature distribution in a transformer is shown in Fig. 2.4. This 

diagram is based on the following assumptions: 

 

• The oil temperature inside and along the windings increases linearly from bottom 

to top. 

• The winding temperature increases linearly from bottom to top, with a constant 

temperature difference g. 

 



Chapter 2 Transformer Losses  and  Temperature Rise                                                                                              

 

 13 

Hg

.

Bottom of winding

Top of winding
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Average winding

g .
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Fig.  2.4  Transformer thermal diagram according to IEC 354 

 

• The hot spot temperature rise at the top of the winding is higher than the average 

temperature rise of the winding. To consider non-linearities such as the increase 

in stray losses at the top of the winding, the difference in temperature between 

the hot spot and the oil at the top of the winding is defined as Hg. The hot spot 

factor H may vary from 1.1 to 1.5, depending on the transformer size, short 

circuit impedance and winding design.  

 

The steady state temperature relations in IEEE [9] are similar to Fig 2.4 from the IEC 

loading guide. 

 

The ultimate hot spot temperature for a transformer under any load K is equal to the 

sum of the ambient temperature, the top oil temperature rise over ambient and the hot 

spot temperature rise over top oil. This can be expressed by the equation below: 

 

 
H A TO H

Θ = Θ + ∆Θ + ∆Θ  (2.4) 

 

where 

A
Θ  is the ambient temperature, °C. 

TO
∆Θ  is the oil temperature rise over ambient, °C. 

H
∆Θ  is the hot spot temperature rise over top oil temperature, °C.  

H
Θ  is the ultimate hot spot temperature, °C. 

 

The top oil temperature rise over ambient temperature is given by the following 

equation: 
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1

n

TO TO R

R K

R
−

 + ⋅
∆Θ = ∆Θ  

+ 
 (2.5) 

 where 

TO R−∆Θ  is the top oil temperature rise over ambient at rated load. 

R  is the ratio of load losses at rated current to no load losses 

K  is the load factor (supplied load/rated load) 

n    is an empirically derived exponent that depends on the cooling method 

 

The hot spot temperature rise over top oil temperature is given by : 

 2m

H
H g K∆Θ = ⋅ ⋅  (2.6) 

 

where 

H
∆Θ  is the hot spot to top oil rise. 

H  is the hot spot factor due to the increased eddy losses at the winding end. 

g  is the average winding to average oil temperature rise at rated load. 

m  is an empirically derived exponent that depends on the cooling method 

 

The suggested exponents n and m define the non-linearity and depend on the 

transformer cooling method. The four modes of cooling used are: natural convection 

of oil in the transformer and natural convection of cooling air over the radiators 

(OA/ONAN), natural convection of oil with forced convection of air over the 

radiators (FA/ONAF), non-directed forced oil flow and forced air flow 

(NDFOA/OFAF) and directed forced oil flow and forced air flow (DFOA/ODAF). 

The exponents used are: 

 

      Table 2.1 Exponents used in temperature calculation equations 

IEC IEEE  

Type of Cooling 

 n m n m 

OA/ONAN 0.9 0.8 0.8 0.8 

FA/ONAF 0.9 0.8 0.9 0.8 

NDFOA/OFAF 1.0 0.8 0.9 0.8 

DFOA/ODAF 1.0 1.0 1.0 1.0 
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2.5 Determination of the hot spot factor H 

 

A standard thermal test to measure the average temperature rise does not simulate the 

additional losses due to the high eddy currents in the end windings. These losses are 

covered by the hot spot factor in order to calculate the ultimate hot spot temperature. 

CIGRE Working Group 12-09 [11] analysed data collected during detailed tests to 

quantify the H factor used in the IEC loading guide. A statistical analysis of these 

data showed that the value of this factor is distributed between 1 and 1.5. A typical 

value of 1.1 has been given for distribution transformers and 1.3 for medium size and 

large transformers. IEC 76-2 [12] states that the hot spot factor varies considerably in 

large power transformers depending on design and that the manufacturer should be 

consulted for information unless actual measurements have been made. 

 

Direct hot spot temperature measurements indicate that the range of variation is 

between 1.1 to 2.2 and H does not represent a constant. The H factor should be 

predicted correctly for a specific transformer design due to the fact that an 

unrealistically high value will penalise the user in determining loading capability 

while an unrealistically low value understates the ultimate winding hottest spot 

temperature. 

2.5.1 Analytical determination of the winding hot-spot factor H 

The working group 12-09 [13] proposed a number of formulas for calculating the 

hot-spot factor H to explain the range of variation and to predict its value when 

designing a specific transformer. However, no standard formula has been adopted. 

2.5.2 Determination of winding hot-spot temperature by direct measurement 

Direct temperature measurement techniques using fibre optic sensors are currently 

available and are in use in some large power transformers. Ideally, the best method is 

to directly measure the winding hot spot temperature through a fibre optic sensor. 

This may not be practical for existing transformers and may be difficult to justify in 

terms of cost for new transformers.  
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These devices are capable of indicating the temperature only at the spots where 

sensors are located. The proper choice of location for the sensors in the transformer 

windings is crucial to accurately determine the hottest spot temperature. Therefore, 

their accuracy in measuring the winding hottest spot is dependent on the ability to 

predict the hottest spot location prior to the sensors’ placement. However, even with 

these disadvantages, many consider fibre optic sensors the best tool available for 

measuring winding hot spot temperatures. The working group 12-09 survey [14] 

suggests that eight sensors would be adequate if placed in the winding locations 

where the highest temperatures are expected. 
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Chapter three  

Modeling and Simulation 

of Electromagnetic Fields 
 

 

The notation and basic laws of electric and magnetic fields are explained in 

this chapter. Furthermore, that which is necessary to understand in the modelling of 

devices by numerical simulation of such fields by FEM is presented. 

 

3.1 Electromagnetic fields 

 

The fundamental physical equations for electromagnetic field calculations are the 

Maxwell equations: 

 

 
t

−∂
∇× =

∂

B
E  (3.1) 

 

 
t

∂
∇× = +

∂

D
H J  (3.2) 

 

 0∇ ⋅ =B  (3.3) 
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where, 

E  is the electric field strength 

B  is the magnetic flux density. 

H  is the magnetic field strength.  

J  is the current density  

D  is the electric flux density 

 

Constitutive relations between the different field vectors are as follows 

 

 0 r
µ µ µ= =B H H  (3.4) 

 

 σ=J E  (3.5) 

 

 0 r
ε ε ε= =D E E  (3.6) 

 

where 

ε  is the electric permittivity  

0ε  is the permittivity of a vacuum 

r
ε  is the relative permittivity 

µ  is the permeability 

0µ  is the permeability of a vacuum 

r
µ  is the relative permeability. 

σ  is the electrical conductivity  

 

3.2 Magnetic vector potential formulation 

 

Maxwell’s equations are not solved directly. They are usually solved by combining 

equations to eliminate variables, using potential functions from which the field can 

be derived and seeking simplifying assumptions valid for the particular problem. The 

proper choice of a potential depends on the type of field problem. The magnetic 

vector potential is commonly used in the solution of 2-D magnetic fields. 
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In a 2-D field the vector potential A and the current density have only a z component 

when the magnetic field is in the x-y plane. In the axi-symmetric case A and the 

current density have only φ  components and the magnetic field is in the r-z plane. 

 

(0,0, ) (0,0, )
Z

A or Aφ = A  

(0,0, ) (0,0, )
Z

J or Jφ = J  

( , ,0) ( , ,0)
x y r z

B B or B B = B  

The magnetic vector potential A  is defined as the curl of the magnetic flux 

density B . 

 ∇× =A B  (3.7) 

 

According to equation (3.3) 

 

( ) 0∇ ⋅ ∇× =A  

 

The displacement current is usually omitted from the equation for electrical devices 

operated at low frequency. Hence, a magneto-static problem can be described using 

equation (3.2)  

 
1

( )
µ

∇× ∇× =A J  (3.8) 

 

A vector calculus identity can be used to simplify the above equation. 

 

 
2( ) ( )A∇× ∇× = ∇ ∇ ⋅ − ∇A A  (3.9) 

 

Substituting (3.9) into (3.8) leads to the formulation of the magneto-static field 

   

 21

µ
∇ = −A J  (3.10) 

 

 

where, in order to define the vector field A uniquely, a Coulomb gauge is used  

 

 0∇ ⋅ =A  (3.11) 
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This is the magneto-vector potential formulation of the magneto-static fields. 

 

To consider quasi-static fields for eddy current calculations, a magneto-dynamic 

formulation is to be used. Equation (3.1) is used in addition to equation (3.7) 

 

 
( )

t t t

−∂ ∂ ∇× ∂
∇× = = − = −∇×

∂ ∂ ∂

B A A
E  (3.12) 

 

Rearranging equation (3.12) and introducing the magnetic scalar potential function φ  

yields 

 

 0
t

φ
∂ 

∇× + = = −∇×∇ ∂ 

A
E  (3.13) 

 

Equation (3.13) can be reduced as follows: 

 

 
t

φ
∂

+ = −∇
∂

A
E  (3.14) 

 

Using equation (3.5) we get the current density J as: 

 

 
t

σ σ φ
∂

= − − ∇
∂

A
J  (3.15) 

 

Using equations (3.8) and (3.15) yields a formulation of the quasi-static field in the 

time domain  

 

 
1

( )
t

σ σ φ
µ

∂
∇× ∇× = − − ∇

∂

A
A  (3.16) 

Using vector calculus (3.16) is then reduced to 

 
1

.( )
t

σ σ φ
µ

∂
−∇ ∇ + = ∇ =

∂
s

A
A J  (3.17) 

 

The scalar potential can be used to describe an external voltage or current in a 

conductor. 
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1

( )
t

σ σ
µ

∂
−∇ ⋅ ∇ + = =

∂

A V
A J

s�
 (3.18) 

 

In order to solve this equation, a time discretisation in addition to spatial 

discretisation must be performed. A time stepping technique has to be used. 

However, this equation can be simplified assuming sinusoidal field variation at 

angular frequency ω  or using phasor representation. Thus  

 A j A
t

ω
∂

=
∂

 

Substituting the above into equation (3.18) yields an equation that describes the time 

harmonic problem: 

 
1

( ) jωσ σ
µ

−∇ ⋅ ∇ + = = s

V
A A J

�
 (3.19) 

3.2.1 Magnetic field solution using FEM 

 

The fundamental idea behind the finite element method is to subdivide the region to 

be studied into small sub-regions called finite elements. The field variable is 

approximated in each finite element by a simple function, usually a polynomial. The 

coefficients of the polynomials are chosen in such a way that a variational principle 

(e.g. the minimisation of the field energy) is approximately satisfied [15]. 

3.2.2 Boundary conditions 

 

Boundary conditions are necessary to make the boundary value problem a well posed 

problem with a unique solution. Dirichlet and Neuman boundary conditions must be 

applied in an appropriate way to reduce the size of the problem significantly. FEM 

programs are limited in terms of the number of elements available to approximate the 

geometry of the problem. The correct and appropriate application of the boundary 

conditions is therefore the key to define the problem and arrive at an accurate 

solution in an efficient way. 

 

Dirichlet boundary condition  

The value of the vector potential is defined on the boundary of the problem.  
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 0A A=  

 

This is mainly applied in its homogenous form A= 0 keeping the flux from crossing 

the   boundary.  

 

The non-homogenous Dirichlet boundary can be used to force a prescribed flux 

between two boundaries by the following equation, assuming no flux variation in the 

z-direction [16]. 

 

 2 1( )
s l

B ds A dl L A Aφ = ⋅ = ⋅ = −∫ ∫�  

where, 

L  is the distance between the two boundaries 

 

Neuman boundary condition.  

This boundary condition specifies the normal derivative of A along the boundary. 

The homogenous form, where the field is perpendicular to the boundary, is the most 

common. 

 0
A

n

∂
=

∂
 

 

Open boundary condition 

This boundary condition can be applied to approximate an unbounded solution 

region [17]. 

 
0 0

1
0

A c
A

n rµ µ

∂
+ =

∂
 

where  

c  is a constant which is set equal to one 

0r  is the outer radius of the solution region in meters 

 

  

3.2.3 An example of solving a problem using FEM  

Consider the magneto-static linear homogeneous equation   

 

 2

0µ∇ = −A J  

 

The corresponding energy minimum functional is  
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2

0

1
( ) ( 2 )

2
F A A JA dµ

Ω

= ∇ − Ω∫  (3.20) 

 

The vector potential is approximated by the linear shape function: 

 

A a bx cy= + +  

 

The coefficients a, b and c are found from the values of the magnetic vector 

potential 1A , 2A and 3A  at the three nodes of an element Fig.3.1 

 

 

 

 

 

 

 

Fig 3.1   Triangular finite element 

 

The magnetic vector potential within an element is: 

 

[ ]

1

1 1 1

2 2 2

3 3 3

1

1 1

1

x y A

A x y x y A

x y A

−
   
   =    
      

 

 

Using shape functions, the magnetic vector potential is approximated by: 

3

1

( , )
i i

i

A A N x y

=

=∑  

where 

[ ]1 2 3 3 2 2 3 3 2

1
( ) ( ) ( ) )

2 e
N x y x y y y x x x y= − + − + −

∆
 

[ ]
1

)
2

i i i ie
N a b x c y= + +

∆
 

where 

A
1

 

(x
1,

 y
1
 ) 

A
3

 

(x
2,

 y
2

 ) 

(x
3,

 y
3

 ) 

A
2
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e∆  is the area of an element 

 

The shape functions are one at one node and zero at both other nodes. 

 

0
( , )

1
i j j

i j
N x y

i j

≠
= 

=
 

 

The first term of equation (3.20) is a 3x3 element matrix S 
 

 
1

( )
4

e

ij i j i je
S b b c c= +

∆
 (3.21) 

 

This is the stiffness matrix associated with one element 

 

The second term is 

 

 
3 3

( ) ( ) ( )

0 0 0 0 0 0

1 1 3e

ei i

e e e

i i i

i i

J Ad J A N J Aµ µ µ
= =

= =∆

∆
Ω = =∑ ∑∫   

 

 ( ) ( )

0 0
3

e

e e

i
T Jµ

∆
=  (3.22) 

where 
( )e

i
T  is the source vector function with one element 

 

The contribution of one element to the energy functional can be written in matrix 

form 
 

 ( ) ( ) ( )1
( )

2

e T e T e
F A A S A A T= −  

 

The overall functional of the problem is the sum of the functionals of all elements 

 

 ( )( ) ( )e
F A F A=∑  

 

The system of linear equations is obtained by forcing the partial derivative with 

respect to the nodal potentials to zero. This is the minimisation of the energy 

functional. 

 

 
( )

0 1,....,
i

F A
i n

A

∂
= =

∂
 

 

 S A T=  
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The matrices S and T are obtained by summing the contribution of the individual 

elements. This is a system of linear equations and the solution of this system 

provides the distribution of the magnetic vector potential through the domain. 

 

3.3 Time harmonic problem  
 

In principal, time harmonic eddy current/skin effect analysis is facilitated by solving 

the harmonic equation: 

 

 ( )1
jµ ωσ−−∇ ⋅ ∇ + =

s
A A J  

where, 

s
J  is the source current density 

3.3.1 The source term modelling  

Stranded Conductors 

 

For regions without eddy current (stranded conductors) σ = 0 and the source vector 

is:  

 

 0J=sJ  

 

where 

0J  is the applied current density 

 

Transformer winding turns may consist of a number of conductors connected in 

parallel. The eddy currents caused by internal currents can be neglected at the 

relevant frequency. For this case the source vector can be written in terms of the 

current per strand or turn for stranded conductor p [16]. 

  

 
,

0 ,

,

t p

str p

str p

N
J I=

∆
 (3.23) 

 

where, 

 

,t p
N    is the number of turns of the winding or strands of conductor p. 

,str p
∆   is the area of the stranded conductor in the FEM mesh 
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Solid conductors or foil (sheet) winding 

When skin effect is significant, individual conductors have to be modelled [16]. 

 

 
s q

J V
σ

=
�

 (3.24) 

where, 

l  is the length of the conductor in the z-direction  

q
V  is the potential difference between the ends of the conductor 

 

For sheet-wound (foil) windings where several conductors carry identical total 

currents a circuit constraint is often needed, which complicates the solution. The total 

current density in the conductor is given by 

 

 
s

J J jωσ= − A  (3.25) 

 

The quantity specified by design engineers is the surface integral of J over each 

conductor cross-section, i.e. the total current I flowing in each conductor. 

 

 
s

I J ds j dsωσ= −∫∫ ∫∫A  (3.26) 

 

Different techniques are cited in the literature to solve the problem. First, Konard 

[18] substituted the source current density into the time harmonic equation, which 

yields the integrodifferential equation with A as the unknown variable and I as the 

forcing function. 

 

 
1( )

I
j j ds

a a

σ
µ ωσ ω−∇ ⋅ ∇ − + = −∫∫A A A  (3.27) 

where 

a  is the area of the conductor cross-section 

 

In another form, Weiss and Csendes [19] solved the time harmonic equation in one 

step with a symmetric matrix containing two unknowns, A and Js. 
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1
0j j

G I
j j

ωσ ωσ
µ

ωσ ωσ

 
−∇ ⋅ ∇ + −      =        −  

A
 (3.28) 

 

where,  

G
jωσ

= sJ
 

 

And finally, Konard et. al. [20] used the superposition method and assumed that one 

can find a finite element solution of the time harmonic equation if 
s

J  is given. 

 

3.4 Loss computation using FEM 

 

Transformer turns usually consist of copper conductors in the shape of small 

rectangular strands. These strands are immersed in an alternating magnetic field as 

shown in Fig. 3.2. The losses are found from a magneto-static solution in which the 

eddy current region is given zero conductivity. The strand dimensions are small 

compared to the skin depth and the strands are frequently transposed. To a good 

approximation, the current density is uniform. 

 

 

h 

B(t) 

W 

B(t) 

 

Fig. 3.2 A conductor strand subject to axial and radial components of the magnetic field 

 

The FEM solution gives the familiar leakage flux over the windings. Using the local 

value of the flux density from the field solution, the eddy current for each strand is 

obtained using the formula valid for strand dimensions that are small compared to 

skin depth [21]: 

 
2 2 2 2

3
EC

f T B
P

π

ρ
�    W/m

3
 (3.29) 

 

While for round conductors where diameter d is small compared to the skin depth, 
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2 2 2 2

4
EC

f d B
P

π

ρ
�    W/m

3
 (3.30) 

where, 

B is the rms value of the magnetic flux density. 

T is the conductor thickness (height h or width w) in the direction of B. 

d is the conductor diameter in the direction of B. 

ρ   is the conductor resistivity. 

 

It should be noted that the eddy losses are proportional to the square of the frequency 

and strand dimension. The eddy losses are predicted based on the assumption that 

eddy currents do not affect the impinging field. This is only the eddy loss 

component. The losses due to the current and dc resistance must be added and 

integrated and corrected over the winding to obtain the losses per unit length, i.e., in 

the post-processing, the losses are determined by adding the loss integrals of the 

finite elements. 

 

 
W dc EC

P P P= +    W/m
3
 (3.31) 

 

 ( ) ( )2= + = = + Ω∑ ∑∫∫W dc EC e EC e

e eA

P P P dA q J Pρ     W/m (3.32) 

where 

e
q  are the loss integrals of the finite elements e 

 

 

The loss density for a conductor modelled with the eddy current term included can be 

calculated as follows [18]: 

 

2

W

J
P

σ
=   W/m

3
 

 

where the total current density may be evaluated from (3.25), 

  

 s

s e

I
J J J j

a
ωσ= + = − A  

 

The losses per unit length of conductor are obtained by integrating the losses over the 

cross-section 

 

2

W

A

J
P dA

σ
= ∫∫   W/m 
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Chapter Four 

 

Transformer Simulation Model 

 

Analysis of the winding eddy losses by 3-D FEM would be more accurate, 

however the computation cost and complexity would increase. Fortunately, in many 

cases a reduction to 2-D is possible without significant loss of accuracy. The 2-D 

finite element method is the most commonly used method to compute eddy losses. 

Utilising transformer symmetry, half of the transformer is modelled instead of the full 

height. High order elements have been used for more accurate field solution. All the 

transformers have been simulated using axi-symmetric (r-z) and plane (x-y) solutions. 

It was observed that the solution remains almost unchanged. The appropriate solution 

was applied for different 2-D cross-sections. 

 

4.1 Transformer FEM model 

 

The main parts of a transformer in a 2-D model are the windings, core clamps, tank 

shunts and walls.  

The windings: the most delicate part of the model since the loss computation needs to 

be accurately determined. For windings in which the conductors are small strands, i.e. 

smaller than skin depth, the skin effect can be neglected. In such a model currents 
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simply appear as a given source current density in the right hand side of equation 

(3.19). The windings were modelled with the conductors occupying the area that in 

reality is covered by insulation. The increased conductor size was then corrected by 

appropriate factors in the loss calculation. The insulation could have been modelled 

but this would have increased the number of elements used, i.e. a very dense mesh 

would have been required, which is not justified.  Fortunately, the insulation does not 

have a significant effect on the losses. 

 The iron core: only half of the core width is modelled with linear isotropic 

permeability. The edge of the core is taken to be the axis of symmetry with zero 

magnetic potential. 

Tank walls or shields: Magnetic or electrical conductor materials can be included in 

the model. 

 

Specific knowledge of the leakage magnetic flux, and the conductors shape and their 

placement in the field is needed to evaluate the eddy losses due to stray magnetic flux. 

A 2-D simulation model was adapted to simulate the field based on data obtained in 

the short circuit test; the easiest way is to apply rated currents.  

 

4.2 FEM analysis and results 

 

In this work a transformer model was adapted using the FEM analysis software 

FEMLAB [22]. The FEM analysis was carried out on different industrial transformers 

to estimate the winding eddy current losses.  Circulating current losses in CTC or 

properly transposed windings is small and their contribution to the eddy current loss 

was considered negligible. 

4.2.1 Transformer field solution 

 

Fig 4.1 shows the field solution of a 31.5 MVA, 115/6.3 kV transformer. The leakage 

flux in the windings flows axially up through the coils and then bends radially across 

the windings. From Fig 4.2 it can be seen that the component of the leakage flux has 

its greatest concentration at the interface between the two windings and then 

decreases progressing away from the gap between the windings. The inner LV 

winding typically has a higher attraction of the leakage flux due to the high 
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permeance of the core. The leakage flux in the HV winding is divided between the 

core and the core clamps and other structural parts [23]. 

 

 

Fig.4.1   Transformer field solution in plane (x,y)  

 

 

 

Fig. 4.2   Detailed transformer field solution 
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In the upper end of the windings, the conductors are exposed to an inclined magnetic 

field with two components, an axial component and a radial component. The eddy 

current loss is the contribution of these two components. Fig. 4.3 shows the axial and 

radial flux components distributed over the transformer windings, as post-processed 

from FEM analysis.  

 

             

Fig. 4.3   Axial (left) and radial (right) flux density distributed over the transformer windings  

 

Similar leakage flux distribution over the transformer windings has been observed for 

different 2-D projections. Fig. 4.4 shows the leakage flux for the windings inside the 

core.  

 

Fig. 4.4   Stray field pattern for windings inside the core 
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4.2.2 Winding loss computation 

 

Since the eddy current term is neglected, the contribution of eddy currents is 

generated by the leakage flux that penetrates the winding, but does not have a 

significant effect on the impinging field as long as the size of the strands is smaller 

than the skin depth. Each strand is subject to two components of flux density normal 

to its sides, which produces eddy currents.  For each component the eddy current loss 

is obtained using equation (3.29), which is valid for strand dimensions that are small 

compared to skin depth. This gives the eddy current loss per unit volume for each 

component of flux density. The radial loss component of flux density Bx occurs in the 

strand height dimension. The axial component of flux density By occurs in the strand 

width dimension. The eddy losses strongly depend on the strand dimension and the 

magnetic field strength. These losses are added to the 
dc

P  losses and are integrated 

over the winding area using equation (3.32). A transformer designer can predict the 

losses for a specific design.  

4.2.3 FEM analysis carried out on different transformers 

 

FEM analysis carried out on different transformers for winding loss estimation and 

compared with measured losses is described next. For the model details see Appendix 

II. 

 

Case 1: A 31.5 MVA unit 

 

This is a 31.5 MVA, 115±9×1.67%/6.3 kV unit with Z=12.06% and a YNd11 

connection, ONAF cooled. The LV is a Helical winding, consisting of 3 transposed 

cables in parallel in each turn and a strand dimension of 2.05×5.2 mm. The high 

voltage winding is a disc winding consisting of 25 strands in parallel in each disc and 

a strand dimension of 2.35×13.5 mm. 

 

The measured transformer losses (at principal tapping position 10) are shown in the 

table below: 
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Table 4.1 Measured rated losses (kW) for the 31.5 MVA transformer 

dc
P  Load Losses

LL
P  Stray Losses

EC SL
P P+  

123.9 146.3 22.4 

 

Transformer winding loss calculations 
 

The winding losses estimated by FEM in each individual disc/turn were calculated at 

a reference temperature of 75 °C, where disc 1 is the top disc, as shown in the table 

below:    

 

Table 4.2  The estimated winding losses per disc (W/m) over the transformer’s HV winding 

Disc 

No. 
dc

P  Axial winding 

eddy loss 

Radial winding 

eddy loss 
EC

P  
W dc EC

P P P= +  

1 102.43 4.82 48.20 53.02 155.45 

2 102.43 6.15 22.13 28.28 130.71 

3 102.43 7.24 10.66 17.90 120.33 

4 102.43 8.14 5.35 13.48 115.92 

5 102.43 8.88 2.80 11.68 114.11 

6 102.43 9.48 1.55 11.03 113.47 

7 102.43 9.99 0.92 10.91 113.34 

8 102.43 10.41 0.59 11.00 113.43 

9 102.43 10.76 0.41 11.18 113.61 

10 102.43 11.06 0.32 11.37 113.81 

11 102.43 11.30 0.26 11.56 113.99 

 

In order to estimate the winding losses, they were multiplied by the winding mean 

length. The stray losses in other structural parts could then be obtained by subtracting 

the calculated winding eddy current losses from the total stray losses and were found 

to be as follows: 

 

dc
P  LV 60.9 kW 

dc
P  HV 62.9 kW 

Eddy losses LV 3.53 kW 

Eddy losses HV 7.86 kW 

Other stray losses 11    kW 

 

Determination of the transformer windings hot-spot factor H 
 

Fig 4.6 shows the eddy loss density (W/m3) over the transformer windings, which 

enables us to predict the hot spot location.  It can be seen that in this case the highest 

losses are in the HV winding. This is due to the larger conductors used. 
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The 2-D FEM calculations can be used in a simple way to calculate the hot spot 

factor. The H factor can be predicted as the ratio of the calculated disc/turn losses that 

generates the hot spot to the total winding average disc/turn losses as follows: 

 

                                                       

0.8

max ( )

( )

W

W ave

P pu
H

P pu

−

−

 
=  
 

                                                      (4.1) 

 where 

maxW
P −  are the winding losses at the hottest spot location (pu) 

W ave
P −  are the average winding losses (pu) 

 

 

Fig. 4.6   Eddy loss density in the upper discs due to the axial and radial flux density over both 

windings  

 

For the example case, using equation (4.1) and pu values, the hot spot factor  

0.8
1.52

1.27 1.3
1.13

H
 

= = 
 

�  

 
Case 2: A 250 MVA unit 
 

 

This is a 250 MVA, 230±8×1.5%/118 kV unit with Z =12% and a YN0ynd11 

connection, ONAF cooled. The LV winding consists of 2 turns per disc and 2 

transposed stranded cables in parallel in each turn with a strand dimension of 

1.35×5.9 mm. The high voltage winding is 4 turns per disc, with 1 transposed cable in 

each turn. The strand dimension is 1.35×6.95 mm. 
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The measured transformer losses (at principle tapping position 9) are shown in the 

table below: 

   Table 4.3 Measured losses (kW) for the 250 MVA transformer 

dc
P (HV+LV+Reg) 

LL
P Load losses Stray losses

EC SL
P P+  

411.8 484.64 72.86 

    

The 2-D FEM field solution is shown in Fig. 4.7.  

 

 

Fig. 4.7   Transformer field solution 

 

Transformer winding loss calculations 
 

The estimated winding losses per individual disc/turn, calculated at a reference 

temperature of 75°C are presented in the table below:    

Table 4.4 The estimated winding losses per disc (W/m) over the transformer’s LV winding 

Disc 

No. dc
P  

Axial winding 

eddy loss 

Radial winding 

eddy loss 

Eddy 

losses
EC

P  

Total losses 

W dc Ec
P P P= +  

1 126.20 2.55 79.78 82.33 208.53 

2 126.20 3.12 58.55 61.67 187.87 

3 126.20 3.65 44.32 47.96 174.16 

4 126.20 4.14 34.28 38.42 164.62 

5 126.20 4.60 26.95 31.55 157.75 

6 126.20 5.01 21.46 26.47 152.67 

7 126.20 5.39 17.25 22.64 148.84 

8 126.20 5.74 13.97 19.71 145.91 

9 126.20 6.05 11.40 17.45 143.65 

10 126.20 6.34 7.98 14.31 140.51 

11 126.20 6.59 6.33 12.92 139.12 

12 126.20 6.83 5.00 11.83 138.03 
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The transformer losses were estimated to be as follows: 

 

dc
P  LV 199.2 

dc
P  HV 187 

dc
P Reg. 24.4 

Eddy losses LV 21.62 

Eddy losses HV 19.63 

Other stray losses 31.66 

 

Determination of transformer windings hot-spot factor H 
 

Fig. 4.8 shows the eddy loss density W/m3 due to leakage flux over the transformer 

windings, which enables us to predict the hottest spot location in the windings.  It can 

be seen that the highest eddy loss is in the LV winding mainly caused by the radial 

magnetic flux component. 

 

 

Fig.4.8   Eddy loss density due to the axial and radial flux denity over upper discs of both windings  

 

The calculated hot spot factor using pu values 

0.8
1.65

1.38 1.4
1.10

 
= = 
 

�  

 

The calculated hot spot factor is found to be in good agreement with the value 

obtained from measurements 1.4 [46]. 
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Case 3: A 2500 KVA prototype unit  

 

A 2500 kVA, 20.5/0.71 kV unit with a Dy11 connection and ONAN without an 

external cooler. The LV winding is a foil winding, consisting of 18 foils and each foil 

is 640×2 mm. The high voltage winding consists of flat conductors, 3.15×9 mm. 

 

The measured transformer losses are shown in the table below: 

Table 4.5 Measured results (kW) for the 2500 kVA transformer 

dc
P  

LL
P  Load losses Stray losses

EC SL
P P+  

17.400 18.8 1.35 

 

For this transformer each layer of the HV winding and each conductor were modelled 

as shown in Fig. 4.9. This allowed estimation of the loss distribution over the 

transformer windings.  

 

 

Fig 4.9   Field solution for the 2500 KVA transformer  

 

 

Figs. 4.10 and 4.11 show the eddy loss density W/m3 due to leakage flux over the 

transformer winding, which enables us to predict the highest winding losses that cause 

the hot spot. The HV winding has the highest loss density in the upper conductors. In 

the LV winding the highest eddy losses are found in the outer foils, due to the axial 

flux density component, and decrease towards the core. 
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Fig 4.10 Eddy loss distribution over the HV winding 

 

 

Fig.4.11 Eddy loss distribution over the LV outer layer foils  

 

The transformer’s estimated losses are 

dc
P  LV 7416 W 

dc
P  HV 9926 W 

Eddy losses LV 135   W 

Eddy losses HV 621   W 

Stray losses  650   W 

 

The calculated hot spot factor

0.8
1.13

1.07 1.1
1.04

 
= = 
 

�  
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This is in good agreement with the value obtained from the measurements made on 

this unit 1.13 [45]. 

 

The calculation carried out is a good approximation. However, when skin effect is 

significant, the conductors have to be modelled including an eddy current term (for 

the internal eddy current distribution) and the techniques explained in section 3.3.1 is 

to be used. This is necessary for foil or sheet windings in order to predict the losses 

more accurately. The solution of this problem would require a magneto-dynamic 

solution. For the time being commercial software is insufficient. This also implies that 

the elements cannot be larger than the skin depth close to the boundaries, i.e., a very 

fine mesh would be needed. 

 

Case 4: A 50 kVA transformer  

 

A 50 kVA, 20.5/0.41 kV, ONAN unit. The LV winding consists of 4.5×6.5 mm flat 

conductors. The high voltage winding consists of round conductors of 0.6 mm 

diameter. 

 

The measured transformer losses are shown in Table 4.6 

Table 4.6 Measured results (kW) for the 50 kVA transformer 

dc
P  

LL
P  Load losses Stray losses

EC SL
P P+  

1.106 1.119 0.013 

 

 

Each conductor in the LV winding was modelled while in the HV winding the small 

round conductors were modelled as 19 layers. Fig. 4.12 shows the field solution for 

the transformer.     

 

It was observed that the flux density is small and the radial flux affects only the upper 

conductors of the LV winding. Calculations based only on axial magnetic flux would 

have no effect on the result. 
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Fig. 4.12   Field solution for 50 kVA Transformer 

 

The estimated losses  in the transformer are 

dc
P  HV 651 

dc
P  LV 339 

Eddy losses HV 0.2 

Eddy losses LV 6.5 

Stray losses 6 

 

The upper part of the transformer was modelled in detail. The HV winding small 

conductors were modelled as shown in Fig. 4.13. 

 

 

Fig 4.13   Transformer upper part with detailed HV winding 

 

Fig. 4.14 shows the winding losses W/m3 over the HV winding, which was found to 

have the highest loss density because it is made of small round conductors of 0.63 mm 
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diameter. Furthermore, the stray field was small and, considering the conductor 

dimensions used, the eddy losses were also small. As a result, the losses can be 

considered constant over the winding.  

 

 

Fig. 4.14 Winding loss density distribution over the upper part of the HV winding, W/m3 
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Chapter Five  

Consideration of Non-sinusoidal 

Loading on Transformers 
 

Harmonics and distortion in power system current and voltage waveforms emerged 

during the early history of ac power systems.  However, today the number of 

harmonic producing devices is increasing rapidly. These loads use diodes, silicon 

controlled rectifiers (SCR), power transistors, etc. Due to their tremendous 

advantages in efficiency and controllability, power electronic loads are expected to 

become significant in the future and can be found at all power levels, from low-

voltage appliances to high-voltage converters. One result of this is a significant 

increase in the level of harmonics and distortion in power system networks.  

 

Transformers are major components in power systems and increased harmonic 

distortion can cause excessive winding loss and hence abnormal temperature rise. 

Increased losses have traditionally been assumed to vary with the square of the 

frequency. This chapter reviews the effect of power system harmonics on 

transformers. A corrected winding eddy current loss factor for typical stranded 

transformer windings is presented and implemented to predict a transformer 

temperature rise under non-sinusoidal load currents. This corrected loss factor is 
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compared with the loss factor based on the square of the harmonic order that is used 

in practical situations. 

 

5.1 Effect of power system harmonics on transformers 

 

Traditionally, transformer losses are divided into no load losses and load losses as 

described in section 2.1. The same loss grouping is retained when considering the 

influence of power system harmonics. The effect of harmonics on the various losses 

is considered next. 

5.1.1 Effect of voltage harmonics 

According to Faraday’s law the terminal voltage determines the transformer flux 

level.  

1 1
. ( )
d

N u t
dt

φ
≅  

Transferring this equation into the frequency domain shows the relation between the 

voltage harmonics and the flux components.  

 

1 ( ) 1,3,......
h h

N j h U hω φ⋅ ⋅ ≅ =   

 

This equation shows that the flux magnitude is proportional to the voltage harmonic 

and inversely proportional to the harmonic order h. Furthermore, within most power 

systems the harmonic distortion of the system voltage THDυ  is well below 5% and 

the magnitudes of the voltage harmonics components are small compared to the 

fundamental component, rarely exceeding a level of 2-3%. This is determined by the 

low internal impedance of most supply systems carrying harmonics. Therefore 

neglecting the effect of harmonic voltage and considering the no load losses caused 

by the fundamental voltage component will only give rise to an insignificant error. 

This is confirmed by measurements [24]-[26].   

5.1.2 Effect of current harmonics 

In most power systems, current harmonics are of more significance. These harmonic 

current components cause additional losses in the windings and other structural parts. 
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dc
P

 
Losses 

 

If the rms value of the load current is increased due to harmonic components, then 

these losses will increase with the square of the current. 

 

Winding eddy losses 

 

Conventionally, the eddy current losses generated by the electromagnetic flux are 

assumed to vary with the square of the rms current and the square of the frequency 

(harmonic order h), [27]-[28]  

i.e. 

 

2
max

2

1

h

h

EC EC R

h R

I
P P h

I

=

−
=

 
=  

 
∑  (5.1) 

where 

EC
P  is the winding eddy loss due to non-sinusoidal current  

EC R
P −  is the winding eddy current loss under rated conditions  

h  is the harmonic order 

h
I  is the rms current at harmonic order h, 

R
I  is the rms fundamental current under rated frequency and load conditions 

  

Actually, due to the skin effect, the electromagnetic flux may not totally penetrate the 

strands in the winding at high frequencies. Although conservative, the power of 2 is 

usually used in calculations [29].  

 

The increased eddy current losses produced by a non-sinusoidal load current can 

cause excessive winding losses and hence abnormal temperature rise. Therefore the 

influence of the current harmonics is more important, not only because of the 

assumed square of the harmonic order but also because of the relatively large 

harmonic currents present in the power system. 
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Other stray losses 

 

 

Other losses occur due to the stray flux, which introduces losses in the core, clamps, 

tank and other iron parts. When transformers are subject to harmonic load currents 

these losses also increase. These stray losses may elevate the temperature of the 

structural parts. For oil filled transformers, these stray losses increase the oil 

temperature and thus the hot spot temperature.  The other stray losses are assumed to 

vary with the square of the rms current and the harmonic frequency to the power of 

0.8, [27]-[28]. 

i.e. 

 

2
max

0.8

1

h

h

OSL OSL R

h R

I
P P h

I

=

−
=

 
=  

 
∑  (5.2) 

where, 

OSL
P  are the stray losses in the structural parts due to nonsinusoidal current  

OSL R
P −  are the stray losses in the structural parts under rated conditions 

 

The factor of 0.8 has been verified in studies by manufacturers and others, and is 

accepted in the standards. 

 

Temperature rises 

 

All effects of harmonic currents discussed so far will increase the transformer losses. 

These increased losses will obviously increase the temperature rise of the transformer 

from its sinusoidal value. Therefore, the increased losses due to the harmonic current 

spectrum must be addressed.   

  

5.2 Winding eddy-current loss factor for transformers 

 

The winding loss at a certain spot can be calculated as: 

 

 
W dc EC

P P P= +   W/m (5.3) 

 

The normalised winding loss with the Pdc  losses can be expressed as: 
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 W dc EC

dc R dc R dc R

P P P

P P P− − −

= +  (5.4) 

  

The first term, 

 

max
2

2

1

2

h

h

dc h

dc R R R

I
P I

P I I

=

=

−

 
= = 
 

∑
 (5.5) 

 

The contribution of eddy current losses caused by the magnetic field is obtained 

using (3.29): 

 

2 2 2 2

3
EC

f T B
P

π

ρ
�  (5.6) 

 

The leakage magnetic field B is directly proportional to the load current I, i.e. 

 

 
B

B K I=  

 

 When the load current is periodic but non-sinusoidal, its rms value, 

 

 

max
2

1

h

h

h

I I

=

=

= ∑  

where 

h
I  is the rms current harmonic of order h, 

 

 

Hence, 

 
max

2 2

1

h

EC h

h

P K h I

=

=
∑�  (5.7) 

 

where,  

2 2 2 2

3

B
f T K

K
π

ρ
=    and where  f is the rated frequency. 

When the transformer is loaded at rated current
R

I , the corresponding rated eddy 

current losses are 

 

 2

EC R R
P KI− =  (5.8) 
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From (5.7) and (5.8) 

 

2
max

2

1

h

h

EC EC R

h R

I
P P h

I

=

−
=

 
=  
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∑  (5.9) 

 

 

Hence, the eddy current losses produced by a harmonic current load can be predicted 

based on the eddy current losses at rated current and fundamental frequency.  

  

Substituting (5.5) and (5.9) into (5.4) gives: 
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Equation (5.10) was derived based on the assumption that the measured applied 

currents are taken at the rated currents of the transformer. Since this is seldom 

encountered in the field, a new term is defined based on the winding eddy losses at 

the measured current and power frequency, which may be read directly on a meter. A 

harmonic loss factor is defined in the IEEE standard [28]. 
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or 

 

The harmonic loss factor can be normalized to either the fundamental or the rms 

current  
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[ ]2
( ) ( ) 1 ( )

W EC R HL
P pu I pu P pu F−= +                                      (5.11) 

 

where, 
2 ( )I pu  is the normalized current squared. 

( )
EC R

P pu−  is the normalized eddy current loss under rated conditions. 

HL
F  is the harmonic loss factor.  

 

The harmonic loss factor can be used to predict the increased eddy losses. This is 

very important when calculating the temperature rise, which is the limiting factor in 

transformer loading. 

 

The harmonic loss factor is a key indicator of the current harmonic impact on the 

winding eddy losses. Under rated sinusoidal current ( ) 1, 1
HL

I pu F= =  and the hot spot 

specific power loss is 

 

( ) 1 ( )
W EC R

P pu P pu−= +  

 

5.3 Corrected winding eddy current loss factor 
 

The assumption that the eddy current losses in a winding are proportional to the 

square of the harmonic order is only reasonable for transformers with small 

conductors. For larger conductors such an assumption leads to conservative results. 

Markov and Emanual suggested a corrected harmonic loss factor that leads to a more 

accurate prediction of transformer capability when subject to non-sinusoidal load 

current [30].  Their corrected loss factor, based on the specific eddy current loss 

equation is [32]: 

 2

EC
P B pω≈  (5.12) 

  

 
1 sinh sin

cosh cos
p

ξ ξ

ξ ξ ξ

 −
=  + 

 

where  

T
ξ

δ
=  is the relative skin depth compared to strand dimension. 

T   is the conductor thickness 
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/
R

fδ ρ µ π=  is the penetration depth at power frequency 50 Hz. 

R

fh h

δρ
δ

µπ
= =  is the penetration depth at harmonic frequency 

 

For copper and aluminium conductors at 50 Hz and 75 °C, 10.2
R

δ ≈ mm and 13.2 

mm, respectively. 

The relative skin depth compared to strand dimension for harmonic order h is 

/
h R

R

T
h

h
ξ ξ

δ
= =  

 

Normalising the eddy current loss produced by a harmonic current load to the eddy 

current losses at rated condition, a corrected harmonic loss factor ( ) / ( )
h R

h F Fξ ξ  is 

obtained [30]. 
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Fig. 5.1 demonstrates the corrected eddy losses factor as a function of the harmonic 

order h, for different copper conductor dimensions at 75 °C immersed in an 

alternating field with the harmonic frequencies based on a 50 Hz fundamental. The 

loss factor obtained using the square of the harmonic order 2
h  is also shown. 
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Fig.  5.1  Corrected winding eddy loss factor as a function of harmonic order h for different 

rectangular copper conductor dimensions [30] 
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It can be observed where the skin effect begins to have an effect. For small strand 

thicknesses the skin effect only becomes important at higher harmonics. For larger 

strands the difference is already significant at lower harmonics, i.e. the winding eddy 

current loss factor 2
h  predicts losses that are higher than the actual losses. 

 

A more accurate winding eddy current loss factor is suggested in this thesis, based on 

the following equation [3] and published in [31] 

 
2 2 2 2

( )
3

EC

f T B
P F

π
ξ

ρ
�                                                (5.13)                                    

where 

3 sinh sin
( )

cosh cos
F

ξ ξ
ξ

ξ ξ ζ

−
=

−
 

 

 

When the current is non-sinusoidal as in (5.7),  

 

 
' 2 2( )

EC
P K F h Iξ=                                         (5.14) 

where, 

 
2 2 2 2

'

3

B
T f K

K
π

ρ
=       

  f is the rated frequency 

 

hence, 

 
max

' 2 2

1

( )
h

EC h h

h

P K F h Iξ
=

=

= ∑                                      (5.15) 

 

Normalising the eddy current losses produced by a harmonic current load to the eddy 

current losses at rated condition a corrected eddy loss factor 2 ( ) / ( )
h R

h F Fξ ξ  is 

achieved. 

 
max

2 2

1

2

( )

( )

h

h h

EC h

EC R R R

F h I
P

P F I

ξ

ξ

=

=

−

=
∑

                                  (5.16) 

 

Substituting (5.5) and (5.16) into (5.4) gives: 
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 
  

∑∑
                  (5.17) 

 

When the strand dimension is smaller than the penetration depth at the harmonic 

frequency, equation (5.17) is reduced to (5.10), which is the correct limiting case. 

 

The importance of the above corrected loss factor which is based on (5.16), is shown 

in Fig. 5.2. The harmonic loss factors are presented as a function of the harmonic 

order, for different copper conductor thicknesses at 75°C immersed in alternating 

fields. The fundamental frequency is 50 Hz. The graph of the square of the harmonic 

order 2
h  is added for comparison. 
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Fig.  5. 2   Corrected winding eddy-current loss factor as a function of harmonic order h for different 

rectangular copper conductor thickness [31] 

 

It can be seen that for small conductors skin effect is insignificant and only for large 

conductor dimensions at high harmonics does the difference become significant.  It 

can be said that using the assumed eddy current loss factor 2
h  predicts losses 

accurately for small conductors and low harmonics but produces a certain degree of 

error for a combination of large conductors and higher frequencies. 
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The corrected loss factor in (5.16) was verified by laboratory measurements using the 

calorimetric method (see Appendix I).  The corrected loss factor was found to be in 

good agreement with measurements and most importantly, what error there is would 

appear to be on the conservative side at high frequencies. 

 

 In practical transformers the critical point is usually in the upper end of the windings 

where the conductors are exposed to an inclined magnetic field with two 

components, an axial component and a radial component. The eddy current losses are 

the contribution of these two components. The side dimensions of conductors are 

found to be in a wide range. This requires an equivalent eddy-current loss factor that 

will account for both axial and radial eddy current losses.  

 

The enhanced eddy losses due to any non-sinusoidal loading can be predicted more 

accurately using a corrected winding eddy loss factor that accounts for the strand 

thickness. The eddy current loss at rated current can be obtained using 

 

2 2max max
2 2

2 2
1 1

( ) ( )

( ) ( )

h h

x h h r h h

EC EC x EC r

h hx R R r R R

F I F I
P P h P h

F I F I

ξ ξ

ξ ξ

= =

− −
= =

   
= +   

   
∑ ∑                       (5.18) 

 

where 

2( )

( )

x h

WE x

x R

F
F h

F

ξ

ξ− =  and 2( )

( )

r h

WE r

r R

F
F h

F

ξ

ξ− =   are the winding eddy current corrected loss 

factors for the axial and radial strand dimensions, respectively   

5.4 Transformer stray loss components 
 

There is no test method to distinguish the winding eddy losses from the stray losses 

that occur in structural parts. Transformer stray losses are frequency dependent, and 

vary with the exponent of the harmonic order. The stray loss components can be 

estimated by thorough loss measurements at different frequencies, or simply, as 

recommended in [33], based on load loss measurements at fundamental frequency 

and at 150 or 250 Hz: 
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1 dc EC SL
P P P P= + +                                             (5.19) 

 

2 0.8

h dc EC SL
P P P h P h= + × + ×                              (5.20) 

 

The result will be based on well established measurements in the factory, a good 

estimation. Exact results are not required.   

 

Furthermore, Bendapudi [34] evaluated the frequency-dependent factors of winding 

eddy losses and other stray losses for specific transformer designs based on 

measurements at different frequencies. The harmonic loss factor 
n

K  was defined as: 

 

1 0 0

1 1

(1 )q r

n

P P P
K wn w n

P P

−
 = + − +                                    (5.21) 

 

where, 

n  is the harmonic order 

n
K  is the harmonic factor 

1/
n

P P  

n
P  is the load loss at the nth harmonic 

1P  is the load loss at fundamental frequency  

0P  is the loss due to the DC resistance 

w  are the winding eddy losses as a fraction of the total stray losses at 

fundamental frequency. 

(1 )w−  are the other stray losses as a fraction of the total stray losses at 

fundamental frequency. 

 

The value of w  is based on the calculation of the particular transformer design.  

Curve fitting was used to determine the best value for q and r .  

 

J. Drisen [35] suggested a practical method to determine the winding frequency 

dependent factor with short circuit tests at harmonic frequencies. The loss factor was 

defined as: 
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1

( )
( )

( )

AC DC

AC DC

R f R
K f

R f R

−
=

−
                                           (5.22) 

 

 

These authors also developed an advanced FEM tool and studied a wire and foil 

transformer.  

 

5.4.1 A method of load loss estimation 
 

 

A relatively simple method based on factory measurements to estimate the loss 

variation due to harmonics that can be applied at the design stage is proposed. The 

winding stray losses and other stray losses vary with the exponent of the harmonic 

order. For the total load losses
LL

P  we may write: 

 

1 (1 )q rSLLL

dc dc

PP
w h w h

P P
 = + + −                                (5.23) 

where, 

SL
P  are the total stray losses 

dc
P  are the losses due to the dc resistance. 

w  Are the winding eddy losses as a fraction of the total stray losses at 

fundamental frequency. 

(1 )w−  are the other stray losses as a fraction of the total stray losses at 

fundamental frequency. 

 

The dc loss component is independent of frequency and the influence of the skin 

effect can be neglected for the frequency range being considered.  

Factory measurements of load losses at frequencies 20 Hz, 30 Hz, 40 Hz, 50 Hz, 60 

Hz, 80 Hz, 165 Hz and 250 Hz, fitted with (5.23), are shown in Fig.5.3     

 

The values of q, r and w that produced a fit with the test results are: 
 

 

w 0.51 

Winding eddy loss exponent   q 2 

Other stray loss exponent   r 1 
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Fig. 5.3 Eddy loss factor as a function of the harmonic order 

 

 

This seems to be reasonable since the estimated w is in good agreement with the 

FEM calculations and the conductors usually consist of small strands. 

 

The values of loss exponents depend on the transformer design.  For the winding 

harmonic loss exponent, a value of 2 has been used by Crepaz [36]. A value of 2 at 

lower harmonics and a little less than 2 for higher harmonics was used in [37].  For 

foil windings J. Drisen et al. [35] used a rational exponent of 0.7 due to the fact that 

different layers showed different frequency dependence ranging from linear to 

square-root characteristics. For other stray losses, Karasev [38] suggested 1, 0.9 is 

used by Bendapudi [34] and 1.5 is used by Emmanual and Wang [39]. 

 5.5 Evaluation of transformer loading capability 

International standards recommend a method to determine the loading capability of 

transformers subject to non-sinusoidal load currents. The recommended method in 

[28] for dry type transformers is based on the condition that the pu value of the non-

sinusoidal current will cause the same hot spot losses as the rated sinusoidal current. 

This can be expressed as  

 

max

( )
( )

1 ( )

W R

HL EC

P pu
I pu

F P pu

−=
+ ×

                                                       (5.24) 
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This assumes that the normal life of the unit will be maintained. 

 

 

The calculation for liquid filled transformers is similar to the dry type except the 

other stray losses must be included. The temperature rises are proportional to the 

losses according to the suggested standard exponents in Table 2.1 and thus can be 

calculated as follows: 

The top oil temperature rise over ambient: 

  

 

n

NL LL

To To R

NL R LL R

P P

P P
−

− −

 +
∆Θ = ∆Θ  

+ 
 (5.25) 

 

where, 

To R−∆Θ  is the top oil temperature rise over ambient under rated conditions. 

NL
P

 
are the no load losses. 

LL
P

 
are the load losses, increased to account for harmonic load currents 

. .
WE EC R OSL OSL R

P F P F P− −+ +  

NL R
P −  

are the no load losses at rated condition. 

LL R
P −  

Load losses at rated condition. 

 

The winding hot spot to top oil rise due to the increase in the losses at the hot spot 

location: 

 

 
( )

( )

m

W

H H R

W R

P pu

P pu
−

−

 
∆Θ = ∆Θ  

 
 (5.26) 

where, 

( )
W

P pu  are the increased winding pu losses due to the harmonics at the hot spot 

location.

m a x m a x
2 2

21 1

( )2 2
.

h h

h h

h h

E C R p u

R R

I I

h P
I I

= =

= =
−+

∑ ∑
 

( )
W R

P pu−  
are the losses at the hot spot location under rated conditions. 

 

If the current spectrum is measured at a substation, the transformer steady state 

temperature rise can be checked. The following example illustrates a comparison 

between the harmonic order squared and the corrected loss factor. 
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5.6 Comparison between 
2

h and the eddy current corrected     

loss factor in a practical situation 

 

 

5.6.1 Example calculation for a dry type transformer 
 

An example in [28] is reworked to compare the presented corrected harmonic loss 

factor with the harmonic order squared and the harmonic loss factor suggested in 

[30]; it consists of a standard transformer with 1200 A rated current and PEC-R = 0.15. 

The secondary winding is assumed to consist of copper strands of 3.65×11 mm, 

given the non-sinusoidal load current with the harmonic distortion as shown in     

Fig. 5.4. 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

I 
(p

u
)

1 5 7 11 13 17 19

Harmonic order h

 

Fig.5.4 The harmonic current spectrum load 

 

The presented corrected harmonic loss factor is compared with the harmonic order 

squared standard factor and the harmonic loss factor presented in [30].  
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3.219 

max

1.15
( ) 0.885

1 0.15 3.129
I pu pu= =

+ ×
 or 

max 0.885 1200 1062I A= × =  
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2.875 

 

max

1.15
( ) 0.9

1 0.15 2.875
I pu pu= =

+ ×
 or  max 0.9 1200 1075.65I A= × =  

 

As shown in the Table below, the presented loss factor taking into account the skin 

effect allows only a 1.32% increase compared to the h2-rule. This is due to the low 

harmonics spectrum. The harmonic loss factor presented in [30] would allow an 8.6 

% increase in the current.  

 

 

       Table 5.1 Comparison of the max. allowed non-sinusoidal 

                                 load current for different harmonic loss factors FHL 

Harmonic Factor  FHL 
max ( )I A  

h2 (Ih/I)2 3.129 1062 

(h2F(ξh)/ (ξR)) (Ih/I)2 2.875 1075 

h(ξh)/F(ξR) (Ih/I)2 1.683 1157 

 

 

Fig. 5.5 shows a comparison of the transformer de-rating factor when it is subject to 

different THD. For this transformer it can be seen that when high frequency 

components increase, the standard calculation, which ignores skin effect, becomes 

conservative. 
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Fig.5.5 Comparison of transformer de-rating factor for different THD%   
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5.6.2 Example calculation for a 31.5 MVA oil-filled transformer 
 

After installation of a 31.5 MVA, 115/6.3 kV oil-immersed transformer, the 

harmonic currents were measured and the current spectrum supplied to the 

manufacturers with a request to check the transformer temperature rise. The 

measured current spectrum with the expected highest degree of distortion is assumed 

to pass through the transformer as shown in Table. 5.2. The fundamental current is 

assumed to be equal to the rated current. 

 

            Table 5.2 Measured current spectrum  

 

h  
1

I

I
h  

1 1.0000 

5 0.1760 

7 0.1100 

11 0.0447 

13 0.0264 

17 0.0118 

19 0.0106 

23 0.0087 

25 0.0086 

 

At rated load and fundamental frequency, the measured losses were: 

No Load 16.1    kW 

dc
P  123.9  kW   

Stray and eddy losses 22.4    kW 

Load losses                        146.3     kW 

 

The division of stray losses based on FEM calculations and factory test results was 

estimated to be: 

Winding eddy losses 11.4    kW 

Other stray losses     11    kW 

 

The measured temperature rises were: 

Top oil temperature rise  50.7 °C 

Hot spot temperature rise 25.6 °C 
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The hot spot rise over ambient 50.7 25.6 75.7 C= + = °  

 

Using the harmonic order square rule 
 

To calculate the top oil temperature rise transformer total losses must be corrected 

for the given harmonic contents according to the loss factors to reflect the harmonic 

content. Similarly, to determine the hot spot temperature rise over top oil, the losses 

at the hot spot location that occur in the upper disc of the HV winding must be 

corrected.  

 

The calculations using the harmonic load currents in Table 5.2 give: 
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2.894 

 

2
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1

h

h

h R

I
h

I

=

=

 
 
 

∑ = 

 

1.278 

 

 

Using (5.25), the steady-state top oil rise for the specified harmonic spectrum will be:  

 

0.9
192.749

50.7 59.15
162.40

TO
Cθ

 
∆ = = ° 

 
 

 

The hot spot rise over top oil and the pu loss calculated by FEM at the hot spot 

location must be corrected for the given harmonic content using (5.26).  

 

0.8
2.544

25.61 37.71
1.52

H
Cθ

 
∆ = = ° 

 
 

 

The hot spot rise over ambient 59.15 37.71 97.86 C= + = °  
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Using the corrected winding eddy current loss factor 
 

 

To calculate the top oil temperature rise in a way that reflects the harmonic content, 

the transformer’s total losses must be corrected for the given harmonic content 

according to the corrected loss factor based on the conductor dimensions (5.18). 

Similarly, to determine the hot spot temperature rise over top oil the loss at the hot 

spot location that occur in the upper disc of the HV winding must be corrected.  

 

The top oil rise for the specified harmonic spectrum  

 

0.9
192.02

50.7 58.93
162.3

TO
Cθ

 
∆ = = ° 

 
 

 

The hot spot rise over top oil gradient 

 

 

0.8
2.32

25.61 36.03
1.52

H
Cθ

 
∆ = = ° 

 
 

 

The hot spot rise over ambient 58.93 36.03 94.7 C= + = °  

 

In this example the spectrum used has small values of higher harmonics, which 

makes the temperature difference compared to the 2
h  value about 3 °C. However, 

with a spectrum rich in higher harmonics the difference would be higher.  
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Chapter Six 

Dynamic Thermal Modeling 

 

 

The winding hot spot temperature is considered to be the most important parameter in 

determining the transformer loading capability. It determines the insulation loss of life 

and the potential risk of releasing gas bubbles during a severe overload condition. This 

has increased the importance of knowing the hot spot temperature at each moment of the 

transformer operation at different loading conditions and variable ambient temperature.   

 

The commonly used models for top oil and hot spot temperature calculations are 

described in the IEC and IEEE loading guides [8]-[9] . As suggested in [42], the problem 

is that the IEEE top oil rise model does not properly account for variations in ambient 

temperature and an improved model is proposed. A more rigorous method is suggested in 

IEEE loading guide Annex G [9]. The equations require the use of bottom oil rise over 

ambient at rated conditions. Duct oil temperature is introduced, which may be higher than 

the top oil temperature under certain conditions, leading to more accurate hot spot 

temperature located at some point in the winding duct.  



Chapter 6 Dynamic Thermal Modeling                                                                               

 

 64 

 

A thermal model for power transformers in the form of an equivalent circuit based on the 

fundamentals of heat transfer theory has been suggested by Swift in [44].  The proposed 

thermal model was established to determine the hot spot temperature. The top oil 

temperature is calculated from the air-to-oil model. The top oil temperature becomes the 

ambient temperature for the winding-to-oil model. The top oil temperature model was 

validated by measurements from a 250 MVA transformer in the field [45].  

 

This chapter will re-examine and review the applicability of the existing thermal dynamic 

models used within transformers and arrive at a model which is not only accurate but 

easy to use for practical applications.  

6.1 Transformer loading guides   
 

The long-standing calculations described in clause 7 of the IEEE loading guide and IEC 

354 use a dynamic loading model for top oil and hot spot temperature rises [8]-[9]. The 

steady state relationship is as shown in Fig. 2.1. The differential equations approach is 

quite similar. 

 

The hot spot is usually assumed to be near the top of the HV or LV winding, although 

there are arguments that it could be lower within the cooling ducts, in particular if the 

transformer oil is not assumed to be directly pumped through the ducts [40]-[41]. 

6.1.1 Top oil temperature rise model 
 

The basic idea of the top oil temperature rise over ambient model is that an increase in the 

transformer current will result in an increase in the losses within the transformer and thus 

an increase in the overall temperature. This temperature change depends on the heat 

capacity of the transformer, i.e. the mass of the core, coils and oil, and the rate of heat 

transfer out of the transformer. The top oil rise is calculated as a first order exponential 

response from the initial temperature state to the final temperature state.  
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− 
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 (6.1) 

 

Equation (6.1) is the solution of the first order differential equation 
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TO

TO TO U TO

d

dt
τ

∆Θ
 = ∆Θ − ∆Θ   (6.2) 
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1

1

n

TO U TO R

R K

R
−

 + ⋅
∆Θ = ∆Θ   + 

 (6.3) 

 

where, 

TO
∆Θ  is the top oil temperature rise over ambient temperature. 

,TO U
∆Θ  is the ultimate top oil temperature rise over ambient temperature. 

K  is the load current per unit  

TO
τ  is the top oil rise time constant. 

TO R−∆Θ  is the rated top oil temperature rise over ambient temperature. 

R  is the ratio of load losses at rated load to no load losses.  

n  is an empirically derived exponent that depends on the cooling method 

 

6.1.2 Winding hot spot temperature rise model  

 

The basic idea behind the hot spot temperature rise model is that an increase in the 

transformer current will result in an increase in the losses and thus an increase in the 

temperature. The hot spot rise is calculated as a first order exponential response from the 

initial temperature state to the final temperature state.  

 

 , , ,1 H

t

H H U H i H i
e

τ

− 
  ∆Θ = ∆Θ − ∆Θ − + ∆Θ   
 

 (6.4) 
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Equation (6.4) is the solution of the first order differential equation 

 

 ,
H

H H U H

d

dt
τ

∆Θ
 = ∆Θ − ∆Θ   (6.5) 

 

 
2

, ,
m

H U H R
K∆Θ = ∆Θ ⋅  (6.6) 

 

where, 

H
∆Θ  is the hot spot temperature rise over top oil temperature. 

,H U
∆Θ  is the ultimate hot spot temperature rise top oil temperature. 

K  is the load current per unit  

H
τ  is the hot spot rise time constant. 

,H R
∆Θ  is the rated hot spot temperature rise over top oil temperature. 

m  is an empirically derived exponent that depends on the cooling method 

 

The suggested exponents n and m define the non-linearity and they depend on the 

ambient fluid and the transformer cooling method. The exponents generally used were 

presented in chapter 2. 

 

Finally, the hot spot temperature is calculated by adding the ambient temperature to the 

top oil temperature rise and to the hot spot temperature rise, using  

 

 H A TO H
Θ = Θ + ∆Θ + ∆Θ  (6.7) 

where, 

H
Θ  is the hot spot temperature. 

A
Θ  is the ambient temperature 

 

The temperature calculations assume a constant ambient temperature. This is a 

conservative estimate since it does not account for the effects of ambient temperature 
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dynamics on top oil temperature.  The guide also includes a method to modify the top oil 

time constant 
TO

τ  as a function of n  if desired for greater accuracy. The loading guide 

equations have proven to be reasonably accurate for moderate longer term overloads [41]. 

6.1.3 The simulation model  

 

Fig 6.1 shows a simplified diagram for the thermal dynamic loading equations. The 

continuous form of equations (6.2) and (6.5) are solved using Simulink. At each discrete 

time the hot spot temperature is assumed to consist of three components 
A

Θ ,
TO

∆Θ  and  

H
∆Θ .  Different numerical techniques can be applied and different time steps can be 

assigned for accuracy [52].  

 

Fig 6.1 Simplified diagram of the thermal dynamic model 

 

A block diagram to calculate the top oil temperature rise is shown in Fig. 6.2.  
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Fig. 6.2 Block diagram of top oil rise model 
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6.1.4 Example calculation for a 250 MVA transformer 

 

For this example the transformer input parameters used for the hot spot calculation are  

 

Table 6.1 Thermal model parameters 

Rated top oil rise over ambient 38.3 ° C 

Rated hot spot rise over top oil 20.3 ° C 

Ratio of load loss to no load loss 6.20  

Top oil time constant 170 min 

Hot spot time constant 7 min 

Exponent n 0.9 

Exponent m 0.8 

 

The data used in the model is based on the transformer manufacturer’s testing. The top oil 

temperature time constant is less than the calculated based on the total heat capacity of 

the transformer according to the IEEE loading guide [9].  

 

The transformer was tested under the load cycle shown in Fig. 6.3. The top oil and the hot 

spot temperatures were recorded in the factory. 
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Fig. 6.3 250 MVA transformer load used in the test 
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The transformer hot spot temperature, calculated according to the loading guide model 

using the transformer input data shown in the above table and compared with the 

measured temperature hot spot, is shown in Fig. 6.4.  
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Fig. 6.4 The calculated hot spot temperature of the 118 KV winding compared with measured  

It can be clearly seen that the hot spot temperature is under estimated for the applied 

loads. 

6.2 Loss of insulation life  
 

Insulation in power transformers is subject to ageing due to the effects of heat, moisture 

and oxygen content. From these parameters the hottest temperature in the winding 

determines the thermal ageing of the transformer and also the risk of bubbling under 

severe load conditions.  

 

The IEEE Guide [9] recommends that users select their own assumed lifetime estimate. 

In this guide, 180 000 hours (20.6 years) is used as a normal life. 

 

It is assumed that insulation deterioration can be modelled as a per unit quantity as 

follows 
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273

H

B

Per unit life A e

 
 

Θ + =  (6.10) 

 

where 

A  is a modified constant based on the temperature established for one per unit 

life. 

B  is the ageing rate. 

 

For a reference temperature of 110 °C, the equation for accelerated ageing is 

 

 

15000 15000

383 273
H

AA
F e pu

 
− 

 Θ + =  (6.11) 

 

The loss of life during a small interval dt can be defined as 

 

 AA
dL F dt=  (6.12) 

 

The loss of life over the given load cycle can be calculated by  

 

 
A A

L F d t= ∫  (6.13) 

 

And the per unit loss of life factor is then  

 

 
A A

F

F d t

L

d t

=
∫
∫

 (6.14) 

 

The insulation loss of life is usually taken to be a good indicator of transformer loss of 

life. To illustrate, if a transformer hot spot temperature is approximately 117 °C, then 

F
L would be about 2. i.e. the transformer would lose all of its life in half of its chosen 

normal life. A simulation function is shown in appendix III  
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6.3 An improved top oil rise temperature model  
 

The top oil rise equation in clause 7 of the IEEE guide is modified to allow for 

continuously varying ambient temperature. The ambient temperature 
A

Θ  is included in 

the top oil rise model where it allows the top oil temperature to respond dynamically to 

changes in ambient temperature [42]-[43]. 

 

 ,
TO

TO TO U A TO

d

dt
τ

Θ
 = Θ + Θ − Θ   (6.15) 

where, 

A
Θ  is the ambient temperature, ° C 

TO
Θ  is the top oil rise over ambient temperature,° C 

,TO U
Θ  is the ultimate top oil temperature rise over ambient temperature,° C 

TO
τ  is the top oil rise time constant, min. 

 

Then, the top oil temperature rise over ambient is added to the hot spot rise to get the hot 

spot temperature  

 

 H TO H
Θ = Θ + ∆Θ  (6.16) 

6.4 IEEE Annex G  
 

IEEE loading guide Annex G presents an alternative temperature calculation method in 

which the bottom oil temperature is used as the calculation starting point. It also 

introduces the duct oil temperature, which may be higher than the top oil temperature 

under certain conditions, leading to a more accurate prediction of the hot spot 

temperature located at some point in the winding duct [9] and [41].  
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6.4.1 Loading equations 

 

The hot spot temperature calculation presented in the guide is made up of the following 

components. 

 

 H A BO WO HSWO
Θ = Θ + ∆Θ + ∆Θ + ∆Θ  (6.16) 

where,  

BO
∆Θ  is the bottom oil temperature rise over ambient temperature, °C. 

WO
∆Θ  is the oil temperature rise at winding hot spot location over bottom oil, °C. 

HSWO
∆Θ  is the winding hot spot temperature rise over oil at hot spot location, °C. 

 

The temperature rises in equation (6.16) are obtained in [9] and [41] based on the 

conservation of energy over each time interval t∆ . For such an interval, there must be a 

balance between the amounts of all energy changes in Joules. The equations were solved 

by the finite difference Forward Euler Method. At each step new calculated temperature 

values are added to the old value. The calculated losses and viscosity changes with 

temperature are corrected for each time step. The equations were programmed in Basic as 

documented in [9] and  [41]. 

 

Alternatively, the equations presented in [9] and [41] can be written on the basis that at 

any instant t there must be a balance between all energy rates in watts. The equations are 

then in a continuous form and can be solved using different numerical techniques and 

time steps depending on the required accuracy [50]. Such an approach is adopted in this 

thesis and the equations are as follows: 

 

Average winding equation 

 

The average winding temperature can be calculated from the energy balance equation: 
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 GW AW LW
Q Q Q= +  (6.17) 

 

where, 

GW
Q  is the heat generated by the winding losses, W. 

AW
Q  is the heat absorbed by the windings, W. 

LW
Q  is the heat lost by the windings, W. 

 

The heat generated by the windings at any instant t is  

 

 
2 EC

GW dc W

W

P
Q L P K

K

 
= ⋅ + 

  
 (6.18) 

 

where, 

 
W K

W

WR K

K =
Θ + Θ

Θ + Θ  (6.19) 

 

L  is the per unit load 

dc
P  are the winding losses due to the dc resistance, W. 

EC
P  are the winding losses due to the eddy currents, W. 

W
K  is a temperature correction for winding losses 

W
Θ  is the average winding temperature, °C. 

K
Θ  is the temperature factor for resistance change with temperature: 234.5 for 

copper, 225 for Aluminium 

W R
Θ  is the rated average winding temperature, °C.  

 

The heat absorbed by the windings at any instant t is 

 

 
d W

Q M CpAW W W
dt

Θ
=  (6.20) 

 

where   
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W
M  is the mass of the windings, kg 

W
C p  is the specific heat of the windings, W. min/kg. °C. 

 

The thermal capacitance can be estimated from the winding time constant as follows: 

 

 
( )dc EC W

W W

WR DAOR

P P
M Cp

τ+
=

Θ − Θ  (6.21) 

where,  

 

W
τ  is the winding time constant, min 

D AO R
Θ  is the rated average temperature of oil in the winding ducts, °C. 

 

The heat lost by the windings at any instant t is 

 

 ( )
5/ 4 1/ 4

W DAO WR
Q P PLW dc EC

WR DAOR W

µ

µ

   Θ − Θ
= +   

Θ − Θ      
 (6.22) 

where,  

 

DAO
Θ  is the average temperature of the oil in the winding ducts, °C.  

W
µ  is the viscosity of the oil film in the ducts at time instant t, Centipoise. 

W R
µ  is the rated viscosity of the oil film in the ducts at rated load, Centipoise. 

 

Substituting (6.18), (6.20) and (6.22) into (6.17) gives 

 

 ( )
5/ 4 1/ 4

2
W

P dEC W W DAO WR
L P M Cp P Pdc K W W dc EC

K dtW WR DAOR W

µ

µ

     Θ Θ − Θ
+ = + +     ⋅

Θ − Θ          
    (6.23) 

 

Winding duct equation 

 

The winding duct oil rise can be determined from the following equation: 
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 ( )
x

LW

DO BO DO DOR BOR

dc EC

Q

P P

 
Θ − Θ = ∆Θ = Θ − Θ 

+ 
 (6.24) 

where, 

DO
Θ  is the temperature of  the oil exiting the winding ducts, °C. 

DO R
Θ  the rated temperature of the oil exiting the winding ducts, °C. 

DO
∆Θ  is the temperature rise of the oil at the top of the duct over the bottom oil 

temperature, °C. 

BO
Θ  is the temperature of the bottom oil entering the winding, °C.  

BO R
Θ  is the rated temperature of the bottom oil entering the winding, °C. 

x  is 0.5 for OA, FA and NDFOA; 1.0 for DFOA. 

 

The heat lost by the winding to the duct oil is given by (6.22).  

 

The hot spot may not be located at the top of the winding. The oil temperature at the hot 

spot elevation is given by: 

 

 ( ) 
W O H D O B O

H∆ Θ = Θ − Θ  (6.25) 

 

 ( )W O B O W O
Θ = Θ + ∆ Θ  (6.26) 

 

where 

H
H  is the per unit value representing the winding height to hot spot location. 

WO
Θ  is the temperature of the oil in the ducts at the hot spot location, °C. 

 

If the winding duct oil temperature is less than in the top oil in the tank then the oil 

temperature adjacent to the hot spot is assumed equal to the top oil or, in equation form, 

  

 THEN
DO TO WO TO

IF Θ < Θ Θ = Θ  (6.27) 

 

where 
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TO
Θ  is the top oil temperature in the tank °C. 

 

Winding hot spot equation 

 

The hot spot temperature can be written similar to the average temperature equation 

 

 GH AH LH
Q Q Q= +  (6.28) 

where, 

GH
Q  is the heat generated by losses at the hot spot location, W. 

AH
Q  is the heat absorbed at the hot spot location, W. 

LH
Q  is the heat lost at the hot spot location, W. 

 

 
2

H

PECH
Q L PGH dcH K

KH

 
= + ⋅

  
 (6.29) 

 

 
H K

H

HR K

K =
Θ + Θ

Θ + Θ  (6.30) 

where, 

L  is the per unit load 

H
Θ  is the winding hot spot temperature, °C.  

dcH
P  are the winding losses due to the dc resistance at the hot spot location.  

ECH
P  are the winding losses due to the eddy currents at the hot spot location. 

H
K  is the temperature factor for the change in resistance with temperature at 

the hot spot location: 234.5 for copper, 225 for Aluminium 

H
Θ  is the temperature at the hot spot location, °C. 

H R
Θ  is the rated temperature at the hot spot location, °C. 

 

The heat absorbed at the hot spot at any instant t is 

 

 
d H

Q M CpAH H H
dt

Θ
=  (6.31) 
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The hot spot equation presented in [9] and [40] used the total winding losses and hence 

the total winding thermal capacitance. This equation is modified using the calculated 

highest losses at the hot spot location and the calculated thermal capacitance at the hot 

spot location as follows [50]: 

 

 
( )dcH ECH H

H H

HR WOR

P P
M Cp

τ+
=

Θ − Θ  (6.32) 

where, 

H
M  is the mass of windings at the hot spot location, kg 

H
C p  is the specific heat of the windings, W.min/kg .°C. 

H
τ  is the windings time constant at the hot spot location, min. 

W OR
Θ  is the rated temperature of the oil in the ducts at the hot spot location, °C. 

 

 ( )
5/ 4 1/ 4

H WO HR
Q P PLH dcH ECH

HR WOR H

µ

µ

   Θ − Θ
= +   

Θ − Θ      
 (6.33) 

 

where, 

W O
Θ  is the temperature of the oil in the ducts at the hot spot location, °C. 

W H
µ  is the viscosity of the oil film at the hot spot location at time instant t, 

Centipoise. 

H R
µ  is the rated viscosity of the oil film at the hot spot location, Centipoise. 

 

Substituting (6.29), (6.31) and (3.33) into (6.28) gives 

 

 ( )
5/ 4 1/ 4

2
H ECH

P dECH H WOH HR
L P M Cp PdcH K H H dcH P

K dtH HR WOR H

µ

µ

    Θ − ΘΘ
+ = +     ⋅ +

Θ − Θ        
(6.34) 

 

Average oil equation 

 

The equation to determine the oil temperature is  
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 LW GC GSL AO LO
Q Q Q Q Q+ + = +  (6.35) 

where, 

LW
Q  is the heat lost by the windings, W. 

GC
Q  is the heat generated by the core losses, W. 

GSL
Q  is the heat generated by stray losses, W. 

AO
Q  is the heat absorbed by the tank core oil, W. 

LO
Q  is the heat lost by the oil, W. 

 

The heat generated by the core losses for normal excitation is assumed constant as they 

are determined by system voltages.  

 

 GC CRQ P=  (6.36) 

where 

CR
P  are the rated core losses, W. 

 

As noted in this model, transformers subject to an over-excitation, which increases the 

core losses, can be included in the model. 

 

The heat generated by stray losses 

 

 
2 OSL

G OSL

W

P
Q L

K
−

 
=  

  
 (6.37) 

 

where, 

OSL
P  are the rated other stray losses, W. 

 

The heat absorbed by the tank, core and oil is given by 
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O

AO

d
Q MCp

dt

Θ
=∑  (6.38) 

 

 T T C C O OMCp M Cp M Cp M Cp= + +∑   

 

 

where, 

O
Θ  is the average oil temperature, °C. 

T
M  is the mass of the tank, kg. 

T
C p  is the specific heat of the tank, W.min/kg °C. 

C
M  is the mass of the core, kg. 

C
C p  is the specific heat of the core, W.min/kg °C. 

O
M  is the mass of oil, kg. 

O
C p  is the specific heat of the oil, W.min/kg °C. 

 

The heat lost to the ambient air  

 ( )
1/ y

O A
LO T

OR AR

Q P
 Θ − Θ

=  
Θ − Θ  

 (6.39) 

where, 

A
Θ  is the ambient air temperature, °C. 

AR
Θ  is the rated ambient air temperature, °C. 

T
P  are the rated total losses, W. 

y  is 0.8 for OA, 0.9 for FA and NDFOA, and 1.0 for DFOA. 

 

Substituting (6.36), (6.37), (6.38) and (6.39) into (6.35) gives 

 

 ( )
1/

2

W

y

SL O O A
LW C T

OR AR

P d
Q P L MCp P

K dt

   Θ Θ − Θ
 + + = +  

Θ − Θ     
∑  (6.40) 
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Top and bottom oil equation 

 

The top and bottom oil temperatures are determined similar to the duct oil rise equation: 

 

 ( )
Z

LO

TO BO TB TOR BOR

T

Q

P

 
Θ − Θ = ∆Θ = Θ − Θ 

 
 (6.41) 

where 

TO R
Θ  is the rated top oil temperature, °C. 

BOR
Θ  is the rated bottom oil temperature, °C. 

TB
∆Θ  is the top to bottom oil temperature difference, °C. 

Z  is 0.5 for OA and FA, and 1.0 for NDFOA and DFOA. 

 

The heat lost by the oil to the duct oil is given by (6.39).  

The top and bottom oil temperatures are  

 

 
2

TB

TO O

∆Θ
Θ = Θ +  (6.42) 

 
2

TB

BO O

∆Θ
Θ = Θ −  (6.43) 

 

Fluid Viscosity 

 

The fluid viscosity is highly temperature dependent. The fluid viscosity at any 

temperature can be obtained using 

 

 
/( 273)C

B eµ Θ+= ⋅  (6.44) 

where, 

µ  is the fluid viscosity, Centipoise. 

B  is a constant  

C  is a constant  
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Θ  is the temperature used to calculate the viscosity, °C. 

 

 The constants B and C have different values for the different fluids used in transformers. 

For example, B and C for oil are 0.0013573 and 2797.3, respectively [41]. The 

temperature used for calculating viscosity is given in the following table 

 

Table 6.2 Viscosity terms and model equations 

Equation Viscosity  term Temperature used for calculation 

6.22 
W R

µ  ( ) / 2
W R D AO R

Θ + Θ  

6.22 
W

µ  ( ) / 2
W DAO

Θ + Θ  

6.33 
H R

µ  ( ) / 2
HR W OR

Θ + Θ  

6.33 
H

µ  ( ) / 2
H W O

Θ + Θ  

 

6.4.2 The simulation model  

Fig. 6.5 shows the simplified diagram for the thermal dynamic model. The continuous 

form of equations (6.23) (6.24) (6.34) (6.40) and (6.41) are solved using Simulink. 

Different numerical techniques and different time steps can be assigned to obtain the 

required level of accuracy (see Appendix III for model details). 

 

 

 

Fig. 6.5 Simplified model of IEEE Annex G 
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The block diagram to solve the hot spot temperature equation is shown in Fig. 6.6. 
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5 / 4 1/ 4
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µ
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Fig. 6.6 Block diagram for the hot spot equation 

 

6.4.3 Example calculation for a 250 MVA transformer 

 

For this example the transformer data needed for the thermal model are as follows:  

 

Table 6.3 Transformer characteristics of the 250 MVA unit 

Transformer Losses, W.  

No Load 78100  

Pdc losses (I
2
 Rdc ) 411780  

Eddy losses 41200  

Stray losses 31660  

 118 KV                        230KV 

Pdc at hot spot location 467                             527   

Eddy current losses at hot spot location 309  (0.65 pu)             157 (0.3 pu) 

Per unit height to winding hot spot     1                               1 

  

Temperature Rise °C.  
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Rated top oil rise   38.3 

Rated top duct oil rise 38.8 

Rated hot spot rise  58.6                    50.8 

Rated average winding rise 41.7                    39.7 

Rated bottom oil rise 16 

Initial top oil 38.3 

Initial top duct oil 38.3 

Initial average winding 33.2 

Initial bottom oil 28 

Initial hot spot 38.3 

Transformer component weights, kg  

Mass of core and coil assembly 172200 

Mass of tank  39700 

Mass of oil   37887 

Transformer exponents   

Based on the type of cooling  

x 0.5 

y 0.9 

z 0.5 

Other Exponents  

n 0.25 

B 0.0013573 

C 2797.3 

Cp oil 13.92 × 2.2 

Cp steel 3.51 × 2.2 

Cp copper 2.91 × 2.2 

 

The data were taken from the transformer manufacturer’s test report and the FEM model 

developed in this thesis.  
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The calculated top oil temperature compared with measured is shown in Fig. 6.7, and 

which indicates that it is lower than the measured temperature.  
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Fig. 6.7 The calculated top oil temperature compared with measured 

 

The hot spot temperature for each individual winding can be calculated according to the 

losses concentrated in the top of the winding. Figs. 6.8 and 6.9 show the calculated hot 

spot temperature of the 118 kV and 230 kV windings compared with the measured 

temperature. It can be seen that the calculated hot spot temperature for both windings is 

in good agreement with the measured. 
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Fig. 6.8 The calculated hot spot temperature of the 118 kV winding compared with the measured 
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Fig. 6.9 The calculated hot spot temperature of the 230 kV winding compared with the measured 

6.5 Thermal model based on an electrical -thermal equivalent circuit 
 

A thermal model of a power transformer in the form of an equivalent circuit based on the 

fundamentals of heat transfer theory has been suggested by Swift in [44].  The proposed 
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thermal model was established to determine the hot spot temperature. The top oil 

temperature was calculated from the air-to-oil model. The top oil temperature becomes 

the ambient temperature for the winding to oil model.  

 

Based on this approach a model which considers the non-linear thermal oil resistance has 

been introduced by Susa [46]. The oil viscosity changes and loss variation with 

temperature were included in the method. The model was shown to be valid for different 

transformer units.   

 

In this thesis a hot spot model equation based on [44] is presented. The model is 

analogous to the top oil model equation. The losses used in the model are the estimated 

highest losses that generate the heat at a specific location in the LV or HV winding. The 

model is easy to implement and is validated by comparison with measured results.  

6.5.1 Background 

 

There is an analogy between an electrical circuit and a thermal circuit as shown in the 

table below. Due to the similarity between heat transfer and electric charge transport, an 

equivalent electrical circuit can be used to solve the heat transfer problem.  

 

Table 6.4 Analogy between thermal and electric quantities 

Thermal Electrical 

Heat transfer rate q, watt Current, i amps 

Temperature Θ , °C Voltage, v volts 

Thermal resistance Rth, °C/watt Resistance, R  Ω 

Thermal capacitance, joules/ °C Capacitance, farads 

 

In transformers, oil is typically used as the coolant. The heat generated by losses in 

transformers is taken up by the oil and carried into a heat exchanger, which in most cases 

is an oil-air cooler. The cooler dissipates heat to the surroundings by natural or forced 

flow. 
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The non linear thermal resistance is related to the many physical parameters of an actual 

transformer. The exponent defining the non linearity is traditionally n if the moving fluid 

is air and m if it is oil. 

6.5.2 Top oil thermal model 

 

The top oil thermal model is based on the equivalent thermal circuit shown in Fig. 6.11. 

A simple RC circuit is employed to predict the top oil temperature
oil

Θ .  

 

 

Θa 

qOut 

qOil 

qOut 

qTot 

qTot 

Cth-oil 

Rth-oil ΘOil 

qOil 

Moving 

   Air 

 

Fig.6.11 Thermal model for top oil temperature 

 

In the thermal model all transformer losses are represented by a current source injecting 

heat into the system. The capacitances are combined as one lumped capacitance. The 

thermal resistance is represented by a non-linear term. 

 

The differential equation for the equivalent circuit is 
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1/1 noil

Tot th oil oil A

th oil

d
q C

dt R
−

−

Θ
= + Θ − Θ    (6.46) 

 

where, 

 
Tot

q  is the heat generated by total losses, W 

th O il
C −

 is the oil thermal capacitance W.min/° C,  

th O il
R −

 is the oil thermal resistance° C/W, 

oil
Θ  is the top oil temperature, ° C. 

A
Θ  is the ambient temperature, ° C. 

n  is the exponent that defines the non-linearity 

 

Equation (6.46) is then reduced as in [44] 

 

 

2
1/ 1/1

1

n npu Oil

oil R oil oil A

I d

dt

β
τ

β
−

+ Θ
⋅ ∆Θ = + Θ − Θ      +

 (6.47) 

 

where, 

pu
I  is the load current per unit. 

β  is the ratio of load to no-load losses, conventionally R 

oil
τ  is the top oil time constant, min. 

oilR
∆Θ  is the rated top oil rise over ambient, K. 

 

The non-linear thermal resistance is related to the many physical parameters of an actual 

transformer. The most convenient and commonly used form is 

 

 
1/1 n

th R

q
R −

= ⋅ ∆Θ   

The exponent defining the non linearity is traditionally n. 
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If the cooling is by natural convection, the cooling effect is more than proportional to the 

temperature difference because the air flow will be faster, i.e. the convection will be 

greater. A typical value for n is 0.8, which implies that the heat flow is proportional to the 

1.25
th 

power of the temperature difference. If the air is forced to flow faster by fans then n 

may increase. There is another effect: th R
R −  becomes much lower, i.e., the cooling is 

more effective.  

The oil to air model is validated by 250 MVA transformer measurements in the field [45].  

6.5.3 Winding hot spot thermal model 

In the thermal model the calculated winding losses generate the heat at the hot spot 

location. The thermal resistance of the insulation and the oil moving layer is represented 

by a non-linear term. The exponent defining the non linearity is traditionally m. The 

typical value used for m is 0.8. 

 

The hot spot thermal equation is based on the thermal lumped circuit shown in Fig. 6.12. 

[51]. 
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Fig.6.12 Thermal model for hot spot temperature 

Θoil 
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The differential equation for the equivalent circuit is 

 

 
1/1 mH

W th H H oil

th H

d
q C

dt R
−

−

Θ
= + Θ − Θ    (6.48) 

where, 

W
q  is the heat generated by losses at the hot spot location, W.  

th H
C −

 is the winding thermal capacitance at the hot spot location, W.min/° C.  

th H
R −

 is the thermal resistance at the hot spot location, ° C/W.  

H
Θ  is the hot spot temperature, ° C. 

m  is the exponent defining non-linearity. 

 

Equation (6.48) is then reduced to:  

 

 [ ]
2

( ) 1/1/

( )

1

1

pu EC R pu mm H

H R H H oil

EC R pu

I P d

P dt
τ

−

−
−

 + Θ  ⋅ ∆Θ = + Θ − Θ  
+

 (6.49) 

 

where 

( )EC R pu
P −  are the rated eddy current losses at the hot spot location 

H R−∆Θ  is the rated hot spot rise over ambient, K. 

H
τ  is the winding time constant at the hot spot location, min. 

 

The variation of losses with temperature is included in the equation above using the 

resistance correction factor. 

6.5.4 The simulation model  

 

Fig 6.12 shows a simplified diagram of the thermal dynamic model. Equations (6.47) and 

(6.49) are solved using Simulink. At each discrete time the top oil temperature 
oil

Θ  is 

calculated and it becomes the ambient temperature in the calculation of the hot spot 
H

Θ . 
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Different numerical techniques and different time steps can be assigned for accuracy (see 

Appendix III for model details). 
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Fig.6.13 Simplified transformer thermal model 

 

A block diagram of the hot spot model is shown in Fig. 6.14. 
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Fig. 6.14 Block diagram of the winding hot spot model  

6.5.5 Example calculation for a 250 MVA transformer 
 

For this example the transformer input parameters needed for the thermal model are as 

follows:  
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Table 6.5 Thermal model parameters 

Rated top oil rise over ambient 38.3 ° C 

Rated hot spot rise over top oil 20.3 ° C 

Ratio of load losses to no load losses 6.20  

pu eddy current losses at hot spot location, LV 0.65 

pu eddy current losses at hot spot location, HV 0.3 

Top oil time constant 170 min 

Hot spot time constant 6 min 

Exponent n 0.9 

Exponent m 0.8 
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Fig. 6.15 The calculated top oil temperature compared with measured 

 

Fig. 6.15 shows the calculated top oil temperature to be in good agreement with the 

measured temperature. The same applies to the hot spot temperature of the 118 kV and 

230 kV windings, as shown in Figs. 6.16 and 6.17, respectively. The model gives a more 

accurate temperature predictions compared to the IEEE loading guide [52]. 
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Fig. 6.16 The calculated hot spot temperature of the 118 kV winding compared with measured 
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Fig. 6.17 The calculated hot spot temperature of the 230 kV winding compared with measured 

6.5.6 Example calculation of a 2500 kVA transformer 
 

The parameters used for this example of the hot spot calculation are based on factory 

measurements published in [47] and FEM calculations. 
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Table 6.4 Thermal model parameters  

Rated top oil rise over ambient 48 ° C 

Rated hot spot rise over top oil 17.9 ° C 

Ratio of load losses to no load losses 5.44 ° C 

pu eddy current losses at the hot spot location 0.13 

Top oil time constant 190 min 

Hot spot time constant 7 min 

Exponent n 0.9 

Exponent m 0.8 

 

The transformer was tested under the load shown in Fig. 6.18 and the top oil and the hot 

spot temperatures were recorded in the factory. 
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Fig. 6.18 2500 kVA transformer load used in the test 
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Fig.6.19 The calculated top oil temperature compared with measured 

 

The transformer hot spot temperature was calculated using the thermal model with the 

transformer data shown in the above table and compared with the measured temperatures 

shown in Fig. 6.19 for the top oil and in Fig. 6.20 for the HV winding hot spot.  
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Fig. 6.20  The calculated hot spot temperature of the HV winding compared with measured 
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Chapter Seven 

Dynamic Thermal Modelling in the Presence 

of Non-sinusoidal Load Currents 
 

 

The international IEEE and IEC guides [27] [28] give a conservative approach to check 

the transformer steady state temperature rises to which industrial or distribution 

transformers would be subjected while in service.  An accurate and applicable method is 

needed to estimate the effect of harmonics on the transformer hot spot temperature and 

hence on the transformer loss of life. Such a method should consider distorted load cycle 

variation on the transformer hot spot temperature.   

 

The aim of this chapter is to modify the thermal dynamic models in order to consider a 

distorted load cycle variation, i.e. the real operating conditions that a transformer is 

subject to. The model needs to be able to evaluate the loading capability of both existing 

transformers and new installations. The model has to be accurate and easy to use for 

practical application.  
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7.1 Predicting transformer temperature rise and loss of life in 

the presence of harmonic load currents 

 
Power system harmonic distortion can cause additional losses and heating leading to a 

reduction of the expected normal life. The load ability of a transformer is usually limited 

by the allowable winding hot spot temperature and the acceptable loss of insulation life 

(ageing) owing to the hot spot heating effect.  

 

Existing loading guides have been based on the conservative assumptions of constant 

daily peak loads and the average daily or monthly temperatures to which a transformer 

would be subjected while in service.  

 

To correctly predict transformer loss of life it is necessary to consider the real distorted 

load cycle in the thermal model. This would predict the temperatures more accurately and 

hence the corresponding transformer insulation loss of life (ageing). Other forms of 

deterioration caused by ageing are not considered in the analysis and the approach here is 

limited to the transformer thermal insulation life.  

 

Based on the existing loading guides the impact of non-sinusoidal loads on the hot spot 

temperature have been studied in [39], [48] and [49]. In order to estimate the transformer 

loss of life correctly, it is necessary to take into account the real load (harmonic 

spectrum), ambient variations and the characteristics of transformer losses.  

7.1.1 Transformer loading guides 

 

The equations to calculate the hot spot temperature should be modified to account for the 

increase in winding losses and the corresponding temperature rise. The load ratio must 

account for the non-linear currents introduced. The modified equations become 

 

The top oil equation (6.3): 
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The hot spot equation (6.6): 
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When applying the above equation, the left hand side term is replaced by the right hand 

side in (6.3) and (6.6). 

7.1.2 IEEE Annex G 

 

The loading equations presented in [41] separate eddy and stray losses from the losses 

due to the winding resistance. This allows for the consideration of oil and winding 

heating effects due to increased stray and eddy losses when harmonic currents are 

present. The model is modified to consider non-linear currents as follows:   

 

The average winding equation (6.23): 
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The hot spot equation (6.34): 
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The average oil equation (6.40): 
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7.1.3 Thermal model based on the electrical-thermal circuit  

 

The thermal model has to be modified to account for the increased losses due to the 

harmonic currents as follows [53]: 

 

The top oil equation (6.47): 

 

2 2 2max max max
2 0.8

2 2 2 2
1 1 1

( )
. 1

1

h h h

h h h

NL dc EC OSL

pu h h hR R R

NL R LL R

I I I
P P P h P h

I I I I

P P

β

β

= = =

= = =

− −

 
 + + +

+  
=  + + 
 
 

∑ ∑ ∑
               (7.6) 

 

The hot spot equation (6.49): 
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For high order harmonics and large winding conductors, the corrected harmonic loss 

factor (5.18) is used to account for the fact that the flux may not totally penetrate the 

conductors. The hot spot equation would then be modified as follows: 
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where, the corrected loss factor FWE is calculated as presented in section 5.3, in equations 

(5.13) and (5.18). 

Example Calculation for the 2500 KVA transformer 

 

The transformer was tested under a 0.62 pu load at 250 Hz. The top oil and hot spot 

temperatures were recorded in the factory. The thermal model equations (7.6) and (7.7) 

and transformer data were used to calculate the transformer temperatures and are 

compared with measurements. 

 

The measured and calculated temperatures for 0.62 pu and 250 Hz frequency are shown 

in Figs. 7.1 and 7.2 
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Fig.  7.1  The calculated top oil temperature compared with measurements  
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Fig.  7.2 The calculated hot spot temperature of the HV winding compared with measurements 
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It can be seen that the calculated top oil and hot spot temperatures are fairly in good 

agreement with measurements. 

Example Calculation for the 31.5 MVA transformer [53] 

 

Consider that the 31.5 MVA transformer is subject to a real daily load cycle profile and 

ambient temperature for a peak summer day as shown in Figs. 7.3 and 7.4 respectively. 

The load cycle is presented without harmonics. Then the transformer is assumed to be 

subject to distorted loads with THDs of about 21.6% and 10 %. The spectrum used is 

shown in Fig. 7.5. The assumed harmonics include major harmonics 5th, 7th, 11th, 13th, 

17th, 19th, 23th and 25
th

. 
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Fig.  7.3 Load cycle considered for the transformer 
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Fig. 7.4  Ambient temperature  
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Fig.  7.5  Distorted load cycle with THD= 21.5% 

 

Fig. 7.6 shows the top oil temperature for the assumed harmonics produced by the load 

supplied by the transformer. The THD of 21.5% gives a temperature rise about 8.5 °C 
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above the temperature where there are no harmonics, whereas the increase is just 2 °C for 

a THD of 10 % when compared with the rise that occurs if there are no harmonics. 
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Fig.7.6  The calculated top oil temperature of the secondary winding  for different load cycles 

 

The temperature varies according to the distorted load and ambient temperature that the 

transformer will be subjected to 

 

Fig. 7.7 shows the hot spot temperature for the assumed harmonics produced by the load 

supplied to the transformer. The THD of 21.5% gives a temperature rise of more than 20 

°C above the temperature rise for no harmonics. 
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Fig.  7.7 The calculated  hot spot temperature of the secondary winding for different load cycles 

 

Fig. 7.8 shows the instant pu loss factor (equivalent ageing factor) for different load 

cycles. The calculated loss of life factor for the load cycles is shown in Table. 7.1. The pu 

loss factor for a load cycle with a THD of 21.5% is just below 1.  

 

            Table 7.1 Transformer loss of life calculation 

 No harmonics THD=21.6% THD=10% 

Loss of life over a cycle  2.85 23.31 4.95 

Load cycle duration 24 24 24 

pu loss of life factor 0.12 0.971 0.21 
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Fig . 7.8 The transformer insulation loss of life for different load cycles, pu 

 

The calculated hot spot temperature and the instant loss factor using the harmonic order 

square rule is compared with the corrected harmonic pu loss of life factor for a load cycle 

with a THD of 21.5%, as demonstrated in Figs. 7.9 and 7.10, respectively. 
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Fig. 7.9  The calculated hot spot temperature of the secondary winding using  the square rule and the  

corrected loss factor for a load cycle  with THD=21.5%  
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Fig  .7.9 Comparison of the transformer insulation loss of life, pu 

 

The calculated pu loss of life factor for the load cycle becomes 0.81, as shown in 

Table.7.2. 

 

            Table 7.2 Transformer loss of life calculation 

 Corrected loss factor Square rule 

Loss of life over a cycle  19.38 23.31 

Load cycle duration 24 24 

pu loss of life factor 0.81 0.971 
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Chapter Eight 

Conclusions  

 

The significance of harmonics in power systems has increased substantially due 

to the use of solid state controlled loads and other high frequency producing devices. An 

important consideration in evaluating the impact of harmonics is their effect on power 

system components and loads. Transformers are major components in power systems. 

The increased losses due to harmonic distortion can cause excessive winding loss and 

hence abnormal temperature rise.  

 

An electromagnetic analysis using a finite element model has been adapted to predict 

transformer winding losses. This can be used to calculate the eddy losses in individual 

turns/discs to enable location of the winding losses that cause the hot spot and to predict 

the hot spot factor H. 

 



Chapter 8 Conclusions 

 

 110

Conventionally, eddy losses are assumed to vary with the square of the current and the 

square of the frequency (harmonic order h).  This assumption is reasonable when 

conductors are small. For a combination of large conductors and high frequencies, the 

electromagnetic flux may not totally penetrate the strands in the winding and such an 

assumption leads to conservative results. A corrected loss factor which considers the 

skin effect is presented and verified experimentally. This leads to a more accurate 

prediction of transformer capability when subject to non-sinusoidal load currents.  

 

The differential equations of the loading guides were modelled using Simulink and 

revealed that the predicted hot spot is not accurate for applied overloads when compared 

with measurements. 

 

Annex G of the IEEE loading guide equations were modelled in Simulink/Matlab on the 

basis that at any instant t there must be a balance between all energy rates in watts. The 

hot spot equation is modified using the calculated winding losses that cause the hot spot.  

 

A new thermal model has been established to determine the hot spot temperature. The 

top oil temperature is calculated from the top oil equation. The top oil temperature 

becomes the ambient temperature for a hot spot equation model. The equations are 

modelled in Simulink and validated using transformer data from measurements in the 

factory. 

 

The increased transformer temperatures due to harmonics are estimated based on a 

constant harmonic load currents pattern and average daily or monthly temperatures. 

Transformer loading generally changes with time. It may, for example, operate in an 

overload condition for a short period followed by a period at less than rated load with 

different harmonic currents. The thermal model is modified to consider the actual load 

cycle that a transformer is subjected to while in service. The insulation loss of life is 

usually taken as a good indicator of transformer loss of life. The pu loss of life function 

has been developed to assess the effect of distorted load cycle on transformer lifetime.  
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The main contributions of this thesis can be summarised as 

 

• A FEM model was adapted and used to predict the transformer losses. The 

knowledge of flux density was used with conductor dimensions to predict the 

eddy losses for a specific design. The model can be used to calculate the eddy 

loss in individual turns/discs, to locate the winding hot spot location, and to 

predict the hot spot factor H. Such information is very important for winding hot 

spot determination.  

 

• A corrected eddy current loss factor was developed that considers the actual flux 

impinging on the conductor due to the skin effect. The factor can be applied to 

predict more accurately the transformer increased losses due to harmonics and 

hence the temperature rise. The factor was verified experimentally.   

 

• The hot spot equation of IEEE Annex G was modified using the calculated 

winding losses that cause the hot spot. The thermal dynamic model was also 

modified to consider distorted load cycle variation. 

 

• The winding-to-oil model proposed by Swift was developed to predict the hot 

spot temperature based on loading, oil temperature and the estimated losses that 

cause a winding hot spot. The thermal dynamic model was also modified to 

consider distorted load cycle variation. The model was verified using measured 

data from a transformer factory.  
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Appendix I 

 

Test setup and results for  

Eddy Loss Factor validation 
 

A test set-up (calorimetric method) was built to check the validity of the corrected eddy 

loss factor [31] (see the photographs in Fig.1). The idea was to show the effect of 

harmonics on eddy losses induced in a conductor by an external varying magnetic field. 

Prof. M. Lehtonen suggested making an air core coil to create a homogenous magnetic 

field parallel to the axis of the coil. J. Millar and A. Elmoudi constructed the test setup 

and performed the analysis.  

Coil design and the magnetic field 
 

The magnetic field in the coil, which should be homogeneous and parallel to the axis of 

the coil is: 

0 0.54    mT
_

coil

N I
B K I

Coil length

µ
= =     
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where,  

I      is the current in the coil (in A). 

 

This relationship was verified with measurements. The main point to note is that the 

magnetic field is proportional to the coil current. When corrected for current there was a 

slight variation in the measured field over the 50-500 Hz range. The error was within 5%. 

 

 

      
 

     

Figure 1  Photographs of the test equipment, which includes a tiny Pt100 temperature sensor (top left) 

attached with thermal paste to the thermally insulated sample (bottom right), a coil wound on a PVC 

tube, a high quality AC power supply (top right), capable of supplying a good sinusoidal current at a 

range of frequencies, and suitable cooling.  
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Heat equation  
 

If we assume the conductor sample to be a perfect thermal conductor with perfectly 

insulating boundary conditions, then the losses can be calculated from the temperature 

rise:  

 
 q c

t
ρ

∆Θ
=

∆  

 

where, ∆Θ  is the temperature rise, ρ is the density of the sample, c is the specific heat 

capacity.  

 

Experimental procedure 
 

The process adopted was to measure the temperature rise of the samples with a single 

sensor when subjected to a magnetic field in order to determine the relationship of losses 

to frequency. Ideal conditions are impossible to achieve, but were approximated by 

attaching a tiny Pt100 sensor to the conductor sample and packing the sample in 

polystyrene. The thermally insulated sample was then suspended in the heating tube in a 

swivel bracket, which minimised the thermal contact between the sample and the 

solenoid. Fans were directed at and through the coil but even so, there was a period of 

little more than 40 s before the heat flux from the coil started to noticeably affect the 

sample.  

 

Losses at fundamental frequency are problematic to measure, as the field must be very 

strong to produce a measurable temperature rise in samples with small conductor 

sections. Nevertheless, by controlling the ambient conditions and using as high a supply 

current as possible, results were obtained that are at least indicative of trends, and show 

the relationship of losses with frequency. The Shaffner generator was used to supply 

voltage and frequency steps automatically.  
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The temperature gradients obtained at each frequency were scaled by the inverse square 

of the currents to enable comparison with the fundamental response, the current of which 

was used as a base. The entire test period was logged, which meant that the temperature 

behaviour at the sensor on the sample could be modelled prior to each power step. The 

temperature rise above ambient was then estimated.  

 

y = 4.97078E-03x - 2.92896E-01
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Fig.  2 The line of best fit (using the least squares method) gives a gradient of 4.97⋅10
-3

 K/s at 50 Hz 

 

For frequencies higher than 500 Hz, the lower power HP6834B power supply was used 

manually, noting that at higher frequencies the eddy current losses are much higher, and 

so lower coil currents are permissible. 
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Results 
 

The test samples were 50 mm long, to ensure good clearance from the hot coil, and are 

shown in Fig.3 

 

 

Fig. 3 Solid conductor samples 

The results gave a near perfect fit with the response predicted for 12 mm and 8 mm 

conductors positioned perpendicular to the magnetic field as shown in Figs. 4 and 5.  
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Fig.  4 The response of the conductor with the 12 mm edge facing the field 



Appendix I 

 124 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 3 4 5 6 7 8 9 10

Harmonic order, h

d
T

/d
t

dT/dt (measured)

(dT/dt|h=1)*h2

dT/dt *(h2F(ξh)/ (ξR)) 

dT/dt*h(ξh)/F(ξR)

 

Fig.  5 The response of the conductor with the 8 mm edge facing the field 

Since the results were very promising we were encouraged to measure up to the 25
th

 

harmonic. As shown in Fig. 6 the corrected loss factor gives a good prediction of the 

increased losses due to harmonics. 
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Fig. 6 The response of the conductor with the 12 mm edge facing the field 
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For smaller 2mm conductors the results were as shown in Fig.7 although it must be 

admitted that the temperature response became so small for small sections, that the 

gradient at 50 Hz could only be estimated. Losses at higher harmonics are greater, and 

thus gave rise to temperature gradients that were high enough to be accurately measured.  
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 Fig. 8 The response of the conductor with the 2 mm edge facing the field 

 

Fig. 9 shows the normalised response for different conductor sizes and, up to the 10
th

 

harmonic order, the comparison with the calculated results shows good agreement. 
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Fig. 8 Normalised responses for different conductor sizes compared with measurements  
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Appendix II 

FEM Simulation Models 
 

 

 
1

( ) jωσ σ
µ

−∇ ⋅ ∇ + = = s

V
A A J

�
      (3.19) 

 

 

Input data for 250 MVA 

Subdomain Sig σ µr Current density 

LV Winding 0 1 -1.95 A/mm2 

HV Winding 0 1 1.72  A/mm2 

Inn. Reg. Winding 0 1 1.32 A/mm2 

Outer. Reg. Winding 0 1 0 

Core 0 2000 0 

 

 

Input data for 31.5 MVA 

Subdomain Sig σ µr Current density 

LV Winding 0 1 -2.67A/mm2 

HV Winding 0 1 1.98 A/mm2 

Reg. Winding 0 1 0 

Core 0 2000 0 
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Input data for 2500 KVA 

Subdomain Sig σ µr Current density 

LV Winding 0 1 -1.58A/mm2 

HV Winding 0 1 1.43 A/mm2 

Reg. Winding 0 1 0 

Core 0 2000 0 

 

Boundary Conditions 
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Appendix III 

Simulation Models 
 

1. IEEE Annex G Model 
 

Fig. 1. shows IEEE Annex G model developed in Simulink. The model equations (6.23) 

(6.24) (6.34) (6.40) and (6.41) are solved straight forward using different numerical 

techniques, different time step can be assigned for required accuracy. 

The Modified Hot Spot Model 

 

 ( )
5/ 4 1/ 4

2
H ECH

P dECH H WOH HR
L P M Cp PdcH K H H dcH P

K dtH HR WOR H

µ

µ

    Θ − ΘΘ
+ = +     ⋅ +

Θ − Θ        
(6.34) 

 

and 
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( )dcH ECH H

H H

HR WOR

P P
M Cp

τ+
=

Θ − Θ  (6.32) 

 

 

 

Input variables (Function of time, t) 

WO
Θ  is the temperature of the oil in the ducts at the hot spot location, °C. 

L  is load current per unit. 

W H
µ  is the viscosity of the oil film at the hot spot location at time instant t, 

Centipoise. 

 

Output variable (Function of time, t) 

H
Θ  is the winding hot spot temperature, °C.  

 

Parameters (constants) 

dc
P  are the winding losses due to the dc resistance at the hot spot location. 

EC
P  are the winding losses due to the eddy currents at the hot spot location. 

H R
Θ  is the rated temperature at the hot spot location, °C 

W O R
Θ  is the rated temperature of the oil in the ducts at the hot spot location, °C 

H
K  Is the temperature factor for resistance change with temperature at hot spot 

location  

H
τ  is the winding time constant at hot spot location, min. 

H R
µ  is the rated viscosity of oil film at hot spot location, Centipoise. 

 

 

Fig. 2 shows the equation above modeled in Simulink. 
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average winding equation

 winding duct oil 

winding hot spot equation 

average oil equation 

Top and bottom oil equation 

Transformer temperatures

Transformer Losses

Type of fluid

Type of cooling

Transformer components weights

Hot spot temp THS

Top oil temp TTO

TH Eq. Aging f actor

Transformer loss of l ife

T_A

TWO

TW

Tho.mat

TO measered

hs118.mat

TH Measered

TDOA

TBO

Loss of life

Load

Load.mat

Input load

T_A.mat

Input TA

F_EQA

DTDO

boto.mat

Bottom oil measered

L_Load

TDAO

Q_LW

MC

TW

L-Load

TA

TW

Q_LW

MC

TO

Q_LO

L_Load

TWO

THS

TBO

Q_LW

TTO

TWO

TDAO=TTDO+TBO/2

DTDO

TO

Q_LO

DTTBO

DTTB/2

TTO

TBO

 

Fig. 1 Annex G IEEE Model 
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Fig. 2 the hot spot equation model 
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Fig. 3 The viscosity equation µR 

 

The input parameters needed for the equations is shown in Fig. 4. 
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Fig. 4 Input temperature data for the model 

 

Thermal Model based on Thermal-Electric equivalent circuit 
 

Fig. 5 shows the thermal dynamic loading model developed in Simulink. The continuous 

form of equations (6.47) and (6.49) are solved straightforward.  
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Fig. 5 Simulation model for the thermal model equations 

The top oil model  

 

 

2
1/ 1/1

1

n npu Oil

oil R oil oil A

I d

dt

β
τ

β
−

+ Θ
⋅ ∆Θ = + Θ − Θ      +

 (6.47) 

 

Input variables (Function of time, t) 

pu
I  is the load current per unit. 

A
Θ  is the ambient temperature, ° C. 

 

Output variable (Function of time, t) 

oil
Θ  is the top oil temperature, ° C. 

 

Parameters (constants) 

β  is the ratio of load to no-load losses, conventionally R 

oil
τ  is the top oil time constant, min. 

oilR
∆Θ  is the rated top oil rise over ambient, K. 

n is constant defines non-linearity. 
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Fig. 6  Top oil model equation 

The input parameters block for the top oil rise equation in the model is shown in Fig.7. 

 

 

Fig. 7 Input parameters for top oil model 
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Loss of life equation 

 

Fig. 8 shows the insulation loss of life simulation model as implemented in Simulink.  

 

 

Fig. 8 Insulation loss of life simulation model 
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