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Reconstruction of 3-D Head Geometry From
Digitized Point Sets: An Evaluation Study

Juha Koikkalainen and Jyrki Lotjonen

Abstract—In this paper, we evaluate different methods to esti-
mate patient-specific scalp, skull, and brain surfaces from a set of
digitized points from the target’s scalp surface. The reconstruction
problem is treated as a registration problem: An a priori surface
model, consisting of the scalp, skull, and brain surfaces, is regis-
tered to the digitized surface points. The surface model is gener-
ated from segmented magnetic resonance (MR) volume images. We
study both affine and free-form deformation (FFD) registration,
the use of average models, the averaging of individual registration
results, a model selection procedure, and statistical deformation
models. The registration algorithms are mainly previously pub-
lished, and the objective of this paper is to evaluate these methods
in this particular application with sparse data. The main interest
of this paper is to generate geometric head models for biomed-
ical applications, such as electroencephalography and magnetoen-
cephalographic. However, the methods can also be applied to other
anatomical regions and to other application areas.

The methods were validated using 15 MR volume images, from
which the scalp, skull, and brain were manually segmented. The
best results were achieved by averaging the results of the FFD reg-
istrations of the database: the mean distance from the manually
segmented target surface to a deformed a priori model surface for
the studied anatomical objects was 1.68-2.08 mm, depending on
the point set used. The results support the use of the evaluated
methods for the reconstruction of geometric models in applications
with sparse data.

Index Terms—Average head model, electroencephalography
(EEG), magnetoencephalography (MEG), realistic head model,
statistical deformation model (SDM), surface-based registration.

I. INTRODUCTION

ETAILED three-dimensional (3-D) geometric models are

needed in numerous scientific and industrial problems,
such as in computer graphics and finite-element engineering
problems. Also, in the biomedical field, a wide range of appli-
cations exists that utilize patient-specific geometric data, such
as the calculation of thermal, electromagnetic, and mechanical
fields applied to the human body, or the spatial and dynamic
modeling of the electric activity or the blood flow inside the
human body. In addition, patient-specific models are needed in
many 3-D visualization tasks to depict the results within a re-
alistic geometry. The objective of this paper is to evaluate and
compare different, mainly previously published, methods to re-
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construct 3-D head geometry from sparse point sets digitized
from the surface of the head. However, the methods reported
are also applicable to other anatomical regions of interest and
to other application areas in which the available geometric data
are not complete.

The most accurate way to establish a patient-specific head
model is to segment it from the patient’s volume images, such as
a 3-D magnetic resonance (MR) or a 3-D computed tomography
(CT) data. However, the acquisition of volume images is expen-
sive and time-consuming, and the imaging modalities are not
always available. On the other hand, the digitization of the head
shape is significantly faster and less expensive, and in many ap-
plications a point set is routinely digitized, such as the locations
of the electroencephalography (EEG) electrodes in EEG mea-
surements. In this paper, we reconstruct a patient-specific geo-
metric 3-D head model, consisting of the scalp, skull, and brain
surfaces, using only a point set digitized from the target’s scalp.
Our objective is to evaluate the accuracies of different methods
in this application. We use three digitized surface point (DSP)
sets, in which the number of points varies between 22 and 1155.
As the geometric data used in this study are sparse, the recon-
struction of 3-D geometry is difficult, and the use of a priori
geometric knowledge is a prerequisite for successful reconstruc-
tion. In the methods studied in this paper, the common principle
is to register an a priori triangle surface model (TSM) to the
points that are digitized from the scalp.

The digitized points can be divided into two groups based on
the existence of the point correspondence between target and a
priori model points. In point-based registration [1], [2], corre-
sponding points are determined from both the target and a priori
model data. These points can be either anatomical landmarks or
salient geometric points. Typically, only a few points are avail-
able, and rigid or affine transformations are used. For example,
Fuchs et al. [3] and Silva et al. [4] used a standard head model
and fitted this model rigidly to the target using external anatom-
ical landmarks. In the case of unorganized data (i.e., when the
point correspondence between the target and a priori model data
is not known), surface-based registration methods can be used
[1], [2], [5]. The iterative closest point (ICP) algorithm, reported
in [6], is perhaps the most popular approach. In EEG applica-
tions, the target’s head surface may be digitized, and registered
with the head surface extracted from an MR volume image using
surface-based registration algorithms [7], [8]. In [8], the head
surface was reconstructed from the digitized EEG electrode co-
ordinates using spline interpolation. It was suggested that in this
way no MR volume image is necessary, but the EEG maps can
be visualized on the reconstructed head surface. Free-form de-
formations (FFD), allowing regularized 3-D spatial transforma-
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tion for a geometric a priori model, have been proposed for the
problem of sparse data sets [9]. In [10], we used FFD to recon-
struct a 3-D geometric surface model consisting of thorax and
lungs from two orthogonal two-dimensional projections. In ad-
dition, methods utilizing information on typical deformations
derived from a database have been applied to sparse data [11],
[12]. The use of physically based free-vibration modes have also
been reported [13].

In this study, we reconstruct patient-specific triangulated
3-D head models for biomedical applications, especially for
magnetoencephalographic (MEG) and EEG studies. In MEG
and EEG source localization, electrical neural activities are
estimated noninvasively from the magnetic fields and electric
potentials, respectively, measured on the head surface [14],
[15]. This is an inverse problem, which requires first the knowl-
edge of how to solve the corresponding forward problem [3],
[16]. In the forward calculations, the induced external magnetic
field and electric potential are computed from the given current
source parameters, head geometry, and conductivity properties.
The head geometry is often modeled by a sphere (representing
the outer brain surface in MEG) or three concentric spheres
(representing the scalp, skull, and brain in EEG) by fitting
the spheres to the MR images or 3-D digitization points taken
from the patient. The advantage of using spherical models is
that fast analytic solutions are available. However, two widely
known problems exist: 1) A spherical surface approximates the
shape of the head surface reasonably well in the occipital area
but is more or less inappropriate in other areas [17]. Several
studies, both computer simulations and experiments using
clinical data, have been performed to estimate the localization
accuracies of different types of head models [17]-[22]. The
average difference in the estimated current source locations
between patient-specific head models and spherical models was
approximately 5-30 mm, depending on the initial location of
the source model [18]-[20]. 2) If MR images are not available,
the visualization of the results in the spherical model is not
clinically very useful because no link to real anatomy exists. In
this work, we provide guidelines for building patient-specific
head models from very limited geometric knowledge of the
subject.

In addition to MEG and EEG, patient-specific head models
can be utilized in many other applications. Transcranial mag-
netic stimulation is basically a converse of MEG: The induced
electric field in the brain is computed when the brain is exter-
nally stimulated using electromagnetic pulses [23]. This is a
forward problem, and patient-specific head models will give a
better accuracy than spherical models [24]. In optical imaging,
patient-specific head models are used as a priori information to
improve image reconstruction results [25].

In Sections II-A and II-B, the volume images, TSMs, and
DSP sets used in this work are presented. Necessary registra-
tion error measurements are defined in Section II-C. The affine
and FFD registration algorithms used in this study are presented
in Sections II-D and II-E, respectively. Different methods to
choose an a priori model for these algorithms are evaluated.
In the simplest form, an a priori model is selected randomly
from the database. In Section II-F, a model selection procedure
is presented. The goal of the model selection procedure is to se-
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Fig. 1. (a)Scalp, (b) skull, and (c) brain TSMs. (d) Mid-sagittal slice overlayed
with manual segmentations.

lect from the database an a priori model which provides the best
registration accuracy. Instead of using individual models from
the database, an average model (Section II-G) or a statistical de-
formation model (SDM) (Section II-I) can be constructed from
the database and used in the registration. Also, the averaging of
individual FFD registration results is evaluated (Section II-H).
The results using leave-one-out cross-validation are given in
Section III, the significance of the results, and the advantages
and limitations of the methods and procedures are discussed in
Section IV.

II. MATERIAL AND METHODS
A. Material

The database used in this work consists of T1-weighted,
volume MR, head images of 15 healthy volunteers. The size of
the volumes is 256 x 256 x 180 with a voxel size of 1 x 1 x 1
mm?. The acquisition protocol varies since the images were
acquired from different projects. These volume images are used
to construct TSMs, average models, and SDMs, as described
below. However, the volume images are not used to reconstruct
the head geometry from the DSPs.

The scalp, skull, and brain are manually segmented from
the MR volume images. The software tool used for the manual
segmentation allows the user to translate, rotate, and scale an a
priori surface model, and to make local nonrigid deformations.
Thereafter, TSMs (Fig. 1) are generated using the method
presented in [26]. The scalp, skull, and brain TSMs consist of
5774, 2462, and 3368 nodes, and 11467, 4920, and 6723 trian-
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Fig. 2. Variability maps for the head shape: (a) the mean amplitude
(millimeters) of the deformations needed to register a reference volume to the
remaining database volumes, and (b) the mean angle (degrees) between the
node deformations in a neighborhood of a 5-cm radius.

gles, respectively. The geometric model has been constructed
in INSERM Unité 280, Mental Processes and Brain Activation
Laboratory (Lyon, France) for bioelectromagnetic computa-
tions. Simplified geometry is used for the skull: The skeleton
of the chin region is simplified, as it has only a small effect on
the source localization accuracy in EEG/MEG. Also, a brain
envelope that does not include the sulci is segmented as the
brain object. In the TSMs of this study, the triangulation is used
to provide an accurate description of the geometry and reliable
error measurements. When the EEG/MEG source localization
is performed, we retriangulate the reconstructed geometry with
an appropriate number, size, and shape of the triangles.

B. Digitized Point Sets

The optimal selection of the digitized points depends on the
spatial variability of the head shape among humans. The vari-
ability of the head shape was studied by registering nonrigidly
the database subjects into same coordinate system using the
method presented in Section II-G. Two measures were studied:
1) the magnitude and 2) the consistency of the deformations at
different locations of the head. The magnitude of the deforma-
tions [Fig. 2(a)] is defined as the mean amplitude of the defor-
mations (in millimeters) to register a reference volume to the
remaining database volumes. The consistency of the deforma-
tions [Fig. 2(b)] is defined as the mean angle between the defor-
mation vectors in a neighborhood of a 5-cm radius. The highest
magnitude of the deformations, 15-20 mm, was in the neck re-
gion, while the magnitude was elsewhere only around 5 mm.
This suggests that more points should be digitized from the neck
region. However, the deformations were also the most consistent
in the neck region indicating that sparse sampling could be used.
On the other hand, complex deformation would be needed near
the earlobe (consistency low), but the magnitude of the deforma-
tions was also low. Therefore, we decided to use uniform head
shape digitization. The selection of the points has been studied
more extensively in other works, such as in [27].

In this work, three different surface point sets and one set of
anatomical landmarks (Fig. 3) are used. In the first two point
sets, the number of the digitized points is kept as low as possible
in order to reduce the work load of the clinical staff performing
the digitization. The first point set, PS1 [Fig. 3(a)], consists of
22 points sampled equidistantly from two orthogonal planes.
In the second point set, PS2 [Fig. 3(b)], eight points are lo-

(d)

Fig. 3. Point sets used in this study. (a) PS1 (22 points). (b) PS2 (44 points).
(c) PS3 (1155 points). (d) Anatomical landmarks: the nasion and periauricular
points.

cated equidistantly from five horizontal planes. Also the nasion,
vertex, and periauricular points are included in this point set (in
total 44 points). The third point set, PS3 [Fig. 3(c)], is used to
demonstrate applications where a dense digitization can be ac-
quired. It is created by sampling randomly 1155 points from the
scalp surface. These point sets are used to perform surface-based
registrations. Therefore, there do not have to be an exact point
correspondence between different subjects. These points will be
referred to as DSPs throughout this paper.

In addition, three anatomical landmarks, the nasion and pe-
riauricular points [Fig. 3(d)], are located from MR volume im-
ages, and used with each point set PS1-PS3 in point-plus-sur-
face-based registration. Therefore, the point correspondence of
this point set must be as accurate as possible.

In our actual EEG/MEG measurements, the points would be
digitized from the scalp using a 3-D digitizer (3SPACE Pol-
hemus, Inc., Colchester, VT, USA). However, in this study, we
do not use a digitizer; rather, a different approach is selected.
For PS1 and PS2, the digitization is simulated by locating the
points manually from the MR volume images. After this, the
points are moved to the nearest scalp TSM node to make the
digitization error zero. The points in PS3 are sampled from the
scalp TSM nodes. The reasons for this approach are explained
in Section II-C, after the necessary registration error measure-
ments have been defined.

C. Registration Error Measurements

Let us define three registration error measurements that are
used in this paper. The landmark registration error (LRE) (anal-
ogous to the fiducial registration error in [28]), measures the
average distance between the corresponding a priori model and
target anatomical landmark points

1
LRE = — li—mi 1
NI;II I (1)

where NV; is the number of the anatomical landmarks, 1; is the
ith a priori model landmark after some spatial transformation,
and m; is the sth target landmark.
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The surface registration error (SRE) measures the average
distance from target DSPs to an a priori TSM

]\7

7 M

where N is the number of the target DSPs, M is an a priori
TSM after some spatial transformation, and p; is the +th target
DSP. d (M, p;) gives the distance from the ith target DSP to an
a priori TSM. The distance can be computed in several ways,
and in this study, two approaches are used. In the first approach,
a distance map is calculated from an a priori scalp TSM. In this
way, the accurate Euclidean distance is not achieved, but the
distance can take on only discrete values. In the other approach,
the accurate distance is achieved by computing the distance

d(M7pi) =f (Mvp'i) 3)

where f (M, p;) is a function which gives the shortest distance
from the point p; to the surface of an a priori TSM.

The LRE and SRE are used in the energy terms of point- and
surface-based registrations, respectively, but they are not valid
measurements for registration accuracy. The measurement we
are ultimately interested in is the distance from a spatially trans-
formed a priori TSM to the target TSM, as derived from MR
volume images. The target registration error (TRE) is defined
as (analogous to [28])

SRE =

,Pi) @

TRE—iZfMt) “

i=1

where [V, is the number of the nodes of the target TSM, t; is the
ith target TSM node, and f (M, t;) is the same function as in
3).

The difference between the SRE and TRE is the point sets
used in the computations. The target point set in (2) is a sparse
point set digitized from the target scalp surface (DSP sets
PS1-PS3). On the other hand, the point set in (4) consists of
the nodes of the target TSMs (scalp, skull, and brain surfaces),
which are used to validate the accuracy of the methods.

If the point sets were digitized realistically from the target’s
scalp surface using a 3-D digitizer, only the LRE and SRE could
be defined. As we locate different sets of scalp surface points
from the MR volume images, we are also able to define the reg-
istration error outside the digitized points (i.e., the TRE), be-
cause the real geometry between the digitized points as well as
inside the scalp is available in the MR volume images.

D. Affine Registration

Prior to registration using FFD, the external variations be-
tween a priori data (TSM and anatomical landmarks) and target
data (DSPs and anatomical landmarks) must be removed using
a more constrained, like a rigid or an affine, transformation. In
this paper, we study both seven-parameter (translation, rotation,
and isotropic scaling) and nine-parameter (translation, rotation,
and anisotropic scaling) affine transformations.

It has been reported that the accuracy of surface-based regis-
tration can be improved using anatomical landmarks [29], [30].
In this study, we adopt this idea and use an algorithm which

combines surface- and point-based registration techniques. The
energy term to be minimized is defined as

Etotal = SRE +7LRE ®)

where ~ is a user specified weight. The distance d (M, p;) in
the SRE (2) is computed using the distance map of an a priori
scalp TSM. When a nonzero weight + is used, both surface and
landmark information are utilized, and this is referred to as a
weighted seven/nine-parameter affine registration. The energy
function minimum was located by a parameter grid technique,
described in [31], based on forking the registration parameter
space.

E. Nonrigid Registration Using FFD

We have previously developed an algorithm based on an FFD
grid to nonrigidly register a TSM to the edges extracted from
anatomical volume data [32], [33]. In [33], a geometric and
topological surface template is nonrigidly registered to the noisy
edges extracted from MR volume images. This algorithm was
then modified to be suitable for this application. Using FFDs,
the TSM is deformed by manipulating the locations of under-
lying grid points. The transformation function T : x — x’ is
defined by a tensor product

m n

ZZZQM

1=0 7=0 k=0

T(z,y,z2 2)Qm, i (Y)Qnk(2)Pijr  (6)

where (); ; is a polynomial basis function and P ;. the position
of the grid point 7jk. Both linear and B-spline basis functions
can be used in the algorithm: Linear basis functions are selected
for this study.

The combination of point- and surface-based registration
methods is used in FFD registration, too. The energy to be
minimized by FFD point displacements is

Etotal = SRE + WLRE + aEnLodel~ (7)

The first two energy terms are the same as in (5). However,
the distance d (M, p;) is now calculated as described in (3).
The closest TSM points are researched after each FFD iteration.
During the nonrigid registration, the SRE and LRE can approach
0 mm, if enough elasticity is allowed. However, the real error
(the TRE) (i.e., the distance from the target TSMs to deformed
a priori TSMs) does not become zero in practice. Therefore,
an appropriate stopping criterion and/or regularization has to be
decided. In this study, the second derivatives of the transforma-
tion are regularized [32].

The global-to-local approach is adopted in the FFD registra-
tion. The energy minimization is started with a sparse grid, such
as 3 x 3 x 3, corresponding approximately to grid point spac-
ings of 128 mm in the coronal and transaxial directions, and of
90 mm in the sagittal direction. After minimizing the energy for
the current grid, the number of grid points is increased.

F. Nonrigid Registration Using FFC With Model Selection

Idea of Model Selection: A commonly known problem of
deformable models is that undesired results are often obtained
if the model is not initialized close to the target object. In the
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model selection procedure [34], the database subject that is the
most similar to the target is selected to be an a priori model.
Therefore, the selected model reminds initially of the target, and
only small deformations are needed. In this work, the selection
is done based on features derived from the digitized points of
the scalp. Although the shape of the skull and brain cannot be
accurately predicted from these points, an obvious relation ex-
ists between the shapes because of physical constraints. In other
words, the shape of the skull and brain of the model are assumed
to be similar to the target if the shape of the scalp is similar. In
[34], we used this procedure in applications where the target’s
intensity data were available. The procedure was modified to be
suitable for this application, where the only information on the
target is a set of DSPs.

Features: From the target data used in the registration, one
cannot compute the real error (i.e., the TRE), but only an es-
timate of the registration accuracy can be calculated from the
data. For this purpose, a set of features is calculated from the
DSPs and anatomical landmarks. In this procedure, no differ-
ence is made between DSP sets and anatomical landmarks, and
the term “point” is used in this section to refer to both of these
point sets. One set of features analyzed is the set of distances of
the target points p; to the database subject’s scalp TSM M

feat1 (i) = f (M, pi). ®)

Another set of features is the set of distances between corre-
sponding points of a database subject m; and the target

feato (i) = ||p: — my]|. 9)

To be able to determine feats(7), the DSP sets PS1 and PS2 are
also located from the database subjects. As the digitization is
performed always in the same way and in the same order, there
is an approximative point correspondence. Because of the large
number of points, this is not done for PS3, but only feat; (¢) are
used.

Regression Analysis: The model selection is performed
using regression analysis. The features are used as independent
variables, and the TRE after FFD registration is used as a
dependent variable. In other words, the value of the TRE is
predicted using a linear combination of the features

Ni+N
TRE = Y [wi(i)featy (i) + wa(i)feats(i)] + wo. (10)

=1

The optimal (in a mean-square sense) set of weights W can be
derived by solving the equation
w = (FIF)"'Fle. (11)
The vector W consists of all the weights w1 (z), wa(z), and wy.
The jth row of the matrix F' includes all the feature values of the
Jth database subject (and the constant one for the weight wy).
The TRE values for each database subject are in the vector e.
Determination of Feature Sets: Certainly, one could use all
the features in (10) to estimate the TRE. However, in that case,
the regression model would be over-learned and the generaliza-
tion ability would not be good (e.g., the total number of features
is 88 for the point set PS2). Therefore, it is reasonable to keep

only a part of the features in the matrix F. For the rest of the
section, we will use the term “regression model” to refer to the
set of features that establishes the matrix F'.

A set of regression models R = {rg,r1,...,ran,+on, } is
achieved using forward selection. In the initial state, there do
not exist any independent variables in the regression model ry.
Next, a new regression model r; is achieved by adding the fea-
ture that improves the predictions of the TRE the most into the
previous regression model r;_;. In practice, a new column is
added to the matrix F. This is repeated until we obtain the re-
gression model ran, 42, , which includes all the features. The
forward selection is done using all 15 database subjects.

Selection of the Best Feature Set and Corresponding
Weights: After this, the performance of the obtained regression
models R in the model selection is evaluated: 1) each subject is
removed once from the database and considered as a target; 2)
the weights w for the regression model r; are calculated; 3) the
TRESs are calculated for each database subject; 4) the T/S_l![ and
anatomical landmarks of the subject with the lowest TRE are
used as an a priori model in the registration; and 5) the mean
TRE of the registrations is calculated over all targets. This is
repeated for each regression model r;, and the one which gives
the lowest mean TRE is used according to steps 2—4 to select
an a priori model for the FFD registration.

Model Selection in This Study: The model selection proce-
dure can be used in several ways. In this study, two approaches
are evaluated. In the first approach, the points after the affine
registration are used. In other words, the best database subject
for the FFD registration is estimated from the affine registration
results. In the other approach, the points after the FFD regis-
tration are used to estimate which subject gave the best FFD
registration.

G. Average Model

The model representing the average head geometry is con-
structed from the database by registering all the database sub-
jects with a single reference subject [35], [36]. First, the ref-
erence subject is chosen and all database subjects are regis-
tered to it using weighted nine-parameter affine transformation.
Next, the reference subject is nonrigidly registered to the data-
base subjects. In order to achieve as accurate a registration as
possible, the available intensity information in MR volume im-
ages is utilized, and the registration is performed using an inten-
sity-based deformable model-based registration algorithm [37].
Furthermore, to ensure the validity of the registrations, the re-
sults are visually examined and corrected using manual registra-
tion software similar to the software used for manual segmen-
tation. In this study, the mean total TRE =+ standard deviation
was 3.08+0.37 mm after the affine registration. The term “total”
refers to the mean of the TREs of the scalp, skull, and brain sur-
faces. The automatic nonrigid registration decreased this error
to 1.52+0.20 mm, and the manual correctionto 1.12+0.07 mm.
These registrations have to be done only once when the av-
erage model is constructed. Therefore, the processing time is
not a critical issue. The registration algorithm gives a deforma-
tion field T; : x — x’ as an output. The deformation field T';
describes the volumetric transformation required to register the
points of the reference subject to the points of database subject 4.
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point sets and registration methods. The optimal weights were used for each point set in weighted affine registrations. The weighted nine-parameter affine registration

was used as an initialization in the FFD registration.

The average model is achieved by computing an average defor-
mation field and applying this field to the TSMs and anatomical
landmarks of the reference subject. This model can now be used
as an a priori model in the registration algorithms presented in
Sections II-D and II-E.

H. Averaging of Individual Registration Results

Another possibility is to perform the averaging after the FFD
registrations have been done for each database subject using
the algorithm presented in Section II-E. In our study, the same
TSMs are used to represent each database subject. Therefore,
an average TSM is obtained by averaging the coordinates of
the nodes of the database subjects. If different triangulations are
used for each database subject, for example, fuzzy segmentation
[38] or shape-based blending [39] could be used.

1. Nonrigid Registration Using SDM

Active shape models (ASMs) [40] are a standard approach to
deform a surface model in a way that can follow the variability
of shape in the subject database. In this study, the deformation
can be defined only for one surface from which the points are
digitized but the transformation has to be applied to all surfaces
of the model. Therefore, an SDM [36], [41] is computed from
the data produced according to Section II-G. Instead of com-
puting the covariance of the TSM points, as in the ASM, the co-
variance of the deformation fields T’; is determined in the SDM.
The principal modes of the variation of the deformation field are
determined as the eigenvectors ¢; of the covariance matrix com-
puted for the FFD grid points.

The deformation of the average model is defined as a
weighted sum of the eigenvectors. In nonrigid registration, the
problem is to find the optimal weights for the eigenvectors.
Different optimization algorithms were tested to minimize the
energy function in (5), and the conjugate gradient (Polak—Ri-
biere variant) technique was chosen. The weights b; are
constrained to the space —3@ -+ 34/Aj, where A; is
the jth eigenvalue. The deformation fields are defined for the
FFD grid of size 12 x 12 x 12, corresponding approximately
to grid point spacings of 23 mm in the coronal and transaxial
directions, and of 16 mm in the sagittal direction.

III. RESULTS

The studies were done using full leave-one-out cross-valida-
tion (i.e., each subject was once regarded as a target, and the
remaining 14 subjects composed the database). However, the
subject that was used as a reference subject in constructing the
average models and the SDMs was not used as a target. There-
fore, the total number of target subjects was 14. The average
model and SDM were computed each time anew without the
target subject. The TRE values reported in this section are the
mean values over all 14 targets. The results for the model selec-
tion procedure, average models, averaging of individual regis-
trations, and SDMs are the means of 14 registrations. In affine
registrations and nonrigid registrations using FFD, all 14 data-
base subjects were registered with the target. This was repeated
for each target, and the reported TREs are the mean values of
all these registrations. This represents the situation where an a
priori model is selected randomly from the database.

A. Anatomical Landmarks and DSPs

Different values for the weights for the anatomical landmarks
[vin (5) and (7)] were tested. The results for both the seven- and
nine-parameter affine registrations, and the nonrigid registration
using FFD (maximum grid size 12 X 12 x 12) in the case of the
point set PS1 are presented in Fig. 4(a). Different values for the
parameter « in (7) were tested, and the best TREs were obtained
using @ = 2.5. The shapes of the graphs were similar for the re-
maining DSP sets. However, the locations of the optima in the
affine registrations varied between v = 1. .. 2, depending both
on the DSP set and the affine transformation. When the anatom-
ical landmarks improved notably the registration accuracy in the
affine registrations, no improvement was achieved in the FFD
registration. The same was true also for the registration using
SDMs. Therefore, pure surface-based registration (i.e., 7 = 0)
was used in these techniques. The mean total TREs for different
registration methods and DSP sets are presented in Fig. 4(b).

In the further studies, the nine-parameter affine registration
weighted with anatomical landmarks was used as an initializa-
tion. The optimal parameter values y in (5) were searched sep-
arately for each point set using figures similar to Fig. 4(a). The



KOIKKALAINEN AND LOTJONEN: RECONSTRUCTION OF 3-D HEAD GEOMETRY FROM DIGITIZED POINT SETS 383

TABLE 1
MEAN TRESs & STANDARD DEVIATIONS (MILLIMETERS) FOR THE POINT SETS PS1, PS2, AND PS3, AND FOR DIFFERENT REGISTRATION METHODS

PS1 WIoA WI9AA F12 FI12A F12A2 F12M F12M2 SDM

scalp 3.20+£0.36 245+047 2494+0.26 1.93+0.38 1.84+0.31 2.22+0.34 2.29+0.30 2.22+0.40
skull 3.23+046 2.57+0.52 3.00+0.43 248+0.54 2.29+0.57 2.60+0.33 2.724+0.46 2.54+0.42
brain 3.02+048 248+048 2.80+0.43 235+0.49 2.12+0.55 2.14+0.26 2.59+0.68 2.39+0.51
total 3.15+£037 250+040 2.76+£0.33 2.25+041 2.08+042 2.32+£0.24 2.53+£0.38 2.38+0.35
PS2 WOA WOAA F12 F12A F12A2 F12M F12M2 SDM

scalp 3.22+042 2.53+068 2.08+0.31 166+£0.32 1.63+035 1.80+0.29 1.78+0.37 2.10+£0.45
skull 3.11+£043 2424060 2.834+042 228+£0.53 2.16+054 237+043 246+0.41 2.39+0.55
brain 290+£0.39 2224058 2.714+040 2.12£056 2.04+049 2.16+047 2.194+0.50 2.16+0.49
total 3.08+0.35 2394052 254+0.33 2.02+043 1.94+041 2.11+0.31 2.14+0.34 2.22+0.45
PS3 WA WOAA F12 FI12A FI12A2 Fi2M F12M2 SDM

scalp 271+031 2.09+039 1.33+0.12 1.09+0.10 1.13+0.14 1.20+0.12 1.134+0.10 1.65+0.21
skull 287+0.37 228+0.38 2534+0.31 207+£0.31 2.00+039 220+0.27 2.18+0.29 2.20+0.31
brain 270+040 2.17+040 2484039 199+0.36 1.91+044 2.06+0.55 1.994+0.49 2.16+0.36
total 276+031 218+030 211+024 1.72+£0.22 1.68+£027 1.82+0.26 1.77+0.23 2.00+0.23

Columns from the left: weighted nine-parameter affine (W9A) registration; weighted nine-parameter affine registration using average models

(W9AA); nonrigid registration using FFD with the biggest grid size 12 X 12 x 12 (F12); nonrigid registration using the average models (F12A);

the averaging of individual FFD registration results (F12A2); the model selection procedures after initialization (F12M) and after FFD registration
(F12M2); and the registration using the SDMs (SDM).

Fig. 5.

Example slices from the best and the worst registrations through the head with a contour overlay of segmented structures when the averaging of individual

FFD registration results was used. From top to bottom: the best (left, mean total TRE = 1.64 mm) and the worst (right, mean total TRE = 3.11 mm) cases for
the point set PS1, the best (left, mean total TRE = 1.54 mm) and the worst (right, mean total TRE = 2.72 mm) cases for the point set PS2, and the best (left,
mean total TRE = 1.36 mm) and the worst (right, mean total TRE = 2.33 mm) cases for the point set PS3.

values used in the initialization are 7y = 1.4 for both the PS1
and PS2, and v = 1.0 for the PS3.

B. Registration Methods

The mean TREs for different registration methods are pre-
sented in Table I. In the nonrigid registration using FFD, the
best attainable error was achieved already with a quite moderate
maximum grid size: increasing the grid size from 12 x 12 x 12
(F12) improved the registration accuracy only slightly. There-
fore, only the results for this grid size are presented in Table I.

Because the database was so small, all possible 13 eigenvec-
tors were used in the SDM registration. Our studies showed that
in this way, better results are obtained than by determining the
number of the eigenvectors so that 95% of the variance of the
database is included in the eigenvectors.

Examples of the results for the best method, the averaging of
the individual FFD registration results of the database subjects,
are shown in Fig. 5. In this figure, the best and worst cases for
each point set are shown by superimposing the TSMs on the
original MR volume images.
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IV. DISCUSSION

In this work, different possibilities to reconstruct a patient-
specific geometric head model were evaluated when the only
information on the target was a set of digitized points from the
scalp surface.

At first, one must decide how many points are digitized and
from where. In this study, we used uniform sampling of the
points, and in addition, three anatomical landmarks: the na-
sion and periauricular points. Intuitively, the smallest mean TRE
was always obtained with the point set that contained the most
points. For the best studied method, the difference between the
smallest (22 points) and the largest (1155 points) point set was
0.40 mm of the total error of about 2.0 mm.

The use of anatomical landmarks affected the registration
results in two ways. First, they improved the performance of
the nine-parameter affine registration. For the smallest point
set, PS1, the mean total TRE of the unweighted nine-parameter
affine registration was bigger than the mean total TRE of the
unweighted seven-parameter affine registration (Fig. 4). This
occurred, because there were not enough points to estimate
accurately all three scaling parameters. When the anatomical
landmarks were included in the registration, the amount of
spatial information was increased, and the anisotropic scaling
parameters could be accurately estimated. Consequently, the
weighted nine-parameter affine registration was more accurate
than the weighted seven-parameter affine registration for each
point set. Second, the anatomical landmarks decreased the
differences between DSP sets. In the nine-parameter affine
registration without anatomical landmarks, the difference in the
mean total TREs between the smallest and the largest point set
was about 1.0 mm of the total error of about 3.5 mm. However,
when anatomical landmarks were utilized, the difference was
only about 0.4 mm of the total error of about 3.0 mm. It is ad-
visable to find the optimal weight for the anatomical landmarks
separately in each application, as the optimal value depends on
the case-specific target information and registration method. In
this study, a weight between v = 1 — 2 [in (5)] was found to be
a good choice for affine registration.

In this study, with only three anatomical landmarks, the use
of the anatomical landmarks did not improve the accuracy of
the nonrigid registration using FFD. The spatial transformation
in the affine registrations was global. Therefore, the landmarks
induced a global improvement in an a priori model. On the
other hand, the deformations in the FFD registration were local.
Hence, the landmarks caused only a local fit near themselves,
but elsewhere, the registration accuracy could get worse. In ad-
dition, as the landmark information was used in the initializa-
tion, the landmarks had already been relatively accurately reg-
istered before the FFD registration. If the number of anatomical
landmarks had been greater, the result could have been different.
In addition, factors such as landmark localization error, surface
localization error, number of surface points (nodes), and defor-
mation algorithm affect on these results.

The best registration results (Table I) were obtained by av-
eraging the individual FFD registration results of the database
subjects. Similar results have been obtained in other applica-
tions (see, for example, [38]). The use of average models gave

good results, too, and improved the mean TREs, both in the
affine (W9AA versus W9A) and the FFD registration (F12A
versus F12). The third best method, the model selection proce-
dure improved the results notably compared to randomly chosen
a priori models (F12M or F12M2 versus F12). For the sparse
point sets, PS1 and PS2, the model selection after the affine reg-
istration performed better than the model selection after the FFD
registration. In the FFD registration, an a priori surface is moved
very close to the target points in each database model, and there-
fore, most of the discriminative information in the target points
is lost. In the case of the dense point set PS3, there is still enough
information in the target points to make a good model selec-
tion after the FFD registration. Therefore, better results were
obtained for the model selection after the FFD registration for
the point set PS3.

The mean total TRE of SDMs was worse than the error of
the methods discussed above. The database used in this work
was small (N = 15). Therefore, the SDMs could not model
accurately all the possible variations in the objects’ shape, and
the registration using SDMs failed. Enlargement of the database
would have improved the results of the SDMs, as well as the re-
sults of the model selection procedure. Increasing the size of the
database would have also improved the accuracy of the skull and
brain registrations, because possible correlations in the shapes
of the scalp, skull, and brain would have been better modeled. In
the SDM-based registration, there were many variable parame-
ters, such as the grid size, which were not fully studied here.

When the averaging of individual FFD registration results
(F12A2) is used, the FFD registration has to be done for each
database subject. The same is true also for the model selection
after the FFD registration (F12M2). If the database is very big,
this may be computationally too expensive. Otherwise, the eval-
uated point- and surface-based methods are fast (for example,
one FFD registration takes about 5 s). For the average models,
the weighted nine-parameter affine registration gave good re-
sults. Therefore, it should be evaluated if the accuracy of affine
registration is sufficient in a particular application, or whether
the FFD registration is needed.

We have done similar studies with thorax images [42]. The
results were similar to the results presented in this paper: The
model selection procedure and the average models gave the best
results, while a small database (N = 22) limited the perfor-
mance of the SDMs. For comparison, the mean TRE achieved
after FFD registration was about 8§ mm for the thorax, lungs, and
heart. There were many reasons for the lower accuracy, such as
the flexibility of the body, the dynamic nature of the thorax re-
gion, the higher interpatient variability, and the low correlation
of the thorax’s shape to the position and shape of the lungs and
heart.

The advantage of the studied methods is that an anatomical
image volume is not required, and the time and effort needed
for the image acquisition and object segmentations are saved.
The geometric accuracy of the models constructed in this study
is superior to the widely used spherical models. Thus, these
boundary element models are expected to result in more ac-
curate MEG/EEG source localizations than with the spherical
models. In addition, the patient-specific head model provides a
clinically useful environment for the visualization of the source
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localization results if MR images are not available. Although
Fig. 5 demonstrates that the geometric accuracy is visually
good, even for the skull and brain, the accuracy requirements
of the application define if detailed anatomical volume images
are required. In EEG/MEG source localization studies, it is
ultimately the localization accuracy that is of importance. This
work provides tools for improving the localization accuracy.
However, the registration accuracy needed for clinically useful
localization accuracy still needs to be defined.

There are numerous errors arising from digitizing the 3-D
points, such as the internal error of the 3-D digitizer, the user’s
ability to locate anatomical landmarks accurately, and the in-
stability in the digitization of a flexible object [7], [43], [44].
In this study, there were errors in anatomical landmark localiza-
tion, but otherwise the points were assumed to be accurately dig-
itized, and only the registration errors arising from sparse data
were evaluated. In the point-based registration, the point corre-
spondence is expected, and large registration errors may origi-
nate from the errors in the point digitization. In surface-based
registration, the number of the points is usually larger, and no
point correspondence is assumed. Therefore, the digitization ac-
curacy is not as crucial in surface-based registration as it is in
point-based registration. These error sources should be studied
separately in order to get an estimate of the total geometric error
when using a digitized point set to define the geometry of an ob-
ject.

Although MR imaging has established its position as a stan-
dard method to retrieve anatomic information for bioelectro-
magnetic modeling, the models built from MR images contain
geometric errors. 1) Internal errors of the imaging method dis-
tort the geometry, e.g., susceptibility differences may change the
positions of the surfaces by several millimeters [45]. 2) Auto-
matic and even manual segmentation contain errors; especially
the segmentation of the skull is prone to the errors of couple of
millimeters because of low visibility in MR images. 3) In ad-
dition, the model built from MR images need to be registered
to the coordinate system of the EEG/MEG device using a digi-
tized point set. This imposes registration error to the model. In
this paper, we did not try to estimate the overall error present
in MR-based geometric models. However, we believe that the
methods based on only a digitized point set represent a good
compromise between accuracy, time, and cost.

Although this work concentrated on sparse sets of 3-D points
from the head, the methods could also be applied to other data.
For example, the point set PS1 represents the points which could
easily be derived from two orthogonal X-ray projections taken
from the head. In that case, all objects could be modeled by dig-
itizing points from corresponding surfaces in the X-ray projec-
tions. In deformable model-based segmentation, the initializa-
tion of the model is a commonly known problem. The image
registration tools proposed in this work offer also a fast method
that provides a good initialization. The evaluated methods can
be used in other application areas, too. For example, ICP algo-
rithm has been used to find the pose parameters for range data
using a surface mesh and a surface point set of a target object
[46].

The model used and deformed in this study was a boundary
element model. However, the presented methods give volu-

metric transformation fields which can be utilized to spatially
transform other data sets, such as finite element models or
image volumes, for example, during surgical operations [47].

ACKNOWLEDGMENT

The authors would like to thank The Department of Radi-
ology, Helsinki University Central Hospital, Finland, for pro-
viding volume images.

REFERENCES

[1] J. Maintz and M. Viergever, “A survey of medical image registration,”
Med. Image Anal., vol. 2, pp. 1-36, Mar. 1998.

[2] J. Fitzpatrick, D. Hill, and C. Maurer, Jr., “Image registration,”
in Handbook of Medical Imaging , M. Sonka and J. Fitzpatrick,
Eds. Bellingham, WA: SPIE Press, 2000, vol. 2, Medical Image
Processing and Analysis, pp. 447-513.

[3] M. Fuchs, J. Kastner, M. Wagner, S. Hawes, and J. Ebersole, “A stan-
dardized boundary element method volume conductor model,” Clin.
Neurophysiol., vol. 113, pp. 702-712, May 2002.

[4] C. Silva, R. Almeida, T. Oostendorp, E. Ducla-Soares, J. Foreid, and T.
Pimentel, “Interictal spike localization using a standard realistic head
model: Simulations and analysis of clinical data,” Clin. Neurophysiol.,
vol. 110, pp. 846855, May 1999.

[5] M. Audette, F. Ferrie, and T. Peters, “An algorithmic overview of surface
registration techniques for medical imaging,” Med. Image Anal., vol. 4,
pp. 201-217, Sept. 2000.

[6] P.Besl and N. McKay, “A method for registration of 3-D shapes,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 14, pp. 239-256, Feb. 1992.

[7]1 H.-J. Huppertz, M. Otte, C. Grimm, R. Kristeva-Feige, T. Mergner, and
C. Liicking, “Estimation of the accuracy of a surface matching technique
for registration of EEG and MRI data,” Electroencephalogr. Clin. Neu-
rophysiol., vol. 106, pp. 409—415, May 1998.

[8] C. Lamm, C. Windischberger, U. Leodolter, E. Moser, and H. Bauer,
“Co-registration of EEG and MRI data using matching of spline inter-
polated and MRI-segmented reconstructions of the scalp surface,” Brain
Topogr., vol. 14, pp. 93-100, 2001.

[9] E.Bardinet, L. Cohen, and N. Ayache, “A parametric deformable model
to fit unstructured 3D data,” Comput. Vis. Image Underst., vol. 71, pp.
39-54, July 1998.

[10] J. Lotjonen, 1. Magnin, J. Nenonen, and T. Katila, “Reconstruction of
3-D geometry using 2-D profiles and a geometric prior model,” IEEE
Trans. Med. Imag., vol. 18, pp. 992-1002, Oct. 1999.

[11] M. Fleute and S. Lavallée, “Nonrigid 3-D/2-D registration of images
using statistical models,” in Proc. MICCAI’99, 1999, pp. 138-147.

[12] D.van’tEnt,J. de Munck, and A. Kaas, “A fast method to derive realistic
BEM models for EMEG source reconstruction,” IEEE Trans. Biomed.
Eng., vol. 48, pp. 1434-1443, Dec. 2001.

[13] R.Poli, G. Coppini, and G. Valli, “Recovery of 3D closed surfaces from
sparse data,” CVGIP: Image Understanding, vol. 60, pp. 1-25, July
1994.

[14] M. Hémdlédinen, R. Hari, R. Ilmoniemi, and J. Knuuttila, “Magnetoen-
cephalography—Theory, instrumentation, and applications to noninva-
sive studies of the working human brain,” Rev. Modern Physics, vol. 65,
pp. 413-497, Apr. 1993.

[15] S. Baillet, J. Mosher, and R. Leahy, “Electromagnetic brain mapping,”
IEEE Signal Processing Mag., vol. 18, pp. 14-30, Nov. 2001.

[16] J. Mosher, R. Leahy, and P. Lewis, “EEG and MEG: Forward solutions
for inverse methods,” IEEE Trans. Biomed. Eng., vol. 46, pp. 245-259,
Mar. 1999.

[17] M.Hiamaéldinen and J. Sarvas, “Realistic conductivity geometry model of
the human head for interpretation of neuromagnetic data,” IEEE Trans.
Biomed. Eng., vol. 36, pp. 165-171, Feb. 1989.

[18] B. Roth, D. Ko, I. von Albertini-Carletti, D. Scaffidi, and S. Sato,
“Dipole localization in patients with epilepsy using the realistically
shaped head model,” Electroencephalogr. Clin. Neurophysiol., vol. 102,
pp. 159-166, Mar. 1997.

[19] A. Crouzeix, B. Yvert, O. Bertrand, and J. Pernier, “An evaluation of
dipole reconstruction accuracy with spherical and realistic head models
in MEG,” Clin. Neurophysiol., vol. 110, pp. 2176-2188, Dec. 1999.

[20] B. Yvert, O. Bertrand, M. Thévenet, J. Echallier, and J. Pernier, “A
systematic evaluation of the spherical model accuracy in EEG dipole
localization,” Electroencephalogr. Clin. Neurophysiol., vol. 102, pp.
452-459, May 1997.



386

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

(33]

[34]

(351

[36]

[37]

[38]

[39]

IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 8, NO. 3, SEPTEMBER 2004

B. Cuffin, D. Schomer, J. Ives, and H. Blume, “Experimental tests of
EEG source localization accuracy in spherical head models,” Clin. Neu-
rophysiol., vol. 112, pp. 46-51, Jan. 2001.

, “Experimental tests of EEG source localization accuracy in
realistically shaped head models,” Clin. Neurophysiol., vol. 112, pp.
2288-2292, Dec. 2001.

J. Ruohonen, “Transcranial magnetic stimulation: Modeling and new
techniques,” Ph.D. dissertation, Helsinki Univ. Technol., Finland, 1998.
G. Cerri, R. de Leo, F. Moglie, and A. Schiavoni, “An accurate 3-D
model for magnetic stimulation of the brain cortex,” J. Med. Eng.
Technol., vol. 19, pp. 7-16, 1995.

M. Schweiger and S. Arridge, “Optical tomographic reconstruction in a
complex head model using a priori region boundary information,” Phys.
Med. Biol., vol. 44, pp. 2703-2721, Nov. 1999.

J. Lotjonen, P.-J. Reissman, I. Magnin, J. Nenonen, and T. Katila, “A
triangulation method of an arbitrary point set for biomagnetic problems,”
IEEE Trans. Magn., vol. 34, pp. 2228-2233, July 1998.

N. Gelfand, L. Ikemoto, S. Rusinkiewicz, and M. Levoy, “Geometrically
stable sampling for the ICP algorithm,” in Proc. 4th Int. Conf. 3-D Dig-
ital Imaging and Modeling, 2003, pp. 260-267.

J. Fitzpatrick, J. West, and C. Maurer Jr., “Predicting error in rigid-body
point-based registration,” IEEE Trans. Med. Imag., vol. 17, pp. 694-702,
Oct. 1998.

C. Maurer, Jr., G. Aboutanos, B. M. Dawant, R. Maciunas, and J. Fitz-
patrick, “Registration of 3-D images using weighted geometrical fea-
tures,” IEEE Trans. Med. Imag., vol. 15, pp. 836-849, Dec. 1996.

C. Maurer, Jr., R. Maciunas, and J. Fitzpatrick, “Registration of head CT
images to physical space using a weighted combination of points and
surfaces,” IEEE Trans. Med. Imag., vol. 17, pp. 753-761, Oct. 1998.

T. Mikeld et al., “A new method for the registration of cardiac PET and
MR images using deformable model based segmentation of the main
thorax structures,” in Proc. MICCAI 2001, 2001, pp. 557-564.

D. Rueckert, L. Sonoda, D. Hill, M. Leach, and D. Hawkes, “Nonrigid
registration using free-form deformations: Application to breast MR im-
ages,” IEEE Trans. Med. Imag., vol. 18, pp. 712-721, Aug. 1999.

J. Lotjonen, P.-J. Reissman, I. Magnin, and T. Katila, “Model extraction
from magnetic resonance voluma data using the deformable pyramid,”
Med. Image Anal., vol. 3, pp. 387-406, Dec. 1999.

J. Koikkalainen and J. Lotjonen, “Model library for deformable model-
based segmentation of 3-D brain images,” in Proc. MICCAI 2002, 2002,
pp. 540-547.

A. Guimond and J.-P. Thirion, “Average brain models: A convergence
study,” Comput. Vis. Image Underst., vol. 77, pp. 192-210, Feb. 2000.
D. Rueckert, A. Frangi, and J. Schnabel, “Automatic construction of
3D statistical deformation models using nonrigid registration,” in Proc.
MICCAI 2001, 2001, pp. 77-84.

J. Lotjonen and T. Mikeld, “Elastic matching using a deformation
sphere,” in Proc. MICCAI 2001, 2001, pp. 541-548.

T. Rohlfing, R. Brandt, R. Menzel, and C. R. J. Maurer, “Segmentation of
three-dimensional images using nonrigid registration: Methods and val-
idation with application to confocal microscopy images of bee brains,”
in Proc. SPIE 2003, 2003, pp. 363-374.

A. Frangi, D. Rueckert, J. Schnabel, and W. Niessen, “Automatic con-
struction of multiple-object three-dimensional statistical shape models:
Application to cardiac modeling,” IEEE Trans. Med. Imag., vol. 21, pp.
1151-1166, Sept. 2002.

[40]

[41]

[42]

[43]

[44]

[45]

[40]

(47

T. Cootes, C. Taylor, D. Cooper, and J. Graham, “Active shape
models—Their training and application,” Comput. Vis. Image Underst.,
vol. 61, pp. 38-59, Jan. 1995.

L. Le Briquer and J. Gee, “Design of a statistical model of brain shape,”
in Proc. IPMI’97, 1997, pp. 477-482.

J. Koikkalainen and J. Lotjonen, “Individualized geometric model from
unorganized 3-D points: An application to thorax modeling,” in Proc.
MICCAI 2003, 2003, pp. 91-98.

B. Brinkmann, T. O’Brien, M. Dresner, T. Lagerlund, F. Sharbrough,
and R. Robb, “Scalp-recorded EEG localization in MRI volume data,”
Brain Topogr., vol. 10, pp. 245-253, 1998.

B. Wang, C. Toro, T. Zeffiro, and M. Hallett, “Head surface digitization
and registration: A method for mapping positions on the head onto mag-
netic resonance images,” Brain Topogr., vol. 6, pp. 185-192, Jan. 1994.
J. C. de Munck, R. Bhagwandien, S. H. Muller, F. C. Verster, and M. B.
van Herk, “The computation of MR image distortions caused by tissue
susceptibility using the boundary element method,” IEEE Trans. Med.
Imag., vol. 15, pp. 620-627, Oct. 1996.

D. Simon, M. Hebert, and T. Kanade, “Real-time 3-D pose estimation
using a high-speed range sensor,” in Proc. IEEE Int. Conf. Robotics and
Automation, 1994, pp. 2235-2241.

W. Grimson, G. Ettinger, S. White, T. Lozano-Pérez, W. Wells, III, and
R. Kikinis, “An automatic registration method for frameless stereotaxy,
image guided surgery, and enhanced reality visualization,” IEEE Trans.
Med. Imag., vol. 15, pp. 129-140, Apr. 1996.

Juha Koikkalainen received the M.Sc.(Tech.)
degree from Helsinki University of Technology,
Finland, in 2002.

Since 2002, he has worked as a Researcher in
the Laboratory of Biomedical Engineering, Helsinki
University of Technology. His research interests are
medical image segmentation and registration.

Jyrki Lotjonen received the M.Sc.(Tech.) and D.Sc.
(Tech.) degrees in engineering physics and math-
ematics from Helsinki University of Technology,
Espoo, Finland, in 1994 and 2000, respectively. In
addition, he received the Ph.D. degree from INSA of
Lyon, France, in 2000.

Currently he is working as a Senior Research
Scientist at VTT Information Technology. His main
reseach interests concern medical image processing,
especially rigid and nonrigid registration, segmenta-
tion, and 3-D modeling.



