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Abstract

We describe a new 3-D statistical shape model of the heart consisting of atria, ventricles and epicardium. The model was
constructed by combining information on standard short- and long-axis cardiac MR images. In the model, the variability of the
shape was modeled with PCA- and ICA-based shape models as well as with non-parametric landmark probability distributions and
a probabilistic atlas. The statistical atlas was built from 25 healthy subjects. The shape model was evaluated by applying it to image
segmentation. The probabilistic atlas was found to be superior to the other shape models (p < 0.001) in this study.

© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Cardiac imaging has an established role in the diag-
nosis of cardiac diseases. Currently modern imaging
modalities produce detailed anatomic and functional
information of the heart. Automated analysis of huge
amounts of image data is usually a pre-requisite for
comprehensive quantitative analysis of cardiac images
(Frangi et al., 2001).

Many different types of atlases as well as different
techniques to generate them have been published for the
brain (Thompson and Toga, 1997; Chen et al., 1999;
Caunce and Taylor, 2001; Hill et al., 2002; Rueckert et al.,
2003) and for the heart (Frangi et al., 2002; Mitchell et al.,
2002). In many atlases, the shape variability has also been
modeled. The most popular approach for modeling the
shape changes is the point distribution model (PDM),
also referred to as active shape model (ASM) (Cootes
et al., 1995) while the corresponding technique for mod-
eling the appearance is the active appearance model
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(Cootes et al., 1998). PDM defines a mean model and its
typical deformation modes on the basis of a training set.
The deformation modes are the eigenvectors of the co-
variance matrix determined for point-to-point corre-
spondence between the different models in the training
set. In other words, principal component analysis (PCA)
is performed. Alternatively, the shape can be modeled by
independent component analysis (ICA) (Hyvarinen et al.,
2001). ICA-based shape models have recently been ap-
plied into medical image segmentation (Uziimci et al.,
2003; Koikkalainen and Lotjonen, 2004). In both studies,
it was found that the use of ICA deformation modes,
instead of or in addition to PCA modes, improves the
segmentation accuracy. Parametric Gaussian shaped
distributions are another approach to model the spatial
variability (Thompson and Toga, 1997, Chen et al.,
1999). These distributions give a probability p;(x,y,z)
that a landmark point i is found from the location (x, y, z).

The motivation for building the shape models is
twofold. (1) The shape models can be used in segmen-
tation, which is needed before any quantitative measures,
such as the ejection fraction or the left ventricle mass, can
be computed from image data. The use of the shape
modes or probability distributions in segmentation
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regulate the deformation process. For example, only
shapes similar to the training set are allowed in PCA- or
ICA-based models. In addition, statistical shape models
provide a compact parameterization of the deformation,
because only the weights for different shape modes need
to be defined. These properties make the segmentation
task more robust to noise and incomplete data. (2) The
shape model itself can be used as a source of quantitative
information, not only as a tool for segmentation. For
example, it can be used to define whether the shape of a
specific structure in a patient is abnormal (assuming that
the shape model is representative enough).

This paper concentrates on the shape modeling of the
heart. Typically only short-axis (SA) images have been
used in modeling and in automated segmentation of the
left and right ventricles. Since the slice thickness is nor-
mally several times larger than the pixel size in cardiac
MR images, the resolution is poor in the direction or-
thogonal to the slice. Therefore, the accurate localization
of the ventricles in the basal and apical levels from SA
images has been difficult. In practice, the models of the
left ventricle are simply cut by a plane at some basal level.
This certainly introduces some inaccuracies to the
quantitative measures computed from the heart.

To our knowledge, only Lelieveldt et al. (2003), in
addition to our own work (Lotjonen et al., 2003a), have
used multiple views for creating statistical models from
the heart. They used three 2-D frames taken from dif-
ferent orientations for building the active appearance
model of the left ventricle. The shape and appearance
vectors from each view were concatenated before the
PCA was computed in order to preserve the coherence
between the views. In our approach, we reconstructed
the 3-D geometry of the heart using information from
short- and long-axis (LA) images of each subject, and
computed the PCA-modes for the 3-D shapes. LA im-
ages provide comprehensive and more accurate infor-
mation on the modeling of the basal and apical levels. In
addition to the ventricles, the atria were included in the
model. The variability of the shape was modeled by
PCA- and ICA-based shape models, as well as by non-
parametric spatial landmark probability distributions
(LPDs) and probabilistic atlas. Mean shape and gray-
scale models were also constructed.

Before the 3-D geometry can be reconstructed from
SA and LA views, the movement artifacts, e.g. from
breathing, need to be corrected. The problem has been
discussed and reported very little in the literature. Moore
et al. (2003) recently built a high resolution dynamic
heart model from coronal slices acquired from a healthy
volunteer. They corrected the breath-hold misalignment
by registering a 3-D volume with sagittal and axial scout
images. A line-by-line mean squared difference was
minimized. In this work, we extended this idea to the
registration of two volumes. We optimized the locations
of SA slices based on data from LA slices and vice versa.

The volume changes of the ventricles and atria during
the cardiac cycle, both during systole and diastole, in-
dicate the cardiac function. Volumetry of all four car-
diac chambers throughout the entire cycle without tools
for segmentation is so time consuming that a lot of
valuable functional data is overlooked. Analysis of atrial
and right ventricular function can indicate a subtle
cardiac disease in patients that have normal systolic left
ventricular function. Therefore it is essential to provide
segmentation for cardiac chamber analysis to screen for
early signs of myocardial disease. In (Lotjonen et al.,
2003b), an a priori model was non-rigidly registered to
target data using simultaneously both SA and LA im-
ages. In this work, we applied the technique to seg-
mentation, instead of motion tracking, and used the
statistical information about the shape variability to
regulate the deformation of the model.

This paper makes the following contributions:

e A novel technique to reconstruct the 3-D geometry
from multiple views is demonstrated.

e A segmentation technique, utilizing simultaneously
both SA and LA images, and different statistical
shape models, is proposed.

¢ A novel method is presented for correcting movement
artifacts from MR images.

e Non-parametric LPD is proposed for modeling the
shape changes.

e The shape model of the atria is built for the first time.

e The automatic segmentation of the atria was
demonstrated.

In Section 2 we present all the steps needed to con-
struct shape models from the SA and LA images, and a
segmentation technique to evaluate the shape models.
Section 3 visualizes the shape models generated and
presents the segmentation results. Finally, we conclude
with a discussion in Section 4.

2. Methods

The whole model construction protocol has been
summarized in Fig. 1.

2.1. Materials

MR images of 25 healthy adult subjects formed the
database. The subjects were the control persons of two
separate clinical studies. The images were obtained with
a 1.5 T Siemens Vision and Siemens Sonata imagers and
with a phased array coil (Siemens, Erlangen, Germany)
at the Helsinki Medical Imaging Center (Helsinki Uni-
versity Central Hospital, HUCH). Breath hold gradient
echo turbo flash cine images were acquired in the LV
short-axis planes with 6-7 mm slice thickness and 7-8
mm gap for the volumetric study of ventricles (Alfakih
et al., 2003). Cine images in the four chamber planes
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Fig. 1. The model construction protocol.

with 67 mm slice thickness and 3-4 gap were obtained
for atria (Jarvinen et al., 1994a,b). The following im-
aging parameters were used: repetition time 30 or 40 ms,
echo time 4.8 ms, flip angle 20°, matrix size 256 x 256
and field of view 250-300 mm. In practice, a slight tilt
compared to the standard LA view is used in HUCH in
order to get the mitral and tricuspidal valves to the same
image slice. The pixel size for SA and LA images was
either 1.0 x 1.0 or 1.4 x 1.4 mm. The number of SA and
LA slices was 4-5 and 4-7, respectively, depending on
the size of the subject’s heart. In this work, the 3-D
shape model was built from the first image of each time
series, i.e. from the end-diastolic phase. Fig. 2 shows SA
and LA slices from one subject.

2.2. Transformation between short- and long-axis images

Since both SA and LA images were utilized to build
the shape model, voxel-by-voxel based correspondence
need to be defined between the image volumes. Standard
registration techniques were not required, because the
SA and LA image series were acquired during one im-

aging session and the image headers contained all nec-
essary information to compute the location of each
voxel relative to the imaging device. In general, the
transformation between the volumes in the voxel-space
is not rigid because of anisotropic voxels, different size
of voxels and movement artifacts. The effect of possible
movement artifacts is discussed in Section 2.3.

In the following, the co-ordinates of a voxel in the
source volume, denoted by (X, Y,Z), are defined in the
co-ordinate system of the destination volume, denoted
by (X’',Y’,Z'). The co-ordinate system of the imaging
device is denoted by (X*, Y*,Z*). Next, the parameters
for the source volume are defined. Corresponding sym-
bols for the destination volume have a dash. The pixel
size of the source volume is (sy,s,,s.). The pixel size in
the z-direction is defined to be the distance between
neighboring slices, i.e. slice separation. The slice sepa-
ration is equal to the sum of the slice thickness and the
possible gap between the slices. The position of the first
voxel of the source volume in the scanner’s co-ordinate
system is denoted by (ox,0,,0-). In addition, the orien-
tation of x- and y-directions (row and column) are de-
noted by (ry,ry,7.) and (cy,cy,c;). The normal vector
(ny, ny, n;) of the slices can be computed, for example, by
subtracting the image positions of the second and the
first slices of the volume, and normalizing its length.

The location of a source voxel in the co-ordinate
system of a scanner is computed as follows:

X" =5, Xr, + s,Ye, + 5.Zn, + oy, (1)
Y* =s.Xr, + s, Ye, + 5.Zn, + o0y, (2)
7" = s Xr. +s,Yc. + 5.7n. + o.. (3)

The location of the voxel in the co-ordinate system of
the destination volume is computed as follows:

(X* = o)+ (Y — o)) + (Z" — o)1’

X' = . ®
y X —oda+ (" —d)e, + (27— o)e; 5)
/ Y
s,
X —on + (Y —o)n, + (Z" — o )n.
A R A LA
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2.3. Movement correction

Typically, several MR image series are acquired
during one imaging session. If a subject moves during
the imaging session, the relation between image series,
derived from the image headers, is lost and image reg-
istration is needed to realign the images. A subject may
move because of several reasons, e.g. coughing,
breathing or change of inconvenient pose. Breathing is a
major source of movement artifacts in cardiac imaging,
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Fig. 2. Original MR images of one subject: (a) SA images and (b) LA images.

as the heart’s own movement is handled by the ECG
gating. McLeish et al. (2002) studied the movements of
the heart due to respiration. They observed translations
up to 23.5 mm in the heart because of breathing. If
modern imaging techniques, such as SENSE, were used
to acquire the whole volume during a breath hold, all
slices would be in correct locations relative to each
other. However, when the cine sequences are used to
track the cardiac motion, an image series produced
during a breath hold contains typically slices from sev-
eral time points but only from one spatial location. If
the phase of the breathing cycle is not similar during all
acquisitions, slices from different image series will be
misaligned relative to each other, and a volume built
from the image series does not represent the real anat-
omy of the subject.

The movement artifacts can be visually observed by
forming an image volume from the cine series and
computing a cross-section of the volume. Figs. 3(a) and
(b) show one SA and LA slice, respectively, from a
subject having severe movement artifacts. The horizon-
tal lines superimposed on the images indicate the cross-
section planes. The cross-sections computed from the
SA (six slices) and LA volumes (eight slices) are shown
in Figs. 3(c) and (d), respectively. The cross-sections
have been interpolated to isotropic voxel size using
nearest neighbor interpolation for better visualizing the
shifts. The dark, almost vertical stripe in the middle of
the images represents the septum, which is naturally a
smooth and continuous object. In the cross-sections, the
septum is not smooth nor even continuous. For exam-

ple, the shift between slices three and four in the SA
cross-section, i.e. the gap in the septum, corresponds to
13 mm. Figs. 3(e) and (f) show the cross-sections after
applying the automatic correction algorithm, which is
described next.

The criterion of the smooth and continuous septum
could be used to shift the slices in the SA and LA vol-
umes separately. The problem in making the corrections
separately is that the comprehensive shape information

Fig. 3. Movement correction. Original (a) SA and (b) LA slices. The
horizontal line represents the location from which cross-sections are
computed. The cross-sections of the (c) SA and (d) LA volumes before
movement correction. The cross-sections of the (c¢) SA and (d) LA
volumes after movement correction.



J. Lotjonen et al. | Medical Image Analysis 8 (2004) 371-386 375

available in the other volume is not used. In other
words, mapping the structures from the SA volume to
the LA volume, using Egs. (1)-(6), could be inaccurate
although the shape of the heart may appear visually
realistic in the both volumes separately.

The basic idea of our automatic registration algo-
rithm is presented in Fig. 4. The normalized mutual
information (NMI) (Studholme et al., 1999) is maxi-
mized between the SA and LA data,

H(SA) + H(LA) ;
H(SA,LA) @

where H(SA) and H(LA) are marginal entropies and
H(SA,LA) a joint entropy of the data. The voxel-
by-voxel correspondence is calculated as described in
Section 2.2. The displacement of each slice is assumed to
be independent on the displacements of the other slices.
One slice is randomly chosen from the SA and LA
stacks and it is moved to the direction that maximizes
the NMI. The slice locations are iterated until the NMI
does not increase.

Exvi =

Although this work concentrated in building a 3-D
shape model, the MR-images acquired were 4-D cine
images (Section 2.1) containing information about the
motion of the heart. Because all time points related to
one spatial location were acquired during the same
breath-hold, data from all time instants can be used to
compute the NMI. In other words, as a slice is displaced,
all time points of the slice are displaced. Although the
use of several time points is not essential, we have found
that it improves the registration accuracy.

Fig. 5 shows the SA and LA volumes visualized using
a chessboard visualization technique before the motion
correction (the top row) and after the motion correction
(the bottom row). The first two columns show the vol-
umes as the LA volume is transformed to the SA co-
ordinate system. The third and fourth columns visualize
the result as the SA volume is transformed to the co-
ordinate system of the LA volume. As can be noticed
from the images, the edges are more continuous across
the chess-boxes with the movement correction than
without it. The black boxes indicate that no data is
available for that location in the volume, e.g. the SA
volume does not contain any data from atria. The al-
gorithm was evaluated more carefully in (Lotjonen
et al., 2004).

In practice, a subject can normally keep almost a
similar breathing phase between the acquisitions and no
clear misalignment can be visually detected from the
volumes. However, when movement artifacts existed,
the automatic correction performed well. A good indi-
cation of successful movement correction was that the
final manual segmentation results fitted well to both SA
and LA volumes.

2.4. Manual segmentation

Atria, ventricles and epicardium were manually seg-
mented from the images by a medical specialist. A

Fig. 5. Movement correction result. The top and bottom rows show the SA and LA volumes before and after, respectively, the movement correction.

The chessboard visualization technique was used.
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Fig. 6. A software tool for manual segmentation.

software tool, designed for interactively making 3-D
deformations, was used (Fig. 6) (Lotjonen, 2003). With
it, a triangulated surface model (white contours super-
imposed on the MR images in Fig. 6) was registered
manually and non-rigidly to edges in the SA and LA
image volumes. The user can drag-and-drop the surface
locally in 3-D. The surface is elastically deformed inside
a user defined box of interest (the white 3-D box on the
MR images in Fig. 6): the deformation is zero on the
borders and outside the box, and as dragged by the user
in the center of the box. The tool shows three cross-
sections of the volume and the deformations can be
made in any of these cross-sections. We found, that the
orthogonal cross-sections to the original LA slices were
very useful in segmenting atria (see the right atrium
under the white cross in all images in Fig. 6; the left
atrium is also visible in the image on the right, i.e. the
right-most round shape).

The SA and LA volumes were shape-based interpo-
lated before the segmentation in order to obtain an
isotropic voxel size (Grevera and Udupa, 1996). Because
no severe gray-scale variation was detected between
slices in our dataset, the intensities were not normalized.
Figs. 7(a) and (b) show original slices on the top and
bottom, and an interpolated slice in the middle. Al-
though the slice separation is large compared to the
pixel size, i.e. about 10 slices need to be interpolated
between the original slices in the SA volumes, the results
are visually satisfactory, because the heart is geometri-
cally a relatively smooth object. In addition, the shape
model built in this work is even smoother, because only
the main structures were modeled. For these reasons, we

(b)

Fig. 7. Shape-based interpolation of (a) SA and (b) LA slices. The
original slices are shown on the top and bottom, and an interpolated
slice in the middle.

believe that geometrical errors from interpolation do not

play an important role in the modeling. The total

computation time for interpolating the SA and LA
volumes was 49 s (1.7 Gz Pentium processor).

Thereafter, the prior model was manually deformed
to the SA volume. After finishing the deformation in the
SA volume, the deformed model was transformed to the
co-ordinate system of the corresponding LA volume and
the matching was continued in the LA volume. The
deformed model was transferred iteratively between
the volumes until no deformations were needed. The
transformation used was described in Section 2.2. The
whole segmentation procedure is shown in Fig. 8.

A segmentation result for one subject is shown
in Fig. 9. The following guidelines were used in
segmentation:

e The basal regions of the right and left ventricles were
defined using the LA volume. The tricuspid and mi-
tral valves, visible in the images, form an interface be-
tween the ventricles and atria. Because our final
target in the future is to automatically segment all
time points, the valves are not good landmarks, as
they open after the systole and make the definition
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of the boundary between ventricles and atria impossi-
ble. Therefore, we defined the most basal points of
the myocardium (the points where the valves attach
to the myocardium). The ventricle-atrium boundary
was approximated by a straight line between the
points in each slice.

e Because of a large slice thickness and slice separation,
the segmentation of the apex using the SA volume is
inaccurate. The apex was located mainly based on in-
formation from the LA volume.

e The pulmonary artery was left outside the right ven-
tricle in the model. The detection of the interface be-
tween the artery and the ventricle would be easy if the
pulmonary valve was visible in the images. This was
not the case in our data. The pulmonary artery was
usually clearly visible on the most basal SA slices
but the valve level was difficult to locate as moved to-
ward the apex. A compromise was made and a
smooth boundary was created from the slice where
the artery was visible to a more apical slice which def-
initely contained only the right ventricle. The pul-
monary artery was eliminated from the right

ventricle because of volumetric measures. As volu-
metric measures, such as the ejection fraction, are
computed, the results will be skewed if the right ven-
tricle contains the pulmonary artery.

e The inferior and superior vena cavas were left outside
the right atrium in the model. The vena cavas can be
seen as round structures below the right atrium in
Fig. 9.

e The pulmonary vein was left outside the left atrium
in the model.

e The papillary muscles can be seen clearly inside the
left ventricle. In cardiac volumetry, the papillary mus-
cles are usually classified to the left ventricle making
the left ventricle almost circular in the SA slices. For
modeling purposes, especially for the mean gray-scale
image, the delineation of the papillary muscles is ben-
eficial. Therefore, we made two segmentations for the
left ventricle, with and without papillary muscles.

e The epicardium was not segmented to any structures
above the tricuspid and mitral valves but it was only
set to contain the atria.

2.5. Modeling the variability of shape

The variability in the shape was modeled in three
ways: with PDMs, with LPDs and with probabilistic
atlas. Since the heart contains only a few anatomic
landmark points, a set of semi-landmarks from the
surfaces of the objects was used. A set of corresponding
semi-landmarks was determined for each database sub-
ject using non-rigid registration, as was described in
(Frangi et al., 2002).

Instead of registering non-rigidly gray-scale volumes,
segmented data were utilized. First, intensity volumes
were created from surface data. In these intensity vol-
umes, each object was represented using one gray-scale
value. One volume, volume 7, out of N volumes was
chosen to be a reference model. Then, the other vol-
umes, V1, Vs, ..., Vy_1, were aligned with the reference
using translation, rotation, and isotropic scaling. The

Fig. 9. A segmentation result for one subject shown on a few slices. The contours on the SA volume (a) and on the LA volume (b) are from the same

triangulated surface.
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gradient minimization technique was used to maximize
the NMI between the volumes.

Next, the reference volume, ¥, was non-rigidly reg-
istered to the aligned volumes, 1}, V5, ..., Vy_1, using a
deformation sphere technique (Lotjonen and Makela,
2001) which is closely related to the free-form defor-
mation (FFD)-algorithm with radial basis functions
proposed by Rohde et al. (2003). In the deformation
sphere technique, smooth deformations are applied to
voxels inside a sphere in such a way that the NMI is
maximized. The location of the sphere is randomly
chosen from the surfaces of ventricles, atria and epi-
cardium, and it is varied during the iteration. In addi-
tion, the radius of the sphere is gradually decreased
during the iteration. The program outputs a volumetric
transformation T : x—x' from the reference model point
x to the corresponding target point x'.

The nodes of the triangulated surface model of the
reference subject, obtained from the manual segmen-
tation, were considered as semi-landmarks. These semi-
landmarks, Ly, were propagated to the remaining
database subjects based on the volumetric transforma-
tions T;, i = {0,1,...,N — 1}. As a result, a set of cor-
responding semi-landmarks was achieved for each
database subject, L;, i ={0,1,...,N —1}. The mean
shape, L, was then computed from the semi-landmarks:

-

-1

MZ

_ 1
L-%> L. 8)

1

Il
S)

To reduce the bias of the mean shape towards the se-
lected reference subject, and to give a better a priori
estimate in the non-rigid registration, the preceding
procedure was repeated by using the mean shape as a
reference model. An intensity volume, ¥, was con-
structed from the mean shape, L, and the volumes
V%, ", - - ., Vy_1 were registered with the intensity volume
of the mean shape, V. Finally, the semi-landmarks of the
mean shape, L, were propagated to the database sub-
jects to establish the final semi-landmarks, L,
i=0,1,...,N—1. From the semi-landmarks, a new
mean model can be computed by using Eq. (8).

2.5.1. Point distribution model

In PDMs, typical modes of shape variation were
defined for set of points, typically for surface points.
The modes of shape variation were determined from the
deviations of database subjects’ landmarks from the
mean shape, d; = L, — L. The shape variability was
modeled using a linear model:

L =L+ ob, 9)

where the matrix @ = [d,|d,]|...|¢p,] consists of the
modes of shape variation, ¢,, and b= [b; b, ... b,]T is
a vector containing the weights for the modes.

In this study, the modes of shape variation were
calculated in two different ways: using PCA and ICA.

When PCA is used (Cootes et al., 1995), the matrix ¢
consists of the eigenvectors ¢, of the covariance matrix
defined for the displacement vectors d;. In PCA, the
objective is to find the modes of shape variation that
explain the maximal amount of the variance in the da-
tabase. In ICA, on the other hand, the objective is to
find such modes of shape variation that are statistically
independent. The Central Limit Theorem states that the
combination of independent distributions is more
Gaussian than the original distributions. Hence, the
problem of finding independent components is equiva-
lent to maximizing the non-Gaussianity of the data.
There are several measurements which can be used to
estimate the amount of the Gaussianity, such as kurtosis
and negentropy (Hyvarinen et al., 2001). In this work,
ICA was performed with the FastiICA MATLAB
package (FastICA, 1998).

2.5.2. Landmark probability distribution

In most cases, the assumption of the ellipsoid-shaped
variability of landmarks is applicable, as assumed in
parametric Gaussian shaped distributions (Thompson
and Toga, 1997; Chen et al., 1999). However, if, for
example, the twisting motion of the heart was mod-
eled, a Gaussian distribution would not realistically
present the variability of landmarks. In this paper, the
distribution of landmark points was modeled by non-
parametric probability functions p;(x;), where p;(x, y,z)
is a probability that the landmark i appears at the
position (x,y,z), and x; = (x;,);,z;) denotes the 3-D
position of the landmark point.

LPDs were computed for the set of semi-landmarks,
L;. The probability distribution of the landmark i was a
volume, W;, centered around the landmark in the mean
shape. The dimensions of W; were large enough to
contain the landmark i in all volumes V;, i € Q. If the
number of the volumes ¥; were high, the probability
values could be accurately estimated by computing the
number of landmarks in each voxel and normalizing
the value by the total number of landmarks. Because the
number of volumes in our database was relatively low,
we used Parzen windowing with a Gaussian kernel
(6 = 4 mm) before the normalization (Duda and Hart,
1973).

2.5.3. Probabilistic atlas

A probabilistic atlas gives a spatial probability p,(x)
that a structure s appears at location x. A probabilistic
atlas is built by (1) affinely registering all database
subjects with a reference subject, (2) blurring the regis-
tered segmented edge images with a Gaussian kernel
(6 =4 mm), and (3) averaging all blurred images.
Probabilistic atlases have been used in the expectation
maximization (EM) based segmentation of the brain
(Leemput et al., 1999). Lorenzo-Valdés et al. (2003) re-
cently built a probabilistic 4-D cardiac atlas of ventricles
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and epicardium, and used it in the segmentation of
cardiac cine images. In this work, we built a 3-D
probabilistic atlas separately for atria, ventricles and
myocardium.

2.6. Construction of mean model

In Section 2.5, the mean model was constructed from
the corresponding semi-landmarks using Eq. (8). How-
ever, this model is only mean in the sense of shape, not
appearance, 1.e., gray-scale. Although the emphasis in
this paper was to model the variability of the shape, not
appearance, a mean model for appearance was also
constructed. This was performed by utilizing the volu-
metric transformations of the non-rigid registrations, T;,
that were described in Section 2.5 to establish the corre-
spondence between database subjects. The applied pro-
cedure was similar to the procedure proposed in
(Guimond and Thirion, 2000), and is briefly summarized.

The volumetric transformations T;, i={0,1,...,
N — 1} gave the mapping from the reference model to
each database subject. A mean transformation, T, was
calculated:

=

-1

LS, (10)

T=—
Ni

Il
o

The transformation from database subject i to the mean
model could be computed from

T = To(T; ). (11)

The mean model, also for the appearance, was com-
puted by averaging the intensity-normalized gray-scale
volumes voxel-by-voxel after applying the transforma-
tions T,. The intensity normalization was done by fitting
three Gaussian distributions to the gray-scale histo-
grams using EM-algorithm. The gray-scale values in all
volumes were linearly re-mapped to the gray-scale val-
ues of the reference volume by matching the histogram
peaks. However, as the labeled images were used instead
of the real gray-scale images in the non-rigid registra-
tions, the correspondence between database subjects can
be guaranteed only on the surfaces of the modeled ob-
jects. The transformations inside the objects are inter-
polated from the surfaces, which results in a blurred
mean gray-scale appearance model.

2.7. Segmentation using statistical shape models

The shape model, consisting of the SA and LA vol-
umes, was non-rigidly registered to data to be seg-
mented. The mean gray-scale model was used as an a
priori model. We also tested the shape model with
gray-scale values from the reference volume, but better
segmentation accuracy was achieved with the mean
gray-scale model.

The NMI was used as a similarity measure:
H(S) + H(D;)
H(S,D;))

where H(S) and H(D;) are marginal entropies and
H(S;,D;) a joint entropy of the source data S and the
destination data D;. In this study, the source data consist
of both SA and LA source volumes, S = {Ssa, Sia }, and
the destination data consist of the SA and LA data of
the destination subject, D; = {D;sa, Di1a}. The absolute
value of the gray-scale difference was also tested but no
significant differences to the NMI was detected.

The difference in the orientation and the position of
the SA and LA slices complicates the computation of the
NMI. If the non-rigid transformation was defined for the
SA volume, it should be aligned (Section 2.2) into the LA
co-ordinates before computing the NMI for the LA
volume. Making this transformation during the non-rigid
registration would be very time consuming. Therefore,
the LA volume was transformed to the SA co-ordinates
before the non-rigid registration (Fig. 10). Because the
SA and LA volumes do not contain exactly the same
regions of interest, e.g. the SA volume does not contain
the atria, a mask was used to define if a voxel is used to
compute the NMI. Fig. 10(c) demonstrates a mask for the
frames in Figs. 10(a) and (b). The SA volume information
is used in the white regions, and the LA volume infor-
mation in both the white and light gray regions.

Before the non-rigid registration, the location of the
heart in the target data was first defined coarsely by
sliding (translating) the shape model over the data and
searching the maximum of Eq. (12). Then, the shape
model was aligned to the target data by translation,
rotation and isotropic scaling. The gradient minimiza-
tion technique was used to maximize the NMI.

The non-rigid registration was regulated by utilizing
the information about the variability of the shape in the
database subjects. Two different approaches were used
because of different characteristics of the statistical
shape models. The shape variability was modeled as
described in Section 2.5. However, the real gray-scale
volumes were used in the initial alignment using the
procedure described above.

(12)

ENMI =

.

(a) (b) (c)

Fig. 10. Cross-sections of the (a) SA and (b) LA volumes after a
transformation to a common co-ordinate system. (c) A mask used to
select voxels for the computation of the NMI.
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(b)

Fig. 11. Mean (a) SA images and (b) LA images.

2.7.1. Point distribution model

In PDMs, typical modes of shape variation are de-
fined from a training set, and only shape changes con-
sistent with the modes are allowed (Eq. (9)). In practice,
the segmentation problem is reduced for defining the
optimal weighting values of the modes. The conjugate
gradient method was used to find the weights.

A statistical deformation model (SDM) (Rueckert
et al., 2001) was built in this work. SDM contains the
PDM for the non-rigid transformation instead of sur-
face points as in ASM. The output of SDM is a 3-D
transformation which can be used to transform any
spatial information, such as surface points of an a
priori model to produce the segmentation of destina-
tion data. Because the objective of this study is to
evaluate and compare the shape models developed, the
criteria to deform the models should be kept as similar
as possible. In SDM, the NMI is maximized between
the volumes, not only near the surfaces. Similar strat-
egy is used also with probabilistic shape models, as
described next.

2.7.2. Probabilistic shape models

In LPD and probabilistic atlas, the a priori knowl-
edge of the shape is taken into account by maximizing
the following equation:

E= ENMI + VEshape, (13)

where Enyg is as defined in Eq. (12), Ey0qe measures the
consistency of the model with the probability distribu-
tions, and y is a user-defined weight parameter.

If the probabilities between the landmarks were as-
sumed to be independent, the likelihood of the current
shape model configuration could be computed from the
following equation:

1
Enodel = — H p(xi)u (14)
N i€l,...N

where N is the number of the landmarks, and p(x) is the
probability that the landmark i appears at location x;.

The probability distributions are defined separately for
each landmark in LPD and for each surface in proba-
bilistic atlas. Because the direct evaluation of Eq. (14)
produces enormous numerical instability, a common
practice is to use the logarithmic transformation:

1

Ernodel = — loglp(x;)]. 15

del N,-e;N glp(x:)] (15)
The deformation sphere approach, briefly summarized
in Section 2.5, was used to produce non-rigid transfor-
mations by maximizing the measure in Eq. (13). In this
work, y was 0.05 in LPD-based and 0.1 in probabilistic
atlas-based segmentations. A few different y-values were

1st mode 6

A A
2nd mode
3rd mode “

A A
4th mode

-3vN mean +3v%;

Fig. 12. Four PCA-modes.
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tested and the one producing the lowest segmentation
error was chosen. The radius of the deformation sphere
was decreased from 40 voxels to 10 voxels during the
iteration.

3. Results
3.1. Visualization of statistical shape models

In Fig. 11, slices from the mean SA and LA volumes
are shown. The images represent a mean in the sense of
shape and gray-scale.

Fig. 12 shows the first four PCA-based deformation
modes. The surfaces of the all database subjects have
been visualized, for comparison, in Fig. 13. The weight
by for the mode k was 3v/7; where J; is the eigenvalue
of the eigenvector ¢,. Because the database volumes
were aligned before non-rigid registration using a 7-
parameter transformation (rotation, translation and
isotropic scaling) instead of the quasi-affine (9-param-
eter with anisotropic scaling) or a generic affine (12-

parameter) transformation, the first modes explain
mainly changes on the global size. The 9- and 12-pa-
rameter affine transformations change the shape of the
objects, not only the size. Because our objective in the
future is to use the shape model also in quantitative
analysis, e.g. compare different populations with each
other, we preferred to include all possible shape
changes in the shape models.

Four ICA modes are visualized in Fig. 14. The PCA
modes are sorted according to the spatial variance they
explain, i.e. the larger the eigenvalue is the more vari-
ability of the input data it explains. A similar sorting is
not provided directly for the ICA modes. Different cri-
teria can, however, be developed to sort the ICA modes
(Uziimcii et al., 2003). In Fig. 14, we chose a few modes
where the deformations were located into atria. The
modes vary the shape as well as relative size of the atria.
The ICA modes are typically more local than the PCA
modes (Uziumcii et al., 2003; Koikkalainen and
Lotjonen, 2004).

LPDs for a set of landmark points are shown in
Figs. 15(a) and (b). The figure shows the projection of

v
®
W
w
@

Fig. 13. Surfaces of all database subjects.
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st mode
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3rd mode
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Fig. 15. Probability distributions shown on an (a) SA slice and (b) LA
slice. Probability distributions considering the landmark is located on
the black cross for an (c) SA slice and (d) LA slice.

the 3-D map to the 2-D slice level. We have also im-
plemented a software tool by which a user can study
the spatial relationships between landmarks. First, a
user indicates a point q; in the vicinity of one landmark
i (black crosses in Figs. 15(c) and (d)). The maps show

the spatial distribution of all landmark points assuming
that the landmark i would be close to the point q,,
formally p(q|q;). The landmark is considered to be close
to q; in the tool if its distance to q; is lower than a user-
defined parameter » (» =5 mm voxels and contained
points from seven database subjects in Figs. 15(c) and
(d)). In practice, all database subjects having the
landmark i close to the point q; were chosen, and the
probability distributions were re-computed. The rela-
tions between different landmarks can be studied by
comparing the changes in the distributions as different
points (black crosses) are pointed on the images. For
example, if the landmark on the inferior region of the
right ventricle is studied, its distribution in Fig. 15(c)
remains relatively unchanged (as compared with
Fig. 15(a)) indicating that its distribution is not closely
correlated with the distribution of the landmark poin-
ted by the user (black cross). Obviously, our database is
still relatively small, and detailed conclusions should be
avoided.

Although all database subjects were considered to be
healthy, the data from one subject were clearly different.
The impact of one subject is averaged out in the prob-
ability maps containing data from all subjects (Figs.
15(a) and (b)). However, the outlier can be seen on the
septal landmarks in Fig. 15(d).

The probabilistic atlas was built separately for each
object. Fig. 16 shows SA and LA slices from the prob-
abilistic atlas where all five atlases have been fused.

3.2. Segmentation using statistical shape models

The segmentation results are summarized in Table 1.
The segmentation error was defined as a mean distance
from the surface of the shape model to the surface of the
corresponding manually segmented surface. The both
surfaces were presented by triangles, and the distance
was computed between the nodes of the shape model
and the triangles of the manually defined surface. The
cross-validation was used, i.e. each database subject was
once regarded as a target and the shape model was built
using the other database subjects.

The segmentation accuracy of the ventricles was
notably better than the segmentation accuracy of the
atria. Because of much larger volume, the ventricles
dominated in the automatic initialization (rotation,
translation and isotropic scaling). For this reason, the
initialization of the atria became relatively poor in a
few cases affecting also to the final segmentation ac-
curacy. The initialization of the right atrium was very
poor (9.9 mm) especially for one subject: the overlap
between the aligned model and the target was less than
50%. The segmentation error of the right atrium was
also high (8.2 mm using the probabilistic atlas), which
was double compared with the subject having the sec-
ond worst accuracy. If this case was omitted from the
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(b)
Fig. 16. (a) SA and (b) LA slices from the probabilistic atlas.

Table 1
Segmentation results
LV RV LA RA EPI ALL

NMI 2.32+0.41 3.87+1.31 3.83+2.74 4.38+1.99 3.61£0.64 3.60+1.42
LPD 2.23+0.35 2.55+0.55 3.00+1.01 3.93+1.60 2.78 £0.69 2.90+0.84
Prob. atlas 2.01+0.31 2.37+0.50 2.56+0.88 2.93+1.30 2.77+0.49 2.53+0.70
PCA 2.40+£0.47 2.95+0.84 378 +1.44 4424384 3.02+£0.60 3.31+1.17
ICA 2.4740.50 2.91£0.68 3.87+£1.46 4224241 3.11+0.76 3.32+£0.89

The mean distance and its standard deviation (N = 25) from the deformed surface to the manually segmented surface in millimeters. The
abbreviations used are left ventricle (LV), right ventricle (RV), left atrium (LA), right atrium (RA), epicardium (EPI) and average of all surfaces
(ALL). The line NMI denotes results as no regularization was used, i.e. y = 0.0 in Eq. (13).

Fig. 17. Segmentation results from the cases having (a-b) the minimum (c—d) median and (e-f) maximum error value.
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results, the mean error and the standard deviation for
the right atrium using the probabilistic atlas would
decrease to 2.71 and 0.70 mm, respectively. At least the
following reasons can be found for the poor initiali-
zation in this case: (1) the older MR device with lower
image quality was used, (2) only four LA images were
available, and (3) the atria were not completely visible
in the images.

The best results were achieved by regulating the
transformation with the probabilistic atlas. The seg-
mentation results from three cases have been superim-
posed on MR images in Fig. 17. The results are from the
cases having the minimum (1.91 mm), median (2.41 mm)
and maximum (3.26 mm, as the case with 4.05 mm error,
described in the previous paragraph, was omitted) error
values out of all database volumes. The segmentation
accuracy of the right atrium is relatively poor (3.41 mm)
in Fig. 17(d) because the superior part of the atrium was
initialized about 20 mm (20 voxels) too low.

Non-parametric Wilcoxon Signed Ranks Test was
used to detect statistically significant differences between
the shape models. The difference to the non-regulated
segmentation was significant for the probabilistic atlas
(p < 0.00001) and for the LPD (p < 0.001). The proba-
bilistic atlas was found to be superior to the LPD
(p < 0.001), PCA (p < 0.001) and ICA (p < 0.00001). In
addition, the LPD produced better accuracy than the
PCA-based models (p < 0.05) and the ICA-based model
(» < 0.01).

The manual segmentation is usually considered to be
a golden-standard. For comparison, we manually seg-
mented data from four subjects twice, and computed the
errors between the surfaces. The average error was 1.75
mm as it was 2.57 mm for the same subjects using the
probabilistic atlas-based segmentation.

4. Discussion

In this paper, we built a 3-D statistical shape model of
the heart including atria, ventricles and epicardium. The
new approach that combined information both from
standard SA and LA cardiac images, made possible the
modeling of the atria as well as the basal and apical
regions of the ventricles from standard cardiac SA and
LA images.

In this study, the datasets were acquired using a
standard protocol for cardiac patients. The slice thick-
ness could have been smaller to achieve a better spatial
resolution and the SA images could have also contained
the atria to obtain comprehensive information on atria.
Although datasets were not optimal for the model
construction, the advantage in using standard sets is that
no specific imaging protocols are needed to increase the
size of the database. All acquired datasets in the hospital
could be added to the database. If a dataset contained

volumes at different spatial resolutions, a high-resolu-
tion volume should be chosen to be the reference. Then,
small structures, which were visible in the high-resolu-
tion images but not in the low-resolution ones, could be
properly registered to other high-resolution volumes.
Because the geometry of our shape model is relatively
smooth, as the papillary muscles represent the finest
details, increase in the resolution would not change the
model considerably. However, increasing the resolution
would improve the accuracy of the segmentation espe-
cially for the atria.

The shape variations were modeled in two ways: us-
ing PCA- and ICA-based shape models, and using
probability distributions. A new approach of non-
parametric probability distributions was proposed. The
non-parametric distributions can model non-linear
shape variation, which is not the case with the tradi-
tional PDM- and Gaussian models. Because of a rela-
tively small database we could not demonstrate the
advantages of the non-parametric approach to the ap-
proach using a Gaussian normal distribution. It remains
still open if the generalized probability distributions
would provide any advantages for the study of shape
variability in SA and LA images. Nevertheless, as we
extend the database and start to model the heart motion
from cine data, we believe that the normal distribution is
not longer general enough in modeling, for example, the
twisting motion of the heart.

The shape models were evaluated in image segmen-
tation. As the shape models were used to regulate the
non-rigid registration, statistically significant improve-
ments, compared with the non-regulated algorithm
(y =0 in Eq. (13)), were detected for the probabilistic
atlas and LPD. The best results, also in the statistical
sense, were achieved with the probabilistic atlas. There
are several possible reasons for this finding. The basic
technical difference is that the shape variability is mod-
eled from point distributions in PDMs and LPDs while
surfaces are used in the probabilistic atlas. This means
that no point-correspondences are required in the
probabilistic atlas which removes one commonly known
problem and error source. On the other hand, more
points are used to estimate the probabilities at a specific
location by using surfaces because the probability values
of a point are affected also by its neighboring points
(Parzen windowing was used). The results also indicated
that the probability-based models performed better than
the PDM-based models. Although the deformation
spheres technique, used in the probabilistic atlas and
LPDs, regulated the transformation according to the
point distributions derived from the database, non-typ-
ical transformations were allowed if the NMI clearly
improved. In PDMs, the transformations were strictly
constrained to the modes of shape variation. As our
database was relatively small, we believe that PDMs did
not have enough degrees of freedom to model all shape
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variability of the heart in 3-D. Another possible reason
for the difference is that although the NMI (Eq. (12))
was used with all shape models, the different ways to
deform the model and to optimize the transformation
affected the result. In summary, final conclusions about
the relative superiority of the shape models tested should
not be made. We could conclude that the probabilistic
atlas performs more robustly in segmentation than
PDM- and LPD-models, if the database is relatively
small. If the database is large enough, the situation
might be even opposite.

The use of patient databases in quantitative analysis is
still a relatively unexamined field. Hospitals and research
sites have nowadays enormous sources of image data but
the data are still mostly only visually inspected and rarely
compared to other cases in the database in the clinical
practice. A modern university hospital may acquire tens
of terabytes of image data per year. These data definitely
contain much information on the variability of normal
and abnormal image features, relations between different
spatial regions etc., which has not been yet understood or
recognized. Some information can not even be visually
detected from images, because of very small differences
between healthy and specific pathologic populations.
However, the differences can be statistically significant.
We believe that statistical modeling of different popula-
tions will be a field of increasing importance in the future
as automated methods will facilitate the modeling of the
variability between humans on a large scale.

In this study, we did not apply the shape model in the
comparison of different patient populations. However,
the local and global shape variation of the cardiac
structures and the wall thickness would be natural ap-
plications for the 3-D model. In future studies, we will
extend our 3-D statistical shape model to a dynamic 4-D
model by using the cine and tagged MR images available
in the database. The 4-D information reveals many new
application areas to the statistical shape model. However,
before applying the shape model to population studies,
several issues related to various error sources need to be
considered. The construction of the shape model con-
sisted of the following steps: movement correction, in-
terpolation, manual segmentation, affine registration and
non-rigid registration with manual fine-tuning. All these
steps cause errors to the model and skew the definitions of
a ‘healthy’ and ‘pathologic’ case in the population-based
studies. The relative size of these error sources and the
required accuracy in the model construction (population
vs. population or even individual vs. population studies)
should be carefully studied in the future.
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