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Abstract. A novel method to use model libraries in segmentation is
introduced. Using similarity measures one model from a model library
is selected. This model is then used in model-based segmentation. The
proposed method is simple, straightforward and fast. Various similarity
measures, both voxel and edge measures, were examined. Two different
segmentation methods were used for validating the functionality of the
proposed procedure. Results show that a statistically significant improve-
ment in segmentation accuracy was achieved in each study case.

1 Introduction

In some applications the slow manual segmentation of complicated pathological
organs may be acceptable. However, the manual segmentation is usually too slow
for the segmentation of normal healthy organs, especially in studies where a large
number of cases is necessary. Many kinds of automatic segmentation methods
have been developed. One group of methods is segmentation using deformable
models [1]. A commonly known problem with deformable models is the need for
a good initialization. If the initialization is not good, a model may attract to
wrong features or it may have problems in converging to complicated boundaries.

One way to make segmentation results more accurate and robust is to use
a bigger set of models, i.e. a model library or a training set. Cootes and Tay-
lor proposed an approach based on statistical models [2]. The idea is to allow
all legal transformations of shape and spatial relations of structures, but at the
same time prohibit all deformations that are not typical to the organ. Informa-
tion on shapes, their spatial relations and gray-level appearance in the training
set are used in establishing the statistical model. The normal procedure is to
use principal component analysis (PCA) to calculate from the training set the
modes of shape variation, which reflects variations in the training set. Usually
a small number of modes, those with the highest eigenvalues, can explain most
of the variation. Maximum variations in the eigenmode space can be also lim-
ited [3]. Wang and Staib used this kind of statistical shape information from the
training set in non-rigid registration [4]. The fundamental problem with statis-
tical models is the need for a point correspondence. The manual definition of



landmarks is slow and subjective, especially in three dimensions (3-D). One pos-
sibility to automate this is to use the parameterization of shapes, like spherical
harmonics [3]. Davies et al. found the point correspondence via an optimization
problem [5]. Rueckert et al. applied PCA to the deformation fields that were got
by registering the volumes in a training set to a reference volume [6].

We propose a new way to utilize training set to improve segmentation ac-
curacy. This method partly overcomes initialization problems. Our method has
similarities with object recognition, like face recognition (e.g. [7]) and shape
recognition (e.g. [8]), i.e. the model, which was the most similar to a target
volume, i.e. the volume to be segmented, in terms of some similarity measure
was searched. Instead of transforming the training set into a statistical form,
a normal unconstrained segmentation was performed. The model used in seg-
mentation was selected from the model library. The target volume was first
rigidly transformed to the coordinate system of the model library. Thereafter,
the model that was the most similar to the target volume was selected from the
library based on a similarity measure, and used in segmentation. The proposed
method is simple and straightforward. There is no need for defining the point
correspondence. Selecting one model gives more freedom to the shape of the
segmentation target. The topology of the model is not anymore bound, assum-
ing that the model library is a representative sample of the target shape. The
method can be used in segmentation as well as in registration.

2 Methods

2.1 Model Library

In this study, eight T1-weighted brain MR-volumes were used to build a model
library. The size of the volumes was 128 x 128 x 90 and the voxel size was about
2mm X 2 mm X 2 mm. In each volume five organs were manually segmented
using triangulated surfaces: skin, brain envelope, cerebellum, corpus callosum
(CC) and midbrain. The intensity of the volumes was normalized by scaling
histograms between values 0 and 255.

For establishing the model library, one volume was selected to be a reference
volume. All other volumes were aligned with this volume using a registration
method that optimizes seven parameters: 3 for translation, 3 for rotation and 1
for isotropic scaling. The optimization was based on mutual information. One
slice from each model in the library is shown in Fig. 1.

An alternative possibility for initialization would be to use a coordinate
system based on anatomical landmarks. The most popular approach is the
Talairach-coordinate system which was used by Keleman et al. [3] for global
alignment of head volumes. In this system 12 affine transformations are done
based on anterior and posterior commissures (AC and PC) and the extreme
limits of the brain.



Fig. 1. An example of the model library. Eight volumes are manually segmented and
registered in to a common coordinate system

2.2 Model Selection

A new target volume was first rigidly aligned with the reference volume. The
model that was used in segmentation was selected based on similarity measures.
Similarity measures are commonly used in image registration in cost and en-
ergy functions. These measures can be divided into two classes: voxel similarity
measures which use gray-level information and edge measures which use edge
information.

Voxel similarity measures are very popular in different registration appli-
cations. There exists a large selection of different measures [9,10]. Measures
based on correlation, like mean-square-distance (MSD), Pearson’s cross correla-
tion (NCC) and correlation ratio (CR) [11], are mainly for monomodal registra-
tion, except CR. Another class is voxel similarity measures based on entropy: e.g.
entropy of the difference image (EDI), mutual information (MI) and normalized
versions of MI, like normalized mutual information (NMI) [12]

NMI (F,G) = % (1)
and entropy correlation coefficient (ECC) [13]
_ 2MI(F,G)
ECC (F,G) = HE LG (2)

In these equations H (F') and H (G) are the entropies of the target volume F
and the model volume G, respectively. H (F,G) is the joint entropy of these
volumes. These measures are applicable also in multimodal registration, because
they make no assumptions about the form of the relationship between gray-levels
in two images.

The idea of edge measures is to measure how near the model surface is to a
strong edge. After all, the optimal segmentation is usually close to strong edges.



(c)
Fig. 2. a) A manually segmented volume. b) A binary volume of surfaces. c¢) Dilated
volumes that were used as masks in computing similarity measures

Information on edge directions can be also incorporated in these measures, so
that surfaces must be both near strong edges and edges in the model and the
target volumes must be parallel. In this work we tested 24 edge measures such
as

Vii-Vyg
edgel (F,G) =5 Z N Vol |Vfi| (3)
and [14]
Vfi-Vgi .
edge2 (F, G) =N Z NN min (|Vfi],[Vgil) . (4)

N is the number of nodes in the model surface and f; and g; are voxels in the
target volume and the model volume, respectively. Edge volumes were made
using Canny-Deriche operator, which gives also edge directions.

The values of these similarity measures are usually computed from the whole
overlapping image volume in registration. Since the segmentations of separate
organs are searched for in this study, similarity measures should take into account
only the organ of interest. In this work a binary volume was made from the
model’s boundary (Fig. 2 (b)). Then a dilation operation was executed 1-3 times,
depending on the size and the surroundings of the organ (Fig. 2 (¢)). This volume
was used as a mask when the similarity between the model volume and the
target volume was computed. In this way only the alignment and the shape of
that organ affected on the similarity measure. Edge-based similarity measures
were computed mainly on the model surface.

The complementary information produced by voxel- and edge-based measures
was merged to improve the accuracy and robustness in [14,15]. The approach
was adopted also in this work. The optimal combination of different measures
was determined using regression analysis. The dependent variable was the final
segmentation error and the independent variables were the values of similarity
measures. A group of regression equations was achieved using the stepwise re-
gression. The regression equation predicts the final segmentation error based on
similarity measures. Therefore, the model that produced the lowest predicted
value was chosen in the model selection phase.



2.3 Final Segmentation

The model selection procedure was validated by two segmentation algorithms,
i.e. the chosen model was used as a prior model in the algorithms [16, 15].

In [16], a surface template consisting of triangulated surfaces was non-rigidly
matched to edges in MR volumes using a free-form deformation (FFD) grid in
the multiresolution framework. The energy measure to be minimized consisted
of two components: 1) the distance of the model surfaces from the edges in MR
volumes using oriented distance maps, and 2) the change of the model shape
during the deformation.

A volumetric template consisting of a gray-scale volume and triangulated
surfaces of objects of interest was used in [15]. Instead of applying FFD, the
deformation was accomplished by deformation spheres. The energy term had
three components. The first one was a voxel similarity measure; MSD was used
in this monomodal study. The second term was a gradient term, which took into
account edge intensities and directions in target and model volumes. The third
term regulated the change of the model shape.

3 Results

Our image database was composed of nine volumes. Since the database was
reasonably small, the jack-knife procedure was used to validate the model se-
lection procedure, i.e. each volume was once regarded as a target volume and
the rest eight volumes composed the model library (Fig. 1). The target volume
was initialized to the common coordinate system and all similarity measures (in
total 31) were calculated for all model volumes. Then the final segmentation was
done and the segmentation error was determined as an average distance from
the nodes of the model surface to the manually segmented target surface.

The following procedure was used to validate the model selection. For each
target volume i, where i € 1,2,..9, each library model (N = 8) was used sepa-
rately as a prior model in the segmentation algorithm. The minimum m; and the
average a; errors were defined. The minimum error is achieved if the best model
was chosen in the model selection. The average gives an idea of the error if the
model is chosen arbitrarily from the library. As the model selection was used, the
error was s;. The quality of the model selection is defined by the improvement
percent, p; = 100%. If the best model is chosen, p; = 100%. To get an idea
of the real error values, a = 0.986, m = 0.686 and s = 0.724 voxels (for the
similarity measure NMI) for the skin as the values were averaged over all target
volumes.

Tables 1 and 2 present results averaged over nine target volumes for both
segmentation methods and for all organs. The results are reported only for sim-
ilarity measures that produced the best improvement percents. The second row
is the percentage of cases, where the best model was selected, and the last row
the percentage of cases, where a model better than the average was selected.
In the two last columns, the same similarity measure was used for all organs.



Table 1. Results using surface-based segmentation

skin|brain env|cerebellum|CC|midbrain|many models|one model
improvement (%) 65 90 61 47 78 53 26
best model (%) 22 33 33 22 44 36 18
better than average (%)| 89 100 89 78| 100 84 71

Table 2. Results using intensity-based segmentation

skin|brain env|cerebellum|CC|midbrain|many modelslone model
improvement (%) 87 94 57 60 92 63 35
best model (%) 44 67 11 44 67 44 29
better than average (%)|100| 100 89 78| 100 84 71

In the column "many models”, each organ was chosen independently from the
model library. In the column ”one model”, one model was selected from the
model library and it was used to segment all organs. The improvements in the
accuracy were statistically significant (p < 0.05), as tested with Wilcoxon signed
rank test.

In overall, the best similarity measures were voxel measures. The best results
using one similarity measure for all organs were achieved by using NMI. ECC
was also good, as were NCC and EDI in some cases. The edge similarity measures
presented in Eqgs. 3 and 4 were almost as good as voxel measures. One and the
same similarity measure was not the best one for each organ. However, using
the same measure for all organs gave a reasonable good improvement, as can be
seen from the two last columns.

The best model was not found every time. In some cases the selected model
was even worse than the average. However, in these cases the model was almost
as good as the average. These results indicate, that the selected model was
generally good but not necessarily the best. Models, which gave a very poor
segmentation, were never selected. So when a surface is attracted severely to a
wrong edge, this model is discarded, as in the example in Fig. 3.

Tables 3 and 4 correspond to Tables 1 and 2, except that regression equations
were utilized in the model selection. In these equations, two to five similarity

(b) (c) (d)

Fig. 3. An example of the segmentation of cerebellum: a) and b) the best two models,
and ¢) and d) the worst two models after the final segmentation




Table 3. Results using regression analysis and surface-based segmentation

skin|brain env|cerebellum|CC|midbrain|many models|one model
improvement (%) 74 91 72 54 84 55 33
best model (%) 33 44 56 33 56 33 29
better than average (%)[100| 100 89 89| 100 84 73

Table 4. Results using regression analysis and intensity-based segmentation

skin|brain env|cerebellum|CC|midbrain|many modelslone model
improvement (%) 86 94 58 60 95 64 43
best model (%) 44 67 33 44 56 40 27
better than average (%)|100| 100 100 89| 100 87 71

measures were used. Despite of the complementary information in the selection,
the results are only slightly better than using only one similarity measure.

The time needed for computing the values of similarity measures is short
compared to the computation time of the segmentation methods. The initial
alignment is necessary in these segmentation methods even if the model selec-
tion is not done. So the method proposed for model selection does not increase
the computational burden of the segmentation practically at all. Obviously, if
the library contained hundreds of models, the computation time of similarity
measures might become significant.

4 Discussion

Deformable model-based segmentation is a powerful tool but suffers from prob-
lems related to the model initialization and complicated shapes. The results
show convincingly that the presented method improves the segmentation accu-
racy by selecting one model from the model library. These improvements were
statistically significant.

The proposed method is very simple and easy to realize. Any parameteri-
zation or definition of point correspondence is not necessary. The topology of
segmented subject can vary, if this variation is presented in the model library
as well. Also, this method can be combined with methods that use training set
to make a statistical model of the shape. The model library could consist of
statistical models from which the best one would be selected.

Initialization was done using rigid registration. Another possibility is to
use the Talairach-coordinate system. According to our studies with a smaller
database, this method may be better than the rigid registration. However, it
can be used only for brain images whereas the method used in this paper can
be generalized to other applications. Also elastic registration methods could be
used in initial registration instead of linear transformations. This would improve
results, but at the cost of the computation time.

In the future the library must be enlarged, manual segmentation improved
and new, more complex organs studied. New segmentation methods, parame-




ters and especially different initialization methods should be also studied. The
method will be tested also in other applications.
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