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Abstract

In this work, a methodology for building multi-period optimisation model of steam turbine network is presented. The optimi-
sation model can estimate and evaluate the effect of changes to the thermal energy demand of processes. The subject is divided into
two parts. In Part I, a method for finding regression models for steam turbine networks using a simulation model and an evolution-
ary algorithm for finding D-optimal designs is presented. In Part II, the method presented in Part I is used to develop and solve a
multi-period MINLP model of a steam turbine network in a utility system. There are two major problems that are addressed in Part
I; Firstly, the evolutionary algorithm for finding D-optimal design is applied to try to determine which values should be simulated in
order to generate the data for the regression model. Secondly, a theoretical model of steam turbine performance is used to model the
feasible operation of the steam turbine. This is necessary to be able to make an efficient evolutionary algorithm for finding D-opti-
mal designs. The use of regression models makes it possible to build optimisation models of utility systems that are compact and
transparent. There is a natural trade-off between the flexibility of a model and the accuracy. The major drawback of the method-
ology, is that the models developed must be considered �ad hoc�-models, and are not as flexible compared to models where all the
process units are modelled in full detail. An advantage of the methodology developed in this work is that it gives more possibilities of
finding an acceptable simplification of the optimisation problem, as the methodology is not bound by a certain set of thermody-
namic rules or specific mathematical form of the relations in the models.

Part II demonstrates how the methodology can be applied when building a multi-period optimisation model to estimate and eval-
uate how changes to the processes will affect the utility system.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A common problem in the process industry is to cor-
rectly estimate and evaluate how changes to the process
will affect the utility system. Utility systems generates
heat (usually as steam) and electricity, and are an impor-
tant and essential part of many industrial processes. A
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good utility system will potentially reduce both the neg-
ative environmental impact of the processes and reduce
the costs of operation. The operation of steam turbines
is an important part of a utility system, and subse-
quently the optimisation of steam turbine networks is
an important part of improving the efficiency of the util-
ity system. The methodology developed in this work can
be useful when evaluating how process changes will
affect the optimal operation and design of the utility sys-
tems. In this work, a methodology for building multi-
period optimisation model of steam turbine network is
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Nomenclature

l l ¼ k2cn2=
ffiffiffiffiffiffiffiffiffiffi
2Dhs

p

n matrix containing all candidate points
a regression model coefficient
b regression model coefficient
C(n,p) the number of combinations of size p from a

collection of size n, i.e. Cðn; pÞ ¼ n!
p!ðn�pÞ!

c velocity vector (m/s)
h specific enthalpy (kJ/kg)
k flow-through factor
m mass flow (kg/s)
n polytropic exponent, number of candidate

points
p pressure (bar), number of variables in a model
R2 the square of the Pearson correlation
S set of all possible model matrices

v specific volume (m3/kg)
W work/load (MW)
X model matrix
x variable
y response variable

Superscripts and subscripts

* optimal
0 transpose of a matrix
k number of factors in a 2k design
0 design state
a state before turbine stage
x state after turbine stage
n normal component of vector
s isentropic
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presented. The methodology will be useful for consul-
tants and process engineers involved in energy efficiency
in the process industry, as the methodology can be used
when evaluating how process changes will affect the
optimal operation and design of the utility systems.
The optimisation model can estimate and evaluate the
effect of changes to the thermal energy demand of pro-
cesses. The novel part of this work is the combination
of the regression models, mathematical programming
and evolutionary algorithm with physical insight of the
steam turbine behaviour.

The work is based on the earlier work [1,2]. The sub-
ject is divided into two parts. In Part I, a method for
finding regression models for steam turbine networks
using a simulation model and an evolutionary algorithm
for finding D-optimal designs is presented.

In Part II, the method presented in Part I is used to
develop and solve a multi-period optimisation model
of a steam turbine network in a utility system. The
optimisation model is used to model and evaluate how
different process changes will affect the performance of
the utility system.
2. Background

There are traditionally two approaches to find the
optimal operation and to improve utility systems. One
approach is the thermodynamic approach, where the
thermal efficiency is the focus. See for instance the work
by Nishio et al. [3] or by Chou and Shih [4] for examples
of this approach. A problem with the thermodynamic
approach is that the methodologies have difficulties with
handling trade-offs, for example between the investment
costs and thermal efficiency. The other approach is to
use mathematical programming (optimisation), which
can handle trade-offs more efficiently. For an overview
of how optimisation have been applied in process sys-
tems engineering see the paper by Biegler and Gross-
mann [5]. However, for sufficiently large and complex
systems the mathematical programming approach runs
into problems. Mathematical formulations of process
synthesis problems are often nonlinear and contain inte-
ger variables (so-called mixed integer nonlinear pro-
gramming (MINLP) problems). MINLP problems can
be solved to a global optimum with algorithms that exist
today. However, for complex problems these algorithms
soon become prohibitively inefficient. Some MINLP
problems are NP-complete (nondeterministic polyno-
mial) problems, which means that no efficient algorithm
has been found for these problems. When solving large
problems of these kinds it is therefore necessary to sim-
plify the problems, or to decompose them into smaller
sub-problems. As a result of the simplifications, the
mathematical programming problems might not be
accurate enough to be useful in the design of a real
plant. A lot of work has been made to overcome these
problems. Manninen and Zhu [6] and Hostrup et al.
[7] reduced the model sizes by using thermodynamic
insights and analysis. Iyer and Grossmann [8] simplified
the optimisation problem by using only linear relations.
Using only linear relations means that the nonlinearities
must be simplified or ignored, which can reduce the
accuracy of the models significantly. Another example
is the work by Bruno et al. [9]. They developed a rigor-
ous MINLP model for the synthesis of power plants.
The focus was on the design and involved fixing the
steam pressure levels. One way of formulating optimisa-
tion models of steam turbine networks is to use the con-
cepts developed by Mavromatis and Kokossis [10,11].
They used ideas from pinch and total-site analysis com-
bined with the Willan�s line. The Willan�s line [12,13] is a



T.-M. Tveit, C.-J. Fogelholm / Applied Thermal Engineering 26 (2006) 993–1000 995
line that describes the relationship between the mass
flow rate and the load. The Willan�s line works well
for each turbine stage if the output is controlled by a
regulation valve. However, for a steam turbine with a
regulation stage, the relationship between the mass flow
and the load is not linear, and the Willan�s line is no
longer valid [14]. It is also common to use only one Wil-
lans line to model the whole turbine. This is a poor
approximation if the turbine is a complex turbine with
many extractions. For a discussion of the accuracies of
detailed models and the Willans line see the work by
Tveit et al. [15]. Another source of nonlinearities is the
variation of the steam temperature after the valve.

An approach to modelling steam turbine networks
without over-simplification (e.g. fixing pressures) is to
use regression model(s). As shown in the work by Tveit
[2], using regression models in the mathematical pro-
gramming models does not necessarily mean a loss of
accuracy compared to models where all units included
in the system are modelled in detail. However, there
might be a considerable difference in the size and numer-
ical complexity of the models in favour of the regression
based models. Simulation models are often superior to
the optimisation models when it comes to modelling
existing processes. This is due to the simplifications that
are necessary to make a robust and solvable optimisa-
tion model. Simulation models are often used for verifi-
cation of the results from an optimisation model. As
data for regression models are not always available from
the existing plant, it makes sense to use the simulation
model to generate the data needed. Many commercial
process simulation software packages also come with
an integrated option for optimisation. A standard
method for process flowsheet optimisation is the SQP-
algorithm (Successive Quadratic Programming) [16].
This algorithm is suitable for integration with simula-
tion software, as information from the simulation model
can be used directly in optimisation with continuous
variables. However, optimisation models with discrete
variables cannot easily be solved using process simula-
tion software. To solve these problems it is necessary
to build an optimisation model in addition to the simu-
lation model.

A normal approach to generate data from simulation
models is to change one variable at the time and keep
the other variables constant. This means creating a grid
of size nk, where n is the resolution and k is the number
of variables. It can be appreciated that even for a few
variables, due to the combinatorial complexity, the time
it takes to complete a grid, makes it necessary to choose
the values to be simulated more carefully. One option is
to take advantage of the methods developed in the field
of experimental design. As the name suggests, experi-
mental design is in general used in experimental work.
In many cases an experiment is timely and costly, thus
lots of work has been put into the development of
methods that reduce the amount of times different com-
binations of an experiment has to be performed.
3. D-optimal design

The problem of optimal experimental designs is to
choose the best reduced set of points from all the possi-
ble candidate points. There exists several symmetric
designs for fitting first-order and second-order models,
e.g. the 2k-design and several variations of the central
composite design (CCD) [17]. Where it is not possible
to use the traditional symmetric designs, since the exper-
imental region is irregular, or the model is non-standard,
or the sample size requirements are unusual, other crite-
ria for selecting the design must be applied. It will be
seen in Section 4 that the feasible regions for steam tur-
bine operations are not symmetrical. There are several
design optimality criteria (e.g. A-optimality and D-opti-

mality). Perhaps the most used is the D-optimality crite-
rion. An introduction to D-optimal designs can be
found in the paper by Aguiar et al. [18]. The symmetric
designs mentioned above are all D-optimal designs.

The D-optimal design aims to minimise the volume of
the hyper-ellipsoid that describes the confidence interval
for each coefficient. When this volume becomes smaller,
the coefficients will be more precise, and subsequently
the estimation is more precise. Let nn be an (n · p) matrix
that contains all the candidate points, and p is the num-
ber of variables in the model, as shown in Eq. (1).

nn ¼

x1;1 x2;1 . . . xp;1
x1;2 x2;2 . . . xp;2

..

. ..
. . .

. ..
.

x1;n x2;n . . . xp;n

2
66664

3
77775 ð1Þ

If the purpose of the experiment is to fit the model
shown in Eq. (2) and the number of experiments are lim-
ited to four, then four candidate points must be selected
from nn.

y ¼ a1 þ a2x1 þ a3x2 þ b2x21 þ b3x22 ð2Þ

If, for instance, the selected candidate points are num-
bered 1, 4, 12 and 17, Eq. (3) shows the resulting matrix,
n4, containing the candidate points and the so-called
model matrix, X.

n4 ¼

x1;1 x2;1
x1;4 x2;4
x1;12 x2;12
x1;17 x2;17

2
6664

3
7775; X ¼

1 x1;1 x2;1 x21;1 x22;1
1 x1;4 x2;4 x21;4 x22;4
1 x1;12 x2;12 x21;12 x22;12
1 x1;17 x2;17 x21;17 x22;17

2
66664

3
77775
ð3Þ

The dispersion matrix is defined as (X 0X)�1. The D-crite-
rion states that the optimal design matrix, X*, is the
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model matrix, X, that minimises the determinant of the
dispersion matrix:

j ðX �0X �Þ�1 j¼ min
X2S

j ðX 0X Þ�1 j ð4Þ

where S is the set of all C(n,p) possible model matrices.
Among several exchange algorithms for finding

D-optimal designs, Fedorov�s algorithm is most known
[19]. An overview of some exchange algorithms can be
found in the paper by Nguyen and Miller [20]. As the
number of candidates increases, the number of possible
combinations becomes prohibitively large to be solved
using the exchange algorithms, and other strategies for
solving the problem must be applied. Stochastic search
methods based on natural processes like genetic algo-
rithms and simulated annealing have successfully been
applied to this problem. For instance, Broudiscou
et al. [21] used a genetic algorithm for selecting the D-
optimal design, while Duffull et al. [22] used simulated
annealing.

In Section 5, an evolutionary algorithm for finding
D-optimal designs for developing regression models
for steam turbine behaviour based on simulations is
presented. An important part of the algorithm is the
modelling of the feasible region for the steam turbine
operation. In the next section, an mathematical expres-
sion of this feasible region is presented.
4. Feasible region for steam turbine operation

For a turbine stage there is a relationship between the
mass flow, m, the entrance state (e.g. pressure, pa, and
specific volume, va) and the back pressure, px. Eq. (5)
shows an expression of this relationship for a fixed blade
construction [23].

m
m0

� �2

¼ �l2pava0
�l2
0pa0va

1� px
pa

ðnþ1
n Þ

1� px0
pa0

ðnþ1
n Þ

0
BB@

1
CCA ð5Þ

where the subscript �0� refers to the design state, n is the
polytropic exponent and l ¼ k2cn2=

ffiffiffiffiffiffiffiffiffiffi
2Dhs

p
. cn2 is the

normal component of the velocity vector of the steam
at the exit, Dhs is the isentropic enthalpy difference for
the stage and k2 is the flow-through factor. Under the
assumptions that the polytropic exponent, n, is constant
and equal to 1 and l is constant and that the steam is
ideal steam (i.e. pava = pa0va0), Eq. (5) can for super-
heated steam be written as

m
m0

� �2

¼ p2a
p2a0

1� px
pa

� �2
1� px0

pa0

� �2
0
B@

1
CA ð6Þ
Solving Eq. (6) for pa gives:

pa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
m0

� �2

ðp2a0 � p2x0Þ þ p2x

s
ð7Þ

From Eq. (7) it is possible to calculate the extraction
pressure in a turbine as a function of the mass flow
through the next stage. Many processes require the
steam to be above a certain pressure, so the mass flow
through the turbine stages is bounded from below.
The lower bound can be calculated using Eq. (8).

mlower;i ¼max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðp2a0;i�p2x0;iÞðp2x;i�p2a;lower;iÞ

q
m0;i

p2a0;i�p2x0;i
;miþ1

8<
:

9=
;

ð8Þ

where pa,lower,i is the lowest acceptable inlet pressure
for the stage and mi+1 is the mass flow to the next
stage. By using the above expressions it is possible to
define the feasible region for the mass flows, bounded
by the extraction pressure. An example is shown in
Section 6. For a real process the situation is more
complicated, as it is possible to by-pass the steam tur-
bine and reduce the high pressure steam to lower
pressures using a valve. This will give more controllabil-
ity, but the exergy losses will increase and the overall
system efficiency will decrease. It is also common to have
selective extractions (i.e. steam can be supplied from
multiple extractions and steam from the stage with the
lowest extraction pressure above the required pressure
is used).
5. Evolutionary algorithm for selecting

D-optimal designs

Genetic algorithms was first developed by Holland
[24], while evolution strategies were developed by
Rechenberg and Schwefel (see for instance the book
by Schwefel [25]). An overview of evolutionary algo-
rithms is given in the paper by Whitley [26]. The evolu-
tionary algorithm developed in this paper can be seen as
a hybrid of the genetic algorithms and evolution strate-
gies, as it applies ideas from both.

A flowchart for the evolutionary algorithm for find-
ing D-optimal designs for regression model of the steam
turbine behaviour is shown in Fig. 1.

The first step is to find an initial population. The next
step is to generate a new generation by modifying indi-
viduals. The individuals to be modified are taken from
the previous generation, where the probability of an
individual to be selected is proportional to its fitness.
The fitness is the value of the determinant of the disper-
sion matrix.



Generate initial population

Insert best individuals in next generation

Select individual from previous generation using biased roulette

Modify selected individual

Insert modified individual in generation

Enough individuals?

No

Enough generations?

Yes (generation complete)

No

Search complete

Yes

Fig. 1. Flowchart of the evolutionary algorithm for finding D-optimal designs.
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5.1. Initial population

A generation consists of the individuals, which are
matrices containing candidate points, different informa-
tion about the individuals, (i.e. the fitness and the
relative fitness), and different information about the gen-
eration (i.e. maximum, minimum and average fitness of
the individuals).

The initial population is generated by selecting the
mass flows at random, but making sure that the selected
mass flows are feasible. The mass flow for the last tur-
bine stage is selected first. A random number between
the lower and upper bound of the mass flow of the last
stage is selected. The inlet pressure to the stage is calcu-
lated using Eq. (7). The lower bound for the mass flow
into the previous stage is calculated using Eq. (8), and
a random number between the upper and newly calcu-
lated lower bound can be selected. This continues until
the first turbine stage is reached, where the lower bound
for the mass flow is the flow into the second stage. When
the sufficient amount of individuals are generated, the
fitness, relative fitness, maximum, minimum and average
fitness for the individuals are calculated, and the gener-
ation is complete.
5.2. Construction of the next generation

In order to make sure that the best solution in the
next generation is not worse than the previous genera-
tion, a strategy often referred to as elitism is applied.
This involves that a given fraction of the best individuals
in a generation is copied to the next. The next procedure
is to select the individuals for reproduction. This is done
using a method similar to a biased roulette wheel. The
probability of an individual to be selected for reproduc-
tion is as mentioned proportional to the individuals rel-
ative fitness. See for example the book by Goldberg [27]
for a detailed explanation.

In the classical genetic algorithm a crossover operator
is applied. The crossover means that the new individual
is generated by selecting two ‘‘parents’’, and converting
them into a string of chromosomes (e.g. a binary string)
and mix the chromosomes. This strategy cannot effi-
ciently be used in this case, since the offspring resulting
from the crossover might not be feasible. Instead a
mutation strategy similar to the one used for generating
the initial population is applied. This strategy is more
related to evolutionary strategies. The strategy also
starts from the last turbine stage and then continues
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forward, but in this case the random numbers used for
selecting the mass flows are normally distributed centred
on the current value of the mass flow. There is a chance
that the normal distributed random number is infeasi-
ble, so this must be checked for calculation. If no feasi-
ble point is found after a preset value, the search
terminates, and the mass flow is selected using the strat-
egy for the initial population. When a sufficient amount
of individuals are generated, fitness, relative fitness,
maximum, minimum and average fitness for the individ-
uals are calculated, and the generation is complete.

The search can be terminated if the objective function
has not improved during a fixed amount of generations,
or when a predetermined number of generations has
been reached. The last termination strategy is applied
here. The result of the algorithm is the matrix containing
the mass flow with the smallest determinant of the dis-
persion matrix.
6. Small example

The methodology is illustrated using a simulation
model in Prosim [28] of a back pressure steam turbine
with two extraction levels. The objective is to generate
a model of the steam turbine using the simulation model
and the algorithm for finding D-optimal designs. Fig. 2
shows a picture of the simulation model.

The extraction pressure is dependent on the mass flow
of the following stage. Fig. 3 shows the feasible region
for the mass flows through the last two stages of the
steam turbine.

The form of the regression model is given in Eq. (9).
The model connects the mass flow through the turbine
to the shaft work.

W ¼ a1 þ
X4
i¼2

ðaimi þ bim2
i Þ ð9Þ
m4m3m2

pw,4

pa,3m1
pa,1

pa,2

pw,2 pw,3

pa,4

Fig. 2. Back pressure steam turbine with regulation stage and two
extraction levels; The live steam temperature and pressure are 450 �C
and 70 bar, respectively. The extraction pressures are 20 bar and 10 bar
and the back pressure is 3 bar.
where the subscript i = 2, . . . , 4 numbers the mass flows
according to the numbering in Fig. 2. The regression
model will be based on 50 simulation points. The evolu-
tionary algorithm presented in Section 5 is implemented
in Matlab [29]. The number of individuals in a genera-
tion is set to 100 and the number of generations is set
to 250. Fig. 4 shows how the objective function is
improving with the generations for five different runs
of the evolutionary algorithm.

The 50 points resulting from the evolutionary algo-
rithm are simulated and the resulting turbine shaft
work, W, is recorded for each simulation run. The coef-
ficients for Eq. (9) are found using the least absolute
deviation criterion. The resulting linear optimisation
model is shown in Eq. (10).

min
X50
j¼1

rþj þr�j

 !

s.t. W j¼a1;jþ
X4
i¼2

ðaimi;jþbim2
i;jÞþrþj �r�j 8j2ð1;2; . . . ;50Þ

rþj ;r
�
j P0 ð10Þ

where j refers to the results from the simulations. The
optimisation model is formulated and solved using
GAMS [30] with CPLEX as the LP-solver. The resulting
coefficients are listed in Table 1.

The values from the simulations are compared to the
values calculated by the regression model. The average
absolute deviation between the simulated values and
the values calculated by the regression model is 1.51%
and the square of the Pearson correlation, R2, is 0.996.
The regression model is now complete, and can be
included in an optimisation model.
7. Discussion and conclusions

A methodology for finding regression models of
steam turbine networks is developed successfully.



0

 0.2

 0.4

 0.6

 0.8

1

 1.2

 1.4

 1.6

0  50  100  150  200  250

B
es

t d
et

er
m

in
an

t o
f t

he
 d

is
pe

rs
io

n 
m

at
rix

 (
x 

1E
-2

2)

Generation

Fig. 4. The best determinant of the dispersion matrices found in each generation for five runs of the evolutionary algorithm.

Table 1
Coefficients for the regression model in Eq. (9)

i ai bi

1 �21.042
2 1.591 �1.419 · 10�2

3 �0.155 3.261 · 10�3

4 �0.232 8.119 · 10�3
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The methodology involves simulation models and an
evolutionary algorithm for finding D-optimal designs.
The simulation model is used to generate data, based
on the design generated by the evolutionary algorithm.
The use of regression models makes it possible build
optimisation models of utility systems that are compact
and transparent. There is a natural trade-off between the
flexibility of a model and the accuracy. The major draw-
back of the methodology is that the models developed
must be considered �ad hoc�-models, and are not as flex-
ible compared to models where all the process units are
modelled in full detail. In this respect, developed models
based on the work by Bruno et al. [9] can more easily be
used for a wider range of objectives. However, this flex-
ibility comes at the cost of accuracy. An advantage of
the methodology developed in this work is that it has
greater flexibility of chosing the desired accuracy of
the models. Compared with the earlier work by Manni-
nen and Zhu [6], Hostrup et al. [7], and Iyer and Gross-
mann [8], the methodology gives more possibilities of
finding an acceptable simplification of the optimisation
problem, as the methodology is not bound by a certain
set of thermodynamic rules or specific mathematical
form of the relations in the models.
Part II will demonstrate how the methodology can be
applied in a multi-period optimisation model.
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