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Abstract

Efficient utility systems are important both due to the impact utility systems have on the economic efficiency of the process industry, as
well as the negative environmental effects of energy conversion. In this paper a methodology is used to build a multi-period MINLP
model for steam turbine network of a utility system. The methodology consists of several steps, including the building of a simulation
model of the system, the development of regression model(s) of the system based on simulation and D-optimal design, and finally the
development of a MINLP model.

The results show that the methodology is capable of analysing a relatively complex steam turbine network in a utility system. The
systematic methodology can help to make the MINLP model compact and transparent, and thus avoid the major challenges that are
connected with solving large (nonconvex) MINLP models. However, the MINLP models developed using the methodology should be
regarded as ‘ad hoc’ models, and have certain limitations as the models are not so flexible compared to models where all the units in
the utility system are modelled in detail.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction The analysis process can roughly be divided into the fol-
lowing steps:

The development of a simulation based regression
model using an evolutionary algorithm for finding D-opti-
mal designs has been presented in Part I. Based on the
design generated by the evolutionary algorithm, the simu- e Choose the dependent and independent vari-
lation is used to generate data for the regression model. ables.

The use of regression models makes it possible to build e Choose the mathematical form of the regression
optimisation models of utility systems that are compact model(s) (e.g. linear, polynomial or logarithmic).
and transparent. In this paper the methodology for the The form of the regression model is needed to
regression model is used to build a multi-period MINLP select the optimal experimental design.

model for the steam turbine network of a utility system. e Choose the number of observations (i.e. simula-
At the same time the complete methodology is demon- tion runs).

strated by applying it to a hypothetical case. The case is (3) Building and running the evolutionary algorithm.

(1) Building a simulation model of the system.
(2) Deciding the form of the regression model(s).

an industrial site with four different processes that require
steam at different pressure levels.
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(4) Running the simulation model after the D-optimal
design found by the evolutionary algorithm.

(5) Analyse the regression model.

(6) Build and solve the MINLP model together with inte-
ger cuts to find the optimal solutions.
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Nomenclature

a first-order coefficients

b second-order coefficients
BFW  boiler feedwater

HP high pressure

HRSG heat recovery steam generator

LP low pressure

m mass flow (kg/s)

MINLP mixed integer nonlinear programming
MP medium pressure

p pressure (bar), number of variables in a model
R? the square of the Pearson correlation

w power (MW)

y binary variable

Super- and subscripts

0 design state
o state before turbine stage
w state after turbine stage

2. Development of the MINLP model

The purpose of the multi-period MINLP model is to
analyse how changes to processes will affect the utility sys-
tem. The importance of an efficient utility system is increas-
ing, both because of the rising energy prices and due to the
desire to reduce the emissions of carbon dioxide and other
greenhouse gases. An efficient utility system has both the
potential to improve the economic efficiency of the plant,
as well as to reduce the negative environmental impact of
the plant. This means that when changes to a system are
considered, the effects these changes will have on the utility
system are important to the decision makers.

The plant being analysed in this work is hypothetical,
but it is based on existing industrial processes. The plant
with the utility system consists of four chemical processes,
labelled A, B, C and D. It has been decided that the pro-
cesses will be modified to accommodate changes in the
raw material flow. The changes will involve modifications
to the process equipment and possibly new investments.
There are several different options to make these changes.
The options chosen will have different effects on the steam
demand, and thus the electricity generated in the utility sys-
tem. The steam demand varies during the year, which com-
plicates the analysis. The different monthly steam demands
of the process options are presented in Fig. 1.

The utility system at the plant consists of a gas turbine, a
HRSG and two turbines (one turbine with reheat and one
without). At the design state the utility system is generating
10.0 kg/s of 15 bar steam, 24.0 kg/s of 6 bar steam, 30.0 kg/
s of 2 bar steam. An overview of the utility system model is
shown in Fig. 2.

The first turbine is regulated by a regulation stage, while
the second turbine is regulated by a regulation valve. Both
turbines are back-pressure turbines, while the second tur-
bine have also a condensing stage. Both turbines have
extractions of 15, 6 and 2 bar steam.

The objective of the study is to find how to maximise the
generation of electricity, while simultaneously choosing the
optimal combination(s) of the process options. To solve
this problem a MINLP model is developed according to
the steps presented in Section 1. The development of

the MINLP model is explained in the following three
sections.

2.1. Simulation model

The simulation model of the utility system is built using
Prosim from Endat Oy [1]. Prosim is a steady state power
plant simulation software package, where a simulation
model is comprised by modules that are connected by
streams. The full Prosim model of the utility system in this
work consists of 72 modules that are connected with 113
streams. The turbines with the extractions are built using
series of turbine modules, where each turbine module cor-
responds to a turbine stage. The first turbine stage of the
first turbine is a regulation stage. The number of regulation
valves in the regulation stage is 4. The expansion curves for
the turbines at the design point are shown in Fig. 3.

The simulation model will be used to generate the data
needed for the regression model.

2.2. Regression model and the evolutionary algorithm

The first task when developing the regression model, is
to choose the dependent and independent variables. The
natural choices of the dependent variable and the indepen-
dent variables are in this case respectively the generated
electricity from the turbines, W, and the mass flows
through the turbines, m. The generated electricity will be
used in the objective function of the MINLP model, and
the mass flows will connect the steam demand to the gener-
ation of electricity. Due to the nonlinear behaviour of the
turbines, it is not likely that a linear model will be sufficient
to model the system (see for instance the paper by Tveit
[2]). In general for MINLP models, convex models are
preferable to nonconvex [3]. The quadratic form shown
in Eq. (1) is chosen in this case:

W=a0+ Z

Jj€TurbineFlow

(ajm; + bm7) (1)

where the set TurbineFlow is the set of all the mass flows
and extractions, i.e. the independent variables. The qua-
dratic form is chosen since it has the nice property that it
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Fig. 1. Steam demand (kg/s) for the different process option for the different processes. (a) Process A: steam demand for options Al, A2 and A3. (b)
Process B: steam demand for options Bl and B2. (c) Process C: steam demand for options C1, C2 and C3. (d) Process D: steam demand for options D1

and D2.

is convex if all the second-order coefficients, b, are positive.
If this is not the case, it is still easy to convexify the func-
tion by simple transformations.

Following the steps presented in Section 1, the next step
is to choose the number of observations. One way to
choose the number of observations, is to find an acceptable
upper limit of the time it takes to complete all the simula-
tion runs. In this case an upper limit of 15 h is chosen,
resulting in about 75 simulation runs. The reason for the
relatively long simulation time is that even if one simula-
tion run per se takes only about 20-30s, it is very time
consuming to set up the simulation model according to
the D-optimal design. This is due to the time it takes to
get the correct values for the dependent variables. For sim-
ulation software with an integrated NLP solver, the time
needed to get values of the dependent variables right, could
be considerably reduced.

When the form of the regression model and the number
of observations are chosen, the next step is to build the evo-
lutionary algorithm in order to find the D-optimal design
for the simulation runs. The evolutionary algorithm is the
same as the one described in Part I, but it has been
expanded to accommodate one more turbine and the addi-
tional mass flows and stages. The algorithm is implemented
and solved in Matlab [4], with the final simulation run
design found after 300 generations with 15 individuals in
each generation. After the simulation runs the coefficients
of the regression model are fitted to the data using the least
absolute deviation criterion. The resulting regression model

is a relatively good fit, with a maximum error of 6.1%, an
average error of 0.7%, a standard deviation of 0.01 and
the square of the Pearson correlation, R, is 0.99.

2.3. MINLP model

The final step will be to build and solve the multi-period
MINLP model. The MINLP model consists of the objec-
tive function to be maximised (electricity generation) and
the constraints, which are basically mass balances and the
constraints for the pressures. The complete 12 period
MINLP model consists of 987 single equations and 875
variables, of which 10 are binary. Of the 987 equations,
492 are nonlinear. The objective function is shown in
Eq. (2):

objective = Z W, (2)

i€Periods

where the set Periods is the set of all the periods and W is
the regression model shown in Eq. (3):

Wf:a0+ Z

j€TurbineFlow

(ajm;; + bym;;) Vi € Periods (3)

where m; ; is the massflow of stream j at period i, and the set
TurbineFlow is the set of all streams connected to the
turbines.

There are different ways of modelling the disjunctions
due to the different process options, e.g. the big-M or con-
vex hull formulations (see for instance the work by Vecchi-
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Fig. 2. Overview of the model of the utility system.

etti et al. [5]). The formulation chosen in this work is the
big-M formulation shown in the linear equations (4)—(9):

M) — dogy <M - (1 =,) + 53,

V(p,0) € ProOptions and Vi € Periods (4)
My —don = M- (v, —1) =50,

Y(p,0) € ProOptions and Vi € Periods (5)
S(?),i) M- (1 _yo)

V(o) € Options and Vi € Periods (6)
Sy <M (1-y,)

V(o) € Options and Vi € Periods (7
Z (o) eProOptions”? — 1 Vp € Process (8)
Mpi)sSoi S = 0 and y, € {0,1} 9)

where the real variables s/, , and s, are slack variables,
di, ) is the steam demand for option o at period i and y,

is a binary variable modelling the choice of the process op-

tions. If y, =1 the process option is selected. The set Pro-
cess is the set of the processes A, B, C and D. If the set
Options is the set of all the process options, then the set
ProOptions is a subset of Process x Options, and contains
only the feasible pairs of the processes and the options.
The mass flow through the turbines is bounded by the pres-
sure levels. The pressure is calculated using Egs. (10) and

(11):

2
mi,s
poc‘s,i = \/( ) : (piQs _p?o(),s) +p3),5si
m.s

Vs € Stages and Vi € Periods

(10)

where the set Stages is the set of all the turbine stages, the
subscripts o and o refer to the turbine inlet and outlet stage
respectively and the subscript 0 refers to the state at the de-
sign point. Eq. (10) is nonlinear and convex with respect to
m and p,,. This is a nice feature, since, as mentioned earlier,
nonlinear convex functions are preferable to nonconvex
function. The proof of the convexity of Eq. (10) is given
in Appendix A.
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Fig. 3. Expansion curves for the steam turbines at the design point. (a) Expansion curve for Turbine 1 and (b) expansion curve for Turbine 2.

Eq. (11) simply states that the outlet pressure of a stage
is equal to the inlet pressure of the next stage:

Pa(s—1)i — Pus; = 0 Vi € Periods and
V{s|s € Stages and s is not the first stage in a turbine}
(11)

In order to find the different optimal solutions, the MINLP
model is solved in series with integer cuts added to the
model for each new solution. The integer cuts exclude the
previous solutions from the feasible region. The integer
cut for the kth solution is shown in Eq. (12):

>y, <IB -1

oeB*

(12)

where the set B* is the set of all y, € Options that are equal
to 1 at the kth solution, and |B| is the cardinality of the set
B*. Since all the processes have to have one and only one
option selected, the cardinality of the set BX is fixed. Be-
cause of this, it is not necessary to include the binary vari-
ables that are equal to 0 in the integer cuts.

It should be noted that compared to MINLP models
where all units are modelled in detail, the MINLP models
developed using the methodology presented in this paper
are probably not equally flexible. This means that, if for
instance a new objective is found to be important during
the optimisation process, most probably a new MINLP
model must be constructed to accommodate a new objec-
tive. For models where all the units are modelled in detail,
this could often be achieved by simply changing the

objective function. Examples of MINLP models where
the units are modelled in detail can be found in the work
by Bruno et al. [6] and Manninen and Zhu [7]. The
trade-off between the complexity and the flexibility of the
model is discussed in earlier work by Twveit [8].

The MINLP model is now complete and ready to be
solved. The model is implemented in the general algebraic
modeling system (GAMS) by GAMS Development Corpo-
ration [9]. The MINLP solver used is SBB [10]. SBB is cho-
sen as the solver, since it is a branch and bound algorithm
that works well for MINLP models that are fairly nonlin-
ear and with few integer variables. In this case less than
1.5% of the variables are integer and about 56% of the
equations are nonlinear. The NLP solver used together
with SBB is CONOPT [11]. Both SBB and CONOPT are
made by ARKI Consulting and Development AS. The solu-
tion time for one solution is approximately 50s on a
700 MHz Pentium-III with 256 MB of RAM.

3. Results and discussion

The optimal solution of the MINLP model found by
SBB and CONOPT is 673 MW and the optimal process
options with respect to the electricity generation are A3,
B2, C2 and D2. The second best solution is 621 MW, which
is achieved with the process options A3, B2, C3 and D2.
The average system prices at the Nordic power market
exchange Nord Pool in 2004 and 2003 were approximately
2890€/MWh and 36.36€/MW h respectively [12].
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Fig. 4. Optimal solutions for each period. (a) The different optimal solutions (derived using integer cuts) and (b) the maximum, average and minimum

value of all the optimal solutions for each period.

Assuming that the plant operates for 8000 h/a, the differ-
ence between the best and second best solutions would
have accounted to about 1.0 M€/a in 2004 and 1.3 M€/a
in 2003. Fig. 4 shows the different optimal solutions derived
by adding the integer cuts described in Section 2.3 to the
MINLP model and solving the model in series.

Fig. 5 shows how the objective function is decreasing
with the addition of the integer cuts.

It can be seen that the difference of the electricity gener-
ated in the different optimal solutions is significant. It is
clear that it will affect the outcome of any economical fea-
sibility analysis of different investment options if these
results are not taken into account.

The most time consuming part of the analysis is the
development of the simulation model. In many cases a suit-
able simulation model of the system already exists, which
will sufficiently speed up the process. As mentioned in Sec-
tion 2.2, using simulation software with integrated NLP
solver can reduce the time it takes to get values of the
dependent variables right. This will either help to speed
up the development process, or increase the number of

700 T
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660} \
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Sum of monthly generated electricity (MW)
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Optimal solutions

Fig. 5. The decrease in the optimal value of the objective functions as the

previous optimal solution is excluded from the feasible region using
integer cuts.

observations and potentially improve the quality of the
regression model(s).

4. Conclusion

As the importance of an efficient utility system increases,
it becomes similarly important to be able to find the opti-
mal operation of the utility system. A systematic methodol-
ogy to develop MINLP models of utility systems (with
focus on steam turbine networks) that are compact and
transparent has been proposed. The methodology consists
of several steps, including the building of a simulation
model of the system, the development of regression mod-
el(s) of the system based on simulation and D-optimal
design, and finally the development of a MINLP model.

The results reported in this paper have shown that the
methodology is capable of analysing a relatively complex
steam turbine network of a utility system. The MINLP
models developed using the methodology should be
regarded as ‘ad hoc’ models, and have certain limitations
as the models are not so flexible compared to models where
all the units in the utility system is modelled in detail. The
systematic methodology can help to make the MINLP
model compact and transparent, and thus avoid the major
challenges that are connected with solving large (noncon-
vex) MINLP models.

Appendix A. Proof of convexity for Eq. (10)
With respect to (1,5, P(w,5,1)> EQ. (10) has the form:
S y)=+a-x*+)

where x and y corresponds to m; 5 and p, s ;) respectively
and « is a constant and corresponds to ml% (P} — P2o)- The

(A1)

eigenvalues of the Hessian matrix of f{x,y) are given in Eq.
(A.2):

ay/a T (2 + )

a2x4 + zax2y2 _|_y4

(A2)

b
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Since both the eigenvalues are positive or equal to zero for

all a = 0, flx,y) is positive semidefinite and thus convex

for all @ > 0. Since - - (p3, — p2y) = 0, Eq. (10) is convex.
0

References

[1] Endat Oy, Prosim. Available from: <http://www.endat.fi/>, 2004.

[2] T.-M. Tveit, Steam turbine modelling for optimisation of CHP power
plants, in: The 9th International Symposium on District Heating and
Cooling, 2004, pp. 125-132.

[3] M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming:
Theory and Algorithms, second ed., John Wiley & Sons, 1993.

[4] The MathWorks Inc., Matlab, Version 6.5.1.199709 Release 13,
August 2003.

[5] A. Vecchietti, S. Lee, LE. Grossmann, Modeling of discrete/contin-
uous optimization problems: characterization and formulation of
disjunctions and their relaxations, Computers and Chemical Engi-
neering 27 (3) (2003) 433-448.

[6] J.C. Bruno, F. Fernandez, F. Castells, I.E. Grossmann, A rigorous
MINLP model for the optimal synthesis and operation of utility
plants, Institution of Chemical Engineers Trans IChemE 76 (1998)
246-258.

[7] J. Manninen, X.X. Zhu, Thermodynamic analysis and mathematical
optimisation of power plants, Computers and Chemical Engineering
22 (1998) S537-S544.

[8] T.-M. Tveit, Experimental design methods and flowsheet synthesis of
energy systems, Applied Thermal Engineering 25 (2005) 283-
293.

[9] A. Brooke, D. Kendrick, A. Meeraus, R. Raman, GAMS: A User’s
Guide, GAMS Development Corporation, 1998. Available from:
<www.gams.com>.

[10] GAMS (Ed.), GAMS the Solver Manuals, GAMS Development
Corporation, 2005, Ch. SBB, pp. 377-384.

[11] GAMS (Ed.), GAMS the Solver Manuals, GAMS Development
Corporation, 2005, Ch. CONOPT, pp. 39-82.

[12] Nordpool ASA Annual Report 2004. Available from: <http:
//www.nordpool.no/information/publications/index.html>, 2005.


http://www.endat.fi/
http://www.gams.com
http://www.nordpool.no/information/publications/index.html
http://www.nordpool.no/information/publications/index.html

	Multi-period steam turbine network optimisation. Part II: Development of a multi-period MINLP model of a utility system
	Introduction
	Development of the MINLP model
	Simulation model
	Regression model and the evolutionary algorithm
	MINLP model

	Results and discussion
	Conclusion
	Proof of convexity for Eq. (10)
	References


	Copyright: © 2006 Elsevier Science. Reprinted with permission from Applied Thermal Engineering, 26, 14-15 (2006), 1730-1736.


