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The new re-regulated markets for electricity, stricter environmental policies and regulations, especially regarding
greenhouse gases, form a new operating environment for energy systems. The new environment requires systems that
are cost-efficient and have more efficient utilisation of energy with a low negative environmental impact. This can
only be achieved with efficient tools for analysing and designing current and future energy systems.

The objective of this work is to present a systematic procedure for analysis and design of energy systems. The
procedure utilises simulation modelling, experimental design and regression models and mathematical programming.
The procedure is able to simplify large problems so that they can be efficiently solved, but still preserve sufficient
amount of details so that the objective of the analysis or design can be fulfilled. The main advantage of the
methodology is that it can reduce the size of the problems in a way that is more flexible than existing methodologies
using mathematical programming. This is important, since it can efficiently reduce the complexity of the problem,
and can thus be used to analyse and design complex energy systems with respect to several objectives. In this respect
the procedure can be seen as a valuable addition to the existing methodologies.
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1 Introduction

A well functioning modern society is dependent on a reliable and cost-efficient supply

of useful energy. The economic and environmental impacts of energy systems make

it important to continously improve and develop these systems. In addition to the

indirect effects on the economy, energy systems also have a significant directly eco-

nomic importance. For example, in Finland, the annual average value of imported

fuels and electricity between 2000 and 2003 was 2340 million euros [58]. In the years

1991 to 2001 the investments directly connected to energy conversion in Finland

amounted to an annual average of 783 million euros [58]. The environmental impact

of energy systems is also considerable. Carbon dioxide, sulfur dioxide and nitrogen

dioxide are some examples of important emissions from energy systems that affect

the environment. Carbon dioxide is by far the most important greenhouse gas, and

the total carbon dioxide emissions in Finland in 2002 were 82 million ton (approxi-

mately 2 % of total EU emissions). From the 82 million ton, 37 million ton was from

power plants and boilers and 11 million ton was from the combustion of fossil fuels

in industrial processes. Sulphur dioxide and nitrogen dioxide in the atmosphere can

lead to acid precipitation (acid rain) [9]. Sulfur dioxide inhalation is also a cause

for damage to the upper respiratory tract and to lung tissue [29]. The emissions

of sulfur dioxide and nitrogen dioxide from power plants and boilers in Finland in

2002 were 54000 ton and 69400 ton respectively. The nitrogen dioxide emission from

power plants and boilers where approximately 33 % of the total nitrogen dioxide

emissions in Finland, and the similar figure for sulfur dioxide is 63 % [58].

The new re-regulated1 markets for electricity, together with stricter environmental

policies and regulations, especially regarding greenhouse gases, form an operating

environment for energy systems that require a more efficient utilisation of energy

with a low negative environmental impact. This can only be achieved with efficient

1The term “de-regulation” is often used for the change of regulation regime. However, as the
markets are still regulated, the regime change is more accurately described as a re-regulation.
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tools for analysing and designing energy systems.

1.1 Energy system analysis and design

In the context of the work presented in this dissertation, an energy system is a collec-

tion of connected units that participate in the conversion and utilisation of energy,

and that is the subject of the analysis or design. The system has a system boundary

that defines the inputs and outputs of the system. An example of an energy system

is a CHP plant, where the system is a boiler with pre- and superheaters, additional

heat exchangers, turbines, generators, flue gas filters and scrubbers, pumps and a

feed water tank. The inputs to the system is fuel, air and cooling water, while the

output is heat (as either hot water or steam), flue gases and electricity. Another ex-

ample of an energy system is the one studied in Publication III, which is a combined

pulp and paper plant together with a municipal district heating network.

The analysis of an energy system can be to identify the performance of an existing

system in relation to a certain criterion, or to evaluate how changes to the system

or surroundings will affect the performance of the system.

The design of an energy system is the process of defining the desired inputs and out-

puts, and selecting the corresponding process cycles and the process topology. The

topology consists of the selected equipment and connections between the equipment.

Flowsheet synthesis is an important part of the design process of energy systems.

Flowsheet synthesis can be defined as the process of generating many alternative

conceptual flowsheets, often in the form of a superstructure, and selecting the topol-

ogy and system parameters that give rise to the flowsheet that is optimal for a given

objective or objectives. As the resulting flowsheets are conceptual, flowsheet syn-

thesis precedes the detailed design, where the accurate and detailed description of

the construction of the equipment is elaborated. A brief overview of approaches to
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the design of chemical processes can be found in the work by Westerberg [74]. If

the objective of the design is to modify an existing system, the design process is

referred to as retrofit design.

The process of analysing and designing an optimal energy system is not inconse-

quential, and there are many challenges related to the process.

1.2 Challenges related to energy system analysis and design

There are numerous requirements and objectives for an energy system. The system

should for instance be efficient, have a low or no negative environmental impact,

be safe, have high controllability, be easy to maintain and be profitable from an

economic perspective. The modelling of only one of these requirements can be

challenging, and it is not feasible to include all of these objectives simultaneously

in a comprehensive analysis or design process. An important challenge related to

energy system design is to choose the correct measure of performance and the most

relevant objectives to include in the analysis or design process. In addition to

this, the level of detail must be chosen, i.e. to which level of accuracy should the

objectives and subsequent constraints be analysed or modelled? The analysis and

design in this work has been limited to the efficiency of a system2 and economic

performance. However, the procedure developed is not limited to these objectives,

and can be applied to any of the requirements and objectives mentioned.

At present it is almost impossible to analyse or design a system without a proper

model of the system in question. Many of the challenges related to energy system

analysis and design are related to the modelling of the system. For instance, the

modelling of the behaviour of units and subsystems comprising the system, the

2The environmental impact of the system is indirectly included, since the efficiency of the system
has a significant effect on the environmental impact.
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modelling of thermodynamic properties, choice and interactions of parameters, the

structural complexity of energy systems and uncertainties, are all important factors

that add to the overall complexity of the analysis or design process. The degree of

complexity the factors add is also dependent upon which methodology is chosen, as

different methodologies handle the complexities differently.

There is no methodology available that can comprehensively take into account all

the factors relevant to the analysis and design of energy systems. The existing

methodologies are specialised methods designed to efficiently handle a selection of

the factors relevant to the analysis or design process. The systematic procedure

suggested in this work uses a combination of simulation, regression modelling, ex-

perimental design and mathematical programming. Mathematical programming is

used to find the best solutions in relation to the objectives of the analysis or design.

The regression models based on simulation modelling are used together with an ex-

perimental design to simplify the optimisation model, while maintaining a realistic

model of the energy system.

1.3 Objectives of this work

The objective of this dissertation is to present a systematic procedure for finding

optimal solutions to the design or redesign of energy systems. The procedure utilises

simulation modelling, experimental design, regression models and mathematical pro-

gramming. The main advantage of the methodology is that it will present a novel

approach to reducing the size of the problems that is more flexible than the existing

methodologies using mathematical programming.
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1.4 Overview of this work

In Section 2 an introduction to the available techniques, an overview of methodolo-

gies and approaches relevant to this work are presented. In Section 3 the objective

and the scientific significance of this dissertation is presented in more detail. Sec-

tion 4 presents the systematic procedure suggested in this work. In addition to

the presentation of the procedure, the objective of the section is to summarise and

connect the work in Publications I to VI that together with the overview comprise

the dissertation. The conclusions and significance of the work are summarised in

Section 5 together with recommendations for further work.
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2 Literature review

In this section an overview of methodologies and approaches to the design and

analysis of energy systems is presented. Readers who are familiar with mathematical

programming, simulation of energy systems and experimental design, might wish to

pass directly to Sections 2.1, 2.2.4 and 2.4.1, where the work that is particularly

relevant to this dissertation is presented.

There are traditionally two approaches to the design and synthesis of energy sys-

tems, namely the thermodynamic approach and the approach using optimisation

(deterministic or stochastic). This is a loose division, as the approaches are often

mixed.

2.1 Thermodynamic approaches to the design of energy systems

Nishio et al. [48] developed a thermodynamic approach to steam-power system de-

sign. The approach uses heuristic rules and is limited to steam cycles. Chou and

Shih [14] proposed a similar procedure, and developed a systematic procedure for

the design of plant utility systems. The procedure helps in finding the configuration

with the maximum allowable overall thermal efficiency. The procedure could also

include gas turbine cycles.

El-Sayed and Evans [21] introduced the concept of thermoeconomics, where the

inefficiencies of a system are given a cost. All the costs of the process streams

are related to the exergetic value of the stream. Thermoeconomics expands the

traditional thermodynamic analysis by including economic considerations. However,

the methodology is not designed to handle other multi-objectives (e.g. reduction of

the negative environmental impact of a process).
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An important branch of the thermodynamic approach focuses on the entropy gener-

ation of the energy systems. Two closely related concepts are the entropy generation

minimisation and exergy loss minimisation. The term exergy was first suggested by

Rant [51]. The two concepts are introduced in the books by Kotas [36], Szargut et

al. [59] and Bejan [3]. The purpose is to identify and minimise the irreversibili-

ties of the processes. Some additions and refinements to the approaches relevant

to this work is the use of the exergy approach to minimise costs by Tsatsaronis

and Moran [64] and the identification of avoidable and unavoidable exergy losses by

Tsatsaronis and Park [65].

Pinch analysis is a methodology that can be used to design a heat exchanger net-

work with a fixed utility consumption. The fact that the minimum utility require-

ments for a heat exchanger network can be calculated only from the stream infor-

mation and the minimum temperature difference in the heat exchangers was noted

by Hohmann [30], although similar concepts had already been explored for blast

furnaces in 1927 by Reichardt [52]. The concept was independently discovered by

Linnhoff [41] and his group at UMIST who developed the concept into a tool for

industrial processes. Pinch analysis can also be used to integrate new equipment

and processes to a system, e.g. as in the work by Townsend and Linnhoff [62, 63].

A common problem with the thermodynamic approach is the lack of handling trade-

offs. Even if, as mentioned above, several adaptations to the thermodynamic meth-

ods have been made to address this problem in special cases, the general problem

still remains. In an attempt to overcome this, Optimisation has been applied.

2.2 Optimisation approaches to the design energy systems

Optimisation can be divided into deterministic optimisation (mathematical pro-

gramming) and stochastic optimisation (e.g. evolutionary algorithms and simulated
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annealing). In the following sections a brief introduction to the concepts of opti-

misation, as well as the use of the concepts in the design and analysis of energy

systems is presented.

2.2.1 Mathematical programming

In the following section a brief introduction to different aspects of mathematical

programming is given. In Section 2.2.4 applications of mathematical programming

for the design and synthesis of energy systems are presented.

Mathematical programming, or deterministic optimisation, deals with the problem

of optimising an objective function. A general formulation of a mathematical pro-

gramming problem is given in Equation 2.1.

min f(x) subject to x ∈ X (2.1)

where X ⊆ Rn is the constraint set, x is an n-dimensional vector, and f : Rn → R1

is the objective function defined on X.

A point x ∈ X is called a feasible solution to the problem. If x∗ ∈ X and there exists

an ε-neighbourhood Nε(x
∗) around x∗ so that f(x∗) ≤ f(x) ∀ x ∈ X ∩Nε(x

∗), then

x∗ is called a local optimal solution[2]. If x∗ ∈ X and f(x∗) ≤ f(x) ∀ x ∈ X, x∗

is called a global optimal solution. The problem in Equation 2.1 can also be stated

as a maximisation problem, by noting that both max f(x) and min−f(x) has the

same optimal solution x∗.

Mathematical programming problems are often divided into different classes, de-

pending on their characteristics and structure. An important characteristic of the

mathematical programming problem is whether the problem is constrained or un-

constrained. If f is a function defined on Rn and x is an n-dimensional vector, an
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unconstrained problem can be formulated as [4]:

min f(x) subject to x ∈ Rn (2.2)

which is similar to the problem in Equation 2.1, but where the constraint set X has

been replaced by the n-dimensional Euclidean space. For constrained problems, X

can be defined by a set of constraints, as shown in Equation 2.3

X =

{
x :

hi(x) = 0, i ∈ {1, 2, . . . ,m}

gi(x) ≤ 0, i ∈ {1, 2, . . . , l}

}
(2.3)

where hi and gi are functions defined on Rn. The functions hi and gi are often

referred to respectively, as equality and inequality constraints.

Another important characteristic is whether the problem is continuous or discrete.

A continuous problem is a problem where the constraint set X is infinite and has

a ‘continuous’ character [4], and a discrete problem is simply a problem that is not

continuous. An important sub-class of the discrete problems are problems where

some of the decision variables must take only integer variables, so-called integer

programming problems. In the case where the problem contains both continuous

and integer variables, the problems are called mixed integer problems. Consider the

general formulation of a constrained mixed integer problem shown in Equation 2.4.

min f(x,y) subject to


hi(x,y) = 0, i ∈ {1, 2, . . . ,m}

gi(x,y) ≤ 0, i ∈ {1, 2, . . . , l}

x ∈ X ⊆ Rn, y ∈ Y ⊆ Zm

(2.4)

where Zm is the m-dimensional set of integers. If the objective function, f , or at least

one of the constraints is nonlinear, the problem is called a mixed-integer nonlinear

programming (MINLP) problem. Similarly, in the special case where the objective

function and all the constraints are linear, the problem is called a mixed integer linear

programming (MILP) problem. If the problem only contains continuous variables
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(i.e. Y = ∅), the mixed-integer nonlinear programming problem is reduced to a

nonlinear programming (NLP) problem and the mixed integer linear programming

problem is similarly reduced to a linear programming (LP) problem.

There is no efficient algorithm for solving problems of all classes, but many spe-

cialised algorithms have been developed. It is often convenient to consider the

classification of the mathematical programming problems into LP, NLP, MILP and

MINLP, in relation to the algorithms used to solve the problems. For LP problems,

and to some extent MILP problems, powerful algorithms exist to solve practical

problems to a deterministic global optimum. For the nonlinear problems, algo-

rithms exist to solve both NLP and MINLP problems to global optimal solutions

(for instance Floudas [23], Ryoo and Sahinidis [54], and Smith and Pantelides [56]).

A good overview of global optimisation can be found in the work by Floudas et

al. [24]. However, the most efficient algorithms require that the functions are con-

vex in order to guarantee a global optimal solution. For nonconvex problems with

multimodal objective function or nonconvex feasible region, the classical nonlinear

programming algorithms will terminate with a solution, which is strongly dependent

on the starting point [60]. Unfortunately, these problems are common in the design

and synthesis of energy systems. This means that for models regarding the design

and synthesis of energy systems, the nonlinearities (in particular the nonconvex)

and combinatorial complexities that are included in the models in order to arrive

at a realistic model of the system, will often result in models for which no efficient

optimisation algorithm exist. One alternative is to improve the algorithms, or to

reformulate the models (e.g. convexifying the problem). Another approach is to

avoid the problems by trying to reduce the problem.

The choice of algorithm is strongly dependent on the problem formulation and char-

acteristics. To be able to solve a problem efficiently, it is therefore important to

choose the correct algorithm based on an analysis of the optimisation model. For

instance, two well known solvers for MINLP problems, SBB [1] and DICOPT [12]
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work very differently, and generally DICOPT should perform better in problems

where the combinatorial complexity is dominant, while SBB should perform better

in problems with difficult nonlinearities and few discrete variables [70]. However, in

practice it is difficult, even for the relatively simple linear programming problems,

to predict how easy it is to solve a mathematical programming problem. For in-

stance, even though Dantzig’s simplex method for linear programming has a very

poor theoretical worst-case behaviour, it has proven to be very successful in solving

practical linear programming problems [55]. The difficulty to predict how difficult

(or easy) different problems are to solve in practice is even more acute for MILP,

NLP and MINLP problems.

2.2.2 Multiobjective optimisation

It is common when working with design of energy systems to have situations with

more than one objective. For instance, the objectives can simultaneously be to min-

imise the negative environmental impact of the process, maximise the profit and to

maximise the safety of the process. These problems are referred to as multiobjec-

tive mathematical programming problems. Equation 2.5 shows how a multiobjective

optimisation problem can be formulated mathematically.

min fj(x) ∀j ∈ {1, 2, . . . , k} subject to x ∈ X (2.5)

where we have k ≥ 2 objective functions fj : Rn → R1. The feasible objective

region Z, is the image of the feasible region (i.e. Z = f(X) ⊂ Rk). The elements

of Z are called objective vectors. The objective vectors are denoted by f(x) or by

z = [z1, z2, . . . , zk]
T , where zj = fj(x) ∀j ∈ {1, 2, . . . , k} [45]. The ideal optimal

solution to Equation 2.5 would be a vector z∗∗, that is simultaneously the optimal

solution for each of the objective functions subject to the constraints. The vector

z∗∗ is often called the ideal objective vector. However, the ideal objective vector

is often infeasible and unobtainable due to conflicts between the objectives. This
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means that a different criterion for optimality must be defined. A common way of

defining optimality is the Pareto optimality. The Pareto optimality can be defined

as follows:

Definition 1. An objective vector z∗ ∈ Z is Pareto optimal in the absence of another

objective vector z ∈ Z such that zj ≤ z∗j ∀j ∈ {1, 2, . . . , k}, and zj < z∗j for at least

one index j. (Adapted from [45])

There are usually many Pareto optimal solutions, and the set of Pareto optimal

solutions is referred to as the Pareto optimal set. Pareto optimal solutions are

mathematically equal, and a decision maker is needed to select the preferred solu-

tion. In the case of the decision maker being able to state the preferences before

the solution process, a priori methods can be applied. Examples of a priori meth-

ods are the value function method, lexicographical ordering and goal programming.

A posteriori methods generate the whole (or parts) of the Pareto optimal set, and

present the generated set to the decision maker. The decision maker then selects the

preferred solution. Two examples of a posteriori methods are the weighting method

and the ε-constraint method. In this work the ε-constraint method is applied to mul-

tiobjective optimisation problems. The ε-constraint method was used since it is easy

to implement into the mathematical programming modelling language used in this

work. In this method, first presented by Heimes et al. [28], one objective function

is chosen to be optimised. The remaining objective functions are transformed into

constraints with an upper bound, ε. A formulation of the problem is presented in

Equation 2.6

min fl(x), l ∈ {1, 2, . . . , k}

subject to

fj(x) ≤ εj, ∀j ∈ {1, 2, . . . , k}\l

x ∈ X

(2.6)

A slight modification of Equation 2.6 was applied in this work. The inequality

constraints of the objectives that were transformed into constraints were changed

into equality constraints. This alternative formulation was proposed by Lin [40].
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2.2.3 Evolutionary algorithms and simulated annealing

As a good complement to traditional mathematical programming, evolutionary al-

gorithms have become popular tools for finding optimal solutions. The most basic

forms of these algorithms are genetic algorithms and evolution strategies. A good

overview of evolutionary algorithms is given in the paper by Whitley [75]. Genetic

algorithms were first developed by Holland [31], while evolution strategies were de-

veloped by Rechenberg and Schwefel (see the article by Beyer and Schwefel [5]).

Genetic algorithms are search algorithms that are based on the analogy of improving

a population of solutions through modifying their gene pool. Genetic algorithms em-

phasise the use of a ‘genotype’ that is decoded and evaluated. These genotypes are

often simple data structures. The genotypes are modified using two forms of genetic

modification, crossover and mutation. Evolution strategies are in many ways similar

to genetic algorithms, but they have fewer constrains on the representation of the

problem. The mutation also changes according to a statistical distribution. Evolu-

tion strategies are generally applied to real-valued representations of optimisation

problems, and tend to emphasise mutation over crossover.

Simulated annealing is an optimisation strategy for combinatorial optimisation prob-

lems that uses the analogy of finding the low-temperature state of a system (Kirk-

patrick et al. [35]). The strategy starts with a point, x, and an objective value,

f(x). An effective temperature, T , for the optimisation problem is introduced. A

new point, x′, is chosen at random from a distribution. If the new point improves

the objective, the new point is accepted. In the case where the new point does not

improve the objective, the point is accepted with probability distribution p(T, x′, x).

This is done because only accepting a new point that improves the objective is sim-

ilar to extremely rapid quenching, where the result is likely to be metastable with

only locally optimal structures. The strategy continues by gradually reducing the ef-

fective temperature (and thus the degrees of freedom) until no further improvement



30

to the objective is achieved.

2.2.4 Mathematical programming, evolutionary algorithms and simulated an-

nealing for design of energy systems

Mathematical programming has been widely applied in the design of energy systems

in particular and in process design in general. In their two articles, Biegler and

Grossmann [7, 27] give a good overview of mathematical programming and their

application to process design and process systems engineering. This section presents

some of the previous work particularly relevant to this work.

Bruno et al. [11] developed a rigorous MINLP model for the synthesis of power

plants. By using the formulations they suggested it is possible to solve larger syn-

thesis problems of real plants. In their work Manninen and Zhu [43] took a different

approach and developed a methodology for power plant synthesis, where the problem

size is reduced using thermodynamic analysis. The problem size is primarily reduced

in two ways; first by reducing the size of the superstructure and thus the integer

variables and second by giving tighter bounds of the variables, and thus reducing

the size of the search space. The methodology was applied to a chemical process

plant by the author in the work by Tveit et al. [67]. Similar ideas were presented

in the work by Hostrup et al. [32], where the focus was on chemical processes. A

characteristic common to the methodologies mentioned above is that they all require

a detailed mathematical model of all the units included in the superstructure.

Varbanov et al. [72, 73] used a combination of simulation and a successive mixed

integer linear programming procedure, where values were fixed for the optimisation

model and updated untill convergence after each run based on the results of more

rigorous simulation. Iyer and Grossmann [33] developed a mixed-integer (MILP)

formulation for the synthesis and operational planning of utility systems for multi-
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period operation with varying demands that were solved using a bilevel decompo-

sition algorithm. Francisco and Matos [25] claimed that by extending this bilevel

decomposition algorithm to include global emissions of atmospheric pollutants, it is

possible to obtain the best utility plant design using the equipment and fuel that

not only minimises operational and capital costs, but also pollutant global emissions

due to the combustion of fuels. Papalexandri et al. [50] integrated techniques for

modelling and optimisation under conditions of uncertainty in order to explore flex-

ible operating scenarios and energy management schemes of real industrial utility

systems. Their method can be used both for small MILP and small MINLP prob-

lems. Chang and Hwang [13] developed a multiobjective MILP model for utility

systems, where cost minimisation and global emissions where taken into account.

Roosen et al. [53] used multiobjective optimisation for trading off investment and

operating costs of a combined cycle power system.

Both genetic algorithms and evolution strategies have been used to optimise energy

systems. For example, Valdés et al. [71] applied genetic algorithms to the problem

of thermoeconomic optimisation of combined cycle gas turbine power plants, while

Marechal and Kalitventzeff [44] applied genetic algorithms to the optimal integration

of utility systems of chemical production sites. Lewin et al. [39] and Lewin [38] used

a genetic algorithm for the synthesis of heat exchanger networks. In their work,

both Roosen et al. [53] and Uhlenbruck and Lucas [69] used an evolution strategy

for the optimisation of a combined cycle power plant. Toffolo and Lazzaretto [61]

used an evolutionary algorithm for finding the optimal trade-off between energetic

and economic efficiency of thermal systems.

Simulated annealing has been used the optimisation of energy systems. For example,

Yu et al. [76] used a combination of genetic algorithms and simulated annealing

for optimal energy integration of a large scale system. Painton and Diwekar [49]

applied simulated annealing to find the optimal design of a gas turbine and Maia

and Qassim [42] used simulated annealing to the problem of synthesis of utility
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systems with variable demands.

2.3 Simulation of energy systems

Process simulation is a central part of computer-aided process design both in contem-

porary academic research and in industrial applications. A comprehensive review of

simulators and simulation methods has been presented by Biegler [6] and Biegler et

al. [8]. An extensive comparison between some current simulation programs relevant

for the simulation of energy systems is presented in Giglmayr et al. [26].

Process simulator concepts have traditionally been classified into sequential modu-

lar methods and equation-oriented approaches. Sequential modular simulators are

based on flowsheet topology of the black-box unit modules and on the calculation

of the mass and energy balances for each unit. The units and the thermodynamic

properties are often divided into sub-programs or processes. In a sequential mod-

ular simulator the program sets up the flowsheet topology of the units, inserts the

input data and defines the calculation order of the unit modules in the process.

Then the program calculates the mass and energy balances for each unit using the

procedures defined in the unit operations library. Lastly, the physical properties of

the streams, e.g. the steam properties such as entropy and enthalpy, are calculated

using the physical properties library in the simulator. The major differences be-

tween the modular simulators are to be found in the libraries of unit operations and

physical properties. Modular methods are widely used in process design work. The

disadvantage of modular simulators is that they are inflexible for a large variety of

user specifications in flowsheet design.

In the simulators based on the equation-oriented approach the unit equations are

assembled and solved simultaneously using general solution strategies (e.g. Newton-

Raphson or quasi-Newton methods). The program sets up the flowsheet of the
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simulated process, organises the unit equations into one large set, and solves them

with a general purpose equation solver. In the equation-oriented simulators there

is almost no distinction between flowsheet or stream connection equations, unit

operation equations and physical property equations. The advantages of equation-

oriented simulators include being flexible in the flowsheet design and that they allow

the use of advanced optimisation strategies. On the other hand, the performance of

the equation-oriented methods is limited by the capabilities of the equation solver.

Equation-oriented simulators also require large-scale numerical algorithms, good

initial values and efficient strategies to prevent convergence failures. The main

applications for the equation-oriented simulators are in the on-line modelling and

optimisation fields.

Process simulation can be done either with a steady state or with a dynamic model.

Steady state models are widely used in process design simulation. In addition, off-

design simulations of the process in the loads differing from the design load are

possible with steady state simulators. In order to also include the time dependence

of the load variations in the simulations, a dynamic model is needed. Dynamic

models are often used in on-line monitoring of the process, in planning of the opti-

mal operation of the process and in diagnosis of operational faults in the process.

However, if only design simulations or some off-design simulations without the time

dependence of a process will be made, the performance of the steady state simulation

programs is sufficient.

2.3.1 Simulation and optimisation

A common approach to improving processes using simulation is to simulate a number

of cases, and then select the best of these. As this is often very time consuming and it

is difficult to efficiently handle trade-offs, many commercial simulation packages have

integrated NLP solvers for the optimisation of constrained continuous variables. For
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example, both Aspen Plus by AspenTech Inc. and Balas by VTT Technical Research

Centre of Finland use the successive quadratic programming approach3 (SQP), which

is an algorithm for solving NLP problems that is relatively easy to implement into

sequential modular simulators. The SQP-methods use Newton’s method to solve the

Karush-Kuhn-Tucker optimality conditions for the NLP problem [2]. The resulting

problem is a minimisation of a quadratic approximation of the Lagrange function

where the constraints are linearised. For sequential modular simulation, many of

the variables and equations can be hidden from the SQP solver using a black-box

approach, thus reducing the problem size. For equation-oriented simulators the

variables and equations are incorporated into the optimisation problem, resulting in

a larger optimisation problem. Since the computation time for the SQP approach

increases cubically with the problem size, it is rarely used in commercial equation-

oriented simulators [8].

Solvers for MINLP problems have also been used in connection with commercial

simulators. This is particularly useful in cases where the optimisation would need to

include discrete events (e.g. if-then logical statements). An example of an MINLP

solver used together with Aspen Plus is, for example, described in the work by

Diwekar et al. [18].

The same computational and combinatorial problems mentioned in Section 2.2.1

apply to the algorithms for optimisation when they are implemented into simulators,

and it is equally important to choose the correct algorithm for the optimisation.

Equations that can be suitable for the simulators may have properties that are

undesirable for optimisation algorithms. For these reasons it is often necessary

to formulate the optimisation problem independently of the simulation model, in

order to include equations with desirable properties and to be able to modify the

optimisation model ad hoc to enable solvers to produce good solutions in a reasonable

time.

3also known as sequential quadratic programming
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2.4 Experimental design

The objective of experimental design is to develop a robust process for planning

and conducting an experiment, analysing the results and obtaining objective con-

clusions. A good textbook on experimental design is that by Montgomery [46].

Experiments are often time-consuming and costly, thus a great deal of time has

been spent developing methods to reduce the number of times different combina-

tions of an experiment have to be performed. The focus in this work is on using

experimental design strategies to develop a regression model (or models, in cases

where one regression model is insufficient) based on a simulation model of an energy

system.

In this respect an important methodology is the response surface methodology, which

is an approach to process optimisation. This methodology starts with the develop-

ment of a response surface, which is a functional relationship between the response

and the independent variables. The response surface is then analysed, for instance,

by the use of gradients. The process is sequential, so if necessary a new response

surface is developed and analysed until the optimum operating conditions are de-

termined. The response surface is in most cases a regression model, where the

determination of the regression model parameters can be found using the proper

experimental designs.

Possibly the most used designs are factorial designs, which are experimental strate-

gies where factors are varied together, in contrast to one at a time. In the special

case where k factors have only two levels (i.e. ’high’ and ’low’ ), the design is called

a 2k-factorial design [19]. The 2k-factorial design can be used to generate linear

regression models, and there are ready-made methods for estimating the regression

coefficients according to the least-squares criterion. However, more data is needed in

order to fit a quadratic model. A natural extension would be the 3k-factorial design,

where the k factors now have three levels (i.e. ’high’, ’intermediate’ and ’low’ ).
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However, the 3k-factorial design is not the most efficient design for fitting quadratic

models. There are many symmetric designs that could be used, for instance the

central composite design, the spherical composite design, the Box-Behnken design

or the face-centred central composite design. What the designs mentioned above

have in common is that they can be used when the region of interest is cubical or

spherical and the regression model is linear or quadratic. In cases where it is not

possible to use these traditional symmetric designs, since the experimental region

is irregular, the model is non-standard or the sample size requirements are unusual,

other criteria for selecting the design must be applied. There are several design

optimality criteria, of which perhaps the most used is the D-optimality criterion,

and this is also being used in this work. A good introduction to D-optimal designs

can be found in the paper by Aguiar et al. [16]. The symmetric designs mentioned

above are all D-optimal designs.

The D-optimal design aims to minimise the volume of the hyper-ellipsoid that de-

scribes the confidence interval for each coefficient. When this volume becomes

smaller, the coefficients become more precise, and subsequently also the estima-

tion is more precise. For a given amount, n, of candidate points in the region of

interest and a specific model to be fitted, the so-called model matrix, X, can be

developed. The model matrix is a (n × p) matrix where p represents the number

of coefficients in the model. The dispersion matrix is defined as (X ′X)−1, where

X ′ is the transpose of the model matrix. The D-criterion states that the optimal

design matrix, X∗, is the model matrix, X, that minimises the determinant of the

dispersion matrix:

|(X∗′X∗)−1| = min
X∈S

|(X ′X)−1| (2.7)

where S is the set of all n!
p!(n−p)!

possible model matrices. The resulting design is

subsequently D-Optimal.

Several exchange algorithms for finding D-optimal designs have been developed,

of which perhaps Fedorov’s algorithm is most known [22]. An overview of some
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exchange algorithm can be found in the paper by Nguyen and Miller [47]. However,

as the number of candidates increases the number of possible combinations become

prohibitively large to be solved using the exchange algorithms and other strategies

for solving the problem must be applied. Stochastic search methods based on natural

processes like genetic algorithms and simulated annealing have successfully been

applied to this problem. For instance Broudiscou et al. [10] used a genetic algorithm

for selecting the D-optimal design, while Duffull et al. [20] used simulated annealing.

2.4.1 Simulation and experimental design

Experimental design has been used in connection with simulation modelling to a

certain extent. The main focus seems to be on factorial designs and response sur-

face methodology. In the book by Chung [15], a chapter is devoted to simulation

and factorial experimental design. Spedding et al. [57] used a discrete event sim-

ulation model together with a factorial design and response surface methodology

to determine the optimal configuration of a keyboard assembly cell. Dessouky and

Bayer [17] used a combination of simulation and experimental design to minimise

building maintenance costs. The simulation output was used in a factorial experi-

mental design in order to identify the attributes that have the greatest impact on

the costs. In the work by Kenne and Gharbi [34] simulation experiments were cou-

pled with experimental design and response surface methodology to estimate the

optimal control for a one-machine, two-product manufacturing system subject to

random failures and repairs.
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3 Objective and scientific significance

The objective of this work is to present a systematic procedure for analysing and

designing energy systems. The procedure utilises simulation modelling, experimental

design and regression models and mathematical programming. The procedure is able

to simplify large problems so that they can be efficiently solved, but still preserve

sufficient amount of details so that the objective of the analysis or design can be

fulfilled. The main advantage of the methodology is that it can reduce the size

of the problems in a way that is more flexible than existing methodologies using

mathematical programming. The way the problem is reduced is not restricted by the

thermodynamic aspects of the process, e.g. fixing steam pressures, or by requiring

that all equations should be of a certain mathematical form, e.g. linear.

3.1 Earlier key developments compared to this work

Figure 3.1 shows an overview of the development stages of the concept compared

to other strategies. The novel approach in the procedure is to systematically inte-

grate a method for simplifying the problem by developing regression models based

on simulations. As mentioned in Section 2.2.4, mathematical programming has been

widely applied in the design of energy systems. Due to numerical or combinatorial

problems, it is normally necessary to simplify the problems. Bruno et al. [11] sim-

plified the optimisation models by fixing the pressures. By fixing the pressures the

ability of the methodology to efficiently handle off-design situations of energy sys-

tems is reduced. The variation in pressure is for instance a very important part of

steam turbine operation and design. Manninen and Zhu [43] and Hostrup et al. [32]

reduced the optimisation model by thermodynamic analysis. By excluding solutions

that are thermodynamically infeasible or obviously undesirable, it is possible to re-

duce the size of the problems by giving tighter bounds on the variables as well as
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How to find optimal solutions 
 to changes/design of energy systems?

Mathematical programming Thermodynamic analysis (pinch, etc) Heuristics

How to solve numerical and combinatorial problems?

Improve the algorithms Simplify the problems Reformulate the models

How to simplify?

Thermodynamic analysis Fix parts of the system Regression models based on simulation modelling

Problems with regression models: 
 combinatorial problems / how to select the best points

Experimental design Reduce the accuracy of the regression models

Mathematical programming, 
 simulation and 

 experimental design

Figure 3.1: Overview of the stages of the development of the systematic procedure
for the analysis and synthesis of energy systems.

reducing the size of the superstructures. However, all the units must still be mod-

elled in detail, which can result in numerical problems if the equations are highly

nonlinear and nonconvex. Iyer and Grossmann [33] simplified by modelling the sys-

tem using only linear relations. By using only linear relations the nonlinearities in

the system must be simplified or ignored, which might reduce the accuracy of the

model.

The scientific significance of this work is that the problems mentioned above are

avoided by using regression models based on simulation modelling together with ex-

perimental design to simplify the optimisation model. This enables greater freedom

when simplifying the problems, without being bound by certain set of thermody-

namic rules or the mathematical form of the problem, e.g. linear.
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4 A systematic procedure for analysis and design of

energy systems

The process of designing or analysing energy systems with the aim of achieving

an optimal system involves many tasks and decisions. Many of these tasks and

decisions are dependent on the methodology used, but more generic questions are

independent of the methodology. In addition to the definition of the scope and ob-

jective of the design or analysis, some of the fundamental questions that must be

answered are: ‘What is the system and the system boundaries?’, ‘Which methodol-

ogy or methodologies should be applied?’ and ‘How can the models and results be

efficiently verified?’ The quality and feasibility of the process, with respect to for

instance time, is strongly dependent on these decisions. It is therefore important to

have a good understanding of how the different steps and decisions affect the design

or analysis process. The objective of this section is to give an overview of the proce-

dure suggested in this work, with respect to the necessary tasks and decisions, and

to summarise and connect the work in Publications I to VI. The development of the

simulation model is primarily described in Publications I and II. The development

of regression model for the systematic procedure is discussed in Publications II, IV,

V and VI. Optimisation is discussed in all the Publications II to VI.

The systematic procedure presented in this work can roughly be divided into the

following steps:

1. Development of the simulation model

2. Development of the regression model (including experimental design)

3. Development of the optimisation model
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The purpose of the first step is to build a simulation model that is used to generate

the data needed for the regression model(s). The next step will produce the regres-

sion model or models that are needed to get a representative optimisation model of

the system. A simplified overview of the design procedure is presented in Figure 4.1.

The decisions made in all the steps also affect the previous steps as well as the

start analysis/synthesis

simulation modelling

analysis/synthesis completed

model corresponds to system?

regression model(s)

regression model(s) ok?

optimisation model

solution ok?

yes

optimisation model ok?

no

no

regression model 
 or simulation model 

 need revision?

yes

yesno

yes

no

yes
Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.1: A simplified overview of the procedure for the analysis and design
of energy systems. The different steps are shown in more detail in, respectively,
Figures 4.2, 4.3 and 4.4.

next step. It is for instance quite possible that the information from the previous

step contains faults or is insufficient. In these cases it is necessary to go back to

the previous step or steps. The simplified steps of the procedure are presented in

more detail in the following subsections. The simulation modelling is described in
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Section 4.1, the development of the regression models are described in Section 4.2

and finally the development of the optimisation model is described in Section 4.3.

4.1 Simulation modelling

The development of a simulation model involves identification of the system being

modelled, data extraction, the actual simulation modelling and the verification of

the simulation model. An overview of the process is shown in Figure 4.2. The

primary use of the simulation model for the systematic procedure presented here

is to generate data for the regression model(s). For retrofit analysis, another nat-

ural source for data for regression models could be the monitoring system at the

plant. However, there are many good reasons why data from a simulation model is

preferable. For instance, in cases where the aim of the study is to evaluate struc-

tural changes to a system, the data from the monitoring system will only supply

data from the existing system, which is of limited use. In Publication I the most

important sources for data extraction for the simulation model of a sulphuric acid

production process are listed and disussed. The use of simulation models and mea-

surements at a plant as sources of data for the regression models is also discussed

in Publication II. The data from the simulation model are based on the assumption

that models of the different units are in energy and mass balance, which is rarely

the case with data from monitoring systems. That the data is in mass and energy

balance is important when considering both structural and parametric changes to

a system. There are also many contributions to the unreliability of measured data;

for instance, the measurements might be taken at different operation points, the

instruments are not calibrated or are not working properly. Another source of error

is that in many cases the measurements are not even meant to give absolute and

accurate values, but rather to monitor changes in the process.

In addition to generating data, the simulation model can also be used for another



43

simulation modelling

start analysis/synthesis

system identification

regression modelling 

data extraction

data verification

sufficient amount of data?

simulation model design

simulation model verification

model corresponds to system?

no

yes no

 Figure 4.3

Figure 4.2: Overview of the process for the development of the simulation model.

purpose. Compared to an optimisation model, a simulation can be a better model of

the system, which is due to the simplifications that are often necessary to make to the

optimisation model. Another important use of the simulation model can therefore

be to use the simulation model to verify the calculations by the optimisation model.

This is discussed further in Section 4.3.
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4.1.1 System identification, data extraction and data verification

In the context of simulation modelling, the system identification means to identify

the boundary of the system, i.e. which are the units that belong to the system and

what are the inputs and outputs of the system. At this stage it is also possible to

estimate the level of detail for the simulation model, e.g. which part of the system

can be left out of the analysis within the tolerances of the analysis. It is important to

keep in mind during the development of the regression model that the target of the

step is to make a realistic model of the system. This is discussed in Publication IV,

where also a second order response surface model of the electrical efficiency of an

indirectly fired microturbine is compared to a MINLP model where all the units are

modelled in detail. With respect to the target of making a realistic model of the

system there is a trade-off between a simple regression model that results in a more

simple optimisation model and a more complex regression model that can give a

more realistic model of the system, but also results in a more complex optimisation

model.

When the system is identified, the next step is to extract data from the system. The

data extraction is potentially the most time-consuming part of building a represen-

tative simulation model. There are two major problems with data extraction. The

first problem is that all the necessary data might simply not be available. The sec-

ond major problem is that in many cases the data that is available is ambiguous. It

is important to notice that it is only possible to identify ambiguous data in the case

where there is enough data to make an over-determined model. This is not always

the case. As briefly discussed in the previous section, the ambiguity of the data

can for instance arise when measurements are taken at different operation points, or

when the measurements are incorrect. In many cases only the trends are valuable

for the operation of the plant, so there is no need to get an absolute value from the

measurements. This will be a problem when building a simulation model as it is

in most cases crucial to get values that are in balance, or at least close to being in
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balance. The above mentioned problems with the data extraction are difficult, if

not impossible to avoid. This makes it also important and necessary to verify the

data extracted.

It is a non-trivial task to verify the extracted data from a plant. For cases where

time series are available, different statistical analysis can be applied to find the

most probable set of values. In many cases the task is reduced to a matter of trust,

i.e. which data seems unreasonable and which data can be trusted. The operating

personnel of the plant usually have a good working knowledge of the process, so a

good option would be to go through the data together with the operating personnel

of the plant in order to identify possible ambiguities. This is the method used in

the work presented in Publication I.

The verification of the data is normally an iterative process, since the validity of

data can in most cases only be established when the simulation model is complete

and the calculations can be compared to data extracted from the existing system.

This is a part of the verification of the whole simulation model which is discussed

in Section 4.1.3.

4.1.2 Simulation model design

For process simulators the simulation model design means to model the topology of

the process and then to specify the behaviour of the units comprising the system.

The way the topology and the behaviour of the units are implemented is dependent

on the simulation software chosen. Although discussed in this section, the choice

of simulation software is closely connected to the data extraction, as it determines

what kind of data is needed. If the system being modelled is complicated, it might

be difficult to identify all the data that is needed for the simulation model design

beforehand, and it might be necessary to return to the data extraction step to obtain
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enough data for the modelling. It is important to choose the simulation software

that can model the system to the accuracy required, but at the same time the model

of the system should be as simple as possible. If the simulation model is relatively

simple, it means that numerical problems can be avoided. A simple model can also

reduce the amount of data that is needed to be extracted and verified compared to

a more complex model, and the verification of the complete simulation model will

be easier. The verification of the simulation model is the next step to completing

the simulation modelling.

4.1.3 Simulation model verification

The task of verifying a simulation model is very different if the objective is to model

an existing system compared to if the objective is to model a new system (including

major changes to an existing system). Both cases are discussed in this section.

For a simulation model of an existing system, verification can be made by comparing

snapshots from the monitoring system at the plant with the similar values obtained

from the simulation model. At this stage the data, on which the simulation model is

based should also be verified. The problems with data from the monitoring system

have already been discussed in Sections 4.1 and 4.1.1. An important problem is that

it is next to impossible to obtain snapshots of the whole process from the plants to

compare with the simulation model. This makes it considerably more difficult to

verify how well the simulation model perform. However, it is possible to acquire a

relatively good picture of how sensitive the simulation model is to changes in the

parameters. One way to receive an indication of how the simulation model performs

is to choose a few important values and compare these. A time series of these values

would be necessary in order to be able to perform a valid statistical analysis, e.g.

statistical and systematic error.
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For a new system or for a system where the simulation model should model major

changes, relevant data from a monitoring system is not available and other strategies

for the verification must be applied. The verification could be achieved by analysing

the simulation model, and then use engineering skills and heuristics to evaluate if

the simulation model calculates the behaviour of the equipment as expected. This

would require a good understanding of the system and the equipment. It is also

possible to qualitatively compare data from a real similar system to the calculations

by the simulation model.

Unless the simulation model is found to give a sufficiently good representation of

the system, it will need to be revised.

4.2 Regression model for optimisation modelling

The process for the development of the regression model can be divided into two

steps; first a decision about the form of the regression model must be made, second

it should be decided how data for the regression model should be obtained and how

the regression model should be fitted to the data. An overview of the process is

shown in Figure 4.3.

The main decisions that have to be made when deciding the form of the regression

model or models needed for the optimisation models are:

1. Decide which regression model or models that are needed

2. Decide which are the independent and which are the dependent variables

3. Decide the mathematical form of the regression model or models
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regression model(s)

model corresponds to system?

choose the independent and dependent variables

optimisation model

choose the mathematical form of the regression model(s)

choose the number of observations (simulations)

choose the experimental design / criterion

simulate the system according to the design

fit the regression model(s) to the data

analyse the regression model(s)

regression model(s) ok?

is the number of observation sufficient?

no

no

is the mathematical form correct?

yes

no

should the design / criterion be changed?

yes

no

yes

 Figure 4.2

 Figure 4.4

Figure 4.3: Overview of the process for developing the regression model.



49

These steps are closely connected to the design of the optimisation model, since the

decisions must be based on the purpose of the optimisation model. When making

these decisions it is important to keep in mind what the objective of the design or

analysis is. The optimisation model must be designed to be a tool that can assist

the achievement of the objective of the design or analysis of the energy system. If,

for instance, the objective of an analysis is to maximise the electricity generated

subjected to certain constraints, the regression model should be able to model a

dependency between the generated electricity and the constraints. Consequently, the

dependent and independent variables must reflect the dependency being modelled.

The number of independent variables should be as small as possible, since the more

independent variables the model has the more data is needed to fit the regression

model.

In addition to the step where the regression model is fitted to the data, the math-

ematical form, e.g. linear, polynomial or logarithmic, of the regression model is

needed when the decision about the way the data should be obtained is made. As

a general rule the mathematical form of the regression model should be as simple

as possible, and it should be able to model the dependency between the dependent

and independent variables to a certain tolerance. For the optimisation model, it is

in addition beneficial that the regression model is convex or easily convexified.

Discussions about some aspects of convex models related to the optimisation of

energy systems can be found in other work by the author, namely in the work by

Laukkanen and Tveit [37], Tveit [66] and Tveit et al. [68].

4.2.1 Data generation, fitting and verification of the regression model

A common approach to generate data from simulation models is to change one

variable at the time and to keep the other variables of interest constant. This means
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creating a grid of size nk, where n is the resolution and k is the number of variables

of interest. As the simulation model grows more complex, both the time to complete

a simulation run and the number of variables will increase, and the combinatorial

complexity increases exponentially. Due to the combinatorial complexity, the time

it takes to complete a grid, makes it necessary to choose the values to be simulated

more carefully. This can easily be appreciated even for relatively few variables.

In the context of the systematic procedure presented in this work, the number of

simulations, or observations, can be chosen in the following way:

1. Give an upper bound on the time that is reasonable to use for the simulation

runs.

2. Calculate the number of simulation runs that are possible within this time,

based on an estimate of the time it takes to complete one simulation run.

One option in order to select the values to be simulated is to take advantage of the

methods developed in the field of experimental design, as described in Section 2.4.

This is the option used in the systematic procedure described in this work. The

objective of optimal experimental designs is to choose the best reduced set of points

from all the possible candidate points. In Publications II, III and IV symmetric

designs for fitting first order and second order models are applied as a part of the

procedure for optimising energy systems. Publication II describes the development

of a first order (bilinear) model using the 2k factorial design, while Publication IV

also describe the development of a second order response model using a face-centred

composite design. In cases where it is not possible to use the traditional symmetric

designs, since the experimental region is irregular, or the model is non-standard or

the sample size requirements are unusual, other criteria for selecting the optimal

design must be used. This is discussed in Publications V and VI, where the D-

optimal criterion for selecting the design is applied.
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When the best set of points to be simulated is chosen and the points have been

simulated, the regression model must be fitted to the data. There are several ways

of fitting the models, but two common criteria relevant to this work are the least

squares (lsq) and least absolute deviation (lad) criteria. The objective of both criteria

is to find the coefficients for the regression model that minimises the residuals. The

criteria give rise to the optimisation problems shown respectively in Equations 4.1

(lsq) and 4.2 (lad).

min
( k∑

j=1

r2
j

)
s.t. yj = f(xj) + rj ∀j ∈ (1, 2, . . . , k) (4.1)

where y and x are the dependent and independent variables respectively, f(x) is the

regression model being fitted to the data, rj are the residuals, j refers to the data

from the simulations and k is the number of observations.

min
( k∑

j=1

r+
j + r−j

)
s.t. (4.2)

yj = f(xj) + r+
j − r−j ∀j ∈ (1, 2, . . . , k), r+

j , r−j ≥ 0

where r+ and r− are respectively the positive and negative residuals. In addition

to the residuals, the variables in the optimisation problems are the coefficients of

the regression model contained in f(x). Due to the existing solvers, it is normally

beneficial for the optimisation model to be convex. An additional constraint to

Equations 4.1 and 4.2 could be that the eigenvalues of the Hessian matrix of f(x)

should be positive or equal to zero. A function with this property is positive semidef-

inite, and the addition of this constraint will consequently force the regression model

to be convex.

The quality of the regression model must be tested after the previous steps have

been performed. A natural way of testing the regression model is to compare a set

of values of the regression model with values obtained from the simulation model.

The set of values obtained from the simulation model should be different from the

set of values used to fit the model. The values could be compared for the maximum
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error (i.e. the maximum difference between the value calculated using the regression

model and the value calculated using the simulation model), average error, standard

deviation (i.e. indicate how the errors are distributed) and the square of the Pear-

son correlation. The square of the Pearson correlation indicates how well the values

from the regression model explain the variance in the values from the simulation

model. If the tests indicate that the regression model is not sufficiently accurate for

the optimisation model, it needs to be revised. It might be necessary to improve the

regression model by adding more data for the fitting or by changing the mathemat-

ical form of the model. It might also be necessary to add independent variables. If

the regression model is found to be a good representation of the system, the next

step is to develop an optimisation model.

4.3 Optimisation modelling

Optimisation modelling includes the formulation of the objective function and the

constraints, the solving of the model using solvers that are suitable for the formu-

lation and the verification of the solution found by the solvers. An overview of the

process is shown in Figure 4.4. The formulation is strongly dependent on the ob-

jective of the analysis or design of the energy system. If, for instance, the objective

of an analysis is to study how sensitive the economical feasibility of new investments

are on the fuel and electricity spot-prices, the formulation will be different from a

study where the objective is to reduce emissions of carbon dioxide. The objective

and constraints of the optimisation model can be technical (physical) or economi-

cal. For a heat exchanger, the technical constraints can be the temperatures and

the heat flow in the exchangers, while the economic constraints can be related to the

installation and investment costs. Decisions about the formulation of the objective

function and the constraints have already been made, as it is closely related to the

development of the regression model or models in the previous step. As mentioned,

simulation models are often better models of the system than optimisation models.
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The advantage of using regression model based on simulations is that it is possible

to reduce the size of the optimisation model compared to models where all units are

modelled in detail, and it is also easier to develop an optimisation model that has

certain properties, e.g. a convex model.

The choice of the optimisation algorithm or algorithms to solve the optimisation

problem is an important part of the modelling. In order to obtain good solutions

to the optimisation problem, the formulation of the model should be analysed and

the choice of solvers should be based on this analysis. The choice of the optimi-

sation algorithms (i.e. solvers) will in many ways also define the formulation of

the optimisation model. In order to achieve an efficient model for the solvers, it is

important to consider this, by analysing the model at all stages of the formulation.

Again it is desirable to keep the model as simple as possible, as this will simplify

the optimisation process. There is a trade-off between the need to keep the model

as simple as possible and the need to get a realistic model of the system. As men-

tioned in Section 2.2.1, linear models are in most cases preferable to nonlinear, and

convex models are preferable to nonconvex. When developing the regression model

or models it is possible to choose mathematical forms that are suitable for optimi-

sation. This is a distinct advantage of the models developed using the systematic

procedure presented in this work compared to optimisation models where all the

units are modelled in detail. A comparison between a model developed using the

systematic procedure and a model where all the units are modelled in detail can be

found in Publication IV.

In order to speed up the optimisation process, the simulation model can be used

to find a good starting point for the optimisation. This is especially important for

nonlinear models, and even more if the model is too large for the global solvers. For

nonconvex models the starting point may determine the quality of the solutions.

In some cases a good starting point might even determine if a feasible solution is

even found. For complex optimisation problems it might be very difficult to find
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a good starting point, or even a good feasible point. If the problem is kept small

and simple, it might be possible to avoid the problems usually related to nonconvex

models by using solvers that can guarantee global optimum. The solutions found by

a global solver are not dependent on the starting point, but a good starting point

will speed up the convergence time.

4.3.1 Optimisation model verification

The verification of the optimisation model and the results are an important part of

the procedure, or indeed of any analysis or design of energy systems. The procedure

presented in this work uses the assumption that it is possible to make a good sim-

ulation model of the system being designed or analysed. In previous sections it has

already been discussed that it is normally possible for a simulation model to give

a more accurate description of the system than an optimisation model. Assuming

that this is the case, both the formulation of the optimisation model and the results

can be compared to the calculations made by the simulation model. One way of

verifying the formulations of the optimisation model is to fix the parameters of the

optimisation model, solve the model and compare the results with similar calcula-

tions by the simulation model. If the calculations made by the optimisation model

are similar within an accepted tolerance to the calculations made by the simulation

model, it is a good indication that the optimisation model gives a good representa-

tion of the system. Otherwise the formulations must be revised, since it is possible

that due to the simplifications, the solution found by the optimisation model is not

feasible with respect to the simulation model and the actual system. This can be

tested to a certain degree by feeding the result of the optimisation model to the

simulation model and then comparing the results. Again a good correspondence

between the calculations would indicate that the results are acceptable, and a poor

correspondence would indicate that the formulations need to be revised. In addition

to the simulation model, the verification of the results can and should be made by a
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decision maker. For instance, the final verification of the results from the model can

be made by letting engineers and operating personnel at the plant look at and com-

ment the results. The decision maker can analyse the results based on the knowledge

of the system, and decide if the calculations are reasonable and if the results are in

correspondence with the objective of the analysis or design of the system. When the

results of the optimisation model are found to be sufficient, the analysis or design

of the energy system is complete.
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regression model(s) ok?

model the system

yes
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analyse the optimisation model
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solve the optimisation model

verify the solution(s)
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yes
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 Figure 4.3

Figure 4.4: Overview of the optimisation modelling.
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5 Conclusions

The objective of this work is to present a systematic procedure for analysing and

designing energy systems. The procedure is presented in detail in Section 4 and in

the Publications I to VI. The procedure utilises simulation modelling, experimental

design, regression models and mathematical programming. Mathematical program-

ming is used to find the best solutions in relations to the objectives of the analysis

or design. The regression models based on simulation modelling are used together

with experimental design to simplify the optimisation model, while at the same time

maintaining a representative optimisation model of the system. The novel approach

in the procedure is to systematically integrate a method for simplifying the optimisa-

tion problem by developing regression models based on simulations. The advantage

of using a regression model based on simulations is that it is possible to reduce the

size of the optimisation model compared to models where all units are modelled

in detail, and it is also easier to develop an optimisation model that has certain

properties, e.g. a convex model. The main advantage of the methodology is that it

will present a novel option of reducing the size of the problems that is more flexible

than the existing methodologies using mathematical programming. The way the

problem is reduced is not restricted by the thermodynamic aspects of the process,

e.g. reducing the size by fixing steam pressures, or by requiring that all equations

should be of a certain mathematical form, e.g. linear.

5.1 Contribution of this work

The new requirements for cost efficient energy systems that have an efficient utilisa-

tion of energy with low negative environmental impact can only be met with efficient

tools for analysing and designing energy systems. The systematic procedure can be

used to quickly build a realistic optimisation model of an energy system to try to
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achieve these goals. The procedure suggested in this work uses mathematical pro-

gramming. The combinatorial and numerical problems associated with the use of

mathematical programming for the analysis, design and synthesis of an energy sys-

tem must be handled before any methodology can be efficiently utilised. In this

procedure experimental design has been systematically used to guide the process

points to be simulated. Experimental design has not previously been used in this

specific context. The systematic procedure presented here addresses these problems

of simplifying the optimisation problem by using regression models of the system.

This is important, since it can efficiently reduce the complexity of the problem, and

can thus be used to analyse and design complex energy systems with respect to

several objectives. In this respect the procedure can be seen as a valuable addition

to the existing methodologies.

The systematic procedure can be used for a wide range of problems for the analysis,

design and synthesis of energy systems. For instance, the procedure can be used

for the selection of the optimal pair of compressor and expander for a microturbine

(Publication IV), for the investigation of integrating a pulp and paper mill with

a municipal district heating network (Publication III) and for analysing the effect

process changes will have on a complex utility system (Publications V and VI).

5.2 Recommendations and future work

The systematic procedure presented in this work is a good basis for further work

and developments in the field of analysis and design of energy systems.

Important future work can be related to the evaluation of the accuracy of the models

and the results, or to the data extraction. The evaluation of the models and results

is an very important task of any modelling, and there is a need for efficient tools for

evaluating the accuracy of the models and results. In addition to this, there is still
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a great deal of work remaining to develop efficient tools for data extraction. Such

tools would be valuable, as the data extraction can be a very time-consuming task

when analysing and designing energy systems.

Further work could also involve developing the procedure presented in this work

into a more formal framework. In addition to the steps introduced in this work, the

framework should include a set of detailed rules for the procedure. The purpose of

the set of rules would be to guide the analysis or design process in more detail.
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