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Abstract. In this paper we address the problem of joint channel and frequency offset estimation and tracking
in multiple-input multiple-output (MIMO) OFDM systems for mobile users. The proposed method stems from
extended Kalman filtering and is suitable for time-frequency-space selective channels. Separate offset for each
MIMO channel branch is considered because of the mobility and rich scattering. The channel taps and the fre-
quency offsets are estimated in time-domain while the equalization is performed in frequency domain. Simulation
results demonstrate that the proposed method tracks time-varying channels and frequency offsets with high fidelity.
Realistic channel models are used in mobile scenarios. The proposed time-domain approach has improved perfor-
mance and robustness in comparison to purely frequency domain processing. Computational complexity is lower as
well.
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1. Introduction

Multiple-input multiple-output (MIMO) systems are a key technology in future high data-rate
mobile communications. MIMO systems make use of several antennas at the transmitter and
receiver sides in order to improve the spectral efficiency and link reliability of the system.
Multi-carrier techniques are another important broadband wireless transmission technology.
The data is transmitted on several parallel narrowband subcarriers. Combining MIMO with
multicarrier techniques provides a feasible physical layer technology for future beyond 3G
and 4G wireless communications.

One particular multicarrier technique which has received a lot of attention in recent years is
orthogonal frequency division multiplexing (OFDM), see e.g. [1]. OFDM transmission turns a
frequency selective channel into a set of parallel narrowband channels. This leads to very simple
equalization since the transmission becomes free of intersymbol interference (ISI). However,
the theoretical benefits of MIMO and OFDM systems may not be fully achieved in broadband
mobile applications because the channels are time and frequency selective. In order to enjoy
all the advantages of OFDM transmission, two key tasks must be successfully accomplished:
channel estimation and frequency synchronization. In high speed mobile scenarios the channel
is varying rapidly and the task is not only to estimate the channel accurately but also to track
it over time in order to achieve target error rates. One of the main drawbacks of OFDM
is its high sensitivity to frequency offsets caused by oscillator inaccuracies, separate radio
frequency–intermediate frequency (RF–IF) chains and Doppler shifts due to mobility. These
result in inter-carrier interference, leading to severe performance losses especially at high
data-rates. The degradation is significant because the number of subcarriers is typically large
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and the inter-carrier spacing is small. Hence, the compensation for the frequency offsets is
crucial.

Channel estimation for OFDM systems has been investigated in both single input single
output (SISO) systems [2–4] and MIMO case [5–8]. Typically the channels are assumed to
be time-invariant. Time-varying channels have been considered in [6, 7, 9, 10]. Commonly, the
problems of channel and frequency offset estimation are addressed separately [11]. Recursive
estimators such as Kalman filter that are suitable for tracking time-varying systems have been
used in OFDM, for instance, to estimate the wireless channel in frequency domain [2, 12]. A
time-domain approach based on Kalman filter was proposed in [13, 14].

Frequency offset estimation problem was considered in [15]. Extended Kalman filter (EKF)
was applied in [16] to jointly estimate code delay and multipath channel parameters in the
context of CDMA systems. The idea of joint channel and frequency offset estimation using
EKF was proposed for SISO-OFDM systems [17] and extended to MIMO systems in [18].

In this paper, the problem of tracking both time-varying frequency offsets and channel
coefficients in MIMO-OFDM systems is addressed. The channel is assumed to be both time and
frequency selective. The proposed method performs the channel and carrier frequency offset
(CFO) estimation in time-domain followed by equalization in frequency domain. Expressions
for both zero-forcing and minimum mean square error (MMSE) equalizers are given. The
scope of this paper is channel and CFO tracking. Equalization is by no means optimized,
hence the presented bit error rate performance is for illustrative purpose. Each transmitter–
receiver pair introduces its own frequency offset [19], induced by mobility together with large
angle spread and rich scattering environments, typically assumed in MIMO systems. The
estimator is implemented using extended Kalman filtering. A few known training symbols
at the beginning of the transmission are used to acquire estimates of the channel and offset
parameters, and these parameters are tracked over time. Then, the algorithm may switch to
decision-directed (DD) mode and use the decoded symbols for keeping the track, in particular
in low mobility scenarios. In high mobility cases, pilot signals are naturally needed [8]. The
proposed time-domain approach shows highly reliable tracking performance and robustness.
Both the time-varying MIMO channels and the frequency offsets are accurately tracked, with
reduced pilot information due to decision-directed processing. Computational complexity is
significantly reduced compared to Kalman filter-based tracking in frequency domain.

The rest of the paper is organized as follows. A brief overview of the MIMO-OFDM
system model is given next. In Section 3, we derive the nonlinear state-variable model which
describes the dynamic behavior of the MIMO channel matrix and frequency offsets. These
channel parameters may then be estimated using EKF. Description of the proposed channel
and CFO tracking algorithm is given. In Section 4, we show simulation results using time and
frequency selective channels and time-varying frequency offsets. Finally, Section 5 concludes
the paper.

2. System Model

In this section, the T-transmit R-receive MIMO system model employed throughout this paper
is described. First, MIMO channel and frequency offset parameters are briefly presented. Then,
input–output relationships are given for MIMO-OFDM systems experiencing frequency offset
in addition to time and frequency selective fading. Finally, zero forcing and minimum mean
square error equalizers operating in frequency domain are presented.
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2.1. MIMO CHANNEL

Considering a T–R MIMO system, in the following index t = 1, . . . , T refers to transmit anten-
nas and r = 1, . . . , R to receive antennas. We will write tr when referring to the transmission
from antenna t to antenna r.

For OFDM with proper cyclic prefix (CP) and timing, the discrete channel frequency
response between transmit antenna t and receive antenna r can be expressed as:

Htr [k, n] =
L−1∑
l=0

htr [k, l]e− j 2πln
N , (1)

where k refers to the discrete time instance, n = 0, . . . , N−1 is the subcarrier index and
N is the number of subcarriers. There are a total number L of propagation paths. The dis-
crete time channel impulse response between transmit antenna t and receive antenna r, htr [k,
l], is sampled from the continuous time impulse response at time kT f and delay lag lTs /N.
The terms T f and Ts denote the total duration of the OFDM block and of the data part,
respectively. In OFDM, the subcarrier spacing is chosen as �f = 1/Ts . The channel coef-
ficients htr [k, l] are assumed to be complex zero mean Gaussian random variables, which
leads to Rayleigh fading. Each channel tap is considered to be correlated in time. The
average power and delay profiles, {E[|htr [k, l]|2]}L−1

l=0 and {τl}L−1
i=0 , respectively, are deter-

mined by the environment. Specific commonly occurring scenarios are used in simulations in
Section 4.

By assuming block fading model [20], the channel remains constant over one OFDM
symbol. The taps of each individual MIMO channel of length L can be stacked into a vector
as follows:

htr (k) = [htr [k, 0], htr [k, 1], . . . , htr [k, L − 1]]T (2)

= [
h0

tr (k) . . . hL−1
tr (k)

]T
, (3)

with hl
tr (k)

�= htr [k, l], l = 0, . . . , L − 1.
Now, we may stack the elements of the whole MIMO channel matrix at time instance k into

a column vector of size TRL × 1:

h(k) = [
hT

11(k) . . . hT
T 1(k) . . . hT

1r (k) . . . hT
tr (k) . . . hT

T r (k) . . . hT
1R(k) . . . hT

TR(k)
]T

. (4)

Channels corresponding to different transmit and receive antenna pairs in MIMO systems
usually exhibit similar delay profiles. Moreover, channel impulse responses are considered to be
independent and identically distributed. In practice this means that the scattering environment
is rich and the antennas are placed further than the coherence distance apart.

2.2. FREQUENCY OFFSETS IN MOBILE MIMO SYSTEMS

Frequency offsets are mainly caused by two different factors [21]: Doppler shifts and carrier
frequency mismatches between transmit and receive oscillators.

Carrier frequency mismatches occur when oscillators at the transmitter and receiver side
experience drifts from their nominal frequency. Therefore, a frequency offset is introduced. In
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multi-antenna systems each transmitter and receiver typically requires its own radio frequency–
intermediate frequency (RF–IF) chain. Consequently, each transmitter–receiver pair has its
own mismatch parameter and hence separate frequency offset. In a T × R MIMO system this
leads to T × R mismatch parameters and offsets. If transmit or receive antennas share RF–IF
chains, fewer carrier mismatch parameters are needed.

In wireless mobile communications, Doppler shift arises from relative motion between the
transmitter and the receiver. This leads to a shift of the received signal spectrum. The shift
depends on the carrier frequency and the velocity of the mobile terminal [22–25]. In theory,
separate offset parameter is needed for each propagation path [22–24]. In MIMO wireless
communication systems, rich scattering environment and large angle spread are required in
order to obtain improved spectral efficiency and link quality. In case of mobile MIMO systems,
each channel branch is assumed to introduce its own Doppler shift. Similar approach is adopted
in [19]. The assumption of a single offset per multi-antenna receiver is valid only in the case
when multipath components impinge the antennas with the same angle of arrival (AOA) [19,
21, 26], for example, in the case of Rician channel with very few dominant AOA’s. Hence,
in a general case of T × R MIMO system it is necessary to compensate for T × R different
Doppler shifts.

Just to conclude, using separate frequency offset parameters for each MIMO branch is
justified by mobility, rich scattering environment and separate RF–IF chains. In particular
scenarios where there is a strong line-of-sight component and shared RF–IF chains, fewer
offset parameters may be used. This leads to reduced computational complexity.

2.3. MIMO OFDM SYSTEM MODEL

In the following, the transmission process is described in a formal way, using the notation
introduced in [20]. The MIMO-OFDM system model is depicted in Figure 1.

The k-th modulated OFDM block after CP insertion at transmit antenna t is written as
x̃t (k) = TCPFN at (k), where FN is the N × N inverse discrete Fourier transform (IDFT) matrix,
N is the total number of subcarriers, at (k) is the N × 1 complex symbol vector sent from
antenna t, and TCP is the cyclic prefix insertion matrix defined as:

TCP =




0L×(N−L) IL

IN−L 0(N−L)×L

0L×(N−L) IL




P×N

, (5)

Figure 1. MIMO-OFDM transmission model.
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where L is the length of the cyclic prefix and consequently P = N + L is the total OFDM block
length. The notation IK refers to the identity matrix of size K × K, and 0K×L to matrix of size
K × L filled with zeros.

Frequency offsets are modeled at the receiver side. This reflects the physical reality, as
this modeling accounts for both local oscillator drifts and Doppler shifts induced by mobility.
Carrier frequency deviation occurs before the removal of the cyclic prefix, yielding a non-
continuous behavior at symbol borders. As argued in Section 2.2, each MIMO branch is
considered to introduce its own frequency offset. In a T × R MIMO system there are T × R
different offsets to be compensated for.

Introducing the offset at the receiver, before cyclic prefix removal, leads to the following
expressions for the received signal in time-domain at the r-th antenna after cyclic prefix
removal:

rr (k) =
T∑

t=1

RCPCε
tr (k)Htr (k)x̃t (k) + wr (k), r = 1, . . . , R, (6)

where RCP = [0N ×L IN ]N × P of size N × P performs cyclic prefix removal on a
single OFDM block. Cε

tr (k) is the P × P frequency offset matrix having the form Cε
tr (k) =

diag {exp( j 2πnεtr (k)
N )}, with n = 0, . . . , P − 1. The quantities εtr (k), chosen as 0 ≤ εtr (k) <

1, are referred to as normalized frequency offsets, that is effective frequency deviation lies
in the interval [0, B/N[, where B is the total bandwidth allocated to the system. The matrix
Htr (k) models the wireless environment between the t-th transmit and r-th receive antenna at
OFDM block time k. Each Htr (k) is a Toeplitz convolution matrix of size P × P made out
of the channel vector htr (k). The maximum channel length is L and the length of the cyclic
prefix is also set equal to L in order to avoid inter-block interference. The TR channel vectors
htr (k) are written as described at the end of Section 2.1, i.e. htr (k) = [h0

tr (k) . . . hL−1
tr (k)]T.

The channel taps {hl
tr (k)}l=0,...,L−1 are assumed to be invariant over the duration of one ODFM

block and they are assumed to vary independently in time. The additive white Gaussian noise
vector wr (k) has covariance matrix σ 2IN .

Equivalently, Equation (6) can be written in the following form:

rr (k) =
T∑

t=1

RCPCε
tr (k)X̃t (k)htr (k) + wr (k), r = 1, . . . , R, (7)

where X̃t (k) are Toeplitz matrices of dimension P × L built from the vector x̃t (k), t =
1, . . . , T .

The set of R equations in (6) or (7) may be written in more compact matrix form. The
received RN × 1 signal block after cyclic prefix insertion, followed by transmission on the
wireless channel and cyclic prefix removal may then be written as follows:

r(k) = R̃CPHε(k)x̃(k) + w(k) (8)

= R̃CPX̃(k)h(k) + w(k), (9)

where r(k) = [rT
1 (k) . . . rT

r (k) . . . rT
R(k)]T is the k-th received block of size RN × 1 at the

R receive antennas, x̃(k) = [x̃T
1 (k) . . . x̃T

t (k) . . . x̃T
T (k)]T is the k-th OFDM modulated block

of size TP × 1 at the T transmit antennas, and w(k) = [wT
1 (k) . . . wT

r (k) . . . wT
R(k)]T is the

circular complex white Gaussian noise vector with covariance matrix Rw = σ 2IRN . The
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channel vectors corresponding to each MIMO branch are stacked into the vector

h(k) = [
hT

11(k) . . . hT
T 1(k) . . . hT

1r (k) . . . hT
tr (k) . . . hT

T r (k) . . . hT
1R(k) . . . hT

TR(k)
]T

.

The block diagonal matrix R̃CP of size RN × RP is designed to remove the cyclic prefix
from the RP × 1 signal block at the receive antennas and is defined as:

R̃CP =




RCP 0N×P · · · 0N×P

0N×P RCP
...

...
. . . 0N×P

0N×P · · · 0N×P RCP




RN×R P

. (10)

The RP × TP MIMO channel convolution matrix in (8), which takes into account also the
frequency offset on each MIMO branch, may be expressed as:

Hε(k) =




Hε
11(k) · · · Hε

T 1(k)
... Hε

tr (k)
...

Hε
1R(k) · · · Hε

TR(k)




R P×T P

, (11)

where we defined the matrices Hε
tr (k)

�= Cε
tr (k)Htr (k), t = 1, . . . , T, r = 1, . . . , R.

If model (9) is employed, the data and offset matrix of size RP × TRL is the following:

x̃ε(k) =




x̃ε
11(k) · · · x̃ε

T 1(k) 0P×L · · · · · · 0P×L

... x̃ε
1r (k) · · · x̃ε

T r (k)
...

0P×L · · · · · · 0P×L x̃ε
1R(k) · · · x̃ε

TR(k)




R P×T RL

, (12)

where sub-matrices X̃ε
tr (k) are defined as X̃ε

tr (k)
�= Cε

tr (k)X̃t (k), t = 1, . . . , T, r = 1, . . . , R.

OFDM demodulation is performed via discrete Fourier transform (DFT) at each receive
antenna. Taking the DFT of rr (k) as defined in (6) yields:

r̃r (k) =
T∑

t=1

FH
N RCPCε

tr (k)Htr (k)x̃t (k) + FH
N wr (k), (13)

where FH
N is unitary DFT matrix. Equation (13) can be further written as:

r̃r (k) =
T∑

t=1

FH
N RCPCε

tr (k)Htr (k)TCPFN at (k) + FH
N wr (k). (14)

Let us define for any t, r the following matrix of size N × N:

Mtr (k) = FH
N RCPCε

tr (k)Htr (k)TCPFN . (15)

With the notation introduced in (15), equation (14) becomes:

r̃r (k) =
T∑

t=1

Mtr (k)at (k) + ñr (k), (16)
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where ñr (k) = FH
N wr (k).

Now, we have the two cases depending on the frequency offset. If εtr (k) = 0: then Cε
tr (k) ≡

Ip and the matrix RCPCε
tr (k)Htr (k)TCP = RCPHtr (k)TCP

�= H̃tr (k) becomes circulant. Since
circulant matrices implement circular convolutions, they are diagonalized by DFT and IDFT
operations. Then, the following holds:

Mtr (k)=FH
N H̃tr (k)FN

=diag

{
L−1∑
l=0

hl
tr (k) exp

(
− j

2πnl

N

)}
n=0,...,N−1

. (17)

Thus Mtr (k) is diagonal and contains the frequency response of the channel htr (k) at each
subcarrier frequency. The transmission becomes free of intercarrier interference (ICI). Only
the frequency flat fading on each subcarrier needs to be compensated for, in order to decode
the transmitted symbols.

In the case carrier frequency offset takes place (may be due to mismatch or rich scattering
in addition to mobility), 0 < εtr (k) < 1 and the matrix RCPCε

tr (k)Htr (k)TCP is not circulant
anymore. Hence Mtr (k) is not a diagonal matrix anymore, which leads to ICI and the or-
thogonality property of the OFDM transmission is lost. In this case both the channel and the
frequency offset need to be compensated for.

Now, stacking the R equations in (16) in a vector we obtain:

r̃(k)
�= [

r̃T
1 (k) . . . r̃T

R(k)
]T = M(k)a(k) + ñ(k), (18)

where a(k) = [aT
1 (k) . . . aT

t (k) . . . aT
T (k)]T , ñ(k) = [ñT

1 (k) . . . ñT
r (k) . . . ñT

R(k)]T and the RN ×
TN matrix M(k) is:

M(k) =




M11(k) · · · · · · · · · MT 1(k)
... Mtr (k)

...

M1R(k) · · · · · · · · · MTR(k)




RN×T N

. (19)

The equalization may be performed in frequency domain as follows:

u(k) = U(k)r̃(k) (20)

= U(k)[M(k)a(k) + ñ(k)], (21)

where U(k) is the TN × N equalizer matrix at OFDM block time k. Then, decisions are carried
out on u(k) in order to obtain the symbol estimate â(k). The zero forcing and MMSE equalizers
may be found as follows:

1. The zero forcing (ZF) equalizer is given by:

UZF(k) = M+(k), (22)

where M+ = (MHM)−1MH is the left pseudoinverse of M.
2. MMSE equalizer may be found as follows:

UMMSE(k) = σ 2
a MH (k)

[
σ 2

a M(k)MH (k) + σ 2I
]−1

, (23)

where σ 2 = σ 2
ñ is the variance of the noise and σ 2

a is the average symbol energy.
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In order to ensure data symbol detectability with zero forcing, MH M has to be full rank, i.e.
TN = rank{MH M} = rank{M} ≤ min (TN, RN). Hence min (TN, RN) = TN, i.e. the number
of receive antennas must be at least equal with the number of transmit antennas.

MMSE and zero-forcing schemes were presented just to give the reader some indication
about the bit error rate performance. The equalization stage is by no means optimized in this
paper, since the scope is channel and CFO tracking. However, there exist number of equalization
schemes in the literature [27, 28], which can be fitted to the state-space framework we have
developed. Those may provide with better end-user performance, meaning improved bit error
rate and potentially reduced complexity.

3. Channel and Offset Estimation and Tracking

In mobile MIMO wireless communications, the channels are time-varying, and mobility com-
bined with rich scattering induces multiple carrier frequency offsets. Hence, channel and offset
parameters need to be tracked and equalizer coefficients updated periodically. In this section,
we derive a method for estimating and tracking both the MIMO channel coefficients and the
frequency offsets over time. The method stems from extended Kalman filtering (EKF). The
frequency offsets have been both modeled and simulated at the receiver side throughout this
paper.

We start by writing the state-variable model. The linear state equation is the following:

s(k) = As(k − 1) + v(k), (24)

where the state vector s(k) = [h(k)T ε(k)T ]T is comprised of channel coefficients h(k) and
frequency offsets values:

ε(k) = [ε11(k) . . . εT 1(k) . . . ε1r (k) . . . εT r (k) . . . ε1R(k) . . . εTR(k)]T. (25)

There are TRL channel taps and TR frequency offset values in the state vector of dimension
TR(L + 1). The state transition matrix A is of size TR(L + 1) × TR(L + 1). In this paper A is
considered to be close to the identity matrix (A = aITR(L+1), a = 0.99). The state transition
matrix describes the dynamics of the state vector, i.e. its time auto-correlation properties. Low
order auto-regressive (AR) models are widely and practically used in the literature [16, 29].
Elements of A are shown to be related to the Doppler frequency [16]. The part of the state
vector containing the channel coefficients may also be augmented to model an AR process of
order p [29, 30]. The process covariance matrix Qs has the following structure:

Qs =
[

Qh 0T RL×T R

0T RL×T R Qε

]
T R(L+1)×T R(L+1)

, (26)

where Qh = σ 2
h ITRL and σ 2

h is the variance of the state noise associated with channel coeffi-
cients. Qε = σ 2

ε ITR and σ 2
ε is the variance of the state noise associated with offsets.

We recall the measurement equation (8) or (9) where the RN × RN covariance matrix
of the measurement noise w is given by Rw = σ 2IRN . The noise statistics (Rw and Qs) are
considered to be known. The parameters A, Qs and Rw can, however, be reliably estimated
from the received data, see e.g. [31].

Equations (8) and (9) are linear in the channel coefficients, and non-linear in the offset val-
ues. Both these forms of the measurement equation will be needed later in the derivations. Due
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to nonlinearities introduced by frequency offsets, the measurement equation can be rewritten
as:

r(k) = g(s(k)) + w(k), (27)

where g: CT R(L+1) → CRN defined as g:

s(k)
�=

[
h(k)

ε(k)

]
�→ g(s(k)) = R̃CPHε(k)x̃(k) = R̃CPX̃ε(k)h(k) (28)

is a non-linear function of the state vector s.
For simplicity of the notation, the time index k will be omitted in the set equations

(29)–(42). Given the linear and non-linear state and measurement equations, we have to define
the Jacobian ∂g/∂s in order to apply EKF. Taking into account the structure of the state vector,
the Jacobian matrix G of g is the following:

G
�= ∂g

∂s
=

[
∂g
∂h

,
∂g
∂ε

]
RN×T R(L+1)

. (29)

Hence ∂g/∂s can be split into two parts, the derivative with respect to h and the one
with respect to ε. We will now derive expressions for these two quantities. Using the second
formulation for g in (28) we obtain:

∂g
∂h

�=
[

∂g
∂h11

· · · ∂g
∂hT 1

· · · ∂g
∂h1r

· · · ∂g
∂hT r

· · · ∂g
∂h1R

· · · ∂g
∂hTR

]
RN×T RL

(30)

=
[

∂

∂h
(R̃CPX̃εh)

]
RN×T RL

(31)

=R̃CPX̃ε. (32)

The derivative of g with respect to vector ε is defined as:

∂g
∂ε

�=
[

∂g
∂ε11

· · · ∂g
∂εT 1

· · · ∂g
∂ε1r

· · · ∂g
∂εT r

· · · ∂g
∂ε1R

· · · ∂g
∂εTR

]
RN×T R

. (33)

Recalling from (6) the expression for the received signal in time-domain at the r-th antenna,
the r-th vector block of g = [gT

1 , . . . , gT
r , . . . , gT

R]T is written as:

gr =
T∑

t=1

RCPCε
tr Htr x̃t , r = 1, . . . , R. (34)

First, by differentiating (34) with respect to εkl one obtains:

∂gr

∂εkl
=

{
RCPC̃ε

kr ykr , if l = r
0P×1, otherwise.

, k = 1, . . . , T, l = 1, . . . , R, (35)

with the following definitions:

ytr
�= Htr x̃t (36)
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and

C̃ε
tr

�= diag

{
∂e

j2πn εtr
N

∂εtr

}
n=0,...,P−1

(37)

=




0 0 · · · 0

0 j2π

N e
j2π εtr

N
...

...
. . . 0

0 · · · 0 j2π (P−1)
N e

j2π εtr (P−1)
N




P×P

. (38)

Then, by stacking the R vectors in (35) into a column vector,

∂g
∂εkl

=




∂g1

∂εkl

...
∂gR

∂εkl


 . (39)

Finally, the differential ∂g/∂ε in (33) may be expressed in a compact form as:

∂g
∂ε

= R̃CPȲε, (40)

with

Ỹε �=




C̄ε
11y11 · · · C̄ε

T 1yT 1 0P×1 · · · · · · 0P×1

... C̄ε
1r y1r · · · C̄ε

T r yT r
...

0P×1 · · · · · · 0P×1 C̄ε
1Ry1R · · · C̄ε

TRyTR




R P×T R

.

(41)

Having now the two differentials ∂g/∂h and ∂g/∂ε, it remains to construct the matrix G as
in formula (29), which yields the following Jacobian matrix:

G = [R̃CPX̃ε, R̃CPỸε]RN×T R(L+1). (42)

Using the expression of G given in (42), EKF can be applied using the well-known Kalman
equations (43)–(47):

ŝ(k|k−1) = Aŝ(k−1|k−1), (43)

P(k|k−1) = AP(k−1|k−1)AT + Qs, (44)

K(k) = P(k|k−1)GH
(k)

[
G(k)P(k|k−1)GH

(k) + Rw
]−1

, (45)

P(k|k) = [I − K(k)G(k)]P(k|k−1), (46)

ŝ(k|k) = ŝ(k|k−1) + K(k)
[
r(k) − g(ŝ(k|k−1))

]
. (47)

As previously mentioned, channel and offset estimation are done in time-domain while
the equalization is performed in frequency domain. The overall structure of the receiver is
illustrated in Figure 2. The algorithm works as follows. For each OFDM symbol at time k:
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Figure 2. Time-domain channel and frequency offset estimation and tracking followed by frequency domain
equalization.

1. Decode the received vector r(k) and find the symbol estimate â(k), using ĥ(k − 1 | k − 1)
and ε̂(k −1 | k −1), i.e. respectively the filtered estimate of the channel and the offset values
at symbol time k − 1.

2. Re-modulate ât (k) : ˜̄xt (k) = TCPFN ât (k), t = 1, . . . , T .

3. Build the estimates ˆ̃X
ε

(k), Ĥε(k) and Ĝ(k) using

ˆ̃x(k) = [
ˆ̃x

T
1 (k) · · · ˆ̃x

T
T (k)

]T
,

and predicted estimates ĥ(k|k − 1) and ε̂(k|k − 1).
4. Run the extended Kalman filter to finally obtain ĥ(k | k) and the estimates of the offsets

ε̂(k | k).

At this point one may also refine the estimates by re-decoding the symbol â(k) using the
filtered estimate ĥ(k|k). Substantial gains in performance are achieved as will be shown later
in the simulations section. Except for the first few OFDM blocks, the algorithm works in a
decision-directed mode. The initialization phase requires a few symbols (typically about half
of the state dimension). For example if we have a two-transmit, two-receive MIMO system
and the channel memory is of length 4, the dimension of the state will be 20. In this case 10
OFDM symbols are enough for EKF to converge in practice.

The major computational cost lies in the calculation of the matrix inversion in the Kalman
gain expression (45). By applying the matrix inversion lemma, the number of required op-
erations can be made proportional to (L + 1)N2 when tracking is done in time-domain. The
complexity is proportional to N3 when the processing takes place in the frequency domain. In
practice L � N , hence significantly lower complexity is achieved. Smaller parameter space
compared to frequency domain tracking (TR(L + 1) × 1 versus TR(N + 1) × 1 state vector)
leads also to smaller variance for the estimated channel values.

Pre-DFT compensation for frequency offsets prior to equalization cannot be performed in
our MIMO scenario: having one offset per MIMO branch makes the problem non-separable
and equalization for both channels and offsets needs to be done simultaneously. Hence
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due to multiple CFO’s, equalization becomes computationally expensive. Pre-DFT com-
pensation is however possible, in case there is only one CFO per multi-antenna receiver.
Complexity of the subsequent channel equalizer is then significantly reduced, due to the
absence of ICI. The proposed state-space model may be easily modified to any of these
scenarios.

4. Simulations

In this section, simulation results are reported. We consider the following performance criteria:
the normalized mean squared error (NMSE) of the proposed channel and offset estimation
method and the raw bit error rate (BER) of the system, since no diversity or coding technique
has been applied. Considering the scope of this paper, i.e. channel and CFO estimation, the
NMSE yields a relevant performance measure. However, for completeness we also show the
raw BER. Illustrative plots demonstrating the high fidelity tracking capability of the proposed
algorithm are presented. In our simulation studies, results are presented in the case where
frequency offsets are introduced at the receiver side. However, modeling the offset at the
transmitter exhibits similar tracking and BER performance.

A two-transmit, two-receive antenna MIMO system is considered. The carrier frequency
is f0 = 2.4 GHz and the number of subcarriers is set to N = 128. The available bandwidth
is chosen equal to B = 1 MHz. The subcarrier symbol rate is of 7.8 KHz. QPSK symbol
modulation is employed.

The signal to noise ratio (SNR) is defined as:

SNR = E‖x̃‖2

E‖w‖2
= Es

N0
, (48)

where Es is the symbol energy and N0 is the noise variance.
Wireless channels from each transmit to each receive antenna experience Rayleigh fading

with independent propagation paths. Various mobile speeds are used throughout the experi-
ments. Precise SNR and speed value are mentioned in the caption of each figure. A receiver
speed of v = 60 km/h corresponds to a Doppler frequency equal to 133 Hz. The Doppler
spectrum is Jake’s and the power loss and delay profiles are: [0, −1, −3, −9] [dB] and [0,
1, 2, 3] [µs] which correspond to a urban type of scenario. Block fading model is assumed,
i.e. channels are considered to remain constant during the OFDM block time. No antenna
correlation is considered neither at the transmitter nor at the receiver side, which means the
four channel impulse responses h11, h21, h12 and h22 fade independently. The MMSE equalizer
(23) is used to decode the symbols. The four frequency offsets are varying independently in
time.

Tracking capability of the proposed method is first demonstrated as a function of time.
Real and imaginary parts of h11 are plotted in Figure 3, in the case of 60 km/h velocity of the
mobile terminal and at 15 dB SNR. Time variations of the four channel taps are accurately
tracked, even for those with low average power. Retraining symbols are sent periodically
(every 50-th block in this simulation) in order to avoid loosing the track, which could occur
if all the channels in MIMO system happen to fall in a deep fade simultaneously. No special
block structure has been considered for retraining, assuming that the whole OFDM symbol
is known to the receiver. Retraining time instances are indicated with dotted vertical lines.
Decision-directed mode enables the use of limited amount of pilot information: retraining
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Figure 3. Time-domain tracking of channel coefficients (SNR = 15 dB, v = 60 km/h); vertical lines correspond
to retraining time instances.

Figure 4. Time-domain tracking of frequency offsets (SNR = 15 dB, v = 60 km/h).

every 50 blocks is equivalent to 2% pilot data rate, compared to the 15–25% commonly used
in mobile wireless applications.

The tracking results for each offset value are shown in Figure 4. In order to demonstrate
the tracking capability of our algorithm, each offset varies in time individually, according to
a given profile. We note the tracking ability in case of both rapid and slow changes of the
time-varying offsets. However, tracking time-varying offsets in OFDM is a sensitive issue
when high order modulations are employed [9].
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Figure 5. NMSE for channel estimation (v = 30 km/h).

As a measure of performance of the time-domain estimation, NMSE is computed for both
channel and frequency offset as follows:

NMSEĥ = E‖ĥ − h‖2

E‖h‖2
(49)

NMSEε̂ = E‖ε̂ − ε‖2

E‖ε‖2
. (50)

The NMSE as a function of SNR is depicted in the case of channel estimation in Figure 5
and for frequency offset estimation in Figure 6. Accurate estimation is obtained over the whole
range of SNR. Improved performance is obtained by re-decoding the symbols with the filtered
estimates ε̂(k | k) and ĥ(k | k) and re-running the EKF update stage one more time.

Since the equalization stage operates in the frequency domain, accuracy in estimating
frequency responses of the channels at the subcarrier frequencies needs to be investigated.
Figures 7 and 8 respectively show amplitude and phase responses, for the true and estimated
channels, at a given OFDM block time. Since the time-domain estimation performs well,
channel transfer functions are consequently also modeled accurately, both in amplitude and
phase. Refined estimates yield frequency responses closer to the true ones. Hence, quality of
the subsequent equalization will improve.

Kalman filter has been applied to frequency-domain channel tracking in OFDM [2]. The
performance of the proposed method is compared to the frequency domain approach in [2] (no
AR modeling included in our simulations) in a SISO case. Time-domain tracking performs
well for both amplitude (Figure 9) and phase (Figure 10). The frequency domain approach
however looses the track of the phase on some sub-carriers. Tracking in time turns out to be
more robust to estimation errors because the frequency correlation of the taps can be efficiently
exploited. Furthermore, estimation errors are spread over the whole transmission spectrum,
and not concentrated on a given set of subcarriers. The frequency domain method without AR
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Figure 6. NMSE for frequency offset estimation (v = 30 km/h).

Figure 7. Amplitude response (SNR=15 dB, v = 60 km/h).

modeling tracks each subcarrier independently. As a result, a single decision error induces
an erroneous feedback, provoking a phase rotation for the estimated frequency channel tap
(peaks in Figure 10). This results in a complete loss of the data stream on the corresponding
subcarrier.

Simulations for different terminal velocities ranging from 3 km/h (pedestrian mobility) up
to 140 km/h have been performed at 20 dB SNR, see Figure 11. As expected, the performance
degrades as the speed increases, due to cumulating decision errors since the proposed algorithm
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Figure 8. Phase response (SNR = 15 dB, v = 60 km/h).

Figure 9. Amplitude response (SNR = 15 dB, v = 30 km/h).

is working in a decision-directed mode. Retraining has been used every 50-th symbol block.
High terminal velocities translate into high time-selectivity of the wireless channel. Hence,
the channel may have changed and the previous estimate may not be adequate to make correct
symbol decisions and keep the track of channel coefficients. A well-designed pilot structure
in time-frequency domains is required to have reliable tracking performance at high velocities
[8, 10, 32]. For medium speeds we observe an improvement in BER when using the filtered
channel estimate at time k. This requires that symbols are decoded twice. From our simulations
experiments we have observed that further iteration (refinement) of EKF did not improve
significantly the performance.
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Figure 10. Phase response (SNR = 15 dB, v = 30 km/h).

Figure 11. Bit error rate performance for variable terminal velocity, decision-directed mode with no pilot signal
(SNR = 20 dB).

Finally, the bit error rate is considered as a function of noise variance. The results are
presented in Figure 12 for a terminal velocity set to 30 km/h. A lower bound for the performance
of the tracking algorithm is given by using the ideal channel state information (CSI), i.e.
perfectly known channels and frequency offsets at the receiver side. Simulation results highlight
the good performance of the time-domain tracking algorithm for a wide range of SNR. Lower
terminal speeds lead to lower error rates, close to the ones obtained with a perfectly known
channel. In this simulation both the channel and the frequency offsets have been estimated
and tracked. We emphasize the fact that, with modeling one offset per MIMO branch, MMSE
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Figure 12. Bit error rate performance (over 1000 blocks, v = 30 km/h), at receive antennas 1 and 2.

frequency domain equalization based on the filtered channel and offset estimates from previous
time instance (k − 1) may not be sufficiently accurate to reliably decode the symbols, especially
for high order modulations. However enhanced equalizers might be needed to fully compensate
for the induced intercarrier interference [33].

5. Conclusions

In this paper, a channel and frequency offset estimation and tracking method stemming from
extended Kalman filter is proposed for MIMO OFDM based systems. Each MIMO channel
branch is considered to introduce its own frequency offset, which is caused by separate RF–IF
chains in each transmitter and receiver as well as the rich scattering environment and the large
angle spread which are desired in MIMO scenarios. The tracking stage runs in time-domain and
is the core of the presented algorithm. Reliable offset tracking capability is also shown in cases
when the frequency offset varies rapidly in time. Moreover, very little or no pilot data were
needed, except during the initialization stage. The benefits of the time-domain approach are
twofold: first superior tracking performance and robustness are achieved compared to solutions
purely working in the frequency domain. Second, computational complexity is significantly
lowered as well. However, in more demanding environments characterized by low SNR and
fast varying channels, additional pilot symbols may be needed to avoid the divergence of the
algorithm. The reliable performance of the method is demonstrated for mobile user in a typical
urban scenario for different velocities.
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