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Abstract— In this paper, we investigate the performance of
the blind carrier frequency offset (CFO) estimation method for
OFDM with real-valued constellations introduced in [1]. The
method is based on minimizing the total off-diagonal power of
the received pseudo-covariance matrix and the resulting solution
has a simple closed-form expression.

To assess the large sample performance, we derive the Cramér-
Rao bound (CRB) for the blind CFO estimation problem. When
deriving the CRB, the transmitted OFDM modulated signal is as-
sumed to be a Gaussian process. Since real-valued constellations
are used, the received signal is non-circular. As a result, the CRB
has to be derived for non-circular Gaussian model. Simulation
results highlight significant differences in performance between
the complex circular and non-circular cases.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is a
powerful technique to handle impairments of wireless com-
munication media such as multipath propagation. Its ability
to turn frequency selective channels into a set of frequency
flat ones leads to simplified receiver design. Hence, OFDM
is a viable candidate for future 4G wireless communications
standards. One of the main drawbacks of OFDM is its high
sensitivity to carrier frequency offsets (CFO) caused by the
oscillator inaccuracies and the Doppler shift due to mobility,
giving rise to inter-carrier interference (ICI) [1], [5], [6].
Therefore, frequency offset estimation must be accomplished
with high fidelity.

In this paper, we investigate the performance of a CFO
estimation and compensation method introduced in [1] for
real-valued constellations. The method is blind in a sense
that no knowledge of the channel or transmitted data is
required. A cost function minimizing the total off-diagonal
power of pseudo-covariance matrices of the received signal is
derived. Off-diagonal terms are induced by ICI and should be
minimized. Enforcing a diagonal structure leads to perfectly
frequency synchronized OFDM transmission. A closed-form
expression is found for minimizing the criterion. This leads to
low complexity and accurate computational solution.

To assess the large sample performance, we derive the
Cramér-Rao bound (CRB) for blind CFO estimators. We
model the OFDM signal as a Gaussian process. The received
signal is not circular (proper) Gaussian [4] since real-valued
constellations are used. Hence the pseudo-covariance matrix
is non-zero. As a result, the CRB has to be derived for non-
circular Gaussian model [5], [7]. Simulation results for the
presented estimator show good performance with respect to the
CRB, especially at low signal-to-noise ratio (SNR). Different
behavior of the CRB is observed for circular and non-circular
cases.

The rest of the paper is organized as follows. The system
model is briefly described in Section 2, and Section 3 presents
the blind CFO estimation algorithm. The Cramér-Rao bound is
derived in Section 4. Simulation results in the case of a time-
invariant frequency selective channel are presented in Section
5 for different noise levels. Finally, Section 6 concludes this
paper.

The following notation is used throughout the paper:

E expectation operator;
Tr trace;
T transpose;
H conjugate transpose;
∗ elementwise conjugation;
A1/2 Hermitian square-root;
A−1 matrix inverse;
Aij (i, j) element of the matrix A;
‖‖F Frobenius norm;
⊗, � Kronecker product, Hadamard product;
IN identity matrix of size N × N ;
�N N × N matrix filled with ones;
vec stacks columns of a matrix on top

of each other;
Re, Im real part, imaginary part;
Π⊥

∆ projection matrix to subspace
orthogonal to ∆;

diag {a1, . . . , aN} diagonal matrix with [a1, . . . , aN ]T

on the main diagonal.
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II. SYSTEM MODEL

We use a general OFDM transmission model from [6]. The
k-th modulated OFDM block is written as:

b(k) = FNa(k), (1)

where FN is the N × N inverse discrete Fourier transform
(IDFT) matrix, N is the total number of subcarriers, and a(k)
is the real-valued N × 1 symbol vector.

The received OFDM N × 1 signal block in time domain
after cyclic prefix removal, including frequency offset, may
be expressed as:

r(k) = Cεu(k) + w(k), (2)

where u(k) � H̃b(k), H̃ is the N × N circulant channel
matrix and the N × N diagonal matrix

Cε � diag

{
exp

(
j
2πkε

N

)
, k = 0, . . . , P − 1

}
(3)

is used to introduce the frequency offset. The quantity ε ∈
[0, 1) is referred to as normalized frequency offset with respect
to intercarrier spacing. The length of the cyclic prefix is L and
the total OFDM block length is P = N + L.

The channel matrix H̃ is circulant due to cyclic prefix
insertion and removal operations. The channel is assumed to be
time-invariant and to have a maximum of Lh taps, hence it is
frequency selective. The length of the cyclic prefix is L ≥ Lh

in order to avoid inter-block interference. The complex noise
term w in (2) is assumed to be circular complex Gaussian [4].
The signal and noise processes are assumed to be mutually
independent, and i.i.d. over time index k.

Given an estimate ε̂ of the true value ε, CFO compensation
may be performed at the receiver in time domain prior to the
discrete Fourier transform:

vε̂(k) = FH
NC∗

ε̂r(k) (4)

= FH
NC∗

ε̂−εu(k) + C∗
ε̂w(k), (5)

where Cε̂ and Cε̂−ε have the structure defined in (3).

III. BLIND CFO ESTIMATION EXPLOITING

NON-CIRCULARITY

In this section we present briefly the proposed carrier
frequency offset (CFO) estimation method for OFDM with
real-valued constellations. An extensive description may be
found in [1].

Let us define the covariance and pseudo-covariance matrices
of u(k) in (2), respectively Q and P, as follows:

Q � E
[
u(k)uH(k)

]
, P � E

[
u(k)uT (k)

]
. (6)

Let P̃ (µ) = E
[
vµ(k)vT

µ (k)
]
, where vµ(k) denotes vε̂(k) in

(4) evaluated at ε̂ = µ. Then P̃ (µ) and P are related by:

P̃ (µ) = FH
NC∗

µ−ε PC∗
µ−εF

H
N . (7)

Null or perfectly compensated frequency offset (µ = ε) leads
to a perfectly orthogonal transmission, and P̃(µ) becomes
diagonal. Off-diagonal elements are introduced by inter-carrier
interference and should be minimized.

The justification to consider pseudo-covariance instead of
the commonly used covariance is that it vanishes for circular
complex random variables such as the complex noise term
w, but the information on the frequency offset ε is retained.
Consequently, the proposed method may be applied to real
constellations.

The total off-diagonal power J (µ) of P̃ (µ) may be written
as:

J (µ) =
∥∥∥P̃ (µ) � (�N − IN )

∥∥∥2

F
. (8)

It can be shown that J (ε) = 0, and J (µ) > J (ε) for µ �= ε,
µ ∈ [0, 1). Hence, in theory, CFO can be found by driving

J (µ) to zero. In practice, only an estimate ̂̃P (µ) of P̃ (µ) is
available. Then, an estimate of CFO, ε̂, may found by:

ε̂ = argmin
µ

Ĵ (µ) , Ĵ (µ) =
∥∥∥∥̂̃P (µ) � (�N − IN )

∥∥∥∥2

F

.

(9)
As shown in [1], the cost function may be written as:

Ĵ (µ) = A + B cos (2πµ) + C sin (2πµ) , (10)

where A, B, C ∈ R. Hence, closed-form minimization of Ĵ
may be performed and the extremum points are given by:

µk =
1

2π
arctan

8<
:

√
3

“ bJ `
1
3

´ − bJ `
2
3

´”
2 bJ (0) − bJ `

1
3

´ − bJ `
2
3

´
9=
;+

k

2
+

1

4
, k = 0, 1.

(11)
Finally the frequency offset estimate is found by choosing:

ε̂ = arg min
k=0,1

Ĵ (µk) . (12)

IV. CRAMÉR-RAO BOUND

To assess the large sample performance of the proposed
method, we derive the Cramér-Rao bound (CRB), under the
assumption that the transmitted symbol vector b(k) in (1)
is Gaussian. CRB gives the minimum variance an unbiased
estimator may achieve. Since we are interested in real symbol
constellations, b(k) cannot be modeled as a complex circular
random vector. Hence, a complete second order statistics in-
cludes both signal covariance and pseudo-covariance matrices
[7].

A. CRB for multivariate complex Gaussian distributions

First, we extend the result on Cramér-Rao bounds in [3] to
multivariate complex Gaussian distributions. Let us consider
the following zero-mean complex random vector:

z = x + jy,

where x and y are zero-mean jointly Gaussian real-valued

random vectors (E [z] = 0) of size N × 1. Let z̃ =
[

z
z∗

]
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and define Ω as Ω = E
[
z̃z̃H

]
. Then,

Ω =
[

Γ C
C∗ Γ∗

]
, with Γ � E

[
zzH

]
and C � E

[
zzT

]
.

(13)
Let us assume that z̃ depends on a R × 1 vector of

parameters θ. Then, by assuming that Ω is of full rank, the
probability density function (pdf) of z̃ given θ is written as
[7]:

f (z̃, θ) =
(
π−N

)
det (Ω) exp

(
−1

2
z̃HΩ−1z̃

)
. (14)

The corresponding log-likelihood function is:

ln f (z̃, θ) = −N ln π − 1
2

ln det (Ω) − 1
2
z̃HΩ−1z̃. (15)

After some algebra and following derivations in [3], the
(i, j) element of the Fisher information matrix (FIM) for the
parameter vector θ is obtained as:

[FIMij ] = −E
[
[ln f (z̃, θ)]′′ij

]
=

1
2

Tr
{
Ω−1Ω′

iΩ
−1Ω′

j

}
,

(16)
where 2 [ln f (z̃, θ)]′′ij � ∂2

∂θi∂θj
ln f (z̃, θ), i, j = 1, . . . , R,

and Ω′
i � ∂Ω

∂θi
. We notice that for circular complex random

distributions (i.e. C = 0), equation (16) is equivalent to the
result in [3].

Let us next consider K i.i.d. random vectors z(k) of size
N × 1, k = 1, . . . , K , with the pdf given in (14). Now, with
zT

K =
[
zT (1), zT (2), . . . , zT (K)

]T
as data vector, it follows

from (16) that the FIM for the parameter vector θ becomes:

[FIMij ] =
K

2
Tr

{
Ω−1Ω′

iΩ
−1Ω′

j

}
. (17)

B. CRB for blind CFO estimation

With the problem of blind frequency synchronization at
hand, the signal model becomes the following:

z = Cε s + w, (18)

where:
1) The frequency offset matrix Cε is defined as in (3),

and ε acts as a deterministic unknown parameter to be
estimated.

2) Effects of the unknown wireless channel and transmitted
data symbols are both embedded in the random vector s,
which is assumed to be non-circular complex Gaussian.

3) The noise term w is assumed to be circular complex
Gaussian.

4) Vectors z, s and w are of size N × 1.

Due to the non-circularity induced by s, the random vector
z is also complex non-circular Gaussian. First, we express
covariance and pseudo-covariance matrices of z in terms of
those of s:

Γ � E
[
zzH

]
= CεQCH

ε + σIN , Q � E
[
ssH

]
C � E

[
zzT

]
= CεPCT

ε , P � E
[
ssT

] (19)

In more compact matrix form:

Ω �
[

Γ C
C∗ Γ∗

]
(20)

= C̃εΩ̃C̃H
ε + σI2N , (21)

where Ω is assumed to be full rank and

C̃ε �
[

Cε 0
0 C∗

ε

]
, Ω̃ �

[
Q P
P∗ Q∗

]
.

The entire statistics {P,Q} only depend on a finite number
M of real-valued unknown parameters stacked into the vector:

ρ = [ρ1, . . . , ρM ]T . (22)

The vector ρ is made from {Re (Pij) , Im (Pij) for j ≥ i},
{Qii} and {Re (Qij) , Im (Qij) for j > i}. Hence, there exists
a matrix J of size 4N2 × M such that:

vec
(
Ω̃

)
= Jρ. (23)

Parameters can be stacked into the vector θ =
[
ε ρT σ

]T
,

where ε is the parameter of interest, whereas ρ and σ are
nuisance parameters. The CRB matrix [3] has the following
structure:

CRB =

 E
[
ε̃2

]
E
[
ε̃ρ̃T

]
E
[
ε̃σ̃

]
E
[
ρ̃ε̃

]
E
[
ρ̃ρ̃T

]
E
[
ρ̃σ̃

]
E
[
σ̃ε̃

]
E
[
σ̃ρ̃T

]
E
[
σ̃2

]


� FIM−1, (24)

where ε̃ = ε̂− ε, σ̃ = σ̂ − σ, ρ̃ = ρ̂− ρ are estimation errors,
respectively on ε, σ and ρ.

We are interested in obtaining the CRB for ε only. Hence,
we need to calculate the (1, 1) element of the general CRB
matrix shown above, that is the (1, 1) term of the inverse of
the Fisher information matrix. The CRB for a similar model
has also been independently derived in [9]. The derivation is
based on calculating explicitly the nine blocks of the Fisher
information matrix, which would be very tedious in our case.

Following [8] and using (17), the (i, j) element of the FIM
is given by:

[FIMij ] =
K

2
Tr


Ω−1 ∂Ω

∂θi
Ω−1 ∂Ω

∂θj

ff

=
K

2
vec

„
∂Ω

∂θi

«H

vec

„
Ω−1 ∂Ω

∂θj
Ω−1

«

=
K

2
vec

„
∂Ω

∂θi

«H“
Ω−T ⊗ Ω−1

”
vec

„
∂Ω

∂θj

«
,(25)

where we used the following well-known identities [2]:

Tr (XY) =
(
vec

(
XH

))H
vec (Y) (26)

vec (XYZ) =
(
ZT ⊗ X

)
vec (Y) , (27)

which hold for any conformable matrices X, Y and Z.
Equivalently, based on (25), the whole FIM may be expressed
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as:

FIM =
K

2

(
∂ω

∂θT

)H (
Ω−T ⊗ Ω−1

) (
∂ω

∂θT

)
, (28)

where ()−T denotes
(
()−1

)T

and ω is defined as:

ω � vec (Ω) =
(
C̃∗

ε ⊗ C̃ε

)
vec

(
Ω̃

)
+ σ vec (I2N ) . (29)

The Kronecker product
(
Ω−T ⊗ Ω−1

)
can be written as:(

Ω−T ⊗ Ω−1
)

=
(
Ω−T/2 ⊗ Ω−1/2

)(
Ω−T/2 ⊗ Ω−1/2

)
and the matrix

(
Ω−T/2 ⊗ Ω−1/2

) (
∂ω
∂θT

)
is partitioned into(

Ω−T/2 ⊗ Ω−1/2
)[

∂ω

∂ε

∣∣∣ ∂ω

∂ρT

∂ω

∂σ

]
�

[
g4N2×1 | ∆4N2×(M+1)

]
. (30)

Using the matrix form in (30), the FIM from equation (28)
can be also given as:

FIM =
K

2

[
gH

∆H

] [
g ∆

]
. (31)

Since CRB = FIM−1, applying a result on the inverse
of partitioned matrices [3] onto (31), the (1, 1) element of
the CRB matrix in (24) corresponding to the CFO, namely
CRB (ε), is found to be:

CRB (ε) =
2
K

(
gHg − gH∆

(
∆H∆

)−1
∆Hg

)−1

=
2
K

(
gHΠ⊥

∆g
)−1

, (32)

where the vector g was defined in equation (30) as g =(
Ω−T/2 ⊗ Ω−1/2

)
∂ω
∂ε with

∂ω

∂ε
= vec

„
∂Ω

∂ε

«
= vec

“ eDε
eΩeCH

ε + eCε
eΩ eDH

ε

”
(33)

eDε � ∂

∂ε
eCε. (34)

Now, let us partition the matrix ∆ defined in (30) as:(
Ω−T/2 ⊗ Ω−1/2

)[
∂ω

∂ρT

∣∣∣∂ω

∂σ

]
� [V4N2×M |u4N2×1 ] (35)

and calculate the terms V and u. By definition:

V �
(
Ω−T/2 ⊗ Ω−1/2

) ∂ω

∂ρT
. (36)

Differentiating the expression of ω in (29) wrt. ρ, we obtain:

∂ω

∂ρT
=

(
C̃∗

ε ⊗ C̃ε

) ∂

∂ρT

(
vec

(
Ω̃

))
=

(
C̃∗

ε ⊗ C̃ε

)
J, (37)

because vec
(
Ω̃

)
= Jρ from (23). Then, the vector u is

expressed as:

u =
(
Ω−T/2 ⊗ Ω−1/2

) ∂ω

∂σ

=
(
Ω−T/2 ⊗ Ω−1/2

)
vec (I2N ) (38)

= vec
(
Ω−1

)
, (39)

since ∂ω
∂σ = vec (I2N ) and (39) follows from (38) using (27).

Finally, as we have derived closed-form expressions for g
and ∆, the entire FIM may be also obtained using (31).

C. Application to blind synchronization in OFDM

In theory, the OFDM signal has a discrete probability
distribution with QN states, Q being the symbol modulation
order and N the number of subcarriers. However, as N
is often large, this distribution is not tractable in practice.
Therefore, the Gaussian approximation has been widely used
in the literature related to OFDM. This approximation is valid
component-wise for a large number of subcarriers, as each
signal component is a sum of N i.i.d. random variables.

Hence, we approximate the vector s(k) = H̃FNa(k) by
a multivariate Gaussian vector. Real symbol constellations
induce naturally non-circularity. Then, the OFDM transmis-
sion with imperfect frequency synchronization in (2) falls
within the model presented in (18) and discussed previously.
Therefore, the CRB for blind frequency offset estimation in
OFDM may be approximated by:

CRB (ε) =
2
K

(
gHΠ⊥

∆g
)−1

, (40)

where K is the number of considered data blocks and the
quantities g, Π⊥

∆, are as presented in Section IV-B.
However, as the component-wise Gaussian approximation

seems reasonable, the assumption on the joint Gaussianity
of the components is more questionable, and this may lead
to slight differences with the exact CRB. Also, the above
finite sample CRB cannot be interpreted as such. In addition,
the asymptotic CRB was studied in [9]. In the next section,
numerical evaluations will give insight into the behavior of the
CRB with respect to some system parameters.

V. SIMULATIONS

This section presents the simulation results, using the blind
carrier offset estimation algorithm presented in Section III.
The mean square error (MSE) of the estimator is plot against
the previously calculated CRB. The OFDM system parameters
are chosen as follows: the carrier frequency is f0 = 2.4 GHz,
the number of subcarriers is set to N = 64 and the available
bandwidth is taken equal to B = 0.5 MHz. The length L of
the cyclic prefix is 4. The subcarrier symbol rate is of 7.8 KHz.
The employed symbol modulation is BPSK. The SNR, if not
stated otherwise, is equal to 5 dB. The normalized frequency
offset is ε = 0.43.
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The wireless channel is considered to be deterministic but
unknown to the receiver. That not only affects the transmission
and the proposed algorithm, but also the CRB. The channel
impulse response chosen for our simulations has four trans-
mission paths and is the following:

h =

[
0.0731 − 0.8702j
0.3613 − 0.4503j

−0.1098 + 0.4476j
−0.0270 − 0.0942j

]
.

Plots of the mean square error versus number of observed
blocks and SNR are depicted in Figure 1. Results are close
to the CRB in the low SNR region. The graph of the MSE
does not show any important dependence of the performance
on the noise level. In theory, the pseudo-covariance of the
noise vanishes on average. Hence, the performance of the
algorithm should not depend on the SNR if noise is circularly
symmetric. However, in practice the sample estimates of the
pseudo-covariance matrix experience perturbations because of
noise which degrades the performance at low SNR.

The proposed method is biased for finite sample size (gap to
the CRB in Figure 1), but can be shown to be asymptotically
unbiased. However, even though the CRB is not attained, the
residual estimation error is small (less than 2% on average
after 200 blocks), and hence the proposed method performs
accurately almost regardless of the SNR. Possible improve-
ment of the estimate may be obtained using this as an initial
estimate and refining it with e.g. the method in [5]. Note that
no pilot or virtual carriers (VC) are exploited here. VC usually
improve significantly the performance of blind CFO estimation
[5], [6], as they induce a low rank signal model, which enables
the use of high resolution subspace techniques.

In contrast with real symbol constellations considered
throughout this paper, complex constellations such as QPSK,
8PSK or 16QAM induce circular complex random signals.
As the CRB was derived for a general complex multivariate
Gaussian model, it is interesting to compare together the
bounds obtained for circular and non-circular cases. We also
compute the CRB when the channel is known to the receiver.
This is done as in Section IV, but without viewing anymore
the channel as a nuisance parameter. The curves presented
in Figure 2 highlight a significant difference in performance
between the circular and non-circular case, which is in par with
the results in [9]. Much lower CRBs are observed whenever
the signal contains non-circularity. Moreover, for finite sample
size, the Cramér-Rao bound tends to zero as the SNR tends
to infinity for non-circular signals, which does not hold true
for the circular case. This implies that blind CFO estimation
algorithms may be significantly improved by using a complete
second order statistics, in place of the covariance matrix only,
when real constellations are in use.

VI. CONCLUSIONS

In this paper, we investigated the performance of the carrier
frequency offset estimation method for OFDM with real-
valued constellations introduced in [1]. To assess the large
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Fig. 1. On the left: MSE vs. number of observed blocks at SNR=5dB.
On the right: MSE vs. SNR. (K = 200 blocks; ensemble average over 100
realizations; ε = 0.43).
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Fig. 2. On the left: CRB vs. number of observed blocks at SNR=5dB. On
the right: CRB vs. SNR. (K = 200, ε = 0.43). BPSK or QPSK modulation;
known or unknown channel to the receiver.

sample performance, we derived the Cramér-Rao bound for
the general multivariate Gaussian model, as real symbol con-
stellations generate non-circular signals. Unlike the approach
in [9], the method we applied does not require to calculate and
invert the entire Fisher information matrix. We directly derived
a closed form expression for the element of the CRB matrix
corresponding to CFO. Numerical results show a significant
difference in the behavior of the CRB between circular and
non-circular cases.
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