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Abstract- In this paper, we propose a novel subspace based
approach for blind carrier frequency offset estimation in
OFDM. Correlation in squared spectrum of the channel is
exploited. Low rank signal model is thereby obtained with-
out virtual subcarriers. The proposed estimator accomplishes
frequency synchronization with a single OFDM block. No
extensive time averaging is needed, which makes the approach
very attractive for time and frequency selective channels where
the offset may be time varying. Superior performance is
achieved over existing algorithms exploiting virtual carriers
or constant modulus criterion.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is
a powerful technique to mitigate channel impairments in
wireless communication such as multipath propagation, with
simplified receiver design. OFDM is a viable candidate for
future 4G wireless communications standards. One of the
main drawbacks of OFDM is its high sensitivity to carrier
frequency offsets (CFO) caused by the oscillator inaccura-
cies and the Doppler shift due to mobility. This gives rise to
inter-carrier interference (ICI). Therefore, frequency offset
compensation must be accomplished with high fidelity.

In this paper, we introduce a novel blind CFO estima-
tion technique applicable to OFDM with constant modulus
constellations (e.g. BPSK, QPSK or 8PSK). The method is
blind since it does not require a priori knowledge of the
transmitted data or the channel. The proposed frequency
offset estimator needs only a single OFDM block to work
with, unlike the majority of blind techniques [1], [2], [3]
which do almost always require extensive time averaging.
The key idea is to exploit correlation among OFDM

subcarriers and more specifically in squared amplitude spec-
trum of the channel. Novelty of the paper relies on the fact
that low rank signal model is derived without any virtual
subcarriers, which are commonly assumed to be available
in existing subspace CFO estimation methods for OFDM
[3], [4].

Simulation results demonstrate that the proposed method
outperforms existing blind estimators based on virtual car-
riers [2], [3], [4], [5] or constant modulus criterion [6].

Performance is superior to some of the semi-blind [7], [8]
and pilot-aided CFO estimation schemes [9].
The rest of the paper is organized as follows. The system

model is briefly described next. Frequency domain channel
correlation in OFDM is studied in Section 3. Then, Section
4 presents the blind CFO estimation algorithm. Finally, sim-
ulation results and performance comparison are presented
in Section 5. Proofs and derivations may be found in the
Appendix. II. SYSTEM MODEL

We use a general OFDM transmission model from [3].
Let a(k) -[ao(k),...,aN1(k)]T be the N x 1 symbol
vector at time instance k. We assume unit energy complex-
valued symbol constellations are used, i.e. Iai(k)12 1,
i = O? . . . I N - 1. The received OFDM N x 1 signal block
in time domain after cyclic prefix removal, including the
frequency offset, is expressed as

z(k) = CEFHDj(k)a(k) + w(k), (1)

where F 1{exp (-j N)}k10.N 1is the NxN

discrete Fourier transform (DFT) matrix, H denotes the Her-
mitian transpose and N is the total number of subcarriers.
The diagonal matrix CE introduces the frequency offset and
is defined as

C,=exp ( cL diag ,...,exp (N NLN,
(2)

where LO is the length of the cyclic prefix (L, < N). The
length of the whole OFDM block is P = N+LCp. The quan-
tity 6 E [0, 1) is referred to as normalized frequency offset
(wrt. intercarrier spacing). The diagonal matrix Dfi(k) of
size N x N in (1) contains the channel frequency response
h(k) = [hl,..., hN{ at time instance k on its main
diagonal. The complex noise term w is assumed to be
zero-mean proper complex Gaussian. The signal and noise
processes are assumed to be mutually independent, and i.i.d.
over time.

Given an estimate tu of the true value c, CFO compensa-
tion may be performed in time domain at the receiver prior
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to DFT. The resulting N x 1 vector u, in frequency domain
may be expressed as

u (k) = FC*z(k), (3)

where the matrix CA has the same structure as in (2) and
* denotes the complex conjugate.

III. FREQUENCY DOMAIN CORRELATION

A. Correlation in channel frequency response
The channel is assumed to be block fading and to have a

maximum of Lh taps, hence it is frequency selective. The
length of the cyclic prefix is set as LO > Lh in order
to avoid inter-block interference. A key idea in OFDM
transmission is the frequency correlation of the channel
among subcarriers induced by the DFT. Let h(k) be the
Lh x 1 channel impulse response in time domain corre-
sponding to the N x 1 channel frequency response vector
h(k). Since Lh < N, vectors h(k) and h(k) are related
by an N point DFT as h(k) \Ff{,l:Lh}h(k), where
the matrix F{ ,1lLh} is made from the Lh first columns
of the DFT matrix F. Recalling that the Lh x 1 vector
h(k) may be obtained from h(k) via Inverse Discrete
Fourier (IDFT) transform as h(k) F',lLh}h(k), the
following relationship may be established:

h(k) Ff:,1:Lh}Ff',l:Lh}h(k) Ah(k), (4)

where the DFT/IDFT pair is denoted by A -

F{:,l:Lh}{F Lh} Since the DFT matrix F is full rank, the
rank of F{:,1:Lh} is Lh, and consequently rank {A} = Lh
[10].

B. Correlation in channel squared amplitude spectrum
In the following, we denote by 0 the element-wise

Hadamard product [10]. Channel spectrum may not be
uniquely derived from the squared spectrum (ambiguity
in phase). Therefore we resort to study and characterize
correlation properties of squared amplitude spectrum
h(k) 0 h*(k). First, by using the following theorem, we
identify the vector subspace of channel squared amplitude
spectrum.

Theorem 1: Let x be a N x 1 vector such that x = Ax,
where A is a N x N matrix of rank L < N. Then, the
vector x 0> x* of squared amplitudes lies in the column
space of A 0 A*. Proof is given in the Appendix.

From (4), h(k) = Ah(k), and according to the above
theorem, the squared amplitude spectrum h(k) 0 fi* (k) lies
in the column space of A 0D A*. Next, Theorem 2 below
provides us with a basis for the column space of A (0 A*.

Theorem 2: Let A F{:,1:Lh}FHlLh} with
F{:,1:Lh} = [fl,f2. . .,fLh], where fk is the k-th

column vector of DFT matrix F. Then, let us contruct the
basis g = {g-(Lh-1), ..., g(Lh-1)} from the 2Lh - 1
vectors gd defined as gd V(fk 0 fi*), k, 1, .. ., Lh,
d= k-1, d--(Lh -1),...(Lh - 1). Then,G forms an
orthonormal basis of the column space of A 0 A*. Proof
is given in the Appendix.

Therefore, the space of channel squared amplitude
spectrum is of dimension 2Lh - 1 We conclude that
rank{A0A*} = 2Lh - 1. Because 2Lh - 1 < N in
practice, low rank model arises from correlation in channel
squared amplitude spectrum. Based on this property, we pro-
pose next a subspace method for frequency synchronization
in OFDM.

IV. SUBSPACE METHOD FOR BLIND CFO ESTIMATION

In the following, we introduce a blind CFO estimator
which aims at restoring correlation in channel squared
frequency response. Unlike the majority of blind CFO
recovery techniques, the proposed estimator needs only a
single OFDM block to operate with (i.e. no time averaging
needs to be performed). Hence it allows finding an estimate
for each block independently. This is obviously significant
advantage in case of time-selective channels. Next, we
provide description of the proposed algorithm. From now
on, we drop the time index k, for simplicity of the notation.

Let us consider the noise-free case in equations (1-3) and
compute the element-wise Hadamard product u, 0 u* as

u 03 u = (M,EDha) 0 (M>ED a*), (5)
where we defined M E = FC* C,FH. In case of perfect
frequency synchronization, ,= e and M,_E = IN, where
IN is the N x N identity matrix. Then (5) becomes

u6 @uD = (Dj1a) (D (D a*)
6 h

= . i 7

(6)
(7)

since D11 is diagonal and a0a* = [laoI2,..., laN-l12]T =
[1,..., 1]T under the assumption of constant modulus
complex-valued modulations (jail = 1, i = O,.. ., N - 1).
Therefore uE 0 u, is equal to the squared amplitude spec-
trum hoh*. Consequently, it lies in the same subspace and
inherits the same correlation properties as well. Frequency
mismatch ([t :& e) leads to intercarrier interference (ICI)
and alters the components of u, 0 u>, which does not lie
in the correct subspace anymore, i.e. the one of h 0 h*.

This leads to the idea of restoring the subspace structure
induced by Fourier transforms in case of perfect synchro-
nization. It is performed by maximizing the projection of
u, (u* in the subspace spanned by hoh*, or equivalently,
by minimizing the projection in the orthogonal subspace.
Initial subspace is restored for t = e. The spanned sub-
spaces are depicted in Figures 1. Since h 0 h* lies in the
column space of A 0 A* and the rank of the latter is
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2Lh - 1 < N, subspace technique may then be employed.
Note that virtual subcarriers (i.e. carriers carrying no data)
are not needed to ensure low rank model, since it naturally
arises from correlation in channel spectrum.

0 A*

Fig. 1. Subspaces used in proposed blind CFO estimation. Projection of
U, 0 uto subspace of h 0fh* is maximized, or equivalently projection
to orthogonal subspace is minimized.

Let us define the squared norm of the projection of u,, 0
u* to the orthogonal subspace of A 0 A* as cost function
C,

(8)
where || 112 is the squared Euclidean norm and ADA*
denotes the projection matrix to subspace orthogonal to the
columns of A 0 A*. The cost function C (p) is periodic
with period 1, because replacing t by f'+ 1 only produces
a shift by one of the OFDM subcarriers, and therefore the
correlation features remain unchanged.
As the matrix A depends only on the DFT size N and the

channel length Lh, it may be computed offline, as well as
the projection matrix rIA'OA*. Furthermore, since Theorem
2 provides us with an orthonormal basis for the column
subspace of AOA*, we may express this projection matrix
in closed form as

nA-AL = I-G (GHG)' GH = I GGH, (9)

where the N x (2Lh - ) matrix G is made out from the ba-
sis vectors of g stacked in matrix form. Note that having an
orthonormal basis significantly reduces the computational
cost (no matrix inversion is required).

Finally, an estimate e of the CFO is found by minimizing
the projection of vector uM 03 u, to orthogonal subspace of
AOA* as

e=arg nmn CQ(t). (10)
IIE[0,1)

Numerical solution to (10) may be found e.g. using a gra-
dient descent method. Computational cost is not prohibitive
due to a one dimensional search space with unique mini-
mum in [0,1]. The cost function to be minimized is shown
in Figure 2. We compare in simulations the performance
of the proposed subspace based constant modulus approach
(denoted Proposed CM in simulation graphs) to the method
introduced by Liu and Tureli in [4] exploiting virtual subcar-
riers (VSC). Since the VSC estimator would fail in a fully
loaded OFDM system, we consider N, = 15 virtual carriers
for this specific method. In [6] Ghogho and Swami derived a

criterion exploiting constant modulus (CM) symbols as well
as a composite cost function involving both CM property
and VSCs (VSC+CM). We compare our technique to those
methods as well (Fig. 2,4 & 5).

Cost hm-tion( c=o602631 SNR=15 dB)

Proposed CM
VSC+CM
CM

50 ...A VSG

40 '-

i0.6067

30

20

101

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AI

Fig. 2. Cost functions for proposed subspace based blind CFO estimation,
VSC+CM based method, and CM and VSC only; e = 0.60263, SNR=15
dB.

V. NUMERICAL RESULTS

In this section, simulation results are reported. The
OFDM system parameters are chosen as follows: the carrier
frequency is fo = 2.4 GHz, the number of subcarriers is set
to N = 64 and the available bandwidth is B = 0.5 MHz.
The length L, of the cyclic prefix is 10. QPSK modulation
is used.

The wireless channel is considered to have eight inde-
pendent paths (Lh = 8) with unit variance Rayleigh i.i.d.
distributed coefficients. Block fading is assumed, i.e. the
channel stays constant within one OFDM block and varies
from block to block. The normalized frequency offset is
assumed to be uniformly distributed between [0,1], and to
vary block-wise.

Numerical gradient descent method was used to solve the
minimization problem in (10). Squared amplitude spectra
before and after CFO correction are plotted in Figure 3
against the true one (i.e. with the true channel frequency
response and perfect synchronization). The proposed al-
gorithm restores correlation among subcarriers with high
fidelity, without any knowledge of the frequency selective
channel, under noise and severe frequency mismatch con-
ditions (SNR = 15 dB and e = 0.4496 in Fig. 3).

A. Performance versus SNR
The Mean Square Error (MSE) is chosen as an error

criterion for carrier offset estimation: MSE = Ele- el2.
Plot of the MSE versus the signal-to-noise ratio (SNR) is
depicted in Figure 4. Results are ensemble averaged on 2000
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Subearrier index

Fig. 3. Squared amplitude spectrum; QPSK modulation; E = 0.4496;
SNR=15 dB. Channel amplitude spectrum is restored with high fidelity,
under noise and severe frequency mismatch.

different channel and CFO realizations. Highly accurate
tracking of time-varying CFO is achieved with a single
OFDM block in time-frequency selective channels, in a fully
blind manner, and for broad-range of SNRs (0 ot 50 dB).
At 10-6 MSE, we obtained 12.3 dB gain over the VSC
method [4], 2.1 dB over the CM method [6] and 1.6 dB over

the composite VSC+CM method [6]. Thus, the constant
modulus assumption is more effective than having virtual
carriers only, and leads to more than 10 dB performance
gain. Computational complexity compared to [6] is lower
as well.

The high-resolution subspace technique based on ESPRIT
algorithm proposed by Liu and Tureli in [4] requires vir-
tual subcarriers to employ low rank signal model. Virtual
subcarriers provide help especially for time and frequency
synchronization problems, but at the expense of bandwidth
efficiency, since those carriers do not carry any data. VSC
based estimation would fail without virtual carriers (i.e.
fully loaded OFDM system), while our subspace based ap-
proach does not need any. Due to DFT and IDFT operations,
low rank model is feasible in OFDM transmission provided
that the channel length Lh is such that 2Lh -1 < N. This is
generally the case for a well designed OFDM system since
L < Lc, < (N + 1)/2.

Performance is also superior to other existing blind [3]
or semi-blind techniques [7]. Numerous blind frequency
synchronization methods have been proposed in the liter-
ature related to OFDM, but most of them need extensive
time-averaging in order to get rid of the influence of both
noise and data symbols. Hence they cannot perform well in
estimating accurately CFO with a single OFDM block [3].
Results are also comparable to pilot-aided CFO estimation
techniques such as in [9].

B. Sensitivity to unknown channel order
Previous results were obtained assuming the knowledge

of channel length at the receiver. Delay spread may be
estimated in practice, e.g. by investigating second-order
cyclo-stationarity introduced by cyclic prefix. The actual
channel length is set here to Lh = 8, and the assumed
length at the receiver varies from 1 to 32, at SNR=15 dB.
Results are presented in Figure 5.

w 10[
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, z- ele~~~~~~~~SECee Ea E =rrl,Ei|eEs_iEE:: f iE555:5- ::EEEEd555 E fEiDiEEEiEEEEEEEEE-?. iE-iSE:VcSC:
0U0 5 10 15 20 25 30 35 40 45 so

SNR [dB]

Fig. 4. MSE of CFO estimators vs. SNR; QPSK modulation; i.i.d.
Rayleigh block fading channel of length Lh = 8; uniformly distributed
CFO in [0,11 and varying block-wise; N, = 15 virtual carriers considered
for the VSC and VSC+CM estimators; SNR=15 dB; ensemnble average
(2000 blocks).

w
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5 8 10 15 20
Assumed channel length

25 30

Fig. 5. MSE of CFO estimators vs. assumed channel length; the actual
channel length is Lh = 8; SNR=15 dB; ensemble average (1000 blocks).

The CM based, VSC+CM and the proposed estimators
need the channel length as input parameter. They all suffer
from under-estimated delay spread, while they still perform
well with (slightly) larger assumed channel order. The
proposed algorithm is shown to work accurately over a

broader range of values compared to the other ones. The
length of the cyclic prefix (L, = 10, in our case) yields
a reasonable upper limit in practice. Note that purely VSC
based estimators are not affected by an unknown channel
length, as the subspace structure is determined by the loca-
tion of virtual carriers, assumed to be of prior knowledge.

VI. CONCLUSIONS
In this paper, we propose a novel subspace based al-

gorithm for blind carrier frequency offset estimation in
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OFDM. Exploiting correlation in squared amplitude spec-
trum of the channel is the key idea of the method. Low
rank signal model is obtained without virtual subcarriers.
Hence, bandwidth efficiency is high. The proposed esti-
mator performs frequency synchronization with only one
OFDM block. Hence, no extensive time averaging is needed.
Highly accurate estimation is achieved in time-frequency
selective channels. The proposed method outperforms other
considered blind CFO estimators exploiting virtual carriers
or constant modulus criterion, with lower complexity as
well.

VII. APPENDIX

Proof of Theorem 1: Let x = [Xl,.., XN]T and let
a1, . . , aN be the N x 1 column vectors of A. Then, we
exploit the relationship x - Ax and express the vector of
squared amplitudes x 0 x* as

x0 x* - (Ax) 0 (A*x*) (1 1)

(! EXkl aki) 0 ( E 2a*2) (12)
k1=l k2=1
N N

- S E5xkixk2 (aki0 a*2) (13)Xkll X*k2
kj=1 k2=1

where (12) follows from (11) due to the distributivity of the
Hadamard product. Since rank {A} = L, there exist a basis
C {C1, ... CL} of vectors such that ai _ El-f1 aiCcl,
ail E N,= 1,..X 1= 1...,IL.
We now prove that the vector x 0 x* lies in the column

space of A (0 A*, that is each vector term ak, (0 a*2 in
(13) lies in span {AOA*}. First, for k1 = k2 = k, the
term ak 0 a* is by definition the kth column of A 0 A*,
and obviously lies in its column space. Then, the Hadamard
product ak, 0- a*2 may be written using the basis C as

L L

aki 0ak2 - Ctk1t2z2 (CCa 0i ckl) (14)
11=1 12=1

Finally for k, $8 k2, aki 0 a*2 is a linear combination of
vectors clj (0 c* , as it is also for each column ak 0 a* of
A 0.A* (see (14)). Hence aki 0:a*2 lies in the same vector
space.

Proof of Theorem 2: Given A = F ,l:Lh}FflLH
the k-th column vector of A 0 A*, denoted by bk, may be
written as

Lh Lh

bk - >3 S F{k,zl}F'k12} (fil 0 f1*2), (1)
1=1 12=1

where fk and F{k,l} are respectively the k-th column vector
and the (k, 1) element of DFT matrix F, k, 1 = 1,... , N.
First, one may check ffiat the Hadamard product (f11 0 fj2)

is of the form:

(f11 0 fj*2) =(1/N)- [1, wl,.-121w71ll-12 7 N1-12i )
(16)

where W1l_l2, 11,12 - 1,... , Lh, is equal to Wd =
exp {-j27rd/N} evaluated at d = 11 - 12.

Then, let us define the set of indices Ld
{I,12 = 1, ..., Lh I 11-12 = d}, d -(Lh -
1), . . ., (Lh - 1). Notice that any pairs of indices
(1i 12) and (li, l/) picked from Ed will lead to the same
product vector, i.e.

(fil o(ft)-(ff 1f fit), V (11,12), (11, 2) E £d. (17)

Let us define d 11 -12 and the N x 1 vector gd as

(18)

One may now verify the orthonormality property between
vectors gd above, i.e.

H If1 if di = d2
0 otherwise (19)

for dl, d2 = -(Lh - 1),... , (Lh - 1) and provided that
2Lh -1 < N.

Finally, we define the orthonormal basis G comprised of
the 2Lh - 1 vectors gd as G5 {g-(Lh-1),... ,g(Lh-1)}.
Using the property in (17), we notice that any vector of the
form (f1l5 f01), 11, 12 = 1 ...., Lh, is one of the vectors
of 9. Hence, any column vector bk in (15), k = 1, ... , N,
may be expressed in terms of vectors of G. One concludes
that G yields an orthonormal basis for the column space of
AOA*.
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