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Abstract

Beyond third generation (3G) and fourth generation (4G) wireless communication systems
are targeting far higher data rates, spectral efficiency and mobility requirements than exist-
ing 3G networks. By using multiple antennas at the transmitter and the receiver, multiple-
input multiple-output (MIMO) technology allows improving both the spectral efficiency
(bits/s/Hz), the coverage, and link reliability of the system. Multicarrier modulation such
as orthogonal frequency division multiplexing (OFDM) is a powerful technique to han-
dle impairments specific to the wireless radio channel. The combination of multicarrier
modulation together with MIMO signaling provides a feasible physical layer technology
for future beyond 3G and fourth generation communication systems.

The theoretical benefits of MIMO and multicarrier modulation may not be fully
achieved because the wireless transmission channels are time and frequency selective. Also,
high data rates call for a large bandwidth and high carrier frequencies. As a result, an
important Doppler spread is likely to be experienced, leading to variations of the channel
over very short period of time. At the same time, transceiver front-end imperfections,
mobility and rich scattering environments cause frequency synchronization errors. Un-
like their single-carrier counterparts, multi-carrier transmissions are extremely sensitive
to carrier frequency offsets (CFO). Therefore, reliable channel estimation and frequency
synchronization are necessary to obtain the benefits of MIMO OFDM in mobile systems.
These two topics are the main research problems in this thesis.

An algorithm for the joint estimation and tracking of channel and CFO parameters
in MIMO OFDM is developed in this thesis. A specific state-space model is introduced
for MIMO OFDM systems impaired by multiple carrier frequency offsets under time-
frequency selective fading. In MIMO systems, multiple frequency offsets are justified
by mobility, rich scattering environment and large angle spread, as well as potentially
separate radio frequency - intermediate frequency chains. An extended Kalman filter
stage tracks channel and CFO parameters. Tracking takes place in time domain, which
ensures reduced computational complexity, robustness to estimation errors as well as low
estimation variance in comparison to frequency domain processing.

The thesis also addresses the problem of blind carrier frequency synchronization in
OFDM. Blind techniques exploit statistical or structural properties of the OFDM modu-
lation. Two novel approaches are proposed for blind fine CFO estimation. The first one
aims at restoring the orthogonality of the OFDM transmission by exploiting the proper-
ties of the received signal covariance matrix. The second approach is a subspace algorithm
exploiting the correlation of the channel frequency response among the subcarriers. Both
methods achieve reliable estimation of the CFO regardless of multipath fading. The sub-
space algorithm needs extremely small sample support, which is a key feature in the face
of time-selective channels. Finally, the Cramér-Rao (CRB) bound is established for the
problem in order to assess the large sample performance of the proposed algorithms.
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Chapter 1

Introduction

1.1 Motivation of the thesis

Third generation (3G) wireless services are currently being deployed. While 3G networks
outperform their second generation (2G) predecessors, they still may not be sufficient
to meet the requirements for future high data rate applications like multimedia, video
streaming, wireless teleconferencing and web browsing. Hence, there exists the need for
a wireless network technology that improves 3G throughput performance by one order
of magnitude at least. Major requirements of future beyond third generation (B3G) and
fourth generation (4G) wireless communication systems are thus higher user data rates,
improved coverage and spectral efficiency, as well as enhanced user mobility. Low latency
and improved radio link quality are also desired. The future trend is the convergence
to all digital IP-based packet networks, with both voice and data capabilities. All those
enhancements will allow bringing to mobile users Internet services and multimedia appli-
cations that consume lot of resources. Figure 1.1 below illustrates the past and future
evolution of wireless cellular systems (2G,3G), local area networks (WLAN) and digital
broadcast services (DVB-T,DVB-H) toward 4G.
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Figure 1.1: Evolution of existing wireless systems toward 4G in terms of mobility and data
rates.

The radio spectrum is a scarce resource, and should therefore be utilized efficiently. By
using several antennas at the transmitter and the receiver, multiple-input multiple-output
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(MIMO) systems allow improving both the spectral efficiency (bits/s/Hz), the coverage,
and link reliability of the system. Therefore, MIMO systems are a key technology in order
to fulfill the requirements for future 4G communication networks. Increased capacity may
be obtained through spatial multiplexing where independent data streams are launched
from each antenna. It requires appropriate antenna placement so that spatially inde-
pendent channels are observed. Independent channels are encountered in rich scattering
environments. Theoretically, multi-antenna systems allow a linear improvement in capac-
ity over their single-antenna counterparts proportional to min(Nt, Nr), where Nt is the
number of deployed transmit antennas and Nr is the number of receive antennas [261].
This fundamental result of information theory led to a spur of research in this area. As
example, the capacity curves corresponding to different antenna configurations are plotted
in Figure 1.2. The selectivity of the wireless channel in time, frequency and space is also a
benefit. It provides diversity which may be exploited to improve the reliability of the radio
link [126]. Space-time codes were developed for this purpose. There is a trade-off between
the transmission rate and the diversity. Figure 1.3 illustrates the benefits of diversity
through a simple example where a mobile user is experiencing a fast fading channel.
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Figure 1.2: The MIMO ergodic capacity [bit/s/Hz] for i.i.d. Rayleigh fading channel
coefficients as a function of the signal-to-noise ratio [dB] and the antenna configuration.
Nt and Nr are the number of transmit and receive antennas, respectively.

Multicarrier modulation such as orthogonal frequency division multiplexing (OFDM) is
a powerful technique to handle impairments specific to the wireless radio channel [33]. The
idea is to turn the wideband frequency-selective wireless channel into a set of frequency flat
narrowband channels [119,273]. As a consequence, the complexity of the equalization task
reduces considerably [113, Ch.2], and receiver design is thereby simplified significantly.
Also, multicarrier systems exploit the transmission spectrum more efficiently because they
allow a spectral overlap between the sub-channels. While the concept of OFDM has been
known since the 1960’s [44], it gained interest in the 1980’s [64] and began to emerge in
standards starting from the 1990’s only [17, 85, 86]. Since then, OFDM and multicarrier
technology in general have reached sufficient technical maturity. The ease of implementa-
tion achieved by using Discrete Fourier Transform (DFT) together with the cyclic prefix
leads to simple transceiver structures. Consequently, practical real-world OFDM systems
are deployed, such as digital audio (DAB) and digital video broadcast (DVB) [85,86] as well
as wireless local area network (WLAN) standards [84,130]. Another successful application
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Figure 1.3: Benefits of diversity. Received signal amplitude in a single antenna system
compared to a system with four receive antennas applying either selection combining or
maximum ratio combining. Diversity techniques smooth out deep channel fades and thus
improve significantly the link quality.

of multicarrier modulation is found in wireline communications (ADSL) [17]. OFDM is
also a key part of the WiMAX technology for fixed broadband wireless access [1].

Both multi-antenna systems and multicarrier modulation are feasible candidates for
future fourth generation broadband wireless networks. Indeed, by using single-carrier
modulation, system requirements envisioned for B3G and 4G communications are signifi-
cantly more difficult to fulfill. However, the benefits of MIMO and OFDM may not be fully
achieved in broadband mobile applications because the channels are time and frequency
selective. High data rates require larger bandwidth and also higher carrier frequencies
compared to existing 2G and 3G systems. Therefore, a significant Doppler spread may be
experienced, leading to time-variations of the radio channel over very short period of time.
Multipath propagation makes the channel frequency selective and causes inter-symbol in-
terference (ISI) [220]. The channel characteristics change in time due to the mobility
of the transmitter and/or receiver as well as of the scatterers. Moreover, selectivity in
space domain may be encountered in multi-antenna systems, if the antennas are placed
further than the coherence distance apart. As a result, wireless communication channels
are characterized by impulse responses that change as a function of time, frequency and
location [220]. However, channel selectivity provides also diversity and should not always
be viewed as a source of impairment [126]. A feedback channel may be used to provide
the transmitter with knowledge about the channel state information [126]. In such case,
closed-loop transmit diversity techniques may be deployed. Open-loop transmit diversity
methods also exist but are less efficient. Also, uplink and downlink transmissions may be
separated either in time or frequency, using time or frequency division duplexing (TDD
and FDD), respectively. Since high data rates together with low probability of error are
targeted in 4G, coherent detection and high-order symbol modulations are a natural choice.
The knowledge of the channel impulse response (CIR) is therefore needed at the receiver
in order to recover the transmitted data. Typically, no prior knowledge on the channel
is available. Hence, it needs to be estimated and the estimates updated in a regular ba-
sis [113, Ch.4,14-16]. In this way, equalizer coefficients may be updated periodically and
error rates may be kept below targets. Training data may be inserted among informa-

3



tion bearing symbols on the time-frequency grid. This may avoid loosing the track of the
channel coefficients, if the channel is highly time and/or frequency selective. The training
overhead should be kept as small as possible in order to maintain high effective data rates.

OFDM as well as multicarrier modulations in general are extremely sensitive to carrier
frequency synchronization errors caused by oscillator inaccuracies and Doppler shifts due
to mobility [113, 119, 273]. Moreover, multiple frequency shifts may be simultaneously
encountered in MIMO systems because of the rich scattering environment and potentially
separate radio frequency - intermediate frequency (RF-IF) chains. These result in intercar-
rier interference (ICI), leading to severe performance losses especially at high data-rates.
The degradation is significant because the number of subcarriers is typically large and the
intercarrier spacing is small. Thus, estimation of the carrier frequency offset (CFO) is a
crucial task for any multicarrier transceiver. In OFDM systems, frequency synchronization
is often accomplished by using series of identical pilot blocks transmitted prior to the infor-
mation frame [130]. Blind carrier frequency synchronization without any training symbols
is also feasible and is an important field of research [101]. Frequency synchronization
proceeds generally in two steps. Coarse synchronization brings the residual synchroniza-
tion error within the range of the intercarrier spacing. Then, fine synchronization aims
at estimating the fractional CFO which causes ICI. In general, time and frequency syn-
chronization tasks are performed prior to channel estimation. This allows restoring the
orthogonality of the transmission. Finally, frequency offsets may be time-varying because
of mobility. Hence, for successful multicarrier transmission, CFO parameters need to be
estimated and tracked over time similarly to channel coefficients [225].

1.2 Scope of the thesis

The scope of this thesis is to develop novel receiver structures for mobile multi-antenna
OFDM systems. The thesis contributes to beyond 3G and 4G wireless physical layer
research. In particular, the problems of channel estimation and carrier frequency syn-
chronization are addressed. The proposed work applies to mobile wireless multicarrier
communication systems.

The goal of this thesis is to develop advanced receiver structures that allow providing
the benefits of MIMO OFDM in mobile wireless systems. Estimators for time-varying
MIMO channel coefficients and CFO parameters are derived. Low complexity algorithms
are developed. Statistical large sample properties of the estimators are established. Other
issues of the receiver front-end in digital multicarrier communications (time synchroniza-
tion, carrier phase noise, peak-to-average power issues, etc.) are important but are not
considered in this thesis. Also, channel coding as well as optimization of the equalization
task are not considered.

In order to achieve high effective data rates, the derived algorithms should exploit
any useful information or property of the communication system. Moreover, they should
require as little pilot information as possible for processing observations, while achieving
either substantial performance improvements over the existing methods or equal perfor-
mance with a lower degree of computational complexity. Estimation range and identifiabil-
ity conditions for the parameters of interest should be specified as well. The performance
studies should be conducted by computer simulations in a realistic manner.

4



1.3 Contributions and structure of the thesis

This dissertation contributes to the field of channel estimation and carrier frequency syn-
chronization for wireless communication systems using OFDM modulation and MIMO
technology.

The estimation and tracking of channel and frequency offset parameters in mobile
MIMO OFDM is considered first. An algorithm is proposed based on a state-space model
of the transmission assuming multiple carrier frequency offsets. Each transmitter-receiver
pair is assumed to introduce its own carrier frequency offset. This is justified by separate
RF-IF chains which lead to several different oscillator frequency mismatches. Mobility
together with the large angle spread and rich scattering environment typically assumed in
MIMO systems lead to several frequency shifts as well. Papers [225,251] as well as Publi-
cation III were among the first ones to promote this type of modeling for MIMO OFDM.
With a single CFO parameter per multi-antenna receiver, it is shown that channel equal-
ization and CFO compensation tasks decouple, leading to low complexity equalization.

A time domain estimation and tracking stage stemming from extended Kalman filtering
is the key component of the proposed techniques. Estimation and tracking are performed in
the time domain while equalization takes place in the frequency domain. At the beginning
of the transmission, a few known training symbols are used to initialize the channel and
CFO tracker. Then, the algorithm may switch to decision-directed mode and use the
decoded symbols for keeping the track. If pilot information is available, it may be used
to improve the estimation performance. The MMSE equalizer is chosen for its simplicity
as well as to provide some indication about the bit error rate performance. The equalizer
performance is by no means optimized. The proposed algorithm is shown to capture
both time and frequency domain as well as spatial characteristics of mobile broadband
MIMO channels. Variations of the CFO parameters are also tracked over time. Moreover,
time domain processing allows a significant reduction in computational complexity. Fewer
number of estimated parameters leads also to lower variance of the estimator. Estimation
errors are spread over the whole frequency band, and not concentrated on a given set of
subcarriers, which is another key benefit. Simulation studies demonstrate that recursive
estimation using extended Kalman filter offers a viable and reliable solution for tracking
time-varying channel and frequency offset parameters in MIMO OFDM systems, under
slow to moderate fading conditions. Fast fading may be handled as well if sufficient amount
of pilot information is included.

A blind method is proposed for fine carrier frequency synchronization. No a priori
knowledge of the transmitted data or the multipath channel is required. Effective data
rates remain high as no pilot or null-subcarrier are required. It is shown that the sample
covariance matrix of the received signal contains information on the carrier frequency offset
in cyclic-prefix OFDM transmissions. The algorithm is based on the property that perfect
carrier frequency synchronization implies a diagonal covariance matrix for the received
signal in the frequency domain. A cost function minimizing the total off-diagonal power
induced by intercarrier interference in the frequency domain is introduced. Minimization
of the cost function is accomplished in a closed-form, which leads to low complexity and
accurate computational solution. The theoretical performance analysis of the algorithm
demonstrates that consistent estimation of the carrier frequency offset is achieved under
frequency selective fading. The algorithm is shown to perform reliably in simulations
almost regardless of the signal-to-noise ratio.

Novel approaches in blind subspace-based fine carrier frequency synchronization for
OFDM are introduced as part of this thesis work. It is shown that a low rank model arises
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in almost any OFDM transmission, because of the DFT/IDFT operations and the FIR
communication channels. In practice, the channel is much shorter than the number of
subcarriers, which leads to a low rank model. By exploiting the frequency correlation of
the channel among the subcarriers, blind subspace-based carrier frequency synchronization
becomes feasible. Constant modulus symbol constellations need to be assumed but null-
subcarriers are not necessarily required. The method is shown to be closely related to
maximum likelihood estimation [97]. Close to optimal performance is achieved with a
single block of observations. The fact that only a small sample support is required is
obviously a key advantage in time selective channels.

Finally, the Cramér-Rao bound (CRB) is established for the blind CFO estimation
problem in OFDM. The CRB is a useful measure of the large sample performance because it
gives the minimum variance an unbiased estimator may achieve. The CRB is derived under
the Gaussian approximation for the received signal corrupted by CFO. As the received
signal may be non-circular, e.g. when real-valued modulations are used, the derivation
of the CRB needs to include complete second order statistics. Those require both signal
covariance and pseudo-covariance matrices. It is shown that there is a significant difference
between CRBs in the circular and non-circular cases.

This thesis is organized as follows. Chapter 2 gives an overview of orthogonal frequency
division multiplexing systems. The system model is introduced, assuming a multi-antenna
OFDM setup with multiple carrier frequency offsets. The chapter presents a common
framework for channel and carrier frequency offset parameter estimation that will be fol-
lowed throughout the thesis. In Chapter 3, a literature survey on channel estimation
in OFDM systems is provided. Chapter 4 is a review of carrier frequency synchroniza-
tion techniques specific to OFDM. In Chapter 5, a recursive algorithm derived in this
thesis for the estimation and tracking of channel and CFO parameters in mobile MIMO
OFDM systems is described. Chapter 6 introduces two novel approaches for blind carrier
frequency synchronization in OFDM systems. The CRB for the blind synchronization
problem in OFDM is provided as well. Finally, Chapter 7 summarizes the results and the
contributions of the thesis.

1.4 Summary of the publications

This thesis consists of an introductory part and seven original publications. The publica-
tions are listed at page ix, and appended at the end of the manuscript starting from page
121. The first three publications are dealing with the estimation and tracking of channel
coefficients and carrier frequency offsets in MIMO OFDM systems. The last four of them
introduce novel approaches to blind carrier frequency offset estimation in OFDM. Refer-
ences to other publications by the author of this thesis are also included in the following
summary, where appropriate.

In Publication I, estimation and tracking of channel coefficients in a MIMO OFDM
system is addressed. A Kalman filter based recursive estimator is proposed. The estimation
and tracking stage is running in the time domain, whereas equalization is performed in the
frequency domain. Time domain processing leads to lower computational complexity even
though additional DFTs are needed. Robustness against estimation errors is improved,
as those are spread over the entire frequency band. The special case of recursive channel
estimation in single-input single-output (SISO) OFDM systems is studied in [226].

In Publication II, joint estimation and tracking of channel coefficients and carrier fre-
quency offset is proposed for SISO OFDM systems. The derived algorithm stems from
extended Kalman filter, and operates in the time domain. Since CFO induces a nonlinear
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distortion, the state-space model for the OFDM transmission must be linearized prior to
Kalman filtering. Reliable tracking of time-varying frequency selective channels and fre-
quency offsets is achieved for a wide range of signal-to-noise ratios. Additionally, sequential
Monte-Carlo estimation is an appealing technique for non-linear state-space models. It
was also investigated for carrier frequency synchronization in OFDM [200].

Publication III is one of the main publications of this dissertation. The state-space
models introduced in Publications I-II are extended to cope with arbitrary number of
transmit and receive antennas as well as with multiple carrier frequency offsets in MIMO
systems. The resulting modeling extends the preliminary derivation of [225]. Time domain
processing allows a significant reduction in computational complexity. This is due to the
smaller parameter space compared to frequency domain estimation. Moreover, estimation
errors are spread over the entire frequency band and improved robustness is thus achieved.
Extensive simulations studies are conducted for various noise conditions and terminal
velocities. A technique for refining the obtained estimates is proposed. Both the estimation
error and the tracking capability of the algorithm are improved in this way. Channel
estimation and tracking in spatially correlated MIMO OFDM systems are studied in detail
in [82], whereas the estimation and tracking of real-world measured MIMO channels are
addressed in [78,81].

Publication IV is the other main publication of this doctoral thesis. A blind fine CFO
estimator based on the received signal covariance matrix is introduced. The algorithm is
based on the property that perfect carrier frequency synchronization leads to a diagonal
covariance matrix for the received signal in the frequency domain. The method does not
require a priori knowledge of the transmitted data or the multipath channel. Effective
data rates rates remain high as no pilot or null-subcarrier are needed. A closed-form is
found for the cost function, which allows reliable and low-complexity CFO estimation.
An analysis of theoretical and asymptotic properties of the estimator is provided. The
proposed algorithm is shown to be a consistent estimator of the CFO in the range of
[−1/2, 1/2[ with respect to the intercarrier spacing. As a consequence, it is asymptotically
unbiased. It is shown that the estimator converges in the mean square error at the rate
1/K, where K is the sample size. Finally, simulation results show good performance with
respect to the Cramér-Rao bound established in Publication V. Furthermore, reliable
estimation of the CFO is achieved at low SNR regime, where decision-directed methods
are likely to fail.

In Publication V, the stochastic Cramér-Rao bound is established for the blind CFO
estimation problem in OFDM. The CRB is derived under the Gaussian approximation for
the received signal corrupted by CFO. Such approximation is widely used in the OFDM
literature, and is justified by the central limit theorem [281]. As the received signal may
be non-circular, e.g. when real-valued modulations are used, the derivation of the CRB
needs to include complete second order statistics. Those require both signal covariance
and pseudo-covariance matrices. Channel parameters are treated as deterministic nuisance
parameters, and are assumed to be constant over the observation period. Simulation results
highlight significant differences between the CRBs in the circular and non-circular cases.
As a result, the performance of blind CFO estimation algorithms may be significantly
improved in the non-circular case by exploiting a complete second order statistics.

In Publication VI, a novel subspace-based approach is introduced for blind carrier
frequency offset estimation under time and frequency selective fading. The method applies
to OFDM systems using real-valued constant modulus modulations such as binary phase
shift keying. Correlation in the squared spectrum of the channel is exploited and low
rank signal model is thereby obtained without null-subcarriers. The estimator may be
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interpreted geometrically as minimizing the projection of the squared received signal to
the subspace of channel squared spectrum as a function of the CFO compensation factor.
The proposed estimator accomplishes fine frequency synchronization with a single OFDM
block in the range of [−1/2, 1/2[ with respect to the intercarrier spacing. No extensive time
averaging is needed, which makes the approach very attractive for time-varying scenarios.
The method is statistically very efficient since close to optimal performance is achieved
with respect to the Cramér-Rao bound with a single received block.

Publication VII extends the algorithm derived Publication VI to the case of complex-
valued constant modulus modulations. An accurate description of the subspace structure
related to the CFO estimation problem with constant modulus modulations is provided.
Because the subspaces are known a priori, there is no need for estimating them. The com-
putational complexity is significantly reduced as no subspace decomposition is required.
The relationship to an existing algorithm in the literature [97] exploiting the constant
modulus property is established in Chapter 6 of this thesis. Both algorithms are shown
to be closely related to maximum likelihood estimation. As a result, close to optimal
performance is achieved.

All the simulation software for all the original publications included in this dissertation
was written solely by the author.

In Publications I-III, the original time domain channel and CFO estimator stemming
from Kalman filter was the idea of the first author. Most of the simulations were performed
by the first author as well. The co-authors provided guidance in the theoretical modeling,
in the design of the experiments, and helped in writing the papers.

The algorithms in Publications IV-V were derived by the author of this thesis. The
co-authors collaborated in the derivation of the theoretical performance bounds and in the
establishing the asymptotic performance of the related algorithms. They also provided
guidance for the author proofs and contributed to the writing of the final version of each
paper.

The algorithms in Publications VI-VII were derived by the author of this thesis. The
theoretical results presented were also established by the author. The co-author provided
guidance during the development, and contributed to the writing as well.
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Chapter 2

Overview of orthogonal frequency

division multiplexing systems

This chapter gives an overview of orthogonal frequency division multiplexing (OFDM)
systems. The main objective is to provide a formal description of MIMO OFDM com-
munications in mobile environments. Single antenna OFDM systems are viewed as a
particular case. Both SISO and MIMO system models are used throughout the thesis.
Imperfections and their impact on the overall system performance are reviewed at the end
of the chapter.

2.1 Short history of OFDM

The first OFDM scheme dates back to 1966 when Chang published his pioneering work
on the synthesis of band-limited signals for multichannel transmission [44]. The main idea
in OFDM is to divide the frequency selective channel into a number of parallel, frequency
flat subchannels. By making all the subchannels narrowband, they experience almost
flat fading, which makes receiver design very simple. In classical parallel data systems,
the total signal frequency band is divided into non-overlapping frequency subchannels.
Avoiding spectral overlap eliminates inter-channel interference [273, Ch.1]. However, this
leads to inefficient use of the available spectrum. To obtain a high spectral efficiency, the
frequency responses of the subchannels are designed to overlap and be orthogonal, hence
the name OFDM. The power spectral density (PSD) of a typical OFDM signal is depicted
in Figure 2.1.

In 1971, Weinstein and Ebert made an important contribution by proposing the use of
the discrete Fourier transform (DFT) to perform baseband modulation and demodulation
[283]. In this way, the complexity of OFDM modems is significantly reduced since there
is no need for a bank of subcarrier oscillators anymore. The inter-symbol interference
(ISI) and intercarrier interference (ICI) were mitigated by using a guard time between the
symbols and raised-cosine windowing in time domain. Even though the proposed system
did not achieve perfect orthogonality among the subcarriers over dispersive channels, it
was nevertheless an important contribution to OFDM. In 1980, Peled and Ruiz solved
the orthogonality problem by introducing the cyclic prefix (CP) [208]. Instead of having
zero-padding, they filled it with a cyclic extension of the OFDM symbol. The latter
manipulation converts the linear convolutive channel into a circular convolutive one. This
ensures orthogonality among the subcarriers as long as the CP remains longer than the
impulse response of the channel. However, the cyclic prefix induces a loss in effective
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Figure 2.1: Power spectral density of an OFDM signal with N = 5 subcarriers (thick line).
PSD of the individual subcarriers (thin lines).

data rates, but the zero ICI generally compensates for this loss. During the early years of
development of OFDM, contributions by Saltzberg, Hirosaki, Cimini, Kalet [64, 121, 140,
230] are significant as well.

As a proof of its maturity, OFDM was included in the European digital audio broadcast
(DAB) [85] as well as digital video broadcast (DVB) [86] standards. OFDM was selected as
transmission technique for the high performance local area network HIPERLAN [84] [119,
Ch.8] and is also part of the IEEE 802.11 [130] Wireless Local Area Network (WLAN)
standard. An excellent overview of OFDM receivers for WLANs may be found in [119].
Also, asymmetric digital subscriber loop (ADSL) [17] is an important application of OFDM
modulation for high data rate wireline transfers. Moreover, two out of the three air
interfaces specified in the IEEE 802.16 [1] standard for broadband wireless access (also
known as WiMAX) are based on OFDM [103]. Finally, OFDM is considered for the
long term evolution of 3G [2, 3, 285] as well as fourth generation (4G) mobile wireless
systems [38,138,207].

2.2 System model for MIMO OFDM

This section presents the system model for multiple-input multiple-output (MIMO) OFDM
based wireless communication systems. Single-input single-output (SISO) OFDM systems
are viewed as a special case of the latter. The following description will serve as a common
framework throughout the thesis in order to address issues in both channel estimation and
frequency synchronization.

2.2.1 MIMO channel model

Continuous time channel impulse response

Let us consider a wireless communication system with Nt transmit and Nr receive an-
tennas. This is referred to as a Nt × Nr MIMO system. In the following, the index
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t = 1, . . . , Nt refers to transmit antennas and r = 1, . . . , Nr to receive antennas. Let
us denote the continuous-time impulse response between transmit antenna t and receive
antenna r by

h
(c)
tr,k(τc) = h

(tx)
t (τc) ∗ h(ch)

tr,k (τc) ∗ h(rx)
r (τc), (2.1)

where ∗ stands for the convolution operator, and h
(tx)
t (τc) and h

(rx)
r (τc) are the transmit

and receive pulse shaping filters, respectively. We denote by τc the continuous time-delay.

In the above equation, h
(ch)
tr,k (τc) is the impulse response of the propagation channel cor-

responding to MIMO branch tr, sampled at time kTs+g and delay lag τc. The channel
is assumed to be constant within the time duration of one OFDM block, which is equal
to Ts+g. This assumption is called block fading model. The index k refers to the OFDM
block number. OFDM systems are usually designed using rectangular pulse shape. How-
ever, other pulse shapes may be useful, for instance, to lower side lobes in frequency
domain [254, 269]. This is beneficial in reducing interference as OFDM with a cyclic pre-
fix can prevent intercarrier interference but does not combat inter-channel interference if
rectangular pulses are used.

Discrete time channel impulse response

Taking samples at ts = 1/(NBsc), where Bsc is the subcarrier bandwidth and N the total
number of subcarriers, the discrete-time channel impulse response (CIR) for MIMO branch
tr is obtained as

htr(k, l) = h
(c)
tr,k(τc)

∣∣∣
τc=lts

, l = 0, . . . , P − 1, k ∈ N, (2.2)

where P denotes the total length of the OFDM block in samples, including the cyclic prefix.
Indices k and l correspond to OFDM block and tap numbers, respectively. For a given
block index k, the quantity htr(k, l) is referred to as the lth channel tap and is linked to
the physical propagation environment. Under the idealistic assumption of sample-spaced
CIRs, htr(k, l) corresponds to a single propagation path. In practice, this assumption does
not always hold, and consequently htr(k, l) contains energy from multiple physical paths.
This introduces correlation among the channel taps and may affect channel estimation
algorithms if they assume uncorrelated channels [113, 16.4.2].

Due to the block fading assumption, the channel taps are constant within the time
duration of one OFDM block, which is equal to Ts+g = Pts. Furthermore, we assume that
the CIR has Lh non-zero taps and is no longer than the cyclic prefix of length LCP. At
block time instance k, one may express the CIR corresponding to MIMO branch tr as the
following vector of size Lh × 1:

htr(k) = [htr(k, 0), htr(k, 1), . . . , htr(k, Lh − 1)]T . (2.3)

The channel coefficients in time domain htr(k, l), for l = 0, . . . , Lh − 1, are assumed to be
zero-mean complex circular Gaussian random variables, which leads to Rayleigh fading.
Channel taps are considered to be correlated in time, and may be dependent or indepen-

dent from each other. The average power and delay profiles,
{
E

[
|htr(k, l)|2

]}Lh−1

l=0
and

{τtr(k, l)}Lh−1
l=0 , respectively, are determined by the propagation environment. Note that

the multipath nature of the channel leads to frequency selectivity, while the mobility-
induced Doppler spectrum translates into time-selectivity and correlation over time [220,
Ch.14]. Thus, one is dealing with time-frequency dispersive/selective channels, which
need to be estimated and tracked over time for successful data transmission. The Ricean
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and Nakagami-m distributions are among other well-known and frequently used statisti-
cal models for fading [220, Ch.14]. The Rice model includes a line-of-sight (LOS), unlike
Rayleigh fading. Both models can be considered as special cases of the Nakagami fading
model. Simulation studies in this work have been conducted with independent Rayleigh
fading, with correlation over time. The Doppler spectrum is assumed to follow Jakes’
model [134].

Practical implementations in both wireless and wireline transmissions experience quite
long CIRs. In this case, channel shortening is an interesting option to improve effective
data rates as a smaller guard interval (i.e., cyclic prefix) may be used. The idea is to
linearly equalize the CIR to a much shorter target impulse response which length may be
fixed a priori [30,204].

Discrete time MIMO channel vector

We may stack the MIMO channel coefficients at time instance k into a column vector of
size NtNrLh × 1 as follows:

h(k) =
[
hT

11(k), . . . ,h
T
Nt1(k), . . . , h

T
1r(k), . . . , h

T
Ntr(k), . . . , h

T
1Nr

(k), . . . , hT
NtNr

(k)
]T
.

(2.4)
Channels corresponding to different transmit and receive antenna pairs in MIMO systems
usually exhibit similar delay profiles. In this thesis, CIR vectors in each branch are assumed
to be independent and identically distributed. In practice this means that the scattering
environment is rich and the antennas are placed further apart than the coherent distance.
High correlation in MIMO channel branches is detrimental in terms of reduced capacity
and higher bit error rates, and leads to lower system performance.

Correlation among MIMO branches

MIMO channel models, especially the ones validated by measurement campaigns [143,
282], are of great importance in algorithm design. In the Kronecker model [143], the
channel correlation matrix is given by the Kronecker product between the transmitter and
receiver correlation matrices. The main assumption is that the correlation properties at
the two link ends are separable. The Kronecker model has become popular, despite its
limitations. Indeed, it was shown recently to under-estimate the MIMO channel capacity
[282]. The Weichselberger model (W-model) [282] provides more advanced modeling and
differs from the Kronecker model in the sense that correlation features at the link ends are
not necessarily decoupled. In realistic scenarios, both uncorrelated and correlated channels
are encountered. Recently, the third generation partnership project (3GPP) proposed the
spatial channel model (SCM) and extended SCM (SCME) [285]. The IEEE task group in
charge of 802.11n addresses channel modeling issues as well [131].

MIMO systems allow improving the spectral efficiency (bits/s/Hz) tremendously as
they promise a linear improvement in the capacity proportional to the number of antennas.
Indeed, channel capacity was shown to be proportional to min{Nt, Nr} [207,261]. Spatial
multiplexing allows creating multiple data streams between transmitter and receiver arrays
without additional bandwidth or increased total power. Channel diversity of order up
to Nt × Nr may be obtained via transmit diversity techniques such as, e.g., space-time
coding [126]. This results in improved quality of the radio link. Finally, increased array
gain over SISO systems allows improving the coverage and SNR. Both multi-antenna
systems and multicarrier modulation are needed for filling the technology gaps for future
broadband wireless networks.
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2.2.2 Frequency offsets in mobile MIMO systems

Frequency offsets are mainly caused by two different factors [168]: Doppler shifts and
carrier frequency mismatches between transmit and receive oscillators.

Carrier frequency mismatches occur when oscillators at the transmitter and receiver
experience drifts from their nominal frequency. Therefore, a frequency offset is introduced.
In multi-antenna systems, each transmitter and receiver typically requires its own radio
frequency - intermediate frequency (RF-IF) chain. Consequently, each transmitter-receiver
pair has its own mismatch parameter and hence separate frequency offset. In a Nt ×Nr

MIMO system this leads to Nt × Nr mismatch parameters and offsets. If transmit or
receive antennas share RF-IF chains, fewer carrier frequency mismatch parameters are
needed.

In wireless mobile communications, Doppler shift of the received signal spectrum arises
from relative motion between the transmitter and the receiver. The shift depends on
the carrier frequency, the velocity of the mobile terminal and the angle of arrival. For
instance, a sinusoidal transmitted waveform with wavelength λ [m] and impinging at angle
φD ∈ [0, 2π[ experiences a shift in frequency fD = v cosφD/λ, resulting from the relative
motion at velocity v [m/s] with respect to the receiver. The shift fD [Hz] is referred to
as Doppler shift. In reality, the signal experiences a complete Doppler spread instead of
a single frequency shift [220, Ch.14], [134]. Hence, in theory, separate offset parameter is
needed for each propagation path [8, 65, 110, 135, 136]. In MIMO wireless communication
systems, rich scattering environment and large angle spread are required in order to obtain
improved spectral efficiency and link quality. Therefore, each channel branch introduces
its own Doppler shift. Papers [32,225] as well as Publication III presented in Chapter 5 of
this thesis were among the first ones to advocate the use of multiple CFO parameters in
mobile MIMO OFDM. However, most of the existing work in the literature still assumes
single CFO parameter per multi-antenna receiver or for the whole MIMO system. The
assumption of a single offset per multi-antenna receiver is valid only in the case when
multipath components impinge the antennas with the same angle of arrival (AOA) [32,
168,252], e.g. in LOS situation, for instance in the case of a Rician channel with very few
dominant AOA’s.

As a result, in a general case of a Nt×Nr MIMO system, it is necessary to compensate
for Nt × Nr different Doppler shifts. Such approach has be adopted in this thesis. At
time instance k, assume that MIMO branch tr experiences a frequency shift νtr(k), for
t = 1, . . . , Nt and r = 1, . . . , Nr. All the NtNr values of the CFOs may be stacked in
vector form as

ν(k) = [ν11(k), . . . , νNt1(k), . . . , ν1r(k), . . . , νNtr(k), . . . , ν1Nr(k), . . . , νNtNr(k)]
T . (2.5)

2.2.3 MIMO OFDM input-output relationships

There exist several versions of OFDM. The focus in this thesis is on discrete time MIMO
OFDM systems employing a cyclic prefix. In the following, the MIMO OFDM transmission
is described in a formal way [174,279]. ANt×Nr MIMO OFDM system withNtNr separate
carrier frequency offsets is depicted in Figure 2.2.

MIMO OFDM modulation

In MIMO OFDM, there is one OFDM modulator per transmit antenna. In spatial mul-
tiplexing, independent data streams are transmitted from each antenna. Modulation and
demodulation operations in OFDM are performed by IDFT and DFT, respectively. Both
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Figure 2.2: Baseband model of the MIMO OFDM model with NtNr separate carrier
frequency offsets considered in this thesis.

tasks may be accomplished with computationally efficient fast Fourier transform (FFT) al-
gorithms. This played an important role in the deployment of OFDM systems in practical
applications.

At time instance k, the original data stream at antenna t, st,0(k), . . . , st,N−1(k), is
drawn from a symbol constellation and serial-to-parallel (S/P) converted to form the kth

data vector st(k) of size N × 1. Some subcarriers may be left unmodulated and hence
some components of st(k) may be set to zero. Those are referred to as null-subcarriers,
and their use is discussed later in this section.

An N -point IDFT (inverse discrete Fourier transform) is then applied to N complex
data symbols at the tth transmitter creating the kth modulated block x̃t(k). A cyclic prefix
of length LCP is added to form x̃CP,t(k). As a result, the total length of the OFDM symbol
with CP is P = N + LCP. The CP is a copy of the last part of the OFDM symbol which
is inserted in front of the transmitted symbol. The benefits of a cyclic prefix are twofold:

1. It allows avoiding inter-block interference (IBI) since it acts as a guard space between
two consecutive OFDM symbols. A CP of length LCP may accomodate a channel of
order up to LCP, i.e., with up to LCP + 1 non-zero taps.

2. It prevents from intercarrier interference (ICI) as it maintains the orthogonality
between the subcarriers as long as its length is longer than the delay spread of the
channel.

The structure of the OFDM block together with CP is depicted in Figure 2.3.

The above operations (see Figure 2.2) may be conveniently represented in matrix-vector
product form as follows:

st(k) = [st,0(k), . . . , st,N−1(k)]
T (2.6)

x̃t(k) = Fst(k) (2.7)

x̃CP,t(k) = TCPx̃t(k), t = 1, . . . , Nt, (2.8)
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x̃1 x̃2 x̃3. . . . . .x̃N x̃Nx̃N-1 x̃N-1

Cyclic prefix (Tg)

Sub-symbol (ts)

Data part (Ts)

OFDM block (Ts+g)

Time

Figure 2.3: Structure of the OFDM block. The CP is a copy of the last part of the OFDM
block. Tg, Ts, Ts+g and ts refer to the durations of the cyclic prefix, the data part, the
whole OFDM block and the OFDM sub-symbol, respectively. The transmit antenna index
is omitted, for simplicity.

where the matrix TCP of size P ×N performs the cyclic prefix insertion and F is the IDFT
matrix of size N ×N :

TCP =




0LCP×(N−LCP) ILCP

IN−LCP
0(N−LCP)×LCP

0LCP×(N−LCP) ILCP


 (2.9)

[F]m,n =
1√
N

exp

(
j
2πmn

N

)
, m, n = 0, . . . , N − 1. (2.10)

The notation IK refers to the identity matrix of size K ×K, and 0K×L to the matrix of
size K × L filled with zeros. The resulting sequence x̃CP,t(k) is successively parallel-to-
serial converted (P/S), converted to analog, modulated on a carrier and sent through the
channel through transmit antenna t. See, Figure 2.2.

MIMO OFDM demodulation

At the receiver, the received signal is first down-converted to baseband and sampled. The
CP is discarded, which suppresses IBI assuming the CP is sufficiently long. Under perfect
time synchronization, the CFO-corrupted received signal in time domain at the rth receive
antenna after cyclic prefix removal may be expressed as

yr(k) =

Nt∑

t=1

ej2π(kP+LCP)νtr(k)/NC(νtr(k))H̃tr(k)x̃t(k) + wr(k), r = 1, . . . , Nr, (2.11)

where:

1. The matrix H̃tr(k) of size N ×N is defined as H̃tr(k) = RCPHtr(k)TCP, where the
matrix RCP = [ 0N×LCP

IN ] of size N × P discards the CP. The matrix Htr(k)
models the wireless environment at time instance k between the tth transmit and rth

receive antennas. It is a Toeplitz convolution matrix of size P × P built from the
channel vector htr(k) defined in (2.3). Now, cyclic prefix insertion at the transmitter
followed by CP removal at the receiver side turns the linear convolutive channel into
a circular convolutive one [76, 279]. Hence, the matrix H̃tr(k) of size N × N is
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circulant, i.e., its elements are of the form:

[
H̃tr(k)

]
m,n

=

{
htr (k, l) , l = (m− n) modN ≤ Lh − 1
0, otherwise

, m, n = 0, . . . , N − 1.

(2.12)

2. At time instance k, the distortion specific to MIMO branch tr caused by the CFO
νtr(k) is modeled by both the block dependent term ej2π(kP+LCP)νtr(k)/N and the
N ×N diagonal matrix C(νtr(k)) defined as

C(νtr(k)) = diag
{[

1, ej
2πνtr(k)

N , . . . , ej
2π(N−1)νtr(k)

N

]}
. (2.13)

The quantity νtr(k) is referred to as normalized frequency offset with respect to
intercarrier spacing. The effective frequency deviation is equal to νtr(k)∆f [Hz],
where ∆f = B/N is the intercarrier spacing and B [Hz] is the bandwidth allocated
to the system.

3. The N × 1 vector wr(k) is a zero-mean complex circular additive white Gaussian
vector with covariance matrix σ2IN .

OFDM demodulation is performed using DFT at each receive antenna. Taking the
DFT of yr(k) in (2.11) yields

ỹr(k) =

Nt∑

t=1

ej2π(kP+LCP)νtr(k)/NFHC(νtr(k))H̃tr(k)Fst(k) + w̃r(k) (2.14)

=
Nt∑

t=1

ej2π(kP+LCP)νtr(k)/NFHC(νtr(k))FD
h̃tr

(k)st(k) + w̃r(k), (2.15)

where r = 1, . . . , Nr and w̃r(k) = FHwr(k). The matrix D
h̃tr

(k) of size N ×N is defined

as D
h̃tr

(k) = FHH̃tr(k)F. It is a diagonal matrix because H̃tr(k) is circulant and is thus
diagonalized by DFT/IDFT matrices. Moreover, the matrix D

h̃tr
(k) contains the channel

frequency response h̃tr(k) at subcarrier frequencies, i.e.,

D
h̃tr

(k) = diag
{
h̃tr(k)

}
(2.16)

h̃tr(k) =
[
h̃0, . . . , h̃N−1

]T
(2.17)

h̃n =

Lh−1∑

l=0

htr(k, l) exp

(
−j 2πnl

N

)
, n = 0, . . . , N − 1. (2.18)

Now, stacking Nr equations of the form (2.15) in a vector we obtain:

ỹ(k) = M(k)s(k) + w̃(k), (2.19)
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with the following notation:

M(k) =




M11(k) . . . MNt1(k)
... Mtr(k)

...
M1Nr (k) . . . MNtNr(k)




NrN×NtN

(2.20)

Mtr(k) = ej2π(kP+LCP)νtr(k)/NFHC(νtr(k))FD
h̃tr

(k) (2.21)

s(k) =
[
sT
1 (k), . . . , sT

Nt
(k)

]T
(2.22)

w̃(k) =
[
w̃T

1 (k), . . . , w̃T
Nr

(k)
]T
. (2.23)

Finally, given the knowledge of both the MIMO channel coefficients and CFO parameters,
the channel may be equalized. ZF or MMSE equalizers may be found in the frequency
domain respectively as

uZF(k) =
[
MH(k)M(k)

]−1
MH(k) ỹ(k) (2.24)

uMMSE(k) = σ2
s

[
σ2

sM
H(k)M(k) + σ2INtN

]−1
MH(k) ỹ(k), (2.25)

where σ2 is the variance of the noise and σ2
s is the average symbol energy. Then, decisions

are carried out on uZF(k) or uMMSE(k) in order to obtain the estimate of the transmitted
symbol vector ŝ(k). In order to ensure data symbol detectability with zero forcing equal-
izer, MHM has to be full rank, i.e., NtN = rank{MHM} = rank{M} ≤ min (NtN,NrN).
Hence, min (NtN,NrN) = NtN , i.e., the number of receive antennas must be at least equal
to the number of transmit antennas.

MMSE and zero-forcing equalization schemes were presented due to their simplicity
and to provide some indication on the bit error rate performance. The equalization and
detection stages are by no means optimized in this thesis, since the scope is in channel and
CFO estimation. More advanced equalizers lead to better performance, i.e., lower data
error rates. The maximum likelihood (ML) approach leads to the optimal detector from a
statistical viewpoint [113, 17.3.3]. However, the computational complexity of ML detection
is of order O

(
QNt

)
per subcarrier, where Q refers to the constellation size. Hence, it is

prohibitive for high order modulation schemes in practice. Then, one distinguishes linear
sub-optimal approaches such as the previously discussed ZF and MMSE detectors. Low-
complexity MMSE and MMSE decision-feedback equalization (DFE) are addressed in [229]
and [228], respectively. Finally, there exist nonlinear sub-optimal techniques known as
parallel interference (PIC) or serial interference (SIC) cancellation. A thorough review
of the literature associated to both optimal and sub-optimal detection in MIMO OFDM
may be found in [113, Ch.16-17]. An excellent reference book on signal detection and
estimation principles is [218].

Special case of SISO OFDM

Single-input single-output OFDM transmissions are considered in Publications II, IV-VII.
Moreover, a model for SISO OFDM is needed later in this thesis in order to describe
most of the existing work in channel and frequency offset estimation. In the case of SISO
transmission, i.e., Nt = Nr = 1, the expression in (2.11) for the received signal in time
domain after CP removal reduces to

y(k) = ej2π(kP+LCP)ν(k)/NC(ν(k))H̃(k)Fs(k) + w(k) (2.26)

= ej2π(kP+LCP)ν(k)/NC(ν(k))FD
h̃
(k)s(k) + w(k), (2.27)
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where the circulant matrix H̃(k) of size N × N performs the circular convolution with
the channel impulse response vector h(k), and the diagonal matrix D

h̃
(k) = diag{h̃(k)}

contains the channel frequency response (CFR) at subcarrier frequencies. Similarly, the
received signal after the DFT operation in (2.14)-(2.15) becomes

ỹ(k) = ej2π(kP+LCP)ν(k)/NFHC(ν(k))H̃(k)Fs(k) + w̃(k) (2.28)

= ej2π(kP+LCP)ν(k)/NFHC(ν(k))FD
h̃
(k)s(k) + w̃(k). (2.29)

Equalization may then be performed as in (2.24)-(2.25). Now, in the absence of CFO, i.e.,
ν(k) = 0, the transmission equation (2.29) reduces to

ỹ(k) = D
h̃
(k)s(k) + w̃(k). (2.30)

As a result, OFDM modulation together with CP is able to turn a frequency selective
channel into a set of parallel narrowband frequency flat channels. This assumes perfect
time and frequency synchronization. Consequently, the equalization of frequency selective
channels becomes extremely simple as a single-tap equalizer in the frequency domain is
needed only. Another option to eliminate IBI is to add zeros at the end/beginning of
the OFDM block. This is referred to as zero-padding (ZP) [279]. At the receiver, the
corresponding samples are dropped, eliminating the IBI. Unlike the CP, the ZP does not
enjoy the property of transforming the linear convolution with the channel into a circular
one. However, relatively simple equalization may still be achieved if the received signal is
overlap-added first and then equalized in the frequency domain [279,303].

Null subcarriers

In practical OFDM systems, not all the subcarriers are used in order to avoid interference
between adjacent OFDM systems [101]. Some of the subcarriers at the edges of the OFDM
block are not modulated, and those are referred to as virtual subcarriers (VSC). Their
number is dictated by system design requirements and they may represent up to 10% of
the total number of subcarriers. Some other subcarriers may be deactivated as well. For
instance, those which experience deep fades may be left unmodulated if the transmitter
possesses knowledge of the channel state. In the following, deactivated subcarriers will be
referred to as null-subcarriers (NSC), and those include VSCs.

Let N = {0, . . . , N − 1} denote the entire set of subcarriers indices, and let NA denote
the subset of N that contains the Na modulated subcarriers. Similarly, NNSC denotes the
subset of N that contains the Nz NSCs. The N × 1 vector modulating the entire set of
subcarriers at time instance k may be expressed as

s(k) = βkVNSC(k)a(k), (2.31)

where a(k) = [a1(k), . . . , aNa(k)]T is the Na×1 symbol vector drawn from a complex sym-
bol constellation. The normalization factor βk =

√
N/Na ensures that the total transmit-

ted power is constant regardless of Na. The (m,n) element of the N ×Na tall permutation
matrix VNSC(k) is 1 if the nth symbol is transmitted on the mth subcarrier during the kth

OFDM block, and zero otherwise [101].

Choosing OFDM parameters

The choice of OFDM parameters is a tradeoff between various and often conflicting re-
quirements [273, Ch.2]. There are three key parameters to begin with: the bandwidth B,

18



the bit rate b and the delay spread τd. The delay spread directly dictates the guard time
Tg. In practice, the guard time is chosen between two to four times the root-mean-squared
(RMS) delay spread. Once the guard time is set, the total symbol duration Ts+g may be
determined (see Figure 2.3). In order to minimize the loss in signal-to-noise ratio (SNR)

Channel parameters Symbol Unit

Delay spread τd [s]
Doppler spread Bd [Hz]

System parameters Symbol Unit Requirement Cross links

Guard time Tg [s] Tg > τd
System bandwidth B [Hz] Bd � B B = NBsc = 1/ts
Subcarrier bandwidth Bsc [Hz] Bsc = B/N = 1/Ts

System bit rate b [bit/s] b = Nbsc = xbps/ts
Subcarrier bit rate bsc [bit/s] bsc = b/N = xbps/Ts

Block duration Ts+g [s] Ts+g = Ts + Tg

Data part duration Ts [s] Ts > Tg Ts = Nts
Sub-symbol duration ts [s] ts = Ts/N
Number of subcarriers N integer N = dB/Bsce N = db/bsce

Table 2.1: Choice and dependencies among OFDM system and channel parameters.

induced by the guard time, it is advised to have the data symbol duration Ts as long as
possible. However, it cannot be extended indefinitely for mainly two reasons:

1. The channel is assumed to remain (approximately) constant over the total duration
Ts+g = Ts + Tg of the OFDM block. Hence the condition B � Bd, where Bd is the
Doppler spread of the channel. Otherwise, the orthogonality among the subcarriers
gets compromised, which leads to ICI and significantly degrades the performance of
the whole system.

2. A larger symbol duration implies a narrower subcarrier bandwidth, which in turn
requires having more subcarriers with smaller intercarrier spacing. Increasing N
requires FFTs of larger size which means a higher implementation complexity and
peak-to-average power ratio (PAPR). Moreover, extremely closely spaced subcarriers
put tight requirements on the frequency synchronization and makes the system highly
sensitive to carrier frequency offsets.

Consequently, a practical design rule is to make the symbol duration at least five times
the guard time, which implies a 1 decibel (dB) loss in SNR.

When the symbol duration and the guard time are fixed, the number of subcarriers N
follows from the required −3 dB system bandwidth B divided by the subcarrier spacing
Bsc = 1/Ts. The number of subcarriers may be found as well as the ratio between the
required bit rate b and the bit rate per subcarrier bsc. The parameter bsc is determined by
the modulation scheme in use and the symbol rate 1/Ts. Assuming xbps bits per symbol
and the same modulation for all subcarriers, one gets bsc = xbps/Ts.

An additional requirement is to have an integer number of samples (typically a power
of 2 to allow the use of radix-2 or -4 FFTs) within the DFT/IDFT interval and/or in the
whole symbol interval. A typical solution is to modify one of the other system parameters
to meet the requirement. Alternatively, null or virtual subcarriers allow meeting the
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integer constraint and provide oversampling needed to avoid aliasing as well. The main
requirements and design rules for OFDM system parameters are summarized in Table 2.1.

2.3 Imperfections in OFDM systems

Real-world OFDM systems suffer from various imperfections and limitations. In particu-
lar, they are extremely sensitive to frequency synchronization similarly to any multicarrier
system. On the other hand, they are more tolerant to timing errors unlike single-carrier
systems. In this section, we first review issues related to symbol synchronization including
symbol timing and phase noise effects. Then, carrier frequency synchronization is ad-
dressed. Finally, we discuss high peak-to-average power ratios inherent to OFDM which
put tight requirements on the power amplifier design. Many aspects regarding OFDM
transceivers such as time synchronization or the peak power problem are only described
briefly here, since they are beyond the scope of this thesis.

2.3.1 Symbol synchronization

One of the arguments against OFDM is its sensitivity to synchronization errors, especially
frequency errors. Time and frequency synchronization techniques applied to OFDM are
reviewed in [113, Ch.5]. In this section, we make a brief overview of issues related to
timing, symbol phase errors, carrier frequency synchronization, the peak-to-average power
problem and their impact on the OFDM system performance.

Timing errors

While carrier frequency offsets and phase noise (jitter) introduce ICI, OFDM is robust
with respect to timing offsets. Indeed, OFDM is not sensitive to timing errors as long as
those remain within the boundaries of the cyclic prefix. In this case, the orthogonality of
the transmission is maintained and the symbol timing delay can be viewed as a phase shift
introduced by the channel. The latter may be estimated and compensated by performing
channel estimation followed by equalization. ISI and ICI occur only when the DFT interval
extends over the OFDM block boundaries [273, Ch.4.4]. The latter is illustrated in Figure
2.4. However, to achieve the maximal robustness to multipath, the timing instant should

x̃1 x̃2 x̃3. . . . . .x̃N x̃Nx̃N-1 x̃N-1

Earliest possible timing

Latest possible timing

Cyclic prefix Data part

OFDM block time

Figure 2.4: Boundaries for symbol timing instants in OFDM.

be the earliest possible one. Otherwise, the system can accommodate less delay spread
than the value it was initially designed for. Therefore, the timing error should remain
small compared to the guard interval. There exist mainly two classes of synchronization
strategies for OFDM in the literature: the ones based on the redundancy introduced by
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the cyclic prefix [272] and those using pilot symbols [153]. Combination of CP and pi-
lot data may be used as well [153]. Correlation based methods seek for the time shift
which maximizes the correlation of the received signal after equalization with the refer-
ence synchronization signal [280]. They usually consist of three distinct phases: power
detection, coarse synchronization and fine synchronization. Also, a time and frequency
synchronization algorithm exploiting a special pilot structure with two identical halves in
time domain is considered in [238]. Blind synchronization in OFDM is also feasible by ex-
ploiting a special signal structure on top of the OFDM modulation: the delay information
is not preserved in the second order statistics of a pure OFDM signal. Then, one may
exploit the CP, the cyclostationarity of pulse-shaped signals [35] or the presence of virtual
subcarriers [28]. A thorough review of time synchronization algorithms for OFDM may
be found in [113, Ch.5] and [247, Ch.5].

Phase noise

Carrier phase noise (PHN) stems from imperfections in both transmitter and receiver
oscillators, which translate in baseband into an additional phase and amplitude modulation
of the received samples. Phase noise has two detrimental effects. First, it introduces a
random phase variation common to all subcarriers. In addition, it causes ICI as subcarriers
are not placed anymore 1/Ts apart in the frequency domain. Phase noise is an important
factor that may limit the OFDM system performance [113, Ch.3].

Looking now at the SISO system model with phase noise in a CFO-free case (ν = 0),
the received signal in the frequency domain in equation (2.26) becomes:

ỹθ(k) = FHCPHN (k)FD
h̃
(k)s(k) + w̃(k), (2.32)

where we denote by CPHN (k) = diag{exp(jθ0(k)), . . . , exp(jθN−1(k))} the phase noise ma-
trix of size N × N and by θ0(k), . . . , θN−1(k) the discrete time PHN sequence at block
instance k. For non-zero PHN, the matrix FHCPHN (k)F is non-diagonal. Hence, phase
noise destroys the orthogonality of the OFDM transmission and introduces ICI. Conse-
quently, PHN statistics should be estimated.

There exist two different models for PHN in the literature [213]. The first type assumes
the local oscillator (LO) is controlled by a phase-locked loop (PLL) and approximates the
PHN by a process with finite power and low-pass shaped spectrum. The second type of
PHN is obtained when the LO is tuned to the carrier frequency and free-running, i.e., the
system is frequency-locked only. The modeling results in a Wiener process for the phase
noise with Lorentzian power density spectrum. Assuming the second type of model for
PHN, Pollet et al. estimate in [217] the resulting degradation in SNR as

DPHN
∼= 11

6 ln 10

(
4πN

β

B

)
Es

N0
[dB], (2.33)

where B denotes the system bandwidth, β (in Hz) is the one-sided 3 dB linewidth of
the Lorentzian power density spectrum, and Es/N0 is the SNR per symbol. Notice that
the degradation increases with the number of subcarriers. It also depends on the ratio
β/B = βTs, where Ts is the duration of the OFDM block. While the literature related
to PHN focuses to date on SISO OFDM systems, the influence and suppression of phase
noise in multi-antenna OFDM was analyzed in [237].
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2.3.2 Carrier frequency synchronization

In Section 2.2.2, the Doppler spread and the local oscillators drifts were identified as the
two main sources of carrier frequency offset. In the following, we analyze the impact of
imperfect frequency synchronization on OFDM system performance.

Let us consider the SISO case, for simplicity. First, we recall the expression in (2.29)
for the received signal in the frequency domain corrupted by carrier frequency offset:

ỹ(k) = ej2π(kP+LCP)ν/NFHC(ν)FD
h̃
(k)s(k) + w̃(k). (2.34)

From (2.34), it is clear that performing the DFT before correcting the CFO introduces ICI
in the frequency domain as the matrix FHC(ν)F is not the identity matrix for non-zero
frequency offset. The CFO may be several times larger than the subcarrier spacing. It is
usually divided into an integer part kν and fractional part ε, as follows:

ν = kν + ε, (2.35)

with kν ∈ N and ε ∈ [−1, 1[. The integer part causes a circular shift of the transmit-
ted symbols, while the fractional part is source of ICI. As seen in Figure 2.5, fractional
CFO shifts the ideal sampling positions with zero-ICI in the frequency domain, leading
to intercarrier interference. The amplitude loss occurs because the desired subcarriers are
no longer sampled at the peak of the sinc(x) = sin(x)/x function. Adjacent subcarriers
cause interference, as they are not sampled at the zero-crossing of their sinc functions
anymore. Figure 2.6 depicts the transmission matrix FHC(ν)FD

h̃
for ν = 0, 5.4 and a
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Figure 2.5: Effect of CFO on OFDM transmission with N = 5 subcarriers. Upper plot:
Perfect synchronization, no ICI is observed (ν = 0). Lower plot: CFO is present (ν =
0.4). CFO shifts the ideal sampling positions in the frequency domain, introducing severe
intercarrier interference.

random channel with Lh = 8 non-zero propagation paths. It is seen from the figure that
the transmission matrix becomes clearly non-diagonal for non-zero frequency offset. This
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may be treated as an equalization problem as the impulse response of the ICI may be
expressed in terms of the CFO [101]. However, the number of parameters to be estimated
increases and the benefit of low-complexity equalization is lost. Also, synchronization in
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Figure 2.6: Effect of CFO on OFDM transmission with N = 64 subcarriers. Plot of the
absolute values of the elements of the transmission matrix FHC(ν)FD

h̃
in a logarithmic

scale, for a random channel with Lh = 8 non-zero propagation paths. On the left: ν = 5.4.
The integer part of the CFO shifts the subcarriers by five while the fractional CFO equal
to 0.4 introduces severe ICI. On the right: ν = 0, i.e., perfect synchronization which leads
to an orthogonal transmission. Dark colors correspond to high values.

the uplink is more difficult than in the downlink, as each user has a separate frequency
offset. Moreover, in a mobile MIMO system in a rich scattering environment and with
possibly separate IF-RF chains, one CFO parameter is needed for each MIMO branch as
discussed earlier. CFO estimation in MIMO OFDM systems is further addressed in detail
in Chapter 5.

Seminal work by Pollet et al. [217] quantified the degradation in SNR caused by the
CFO as

DCFO
∼= 10

3 ln 10
4

(
πνN

B

)2 Es

N0
[dB]. (2.36)

From (2.36), one notices that the degradation is proportional to the signal-to-noise ratio
and quadratic in both the number of subcarriers and the value of the CFO itself. A more
accurate analysis of the CFO-induced degradation may be found in [235]. It can be seen
that carrier frequency offset is a critical issue for successful OFDM transmission, espe-
cially when high data rates with increased number of subcarriers together with narrow
intercarrier spacing are used. OFDM systems are commonly considered to tolerate syn-
chronization errors up to a few percents of the carrier spacing [273]. For instance, QPSK
modulation can tolerate up to 5% error whereas 64QAM requires at least 1% accuracy for
a loss of 0.5 dB in SNR [119]. The IEEE 802.16 standard specifies a tolerance of maximum
2% of the intercarrier spacing [1, 8.3.12]. For instance, in an OFDM system operating at 5
GHz carrier frequency with a subcarrier spacing of 300 kHz, the oscillator accuracy needs
to be about 3 kHz (i.e., 1% of the intercarrier spacing) or 0.6 · 10−6 (denoted 0.6 ppm).
Low-cost oscillators do not generally meet those requirements. Typically, cristals control-
ling the oscillators have an accuracy around 1-20 ppm. Temperature control and other
sophisticated techniques may allow further increasing the accuracy. However, due to their
high cost, those solutions are likely to be deployed in base-stations only. Hence, additional
frequency synchronization mechanisms have to be applied at the mobile receiver prior to
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the DFT operation [273, Ch.4].

To conclude, OFDM and multicarrier systems in general are much more sensitive to
carrier frequency offsets than single-carrier systems. CFO gives rise to intercarrier inter-
ference and reduction in amplitude for the desired subcarriers [273]. The issue is critical
when higher data rates are required, and a relatively large number of subcarriers and very
narrow guard bands are used [198,311]. Imperfect CFO estimation has also a detrimental
impact on channel estimation [206]. Consequently, frequency offset estimation and com-
pensation must be accomplished with high fidelity. An extensive review of CFO estimation
in OFDM may be found in Chapter 4. Frequency synchronization algorithms proposed in
this thesis work are introduced in Chapters 5-6.

2.3.3 Peak power issues

OFDM modulated signals exhibit high peak-to-average power ratios since they are the
superposition of a high number of modulated subchannel signals. Based on the central
limit theorem, such a random process should be close to Gaussian [273, Ch.6]. Wei et al.
established the result that the complex envelope of an OFDM modulated signal converges
in distribution to a Gaussian random process as the number of subcarriers becomes in-
finitely large [281]. Therefore, OFDM signals put a high demand on power amplifiers as
they may exhibit high instantaneous signal peaks compared to the average level. Practical
amplifiers have a finite amplitude range in which they can be considered close to linear.
Non-linearities in amplifiers may cause both ISI and ICI in the system. Clipping of the
signal occurs when the amplifier is driven to saturation, which leads to out-of-band (OOB)
emissions to both adjacent subchannels and systems.

Two families of solutions have been suggested in the literature to mitigate these prob-
lems. The first one consists of reducing the PAPR by various means such as coding
techniques. They aim at lowering the probability of high signal crests prior to signal
amplification. They operate either prior to OFDM modulation or by post-processing the
time domain OFDM signal. Another option is to improve the amplification stage of the
transmitter or to operate it with sufficient back-off, which leaves enough room for the
signal peaks and reduces the risk of amplifier saturation. An overview of the peak power
problem and the associated literature may be found in [273, Ch.6], [113, 3.1.1.1].

2.4 Discussion

Orthogonal frequency division multiplexing and more generally multicarrier transmission
are tailored for multipath propagation. Hence, typical applications may be found in de-
manding wireless or wireline environments. Cyclic prefix together with DFT baseband
modulation ensure simple equalization and low complexity of OFDM modems. OFDM
found already its way in both wireless broadcasting (DAB and DVB) and wireline sys-
tems (ADSL). OFDM is the leading technique in digital subscriber lines. In this case, it
is often referred to as discrete multi-tone (DMT) modulation. Spectrally efficient trans-
mission may be achieved by allocating different number of bits to different subcarriers
depending on their individual SNR, similarly to the water-filling principle. The use of
OFDM in multiuser systems has gained increasing interest over the last few years. For
instance, OFDMA [19,150] yields a straightforward extension of OFDM to the multi-user
case where users are assigned disjoint sets of subcarriers. The IEEE 802.16 standard
specifies physical interfaces based on OFDM [1, 8.3] and OFDMA as well [1, 8.4] [150].
Multicarrier CDMA (MC-CDMA) [113, Ch.11] [114] is another way to provide multiple
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access together with a stronger immunity to interference and deep channel fades. MC-
CDMA builds on OFDM technology, with DFT-based modulators and cyclic prefix. The
CDMA component allows for multiple users with coding across time and/or frequency.
Though diversity is not obtained through the equalizer, it arises from the possibility to
interleave in the frequency domain. Thus, MC-CDMA is a potential candidate for future
beyond third generation mobile wireless communication systems. In January 2004, the
IEEE formed a new task group to develop 802.11n [131], a new amendment to the 802.11
standard [130] for local-area wireless networks. The real data throughput is estimated
to reach a theoretical 540 Mbit/s, and should be up to 10 times faster than 802.11a or
802.11g, and nearly 40 times faster than 802.11b, with as well a better operating distance
than current networks. 802.11n builds upon previous 802.11 standards by adding MIMO
and OFDM. MIMO technology allows for increased data throughput through spatial mul-
tiplexing and increased range by exploiting the spatial diversity. In addition, both the
3GPP [3] and WINNER projects [285] contribute to the development of future beyond 3G
radio access [2].

Synchronization issues as well as the peak power problem are major challenges in
OFDM and multicarrier system design. Excellent treatment of many other challenges en-
countered during the design of OFDM systems may be found in [83, 113, 119, 273]. High
peak-to-average power ratios put high demand on linearity in power amplifiers and re-
quire also efficient pre- or post-processing of the OFDM data stream to lower the PAPR.
Otherwise, ICI and OOB are produced. From the synchronization standpoint, the use of
the cyclic prefix handles multipath delay spread efficiently and relaxes in a way timing
requirements compared to single-carrier systems. However, due to the time-frequency du-
ality, the problem translates to the frequency domain where synchronization requirements
become extremely strict. If not compensated for, carrier frequency offsets are extremely
harmful to OFDM transmissions as they destroy the orthogonality of the system. As a
consequence, they cause intercarrier interference. Frequency synchronization mismatches
may arise from both inaccuracies in local oscillators and Doppler shifts induced by mobil-
ity. Accurate frequency synchronizers are therefore needed for OFDM operation in future
high data rate mobile wireless applications.

Then, as in any digital communication system, there exist two options for modulation:
coherent or differential. The European DAB system employs differential QPSK while the
DVB standard uses coherent high-order modulation (e.g., 64QAM). Differential modula-
tion may be suitable for low data rates and allows much simpler receiver design, which
may be important for low cost consumer products. However, differential encoding suffers
from a 3 dB degradation in SNR compared to coherent modulation. Whenever high data
rates together with low probability of error are targeted, coherent modulation is a natu-
ral choice. Thanks to OFDM modulation, equalization is greatly simplified compared to
single-carrier systems. However, accurate channel estimation plays an important role in
achieving the high capacity of MIMO OFDM systems. If the transmitter has partial or
full knowledge of the transmission channel, adaptive modulation yields a powerful way of
increasing the transmission efficiency [113, Ch.12].

To conclude, accurate frequency synchronization and channel estimation are major
challenges for the deployment of multi-antenna high data rate mobile wireless multicarrier
transmission systems. Therefore, those two major issues have been chosen as the main
research topics of this thesis work.
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Chapter 3

Channel estimation in OFDM

systems

In wireless mobile communications, the channels are time, frequency and space selective
[113, Ch.4]. The transmitted signal propagating via multiple paths experiences various
delays due to different lengths of the paths. This makes the channel frequency selective
and causes inter-symbol interference (ISI) [220]. The ISI may distort the received signal
so severely that the transmitted symbols cannot be recovered [273]. Coherence bandwidth
measures the frequency selectivity of the channel [220, Ch.14]. Multicarrier modulation
such as OFDM is a powerful technique to turn the frequency selective wireless channel into
a set of frequency flat narrowband channels [119,273]. This reduces the complexity of the
equalization task considerably [113, Ch.2]. Mobility causes the channel impulse response
to be time-varying. Hence, it needs then to be tracked over time. The coherence time
describes how time selective the channel is [220, Ch.14]. Moreover, selectivity in space
domain may be encountered in multi-antenna systems, if the antennas are placed further
than the coherence distance apart. The knowledge of the CIR is needed at the receiver
in order to recover the transmitted data. Typically, no prior knowledge on the channel is
available, and it may vary over time. Hence, it needs to be estimated and the estimates
updated in a regular basis [113, Ch.4,14-16].

This chapter considers channel estimation in OFDM transmissions. In communication
systems, channel estimation methods may be classified as blind, semi-blind or pilot-aided
[31, Ch.8]. Blind algorithms do not require any training data and exploit statistical or
structural properties of communication signals. Pilot-aided methods on the other hand rely
on a set of known symbols interleaved with data in order to acquire the channel estimate
[113, Ch.14-16]. Semi-blind methods combine a blind criterion with limited amount of pilot
data, which improves both effective data rates and convergence speed. They also benefit
from a larger sample support since both pilot and data are used for channel estimation.
Blind, semi-blind and pilot-aided channel estimation in OFDM are successively reviewed
in the following.

3.1 Blind channel estimation in OFDM

The need for higher data rates motivates the search for blind channel identification and
equalization methods. In OFDM, cyclic prefix occupies generally up to 20% of the trans-
mitted data [273, Ch.2]. Furthermore, if pilot symbols are used for channel estimation
and synchronization purposes, those may require another 15-20% of the remaining data
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symbols [113, 119]. Therefore, blind estimators are of interest, especially in the case of
continuous transmissions (e.g. DVB-T) or slowly time-varying channels (e.g. ADSL). The
term blindness means that the receiver has no knowledge of the transmitted sequence
and the channel impulse response. Channel identification, equalization or demodulation is
then performed using only some statistical or structural properties of communication sig-
nals, e.g. cyclostationarity, high-order statistics, or the finite-alphabet property [31, Ch.8].
Training data can then be either completely excluded or significantly reduced, and informa-
tion symbols transmitted instead. The processing in blind receivers is typically nonlinear.
Common design goals for blind receivers algorithms are the following: capability to identify
any type of channel, fast convergence to the desired solution, capability of tracking channel
variations, and low computational complexity.

There are quite a few underlying assumptions needed in deriving blind receivers. The
signals may be assumed to be either random or deterministic. Random sequences are
typically assumed to be white and wide-sense stationary when sampled at the symbol rate.
For efficiently source coded signals where the redundancy is removed, this is a reasonable
assumption. It also holds for many widely used channel coding schemes [179]. In case of
deterministic data models, the sequences are typically required to have linear complexity
and sufficient excitation to ensure channel identifiability. In practice, it follows that the
sample covariance matrix of the sequence is not rank deficient. The pulse-shape employed
at the transmitter as well as an upper-bound on the channel order are typically assumed
to be known too.

In the following, we first review the main criteria used in blind channel estimation for
OFDM. Those may be classified as follows: correlation-based methods, subspace methods,
methods exploiting the finite alphabet property and maximum likelihood estimation. The
section ends with a short survey of other possible criteria. Sequential estimation techniques
such as, e.g. particle filters and Kalman filters, are also briefly reviewed.

3.1.1 Criteria for blind channel estimation in OFDM

Correlation-based methods

Correlation-based blind methods are among the most commonly used in OFDM. The
main reason to this is the cyclic prefix (CP) and its periodic nature, which naturally
introduces redundancy as well as cyclostationarity (CS). CS in communications and signal
processing is a popular and extensively studied field [92]. Cyclostationary signals have
the property that statistics, such as mean or autocorrelation function, are periodical.
Linear time-invariant filtering does not affect cyclostationarity. Consequently, periodicity
is expected in the time-varying correlation at the output of the channel. Cyclostationary
statistics carry information on channel amplitude and phase. Hence, they allow blind
channel estimation.

Heath and Giannakis proposed to exploit CS in OFDM transceivers [118]. In order to
improve the performance and more specifically the channel identifiability (no restrictions
on channel zeros), Bölcskei introduced the idea of periodic non-constant modulus precoding
[37] for CP-based OFDM. In MIMO systems, the method assumes a non-constant modulus
linear precoder at the transmitter array. User separation is ensured by providing each
transmit antenna with different signatures in the cyclostationarity domain. The use of
CP itself yields already redundant precoding in some sense, but the performance of blind
identification based on CP only suffers from both high variance and low convergence
speed [112, 120]. Moreover, redundant periodic precoding leads to a loss in effective data
rates. In general, channel estimation via second-order cyclostationary statistics (SOCS)
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allows identifying the CIR coefficients up to a complex scalar ambiguity [118].

Another approach led by Petropulu et al. is to employ non-redundant precoding at the
transmitter side in SISO [166,211,212] or MIMO systems [294,295]. With non-redundant
precoding, the block length remains unchanged, but a specific correlation structure is
induced at the transmitter, e.g. by correlating each carrier with a reference carrier. The
method is computationally simpler than [37], and converges also faster. A proper balance
must be found between the level of transmitter-induced correlation, leading to ICI, and a
low channel estimation variance which may in turn improve the system performance.

Cyclostationarity may be introduced by means of pulse-shaping in OFDM systems, for
example by using offset quadrature amplitude modulation (OFDM/OQAM) [36]. Over-
lapping pulse-shaping filters act as a form of precoder that induces CS, without the need
for CP. A loss in data rates is the price to be paid for both modulation and pulse-shaping
induced CS. Also, receive antenna diversity may be useful for blind channel recovery [99].
Two diversity branches are shown to be sufficient for channel identifiability, provided that
any common roots to all the diversity channels are either at the origin or on the unit cir-
cle. In addition, data recovery requires that common unit-modulus roots must not coincide
with any subcarrier frequency.

Statistical subspace methods

In general, subspace methods rely on a block formulation of the input-output relationship
of the form

rNss×1(k) = HNss×LsssLss×1(k) + wNss×1(k), Lss < Nss, (3.1)

where rNss×1, HNss×Lss , sLss×1 and wNss×1 denote the received vector, the channel matrix,
the transmitted signal vector and the noise vector, respectively. Note that subscripts refer
to dimensions of matrices and vectors. The transfer matrix H is a tall matrix, hence
the signal subspace has a smaller dimension Lss compared to the dimension Nss of the
observation (low rank model).

Let Rss = cov(s) be the source signal covariance matrix. If matrices Rss and H
are of full column rank, then span {H} = span

{
HRssH

H
}
. Thus, the columns of the

channel matrix span the signal subspace, which is also spanned by Lss eigenvectors of the
received signal covariance matrix Rrr = cov(r). Usually, signal and noise subspaces are
not known a priori to the receiver, as they are determined by the unknown transfer matrix
H. However, they may be estimated by performing an eigenvalue decomposition (EVD)
on Rrr. Alternatively, one may perform a singular value decomposition (SVD) directly
on the signal matrix [51,227,243]. This results in a reduced estimation error in theory, as
signal and especially noise components are not squared. Let the matrices Us and Uw of
size Nss×Lss and Nss× (Nss−Lss) include the basis vectors for the orthogonal signal and
noise subspaces, respectively. The orthogonality property between the signal and noise
subspaces asserts that

uH
w,iH = 0, i = 1, . . . , Nss − Lss, (3.2)

where uw,i denotes the ith column vector of Uw. Usually, H has some specific structure.
For instance, let us assume, it is a Toeplitz convolution matrix made out from the Lh × 1
channel vector h. As the convolution operation is commutative, condition (3.2) may be
rewritten as

Uw,ih = 0, i = 1, . . . , Nss − Lss, (3.3)

where the Toeplitz convolution matrix Uw,i of size Nss ×Lss is generated from the vector
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uw,i. It can be shown that the set of equations in (3.3) determines the channel up to a
complex scalar ambiguity.

In practice, the output covariance matrix Rrr is unknown to the receiver and replaced
by its sample estimate R̂rr. Hence, one does not have an exact knowledge of the true
signal and noise subspaces, and the orthogonality conditions in (3.3) may not hold exactly
in practice. Therefore, in order to solve for the channel vector h, one resorts to minimize
the following quadratic criterion

ĥ = arg min
‖h‖=1

Nss−Lss∑

i=1

‖Uw,ih‖2 (3.4)

= arg min
‖h‖=1

hHΨHΨh, (3.5)

where Ψ =
[
U

T
w,1, . . . ,U

T
w,Nss−Lss

]T
. Notice that the constraint ‖h‖ = 1 avoids the

trivial solution h = 0. It is well known that the unit-norm eigenvector corresponding to
the smallest eigenvalue of ΨHΨ yields a solution to (3.5) up to a complex scalar phase
rotation.

Various statistical subspace-based methods have been proposed for blind channel es-
timation in OFDM systems [16, 24, 25, 42, 49, 74, 75, 192, 287, 300, 302, 303, 305, 316]. The
main task is to cast the OFDM transmission equations in the form of a low rank model as
in (3.1). Then, in most of the existing subspace methods, the channel estimate is found by
minimizing a criterion similar to (3.5). The remaining scalar ambiguity is removed with
the help of some pilot symbols.

Intuitively, the redundancy introduced by CP makes the system of equations over-
determined. By stacking a sufficient number of consecutive cyclic-prefixed blocks, the
transmission matrix becomes tall, and subspace blind channel estimation becomes feasible
[42]. The blind subspace channel estimator by Muquet et al. relies on the cyclic prefix
as well [192]. The identifiability conditions were established by Zeng and Ng for this
specific case [302]. Most of the existing methods require the cyclic prefix for subspace
estimation [25,42,75,192,287,302,316]. Some of them cope with channel orders larger than
the CP [316], while some others do not assume any CP [16, 24]. However, in that case,
redundancy has to be introduced in the system in one way or another in order to maintain a
low rank model. Zero-padding may be chosen instead of CP [74,300,301,303], which is not
as spectrally efficient. This is also the case for redundant precoding at the transmitter [305].
Low rank model may also be obtained by exploiting NSCs with or without the CP [51,243].
It is observed that CP is more advantageous for noise subspace-based estimators than NSCs
alone [51]. Oversampling the channel output in time and/or spatial domains by employing
multiple antennas at the receiver side is another option [16,24,49,227].

Statistical subspace methods exhibit a performance comparable to SOCS-based algo-
rithms, at the price of an increased computational complexity. Eigenvalue or singular
value decompositions require in the order of O(N2

ssLss) operations [105, p.254]. This is
significantly higher compared to correlation-based methods typically in O(Nss). Adaptive
algorithms yield a potential way to reduce the computational complexity of subspace de-
compositions [74]. Moreover, the subspace dimensions are related to the channel length
and need to be known. An upper-bound on the maximum channel length is usually suffi-
cient as subspace based algorithms generally suffer less from over- than under-determined
channels. In the case of CP-OFDM, the CP length provides a safe upper-limit in practice.
In general, statistical subspace-based methods suffer from low convergence speeds due to
the averaging needed in the estimation of the output covariance matrix. A few hundreds
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of blocks are commonly needed in order to achieve satisfactory performance, which limits
the use to the estimation of stationary channels. Finite sample sizes also result in error
floor effects.

Deterministic subspace methods

In a few cases, signal and noise subspaces may be known a priori to the receiver [52,
107, 219, 276]. The statistical methods on the other hand rely on estimated signal and
noise subspaces. For instance, a known redundant coding scheme [107] or NSCs at known
locations may be present in the system by design. Receiver diversity offers also means
to build a low rank model [52, 276]. In the above cases, the projection matrix to the
noise subspace may be built beforehand and channel estimates may be obtained upon
the first received block of data. Moreover, an exact solution up to a scalar ambiguity
is guaranteed in the noise-free case with finite sample support. Deterministic techniques
generally outperform statistical approaches for small sample sizes.

Finite-alphabet property based methods

Finite-alphabet (FA) based methods were introduced for CP- and ZP-OFDM by Zhou
and Giannakis [313]. Assuming equiprobable symbols an(k) drawn from a finite symbol
alphabet of size Q, there exists a non-zero integer JFA ≤ Q such that

E
[
aJFA

n (k)
]

= −(JFA/Q)αFA 6= 0, αFA ∈ C, (3.6)

where k and n refer to block and subcarrier indices, respectively. For instance JFA = 2 for
BPSK, JFA = 4 for QPSK and QAM modulations with Q signaling points. In addition,
any PSK symbol possesses the deterministic property aJFA

n (k) = −1. Starting from the
J th

FA moment of the received signal in the frequency domain, one obtains in the noiseless
case

E
[
ỹJFA

n (k)
]

= h̃JFA
n E

[
aJFA

n (k)
]
, (3.7)

where h̃n is the channel frequency response at the nth subcarrier. The channel is assumed
to be time-invariant. In practice, the channel should remain constant over a sufficiently
large number of consecutive blocks. By substituting (3.6) into (3.7), we may write

h̃JFA
n = − Q

JFAαFA

E
[
ỹJFA

n (k)
]
. (3.8)

Setting the OFDM block length as P ≥ JFAL
′
h + 1, where L′

h is the channel order,
equation (3.8) allows us to the find channel coefficients uniquely. The first step is to solve
for the JFAL

′
h + 1 time domain coefficients corresponding to the J th

FA power of the channel
spectrum. Those time domain coefficients correspond to the JFA-fold convolution of the
CIR with itself. The second and last step is the find out the CIR by solving the JFA-fold
convolution equation.

FA-based methods need only a few symbols. In PSK transmissions, channel estimation
may be performed with a single OFDM block at high SNR. The scalar ambiguity is re-
duced to have unit-amplitude and phase values belonging to a finite set depending on the
symbol constellation. Hence, ambiguity may be easily resolved, which is another advan-
tage. Also, channel estimation decouples from symbol estimation. The major drawback
of FA-based techniques is the high computational complexity. Recent attempts to lower
the complexity are reported in [94, 210], at the cost of a significant loss in performance.
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Non-CM modulations lead to error floor effects. Moreover, the use of J th
FA order statistics

implies slow convergence in practice for values of JFA ≥ 4.

Maximum likelihood methods

Let us recall the model in (2.29) and consider a single block of data. Let us assume that
both the CIR vector h and the symbol vector a are deterministic but unknown, and the
noise term is complex circular Gaussian. Then, the ML estimate of both CIR and data
vectors is obtained as [56]

[
ĥML , âML

]
= arg min

h,a

∥∥∥ỹ −
√
N diag{a}

[
FH

]
{:,1:Lh}

h
∥∥∥

2
, (3.9)

where a is a N × 1 vector of transmitted symbols belonging to a CM constellation of size
Q, and h is the Lh × 1 CIR vector. The minimization problem in (3.9) turns out to be
separable, assuming CM modulations. Then, ML estimates for data and channel vectors
are computed as [56]

âML = arg max
a∈QN

{
aT diag{ỹ∗}

[
FH

]
{:,1:Lh}

F{1:Lh,:} diag{ỹ}a∗
}

(3.10)

ĥML =
1√
N

F{1:Lh,:} diag{â∗
ML}ỹ. (3.11)

The extension to SIMO systems is found in [26]. The maximization in (3.10) in often
non-tractable because it involves a search over QN modulation symbols. In practice,
the ML estimator can be run on a limited set of subcarriers only [56]. However, (3.10)
may be solved sub-optimally, assuming PSK symbols and moderate frequency selective
fading [194].

Other criteria

There exist few other criteria for blind channel estimation purposes in OFDM systems.
The concept of blind Viterbi decoding is described in [172]. Minimum output energy
equalization (MOE) is performed in [111]. An approach based on linear smoothing methods
is reported in [299]. Vector constant mean energy (VCMA) has been employed together
with user-decorrelation in the MIMO case [4]. The energy of out-of-band signals [70] may
also serve as error criterion for blind channel estimation. In practice, the chosen criterion is
often minimized iteratively (block-wise) by using a stochastic gradient algorithm. Another
option is to perform blind adaptive equalization. Such methods adjust the coefficients of a
time domain equalizer adaptively, in order to minimize the error criterion [4,70,112,120].
Also, a blind source separation approach based on a natural gradient learning algorithm
was developed in [108].

3.1.2 Sequential estimation techniques

Sequential Monte-Carlo (SMC) techniques, also know as particle filters, are applied in
[292], without using any training/pilot symbols or decision feedback. Bayesian inference is
made from the observation of a single OFDM block. The method happens to be relatively
robust in the face of channel order mismatch. The computational complexity is high, as
around 50 particles at least are needed at each iteration step. Kalman filtering (KF) ap-
plied to blind channel estimation was studied in [306]. A vector Kalman filter may be used
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for this purpose, but has to operate in training or decision-directed mode (see Publication
I), as KF needs information symbols to perform channel tracking. Otherwise, mixture
Kalman filter (MKF) may be employed to estimate channel coefficients and information
symbols jointly [306]. MKF combines in a way the principles of KF and particle filtering.
Hence, the complexity remains extremely high.

3.1.3 Summary

Blind channel estimators rely in general on statistical or structural properties of com-
munication signals. They are appealing because they do not need any dedicated pilot
information, and data may be transmitted instead. Blind channel estimation appears to
be especially suitable for fixed wireless OFDM transmissions, as the overhead caused by
both pilots and CP may be too severe. This is especially true for time-invariant chan-
nels, where blind channel estimators perform at best. Blind methods allow updating the
equalizer using information symbols continuously [49,74,192,212,233], which brings some
advantage in time-varying channels. Pilot-based techniques on the other hand need to wait
until next pilot symbol to get updated. A few blind estimators (ML, SMC, KF and to
some extent FA with PSK) are suited to block fading channels [107,172,194,276,306]. The
cost is though a much higher computational complexity. SOCS-based algorithms possess
the lowest complexity but suffer from low convergence speeds. Subspace methods provide
a little improvement in convergence speed but are significantly more complex. One should
note that the ML estimator in [56] is of pure theoretical interest because of its prohibitive
complexity. Also, if relatively high number of subcarriers (typically from 64 to 2048) is
used, close to Gaussian transmitted signals are produced, which makes the application of
both blind source separation techniques and higher order statistics (HOS) difficult.

However, blind methods suffer from ambiguity problems. The most common way to
resolve the ambiguities is to require a little training or the use of differential encoding.
Also, ambiguities may be avoided by a proper design of the signal constellation [193,194,
233]. One may choose asymmetric constellation arrangements [233] or the combination of
different modulation schemes on adjacent subcarriers [194], e.g., 3- and 5-PSK. The key
idea is to have unique angles between any pair of constellation points. Hence, no ambiguity
can exist anymore. In the MIMO case, the ambiguity matrix after the equalizer may be
modeled as an instantaneous MIMO system, and solved using independent component
analysis (ICA) [275].

A comparison of the techniques reviewed in this chapter is summarized in Table 3.1.
Comparison is made in terms of four criteria: computational complexity, variance of the
estimates, speed of convergence and the type of remaining ambiguity. Blind techniques
typically have worse performance compared to their pilot-based counterparts and lower
convergence speed as well. The energy required per information bit should be the figure of
merit, to assess the potential gain of blind versus pilot-based approaches for given system
specifications. The increased receiver complexity inherent to blind signal processing must
also be kept in mind. Finally, a blind criterion is always at the core of any semi-blind
algorithm. Hence, development in blind methods is important for semi-blind estimation
as well.

3.2 Semi-blind channel estimation in OFDM

Limited training data in conjunction with blind algorithms leads to semi-blind methods.
Increased sample support leads to lower estimation error. Convergence speeds are im-
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Compl. Var. Conv.
speed

Ambiguity

SOCS [36, 37,99,118]
[212]

∗ ∗ ∗ Complex scalar

SS [16, 24,42,49,74]
[192,287,300,302]
[305,316]

∗ ∗ ∗ ∗ ∗∗ Complex scalar

DS [52, 107,276] ∗ ∗ ∗ ∗∗ ∗∗ Complex scalar
FA [94, 177,210,313] ∗∗ ∗∗ ∗∗ Phase in finite

set
ML [26, 56,194] ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ Complex scalar
SMC,
KF

[292,306] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ None1

Table 3.1: Comparative chart of blind channel estimation techniques for OFDM (∗: low,
∗∗: moderate, ∗ ∗ ∗: high, ∗ ∗ ∗∗: extremely high). 1 Differential encoding is assumed.
Compl.: complexity; Var.: variance of the estimate; Conv. speed: speed of convergence.

proved as well. Furthermore, semi-blind techniques allow updating the channel estimate
and equalizer coefficients for both information and pilot symbols. Hence, semi-blind meth-
ods are better suitable for tracking time selective channels than their blind counterparts
and provide a more feasible solution to practical communication systems [31, ch.8]. The
following paragraphs detail how previously presented statistical subspace and maximum
likelihood blind channel estimators may be adjusted to benefit from little pilot information.
Added-pilot and decision-directed methods are reviewed as well.

3.2.1 Statistical subspace-based algorithms

In [192], Muquet et al. state several principles that may be applied in general to statistical
subspace methods in semi-blind context [16,24,25,42,49,74,75,192,287,300,302,305,316].
The training is limited in the sense that training symbols alone are not sufficient to estimate
the channel. If there are fewer pilots than parameters to be estimated, the problem may not
be solved uniquely in the conventional least squares (LS) sense. Instead, a regularization
procedure may be followed [12].

First, the slow convergence inherent to blind statistical subspace methods may be
improved up by proper initialization of the output covariance matrix as follows:

R̂
(0)
rr = H(ĥ(0))RssH(ĥ(0))H , (3.12)

where H(ĥ(0)) is an estimate of the channel matrix in (3.1) constructed using an initial
channel estimate ĥ(0) obtained from the pilots. The covariance matrix of source symbols
Rss is assumed to be known a priori.

Second, the output covariance matrix may be refined iteratively each time a new block
of symbols is received. Both an adaptive update with a weighting factor [192] or a sliding
window approach [314] allow tracking time variations of the output covariance matrix. Let

R̂
(K)
rr be the resulting estimate of the covariance matrix, assuming K observed blocks. The
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window size or the weighting factor should be properly set depending of the Doppler fre-
quency. There is a clear tradeoff between improved channel tracking and noise suppression
capability.

Third and last, the statistical subspace algorithm may be run based on R̂
(K)
rr . Alter-

natively, if pilot information is present in each received block, it may be included in a
composite criterion which comprises of a blind part and another component based on pilot
symbols [192].

3.2.2 Semi-blind maximum likelihood methods

ML type of estimators also benefit from some pilot data. As the complexity of ML blind
channel estimation is prohibitive in the case of OFDM [56], the expectation-maximization
(EM) approach is often followed [10, 13, 181]. Pilots are used to initialize the channel
estimation procedure, though they may not be sufficient for standalone estimation. How-
ever, the major problem of EM-based methods is that they may converge to local optima.
Several different initial estimates may be needed. Alternatively, gradient-based approach
may be followed to solve the ML optimization problem [262].

3.2.3 Added-pilot based methods

Added-pilots (or superimposed-pilots) schemes [47, 122, 201, 202] are closer to pilot-aided
channel estimation than to blind techniques. The idea is to add pilot symbols directly to
data symbols in time [47] or frequency domain [122, 201, 202]. In this way, no dedicated
slot needs to be allocated to pilots, and the whole OFDM block may be used for infor-
mation bearing symbols. The major drawback in added pilot semi-blind (APSB) channel
estimation is that data interferes with pilots, and vice-versa. Thus, the influence of data
should be minimized while estimating the channel, and conversely, the pilots have to be
removed prior to data detection. Also, superimposed pilots contribute to increasing the
peak-to-average power ratio.

3.2.4 Decision-directed methods

After detection, the detected symbols themselves may be used to refine channel estimates
obtained using blind, semi-blind or pilot-assisted methods [12,222,262,291] (see also Pub-
lication I). This is referred to as decision-directed (DD) processing, which is typically
highly effective at moderate to high SNRs, when reliable symbol decisions are available
to the receiver. In decision-directed channel estimation (DDCE), all the sliced and re-
modulated subcarrier data symbols are considered as pilot information. Reliable channel
estimates may be obtained in case there are no decision errors and depending on the rate
of channel variation. As an example, preamble based channel estimation schemes in both
HIPERLAN/2 and IEEE 802.11a systems cannot fulfill the requirements in scenarios with
moderate to high velocities. However, DDCE may allow a little mobility to wireless LAN
(WLAN) systems [222]. Iterative and alternating estimation of channel and data is another
option [12]. In this case, the DD algorithm iterates between using the channel estimate
to detect the data, and using the data estimates to further improve the channel estimate.
Pilots are needed for the initial channel estimation. Also, added-pilots may be combined
together with decision-directed processing [291]. For this purpose, three types of symbols
are used (see Figure 3.2): i) full pilot, ii) partial pilot (i.e., pilot superimposed to data),
iii) data symbol.
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Time-selectivity of the channel is clearly a limitation of pure DDCE schemes that do
not use pilot information. With highly time-varying channels, past symbol decisions may
not be correct anymore and lead to errors in channel estimation. Pure DDCE is prone to
error propagation in highly time selective channels. The track of the channel coefficients
may be totally lost. To avoid this, linear prediction techniques well known from the
speech coding literature may be used. Those allow improving the past channel estimates
prior to symbol detection and hence have fewer decision errors as well [15]. A review of
OFDM-specific DDCE schemes may be found in [113], for both SISO [113, Ch.15] and
MIMO [113, Ch.16] cases.

3.2.5 Summary

Semi-blind techniques combine the information contained in few known symbols with the
statistical and structural properties of the communication signals. They possess three
benefits over blind methods: the ambiguities inherent to blind methods may be resolved,
convergence speeds are improved, and more effective and robust tracking of time-varying
channels is achieved. Also, the increased sample support leads to lower estimation er-
ror. Consequently, lower variance estimates of the unknown channel may be obtained, or
larger number of parameters may be estimated with reasonable variance. The channel es-
timate and equalizer coefficients may be updated for both information and pilot symbols.
Hence, semi-blind methods provide a more feasible solution to practical communication
systems [31, Ch.8]. Semi-blind techniques combine the benefits of both blind and pilot-
based algorithms. Semi-blind processing may be implemented by using adaptive channel
estimators and equalizers in a decision-directed mode. In order to ensure convergence, a
small training sequence has to be transmitted first. This allows the estimator to acquire
the channel rapidly. Blind methods are, however, an important research topic because the
core of each semi-blind method is a powerful blind method.

3.3 Pilot-aided channel estimation in OFDM

One solution for channel estimation in OFDM is to transmit known pilot symbols on
certain subcarriers [113,119,263,273]. Pilot symbol-assisted modulation (PSAM) schemes
obtain the CFR estimate on the basis of known frequency domain pilot symbols that
are interleaved among the transmitted data symbols. These pilot subcarriers facilitate
the sampling of the channel frequency response. The corresponding sampling frequency
needs to be higher than the Nyquist frequency required for the alias-free representation
of the CFR at the Doppler frequency encountered. Errors in channel estimation influence
the total system performance significantly, especially for systems employing multilevel
modulation and coherent detection. A thorough overview of pilot-aided channel estimation
for OFDM and PSAM in general may be found in [113] and [263], respectively.

A total of Np pilot symbols are inserted in the OFDM block at known locations indexed
by the set P. Conversely, we assume Nd data symbols belonging to the set of indices D,
disjoint from P. The total number of subcarriers is N and Nd + Np = Na ≤ N , where
equality holds when no null-subcarriers are used. Pilot allocation schemes as well as
optimal rules of placement are discussed later in this chapter in Section 3.3.5. Let us
rewrite the OFDM input-output relationships, in order to incorporate the pilot and data
parts into the system model. After the DFT operation at the receiver and assuming that
perfect time and frequency synchronization are achieved, the baseband signal in frequency
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domain decouples into distinct pilot and data subchannels, as follows:

ỹd(k) = Dd(k)h̃d(k) + w̃d(k) (3.13)

ỹp(k) = Dp(k)h̃p(k) + w̃p(k), (3.14)

where ỹd(k) and ỹp(k) are the received signal vectors of sizes Np×1 and Nd×1, respectively
at pilot and data subcarriers. Diagonal matrices Dd(k) and Dp(k) contain data and pilot
symbols on their main diagonal, respectively. Then, vectors h̃d(k) and h̃p(k) correspond to
the channel frequency response at data and pilot subcarriers, respectively. Finally, w̃d(k)
and w̃p(k) are the associated noise components in the frequency domain.

Therefore, if the CFR is well estimated, the equalization is easily performed by mul-
tiplying the received data on each subcarrier with the inverse of the corresponding CFR.
The latter approach amounts to single-tap zero-forcing frequency domain equalization.
Non-coherent data demodulation based on differential encoding may be employed as an
alternative. Such an approach has the advantage that the channel estimation is not needed.
However, a loss of 3 dB in SNR is experienced when compared to coherent demodulation.
Moreover, coherent demodulation offers better performance over its non-coherent coun-
terpart in the case of high-order modulations [273]. Hence, coherent demodulation is
preferable for high data rate applications.

In this section, we review channel estimation procedures for PSAM-OFDM, which gen-
erally proceeds in the two following steps: i) Channel estimation at pilot symbol locations.
ii) Interpolation between CFR estimates at the pilot locations. Finally, the problem of
placing pilot symbols optimally is addressed.

3.3.1 Channel estimation at pilot symbol locations

Least-squares estimation

The first step in channel estimation in OFDM is generally to obtain an estimate of the
CFR at pilot subcarriers. In most of the existing work in the literature, this task is usually
accomplished via least-squares estimation [29,43,66,109,127,144,178,184,232,245,249,288,
289]. From now on, we drop the time index k, for simplicity, as we process a single OFDM

block at the time. The least-squares estimate ˆ̃hp,LS of the CFR at pilot symbols h̃p may
be obtained as

ˆ̃
hp,LS = D−1

p ỹp. (3.15)

The subcarriers are processed independently as Dp is a diagonal matrix. Hence, (3.15)
amounts to perform single tap frequency domain ZF equalization on each subcarrier.

Linear minimum mean square error estimation

The LS estimate of (3.15) neglects the channel correlation among the subcarriers because
it processes them independently. Because the CFR at data subcarriers are obtained later
on by interpolation between the estimates at pilot subcarriers, the performance of the
corresponding OFDM system will be highly dependent on the estimation error [127]. Thus,
an improved estimate is desirable, such as the linear minimum mean square error (LMMSE)
estimator of pilot signals derived in [77,127] as

ˆ̃hp,LMMSE = R
h̃p,h̃p

(
R

h̃p,h̃p
+ σ2

w̃

(
DpD

H
p

)−1
)−1 ˆ̃hp,LS, (3.16)
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where ˆ̃hp,LS is the LS estimate of h̃p as shown in (3.15), and the channel covariance matrix
at pilot locations is defined as R

h̃p,h̃p
= E[h̃ph̃

H
p ]. It is easy to see from (3.16) that the

LMMSE leads to the LS estimator at infinitely high SNR.

First, the LMMSE estimator above requires the knowledge of channel statistics at
pilot symbol locations, which may be difficult to obtain in practice. Second, the method is
highly complex because a matrix inversion needs to be performed every block in (3.16). The
latter problem may be solved by using a static pilot pattern [127]. A simpler approach is to
average over the transmitted data, and obtain a simplified LMMSE estimator [43,77,127].
To further reduce the complexity, low rank estimators may be derived [77,162]. However,
they suffer from irreducible error floors due to the residual part of the channel outside
the subspace. One also needs to make sure that the chosen rank is sufficiently large to
eliminate the error floor up to a given SNR. Typically, the magnitude of the singular values
of R

h̃p,h̃p
should become small after about LCP + 1 values. Generic low-rank estimators

independent from the channel statistics may be constructed, with a nominal design tailored
for a uniform correlation and a relatively high SNR [77]. The design at high SNR makes
sense because channel estimation error is concealed in noise at low SNR.

Maximum likelihood estimation

Let us consider equation (3.14) assuming complex circularly symmetric AWGN and a
deterministic but unknown CIR vector h. Following Morelli and Mengali’s derivation [191],
the deterministic ML estimate of the CFR at pilot subcarriers may be obtained as

ˆ̃
hp,ML =

[
FH

]
{P,1:Lh}

(
F{1:Lh,P}

[
FH

]
{P,1:Lh}

)−1
F{1:Lh,P}

ˆ̃
hp,LS, (3.17)

where
[
FH

]
{P,1:Lh}

represents the DFT matrix truncated to the first Lh columns and with

lines picked up from the set of pilot symbol indices P. Similar expression is found in [71].
It is seen from (3.17) that ML estimation amounts to performing an orthogonal projection
on the column space of

[
FH

]
{P,1:Lh}

. Note that the existence of the ML estimator above is

conditioned upon the invertibility of the matrix F{1:Lh,P}

[
FH

]
{P,1:Lh}

. Such a condition is

met if and only if Np ≥ Lh, which means that there must be at least as much pilot symbols
than channel parameters in the time domain. On the other hand, the LMMSE estimator
still exists if Np < Lh. The performance will degrade, though. The ML estimator achieves
the Cramér-Rao bound (CRB), and no further improvement in MSE is possible if the
estimator is unbiased, and the CIR is viewed as a deterministic but unknown vector. In
practice, the ML estimator is computed in a case there is uncertainty on the CIR. On
the other hand, LMMSE estimation is based on the Bayesian approach and exploits prior
information on the channel and noise statistics. This explains the slight gain of LMMSE
over deterministic ML observed in simulations [191].

Both ML and LMMSE estimators have the same form, which amounts to perform
a linear filtering on the LS estimate. They outperform the LS estimator in frequency
domain because the latter processes the components of the CFR independently. Hence,
the correlation among subcarriers remains unexploited. The ML estimator restores the
correlation via a deterministic subspace approach, while the LMMSE follows a statistical
way. The LMMSE has higher complexity though.
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MIMO channel estimation

The channel estimators presented so far are applicable to PSAM SISO OFDM systems,
as they were all designed to extract parameters of a single CFR at pilot symbol locations.
In a Nt × Nr MIMO system, there are Nt × Nr CFRs to be estimated, i.e., one per
MIMO branch. This leads to NtNrLh channel parameters in time domain, where Lh

upper-bounds the lengths of the CIRs. Second, with spatial multiplexing, several data
streams are sent across the transmit antennas in the same frequency band, and they cause
co-channel interference at the receiver array.

Assuming perfect synchronization in time and frequency, the N ×1 received post-DFT
signal vector at receiver antenna r in (2.15) may be rewritten as:

ỹr(k) =

Nt∑

t=1

√
N (Dd,t(k) + Dp,t(k))

[
FH

]
{:,1:Lh}

htr + w̃r(k), r = 1, . . . , Nr, (3.18)

where diagonal matrices Dd,t(k) and Dp,t(k) of size N ×N contain data and pilot symbols
at time instance k on their main diagonal and zeros elsewhere. Assuming training over K
consecutive OFDM blocks, i.e., k = 1, . . . ,K, we may write the data model

ỹr = Tdhr + Tphr + w̃r, (3.19)

where ỹr =
[
ỹT

r (1), . . . , ỹT
r (K)

]T
, hr =

[
hT

1r, . . . ,h
T
Ntr

]T
, w̃r =

[
w̃T

r (1), . . . , w̃T
r (K)

]T
,

and matrices Tp and Td of size KN × LhNt are defined as

Tq =
√
N




Dq,1(1)
[
FH

]
{:,1:Lh}

. . . Dq,Nt(1)
[
FH

]
{:,1:Lh}

...
...

Dq,1(K)
[
FH

]
{:,1:Lh}

. . . Dq,Nt(K)
[
FH

]
{:,1:Lh}


 , q = p, d. (3.20)

Notice that the modeling in (3.18)-(3.19) assumes constant channel coefficients over K
OFDM blocks. Then, based on (3.19), the LS estimate of hr is obtained as [29]

ĥr,LS = T†
pỹr (3.21)

= hr + T†
pTdhr + T†

pw̃r, (3.22)

where T†
p = (TH

p Tp)
−1TH

p is the left pseudo-inverse of Tp, if it exists. The existence of

T†
p requires the pilot sequences to be designed in such a way that the matrix Tp of size

KN × LhNt is of full column rank LhNt and KN ≥ LhNt. To eliminate the interference
term due to the data, the matrix Tp of pilot symbols must fulfill the following condition

T†
pTd = 0LhNt×LhNt , (3.23)

which holds when DH
d,t(k)Dp,t′(k) = 0N×N , ∀ t, t′ = 1, . . . , Nt, and ∀ k = 1, . . . ,K. One

way of satisfying (3.23) is by choosing disjoint sets of subcarriers for training and data
in each OFDM block, i.e., zeros in Dd,t(k) where Dp,t(k) contains non-zero elements, and
vice-versa [29]. Pilot symbols are not necessarily the same for each OFDM block. For
zero-mean noise and when (3.23) is fulfilled, ĥr,LS is an unbiased estimate of hr. A similar
form for the MIMO LS channel estimate is found in [184,244].

Li et al. investigate MMSE channel estimation in MIMO OFDM [163]. A low-
complexity version of their estimator is found in [161]. The method is sensitive to time-
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selectivity of the channel. MMSE MIMO channel estimation is also considered in [173,256].
As the receiver usually lacks the knowledge on channel statistics, the LS approach is often
preferred in practice. Also, estimators in [161, 163] assume a whole block of training is
made available to the receiver, whereas training may only be transmitted on a limited
set of subcarriers in practical systems. Channel estimation in space-time coded MIMO
OFDM is considered in [164]. Channel estimators for MISO, MISO and SIMO OFDM
systems are introduced respectively in [22,155], [221] and [160].

3.3.2 Channel interpolation

Once the CFR estimates have been obtained at the pilot subcarrier frequencies, they are
extended to data subcarriers by interpolation. This will further allow equalization. The
CFR may be seen as a two-dimensional process over the time-frequency grid, sampled at
pilot symbol locations. Early publications on pilot-assisted channel estimation in OFDM
considered one-dimensional (1-D) pilot patterns spanning the frequency or time direction
only [66, 127, 144, 223, 249, 260, 288, 315]. Later on, the theory of two-dimensional sam-
pling was invoked, in an effort to both reduce pilot symbol rates and improve channel
estimation performance. When the channel is probed simultaneously in both time and
frequency domains, the overhead of pilot symbols may be reduced significantly [123], as
two-dimensional (2-D) processing captures simultaneously the correlation of the channel
transfer function in both time and frequency [113, ch.14].

1-D Interpolation

When pilot symbols are distributed within the OFDM block using, e.g, comb-type pi-
lot structure, interpolation in the frequency direction is mandatory to obtain the CFR
at data subcarriers. Piecewise-linear and piecewise-constant interpolation are among the
simplest approaches [223]. Higher-order interpolation such as piecewise second-order poly-
nomial interpolation [127], low-pass and cubic-spline methods [66] offer improved channel
interpolation. The Wiener filter achieves the best performance, but also has the highest
complexity [141,142]. The spacing between pilots or the amount of pilots are determined
by the frequency selectivity of the channel [144], which relates to the maximum delay
spread of the channel in time domain. With block-type of pilots, interpolation in the time
domain is needed instead. Time-selectivity of the channel dictates the rate of retraining.
It should be chosen smaller than the coherence time [249].

Most of the channel estimation methods presented so far process the data in the fre-
quency domain. Time domain interpolation based on zero-padding and DFT/IDFT yields
a simple and reliable approach [162,271]. It is also referred to as the direct-cut method (see
Figure 3.1(a)). An upper-bound on the channel order is required. The number of channel
parameters in time domain may be further reduced by selecting the most significant taps
and neglecting the ones with low energy [163,185] (see Figure 3.1(b)). This is also termed
as denoising. Estimating and tracking the delay-subspace over time may be also beneficial
to channel estimation [245].

2-D Interpolation

Hoeher et al. derive the two-dimensional time-frequency Wiener filter [123,124], which is
the optimal filter in the mean square error sense. Their estimator assumes knowledge of
the doubly selective channel statistics, a condition which is hard to fulfill in realistic sce-
narios where the channel is not directly observable. In order to reduce the computational
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(b) Denoising with most significant tap (MST) selection.

Figure 3.1: Denoising approaches in time domain.

complexity, only a subset of pilot symbols may be processed at the time [113, ch.14] [124].
Cascaded 1D-FIR filtering allows to further reduce the complexity with almost as good

performance as 2-D filtering. It relies on the assumption of separability of the channel’s
2-D auto-correlation function in the time and frequency directions [162] [113, pp.493-495].
Adaptive 1-D [234] or 2-D [258] processing are other options. Edfors et al. propose the use
of SVD-based low rank approximations [76,77,231]. Substituting unitary linear transforms
by computationally less complex DFTs reduces further the complexity of both 1-D [77,271]
and 2-D cascaded filtering [162]. However, the complexity reduction comes at the expense
of a degradation in MSE due to leakage effects with non-sample spaced CIRs.

3.3.3 Robust designs

Optimum designs such as the 2-D Wiener filter require the knowledge of both channel
statistics and signal-to-noise ratio at the receiver. However, this may not be the case in
practice since the channel statistics are usually unknown. They depend on the environment
and may change with time. In practice, a sub-optimal design involves choosing generic
time and frequency correlation functions and thus avoid estimating the channel statistics
from measurements. The correlation in frequency is governed by the power-delay profile
(PDP) of the channel in time domain, whereas the correlation in time depends on the
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Doppler spectrum [220, Ch.14]. In reality, both the PDP and Doppler spectrum are not
known exactly. A robust interpolator should perform reliably, regardless of mismatched
channel statistics [43,160,162]. The loss in performance should remain small compared to
known statistics as long as the actual channel matches the maximum allowed Doppler and
delay spreads.

3.3.4 Enhancing the channel estimates via DD-processing

Decision-directed channel estimation may also be employed on top of pilot-assisted channel
estimation. In this case, it allows improving channel estimates because of the increased
sample support and the sparsity of the pilot pattern. Indeed, channel estimation with
pilot symbols alone has a limited precision. DD estimators perform usually better than
the pilot-based ones at lower Doppler frequencies, whereas pilot-based methods should be
preferred at higher Doppler frequencies. Decision-directed channel estimation techniques
for pilot-aided SISO-OFDM were investigated for instance in [15,77,87,162,183,271,284].
DD-processing has been proposed in many different contexts to enhance channel estimation
algorithms for MIMO systems as well [106,137,160,163,187,286].

3.3.5 Pilot design and placement

The geometry of the pilot pattern deserves attention as it ultimately influences the per-
formance of channel estimation in time-frequency selective fading channels. The most
commonly used pilot patterns in OFDM are presented in the following. Then, the optimal
placement of pilot symbols is discussed in both the SISO and MIMO case.

Pilot patterns

Block and comb pilot structures are among the most commonly used in the literature
related to OFDM as well as in practical applications. Block pilots (see Figure 3.2(a))
assume a complete block of training data is sent periodically [66, 196]. The technique is
appealing in slow to moderate fading, where the channel may be tracked via semi-blind
or DD processing between two consecutive blocks of training. Frequency selectivity of the
channel is handled at best, since all the subcarriers are used for channel estimation and thus
no interpolation is needed. However, time selectivity is detrimental to block retraining, as
the obtained channel estimates degrade as the channel varies over time. Consequently, the
retraining rate needs to be increased. For instance, the IEEE 802.11 standard [130] for
wireless LANs assumes that two complete blocks of training are sent prior to transmission
of data. Data bearing blocks may also contain a few pilots for frequency synchronization
purposes [119, 273]. Comb pilot structures (see Figure 3.2(b)) dedicate a specific set of
subcarriers to sending training data over time [20,66,71,127,144,191,196,223,245,249,260,
288]. Time-selectivity is better handled with comb pilot structure than with block pilots.
On the other hand, high frequency selectivity of the channel may be an issue. It may
require reducing the pilot spacing and opting for more advanced interpolation procedures.
Rectangular pilot structure (see Figure 3.2(c)) includes OFDM blocks with comb-pilots,
which are sent periodically and not continuously. DVB-T systems [86] use a specific pilot
pattern (see Figure 3.2(d)) which combines block and rectangular structures. Blocks of
pilots are meant for complete retraining, whereas comb pilots in blocks in between are used
for channel tracking purposes. Hexagonal pilot designs (see Figure 3.2(e)) are optimal
in the sense of sampling more efficiently the 2-D channel surface in the time-frequency
plane than the rectangular pilot pattern [23,54,89–91]. About 13.4% fewer samples than
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Figure 3.2: Pilot patterns in OFDM.

rectangular sampling are needed to achieve similar performance [91]. Partial pilots (see
Figure 3.2(f)) were discussed already in Section 3.2.3 within the framework of semi-blind
channel estimation [122, 201, 202]. The idea is to superimpose pilot to data symbols to
facilitate channel estimation, without sacrificing the bandwidth efficiency while avoiding
ambiguity problems [73]. Also, the set of pilot arrangements may be adaptively selected
based on the prediction of the channel estimation error at the receiver [246].

Optimal placement of pilots - SISO case

The optimal placement of training symbols has been shown to enhance the overall system
performance from both the estimation and information theoretical perspective [5, 6, 72,
115, 203]. Negi and Cioffi established optimality conditions for pilot placement in SISO
OFDM [196]. Optimality is defined in terms of MSE of the channel estimate. The key
results in [196] may be summarized as follows:

i. Time domain is preferable to frequency domain channel estimation because there are
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fewer parameters in the CIR than in the CFR (Lh versus N , respectively). In such a
way, variance of the estimates is also decreased.

ii. In the absence of noise, any Lh of the N available symbols may be used for training
to recover the channel exactly. With less than Lh pilot symbols, the problem becomes
under-determined, and there is no unique solution.

iii. In AWGN noise, the optimal pilot symbol pattern is the equispaced one. Otherwise,
noise enhancement occurs. This result is also supported by information theoretical
considerations [5].

iv. In a time-invariant channel, block and comb structures perform equally well provided
that the number of pilots transmitted over the period of interest remains equal.

v. Intuitively, block pilot structures produce better channel estimation compared to comb
pilot structures, but the quality of the estimate degrades over time as the channel
changes.

vi. Comb pilot structure achieves better tracking of time-varying channels than block
structure.

Also, the extra symbols required by the cyclic prefix are not that inefficient, as they allow
to diagonalize the transmission in the frequency domain [180].

Optimal placement of pilots - MIMO case

Let us consider a Nt × Nr MIMO OFDM system, where Lh upper-bounds the length of
the channels. Barhumi et al. derive optimum pilot sequences and their placement for the
pilot-aided LS channel estimator [29]. As a result, optimal pilots for MIMO OFDM should
fulfill the following conditions:

i. Pilot symbols must be equipowered and equispaced. The number of pilots at each
transmit antenna should be chosen as Np ≥ LhNt.

ii. Under flat fading (Lh = 1), pilot sequences on different transmit antennas must be
orthogonal.

iii. Under frequency-selective fading (Lh ≥ 1), pilot sequences on different transmit an-
tennas must be orthogonal and phase shift orthogonal in the range Φ ∈ {−Lh +
1, . . . , Lh − 1}. Phase shift orthogonality in the frequency domain corresponds in fact
to circular shift orthogonality in the time domain. In other words, the pilot sequence
of one antenna should not only be orthogonal to the pilot sequences of other antennas,
but to circularly shifted copies of these sequences as well.

Minn and Al-Dhahir proved indeed that there exist several other optimal pilot symbol
allocations [184]. The key idea is that orthogonality among training sequences at the
transmit antennas must be ensured in one way or another, e.g., in either time, frequency,
code domain or by combinations of those. Training over multiple OFDM symbols may be
considered as well [29,184].
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3.3.6 Summary

In this section, we reviewed the ways of performing channel estimation in pilot-aided
OFDM. One needs first to acquire channel estimates at pilot symbol locations. This task
is usually accomplished using LS, MMSE or ML estimators. Then, CFR estimates at data
subcarriers are obtained by interpolation between estimates at pilot locations. While 2-D
Wiener filtering yields the optimal solution in the MSE sense, it turns out to be impractical
since it assumes knowledge on both channel statistics and signal-to-noise ratio at the
receiver. If complexity remains an issue with 2-D filtering, cascaded 1-D filtering offers an
attractive alternative with almost negligible loss in performance. Robust estimators were
introduced to avoid estimating the channel statistics [124,160,162]. Timing errors should
also be taken into account, as they may degrade the performance of channel estimators
even if channel statistics are known [20,127]. Pilot design and placement deserve attention
as well. A good choice of the pilot pattern should match the channel behavior both in
time and frequency domains. In this way, the best tradeoff between channel estimator
performance and transmission efficiency is found.

3.4 Concluding remarks

In this chapter, blind, semi-blind and pilot-aided channel estimation techniques for OFDM
were reviewed. As blind methods are appealing due to their inherent bandwidth efficiency,
they are not likely to be used alone in commercial applications and products. Indeed, they
suffer from ambiguities and have high computational complexity. Moreover, some channels
may not be identifiable. However, they may be used to refine pilot based estimates for
each symbol, without requiring any modification of the transmitted signal structure. Blind
methods remain an important topic of research since they are seminal part of any semi-
blind algorithm.

Semi-blind processing incorporates a little amount of training in order to ensure better
performance, improved tracking capabilities and resolve ambiguities. It offers a more
feasible implementation of blind criteria to practical systems. Semi-blind methods may
find an application in static scenarios (ADSL, DVB-T) as well as in ones with moderate
mobility (fixed broadband wireless access, WLAN).

Pilot-aided processing is most commonly chosen in real-world systems, especially in
fourth generation mobile wireless communications where mobility and high data rates are
major requirements. Interleaving sufficient amount of known symbols among the transmit-
ted data allows to track highly time-varying channels. Moreover, the quality of the channel
estimates allows often choosing high-order symbol modulations, leading to increased data
rates. Complexity issues may also dictate the choice of pilot-aided methods as blind or
semi-blind techniques require an increased processing power and better SNR to reach simi-
lar performance targets. This issue is critical for battery operated and hence power limited
mobile terminals. Finally, pilot symbols are almost always present in practical designs.
They are needed for other purposes than channel estimation solely, e.g., for time and
frequency synchronization. To conclude, Table 3.2 summarizes the key features in blind,
semi-blind and pilot-aided channel estimation in OFDM, and allows their comparison.
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Blind Semi-blind Pilot-aided

Training data None. A single or a few pi-
lot symbols.

Pilot symbols mul-
tiplexed with data.

Complexity High. Moderate to high. Low to moderate.

Quality of the
estimates

Low to moderate. Moderate to high. High.

Suitability to
wireless channel

Freq. selective &
time-invariant.

Freq. selective &
slowly time-
varying.

Freq. selective &
time-variant.

Benefits High effective data
rates.
No modification is
required to trans-
mitted signal struc-
ture.

No ambiguity.
Trade-off between
effective data
rate and tracking
capability.
Large sample sup-
port.
Outperforms pilot-
aided estimation
with the same
amount of pilot
information.

No ambiguity.
Suitable for high
mobility scenarios.

Weaknesses Ambiguities.
No channel tracking
capability in gen-
eral (except CM-
and FA-based crite-
ria).
Some channels are
not identifiable.

Less robust to
abrupt change in
channel condition.

Lower effective data
rates.
Time and frequency
selectivity of the
channel may be an
issue depending on
the amount of pilot
data.

Table 3.2: Cross-comparison of blind, semi-blind and pilot-aided channel estimation for
OFDM.
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Chapter 4

Carrier frequency synchronization

in OFDM systems

OFDM and more generally multicarrier systems are extremely sensitive to carrier frequency
synchronization errors which lead to ICI and severely affect the transmission (see Section
2.3.2). Thus, estimation of the carrier frequency offset is a crucial task in OFDM-based
transceivers. In this chapter, we review carrier frequency synchronization techniques spe-
cific to OFDM. Those may be classified as pre-DFT or post-DFT methods, depending on
whether they operate in time or frequency domain, respectively. Coarse synchronization,
i.e., estimation of the integer part of the CFO with respect to the intercarrier spacing, is
typically performed in the frequency domain after the fractional part has been estimated
and corrected. Fine synchronization, i.e., estimation of the fractional part with respect
to the intercarrier spacing, usually takes place in the time domain. The emphasis in this
review is put on the estimation of the fractional CFO, as is compromises severely the
orthogonality of the transmission and leads to ICI.

In the literature on synchronization and channel estimation, algorithms are often clas-
sified as blind, semi-blind and pilot-based. However, some of the CFO estimation methods
are classified as data-aided, although they do not use the explicit knowledge of the pilot
symbols. Estimation techniques that rely on a repetitive structure of the OFDM symbol in
time domain fall into this category [188,190,238]. Those are in fact null-subcarrier (NSC)
based techniques, as discussed in [101] and later in this chapter. These techniques require
the number of NSCs to be larger or equal to half of the total number of subcarriers. Hence,
they are often referred to as data-aided, even though no data is actually transmitted on
the NSCs. Sometimes, when the only null-subcarriers are the virtual subcarriers imposed
by system design, the related CFO estimators are referred to as blind [167]. To avoid any
confusion, we follow the classification employed in [101] which also gives an excellent re-
view of CFO estimation techniques for OFDM systems. Thus, we will refer to NSC-based
techniques in general.

First, blind maximum likelihood estimators are reviewed. Then, repetitive slots-based
and nonlinear least squares estimators are presented and the correspondence between
them is established. Null-subcarrier estimation is considered then and the conditions for
CFO identifiability are stated. SOCS-based CFO estimation is presented next, based
on either signal covariance or pseudo-covariance. Some alternative approaches for blind
synchronization of OFDM transceivers are reviewed also. Those include estimators based
on high-order statistics as well as on the constant modulus and finite alphabet properties.
Finally, decision-directed techniques and algorithms exploiting explicitly the pilot data are
presented.
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The tree in Figure 4.1 provides a classification of CFO estimators and the links between
them. It depicts as well the overall organization of this chapter.

ML (deterministic)

SS

NLS

ANLS

REP SOCS Pilot symbols

Pseudo-
-covariance

Covariance

ML (stochastic)

VSC only

BLUE

NSC+VSCNSC, no VSC,
and equi-spaced
active subcarriers

Classes of CFO estimators

Other

Oversampling

DD

FAHOS CM

NSC-based estimators

Figure 4.1: Classification of CFO estimators for OFDM. Arrows picture equivalences be-
tween estimators. ANLS: approximate nonlinear least squares, BLUE: best linear unbi-
ased estimator, CM: constant modulus, DD: decision-directed, FA: finite alphabet HOS:
high-order statistics, NLS: nonlinear least squares, REP: repetitive slots-based, SOCS:
second-order cyclostationary statistics, SS: subspace estimator.

4.1 Blind maximum likelihood CFO estimation

4.1.1 ML estimators for the AWGN channel

Daffara and Chouly propose a maximum likelihood estimator of the carrier offset for the
AWGN channel [69]. Estimation is performed recursively via an automatic frequency
control (AFC) loop. The method is blind since the data dependence of the log-likelihood
function is removed through averaging. However, local maxima arise at integer offset
values, which may create false locking points for the AFC.

The seminal work by Beek et al. [272] describes a joint maximum likelihood timing and
CFO estimator which exploits the redundancy provided by the cyclic prefix. The proposed
approach stems from blind stochastic ML estimation and exploits the known correlation
structure induced by the CP. The OFDM signal received through the AWGN channel is
approximated as complex circular jointly Gaussian. The data dependence is removed in
this way. The following likelihood function is minimized to find estimates of the timing
offset τ ∈ N and carrier frequency offset ν:

Λ(τ, ν) = |γ(τ)| cos (2πν + arg {γ(τ)}) − ρΦ(τ), (4.1)

where

γ(τ) =

τ+LCP−1∑

m=τ

yν,CP,my
∗
ν,CP,m+N (4.2)

Φ(τ) =
1

2

τ+LCP−1∑

m=τ

|yν,CP,m|2 + |yν,CP,m+N |2, (4.3)

where ρ = SNR/(SNR+ 1) and yν,CP,m denotes the mth received sample in time domain
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before CP removal. The joint ML estimator of τ and ν becomes

τ̂ML = arg max
τ

{|γ(τ)| − ρΦ(τ)} (4.4)

ν̂ML = − 1

2π
arg {γ(τ̂ML)} . (4.5)

The estimates of τ and ν may be found from γ(τ). Its magnitude, which is compensated
by an energy term, peaks at time instant τ̂ML, while its phase at this time instant is
proportional to ν̂ML. Naturally, performance improves when increasing the CP length LCP

because the correlation terms add coherently at the value of the CFO while non-coherently
for the noise. However, error floors are observed in multipath channels as the estimator
was originally designed to deal with the AWGN case. Note that the above algorithm is
suited for tracking small CFOs, as the estimation range for the normalized carrier offset
is limited to [−1/2, 1/2[. Other approaches need to be considered for the CFO acquisition
mode.

Several improved versions and variations of the above algorithm are found in the lit-
erature [128,149,154,310]. For instance, the one in [128] uses smoothing algorithms (e.g.,
moving averages and exponentially weighted averages) to replace the sums in (4.2)-(4.3).
The goal is to better mitigate multipath propagation which spreads the symbols along the
time direction. The improvement introduced in [154] leads to more accurate description
of the correlation features of the received signal. Moment-based and minimum variance
unbiased estimators are presented as well. Finally, the technique in [149] is based on an
additional data rotation scheme, and achieves 2 dB gain over [272], in the AWGN case
though.

4.1.2 ML estimators for the multipath Rayleigh fading channel

Blind maximum likelihood estimation of the carrier frequency offset for OFDM under
multipath Rayleigh fading was investigated in [53,55,165]. However, [55,165] are based on
an erroneous likelihood criteria: the received signal in (2.26) cannot be modeled as jointly
Gaussian distributed due to the Rayleigh fading process which multiplies the random data.
Hence, while being technically correct for the AWGN case, [55, 165] yield sub-optimal
methods under multipath Rayleigh fading. For instance, error floors are observed in [55].
A valid approach under multipath Rayleigh fading is given in [53]. However, it is still a
sub-optimal method. In order to remove the data dependency, the estimator relies on an
approximate likelihood function.

4.2 Correlation-based CFO estimation with repetitive slots

In OFDM systems, pilot blocks are usually transmitted prior to the information frame.
For instance, the IEEE 802.11 standard for WLANs [130] employs series of identical slots
in time domain as a preamble. Moose’s [188], Schmidl and Cox’s [238] and Morelli and
Mengali’s [190] estimators as well as numerous variants [188,190,199,238] rely on repetitive
pilot structures. They are reviewed in the following.

4.2.1 Moose’s estimator

Seminal work by Moose [188] proposed to use a repeated data symbol to perform CFO
estimation. If an OFDM transmission block is repeated, and assuming the channel coher-
ence time spans at least two OFDM blocks, one receives the following two N × 1 vectors

49



in the frequency domain:

ỹν(k) = r̃(k) + w̃(k) (4.6)

ỹν(k + 1) = r̃(k)ej2πν + w̃(k + 1), (4.7)

where r̃(k) = ej2πνkFHC(ν)H̃Fs(k). Note that the guard interval is not needed anymore
between the identical blocks, and it is omitted from the model in (2.28). In the noise-free
case, there exists a phase shift of 2πν between the components of ỹν(k + 1) and ỹν(k).
This intuitively leads us to the following estimator:

ν̂ =
1

2π
arg

{
ỹH

ν (k)ỹν(k + 1)
}
. (4.8)

The above estimator resolves the normalized carrier frequency offset without any ambiguity
in the range [−1/2,+1/2[, i.e., half of the subcarrier spacing of the repeated symbol.
Otherwise, ambiguities are encountered by the arg{} function when the phase shift exceeds
±π. A basic strategy to enlarge the estimation range for CFO acquisition is to shorten
the DFTs and use larger intercarrier spacings for the repeated data block [188].

The estimator in (4.8) proves to be ML [188]. Notice that it is unaffected by mul-
tipath propagation, unlike the estimator by Beek et al. [272]. Furthermore, both signal
and ICI components differ only up to a phase shift proportional to the CFO. Thus, the
frequency offset may be estimated even though it is too large to guarantee satisfactory
data demodulation.

4.2.2 Schmidl and Cox’s estimator

Instead of two consecutive identical blocks, Schmidl and Cox’s algorithm (SCA) [238]
considers a training block with two identical halves in time domain. The latter is generated
by transmitting a PN sequence on the even subcarriers, while the odd ones are set to zero.
Let Q be the number of samples in the first half of the training symbol, excluding the cyclic
prefix. Denoting by yν,CP,m the mth received sample in time domain before CP removal,
we define the two quantities

pSCA(τ) =

Q−1∑

m=0

y∗ν,CP,τ+myν,CP,τ+m+Q, rSCA(τ) =

Q−1∑

m=0

|yν,CP,τ+m+Q|2, (4.9)

where τ ∈ N is the time index corresponding to the first sample in a window of 2Q samples.
This window slides over time as the receiver searches for the training block by looking for
the two identical halves in time domain. The method proceeds in two steps. The timing
offset is first estimated as

τ0 = arg max
τ

mSCA(τ), mSCA(τ) =
|pSCA(τ)|2
(rSCA(τ))2

, (4.10)

where mSCA(τ) is the timing criterion. Then, assuming the timing offset τ0 has been
correctly estimated, there exists a phase difference of πν between the two symbol halves.
Consequently, the CFO is estimated as

ν̂ =
1

π
arg {pSCA(τ0)} . (4.11)
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Symbol timing and carrier frequency synchronization are often performed jointly in the
literature. With repetitive slots (REP) based estimation, the CFO is usually obtained as
the argument of the timing criterion taken at the optimal timing instant. The estimation
range of the SCA is within the interval [−1,+1[ of intercarrier spacing. The range is hence
doubled compared to Moose’s algorithm, and allows estimating the fractional CFO.

However, there might remain an uncompensated frequency shift of 2z/Ts [Hz], where
z is an integer. To resolve the integer shift kν = 2z, another training block is required
by [238]. First, the fractional CFO is corrected for both blocks using the estimate from
(4.11), and ICI is hence avoided. Second, it is assumed that the pairs of subcarriers from
one block to the other are differentially modulated with phase differences given by the
sequence vn, n ∈ NA, where NA is the set of modulated (even) subcarriers. Since the
CFO-induced phase shift is similar for each pair of frequencies, a criterion similar to the
one in (4.10) may be used to estimate kν as

k̂ν = 2arg max
g∈N

{bSCA(g)} , bSCA(g) =
|∑n∈NA

ỹ∗1,n+2gv
∗
nỹ

∗
2,n+2g|2

2
(∑

n∈NA
|ỹ2,n|2

)2 , (4.12)

where ỹk,n, k = 1, 2 denotes the nth received sample of the kth block in frequency domain.
Finally, by combining the fractional and integer offset estimates from (4.11) and (4.12),
respectively, the final CFO estimate is obtained by ν̂ = k̂ν + ε̂.

4.2.3 BLUE estimator

Morelli and Mengali [190] proposed an extension of the Schmidl and Cox’s algorithm with
a training block composed of J > 2 identical parts in time domain. In the sequel, it is
referred to as the extended SCA (ESCA). The main benefit over the conventional SCA is
an increase of the estimation range which becomes [−J/2,+J/2[. The proposed estimator
exploits the correlations between identical slots of the training block in time domain as

rESCA(m) =
1

N −mQ

N−1∑

n=mQ

yν,ny
∗
ν,n−mQ, 0 ≤ m ≤ H, (4.13)

where Q = N/J is the length in sampling intervals of each section of the training block
and H ∈ N is a design parameter. By considering the phase differences

ϕ(m) = [arg {rESCA(m)} − arg {rESCA(m− 1)}] mod 2π, 1 ≤ m ≤ H, (4.14)

the best linear unbiased estimator (BLUE) of the CFO is expressed as [190]

ν̂ESCA =
J

2π

H∑

m=1

ωESCA(m)ϕ(m), (4.15)

where the weighting coefficients ωESCA(m) are given by

ωESCA(m) = 3
(J −m)(J −m+ 1) −H(J −H)

H(4H2 − 6HJ + 3J2 − 1)
. (4.16)

The weights in (4.16) are channel independent. Thus the ESCA is the BLUE for any
channel. It was shown in [190] that the variance of the ESCA estimator achieves its
minimum when H = J/2. It is interesting to notice that (4.15) reduces to the SCA for
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J = 2 and H = 1. The ESCA estimates have otherwise slightly lower variance than those
of SCA [190]. The price to be paid is an increase in computational complexity, as H angles
have to be computed in (4.14) instead of one for the SCA.

4.2.4 Multi-stage approach

The multistage estimator from [248] trades off between estimation range and estimation
variance. The lowest variance is achieved at the expense of a smaller range, and vice-versa.
The method assumes a preamble composed of J = 2KS repetitive slots in time domain,
KS ∈ N. At the ith stage, J/2i base sub-blocks are bundled together to obtain 2i new
sub-blocks i = 1, . . . ,KS (see Figure 4.2). Thus, KS stages are considered in total. The
idea of partitioning the sub-blocks is also found in [186]. The CFO estimate for the ith

stage is estimated by correlating the adjacent ith stage sub-blocks as

ν̂i =
2i

2π
arg





N/2i−1∑

n=0

y∗ν,nyν,N/2i+n



 , i = 1, . . . ,KS. (4.17)

The first stage is equivalent to the SCA [238], while upper stages are equivalent to Morelli
and Mengali’s technique [190]. As the size of the sub-block decreases, the estimation
range increases. At the ith stage, the range yields |ν̂i| < 2i−1. After all estimated values ν̂i

(i = 1, . . . ,KS) have been obtained, ambiguities induced by multiple estimation intervals
have to be resolved. This leads to a phase unwrapping problem.

A A A A A A A A

N

i = 1
i = 2
i = 3

Figure 4.2: Time domain representation of an OFDM preamble with a repetitive structure
A. The cyclic prefix is omitted. The multi-level structure allows multi-stage processing.

4.2.5 Improvements and coarse synchronization

Several variants of the repetitive slots-based methods [188,190,199,238] may be found in
the literature. The work in [186] improves the structure of repetitive training by maxi-
mizing sign inversions within the slots. The latter ensures the robustness of the timing
synchronization against frequency offsets, as the CFO estimate is often obtained as the
argument of the timing criterion at the correct timing instant [238, 272]. Some further
refinements for coarse timing delay and CFO acquisition are proposed in [139].

There exist a lot of references on coarse carrier offset acquisition, i.e., estimation of
the integer part of the CFO [159,189,238,304,308]. Estimation usually takes places in the
frequency domain, after the fractional part has been estimated and compensated for. In
IEEE 802.11 WLANs systems [130, 159], the last two short OFDM symbols are intended
for coarse CFO estimation. Two algorithms for estimating the integer part of the CFO
are proposed in [189], both based on the ML principle and on the observation of two
consecutive OFDM symbols. Note that fully blind estimation of the integer part of the
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CFO can not be achieved without some side information such as, e.g., differential encoding
[304] or additional correlation between the data symbols or blocks [189]. Otherwise, the
integer CFO shifts the carriers cyclically, without any means to identify their original
position.

4.3 Nonlinear least squares CFO estimation

In this section, we establish the link between nonlinear least squares (NLS)-based and
correlation-based CFO estimation. For this purpose, we follow the derivation and unified
framework proposed by Ghogho and Swami [100, 101]. The approximate NLS approach
[100] is reviewed as well.

4.3.1 NLS algorithm

Let us consider a single OFDM block, for simplicity. Let us then assume it is made
of identical sub-blocks of length Q = N/J each in time domain, i.e., x̃q+lQ = x̃q, q =
0, . . . , Q−1 and l = 0, . . . , J−1. Nonlinear least squares estimation of the carrier frequency
offset was proposed in [159] in the context of OFDM-based WLANs. Further improvement
of the NLS estimator at low SNR regime may be achieved [175]. Assuming a repetitive
preamble structure in time domain, the NLS estimate of the CFO ν is obtained as [100]:

ν̂NLS = arg max
ν̃

Q−1∑

q=0

1

J

∣∣∣∣∣

J−1∑

l=0

e−j 2πlν̃
J yν,q+lQ

∣∣∣∣∣

2

, (4.18)

where yν,q+lQ are the received signal samples in time domain after CP removal.

4.3.2 Relationship between correlation-based techniques and NLS esti-

mators

It is shown in [100,101] that the NLS estimator may also be expressed as

ν̂NLS = arg max
ν̃

J−1∑

l=1

Re
{
r(lQ)e−j 2πlν̃

J

}
, (4.19)

where r(τ) is the correlation at lag τ defined by

r(τ) =
N−1−τ∑

n=0

y∗ν,nyν,n+τ , τ ∈ N. (4.20)

Clearly, (4.18) and (4.19) establish relationship between NLS and correlation-based estima-
tors in the case of repetitive preambles. Indeed, the term r(lQ) in (4.19) is the correlation
at lag τ = lQ between the received samples corrupted by CFO and Q is precisely the repet-
itive slot period. For J = 2, the estimator in (4.19) may be expressed in a closed-form
as

ν̂NLS =
1

π
arg

{
r

(
N

2

)}
, (4.21)

which is equivalent to the SCA [238]. No closed-form solution is available for solving (4.19)
when J > 2 [100,101].
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4.3.3 Low complexity approaches

Let us define z = [z0, . . . , zQ−1]
T with zq = exp(j2πν(q+LCP)/N)H̃{q,:}x̃, q = 0, . . . , Q−1.

The expected value of r(lQ) conditioned on z in (4.20) is then given by [100,101]

E [r(lQ)|z] = (J − l)‖z‖2ej
2πlν

J , l = 1, . . . , J − 1, (4.22)

where ‖z‖ =
√

zHz. Therefore, information on the frequency offset is present at every
correlation lag, except for l = 0. This implies that the SCA estimator in (4.21) may still
be used for J > 2, though it is sub-optimal in this case.

Lower estimation variance may be achieved by efficiently combining the phases of
correlation values at different lags lQ, l = 1, . . . , J − 1. The previously described BLUE
estimator [190] provides one way of combining. The BLUE approach is followed in [308]
as well, with similar results. Multiple correlation values are also exploited in [307, 308].
A more specific repetitive structure in the time domain is generated in [309] by nulling
odd-numbered subcarriers in the frequency domain. By doing so, the estimation range is
increased up to a half of the total bandwidth, i.e., [−N/4, N/4[. The drawback is that only
pairs of samples are correlated together in time domain, which may lead to high variance
of the estimates. Finally, the multi-stage estimator [248] exploits the correlation lags in a
sequential way.

Ghogho and Swami derive an approximate NLS estimator (ANLS) [100]. Let φl denote
the unwrapped phase of the correlation estimate r(lQ). Under the small error assumption,
the approximation sin(φl−2πlν/J) ≈ (φl−2πlν/J) holds and the NLS estimator in (4.19)
may be approximated in a closed-form by [100]:

ν̂ANLS =
J

2π

∑J−1
l=1 l|r(lQ)|φl∑J−1
l=1 l

2|r(lQ)|
. (4.23)

Unlike the BLUE estimator in [190] or the estimator in [248], the above approach does
require phase unwrapping. However, phase unwrapping is not a serious problem in (4.23),
as only a few correlation values largely spaced apart are needed.

4.4 CFO estimation based on null-subcarriers

In this section, we first review the class of NSC-based CFO estimators originally introduced
by Tureli et al. [167,266–268] and further developed in [28,45,100,102,174]. Computation-
ally efficient implementations are also presented. Then, the link between subspace-based,
ML and repetitive slots-based estimation is established. Finally, the identifiability condi-
tions for NSC-based estimators are stated.

4.4.1 Algorithms

Let us consider the OFDM signal model with null-subcarriers obtained by combining (2.27)
and (2.31):

yν(k) = βke
j2πν(kP+LCP)/NC(ν)F{:,NA}Dh̃,{NA,NA}(k)a(k) + w(k), (4.24)

where D
h̃,{NA,NA}(k) = diag{h̃T (k)VNSC(k)} is a Na ×Na diagonal matrix containing the

CFR values in h̃(k) at active subcarriers only. The N × Na matrix F{:,NA} denotes the
IDFT matrix truncated to the columns modulating the set of active subcarriers.
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In the noiseless and CFO-free case, there is no received energy after demodulation at
null-subcarrier locations. This translates mathematically into

fH
n y0(k) = βkf

H
n F{:,NA}Dh̃,{NA,NA}(k)a(k) (4.25)

= 0, ∀n /∈ NA, (4.26)

where fn denotes the nth column vector of the IDFT matrix F.

The following cost function was originally proposed by Liu and Tureli in [167], given a
finite number of K vector observations:

p(z) =
∑

n/∈NA

K∑

k=1

∣∣fH
n Z−1yν(k)

∣∣2 (4.27)

=
∑

n/∈NA

K fH
n Z−1R̂yνyνZfn, (4.28)

with Z = diag{1, z, z2, . . . , zN−1} and R̂yνyν = (1/K)
∑K−1

k=0 yν(k)yH
ν (k). In the noise-free

case, p(exp(j2πν/N)) = 0. Clearly, the cost function p(z) evaluated at z = exp(j2πν̃/N)
equals the total received energy at NSC locations, for a given frequency offset compensation
value ν̃. Consequently, the CFO is found as

ν̂NSC = arg min
ν̃

p
(
ej

2πν̃
N

)
. (4.29)

A first order perturbation analysis of the estimator in (4.29) is performed in [267]. Equiv-
alently, the frequency offset estimate may be obtained by maximizing the received energy
over the set of active subcarriers. Hence, one may find the carrier offset by finding the
roots of p(z) on the unit circle similarly to the root-MUSIC algorithm in array signal
processing [27].

A multi-antenna generalization of the cost function in (4.28) is found in [266]
for OFDM with receiver diversity. The proposed approach stems from the non-
linear least squares method. In the derivation, the covariance matrix R̂yνyν =

(1/KNr)
∑K−1

k=0

∑Nr

r=1 |γr|2yν,r(k)y
H
ν,r(k) is now evaluated across the Nr received signal

blocks yν,r(k) at the receiver antenna array, and substituted in (4.28). If selected pro-
portional to the branch SNR, the branch weighting coefficients |γr| (r = 1, . . . , Nr) allow
providing diversity gains. Diversity turns out to improve CFO identifiability in the case
of deep channel fades, when zeros of the cost function get close to the DFT grid. Fur-
thermore, the NLS-based criterion offers robustness against correlation among diversity
branches.

4.4.2 Computationally efficient implementations

First, notice that for a large number of null-subcarriers Nz > Na, from computational
complexity point of view it is preferable to maximize the energy over the set of active
carriers. A line search is required to find out the CFO in (4.29), which adds to the
complexity if high precision is needed. However, a priori knowledge or coarse estimation
may reduce the range of the line search. One may also choose adaptive estimation via
least-mean squares (LMS) or gradient-based approaches [173].

Another option is to obtain the CFO via polynomial rooting, as p(z) forms a polynomial
of order 2(N − 1) in z. Then, the CFO estimate is taken as the phase of the root which is
the closest to the unit circle [167]. Another way to estimate the carrier offset is to exploit
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a shift-invariant structure in the received signal that allows deriving an ESPRIT type of
algorithm [268]. The benefit is that the CFO is obtained in a closed-form, and improved
resolution is achieved over the MUSIC-like search in [167]. Moreover, the method possesses
good small sample performance, e.g., K = 10 received blocks are enough in practice.

By considering truncated Taylor series of order Qo for Z−1 in (4.27) (Qo ≥ |ν̃|(N −
1)/2), the complexity involved in solving (4.29) may be further brought down without
sacrificing much the performance [21]. In this case, CFO estimation requires rooting a
polynomial of degree Qo, which is typically much smaller than the degree of the original
polynomial 2(N − 1). However, the truncated Taylor series approximation holds for small
carrier offsets only (|ν| � 1).

4.4.3 Link between subspace and ML estimation

Ghogho et al. [102] proved the equivalence between Tureli’s estimator [167, 268] and the
deterministic maximum likelihood approach. The derivation is briefly presented here. Let
us assume that both the channel frequency response and the data symbols in equation
(4.24) are deterministic unknown quantities. Let us denote by

α(k) = ej2πν(kP+LCP)/ND
h̃,{NA,NA}(k)a(k) (4.30)

the kth block affected by channel fading and the CFO-induced rotation. Assuming
complex circular white Gaussian noise, the maximum likelihood estimates of ν and
α = [αT (0), . . . ,αT (K − 1)]T based on (4.24) are found as

(ν̂, α̂) = arg min
ν̃,α

K−1∑

k=0

∥∥yν(k) − βkC(ν̃)F{:,NA}α(k)
∥∥2
. (4.31)

The ML estimate of α(k), for known ν̃, is given by

α̂(k) =
1

βk

[
F{:,NA}

]H
C∗(ν̃)yν(k). (4.32)

Substituting (4.32) into (4.31) and simplifying, the ML estimate of the CFO is obtained
as

ν̂ = arg min
ν̃

K−1∑

k=0

‖ΠNSCC
∗(ν̃)yν(k)‖2 , ΠNSC = F{:,NNSC}

[
F{:,NNSC}

]H
. (4.33)

Notice that ΠNSC above is the projection matrix to the subspace orthogonal to the signal
subspace, which yields the space of null-subcarriers. Thus, the CFO is estimated in (4.33)
as the value of ν̃ minimizing the projection of the compensated vector C∗(ν̃)yν(k) to the
subspace of NSCs. Equivalently, one may maximize the projection in the signal space
using the projection matrix ΠA = IN − ΠNSC = F{:,NA}[F{:,NA}]

H instead, where NA is
the set of active subcarrier indices. Hence, the link with subspace-based estimation is
clear, as well as the geometrical projection argument [45, 93, 296]. Note that [93] belongs
as well to the class of NSC-based deterministic ML estimators.

Let us now establish the correspondence with the estimator in [167] by rewriting (4.33)
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as

ν̂ = arg min
ν̃

K−1∑

k=0

∣∣∣yH
ν (k)C(ν̃)F{:,NNSC}

[
F{:,NNSC}

]H
C∗(ν̃)yν(k)

∣∣∣
2

(4.34)

= arg min
ν̃

∑

n/∈NA

K−1∑

k=0

∣∣fH
n C∗(ν̃)yν(k)

∣∣2 ≡ ν̂NSC. (4.35)

Thus, deterministic ML estimation is equivalent to Tureli’s NSC-based algorithm, and the
estimators developed in [167,174] are thus ML as well.

UN

UA

yν

ΠAyν

ΠNSCyν

C∗(ν̃)yν

ΠAC
∗(ν̃)yν

ΠNSCC
∗(ν̃)yν

ΠAC
∗(ν)yν

Figure 4.3: Geometrical description for NSC-based CFO estimators (noise-free case). Pro-

jection to signal space UA = span
(
F{:,NA}

[
F{:,NA}

]H
)

is maximized or, equivalently,

projection to null-subcarrier space UN = span
(
F{:,NNSC}

[
F{:,NNSC}

]H
)

is minimized.

4.4.4 Relationship to repetitive slots-based estimators

Let us consider a single block (K = 1) for simplicity. Active subcarrier frequencies are
assumed to lie at multiples of J > 2 and to be equi-spaced. Null-subcarriers are placed
elsewhere. Such a placement leads to a repetitive structure with J identical sub-blocks in
time domain. Therefore, repetitive slots-based estimators rely implicitly on NSCs [101].
Similarly two identical consecutive OFDM blocks [188] may be seen as two half blocks of
a 2N -point DFT [101]. No CP is needed in such case.

Now, it is instructive to rewrite the estimator in (4.33) in terms of the time domain
correlation function as [102]:

ν̂NSC = arg max
ν̃

N−1∑

τ=1

Re

{
K−1∑

k=0

[
rk(τ)ψ

∗
NA

(τ)
]
e−j 2πτν̃

N

}
, (4.36)

57



with

ψNA
(τ) =

1

N

∑

n∈NA

ej
2πnτ

N (4.37)

rk(τ) =

N−1−τ∑

n=0

y∗ν,n(k)yν,n+τ (k), (4.38)

where yν,n(k) is defined as the nth element of yν(k). According to the analysis in [100–102],
the two following cases may be distinguished:

1. Equi-spaced active subcarriers and no virtual subcarrier: In this case,
ψNA

(τ) is non-zero at multiples of Q = N/J only. Then, the NSC estimator in
(4.36) reduces to the repetitive slots-based method in (4.19). Consequently the lat-
ter is ML as well.

2. Equi-spaced active subcarriers together with virtual subcarriers: If VSCs
are present at the edges of the OFDM block, the function ψNA

(τ) is generally non-
zero at any correlation lag. Thus, most of the correlation lags contribute to the ML
estimator in (4.36). Hence, the latter differs from the REP estimator in (4.19) which
employs correlation lags multiples of Q only (the J − 1 correlation peaks in fact). In
general, most of the proposals based on repetitive slots do not use all the correlation
lags. Hence, REP estimators are not ML but are still consistent [100,296].

The equivalences established so far between the different classes of CFO estimators are
also depicted in Figure 4.1 at the beginning of this chapter. The link between NLS [100,159]
and REP [190,238] estimators was stated in Section 4.3.2. SS techniques [45], deterministic
ML estimation [45,102] and NSC-based estimators [167,266–268] were bridged together in
Section 4.4.3. Finally, the link to REP estimators was explained above.

4.4.5 Identifiability conditions

The two following issues may contribute to the loss of identifiability of the CFO for NSC-
based methods: i) the number and the placement of null-subcarriers, ii) the location of
channel zeros in the frequency domain.

In this section, the identifiability conditions of the CFO are briefly stated, based on
the work by Ghogho et al. [98, 102]. Necessary and sufficient conditions for identifiability
are given in the case of a single OFDM symbol (K = 1). Rules remain unchanged for
arbitrary K as long as the locations of NSCs stay the same across the symbols. Theorem
2 [102] states a joint placement rule for NSCs and VSCs providing a full acquisition range.
Finally, null-subcarrier hopping schemes are investigated, as well as optimal design rules
for the MIMO case.

Necessary conditions

With α = exp (j2πν(kP + LCP)/N)D
h̃,{NA,NA}a from (4.30), a necessary condition for

identifiability is that α 6= 0Na×1, or equivalently, αHα 6= 0, i.e., the useful signal energy
is non-zero. Otherwise, the received signal in (4.24) does not contain any information on
the CFO. Given that any FIR channel of order L′

h (i.e., with Lh + 1 non-zero taps in
the time domain) may possess at most L′

h nulls in the frequency domain, it may null L′
h

subcarriers frequencies in the worst case. Hence, one way to fulfill the condition α 6= 0Na×1
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is to require at least Na = L′
h + 1 active subcarriers, i.e., Na > L′

h. The latter condition
guarantees that a CFO estimate maximizes the criterion in (4.33) but does not guarantee
its uniqueness.

Sufficient conditions

Let PNA
(m) be defined as in [102] and denote the number of active subcarriers that do not

have an active neighbor at distance m (cyclically), m ∈ N. Thus, PNA
depends on both

the number of NSCs and their placement. Then, Theorem 1 introduced in [102] states
sufficient conditions for identifiability.

Theorem 1 (cf. [102]) The CFO in equation (4.24) is uniquely identifiable in
[−R/2, R/2[, R ∈ N, for any FIR channel of order L′

h if and only if the two following
conditions are fulfilled:

1. Na > L′
h,

2. PNA
(m) > L′

h, m = 1, . . . , bR/2c.

In words, Theorem 1 says that at least L′
h+1 active subcarriers must have nearest neighbors

no closer than bR/2c in order to ensure identifiability in [−R/2, R/2[ [101]. Note that from
the theorem, it suffices to have Na > L′

h active subcarriers in order to ensure uniqueness
in the range [−1/2, 1/2[ (R = 1).

As a consequence of Theorem 1 and based upon the argumentation in [102], equi-spaced
NSCs provide the most robust placement to the presence of channel zeros. Consequently,
a longer delay spread (L′

h < Nz) may be tolerated for a fixed number of NSCs. On the
other hand, consecutive NSCs only [167] (e.g., VSCs imposed by system design) yield
the most sensitive scenario: identifiability is guaranteed for the AWGN channel only,
but a full acquisition range of [−N/2, N/2[ is provided in this case. Distinct spacing
of null-subcarriers was investigated in [174]. It guarantees ambiguity-free full range CFO
estimation. However, the requirementNz > L′

h+1 makes this scheme slightly less robust to
channel zeros compared to equi-spaced NSC schemes. Another restriction is the maximum
number

√
2N of NSCs with distinct spacing.

Null-subcarrier hopping

It is shown in [28, 174] that the location of channel zeros does not affect identifiability
of the CFO if the placement of consecutive NSCs is changed from one OFDM block to
another. In this case, one refers to null-subcarrier hopping. Hopping guarantees a unique
minimum in [−N/2, N/2[ for the criterion in (4.33) and hence identifiability. Intuitively,
NSC-hopping randomizes the channel over frequency just as frequency hopping in spread
spectrum systems. As a result, the identifiability of the CFO is restored [28].

Optimal placement of NSCs and VSCs - SISO case

An optimum design in the sense of mimimum conditional Cramér-Rao bound (CCRB)
requires the active subcarriers to be equi-spaced when Na ≤ N/2 or the null-subcarriers
to be equi-spaced when Na > N/2 [98, 102]. Furthermore, the CCRB improves with an
increasing number of NSCs. The CCRB is established assuming that both the channel
and data parameters are deterministic quantities. Hence, the obtained bound is specific
to a given set of data and channel conditions. Then, Theorem 2 [102] shows that a proper
combining of consecutive NSCs (i.e, VSCs) and equi-spaced NSCs leads to a full range
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estimator, which guarantees identifiability of the CFO regardless of the channel zeros. The
null-subcarrier placement described is Theorem 2 is represented schematically in Figure
4.4 [102].

Theorem 2 (cf. [102]) Let assume a total number Nz of NSCs. If the number of consec-
utive NSCs (i.e., VSCs), Nv > L′

h, the number of equi-spaced NSCs, Nn = Nz −Nv > L′
h,

and the spacing between the equi-spaced NSCs is M > L′
h, then the CFO in equation (4.24)

is uniquely identifiable in the entire acquisition range [−N/2, N/2[ regardless of channel
zeros.

N

MMM Nv

2
Nv

2

Figure 4.4: Null-subcarrier placement in frequency domain leading to full estimation range
[−N/2, N/2[ according to Theorem 2 [98,102]. Gray regions represent null-subcarriers.

To conclude, CFO identifiability is a tradeoff between the estimation range and the
number and placement of active (respectively null-) subcarriers. Table 4.1 summarizes
the different NSC/VSC placement approaches discussed so far and states their maximum
allowed estimation ranges.

NSC/VSC placement scheme Minimum required number of
NSC/VSCs

Estimation
range

Nv consecutive NSCs (VSCs only) L′
h < 1 (AWGN channel)

[
−N

2 ,
N
2

[

Nz equi-spaced NSCs L′
h < Nz < N − L′

h

[
− N

2Nz
, N

2Nz

[

Na equi-spaced active subcarriers L′
h < Na

[
− N

2Na
, N

2Na

[

Nz NSCs with distinct spacing L′
h+1 < Nz < N−L′

h, Nz <
√

2N
[
−N

2 ,
N
2

[

Nn = Nz − Nv equi-spaced NSCs
with spacing M and Nv VSCs

L′
h < Nn, L

′
h < M, L′

h < Nv

[
−N

2 ,
N
2

[

Consecutive NSC hopping scheme L′
h < Na

[
−N

2 ,
N
2

[

Table 4.1: Identifiability conditions and estimation range as a function of the placement
of NSC/VSCs according to [102, 173]. In the table, L′

h refers to the channel order and
N it the total number of subcarriers. Na, Nv, Nz are the number of active, virtual and
null-subcarriers, respectively. Nn denotes the number of NSCs that are not VSCs.

Placement of NSCs, VSCs and pilots symbols - MIMO case

Ma et al. investigate optimal training symbol designs for channel and CFO estimation in
MIMO OFDM [173]. They propose the following rules:

1. InsertNt training symbols in the information blocks corresponding to theNt transmit
antennas.
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2. Insert one zero subcarrier per block, whose position hops from block to block with
hop-step N/(L′

h +1). Null-subcarrier hopping ensures CFO identifiability regardless
of channel nulls [28, 174]. Then, insert additional null-subcarriers in each block.
Perform the standard OFDM operations of IFFT and CP insertion per transmit
antenna.

3. At the receiver, remove first the CP from the received blocks. Then, estimate the
carrier offset via the standard NSC based method [167,174], taking into account the
NSC hopping pattern.

4. Compensate for the CFO in time domain, perform DFT and remove NSCs.

5. Collect L′
h + 1 blocks and estimate the channel from the training data.

6. Perform phase estimation using the training data in order to find out the residual
CFO. Remove the latter prior to symbol detection.

Uniqueness of the CFO estimate is guaranteed in [−N/2, N/2[, i.e., the estimator is full
range. The interesting point is that channel and CFO estimation almost decouple. De-
coupling may not be perfect at stage 4 because of the residual CFO. However, the latter is
estimated and canceled out at stage 6 by exploiting the non-zero pilot data. This improves
significantly the performance of the MIMO OFDM transmission [173].

4.5 CFO estimation using second-order cyclostationarity

4.5.1 Algorithms based on second-order cyclostationary covariances

Bölcskei proposed a SOCS-based blind symbol timing and carrier offset estimator [35] in
the line of the blind channel estimators [36, 37] reviewed in Section 3.1.1. Pulse-shaping,
subcarrier weighting or periodic precoding (e.g., using a CP) introduce second-order cy-
clostationarity in the OFDM signal [35]. In this case, the synchronization parameters, i.e.,
timing error and CFO, may be extracted from the second-order statistics [35].

The estimator in [35] is asymptotically unbiased and consistent. Performance is com-
parable to [272], while being slightly better at low SNR and worse in the high SNR
regime. The method in [205] is SOCS-based as well. Together with CP, subcarrier weight-
ing [35,176] yields more cross-correlation samples containing information on the synchro-
nization parameters, thus reducing the estimation error. With CP only, timing and carrier
offset information is present at cross-correlation lags ±N only. However, SOCS-based es-
timators [35, 68] are typically characterized by slow acquisition times ranging from a few
tens to a hundred of OFDM blocks.

4.5.2 Exploiting cyclostationary pseudo-covariances

A non-circular complex-valued signal is characterized statistically different real and imag-
inary parts. This property may be exploited for synchronization purposes [60,62,63,259].
Non-circularity is usually introduced for instance by using real-valued modulations. It is
also experienced in OFDM/OQAM [36, 61], or more generally in systems suffering from
I/Q imbalance [270].

As already noted in Section 3.1.1, the cyclic prefix makes the received signal cyclo-
stationary with cyclic frequencies {p/P, 0 ≤ p ≤ P − 1}, where P is the total OFDM
block length. Consequently, with non-circular signals, cyclo-stationarity is observed in the
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pseudo-correlation coefficients rc(n, τ) = E [yν,CP,n+τ yν,CP,n]. We denote the nth received
sample in time domain before CP removal by yν,CP,n, taken serially and thus not limited
by the block boundaries. Note that the pseudo-correlation function is identically zero for
circular signals. Now, the CFO tends to induce circularity to the transmission, acting like
a rotating phase term changing from sample to sample. Intuitively, the estimator in [63]
aims at restoring the initial non-circularity.

Let A0 be a compact set included in [0,min(1/2, 1/P )[. Assuming real-valued modu-
lations, the estimator in [63] is expressed as

ν̂ = arg max
α∈A0

JNs(α), JNs(α) =

P−1∑

p=0

∥∥∥r̂(α+p/P )
c,Ns

∥∥∥
2

Wp

, (4.39)

where ‖x‖2
Wp

= xHWpx, given the positive Hermitian weighting matrix Wp, p =
0, . . . , P − 1, and

r̂
(α)
c,Ns

=
[
r̂
(α)
c,Ns

(−T ), . . . , r̂
(α)
c,Ns

(T )
]T

(4.40)

r̂
(α)
c,Ns

(τ) =
1

Ns

Ns−1∑

n=0

yν,CP,n+τyν,CP,ne
−j 4παn

N . (4.41)

A total number of Ns observations is assumed (i.e., K = Ns/P blocks) for the computation
of the sample pseudo-correlation in (4.41), as well as 2T + 1 lags. The estimator in (4.39)
is less sensitive to circular noise than algorithms based on cyclostationary covariances. It
also requires smaller sample support to achieve similar performance. A few tens of blocks
are sufficient in practice [63]. However, the estimation range [0,min(1/2, 1/P )[ is small,
especially for large block lengths P . For this reason, this estimator is more suited for
refinement than for acquisition purposes. Computational complexity may also be an issue
as high resolution is needed to detect the pseudo-correlation peaks if an initial estimate is
not available.

4.6 Other approaches for blind carrier offset estimation

In this section, we briefly review miscellaneous alternatives for carrier synchronization
proposed in the literature.

Joint modeling of CFO and PHN is proposed in [197]. Then, estimators based on
fourth-order statistics may be found in [170,182,293]. A fourth-order nonlinearity may be
used to cancel out the effect of QPSK modulation prior to CFO estimation [170,182]. The
sample kurtosis may be exploited for carrier frequency synchronization in SISO, MIMO
and multi-user OFDM systems [293]. The kurtosis is a measure of signal non-gaussianity.
The estimator in [293] relies on the idea that the received signal is closer to Gaussian when
corrupted by CFO than in the CFO-free case. Small sample support (about 10 blocks) is
needed, but the estimation range is limited to [−1/2, 1/2[.

Blind estimation of the carrier offset via oversampling was proposed in [46, 62]. The
method in [62] exploits the intrinsic phase shift of neighboring sample points induced by
CFO. NSCs are not necessarily needed because the low rank model is guaranteed by the
oversampling itself. The approach belongs to the class of deterministic subspace-based
ML estimators [45,102]. However, noise correlation in the oversampled signal is neglected
by [62] and may degrade the performance in practice.

Estimation via the finite alphabet property was investigated for PSK [95] and QAM [96]
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constellations as well as differentially coded OFDM transmission [169]. Finally, highly
reliable CFO estimation may be achieved by exploiting the constant modulus property.
See Publications VI and VII, as well as [97]. The related work is reviewed in detail in
Chapter 6.

4.7 Pilot-based CFO estimation

NSC and repetitive slots-based algorithms presented so far make an implicit use of pilot
symbols. Indeed, they obtain the CFO as the phase shift between identical structures
in time domain [188, 190, 238], or as the value minimizing the projection to the space of
null-subcarriers [45,102,167], respectively. While assuming pilot structures either in time
or frequency domain, those estimators do not explicitly use pilot symbols as it is usually
the case in channel estimation, for instance (see Chapter 3). There are mainly two reasons
for this. First, the unknown wireless transmission channel impairs the received data in
time domain. In addition, CFO leads to nonlinear distortion. It translates into ICI in
frequency domain, where pilots symbols are affected by unknown and data dependent
interference from adjacent subcarriers. The separation between pilot and information-
bearing symbols is challenging because of the CFO [173]. Channel and CFO estimation
have to be performed jointly in this case, at the price of a higher computational complexity.
Another option is to design training in such a way that estimation tasks decouple [173].
Also, since carrier frequency synchronization is among the first tasks performed at the
receiver prior to channel estimation, channel independent estimators are highly desirable.

A few estimators in the literature employ pilot data explicitly [67,88,156,171,173,189,
264, 296]. The approach in [156] combines distinctively spaced pilot tones and VSCs and
NSCs within a preamble: the whole OFDM block is devoted to either null or pilot symbols
in this case. The CFO estimate is obtained via deterministic ML estimation similarly
to [45, 102]. Consistency is guaranteed in [−N/2, N/2[ provided that at least two pilot
tones are not occupied by channel nulls. A parallel is made between the CFO estimator
and the periodogram of the preamble, as also noted in [102]. An iterative MIMO OFDM
receiver exploiting both pilots and NSCs is proposed in [257]. It provides ML estimates of
both channel coefficients and carrier offset using the EM algorithm. Pilot symbols (e.g.,
dedicated synchronization blocks) may be used for coarse CFO estimation purposes [171].
The tracking mode/loop may be engaged once an initial estimate is available. During
CFO tracking, the residual error on the CFO is assumed to be small. Algorithms with a
smaller estimation range but lower variance may be used to refine the estimate.

Differentially encoded pilots are interleaved with data symbols in [264] without the
need for NSCs. The proposed weighted least squares (WLS) algorithm derives its estimates
based on phase differences between two consecutive pilot symbols. Optimal weights are
channel dependent. With approximate and hence sub-optimal weights, WLS offers still
gain over the conventional LS [264] provided that the fractional CFO is small. However,
phase variations of the CFR between adjacent subcarriers are neglected in [264], which
would certainly be an issue in highly frequency selective channels.

Ma et al. propose the pilot design described in Section 4.4.5 for CFO and MIMO
channel estimation [173]. Pilots and null subcarriers are placed such that the CFO and
channel estimation tasks decouple. Since pilot symbols are affected by ICI, the CFO needs
to be acquired first and the channel may be estimated after that. CFO acquisition is based
on NSCs solely. The non-zero pilot data is exploited for refinement purposes only, in order
to cancel out the residual CFO.

Decision-directed CFO estimation is another option [88, 152, 242]. Joint estimation of

63



CFO and sampling frequency offset (SFO) by exploiting hard symbol decisions is studied
in [242], assuming coarse synchronization has been performed. The approach in [152]
features a dual loop tracking structure in both time and frequency domains. Convergence
is achieved relatively fast in about ten blocks, thanks to the dual loop structure. However,
an acquisition stage is still needed. Loop parameters have to be properly set and ICI
is neglected as the method accounts only for the CFO-induced phase rotation between
adjacent subcarriers. Again, the variations of the channel phase are neglected.

Finally, CFO estimators stemming from extended Kalman filtering are considered in
this thesis. The related literature as well as the algorithms proposed in Publications II-
III are reviewed in depth next chapter. The use of particle filters for carrier frequency
synchronization was also investigated [200].

4.8 Concluding remarks

In this chapter, we reviewed carrier frequency synchronization techniques specific to
OFDM systems. Most of the concepts and analysis apply to multicarrier communica-
tions in general, e.g. MC-CDMA. Estimation of the carrier frequency offset is a crucial
task in multicarrier transceivers. Hence, it must be accomplished with high fidelity, es-
pecially when high data rates are targeted and thus very narrow subcarrier spacings are
used.

In general, CFO estimation in OFDM may be considered as a harmonic retrieval prob-
lem in multiplicative and additive noise [58, 59]. Therefore, one may essentially use any
algorithm which can retrieve the spectral line corresponding to the CFO [101]. However,
solving the HR problem only does not take advantage of the structure of the OFDM trans-
mission model (finite symbol alphabet, NSCs, pilots symbols). A more efficient way is to es-
tablish a relation to direction of arrival (DOA) estimation [239] and subspace techniques in
general. Hence, the MUSIC and ESPRIT type of subspace algorithms for carrier frequency
synchronization purposes in multicarrier transmissions are of interest [34,167,174,268].

Table 4.2 presents a summary and comparison of the various classes of CFO estima-
tors presented in this chapter. Algorithms are compared considering bandwidth efficiency,
computational complexity, variance of the estimates and speed of convergence. The fol-
lowing conclusions may be drawn based on the table. First, separation between pilot and
information-bearing symbols is difficult due to nonlinear distortions created by CFO. This
explains the small number of estimators relying solely on non-zero pilot data. Decision-
directed [200, 225] (see also Publications II and III) or pilot-based estimation are more
suited for tracking and refinement purposes than for acquisition. If the CFO is too large,
the ICI may lead to incorrect symbol decisions or pilot symbol extraction. Hence, it is im-
portant to design channel and data independent estimators. Zero type of pilots (i.e., NSCs
and/or VSCs) together with properly designed algorithms allow efficiently decoupling the
carrier frequency synchronization from both channel estimation and data detection. Those
tasks may then be performed as subsequent steps.

In OFDM systems, pilot blocks are usually transmitted prior to the information frame
in sequence of identical slots in time domain (see, e.g., IEEE 802.11 standard [130]). Hence,
repetitive-slots based estimators are considered. They do not exploit the pilot information
explicitly but look instead for the CFO-induced phase shift between the repeated blocks.
Repetitive-slots based estimators have low computational complexity. Equivalence to ML
estimation holds only when virtual subcarriers are not present. Otherwise, correlation-
based methods provide consistent estimates of the CFO regardless of multipath fading.
The approximate ANLS [102] and BLUE [190] estimators have a closed-form solution which
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is a major advantage. Moreover, they are computationally simpler, while not sacrificing
the performance significantly.

The unified framework in [101] establishes links between most of the existing CFO
estimation algorithms in the literature. Most of them rely explicitly or implicitly on
the presence of null- and/or virtual subcarriers. NSC- and VSC-based estimators stem di-
rectly from maximum likelihood estimation. They are also equivalent to subspace methods
which find the CFO by minimizing the projection to the subspace of null-subcarriers [45].
NSC-based techniques are in general appealing due to their low variance and fast con-
vergence [102, 167, 174, 268]. Estimation using a single or a few received blocks may be
achieved. This is obviously a significant advantage in the case of time-varying channels
and carrier frequency offsets. The computational complexity involved by the line search
may be reduced drastically by choosing polynomial rooting algorithms [21,268].

Exploiting the finite alphabet property is another way to retrieve the CFO [95, 96].
Differential encoding allows improving the performance of FA-based estimators [169]. If
constant modulus constellations are used, the estimation error may be further lowered.
See Publications VI and VII, as well as [97]. Moreover, NSCs are not necessarily needed
anymore in this case.

SOCS type of estimators usually suffer from low convergence speeds. Hence, their
practical use is limited to time-invariant channels and continuous type of transmissions.
However, bandwidth efficiency is high, as no NSC is needed. Cyclostationarity needs to be
introduced in some way, but is generally present in most of the OFDM systems because of
the CP. In the case of real-valued modulations schemes, pseudo-covariances may be used in
place of covariances [63,259]. Low variance is obtained for the estimates and much smaller
sample support is required. High-order statistics may also be useful for carrier frequency
synchronization [170, 182, 293]. Usually, the related algorithms are characterized by low
convergence speeds and large variance. However, the sample Kurtosis function allows
reliable estimation of small CFOs with relatively low sample size [293].

The estimation of a single shift in the carrier frequency was studied so far. A time-
varying channel may cause a spread of frequency shifts known as the Doppler spread. In
the presence of a severe Doppler spread, ICI cancellation strategies [18, 241, 312] have to
be pursued for successful OFDM transmission.
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Algorithms References BW. Compl. Var. Convergence
efficiency speed

Pilot-aided [67, 88,156]
[171,264]
[296]

∗ ∗ ∗∗ ∗ ∗ ∗ (1 block)

DD [152,242] ∗∗ ∗∗ ∗∗ ∗∗ (5 to 10 blocks)

EKF II, III, [225] ∗∗ ∗∗ ∗∗ ∗∗ (5 to 10 blocks)

PF [200] ∗∗ ∗ ∗ ∗ ∗∗ ∗∗ (5 to 10 blocks)

Blind:
SOCS
(correlation)

[35] ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ (> 100 blocks)

SOCS
(pseudo-
correlation)

[61,63,259] ∗ ∗ ∗ ∗∗ ∗ ∗∗ (10 to 50 blocks)

REP [188,190]
[238]

∗ ∗ ∗∗ ∗∗ (1 block)

NLS [100] ∗ ∗∗ ∗∗ ∗ ∗ ∗ (1 block)

ANLS [100] ∗ ∗ ∗∗ ∗ ∗ ∗ (1 to 10 blocks)

BLUE [190] ∗ ∗ ∗∗ ∗ ∗ ∗ (1 to 10 blocks)

NSC, VSC [167,268] ∗∗ ∗∗ ∗ ∗ ∗ ∗ (1 to 5 blocks)

HOS
(in general)

[170,182] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ (> 100 blocks)

HOS
(Kurtosis)

[293] ∗ ∗ ∗ ∗∗ ∗∗ ∗∗ (1 to 10 blocks)

ML
(stochastic)

[53] ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ (1 to 5 blocks)

ML
(deterministic)

[272] ∗∗ ∗∗ ∗ ∗ ∗ ∗ (1 block)

SS [45, 93] ∗∗ ∗∗ ∗ ∗ ∗ ∗ (1 to 5 blocks)

CM VI, VII, [97] ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ (1 block)

FA [95, 96] ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ (10 to 100 blocks)

FA
(differential
encoding)

[169] ∗ ∗ ∗ ∗∗ ∗∗ ∗∗ (2 blocks)

Table 4.2: Comparative chart of CFO estimators for OFDM (∗: low, ∗∗: medium, ∗ ∗ ∗:
high). BW. efficiency: bandwidth efficiency; Compl.: computational complexity; Var.:
variance of the estimates.
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Chapter 5

Joint channel estimation and

frequency synchronization for

MIMO OFDM

The theoretical benefits of high spectral efficiency, improved link quality and simple equal-
ization may not be fully achieved in mobile MIMO OFDM transmissions because the wire-
less channels are both time and frequency selective. Furthermore, Doppler shifts caused by
mobility in addition to oscillator inaccuracies give rise to carrier frequency offsets, which
significantly degrade the system performance. Hence, channel estimation and CFO com-
pensation are both essential in OFDM receivers. In high speed mobile scenarios, the task
is not only to estimate the channel coefficients and CFO parameters reliably, but to track
them over time as well. In this way, equalizer coefficients may be updated periodically
and symbol error rates are kept at low levels. Complexity is also lower with sequential
estimation.

In this chapter, joint channel and CFO estimation and tracking algorithms for SISO
and MIMO OFDM systems are introduced. A time domain estimation and tracking stage
stemming from extended Kalman filtering is a key component of the proposed technique.
Kalman filtering algorithms [218, Ch.V.B] offer a good tradeoff between complexity and
performance. They have been successfully used to solve various signal processing problems
in wireless communications [7, 40,50,132,151,225,226].

The proposed algorithms are derived under the following general assumptions:

i. A Nt ×Nr MIMO OFDM system with multiple carrier frequency offsets as described
in Section 2.2 is considered. One CFO parameter is assumed for each MIMO branch,
similarly to [32].

ii. The individual MIMO channels are assumed to be time and frequency selective. Block
fading model is assumed. MIMO branches are chosen uncorrelated in simulations.
Nevertheless, tracking of correlated MIMO channels is feasible. However, in this case,
the overall system performance decreases.

iii. The carrier frequency offsets may be time-varying.

iv. Perfect time synchronization is assumed.

v. The transmitted data is uncoded and QPSK-modulated, but the method extends to
other modulation schemes.
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vi. A few training blocks are sent at the beginning of the transmission in order to acquire
initial estimates of the channel coefficients and CFO parameters.

vii. The additive noise is i.i.d. complex circular Gaussian with zero-mean and known
variance.

A common state-space model is introduced, and is used in Publications I-III as well as in
the derivations in [225,226]. It allows channel and CFO estimation and tracking in MIMO
OFDM using the extended Kalman filter [57, Ch.8]. Channel estimation and tracking in
MIMO OFDM may be performed via conventional Kalman filter as a special case.

5.1 State-space model for MIMO OFDM transmission with

carrier frequency offsets

In this section, a state-space framework is established. It is employed in time domain
estimation of channel coefficients and carrier frequency offsets in mobile SISO and MIMO
OFDM systems.

5.1.1 State equation

Let us write the state-variable model. The state vector at time instance k is comprised
of the MIMO channel coefficients h(k) from (2.4) and the vector of frequency offsets ν(k)
from (2.5):

s(k) =
[

hT (k), νT (k)
]T
. (5.1)

There are NtNrLh channel taps and NtNr frequency offset values in the state vector of
dimension NtNr(Lh + 1) × 1. Then, the linear state equation may be written as follows:

s(k) = As s(k − 1) + v(k). (5.2)

The NtNr(Lh + 1) × 1 state noise vector v is assumed to be zero-mean complex circular
Gaussian. The state noise covariance matrix Qv has the following structure:

Qv =

[
Qh 0NtNrLh×NtNr

0NtNrLh×NtNr Qν

]

NtNr(Lh+1)×NtNr(Lh+1)

, (5.3)

where Qh = σ2
hINtNrLh

and σ2
h is the variance of the state noise associated with channel

coefficients. Qν = σ2
νINtNr and σ2

ν is the variance of the state noise associated with carrier
frequency offsets.

The state transition matrix As is of size NtNr(Lh +1)×NtNr(Lh +1). In this chapter
As is considered to be close to the identity matrix (As = a INtNr(Lh+1), a = 0.99). A
necessary condition for stability of the state equation is that the spectral radius of As,
i.e., its maximum eigenvalue, should be strictly less than 1. The state transition matrix
describes the dynamics of the state vector, i.e., its time auto-correlation properties. Since
the channel auto-correlation in time and the Doppler spectrum are related to each other by
Fourier transform, the elements of As are directly related to the Doppler frequency [117,
132]. Assuming Jakes’ model [134], the parameter a above is directly given by J0(2πfDTs),
where J0 is the first-order Bessel function [117]. The Doppler frequency determines the
order of the auto-regressive (AR) model as well. Low-order AR models are widely used
in the literature [72,73,117,132,265]. The part of the state vector containing the channel
coefficients may also be augmented to model an AR process of order p [151, 265]. The
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AR model order is closely related to the number of peaks in the Doppler spectrum [253].
Intuitively, one would expect that the greater the AR model order, the more precise
the model would be [151, Fig.1]. However, this may lead to over-fitting and result in
degraded performance [117]. Information theoretic considerations suggest that a first-order
Markovian model is a reasonable assumption for Rayleigh distributed channel coefficients
under low to moderate channel spreads (fDTs ∈ [0.001, 0.004[) [277].

In the following, the state transition matrix as well as the statistics of state and mea-
surement noise are assumed to be known. The parameters As, Qv and Rw can, however,
be reliably estimated from the received data, see e.g. [79].

5.1.2 Measurement equation

Let us now establish the measurement equation. For this purpose, let us recall the expres-
sion in (2.11) for the received signal at the rth receive antenna. One may now reformulate
the corresponding CFO corrupted signal as

yr(k) =

Nt∑

t=1

X̃
(ν)
tr (k)htr(k) + wr(k), r = 1, . . . , Nr, (5.4)

with
X̃

(ν)
tr (k) = ej2π(kP+LCP)νtr(k)/NC(νtr(k))X̃t(k). (5.5)

The matrix X̃t(k) in (5.5) implements the circular convolution between the modulated
symbol vector x̃t(k) at the tth transmit antenna and the MIMO branch CIR vector htr(k).
Hence, it is a circulant matrix of size N × Lh with the vector x̃t(k) as first column.

The set of Nr equations in (5.4) may be written in more compact matrix vector form
as

y(k) = X̃(ν)(k)h(k) + w(k), (5.6)

where y(k) = [yT
1 (k), . . . ,yT

Nr
(k)]T is the kth received block of size Nr×1 at the Nr receive

antennas, and w(k) = [wT
1 (k), . . . ,wT

Nr
(k)]T is the zero-mean complex circular Gaussian

noise vector with covariance matrix Rw = σ2INrN . The vector h(k) of MIMO channel
coefficients is defined as in (2.4), whereas the modulated data and the frequency offsets
are embedded in the matrix X̃(ν)(k) of size NrN ×NtNrLh defined as

X̃(ν)(k) =




X̃
(ν)
11 (k) . . . X̃

(ν)
Nt1

(k) 0N×Lh
. . . . . . 0N×Lh

... X̃
(ν)
1r (k) . . . X̃

(ν)
Ntr

(k)
...

0N×Lh
. . . 0N×Lh

X̃
(ν)
1Nr

(k) . . . X̃
(ν)
NtNr

(k)


 .

(5.7)

Notice that the observations in (5.6) are linear in the channel coefficients, while being
nonlinear functions of the carrier frequency offsets. Equation (5.6) is referred to as mea-
surement equation and forms together with (5.2) the state-space model for MIMO OFDM
transmission impaired by multiple CFOs.

5.2 Joint time domain estimation and tracking of channels

and frequency offsets in MIMO OFDM

In this section, we present an algorithm which performs the joint estimation and tracking
of MIMO channel coefficients and carrier frequency offsets. It is described in Publications
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II-III and [225]. The proposed method stems from extended Kalman filtering and uses
the previously introduced state-space model. Tracking takes place in the time domain,
whereas equalization is performed in the frequency domain. In the following, we provide
an overview of the proposed algorithm.

5.2.1 State-space model

Let the state vector s be defined as in (5.1), i.e., it is comprised of both the MIMO channel
coefficients and the values of the CFOs. Assuming multiple CFOs in MIMO system as
discussed in Section 2.2.2, the state-space description of equations (5.2) and (5.6) may be
reformulated as

s(k) = As s(k − 1) + v(k) (5.8)

y(k) = g (s(k)) + w(k), (5.9)

where the nonlinear function g : CNtNr(Lh+1) → CNrN of the state vector s is defined as
g :

s(k) 7→ g (s(k)) = X̃(ν)(k)h(k). (5.10)

Nonlinearity of the measurement equation (5.9) is caused by CFOs. The channel co-
efficients are still linearly related to observations. A common assumption for applying
Kalman filter [116] to the above state-space model is that the state variables s(k) are
Gauss-Markov random processes. This is nearly satisfied in many practical applications
for which the channel coefficients may be described as Rayleigh distributed with uncorre-
lated scattering [132,277].

Given the linear state and nonlinear measurement equations, we need to define the
Jacobian matrix ∂g/∂s

T in order to apply EKF. The Jacobian matrix Gs of g(s) with
respect to s is defined as:

G
s(k) ,

∂g

∂s
T

∣∣∣∣
s=s(k)

=

[
∂g

∂hT

∣∣∣∣
s=s(k)

,
∂g

∂νT

∣∣∣∣
s=s(k)

]

NrN×NtNr(Lh+1)

. (5.11)

Hence ∂g/∂s
T can be split into two parts, based on the derivative with respect to h and

ν. Expressions for these two quantities are derived in Publication III.

5.2.2 Extended Kalman filter equations

By using the expression for the Jacobian matrix in (5.11), extended Kalman filter [57,
Ch.8], [116] may be applied to estimate and track the state vector s over time as

s(k|k−1) = As s(k−1|k−1) (5.12)

P(k|k−1) = As P(k−1|k−1) A
T
s

+ Qv (5.13)

K(k) = P(k|k−1)G
H
s(k|k−1)

[
G

s(k|k−1)P(k|k−1)G
H
s(k|k−1) + Rw

]−1
(5.14)

P(k|k) =
[
INtNr(Lh+1) − K(k)Gs(k|k−1)

]
P(k|k−1) (5.15)

s(k|k) = s(k|k−1) + K(k)

[
y(k) − g

(
s(k|k−1)

)]
. (5.16)

The matrix K(k) is known as the Kalman gain. Matrices P(k|k−1) and P(k|k) are the
covariance matrices of the prediction and filtering error, respectively. The notation (k|k−1)
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refers to the predicted value at time instance k, given the filtered estimate at time instance
k− 1 with subscript (k− 1|k− 1). In fact, the extended Kalman filter is equivalent to the
conventional Kalman filter [116] applied to the linearized state-space model.

Channel and frequency offset

estimate (k−1)

Channel and frequency offset

estimate (k)

symbol 
decisions

and

equalization

Time Domain

DFT

DFT

IDFT

Frequency Domain

Symbol estimate (k)

Received OFDM block (k)

EKF

Figure 5.1: Time domain channel and frequency offset estimation and tracking followed
by frequency domain equalization.

5.2.3 Proposed receiver algorithm

The proposed algorithm works as follows. Upon reception, the kth OFDM block is passed
through the MMSE equalizer in (2.25). The equalizer coefficients are computed using the
previous filtered estimates of the MIMO channel coefficients and the CFOs, i.e., h(k −
1|k − 1) and ν(k − 1|k − 1), respectively. Once symbol detection has been performed, the
estimated data is re-modulated. Finally, an extended Kalman filter stage operating in the
time domain generates the filtered estimate of the state vector at time instance k.

At this point one may refine the estimates by re-decoding the symbol vector using the
filtered estimates h(k|k) and ν(k|k). Re-decoding allows decreasing the symbol error rates
substantially, while running the EKF-stage one more time lowers the channel and CFO
estimation error. Moreover, improved tracking capability over time is achieved, especially
in fast fading environments.

Except for the first few OFDM blocks, the algorithm works in a decision-directed mode.
The initialization phase requires a few symbols. Typically a number of symbols equal to
about half the dimension of the state vector is sufficient. Time domain LS or MMSE
estimates are a simple and robust way to initialize the state parameters [50]. Without
any a priori information on the channel and noise statistics, the LS scheme is a reasonable
choice. Provided that coarse CFO acquisition is performed correctly, the estimation range
of the proposed algorithm is not necessarily limited to the intercarrier spacing. The track
may be lost in certain circumstances such as deep channel fades or abrupt time variations
of the CFOs. Error accumulation in decision-directed processing, a misspecified order for
the AR parameters as well the nonlinear nature of the measurement equation with respect
to the CFOs may cause divergence of the extended Kalman filter.

Training symbols are sent periodically in order to avoid loosing the track. No special
block structure has been considered for training, assuming that the whole OFDM symbol
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is known to the receiver. Optimality considerations of the training schemes are beyond
the scope of this thesis, and hence are not considered any further. Simulation studies in
Publications I-III demonstrate that training every 50 to 100 blocks offers reliable tracking
performance in scenarios with low to moderate mobility (3-60 [km/h], channel spread
fDTs ∈ [7.1 · 10−4, 1.4 · 10−2]). At the same time, the training overhead is kept at low
levels (1-2%). Thus, high spectral efficiency is obtained compared to mobile wireless
communications systems which typically require 15-25% of pilot symbols. In the case of
highly time-variant channel and CFO parameters, pilot symbols need to be included in
every OFDM block. The overall structure of the receiver is illustrated in Figure 5.1 and
the pseudo-code of the proposed algorithm is given in Table 5.1.

1. Decode Decode the received vector y(k) and find the symbol esti-
mate ŝ(k), using s(k − 1|k − 1), i.e., the filtered estimate
of the state vector at time instance k − 1.

2. Re-modulate Re-modulate ŝt(k): ˆ̃xt(k) = Fŝt(k), t = 1, . . . , Nt.

3. Build estimates Using ˆ̃x(k) = [ˆ̃x
T
1 (k), . . . ˆ̃x

T
Nt

(k)]T and the predicted state

vector s(k|k − 1), build the estimate of X̃(ν)(k) and com-
pute the Jacobian matrix G

s(k|k−1).

4. Run EKF Given the vector y(k) of observations, run the extended
Kalman filter to obtain s(k|k), i.e., h(k|k), ν(k|k).

5. Refine (optional) Re-equalize and decode the data using s(k|k) to improve
the symbol error performance.
Run one more time the EKF to improve the estimates.

Table 5.1: Pseudo-code of the EKF-based joint channel and CFO estimation algorithm.

5.2.4 Computational complexity

The major computational cost in EKF lies in the matrix inversion needed for the calcula-
tion of the Kalman gain. By applying the matrix inversion lemma, the number of required
operations can be made proportional to (Lh + 1)N2 when tracking is done in the time
domain. The complexity is proportional to N3 when the processing takes place in the
frequency domain. In practice Lh � N , hence significantly lower complexity is achieved.
Smaller parameter space compared to frequency domain tracking (NtNr(Lh +1)×1 versus
NtNr(N + 1) × 1 state vector) leads also to smaller variance for the estimated values of
the channel coefficients.

Pre-DFT compensation for frequency offsets prior to equalization cannot be performed
in the considered scenario: having one offset per MIMO branch makes the problem non-
separable and equalization for both channels and offsets needs to be done simultaneously.
Because of multiple CFOs, equalization becomes computationally expensive. Pre-DFT
compensation is possible however, if there is only one CFO per multi-antenna receiver.
The complexity of the subsequent channel equalizer is then significantly reduced, due to
the absence of ICI. The proposed state-space model may be easily modified to any of these
scenarios.
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5.3 Time domain channel estimation and tracking in MIMO

OFDM

Assuming perfect carrier frequency synchronization, we describe briefly time domain chan-
nel estimation and tracking via Kalman filtering in MIMO OFDM transmissions. The
proposed technique is a special case of the previously presented general method (Section
5.1). Channel estimation takes place in the time domain, whereas equalization and symbol
detection are performed in the frequency domain. Detailed description, additional deriva-
tions and simulation results are reported in Publication I. The proposed algorithm may be
applied to SISO OFDM transmissions as well. In the latter case, it reduces to the method
introduced in [226].

Let us assume a state vector comprised of the MIMO channel coefficients only, i.e.,
s(k) = h(k). Assuming perfect frequency synchronization, i.e., ν(k) = 0NtNr×1, the
state-space model of equations (5.2) and (5.6) reduces to

s(k) = As s(k − 1) + v(k) (5.17)

y(k) = X̃(k)h(k) + w(k), (5.18)

where the matrix X̃(k) is obtained from (5.7) by setting the values of the CFOs to zero.
The state transition matrix in (5.3) becomes Qv = Qh, and the state noise vector v is of
size NtNrLh × 1.

Since the model in (5.17)-(5.18) is linear and the noise is assumed to be Gaussian,
Kalman filter may be directly applied to estimate and track the state vector s over time.
The well-known Kalman filter equations may be obtained by setting G

s(k|k−1) = X̃(k) in
equations (5.12)-(5.16). Indeed, KF and EKF have equivalent expressions in the case of
linear state-space models.

As perfect frequency synchronization is assumed, the initial frequency selective channel
is turned into a set of frequency flat subchannels. The equalizer is needed to compensate
the flat fading experienced on each subcarrier as well as to separate the transmitted data
streams. Hence, low complexity equalization may be performed in the frequency domain.

5.4 Discussion

In this chapter, a novel algorithm is presented for tracking jointly time-frequency selective
channels and time-varying CFO parameters in MIMO OFDM systems. Detailed deriva-
tion is given in Publications I-III. The method stems from extended Kalman filtering.
The estimation and tracking stage operates in the time domain while equalization is per-
formed in the frequency domain. A few known training symbols at the beginning of the
transmission are used to acquire initial estimates for the channel and CFO parameters.
Then, the algorithm may switch to decision-directed mode and use the decoded symbols
for keeping the track. The MMSE equalizer was chosen just for demonstration purposes to
provide some indication about the bit error rate performance. However, there exist other
equalization schemes in the literature [104, 157], which can be applied to the proposed
state-space framework. For instance, ML or sub-optimal QRD-M data detection algo-
rithms may be combined together with a KF MIMO channel estimation stage [148]. Also,
a coded transmission may accommodate a time domain KF-based channel estimator [14].

Each transmitter-receiver pair is assumed to introduce its own carrier frequency offset
[32]. This modeling is general while versatile at the same time. It is justified by mobility
together with the large angle spread and rich scattering environment typically assumed in
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MIMO systems (Section 2.2.2). Also, oscillator frequency mismatches may arise between
each transmitter and receiver pair in case of separate RF-IF chains. Papers [32, 225] as
well as Publication III presented in this chapter were among the first ones to advocate
the use of multiple CFO parameters in mobile MIMO OFDM. With a single CFO per
multi-antenna receiver, channel equalization and CFO compensation operations decouple,
leading to low complexity equalization.

The use of recursive estimators such as Kalman filters for channel estimation purposes
in OFDM has gained growing interest over the past years [9, 14, 39, 40, 48, 50, 80, 145–
148, 225, 226, 236, 250, 297, 298]. Vector KF processing in the frequency domain may be
replaced by a set of parallel Kalman filters running on each subcarrier [39, 48]. The
latter approach has much lower complexity, but also much worse performance [226], unless
the correlation among the estimated values of the CFR is restored through a MMSE
combiner [48]. However, time domain processing remains an appealing option, since no
degradation in performance takes place [50].

Extended Kalman filter may be used for nonlinear state-space models. The feasibility of
EKF-based carrier phase and frequency estimation and tracking in digital communication
systems was demonstrated in [7]. In addition, estimation of channel and delay parameters
using EKF was proposed for code division multiple access (CDMA) [132] and OFDM
systems as well [145, 147]. Particle filters (PF), also known as sequential Monte-Carlo
methods, provide another way to address the estimation of the channel and delay [146]
parameters, the carrier frequency offset [200] or the carrier phase offset [209]. However, the
computational complexity of PFs is often prohibitive. Their use may only be justified for
heavy-tailed noise distributions and multi-modal or skewed parameter distributions [200].
Indeed, the measurement noise may be non-Gaussian in practice, due largely to impulsive
phenomena [278]. A thorough performance/complexity comparison of various Bayesian
receivers versus conventional KF/EKF is given in [117, Fig.7].

Reliable channel and CFO estimation as well as bandwidth efficient transmission are
achieved with the proposed method, especially in low mobility scenarios. Extensive sim-
ulation results and performance studies may be found in Publications I-III. However,
decision-directed processing experiences performance loss at high terminal velocities, which
leads to high time-variation of the wireless channel. Thus, the filtered estimates of the
channel and CFO parameters at the previous block time instance may not be sufficiently
good estimates to reliably decode the symbols, especially for higher-order modulations.
An outer channel code may solve this problem at the cost of an increased latency [14].
A well-designed pilot structure in time-frequency domain is naturally needed in this case
to obtain a reliable tracking performance [29, 66, 196]. Kalman-filters may accommodate
pilot data for channel estimation purposes as well [9, 11, 80, 236, 250, 297, 298]. It leads to
more reliable operation compared to pure decision-directed processing. In addition, the
placement of pilots may be optimized in order to achieve the best tracking of time-varying
channels. Assuming a first-order Gauss-Markov channel process, transmitting pilot sym-
bols frequently achieves a lower steady-state MSE for the Kalman filter channel estimator
compared to sending larger clusters of pilot symbols at a lower retraining rate [72,73]. The
problem of choosing how often training is required in time selective MIMO channels is ad-
dressed in [115, 216, 255]. More frequent training provides obviously with better channel
tracking performance: the optimal training interval decreases as the Doppler frequency in-
creases [255, Fig.3]. Over a short training interval, the symbol error performance is mainly
governed by the noise, while the interference due to the temporal change of the channel
coefficients increases as time proceeds (see e.g., [216, Fig.1] and [255, Fig.2]). The optimal
training length/interval is difficult to obtain in a closed-form as it depends on various
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system parameters such as the SNR, the channel spread, the modulation as well as the
antenna configuration [216]. However, the combination of DD and KF processing chosen
for the proposed algorithm allows updating the channel and CFO estimates on a block
basis. This overcomes the problem of outdated estimates to a large extent. Combining
pilot-aided and DD channel estimation is another possibility [250]. Alternatively, two KF
stages may be operated in parallel, one using exclusively pilot symbols and the other one
running on the estimated data [298]. Kalman filtering on pilot data may allow estimating
the fading coefficient as well [80]. However, at very high terminal velocities the assump-
tion of block fading channel may not hold anymore. Consequently, tracking of the channel
coefficients within the time duration of the OFDM block may become mandatory [249].

It could be argued that the proposed first order auto-regressive channel modeling is
not very accurate. However, is seems to be extremely difficult to accommodate an ad-
vanced channel model in the algorithm design, as it depends on the propagation envi-
ronment. Nevertheless, low-order auto-regressive models are widely used in the litera-
ture [72,73,117,132,265]. Higher-order AR models allow describing the Doppler spectrum
more precisely [132, 151, 265]. One option to select the modeling parameters would be to
use existing and pre-established channel models, e.g. ITU models [133]. Another approach
is to allow a set of different models, and perform KF channel estimation via multiple hy-
pothesis testing [145]. One should recall that the state noise covariance matrix describes
to some extent the uncertainty in modeling the state vector over time. Also, the maximum
channel length should be estimated in practice. Alternatively, it may be upper-bounded
by the CP length, with lower performance though. Thus, a general and perhaps simplistic
channel model helps keeping the complexity at reasonable levels, while offering improved
performance over no modeling at all. Robust channel estimation may be achieved by fol-
lowing the H∞ approach [41], which aims at minimizing the effect of the worst possible
finite energy disturbances including both state and measurement noise. Hence, both chan-
nel modeling errors and additive noise are taken into account and no a priori knowledge
of the noise source statistics is required. Kalman filtering and H∞ estimation are based
upon the same state-space model. KF is optimal in the sense that is minimizes the er-
ror covariance, assuming known statistics for the state-space model. Hence, the intrinsic
difference between them is that KF stems from MMSE estimation while H∞ follows a
minimax strategy.

Also, one may argue on whether to estimate and track either the CIR or the CFR
parameters. The benefits of time domain versus frequency domain channel estimation are
threefold. First, there are fewer channel parameters in time domain, hence the smaller
dimension of the state vector. This leads to both reduced complexity and lower variance of
the estimates. Second, the frequency correlation among the channel taps can be efficiently
exploited. Indeed, the interpolation capabilities of the DFT are implicitly exploited. There
is hence no need to restore the correlation structure in frequency domain explicitly [39,40,
48, 50]. Kalman filter based channel estimation provides equal performance in both time
and frequency domain, as long as the channel correlation features are properly described
in both domains. Proper initialization of the filters plays an important role [50]. Third
and last, channel estimation errors are spread over the whole transmission spectrum and
not concentrated on a given set of subcarriers.

To conclude, a proper channel estimation algorithm for OFDM systems should capture
both the time and frequency domain characteristics. In addition, carrier frequency syn-
chronization must be maintained. The algorithm introduced in this chapter complies with
those requirements as it allows tracking both time-varying channel and CFO parameters
reliably in mobile MIMO OFDM systems. Moreover, time domain processing reduces the
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number of state parameters to be estimated and tracked. Then, a significant reduction
in the computational complexity of KF/EKF may be achieved via the matrix inversion
lemma. Finally, the proposed state-space model may be extended to include the presence
of pilot symbols as well as several other parameters of interest, e.g. the timing and carrier
phase offsets.
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Chapter 6

Blind frequency synchronization

algorithms for OFDM and

performance bounds

In this chapter, the contributions of this thesis to the area of blind carrier offset estimation
for SISO OFDM systems are presented. They may be stated as follows:

• A blind fine CFO estimation/compensation algorithm based on the diagonality of
the received signal covariance matrix is developed.

• A blind subspace fine CFO estimator for OFDM using real- or complex-valued con-
stant modulus modulations is derived.

• Large sample properties of proposed blind CFO estimators are established.

• A stochastic Cramér-Rao bound for the blind carrier offset estimation problem in
OFDM with real- or complex-valued modulations is derived.

In the following sections, the core ideas of the proposed algorithms are introduced. The
derived performance bounds are expressed as well, and the key results and contributions
are highlighted. Detailed mathematical proofs and derivations as well as simulation results
may be found in Publications IV-VII.

6.1 Blind CFO estimation via diagonality criterion

In this section, we introduce a carrier frequency offset (CFO) estimator for OFDM based
on the signal covariance matrix. Hence, it applies to both real- and complex-valued modu-
lations schemes. Without loss of generality, we assume that unit energy QPSK modulation
is used. However, even though the QPSK case is considered only, results presented in this
section extend to other kind of real- or complex-valued modulation schemes, e.g., BPSK,
8PSK, 16QAM, 64QAM. The proposed algorithm is intended for estimating small CFOs.
As a consequence, it may track small CFO or the residual offset when the initially larger
CFO has been significantly reduced by other means [102,190,238].
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6.1.1 Second order statistics for real and complex random vectors

In order to fully characterize the second order statistics of a complex-valued random vector
u, two matrices are needed [215]:

cov (u) , E
[
(u− E [u]) (u− E [u])H

]
(6.1)

pcov (u) , E
[
(u− E [u]) (u− E [u])T

]
, (6.2)

where cov (u) is the covariance matrix of u and pcov (u) is the pseudo-covariance matrix
of u. The pseudo-covariance matrix is sometimes also referred to as conjugate covariance
matrix or complementary covariance matrix [195, 214, 215]. A complex-valued random
vector u is called second-order circular [214] (or proper [195]) random vector if its pseudo-
covariance vanishes, i.e., pcov (u) = 0N×N . When the real and the imaginary parts of u
are statistically independent and have equal variance, the received signal becomes second-
order circular. Otherwise, it is non-circular. Hence, complete second order statistics
include both signal covariance and pseudo-covariance matrices [214,215].

6.1.2 Signal model

Assuming a normalized carrier frequency offset ν, let us first recall the expression in (2.26)
for the CFO-corrupted SISO OFDM received signal,

yν(k) = ϕk(ν)C(ν)H̃Fs(k) + w(k). (6.3)

The CFO is introduced by both the diagonal matrix C(ν) of size N ×N defined in (2.13)
and the block dependent term ϕk(ν) = exp (j2π(kP + LCP)ν/N). The channel is assumed
to be frequency selective and quasi-stationary over the observation period, i.e., the circu-
lant channel matrix H̃ does not depend on the block index k. The CFO is assumed to
be time-invariant as well. No null-subcarriers are used, although their presence would not
affect the following analysis.

Given an estimate ν̂ of the true value ν, CFO compensation may be performed in
time domain at the receiver prior to the discrete Fourier transform. Based on (6.3), the
resulting CFO-compensated received vector, vν̂ν , may be expressed as

vν̂ν(k) = ϕ∗
k(ν̂)F

HC∗(ν̂)yν(k) (6.4)

= ϕ∗
k(ν̂−ν)FHC∗(ν̂−ν)H̃Fs(k) + ϕ∗

k(ν̂)F
HC∗(ν̂)w(k). (6.5)

6.1.3 Algorithm

Signal covariance matrix

Let Q̃k (µ) = cov (vµν(k)), where vµν denotes vν̂ν in (6.4) evaluated at ν̂ = µ. Then,
let Q = cov (y0(k)) = H̃H̃H + σ2IN , where y0(k) is the received signal in time domain
assuming perfect frequency synchronization (see eq. (6.3) with ν = 0). Now, Q̃k (µ) and
Q are related by

Q̃k (µ) = FHC∗(µ−ν)H̃H̃HC(µ−ν)F + σ2IN (6.6)

= FHC∗(µ−ν)QC(µ−ν)F (6.7)

, Q̃ (µ) . (6.8)
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We assumed zero-mean independent data and noise processes, with covariance matrices
cov (s(k)) = IN and cov (w(k)) = σ2IN , respectively. Notice that the block dependent
phase term ϕk(ν) in (6.4) cancels out in the derivation of Q̃k (µ). Hence the matrix Q̃k (µ)
does not depend on the block index k and will be further denoted by Q̃ (µ).

Cost function minimizing the total off-diagonal power

Null or perfectly compensated frequency offset (µ = ν) leads to a perfectly orthogonal
transmission, and Q̃(µ) becomes diagonal. Proof is straightforward and may be found in
Publication IV, Appendix I. Off-diagonal elements are introduced by intercarrier interfer-
ence and should be minimized. Hence, for a given offset compensation value µ, we choose
the total off-diagonal power J (µ) of Q̃(µ) as a cost function to be minimized:

J (µ) =
∥∥∥Q̃ (µ) � (1N − IN )

∥∥∥
2

F
, µ ∈ [0, 1[, (6.9)

where � stands for the Hadamard product and 1N denotes a N ×N matrix of 1’s. Notice
that the noise does not have any influence in theory provided that its covariance matrix
is diagonal, i.e., it is uncorrelated.

In order to guarantee the identifiability of the CFO parameter, the channel covariance
matrix H̃H̃H should have at least one non-zero off-diagonal entry1. Otherwise, the matrix
Q is diagonal and C(ν)QC∗(ν) does not contain information on ν anymore. Now, Theorem
3 proves the existence of a unique minimum of J at ν in [0, 1[.

Theorem 3 Let J : µ 7→ J (µ) be defined as in (6.9). Then, assuming a non-diagonal
channel covariance matrix H̃H̃H ,

1. J (ν) = 0.

2. J (µ) > 0, ∀µ 6= ν, µ ∈ [0, 1[.

Proof is given in Publication IV, Appendix I.
As a consequence of Theorem 3, the true CFO may be found by driving J (µ) to zero.

In practice, only an estimate
̂̃
QK (µ) of Q̃ (µ) is available through the sample covariance

matrix (subscript K refers to the sample size). Then, an estimate ν̂ of the CFO ν may
found by

ν̂K = arg min
µ∈[0,1[

ĴK (µ) , (6.10)

where the estimated cost function ĴK after K received OFDM blocks is given as

ĴK (µ) =
∥∥∥ ̂̃
QK (µ) � (1N − IN )

∥∥∥
2

F
, µ ∈ [0, 1[. (6.11)

The cost function ĴK penalizes the total off-diagonal power of
̂̃
QK . It measures the loss of

orthogonality due to CFO. The proposed method is blind in a sense that minimization of
ĴK may be performed without any knowledge of the wireless channel H̃ or pilot symbols.

Note that exploiting the pseudo-covariance matrix alone instead of the covariance is
not a viable choice here. In theory, P̃k (µ) = pcov (vµν(k)) contains information on the
CFO for real-valued modulations. However, the block dependent phase term ϕk(ν) in (6.4)
drives its sample estimate to zero for large sample sizes.

1The channel is required to be multipath, i.e., it has at least two non-zero taps in the time domain.
The latter assumption is fulfilled in practical OFDM transmissions.
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Closed-form expression for the cost function

In order to find a computationally efficient way to estimate the CFO, a closed-form ex-
pression of the cost function is derived next. It proves that the estimate ĴK of the cost
function in (6.11) may be expressed as

ĴK (µ) = a+ b cos (2πµ) + c sin (2πµ) , a, b, c ∈ R. (6.12)

The proof as well as expressions for a, b and c are given in Publication IV, Appendix II.

It can be seen from (6.12) that ĴK is a periodic function of µ with period 1. Hence,
we may further restrict our analysis to the interval [0, 1[, or equivalently [−1/2, 1/2[. The
proposed algorithm is aimed at estimating small CFOs. Consequently, it may track small
CFO or the residual offset after coarse CFO estimation has been accomplished by other
means [102,190,238]. An example of the cost function is depicted in Figure 6.1, at 15 dB
SNR and with K = 200 observed blocks. The minimum is reached at µ = 0.4379, while
the true offset is ν = 0.43. The sinusoidal form may be clearly observed, which is in par
with the result in (6.12).
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Figure 6.1: Estimate of cost function Ĵ200 (µ), K = 200, ν = 0.43 and SNR=15 dB. The
cost function is sinusoidal.

Given the form in (6.12), it is sufficient to evaluate ĴK at three points in order to solve
for a, b and c. We choose the following equi-spaced points2 0, 1/3 and 2/3 within the
interval [0, 1[. Hence, the extrema of ĴK may be given in closed form by

ν̂Ki
=

1

2π
arctan

{ √
3
(
ĴK

(
1
3

)
−ĴK

(
2
3

) )

2 ĴK (0)−ĴK

(
1
3

)
−ĴK

(
2
3

)
}

+
i

2
mod 1, i = 0, 1. (6.13)

Finally, the frequency offset estimate is found by choosing the value corresponding to the
minimum of the cost function

ν̂K =

{
ν̂K0 if ĴK (ν̂K0) < ĴK (ν̂K1) ,
ν̂K1 otherwise.

(6.14)

6.1.4 Asymptotic analysis

We now investigate the large sample properties of the proposed CFO estimator, that is
consistency, convergence in the mean square and rate of convergence. Proofs and additional
derivations may be found in Publication IV, Appendix IV-VI.

2A similar minimization/maximization procedure in closed-form is found in [293].

80



Convergence

Theorem 4 establishes the convergence with probability one of the proposed CFO estimate
to the true CFO. Proof is given in Publication IV, Appendix IV.

Theorem 4 (Strong consistency) As K → ∞,

ν̂K → ν w.p. 1 .

As convergence with probability one implies convergence in probability [240, p.10], the
proposed estimator yields a consistent estimate of the CFO. In addition, convergence in
the mean square follows from Theorem 4 and from the fact that ν̂K is bounded to [0, 1[.
See Appendix V in Publication IV as well as [240, p.11].

Corollary 1 ν̂K converges to ν in the mean square.

Consequently, the proposed estimator is asymptotically unbiased. We next study the
convergence rate of the estimator.

Convergence rate

Let us define the MSE after K received blocks by

MSEK = E
[
(ν − ν̂K)2

]
. (6.15)

For large sample size K, the MSE may be approximated as a quotient of polynomials by

MSEK
∼= 1

4π2

P(≤3)(K)

Q(4)(K)
∝ 1/K, (6.16)

where Q(4) is a polynomial of degree four in K, while the polynomial P(≤3) is of degree at
most three. See Appendix VI in Publication IV for a detailed derivation. Hence, it follows
that for K sufficiently large, the rate of convergence in MSE is proportional to 1/K.

6.1.5 Discussion

In this section, we presented a novel blind frequency offset estimator for OFDM systems
under frequency selective fading. Detailed derivations may be found in Publication IV.
The proposed algorithm applies to both real (e.g., BPSK, PAM) and complex modulations
(e.g., QPSK, 8PSK, 16QAM, 64QAM), and extends to asymmetric modulations as well.
Hence it may be used in a wide range of OFDM transceivers. The method is applicable
to fine estimation of the normalized CFO in the range of [−1/2, 1/2[ with respect to the
intercarrier spacing. Information on the CFO is embedded in the received signal covariance
matrix. Based on that property, a cost function may be derived, and the sample covariance
matrix may be used to estimate the CFO in practice. The cost function minimizes the
total off-diagonal power induced by ICI in the frequency domain. Enforcing a diagonal
structure aims at restoring the orthogonality of the transmission inherent to perfectly
synchronized OFDM modulation. The method does not require a priori knowledge of the
transmitted data or the multipath channel. Channel estimation may then be performed as
a subsequent step, after the frequency synchronization is achieved. Bandwidth efficiency
remains high as no pilot or null-subcarrier are needed. A closed-form expression is found
for the cost function which leads to low complexity and accurate computational solution.
The cost function needs to be evaluated in three points in order to obtain the CFO estimate
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in practice. Note that the covariance matrix may already be available to the receiver: it
is commonly needed for channel estimation for instance. However, the proposed approach
suffers from a few drawbacks. The small estimation range limits the use to small frequency
offsets or refinement purposes. Note that the method could be potentially extended to
slowly time-varying channels, with fixed CFO. However, the convergence rate in 1/K
would not allow for estimation in highly time-varying environments. For this purpose,
estimators that need only small sample support should be preferred.

The proposed estimator exploits the structure of the covariance matrix in CFO esti-
mation. The proposed cost function yields in fact a measure of the transmission orthog-
onality in frequency domain, or equivalently, it characterizes in time domain how far the
covariance matrix is from a circulant matrix. The derived concepts apply to cyclic prefix
based transmissions in general. A few similarities exist with some algorithms in the lit-
erature [158, 224, 274, 290, 293]. While [224] focuses on reducing the total ICI power, the
method in Publication IV minimizes the power of cross-correlation terms in the frequency
domain in order to restore an orthogonal transmission. The idea of restoring the orthogo-
nality among the OFDM subcarriers is also found in [274], where an adaptive decorrelator
corrects for the CFO-induced ICI. The problem is solved using a recursive update. No
closed-form solution is available, unlike in Publication IV. The idea of CFO estimation via
ICI reduction is also exploited by the minimum output variance (MOV) estimator [290].
CFO does not change the total received power of received symbols. However, the vari-
ance on a given subcarrier increases when the CFO gets larger. At the same time, the
expected value of the amplitude decreases because of the attenuation due to the CFO.
Minimum output variance occurs for zero CFO, which leads to the MOV estimator [290].
The difference to Publication IV is that [290] operates on the received signal magnitude
in the frequency domain. Also, no closed-form solution is available for the MOV estima-
tor. The explicit use of the signal covariance matrix for carrier frequency synchronization
was proposed in [158]. The idea is to match the sample correlations to their theoretical
values in the weighted least-squares sense. However, unlike the proposed estimator, the
CIR needs to be known a-priori, which is a major drawback. Finally, Publication IV has
also some similarities in the sinusoidal cost function and related minimization with the
kurtosis based estimator [293]. Both algorithms rely on fourth-order statistics. However,
the cost functions are intrinsically different since off-diagonal power of covariance matrix
is considered instead of sample Kurtosis.

Simulation studies are presented in detail in Publication IV, where the proposed esti-
mator is tested under various channel and noise conditions. On average, the residual error
on the CFO falls below 5% after 100 received blocks. After 600 blocks, it is less than 2%
for both QPSK and 16QAM modulations. As OFDM systems are commonly considered
to tolerate synchronization errors up to a few percents of the carrier spacing, the pro-
posed approach is a feasible solution for practical receivers. Unlike subspace estimators
for example, the algorithm performs well for multipath channels with unknown channel
length, provided that the channel is shorter than the duration of the cyclic prefix. In ad-
dition, simulation studies show that CFO estimation performs equally well with QPSK or
16QAM modulations. Also, a test run with complex Gaussian distributed signals did not
show any difference in performance. This is not surprising since the algorithm does not
exploit the finite symbol alphabet or the constant modulus property. Then, in theory, the
covariance matrix of the noise is diagonal on average for complex white noise. Hence, the
performance of the algorithm should not depend on the SNR if noise is uncorrelated. How-
ever, in practice, the sample estimates of the covariance matrix experience perturbations
because of small sample size and low SNR. Simulation results do not show any significant
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dependence of the performance on the noise level. Thus, reliable CFO estimation may be
achieved at low SNR regime, where decision-directed methods are likely to fail. Moreover,
the proposed estimator yields a consistent estimate of the CFO. Hence, it is asymptotically
unbiased. Finally, simulations show that it performs close to the stochastic Cramér-Rao
bound established at the end of this chapter.

6.2 Subspace technique for blind CFO estimation for

OFDM with constant modulus modulations

In this section, we describe the novel subspace based approaches for blind carrier frequency
offset estimation in OFDM with constant modulus modulations proposed in Publications
VI-VII. Correlation in squared amplitude spectrum of the channel is exploited. Low rank
signal model is thereby obtained without null-subcarriers. The proposed estimator accom-
plishes fine frequency synchronization with a single OFDM block in the range [−1/2, 1/2[.
Small sample support reduces the need of time averaging, which makes the approach very
attractive for time selective channels and time-varying CFOs. Detailed description of the
related algorithms, proofs and derivations as well as simulation results may be found in
Publications VI-VII. First, the subspace structures of both the channel frequency response
and the channel squared amplitude spectrum are shortly described. Then, the subspace
CFO estimation algorithm for constant modulus modulations is presented, and its exten-
sion to case of real-valued modulations is briefly outlined. Finally, the relation to existing
algorithms [97] in the literature is investigated.

6.2.1 Correlation in channel frequency response

An important property in OFDM transmission is the frequency correlation of the channel
among subcarriers induced by the DFT and the FIR communication channel. Let h(k) be
the Lh × 1 channel impulse response in time domain corresponding to the N × 1 channel
frequency response vector h̃(k). Since typically Lh � N , vectors h(k) and h̃(k) are related
by an N -point DFT as

h̃(k) =
√
N

[
FH

]
{:,1:Lh}

h(k), (6.17)

where the N×Lh matrix
[
FH

]
{:,1:Lh}

is made from the Lh first columns of the DFT matrix

FH . Then, the Lh × 1 vector h(k) may be obtained from h̃(k) via IDFT as

h(k) =
1√
N

F{1:Lh,:}h̃(k). (6.18)

Now, the following relationship may be established:

h̃(k) =
[
FH

]
{:,1:Lh}

F{1:Lh,:}h̃(k) (6.19)

= Ah̃(k), (6.20)

where the DFT/IDFT pair is denoted by A =
[
FH

]
{:,1:Lh}

F{1:Lh,:}. Since both the trun-

cated DFT and IDFT matrices are of rank Lh, we also have rank {A} = Lh [125].

6.2.2 Correlation in channel squared amplitude spectrum

In the following, we denote by � the Hadamard (i.e., element-wise) product [125]. Chan-
nel spectrum may not be uniquely determined from the squared spectrum (ambiguity in

83



phase). Therefore we study and characterize the correlation properties of the squared
amplitude spectrum h̃(k)� h̃∗(k). First, by using Theorem 5 below, we identify the vector
subspace of channel squared amplitude spectrum.

Theorem 5 Let x be a N × 1 vector such that x = Ax, where A is a N ×N matrix of
rank L ≤ N . Then, the vector x � x∗ of squared amplitudes lies in the column space of
A� A∗.

Proof is given in Publication VII. From (6.20), h̃(k) = Ah̃(k), and according to the above
theorem, the squared amplitude spectrum h̃(k)� h̃∗(k) lies in the column space of A�A∗.
Next, Theorem 6 below provides us with a basis for this column space.

Theorem 6 Let A =
[
FH

]
{:,1:Lh}

F{1:Lh,:} with
[
FH

]
{:,1:Lh}

=
[
f̄1, f̄2, . . . , f̄Lh

]
, where

f̄k is the kth column vector of the DFT matrix FH . Then, let us construct the basis
G =

{
g−(Lh−1), . . . ,g(Lh−1)

}
from the 2Lh − 1 vectors gd defined as gd ,

√
N

(
f̄k � f̄∗l

)
,

k, l = 1, . . . , Lh, d = k − l, d = −(Lh − 1), . . . , (Lh − 1). Then, G forms an orthonormal
basis of the column space of A �A∗.

Proof is given in Publication VII. Therefore, the channel squared amplitude spectrum
lies in a subspace of dimension 2Lh − 1. We conclude that rank {A� A∗} = 2Lh − 1.
Because 2Lh − 1 < N in practice, a low rank model arises from correlation in channel
squared amplitude spectrum. Based on this property, we propose next a subspace method
for blind frequency synchronization in OFDM.

6.2.3 Subspace method for blind CFO estimation for constant modulus

modulations

Let us first make the following assumptions under which the proposed subspace based
algorithm is derived:

1. All the N subcarriers are assumed to be active. The vector s(k) in (2.31) becomes
the N×1 symbol vector a(k) = [a1(k), . . . , aN (k)]T . The implications of the presence
of null-subcarriers will be discussed at the end of this section.

2. We consider complex-valued constant modulus modulations. Without loss of gener-
ality, let us assume the symbols have unit energy, i.e., |an(k)|2 = 1, n = 0, . . . , N−1.

Let us assume that the received signal is subject to a carrier frequency offset ν, and
consider the model in (2.27) for the CFO-corrupted signal. Given an estimate µ of the
true value ν, let us recall from (6.4) the expression for the CFO-compensated vector in
the frequency domain:

vµν(k) = ϕ∗
k(µ)FHC∗(µ)yν(k) (6.21)

= ϕ∗
k(µ)FHC∗(µ)C(ν)FD

h̃
(k)a(k) + w̃(k), (6.22)

where w̃(k) = ϕ∗
k(µ)FHC∗(µ)w(k) is complex circular AWGN with covariance matrix

cov(w̃(k)) = σ2IN . From now on, we consider a single OFDM block at the time. Hence, we
drop the time index k, for simplicity. In the noise-free case, let us compute the Hadamard
product vµν � v∗

µν as

vµν � v∗
µν =

(
Mµ−νDh̃

a
)
�

(
M∗

µ−νD
∗
h̃
a∗

)
, (6.23)
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where we defined Mµ−ν = FHC∗(µ)C(ν)F and the diagonal matrix D
h̃

= diag{h̃} of size
N ×N .

In case of perfect frequency synchronization, µ = ν and Mµ−ν = IN , where IN is the
N ×N identity matrix. Then, in a noise-free situation, equation (6.23) reduces to

vνν � v∗
νν =

(
D

h̃
a
)
�

(
D∗

h̃
a∗

)
(6.24)

= h̃� h̃∗, (6.25)

since the matrix D
h̃

is diagonal and a � a∗ = [1, . . . , 1]T under the CM assumption.

Therefore vνν � v∗
νν is equal to the squared amplitude spectrum h̃� h̃∗, in the noise-free

case. Frequency mismatch (µ 6= ν) leads to intercarrier interference (ICI) and alters the
components of vµν � v∗

µν , which does not lie in the correct subspace anymore, i.e., the

one of h̃ � h̃∗. The spanned subspaces are depicted in Figure 6.2. From Theorem 5, the
vector h̃� h̃∗ lies in the column space of A�A∗. The latter has dimension 2Lh − 1 < N ,
as a consequence of Theorem 6. Hence, a subspace-based blind CFO estimator may be
proposed.

v µν
� v

∗
µν

h̃� h̃∗

A � A∗

Figure 6.2: Subspaces used in proposed blind CFO estimation. Projection of vµν � v∗
µν

to subspace of h̃ � h̃∗ is maximized, or equivalently projection to orthogonal subspace is
minimized.

In the noisy case, this leads to the idea of restoring the subspace structure induced by
Fourier transforms and FIR communication channels. For this purpose, let us define the
squared norm of the projection of vµν �v∗

µν to the orthogonal subspace of A�A∗ as cost
function C. Consequently, the carrier frequency offset may be estimated by minimizing
the projection of vµν �v∗

µν to the orthogonal subspace of A�A∗, as a function of µ. The
value achieving the minimum of C provides us with an estimate of the CFO as follows,

ν̂ = arg min
µ∈[− 1

2
, 1
2 [
C (µ) , C (µ) =

∥∥∥Π⊥
A�A∗

(
vµν � v∗

µν

)∥∥∥
2
. (6.26)

Now, the following clarifying remarks are in order:

1. The cost function C (µ) is periodic with period 1, because replacing µ by µ+ 1 only
produces a shift by one of the OFDM subcarriers, and therefore does not alter the
subspace structure.

2. Numerical solution to (6.26) may be found, e.g., by using a gradient descent method.
Computational cost is not prohibitive due to a one dimensional search space with
unique minimum in [−1/2, 1/2[. See the plot of the cost function in Figure 6.3
(Section 6.2.5).

3. Since Theorem 6 provides us with an orthonormal basis for the column subspace of
A�A∗, we may express the projection matrix Π⊥

A�A∗ in a closed-form as Π⊥
A�A∗ =
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IN −GGH , where the N × (2Lh − 1) matrix G is constructed from the basis vectors
of G stacked in matrix form. Hence, the projection matrix Π⊥

A�A∗ may be efficiently
computed off-line.

4. One may also maximize the projection to the subspace of A�A∗ in order estimate
the CFO.

5. Null-subcarriers are not needed to ensure a low rank model. Low rank model natu-
rally arises from correlation in channel spectrum.

6.2.4 Blind subspace-based CFO estimation for real-valued constant

modulus modulations

The CFO estimator in (6.26) applies to complex-valued CM modulations in general, in-
cluding real-valued binary phase shift keying. However, the BPSK modulation requires
a specific treatment, since the component-wise squared symbol vector is non-zero in this
case, i.e., a � a = [1, . . . , 1]T . Hence, a low rank model is also found in the subspace of
channel squared spectrum. In the following, we briefly highlight the differences between
the two approaches.

The counterpart of Theorem 5 for channel squared spectra is found in Publication VI.
As a result, the squared spectrum h�h lies in the column space of A�A. Now, Theorem
6 may easily be extended as follows:

Theorem 7 Let A and f̄k be defined as in Theorem 6. Then, GBPSK =
{gBPSK,1, . . . ,gBPSK,2Lh−1} with gBPSK,d ,

√
N

(
f̄k � f̄l

)
, k, l = 1, . . . , Lh, d = k + l − 1,

forms an orthonormal basis of the column space of A � A.

Hence, in case of BSPK modulation, the CFO may be found by minimizing the projection
to the orthogonal subspace of A � A. The CFO estimator and the related cost function
take the following form:

ν̂ = arg min
µ∈[− 1

2
, 1
2 [

∥∥∥Π⊥
A�A (vµν � vµν)

∥∥∥
2
. (6.27)

As previously, the projection matrix may be computed off-line. As a consequence of
Theorem 7 the latter projection matrix is found by Π⊥

A�A = IN − GBPSKGH
BPSK, where

GBPSK stacks the basis vector of GBPSK in matrix form. Detailed analysis and simulation
results may be found in Publication VI.

6.2.5 Relation to existing algorithms

Other algorithms exploiting the CM assumption

The CFO estimator in (6.26) is closely related to the work by Ghogho and Swami [97].
Assuming a single received block with a number Nv = N −Na of VSCs at the edges, the
following composite criterion exploiting both VSCs and the CM property is proposed [97]:

JVSC+CM(µ) = JVSC(µ) + JCM(µ), (6.28)
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with

JVSC(µ) =
∑

n/∈NA

∣∣fH
n C∗(µ)yν

∣∣2 (6.29)

JCM(µ) =
∑

n∈NA

(∣∣fH
n C∗(µ)yν

∣∣ −
√

cT
n λ̂(µ)

)2

, (6.30)

and where

λ̂(µ) = G†
CM2

∑

n′∈NA

∣∣fH
n′ C∗(µ)yν

∣∣2 cn′

GCM2 =
∑

n∈NA

cnc
T
n

cn =
√

2

[
1√
2
, cos

(
2πn

N

)
, . . . , cos

(
2πnL′

h

N

)
, sin

(
2πn

N

)
, . . . , sin

(
2πnL′

h

N

)]T

.

The criterion JVSC is equivalent to Tureli’s NSC-based cost function [167], while JCM

exploits the CM property [97]. The estimate of the CFO is then obtained as

ν̂VSC+CM = arg min
µ

JVSC+CM(µ). (6.31)

The flexibility of the above estimator is worth to be noted, as it may perform with or
without VSCs. Without virtual subcarrier, it exploits the constant modulus assumption
solely.

The likelihood function depends in fact on both the CFO and the values |h̃n| of the
channel amplitude spectrum, where h̃ = [h̃0, . . . , h̃N−1]

T is the CFR vector defined in
(6.17). In order to obtain a scalar optimization procedure, the search over the values |h̃n|
needs to be eliminated. Both Publications VII and [97] rely on equivalent parametrization
of the squared amplitude spectrum |h̃n|2. For this reason, the considered criteria are not
ML anymore, although they lead to consistent estimates of the CFO.

Link to the proposed algorithm

Let us now describe the relation of the algorithm in Publication VII and the related
geometrical approach to the estimator in [97]. Under the assumptions of Publication VII,
i.e., CM modulations and no virtual subcarrier, the cost function in (6.28) reduces to JCM

solely. Then, similarly to [97], let us consider the following modified criterion:

J ′
CM(µ) =

N−1∑

n=0

(∣∣fH
n C∗(µ)yν

∣∣2 − cT
n λ̂(µ)

)2
. (6.32)

One may easily show that J ′
CM is equivalently expressed as

J ′
CM(µ) =

∥∥∥Π⊥
CM

(
vµν � v∗

µν

)∥∥∥
2
, (6.33)

where Π⊥
CM = IN − 1

N CT
CMCCM is the projection matrix to the orthogonal subspace of

CCM = [c1, . . . , cN ].

As discussed previously, equivalent parametrization of the subspace of squared channel
amplitude spectrum implies that Π⊥

CM = Π⊥
A�A∗ . Consequently, the modified criterion
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leads to the cost function proposed in Publication VII. The link with the projection argu-
ment is therefore established (see (6.26)). The difference between [97] and the method in
Publication VII lies in the square-root operation in (6.30). While adding to the computa-
tional complexity, it makes the criterion closer to the ML solution [97]. Nevertheless, both
Publications VII and [97] rely on the modified criterion of equation (6.32). For this reason,
they yield approximate ML estimates only. In practice, however, simulations studies show
that the gap to the CRB is very small. The cost functions for the proposed method as
well as the criteria relying on the CM property, VSCs and the combination of them are
illustrated in Figure 6.3 below.
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Figure 6.3: Cost functions for proposed subspace based blind CFO estimation, joint VSC
and CM criterion [97], CM [97] and VSC criteria [167] only; ν = 0.60263, SNR=15 dB.

6.2.6 Discussion

In this section, we presented novel subspace-based algorithms for blind carrier frequency
offset estimation in OFDM using real- or complex-valued constant modulus modulations.
See Publications VI-VII for a detailed derivation. Exploiting correlation in squared or
squared amplitude spectrum of the channel is the key idea of the methods. Due to DFT
and IDFT operations, low rank model is feasible in OFDM transmission provided that the
channel length Lh is such that 2Lh − 1 < N . This is generally the case for a well designed
OFDM system since Lh ≤ LCP < (N + 1)/2. Low rank signal model is therefore obtained
without null-subcarriers.

Unlike majority of blind CFO recovery techniques, the proposed estimator needs only
a single OFDM block to perform fine frequency synchronization. Thus, no time averaging
is needed, unlike in correlation and SOCS-based methods which typically require up to
a hundred of received blocks. Hence, the proposed algorithms may be used to find an
estimate for each block independently. This is obviously significant advantage in the case
of time selective channels. Numerical solution to (6.26) or (6.27) may be found, e.g., using a
gradient descent method. Computational cost is not prohibitive due to the one-dimensional
search space and unique minimum in [−1/2, 1/2[. Notice that the geometrical projection
argument is different compared to [45]: the subspace of squared or squared amplitude
channel spectra is considered here instead of the subspace of null-subcarriers [45].

However, as for any subspace method, the dimensions of subspaces have to be known
a priori for optimal performance. The proposed estimator as well as [97] need the channel
length as input parameter. The performance of both methods suffers from under-estimated
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delay spread, while both still perform well with slightly over-estimated assumed channel
length. The length of the cyclic prefix yields a reasonable upper limit in practice. Note
that purely NSC-based estimators are not affected by an unknown channel length, as the
subspace structure is determined by the location of null-subcarriers, assumed to be known
a priori. The proposed approach could be potentially extended to include NSCs as in [97].
For this purpose, the subspace description of channel squared spectra needs to be modi-
fied to accommodate for the presence of NSCs. The extension to non-constant modulus
modulation may be feasible as well. However, the subspaces become data dependent in
this case.

The performance of the proposed algorithms is analyzed in simulations. The results
are reported in Publications VI-VII. Close to optimal estimation of time-varying carrier
offset in time-frequency selective channels is achieved. Performance is comparable to
the methods developed in [97], and more than 10 dB gain is achieved over NSC-based
estimators [167]. To conclude, estimation using a constant modulus criterion is more
effective than exploiting null-subcarriers solely. CM-based estimators are especially suited
to time selective channels as estimators requiring small sample support are highly desired.
However, they are restricted to CFO refinement, as the estimation range for the normalized
CFO is within [−1/2, 1/2[. However, by adding NSCs and choosing the composite criterion
in [97], the estimation range may be increased.

Finally, the relationship to the estimator in [97] as well as with ML estimation was
established. Also, it proves that [97] is a projection-based algorithm as well. It appears that
the approaches in [97] and Publication VII are extremely close together from the algorithm
and performance standpoints. Despite being approximate ML methods, they lead to highly
accurate and consistent estimation of the CFO under time-frequency selective fading.

6.3 Large sample performance

In this section, we assess the large sample performance by deriving the Cramér-Rao bound.
Detailed derivations as well as simulation results may be found in Publications IV-V.
The CRB gives the minimum variance an unbiased estimator may achieve. The CRB is
established for the blind CFO estimation problem in OFDM, under the three following
assumptions:

1. Channel parameters are treated as deterministic nuisance parameters, and are as-
sumed to be constant over the observation period.

2. The noise is assumed to be complex circular Gaussian and uncorrelated.

3. Data symbols are i.i.d. complex random variables drawn from either real- or complex-
valued constellations.

Under the stochastic approach, we model the transmitted data x̃(k) = Fs(k) in (2.7)
as a complex Gaussian random vector. In this way, we get rid of both the data and channel
dependencies. For this reason, the related CRB will be further referred to as stochastic
CRB. The Gaussian approximation has been widely used in the OFDM literature [188,
272]. This approximation is justified by the central limit theorem. Here, we assume that
the vector r(k) = H̃x̃(k) is multivariate Gaussian. Then, the OFDM transmission with
imperfect frequency synchronization in (2.26) may be written as

yν(k) = C̄ν,kr(k) + w(k), (6.34)
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where C̄ν,k = ϕk(ν)C(ν) and w is the complex circular Gaussian noise vector. Since we
are interested in both real and complex modulations, x̃(k) cannot always be modeled as
a complex circular random vector. Complete second order statistics of complex random
vectors require both signal covariance and pseudo-covariance matrices (see Section 6.1.1
and [215]). Hence, we also define

Q = cov (r(k)) (6.35)

P = pcov (r(k)) . (6.36)

Notice that the pseudo-covariance matrix P vanishes for circular random vectors, i.e.,
P = 0N×N . This happens for instance with complex modulations having independent
and identically distributed I an Q branches. We further assume that the entire statistics
{P,Q} depend only on a finite number M of real-valued unknown parameters stacked into
the vector ρ = [ρ1, . . . , ρM ]T .

Let us define the parameter vector as θ = [ν,ρT , α]T , where α = σ2 the variance of the
noise. The CFO ν is the parameter of interest while ρ and α are nuisance parameters. The
CRB for blind frequency offset estimation in OFDM and the associated Fisher information
matrix (FIM) with finite sample size K are respectively given by

CRBK (ν) =
[
FIM−1

K

]
1,1

(6.37)

FIMK =
1

2

K−1∑

k=0

[
gH

k

∆H
k

] [
gk ∆k

]
, FIMK ∈ C

(M+2)×(M+2), (6.38)

with the following notation and definitions:

gk = vec(Ω
−1/2
k (D̃ν,kΩ̃C̃H

ν,k+C̃ν,kΩ̃D̃H
ν,k)Ω

−1/2
k ), gk ∈ C

4N2×1 (6.39)

∆k =
[

Vk uk

]
, Vk ∈ C

4N2×M , uk ∈ C
4N2×1 (6.40)

C̃ν,k =

[
C̄ν,k 0N×N

0N×N C̄∗
ν,k

]
, D̃ν,k =

∂

∂ν
C̃ν,k (6.41)

Ωk = C̃ν,kΩ̃C̃H
ν,k + σ2I2N (6.42)

Ω̃ =

[
Q P
PH Q∗

]
(6.43)

uk = vec
(
Ω−1

k

)
(6.44)

Vk =
(
(Ω

−1/2
k C̃∗

ν,k) ⊗ (Ω
−1/2
k C̃ν,k)

)
J, J ∈ C

4N2×M . (6.45)

The matrix J in (6.45) is such that vec(Ω̃) = Jρ. Detailed derivations may be found in
Publications IV and V. Note that an alternate expression for the CRB for a similar model
has also been independently derived in [58]. Even though the component-wise Gaussian
approximation is reasonable, the assumption on the joint Gaussianity of the components
is more questionable, and this may lead to slight differences compared to the exact CRB.
Notice finally that the quantities defined in (6.39)-(6.45) are not block dependent anymore
when the transmitted signal becomes circular. In this case, the computation of the CRB
is of significantly lower complexity.

It is interesting to compare the obtained bounds for the circular and non-circular cases.
The curves presented in Publication V highlight a significant difference in performance
between the circular and non-circular case, which is in par with the results in [58]. Much
lower CRBs are observed whenever the signal is non-circular. Moreover, for finite sample
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size, the Cramér-Rao bound tends to zero as the SNR tends to infinity for non-circular
signals, which does not hold true for the circular case. This implies that blind CFO
estimators may be significantly improved by exploiting a complete second order statistics,
in place of the covariance matrix only, when real modulations are in use. The improvement
has been already noted in practice, for instance in [63].

Another approach for deriving the CRB is to assume that the received signal affected by
both channel fading and CFO is a deterministic unknown vector, i.e., the vector C̄ν,kr(k)
in (6.34) is non-random. The related Cramér-Rao bound is referred to as conditional CRB
(CCRB). It is also called deterministic CRB. Detailed derivations for the case of OFDM
may be found in [101, 8.8.1]. The CCRB is a useful tool in order to lower-bound the CFO
estimation performance for particular channel and data realizations. A channel and data
independent bound must be derived to assess the large sample performance for random
channel and data processes. It is then referred to as unconditional or stochastic CRB.
Such bound is derived in [101, 8.8.2], whereas the CRB herein applies to deterministic
channel and random data processes.

6.4 Concluding remarks

In this chapter, the contributions of this thesis to the field of blind CFO estimation for
OFDM were presented. A blind CFO estimator based on the diagonality of the received
signal covariance matrix was derived. Intuitively, the value of the CFO is found by restoring
the orthogonality of the transmission. The proposed estimator was shown to provide
consistent estimates of the CFO under frequency selective fading, and achieves almost
equal performance regardless of the noise level. A subspace-based blind CFO estimator
exploiting the constant modulus property was also proposed as part of this thesis work.
It was shown that a low rank signal model arises from correlation in channel spectrum.
Hence, NSCs are not necessarily needed to allow blind subspace CFO estimation in OFDM.
However, they may be exploited jointly with the CM assumption [97].

The proposed covariance- and subspace-based estimators may be applied to fine CFO
estimation in the range of [−1/2, 1/2[ with respect to the intercarrier spacing. Hence,
they may be used in practice for refinement purposes or in the face of small carrier fre-
quency mismatches. Both estimators assume frequency selective fading, and no perfor-
mance degradation is observed compared to the AWGN case. For instance, some other
CFO estimators in the literature exhibit error floors in multipath fading [272]. The design
of channel independent estimators is of high importance indeed. NSC-based estimators
fall into this category as well. The proposed subspace CFO estimation requires signif-
icantly smaller sample size compared to the method based on the covariance matrix (1
block versus 30-100 blocks, respectively). Thus, in highly time selective environments,
estimators with small sample support should be preferred. NSC-based estimation [167]
or the combined NSC and CM approach [97] as well as the proposed subspace estimator
require only small sample support.

Finally, in order to assess the large sample performance, the stochastic Cramér-Rao
bound was established. As real-valued modulations induce non-circularity in the received
signal, the derivation of the CRB was conducted for the general complex multivariate
Gaussian distribution [215].
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Chapter 7

Summary

The wireless telecommunication industry has grown at fast pace since the beginning of the
1980’s. The Internet has enjoyed a similar growth over the last decade. The next stage
will be the convergence of fixed and mobile Internet systems, which means making the
Internet and high data rate multimedia applications available to mobile users in addition
to digital speech and text messaging services. The telecommunication standards and
systems have already evolved toward this step, with the enhancements of third generation
communication networks such as the high speed data packet access (HSDPA). Packet
data is expected to become soon a significant part of the total wireless traffic. Beyond
3G and 4G systems are targeting far higher data rates, spectral efficiency and mobility
requirements. MIMO multicarrier wireless transmission techniques are strong candidates
for radio access technology in such systems.

Advanced signal processing techniques are needed at the physical layer level in order
to ensure reliable data transmission. Receiver algorithms are required to cope with im-
pairments specific to wireless broadband channels characterized by time, frequency and
space selectivity. Spatial multiplexing and transmit diversity techniques allow increasing
the spectral efficiency and the link reliability of multi-antenna systems [126]. They rather
exploit than combat the channel selectivity, which is also a source of diversity. In order
to fully capitalize on MIMO multicarrier transmissions, channel estimation and frequency
synchronization should be accomplished with high fidelity. The parameters should not only
be acquired, but they should also be tracked over time as the wireless environment may
be time-varying. At the same time, the overhead of pilot symbols should be kept as low
as possible to maintain high effective data rates. Computational complexity should also
remain at low levels, which is an important issue in battery operated terminals especially.

The work reported in this thesis provides new solutions for practical MIMO OFDM
receivers operating in time-varying wireless environments. State-space models are used
for modeling the transmission and its time evolution under imperfect frequency synchro-
nization. The proposed state-space model was among the first ones to consider separate
frequency offset parameter for each MIMO branch, which is justified by separate RF-IF
transmission chains, mobility and rich scattering together with large angle spread. A novel
algorithm for the joint estimation and tracking of time and frequency offset parameters in
mobile MIMO OFDM systems is introduced. The algorithm performs recursive estimation
of the state parameters using Kalman and extended Kalman filters, which is a natural way
to deal with state-space models. Since the 1960’s, Kalman filter has been applied in control
theory and to signal processing problems. Hence, it proves to be a valuable tool which
is now highly popular in the wireless communications community. In the derived algo-
rithm, the estimation and tracking is done in time domain. Time domain processing leads
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to lower computational complexity, lower estimation variance and increased robustness
against estimation errors compared to frequency domain estimation and tracking. Equal-
ization takes place in the frequency domain, as it is usually the case in OFDM systems. A
few training blocks are needed to acquire initial estimates for channel and synchronization
parameters. Then, the method switches to decision-directed mode and uses the decoded
symbols for keeping the track. Training symbols need to be sent periodically in order to
avoid loosing the track, which could occur in case of a deep channel fade. In highly time
selective channels more pilot symbols are naturally needed. Also, Kalman filters may easily
accommodate pilot data for channel estimation purposes. Experimental results show good
overall performance of the proposed algorithm in the face of noise and multiple carrier
frequency mismatches as well as time, frequency and space selective fading. Moreover, the
method requires only a few percents training overhead. Hence, it yields a feasible solution
for practical mobile multi-antenna OFDM transceivers with high effective data rates.

Novel approaches for blind fine frequency synchronization are proposed in this thesis.
The decoupling of data and pilot information may be difficult in the presence of CFO.
For this reason, blind frequency synchronization is appealing as no pilot symbol needs
to be extracted. It is shown that the sample covariance matrix contains information
on the carrier frequency offset in OFDM transmissions with cyclic-prefix. Consequently,
the CFO may be estimated by exploiting the structure and properties of this matrix.
By choosing the off-diagonal power as cost function, a novel algorithm for fine carrier
frequency synchronization is derived. Estimation of the CFO is entirely accomplished in
a closed-form, which leads to low complexity solution as well as low estimation variance.
The proposed algorithm is a consistent estimator of the CFO under multipath fading. In
theory, the performance does not depend on the signal-to-noise ratio. This is a significant
advantage at low SNR regime. The tolerance to multipath propagation is also a key
property, as channel state information is usually not available at this stage. Channel
estimation is typically performed as a subsequent step. In this dissertation, contributions
are also made in the area of subspace-based CFO estimation. Assuming constant modulus
modulations, low rank signal model arises in almost any OFDM transmission because of
the finite CIR length much shorter than the DFT window. Based on this property, a novel
fine CFO estimator is introduced. Close-to-optimal estimation of the carrier frequency
offset is achieved under time-frequency selective fading. The small sample support needed
by the technique is a key advantage in time selective channels. Finally, the large sample
performance of blind CFO estimators for OFDM is investigated. The Cramér-Rao bound
is derived under the general multivariate Gaussian assumption. In this way, the non-
circularity of the received signal due to the potential use of real-valued modulations is
also taken into account. It is shown that the performance of blind carrier frequency
synchronizers may be significantly improved in the non-circular case by using complete
second-order statistics, i.e., covariance and pseudo-covariance matrices.

Possible topics of future research include channel estimation and synchronization for
multi-user MIMO systems and multicarrier CDMA systems. MC-CDMA combines the
advantages of both CDMA and OFDM in order to provide a high data rate multi-user
air interface. However, MC-CDMA also inherits the drawbacks of both systems. It is
thus very sensitive to synchronization errors. The state-space models developed in this
thesis may further be extended to describe MC-CDMA transmissions impaired by car-
rier frequency offsets. Time synchronization may be considered as well. The proposed
KF/EKF estimation framework may then be adapted to estimate and track channel and
synchronization parameters in MC-CDMA.

OFDMA is another popular and active field of research. In the uplink of an OFDMA
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system, each user modulates a subset of subcarriers that is impaired by a specific carrier
frequency offset. Hence, the synchronization of such systems is much more demanding
compared to conventional OFDM. Low synchronization errors guarantee both efficient user
separation and high data rates. Reliable CFO and timing estimators with low overhead
are desired. Theoretical performance bounds as well as identifiability conditions are of
high importance, especially in a blind estimation framework.

A multiband version of OFDM (MB-OFDM) is gaining momentum as a candidate
standard to be adopted for ultrawideband (UWB) communications [129]. The popularity
of MB-OFDM stems from its abilities to address data throughput and range requirements,
while maintaining low cost, computational complexity and power consumption. Also, the
transmission spectrum may be easily shaped to comply with international regulations and
may be extended as well for future enhancements. Frequency hopping across multiple
bands offers improved diversity and multi-user access, but gives rise to new challenges in
channel estimation and carrier frequency synchronization. Very efficient signal processing
techniques are therefore necessary to allow the practical deployment of such systems.
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