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Abstract

This thesis consists of a summary part and seven published articles. All the articles are about
performance analysis of ARQ schemes.

Two of the publications study the performance of an ARQ scheme with packet combining, called
the EARQ (extended ARQ) scheme. In the packet combining algorithm, the bitwise modulo-2
sum of two erroneous copies of a packet is computed to locate the errors. The packet combining
algorithm involves a straightforward search procedure, the computational complexity of which
easily becomes prohibitive. As a solution to this, a modifiedscheme is proposed, where the
search procedure is attempted only when there are at mostNmax 1s at the output of the modulo-2
adder. In one article, time diversity was utilized, whereasspace diversity reception was consi-
dered in the other work.

The remaining five publications study the throughput performance of adaptive selective-repeat
and go-back-N ARQ schemes, where the switching between the transmission modes is done
based on the simple algorithm proposed by Y.-D. Yao in 1995. In this method,α contiguous
NACKs or β contiguous ACKs indicate changes from ‘good’ to ‘bad’ or from ‘bad’ to ‘good’
channel conditions, respectively. The numbersα andβ are the two design parameters of the
adaptive scheme. The time-varying forward channel is modelled by two-state Markov chains,
known as Gilbert-Elliott channel models. The states are characterized by bit error rates, packet
error rates or fading parameters. The performance of the adaptive ARQ scheme is measured
by its average throughput over all states of the system model, which is a Markov chain. A
useful upper bound for the achievable average throughput isprovided by the performance of
an (assumed) ideal adaptive scheme which is always in the ‘correct’ transmission mode. The
optimization ofα andβ is done based on minimizing the mean-square distance between the
actual and the ideal performance curves. Methods of optimizing the packet size(s) used in the
adaptive selective-repeat scheme are also proposed.

Keywords: adaptive protocol, automatic repeat request, diversity combining, error control, Mar-
kov model, packet combining
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Tiivistelmä

Tämä väitöskirja sisältää johdanto-osan ja seitsemän julkaistua artikkelia. Kaikki artikkelit tut-
kivat ARQ-protokollien suorituskyvyn analysointia.

Julkaisuista kaksi käsittelee EARQ:ksi nimettyä laajennettua ARQ-protokollaa, missä pyritään
löytämään vastaanotetuissa paketeissa olevia virheitä yhdistämällä saman datapaketin kaksi vir-
heellisinä vastaanotettua kopiota keskenään. Yhdist¨aminen tapahtuu laskemalla bittivektorit yh-
teen modulo 2. Algoritmiin kuuluu suoraviivainen oikean koodisanan hakuprosessi, jonka las-
kennallinen kompleksisuus kasvaa nopeasti kohtuuttoman suureksi. Tämän ongelman ratkai-
suksi ehdotetaan muunnettua algoritmia, missä hakurutiini käynnistetään vain, jos modulo-2-
summaimen ulostulossa on korkeintaanNmax ykköstä. Artikkeleista toisessa käsitellään aika-
ja toisessa puolestaan paikkadiversiteetin hyödyntämistä.

Loput viisi julkaisua tutkivat adaptiivisten ARQ-protokollien suorituskykyä. Tehokkuutta mi-
tataan läpäisyllä (throughput), ja käsiteltävänäovat sekä valikoivaa toistoa hyödyntävät SR-
protokollat (selective repeat) että liukuvaa lähetysikkunaa käyttävät go-back-N -protokollat.
Tarkasteltavissa adaptiivisissa protokollissa lähettimellä on kaksi tilaa, joiden välillä siirrytään
Y.-D. Yaon vuonna 1995 esittelemän algoritmin mukaisesti: α peräkkäistä negatiivista kuit-
tausta (eli uudelleenlähetyspyyntöä) merkitsee, ett¨a kanavan tila on todennäköisesti muuttu-
nut ‘hyvästä’ ‘huonoksi’;β peräkkäistä positiivista kuittausta puolestaan tulkitaan merkiksi
päinvastaisesta muutoksesta. Luvutα ja β ovat tällä periaatteella toimivan adaptiivisen proto-
kollan kaksi suunnitteluparametria. Aikavaihtelevia lähetyskanavia mallinnetaan kaksitilaisilla
Markovin ketjuilla, joita nimitetään Gilbert-Elliott -kanavamalleiksi. Kanavan tila määritellään
joko bittivirhetodennäköisyyden, pakettivirhetodennäköisyyden tai häipymisparametrien avul-
la. Koko systeemin tilamalli osoittautuu Markovin ketjuksi, ja adaptiivisen protokollan suori-
tuskykyä mitataan laskemalla sen keskimääräinen läpäisy yli kaikkien tilojen. Saavutettavissa
olevalle keskimääräiselle läpäisylle saadaan yläraja laskemalla läpäisy hypoteettiselle ideaali-
selle adaptiiviselle protokollalle. Optimaalinen(α, β)-pari on se, jota vastaava läpäisykäyrä on
lähimpänä ideaalista käyrää pienimmän neliövirheen mielessä. Lisäksi julkaisuissa on tutkittu
käytettävän pakettikoon optimointia adaptiivisille SR-protokollille.

Avainsanat: adaptiivinen protokolla, ARQ, diversiteettiyhdistely, Markov-malli, virheentark-
kailu
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Chapter 1

Introduction

1.1 Motivation

During the past couple of decades, digital communication has become ubiquitous. The simplest
digital communication system, a communicationlink, is shown in its most abstracted form in
Figure 1.1. The task ofthe transmitteris to render the message suitable for transmission over
the channel.The channel is the physical medium that is used to convey the information from
the transmitter to thereceiver. In [30, p. 15], communication channels are divided into two
basic groups: channels based onguided propagation(telephone channels, coaxial cables and
optical fibres), and channels based onfree propagation(wireless broadcast channels, mobile
radio channels and satellite channels). The receiver reconstructs the message from the received
signal.

Channel ReceiverTransmitter

Figure 1.1: Digital communication link

The communication channels exhibit many kinds of non-idealbehaviour, such as additive noise,
fading caused by multipath propagation, and intersymbol interference. As a result from these
phenomena, the received signal is often so badly distorted that the message cannot be recon-
structed unless some kind oferror control is used.

1.2 Background: ARQ and FEC

There are two basic approaches to error control in digital communications:forward error cor-
rection (FEC)andautomatic repeat request (ARQ)[44, 77].
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In the FEC systems, parity-check bits are added to each transmitted message block to form
a codeword based on the error-correcting code that is being used. The receiver attempts to
locate and correct the errors that it has detected in a received word. After the error-correction
procedure, the decoded data block is delivered to the end user. A decoding erroroccurs if the
output of the decoder is a different codeword than the one that was originally transmitted. The
FEC systems are designed for use in simplex channels, where information flows in only one
direction.

In an ARQ scheme, a high-rate error-detecting code is used together with some retransmission
protocol. If the receiver detects errors in the received word,it generates a retransmission request,
or a negative acknowledgement (NACK). If no errors are detected in the received word, the
receiver sends a positive acknowledgements, called an ACK,to the transmitter. The most widely
used error-detecting codes are the cyclic redundancy check(CRC) codes because of the ease of
implementation. Unlike the FEC systems, the ARQ schemes require the presence of afeedback
channel.

Thestop-and-wait (SW) schemeis the simplest of all ARQ schemes. In this scheme, the trans-
mitter sends a codeword to the receiver and waits for an acknowledgement. If an ACK comes,
the transmitter sends the next codeword in the queue; in caseof a NACK, the same codeword
is retransmitted, and this process continues until the codeword is accepted. If the system has
a significant round-trip delay, the SW scheme becomes quickly very inefficient because of the
idle time that the transmitter spends waiting for acknowledgements.

In thego-back-N (GBN)scheme, the transmitter sends codewords continuously and stores them
to wait for acknowledgements; buffer space forN packets is needed at the transmitter. The
acknowledgement for a codeword arrives after a round-trip delay, during whichN − 1 other
codewords are transmitted. When a NACK is received for codeword i, the transmitter stops
transmitting new codewords, goes back to codewordi and retransmits it and theN − 1 fol-
lowing codewords. The receiver discards the erroneously received codewordi and allN − 1
subsequently received words, regardless if they are error-free or not.

Another continuous ARQ strategy,selective-repeat (SR)ARQ, is much more efficient than
GBN, since only negatively acknowledged codewords are retransmitted. After resending a neg-
atively acknowledged codeword, the transmitter continuestransmitting new codewords in the
transmitter buffer. Whereas the GBN scheme automatically preserves the original order of the
codewords, the receiver in the SR scheme must have some buffer space to store the correctly
received codewords that can not yet be released.

If some error-correcting capability is added to an ARQ scheme, we have ahybrid ARQ (HARQ)
scheme. HARQ schemes, which are thus combinations of ARQ andFEC, are discussed in
Section 2.5.

1.3 Scope and Structure of the Thesis

This thesis consists of mainly theoretical studies on the performance of some ARQ schemes.
Two kinds of schemes have been studied: (i) ARQ schemes with diversity combining in [P1]
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and [P7], (ii) adaptive ARQ schemes in [P2]–[P6].

An ARQ scheme with packet combining (using time diversity) is studied in a random-error
channel environment in [P1]. Approximate performance analysis is presented and the results
are compared to simulations. The packet combining algorithm, based on computing the bit-
wise modulo-2 sum of two erroneous copies of a packet was originally proposed by Sindhu
in [67]. In [P7], the same scheme, referred to as the EARQ scheme (for ‘extended ARQ’) is
used in a wireless communication system where there are two antennas at the receiver. That is,
spatial diversity is utilized. The performances of the EARQscheme and three other schemes
are compared in fading channels by simulations. A sum-of-sinusoids model, derived from that
proposed by Jakes in [32], is used to represent Rayleigh fading channels. The sinusoids have
random frequency inside the Doppler spectrum, and random phase.

In [79], Yao proposes an adaptive GBN scheme with two transmission modes, denoted byL and
H and meant for ‘good’ and ‘bad’ channel conditions, respectively. What is significant for this
thesis is that he suggests a simple algorithm for detecting channel state changes, which is based
on observing the acknowledgments and is defined by two integer-valued parameters:α andβ:
if α contiguous NACKs are received by the transmitter when it is in modeL, it is concluded
that the channel conditions are deteriorating and the transmitter switches to modeH; if β ACKs
are received contiguously while the transmitter is in modeH, modeL is resumed. In [3, 4]
and a few other articles, Annamalai and Bhargava study adaptive GBN and SR schemes based
on Yao’s channel sensing algorithm; they also attempt to optimize the design parametersα and
β. However, no time-varying channel model where the channel state actually changes has been
specified in these articles, and the same is true for Yao’s original paper. This is the starting
point for the publications [P2]–[P6] of this thesis. In all these papers, the performance of the
adaptive SR or GBN scheme using Yao’s algorithm is evaluatedin two-state Markovian channel
environments under varying assumptions about the return channel and the round-trip delay.

The summary of the thesis is organized as follows. Chapter 2 reviews some basic concepts,
including some channel models, performance measures of ARQschemes and hybrid ARQ.
Chapter 3 is a survey of the contents of publications [P2]–[P6], while Chapter 4 covers publi-
cations [P1] and [P7]. The summaries of all seven publications are provided in Chapter 5, and
finally some concluding remarks are made in Chapter 6.
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Chapter 2

Basic Concepts

2.1 Channel Models

In order to evaluate the performance of error control systems, we must model the circumstances
where they operate. Here we take a somewhat limited perspective on modeling communication
channels, and by achannel modelwe mean a mathematical model for the noise process or the
error process associated with the communication channel.

2.1.1 Discrete-Time Models

Most of the channel models considered in this work arediscrete-timemodels, which are charac-
terized by the values of bit error rate (BER) or packet error rate (PER). Depending on whether
the time unit of the model is the transmission time of one bit or one packet, these models can be
divided intobit-levelandpacket-levelmodels.

The simplest discrete-time model is the memoryless binary symmetric channel (BSC) [27, 59],
which is also often referred to as therandom-errorchannel. In a BSC, a bit is received in error
with a certain probability (the BER), independently of all the other bits. As a result, the number
of bit errors in a receivedn-bit packet is binomially distributed; if the BER is equal toǫ, the
PER is given by

(2.1) Pe(n, ǫ) = 1 − (1 − ǫ)n.

A schematic picture of the BSC where the BER is equal top is shown in Figure 2.1.

In many practical channels, especially in the presence of fading, the bit errors are not statistically
independent, but occur in bursts. They are called channels with memory,orburst-errorchannels.
If FEC is used and the error-correcting code is designed to correct random errors, the channel
errors can be made to look more random by using aninterleaverafter encoding the data block
and ade-interleaverbefore decoding the received word [59, 68]. On the other hand, ARQ

5
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Figure 2.1: The binary symmetric channel

schemes typically perform better with bursty errors than with random errors if the average error
probability is the same.

Hidden Markov models (HMMs) have become popular in modelling communication channels
with memory [35, 71]. This is because they can be easily fittedto experimental data, and many
important statistics can be evaluated in closed form.

In [28], Gilbert proposed a simple HMM to model burst-error channels. This model is a two-
state Markov chain, where the probability of a bit error is 0 in stateG (for ‘good’) and of the
order of1/2 in stateB (for ‘bad’). This is a bit-level model where a state transition (possibly
back to the same state) occurs after each transmitted bit. Elliott generalized this model in [25] by
allowing a small non-zero bit-error probability in stateG. This kind of HMMs are consequently
known as Gilbert-Elliott (G-E) models.

The HMMs can also be used to model random-error channels where the error rate varies with
time. This kind of two-state HMM was used for example in [48] and has also been assumed
in [P2]. Figure 2.2 shows the state transition diagram of this packet-level model, in which the
statesG andB are characterized by their BER values,ǫ1 and ǫ2 (ǫ1 ≪ ǫ2). The transition
probabilities fromG to B and fromB to G are denoted byγ andδ, respectively, and the time
interval between state transitions is assumed to be equal tothe transmission time of one packet.
The occupation times of statesG andB are geometric random variables with means1/γ and
1/δ, respectively. The steady-state probabilities of being instatesG andB are given by

πG =
δ

γ + δ
,(2.2)

πB =
γ

γ + δ
.(2.3)

In [P4] and [P5], it was assumed that there is a state transition after each transmitted bit. This
was done because it was necessary to make the definition of thechannel environment completely
independent of the packet size. In this model, the transition probabilities fromG to B and from
B to G are denoted byγ0 andδ0, respectively (γ0, δ0 ≪ 1). Once the packet size is fixed to
n bits, anapproximatepacket-level model with parametersγ = nγ0 andδ = nδ0 is adopted.

6



G B

γ

1−γ

δ

1−δ

Figure 2.2: The packet-level Gilbert-Elliott channel model

This approach makes it possible to compare the system performance with different packet sizes
under approximately similar channel conditions.

A packet-level G-E model was used also in [P6] with the difference that the statesG andB
where defined by their PER values,Pe,1 andPe,2.

Unreliable return channels have also been considered in thepublications of this thesis. It has
been assumed that an acknowledgement, ACK or NACK, can be erased, but an ACK cannot
become a NACK or vice versa. A similar assumption has been made e.g. in [11, 83]. In [P5]
acknowledgements were erased randomly with probabilityPf , whereas in [P4] and [P6] a G-E
model was assumed also for the feedback channel. In this G-E model, which is assumed to be
independent of the forward channel, all the acknowledgements are received successfully in the
‘good’ state, which is denoted byg, but the probability of erasure isPf in the ‘bad’ state, which
is denoted byb.

2.1.2 Threshold Model for Fading Channels

If we use a somewhat simplified description, the average behaviour of a Rayleigh fading channel
can be described by two parameters:ρ andfD. Here,ρ is the ratio between the receiver threshold
power and the average received signal power, i.e. a smaller value ofρ means that the channel is
better on the average. The threshold power level is selectedso that if the instantaneous received
signal power is below the threshold value, it can be considered that there is a ‘fade’ going on.
The other parameter,fD, is the maximum Doppler shift, which is equal tov/λ [32], wherev is
the velocity of the mobile terminal andλ is the carrier wavelength.

By using the level-crossing statistics presented in [32] and making some further simplifying
assumptions, DaSilva et al. derived in [21] a simple closed-form expression for the PER in a
fading channel described by the threshold model

(2.4) Pe(ρ, fD, n) = 1 − exp

[

−
(

ρ +
nfD

√
2πρ

R

)]

,

wheren is the packet size in bits andR is the channel transmission rate in bits/s. The following
assumptions were made:

• The channel is in one of the two possible conditions at any time: the received signal power
is either above (‘non-fade interval’) or below (‘fade interval’) the threshold level.

7



• A packet is received correctly if and only if the whole packetwas contained in a non-fade
interval.

• The length of the non-fade interval is exponentially distributed.

This PER expression was used by Annamalai and Bhargava in [4], and in [P3] a two-state
packet-level HMM was used, where the statesG andB were defined by the parameter combi-
nations(ρ1, fD,1) and(ρ2, fD,2), respectively.

2.2 Performance Measures

2.2.1 Throughput Efficiency

The most important performance measure for the ARQ schemes is the throughput efficiency,
or simply thethroughputη. The throughput is defined as the ratio of the average number of
information bits successfully accepted by the receiver perunit time to the total number of bits
that could be transmitted per unit time [44]. It can be noted that the throughput of an FEC
scheme is a constant irrespective of the channel conditions, and it is equal to the rate of the
error-correcting code.

A related performance measure, which we will call thepacket throughputand denote byT , is
defined as the average number ofpacketsaccepted successfully per one transmission. It is the
inverse number of the average number of transmission attempts needed until a packet is received
successfully. The difference betweenη andT is that in computingη, only the information bits
are considered ‘useful’, and henceη represents the ‘real’ transmission efficiency. The quantities
η andT relate to each other as follows:

(2.5) η =
k

n
· T =

(k/n)

E[X]
,

wherek/n is the rate of the error-detecting code used by the ARQ scheme, andX is the random
variable that represents the number of transmission attempts needed until a packet is received
successfully. Naturally, the distribution ofX depends on the channel (also the return channel)
error statistics.

2.2.2 Other Performance Measures

Besides throughput, many other performance measures of ARQschemes have been proposed
and studied. Most of these are related to the delay in delivering the packets.

As it was pointed out in [37], the total delay of a link layer packet consists of thetransport
delayand theresequencing delay.Of these two, the transport delay is further divided into the
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queueing delayand thetransmission delay.In two early studies [40, 70], the authors derived the
generating functions of the transport delay and the transmitter queue length for the basic ARQ
schemes when packet errors occur randomly and new packets arrive at the transmitter according
to a Poisson process, and in [69] these studies were extendedto channels with memory. The
mean queue length and mean transport delay for the SR scheme with arbitrary new packet
arrival process and random errors were obtained in [2]. In [62], the authors derived the exact
distribution of thedelivery delay,which is the sum of transmission delay and resequencing
delay, for the SR scheme, when a two-state Markovian channelmodel was assumed. Random
errors in both forward and return channels were assumed whenthe mean transmission delay
was calculated for the basic ARQ schemes in [46] using signalflow graphs, and the authors
generalized the analysis to Markovian channels in [47]. In arecent article [49], Luo et al.
calculated the first and second order statistics for the delivery delay of a higher layer packet
consisting of a fixed number of link layer blocks, when the SR scheme was used in a random
error channel environment. A delay related performance measure, namely the probability that
a packet is not delivered withinD time slots of its arrival at the transmitter, has been studied in
[63, 82].

In the recent years, communications between light portabledevices with finite battery resources
have become increasingly important. Therefore,energy efficiencyis also an important perfor-
mance measure of an error control strategy and has been discussed, e.g., in [18, 81].

2.3 Throughput Performance of Basic ARQ Schemes

The throughput of the SW scheme is given by [44]

(2.6) ηSW =
Pc · (k/n)

1 + DR/n
,

wherePc is the probability of a successful transmission,D is theround-trip delayin seconds,
andR is the bit rate of the transmitter. The round-trip delay is animportant system param-
eter, which is defined as the time that elapses after a packet leaves the transmitter before the
corresponding acknowledgement arrives [43, p. 459]. Hence, DR/n is the number of pack-
ets that could be transmitted during the idle time period when the transmitter is waiting for an
acknowledgement.

In the GBN scheme, the transmitter does not stop to wait for acknowledgements after sending
a packet, but transmits the next packet in schedule. Both theGBN scheme and the SR scheme
arecontinuousARQ schemes in this sense. If there is a retransmission request for a packet, the
transmitter resendsN packets, namely the negatively acknowledged one and also all theN − 1
packets that follow, since the receiver has discarded the previous transmission attempt of those
packets. The parameterN , which is the length of the ‘sliding window’ in this protocol, depends
on the round-trip delay as follows [10]:

(2.7) N − 1 =

⌈

DR

n

⌉

,
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and the throughput of the GBN scheme in a random-error channel is given by [44]

(2.8) ηGBN =
Pc · (k/n)

Pc + (1 − Pc)N
=

(1 − Pe)(k/n)

1 + (N − 1)Pe

,

wherePe = 1 − Pc is the PER of the channel. Unlike the SW and SR schemes, the throughput
of the GBN scheme does not depend only on the average PER, but also on how the packet errors
are distributed. It was shown in [42] that if the average PER is the same but errors are burstier,
then the throughput of the GBN scheme is higher.

If the receiver of the SR scheme has an infinite buffer (i.e. there cannot be buffer overflow), the
throughput is independent of the round-trip delay and is given by [44]

(2.9) ηSR = Pc ·
(

k

n

)

.

If the round-trip delay is small enough to be negligible, i.e., the acknowledgement for a packet
arrives instantaneously after the transmission has ended,then all the three basic ARQ schemes
are clearly identical, and we have what is referred to as theideal SR (ISR) scheme[26]. Fig-
ure 2.3 shows the throughputs of the three basic ARQ schemes as functions of the BER in a
BSC, whenn = 200, k = 184, andN = 10 (i.e. the round-trip delay equals the transmission
time of 9 packets).
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Figure 2.3: A performance comparison of the basic ARQ schemes.
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2.4 Improving Basic ARQ Schemes

2.4.1 Selection of the Packet Size

As we have seen, the throughput efficiencies of all the basic ARQ schemes are functions of the
packet sizen. Consequently,n is a very important design parameter when the performance of
the scheme is optimized. There is an obvious trade-off here:for short blocks, the PER is lower
and fewer bits are retransmitted in the case of an error; on the other hand, a larger proportion of
time is spent on transmitting the actual data bits if longer blocks are used.

Optimization of the packet size has been studied extensively in the past, e.g., [20, 21, 38, 55,
56]. In [38], Kirlin studied the maximization of the quantity that he called the ‘transmission
efficiency’, which was essentially the same as the throughput efficiencyη. A different approach
was taken in [20], where the author considered random-length messages, which were divided
into blocks of fixed length before transmission. The length of these blocks was optimized so
that the average ‘wasted time’ per message was minimized (the time spent on retransmissions,
acknowledgements, and transmitting non-data bits was considered ‘wasted’). The optimization
was performed for all the three basic types of ARQ schemes; both random-error and burst-error
channels were considered. In [56], throughput efficiencyη was maximized with respect to the
packet size for the basic ARQ schemes. An interesting Bayesian approach was proposed in
[55], where the expected efficiency of an adaptive ARQ schemewas maximized with respect
to the packet size, given the transmission history. Packet size optimization for adaptive ARQ
schemes has also been considered in the publications of thisthesis, as will be seen later.

The throughput of the SR scheme was given in ( 2.9). However, in the articles of this thesis, it
usually appears in the functional form

(2.10) ηSR(n, ǫ, h) =
n − h

n
[1 − Pe(n, ǫ)] =

n − h

n
(1 − ǫ)n,

wheren is the packet size in bits,ǫ is the channel BER,Pe(n, ǫ) is the channel PER, and
h = n−k is the number of overhead (i.e. non-data) bits per packet. Ifthe acknowledgements get
erased on the return channel randomly with probabilityPf , the throughput must be multiplied
by (1 − Pf). If we differentiateηSR with respect ton and set the derivative as zero, and then
solve forn, we get

(2.11) nopt =
h ln(1 − ǫ) −

√

h2[ln(1 − ǫ)]2 − 4h ln(1 − ǫ)

2 ln(1 − ǫ)
,

which must naturally be rounded to the one of the adjacent integer values that yields higher
throughput.

Figure 2.4 showsηSR as a function ofn for BER values10−5 , 10−4 , 10−3 and10−2 . It can be
seen that the optimal packet sizes become smaller and the optima ‘steeper’ as the BER increases.
If h = 16, the optimal packet sizes corresponding to BER values10−5, 10−4, 10−3 and10−2 are
1273, 408, 135 and 49 bits, respectively. In Figure 2.5, the SR throughput is shown as a function
of the BER for these four packet sizes. We call the value of theBER at which the two curves
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Figure 2.4: The SR throughput as a function of packet size with four different BER values when
h = 16 andPf = 0.02

corresponding to packet sizesn1 andn2 intersect thecrossover BERof these packet sizes. In
particular, ifn1 = 2n2 , then the crossover BER is given by [P4]

(2.12) ǫco = 1 −
[

2(n2 − h)

2n2 − h

]1/n2

.

2.4.2 Use of Multicopy Transmissions

Another potential method of improving the performance of the basic ARQ schemes in poor
channel conditions is to use multicopy transmissions, where multiple copies of each data block
are sent contiguously before moving on to the next block in schedule. If at least one of the
copies is received successfully, the data block is acknowledged positively.

For the SR scheme, the throughput would actually decrease ifmulticopy transmissions were
used because then some successful transmissions would be wasted, which does not happen
in the basic SR scheme. However, if the buffer space at the receiver is severely limited, the
probability of buffer overflow can be decreased by sending multiple copies of the packet in
the retransmissions. A modified SR scheme based on this idea was proposed and analyzed by
Weldon in [75]. If the delay performance is considered instead of throughput, it was shown in
[80] that in some burst-error channels the mean transmission delay of a packet in the SR scheme
can be reduced by sending two identical copies of the packet separated by a fixed delay at each
transmission attempt.
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Figure 2.5: The SR throughput as a function of the BER with four different packet sizes when
h = 16 andPf = 0

In the publications of this thesis, multicopy transmissions are considered with the GBN scheme.
An early related work was [64], where Sastry suggested a modified GBN scheme in which, after
a retransmission request, the same data block is sent repeatedly until an ACK is received for it.
GBN schemes with multicopy transmissions have also been studied e.g., in [9, 10]. The delay
performance of multicopy GBN schemes was studied in [22]. In[10], the authors showed that
if the GBN ARQ scheme is used in a stationary channel with random packet errors, then the
optimal strategy, which maximizes the packet throughput, is to use the same numberm of copies
in all transmission attempts of a data block. The optimal value ofm, however, depends on the
PER and the round-trip delay.

If the PER isPe and feedback errors occur randomly with probabilityPf , then the packet
throughput of them-copy GBN scheme is given by [79]

(2.13) TGBN(N, m, Pe, Pf) =
1−[1−(1−Pe)(1−Pf)]

m

m+(N−1)[1−(1−Pe)(1−Pf)]m
.

Figure 2.6 showsTGBN as a function of the PER form = 1, 2, 3, 4 whenN = 10 andPf = 0.
It can be seen that the performance can be improved significantly by selecting the value ofm
optimally based on channel state information. The PER valueat which the curves corresponding
to m = m1 andm = m2 intersect is called thecrossover PER.In the interesting particular case
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wherem1 = 1 andm2 = 2, the crossover PER can be shown to be [P6]

(2.14) Pco =
1
N
− Pf

1 − Pf
.
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Figure 2.6: Comparison ofm-copy GBN schemes with different values ofm

2.5 Hybrid ARQ and Packet Combining

The combinations of ARQ schemes and FEC are known as hybrid ARQ (HARQ) schemes
[43, 77]. These schemes are further classified into type-I (HARQ-I) and type-II (HARQ-II)
schemes.

2.5.1 HARQ-I Schemes

In HARQ-I schemes, all the transmission attempts of a packetare identical codewords contain-
ing redundant bits for both error detection and error correction. There are two different ways
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to accomplish this. In the early HARQ-I schemes, such as those studied in [65, 66], one block
code was used simultaneously for error detection and error correction. Another approach is to
use two codes: an inner code, which is used for error correction (and possibly for simultaneous
error detection if it is a block code), and an outer code, which is used for error detection only.
This kind of HARQ-I schemes which use concatenated coding and hence require two encoders
at the transmitter and two decoders at the receiver have beenproposed and analyzed for example
in [8, 24, 36].

Generally speaking, the HARQ-I schemes are best suited for channel environments where the
level of noise and interference is fairly constant. Then theerror-correcting capability of the
FEC part of the scheme can be designed so that most of the erroneously received words can be
corrected, which reduces the number of retransmissions. However, in time-varying channels,
these schemes lack flexibility in adapting to changing channel conditions: the additional parity
bits for error correction may represent a waste of bandwidthwhen the channel BER is low for
long periods of time; on the other hand, the designed error-correcting capability may not be
sufficient for the occasional noisy periods.

2.5.2 HARQ-II Schemes

The adaptivity which is desired in time-varying channel environments is achieved to some extent
by HARQ-II schemes, where the parity bits for error correction are sent only when they are
needed. This is known as the method of incremental redundancy, the concept of which was first
introduced by Mandelbaum in [51]. On the first transmission attempt, only parity bits for error
detection are appended to the message, in the same way as in basic ARQ schemes. If errors
are detected in the received word, it is stored in a buffer anda retransmission is requested. The
retransmission is not the original codeword but a block of parity-check bits formed based on
the original message and an error-correcting code. When this block is received, it is used to
correct the errors in the previously stored erroneous word.If the error correction fails, another
retransmission is requested, which can be either a repetition of the original codeword or another
parity block, depending on the retransmission strategy andthe type of error-correcting code that
is used. This process continues until the original codewordis delivered successfully. One of the
first articles to describe a scheme using incremental redundancy was [53], where Reed-Muller
or convolutional codes were used for error correction.

Probably the most widely known HARQ-II scheme, and the first scheme to be called by that
name, was proposed and analyzed in a BSC environment in [45] and improved in [74]. In
this scheme, a rate-1/2 invertible block code or a rate-1/2 convolutional code is used for error
correction. In the retransmissions, the original codewordand the parity block alternate, but only
two packets are combined at a time to retrieve the original message. Throughput analysis of this
scheme in a packet-level G-E channel was done in [48]. In [78], Yang and Bhargava studied
the delay and coding gain performance of a ‘truncated’ HARQ-II scheme where at most one
retransmission per packet is allowed, and in [50], Malkamäki and Leib studied the performance
of truncated HARQ-II schemes in block fading channels.

The generalization of this idea to combination of more than two packets is known as code com-
bining and was first suggested by Chase in [17], and the throughput performance of an HARQ-
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II scheme using code combining was studied by Kallel in [34].This type of schemes are often
called generalized HARQ-II schemes.In [57], Mukhtar et al. analyzed both the throughput
and the delay performance of a scheme with three ‘stages’ of code combining, and more gen-
eral expressions for the mean transfer delay of anM-stage generalized HARQ-II scheme were
obtained in [41] by using signal flow graphs.

In the recent years, numerous HARQ-II schemes have been proposed using advanced coding
techniques, such as trellis-coded modulation [23], turbo coding [58] and zigzag codes [16].

If the packet combining is done after the quantization of thereceived data into bits, we have a
hard combiningsystem. Lately, there has been a substantial interest in HARQ schemes using
soft combiningmethods. In [31], for example, the authors study a scheme where several erro-
neously received copies of a codeword are concatenated (without hard symbol quantization into
bits) to form a noise-corrupted codeword in a longer, lower-rate code. The proposed soft com-
bining method is obtained by using now the symbol-by-symbolMAP (maximum a posteriori)
decoder for the aforementioned longer code.

2.5.3 Diversity Combining

Besides code combining, which is used in HARQ-II schemes, analternative way of combining
packets is to use diversity combining, where multiple identical (except for the errors) copies of
a packet are combined to locate the errors [77, p. 394]. One such technique is to compute the
bitwise modulo-2 sum (or logical XOR) of two received erroneous copies of a packet and to
use the resulting ‘joint bit error map’ to retrieve the original message. This method was first
proposed in [67], and the throughput analysis of an ARQ scheme with packet combining based
on this idea was presented in [P1]. A ‘softer’ form of Sindhu’s combining method was proposed
by Benelli in [7], where four-level quantization was performed on the received packets before
combining. In [1], Adachi et al. studied a time diversity ARQscheme which used maximal
ratio combining (MRC) at the receiver, and in [76], Wicker added a majority-logic diversity
combiner to a HARQ-I scheme to reduce the retransmissions.

2.6 Adaptive ARQ

By an adaptive ARQ scheme, we mean an ARQ scheme with two or more different transmission
modes meant for different channel conditions, which uses some channel sensing mechanism
to decide which transmission mode is used. A change of transmission mode can mean, for
example, a change of the packet size in the SR scheme (e.g., [52]), or a change of the number
of transmitted copies of a packet in the GBN scheme (e.g., [79]), or a change of the code rate
in an HARQ-I scheme (e.g., [60]). In these schemes, the channel sensing is usually done by
observing the acknowledgements sent by the receiver to the transmitter. This can mean either
estimation of error rates, as in [52], or detection of channel state changes, as in [61] and [79],
which does not require as long an observation interval (OBI)as reliable error rate estimation.
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In [52], an adaptive SR scheme was proposed, where the packetsize used in the current trans-
mission was selected from a finite set of values based on a long-term BER estimate. This
estimate was obtained by counting the incorrectly receivedpackets over a time interval and as-
suming that there can be at most one bit error in an erroneous packet. Another adaptive SR
scheme with variable packet size was proposed in [55], wherethe a posterioridistribution of
the BER was computed based on the number of retransmissions during the OBI, and the packet
size was selected so that the expected efficiency of the protocol was maximized. In [29], an
adaptive SW scheme with variable packet size was proposed and simulated in a fading chan-
nel environment. The selection of the packet size was based on the PER estimate obtained by
observing the acknowledgements over an OBI.

In [79], Yao proposed an adaptive GBN scheme where the transmitted number of copies of a
packet was variable. The channel sensing algorithm suggested by Yao is used also in [P2]–[P6]
and will be described in Section 3.1. Another adaptive GBN scheme was proposed in [39].
In this scheme, there areN transmission modes corresponding to the numbers of transmitted
copies1, . . . , N . The transmission mode is changed when a possible change of the channel state
is detected.

Numerous adaptive HARQ schemes have been suggested in the literature. Typically, the code
rate is varied according to the estimated channel conditions. In [72] and [73], adaptive HARQ-I
schemes were studied with convolutional codes used for error correction. Finite-state Markov
models were assumed for the channel. Switching between transmission modes depended on the
number of erroneous blocks occurring during an OBI. A similar adaptive HARQ-I scheme with
either block or convolutional codes was proposed in [60]. In[61], sequential statistical tests
were applied on the acknowledgements to detect channel state changes. An adaptive HARQ-II
scheme with variable packet size was proposed for wireless ATM networks in [33]. This scheme
used rate compatible convolutional (RCC) codes for error correction. In [19], three different
adaptive HARQ schemes are proposed using Reed-Solomon codes for error correction. Another
adaptive HARQ scheme using Reed-Solomon codes with variable rate for error correction was
proposed in [54]. In this scheme, short-term symbol error rate was estimated by computing
the bitwise modulo-2 sum of two erroneous copies of a packet.This method was originally
proposed in [15].
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Chapter 3

Adaptive ARQ Schemes Based on Yao’s
Algorithm

3.1 Yao’s Channel Sensing Algorithm

In [79], Yao proposed an adaptive GBN scheme with two transmission modes,L andH, meant
for ‘good’ and ‘bad’ channel conditions, respectively. Mode L is the standard GBN scheme,
but in modeH, m copies of the packet are sent at each transmission attempt. Switching be-
tween transmission modes is done based on the following simple algorithm: in modeL, if the
transmitter receivesα contiguous NACKs, it switches to modeH and begins multicopy trans-
missions. If the transmitter receivesβ contiguous ACKs in modeH, it switches immediately
back to modeL.

3.2 Related Work

It was noted in [3, 13] that the simple two-state Markov chainused by Yao [79] in his analysis
did not model the dynamics of the adaptive GBN scheme with sliding OBIs correctly, even
in a stationary channel. Instead, a Markov chain withα + β states was needed. In [12], a
slightly different adaptive GBN scheme with static OBIs of lengthsα andβ was modelled by a
two-state semi-Markov process, still assuming a stationary channel environment. In [4], Yao’s
algorithm was applied to an adaptive SR scheme with variablepacket size in stationary fading
channels. Optimization ofα andβ for stationary channels has been studied in [3, 5] for an
adaptive GBN scheme in a BSC environment, and in [4] for an adaptive SR scheme in a fading
channel environment using the threshold model.
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3.3 System Model and Throughput Analysis

In publications [P2]–[P6] of this thesis, the dynamics of the system consisting of the time-
varying channel environment and the adaptive ARQ scheme aremodelled in a straightforward
fashion by Markov chains. The states of these processes are characterized by the state of the
forward channel (G or B), (possibly) the state of the return channel (g or b), the transmission
mode (L or H), and the state of the counter of contiguous NACKs in modeL (0, . . . , α − 1) or
the counter of contiguous ACKs in modeH (0, . . . , β − 1). The number of the states depends
on the feedback channel model and on the values of the design parametersα andβ.

In [P2]–[P5], we have studied adaptive SR schemes, were packet sizes ofn1 andn2 bits, where
n1 = 2n2, are used in transmission modesL andH, respectively. The number of parity bits for
error detection,h, is the same in both the cases. The receiver sends the acknowledgements to
the transmitter always after receivingn1 bits. In theH mode, this means acknowledging pairs
of n2-bit packets; still, only the incorrectly receivedn2-bit packets are retransmitted. These
definitions make the scheme easy to implement. Switching between transmission modes is done
based on a slightly modified version of Yao’s algorithm: in modeL, if the transmitter receivesα
NACKs contiguously, it switches immediately to modeH; in modeH, afterβ contiguous pairs
of n2-bit packets have been received completely free of errors and acknowledged positively,
modeL is resumed. In the simplest case, as in [P2] and [P3], the return channel is assumed to
be error-free and the round-trip delay is assumed to be negligible. Then the system model has
2(α + β) states, which are defined as follows:

(i) States1, . . . , α, also denoted byGLr, wherer = 0, . . . , α − 1: the channel state isG,
the transmission mode isL, and the transmitter has receivedr contiguous NACKs. These
states form the groupGL.

(ii) Statesα + 1, . . . , α + β, also denoted byGHr, wherer = 0, . . . , β − 1: the channel state
is G, the transmission mode isH, and the transmitter has receivedr contiguous ‘double
ACKs’. These states form the groupGH.

(iii) Statesα + β + 1, . . . , 2α + β, also denoted byBLr, wherer = 0, . . . , α − 1: these states
form the groupBL and are similar to the statesGLr, except that the channel is in stateB.

(iv) States2α + β + 1, . . . , 2(α + β), also denoted byBHr, wherer = 0, . . . , β − 1: these
states form the groupBH and are similar to the statesGHr, except that the channel is in
stateB.

The non-zero transition probabilities are given in Table 3.1. In the table entries,PCG andPCB

denote the probabilities of a correct transmission in statesG andB, respectively. The transition
probabilities of the forward channel fromG to B and fromB to G are denoted byγ andδ,
respectively, as was mentioned earlier in Section 2.1.1.

Figure 3.1 shows the state transition diagram for this system model whenα = 2 andβ = 3.
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Table 3.1: The non-zero transition probabilities of the system model in [P2]
old state new state probability

GLi, 0 ≤ i ≤ α − 2

GL0 (1 − γ)PCG

GLi+1 (1 − γ)(1 − PCG)
BL0 γPCG

BLi+1 γ(1 − PCG)

GLα−1

GL0 (1 − γ)PCG

GH0 (1 − γ)(1 − PCG)
BL0 γPCG

BH0 γ(1 − PCG)

GHi, 0 ≤ i ≤ β − 2

GH0 (1 − γ)(1 − PCG)
GHi+1 (1 − γ)PCG

BH0 γ(1 − PCG)
BHi+1 γPCG

GHβ−1

GL0 (1 − γ)PCG

GH0 (1 − γ)(1 − PCG)
BL0 γPCG

BH0 γ(1 − PCG)

BLi, 0 ≤ i ≤ α − 2

GL0 δPCB

GLi+1 δ(1 − PCB)
BL0 (1 − δ)PCB

BLi+1 (1 − δ)(1 − PCB)

BLα−1

GL0 δPCB

GH0 δ(1 − PCB)
BL0 (1 − δ)PCB

BH0 (1 − δ)(1 − PCB)

BHi, 0 ≤ i ≤ β − 2

GH0 δ(1 − PCB)
GHi+1 δPCB

BH0 (1 − δ)(1 − PCB)
BHi+1 (1 − δ)PCB

BHβ−1

GL0 δPCB

GH0 δ(1 − PCB)
BL0 (1 − δ)PCB

BH0 (1 − δ)(1 − PCB)

The performance of an adaptive ARQ scheme is measured here byits average throughput, which
is defined as the average of the throughput of the scheme over all the states of the system model.
For example, the average throughput of the adaptive SR scheme in [P2] is given by

ηadapt =ηSR(n1, ǫ1, h) ·
∑

i∈GL

πi + ηSR(n2, ǫ1, h) ·
∑

i∈GH

πi+

ηSR(n1, ǫ2, h) ·
∑

i∈BL

πi + ηSR(n2, ǫ2, h) ·
∑

i∈BH

πi ,
(3.1)

where for example,
∑

i∈GL πi is the probability that the forward channel is in stateG and the
transmission mode isL, andηSR(n1, ǫ1, h) is the corresponding throughput, and so on.
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Figure 3.1: The state transition diagram of the system modelin [P2] and [P3] whenα = 2 and
β = 3

The average throughput of a ‘real’ scheme (specified by the values ofα andβ) is upper-bounded
by that of an ideal adaptive scheme, which is always in the ‘correct’ transmission mode. That
is, the time periods when the forward channel is in stateG coincide with those when the trans-
mission mode isL. In [P2], this upper bound is given by

(3.2) ηideal = πG · ηSR(n1, ǫ1, h) + πB · ηSR(n2, ǫ2, h) ,

where the functionηSR(n, ǫ, h) was defined in ( 2.10), andπG andπB are the steady-state prob-
abilities of the forward channel being in statesG andB, respectively.

In [P4], the round-trip delay was also assumed to be negligible, but a G-E model was now
assumed also for the return channel. The state of the total system consisting of the adaptive
SR scheme and the two channels develops in time according to aMarkov chain with4(α + β)
states, which are defined as follows:

(i) States1, . . . , α , also denoted byGgLr , wherer = 0, . . . , α − 1: the forward and return
channel states areG andg , respectively, the transmission mode isL , and the transmitter
has receivedr contiguous NACKs. These states form the groupGgL .

(ii) Statesα + 1, . . . , α + β , also denoted byGgHr , wherer = 0, . . . , β − 1: the forward
and return channel states areG andg , respectively, the transmission mode isH , and the
transmitter has receivedr contiguous double-ACKs. These states form the groupGgH .

22



(iii) Statesα+β +1, . . . , 2α+β , also denoted byGbLr , wherer = 0, . . . , α−1: these states
form the groupGbL and are similar to the statesGgLr , except that the return channel is
in stateb .

(iv) States2α + β + 1, . . . , 2(α + β) , also denoted byGbHr , wherer = 0, . . . , β − 1: these
states form the groupGbH and are similar to the statesGgHr , except that the return
channel is in stateb .

(v) States2(α + β) + 1, . . . , 3α + 2β , also denoted byBgLr , wherer = 0, . . . , α− 1: these
states form the groupBgL and are similar to the statesGgLr , except that the forward
channel is in stateB .

(vi) States3α + 2β + 1, . . . , 3(α + β) , also denoted byBgHr , wherer = 0, . . . , β − 1: these
states form the groupBgH and are similar to the statesGgHr , except that the forward
channel is in stateB .

(vii) States3(α + β) + 1, . . . , 4α + 3β , also denoted byBbLr , wherer = 0, . . . , α − 1: these
states form the groupBbL and are similar to the statesGbLr , except that the forward
channel is in stateB .

(viii) States4α + 3β + 1, . . . , 4(α + β) , also denoted byBbHr , wherer = 0, . . . , β − 1: these
states form the groupBbH and are similar to the statesGbHr , except that the forward
channel is in stateB .

The transitions between the states of the system model happen at regular time intervals corre-
sponding ton1 transmitted bits. They are determined by

• state transitions of the two channels,

• success/failure of the transmission of the current packet,

• correctness of the corresponding received, acknowledgement (this is relevant only when
the return channel is in stateb).

The number of possible state transitions from one state of the system model is either 8 or 12,
depending on the possibility and consequences of a feedbackerror. Note that in the preceding
case of error-free return channel, there were only 4 possible transitions from each state.

It is very difficult to draw a complete state transition diagram of the system model clearly, even
with smallα andβ. However, there is a lot of symmetry in the model. The set of states can
be divided into four subsets in a very natural way based on thechannel state combinations. We
denote these subsets byGg , Gb , Bg andBb .

Table 3.2 shows the non-zero transition probabilities for two groups of states,GgL andBbH .
In the table entries,Pe,1 andPe,2 are the probabilities that there is at least one bit error in a
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Table 3.2: The non-zero transition probabilities for two groups of states of the system model in
[P4].

old state new state probability

GgLi, 0 ≤ i ≤ α − 1

GgL0 (1 − γ) (1 − λ) (1 − Pe,1)
GgLi+1 (if i 6= α − 1) (1 − γ) (1 − λ) Pe,1

GgH0 (if i = α − 1) (1 − γ) (1 − λ) Pe,1

GbL0 (1 − γ) λ (1 − Pe,1)
GbLi+1 (if i 6= α − 1) (1 − γ) λ Pe,1

GbH0 (if i = α − 1) (1 − γ) λ Pe,1

BgL0 γ (1 − λ) (1 − Pe,1)
BgLi+1 (if i 6= α − 1) γ (1 − λ) Pe,1

BgH0 (if i = α − 1) γ (1 − λ) Pe,1

BbL0 γ λ (1 − Pe,1)
BbLi+1 (if i 6= α − 1) γ λ Pe,1

BbH0 (if i = α − 1) γ λ Pe,1

BbHi, 0 ≤ i ≤ β − 1

GgL0 (if i = β − 1) δ µ (1 − Pf) (1 − Pe,2)
GgH0 (if i = 0) δ µ [Pf + (1 − Pf) Pe,2]
GgH0 (if i 6= 0) δ µ (1 − Pf) Pe,2

GgHi (if i 6= 0) δ µ Pf

GgHi+1 (if i 6= β − 1) δ µ (1 − Pf) (1 − Pe,2)
GbL0 (if i = β − 1) δ (1 − µ) (1 − Pf) (1 − Pe,2)

GbH0 (if i = 0) δ (1 − µ) [Pf + (1 − Pf) Pe,2]
GbH0 (if i 6= 0) δ (1 − µ) (1 − Pf) Pe,2

GbHi (if i 6= 0) δ (1 − µ) Pf

GbHi+1 (if i 6= β − 1) δ (1 − µ) (1 − Pf) (1 − Pe,2)
BgL0 (if i = β − 1) (1 − δ) µ (1− Pf) (1 − Pe,2)

BgH0 (if i = 0) (1 − δ) µ [Pf + (1 − Pf) Pe,2]
BgH0 (if i 6= 0) (1 − δ) µ (1− Pf) Pe,2

BgHi (if i 6= 0) (1 − δ) µ Pf

BgHi+1 (if i 6= β − 1) (1 − δ) µ (1− Pf) (1 − Pe,2)
BbL0 (if i = β − 1) (1 − δ) (1 − µ) (1 − Pf) (1 − Pe,2)

BbH0 (if i = 0) (1 − δ) (1 − µ) [Pf + (1 − Pf) Pe,2]
BbH0 (if i 6= 0) (1 − δ) (1 − µ) (1 − Pf) Pe,2

BbHi (if i 6= 0) (1 − δ) (1 − µ) Pf

BbHi+1 (if i 6= β − 1) (1 − δ) (1 − µ) (1 − Pf) (1 − Pe,2)

receivedn1-bit sequence when the forward channel is in stateG or B , respectively. They are
given by

Pe,1 = Pe(n1, ǫ1) ,(3.3)

Pe,2 = Pe(n1, ǫ2) ,(3.4)

wherePe(n, ǫ) was defined in ( 2.1).
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Figure 3.2 shows the possible state transitions in a restricted model where only subsetsGg and
Gb are included, whenα = 2 andβ = 3. The model is symmetric in the sense that, for example
from the states in subsetGb , exactly similar state transitions are possible to subsetsBg andBb
as to subsetGg .
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Figure 3.2: A partial state transition diagram of the systemmodel in [P4] whenα = 2 and
β = 3

In [P5] and [P6], it is no longer assumed that the round-trip delay is negligible. This makes
it more difficult to model the system dynamics because the acknowledgement that arrives at
the transmitter is determined by the outcome of the packet transmission that took place one
round-trip delay ago; hence this acknowledgement depends statistically on the channel stateone
round-trip delay ago.A straightforward Markov model of this kind of system was presented
in [14], and the number of states in the system was seen to growexponentially with the delay
parameterN .

A different, indirect method, which avoids the ‘state explosion’, was used in [P5]–[P6]. In [P6],
for example, where an adaptive GBN scheme similar to the one in Yao’s original paper [79]
was studied in an environment where a G-E model was assumed for both forward and return
channels, a Markov chain with the following4(α + β) states was considered. Only the first two
groups of states are described in detail; the others are defined in a similar manner.

(i) States1, . . . , α , also denoted byG′gLi , wherei = 0, . . . , α−1: the forward channel was
in stateG N−1 time units ago, the return channel is in stateg , the transmitter is in mode
L and has receivedi contiguous NACKs. These states form the groupG′gL .
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(ii) Statesα + 1, . . . , α + β , also denoted byG′gHi , wherei = 0, . . . , β−1: same asG′gLi ,
except that the transmitter is in modeH and has receivedi contiguous ACKs. These states
form the groupG′gH .

(iii) Statesα + β + 1, . . . , 2α + β , also denoted byG′bLi , wherei = 0, . . . , α−1 , form the
groupG′bL .

(iv) States2α + β + 1, . . . , 2(α + β) , also denoted byG′bHi , wherei = 0, . . . , β−1 , form
the groupG′bH .

(v) States2(α + β) + 1, . . . , 3α + 2β , also denoted byB′gLi , wherei = 0, . . . , α−1 , form
the groupB′gL .

(vi) States3α + 2β + 1, . . . , 3(α + β) , also denoted byB′gHi , wherei = 0, . . . , β−1 , form
the groupB′gH .

(vii) States3(α + β) + 1, . . . , 4α + 3β , also denoted byB′bLi , wherei = 0, . . . , α−1 , form
the groupB′bL .

(viii) States4α + 3β + 1, . . . , 4(α + β) , also denoted byB′bHi , wherei = 0, . . . , β−1 , form
the groupB′bH .

The state transitions of this model are identical to those ofthe model in [P4]. The performance
of the adaptive GBN scheme in [P6] was measured by the averagepacket throughput:

Tave =P (Gg′L) TGg′L + P (Gg′H) TGg′H + P (Gb′L) TGb′L + P (Gb′H) TGb′H+

P (Bg′L) TBg′L + P (Bg′H) TBg′H + P (Bb′L) TBb′L + P (Bb′H) TBb′H ,
(3.5)

where for exampleP (Gg′L) is the probability that the forward channel state isG and the trans-
mitter is in modeL during the transmission of a packet, and the feedback channel is in stateg
when the corresponding acknowledgement arrives, i.e.,N−1 time units later, whileTGg′L is the
corresponding packet throughput.

The probabilityP (Gg′L) can be expressed as

(3.6) P (Gg′L) =

α−1
∑

i=0

P (Gg′Li),

where the subscripti refers to the state of the counter of contiguous NACKs in modeL.

Note that the probabilitiesP (Gg′Li) are not given directly by the stationary distribution of the
Markov chain presented above. Instead, they are obtained from the following simple calculation,
which utilises the Markovian character and independence ofthe two channel models, and some
basic rules of probability calculus (the total probabilityof an event).

P (Gg′Li) =P (G′gLi)(1 − γ(N−1))(1 − λ(N−1)) + P (G′bLi)(1 − γ(N−1)) µ(N−1)+

P (B′gLi) δ(N−1)(1 − λ(N−1)) + P (B′bLi) δ(N−1)µ(N−1),

i = 0, . . . , α − 1 .

(3.7)
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The probabilitiesP (Gg′H), P (Gb′L), P (Gb′H), P (Bg′L), P (Bg′H), P (Bb′L) andP (Bb′H)
are obtained in a similar way. The corresponding throughputvalues are given by the following
equations

TGg′L = TGBN(N, m1, Pe,1, 0) ,

TGg′H = TGBN(N, m2, Pe,1, 0) ,

TGb′L = TGBN(N, m1, Pe,1, Pf) ,

TGb′H = TGBN(N, m2, Pe,1, Pf) ,

TBg′L = TGBN(N, m1, Pe,2, 0) ,

TBg′H = TGBN(N, m2, Pe,2, 0) ,

TBb′L = TGBN(N, m1, Pe,2, Pf) ,

TBb′H = TGBN(N, m2, Pe,2, Pf) .

(3.8)

An upper bound forTave is provided by the average packet throughput of an ideal adaptive
GBN scheme, where the time periods when the forward channel is in stateG (B) coincide
with those when the transmission mode isL (H). Since the forward and feedback channels are
independent, this upper bound is given by

Tideal =πGπgTGBN(N, m1, Pe,1, 0) + πGπbTGBN(N, m1, Pe,1, Pf)+

πBπgTGBN(N, m2, Pe,2, 0) + πBπbTGBN(N, m2, Pe,2, Pf) .
(3.9)

3.4 Parameter Optimization

In [3, 4, 5], the authors presented optimization results forparametersα andβ. An adaptive
SR scheme with variable packet size was considered in [4] in aRayleigh fading environment
using the threshold model, whereas the two other papers discussed an adaptive GBN scheme
in a channel environment where packet errors occur randomly. However, none of these articles
used a real time-varying channel model.

A different approach was used in publications [P4]–[P6] of this thesis. In each paper, a G-E
channel model was used to represent a time-varying channel environment. Further, optimization
of the packet size was studied for adaptive SR schemes in [P4]and [P5].

3.4.1 Optimization of the Packet Size

Parameter optimization for the adaptive SR scheme in [P4] and [P5] was done in two steps. First,
the packet sizes are optimized for the ‘ideal’ adaptive scheme, and then the optimal packet sizes
are adopted when parametersα andβ are being optimized.

In the ‘two-dimensional’ packet size optimization, we let the BER values in forward channel
statesG andB, ǫ1 andǫ2, vary over intervals[ǫ1,a, ǫ1,b] and[ǫ2,a, ǫ2,b], respectively. The scheme
uses two different packet sizes,n1 andn2, wheren1 = 2n2. The smaller packet sizen2 is
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taken as the independent parameter, and the optimal value ofn2 is defined to be the one that
maximizes the double integral

ǫ1,b
∫

ǫ1,a

ǫ2,b
∫

ǫ2,a

ηideal(ǫ1, ǫ2; n2) dǫ1dǫ2,

while satisfying the conditionǫ1,b < ǫco < ǫ2,a, whereǫco, the cross-over BER between packet
sizesn2 and2n2, is obtained from Eq. 2.12. Maximization of the integral above is equivalent to
maximizing

(3.10) I1(n2) =

ǫ1,b
∫

ǫ1,a

ǫ2,b
∫

ǫ2,a

[

πG

(

1 − h

2n2

)

(1 − ǫ1)
2n2 + πB

(

1 − h

n2

)

(1 − ǫ2)
n2

]

dǫ1dǫ2.

In the ‘one-dimensional’ optimization,ǫ1 is fixed and optimization is performed over a range of
ǫ2-values, and the integral to be maximized is one-dimensional:

(3.11) I2(n2) =

ǫ2,b
∫

ǫ2,a

[

πG

(

1 − h

2n2

)

(1 − ǫ1)
2n2 + πB

(

1 − h

n2

)

(1 − ǫ2)
n2

]

dǫ2 .

In this case, we require thatǫ1 < ǫco < ǫ2,a .

3.4.2 Optimization ofα and β

In [P4], the following (one-dimensional) approach is used in the optimization ofα andβ. We
use the value ofn2 that maximizesI2(n2), and define the optimal(α, β)-combination as the one
that minimizes the mean-square difference ofηave andηideal over the interval[ǫ2,a, ǫ2,b]. This is
approximately equivalent to minimizing the sum

(3.12) E(α, β) =
K

∑

k=1

[ηave(ǫ2,k; α, β) − ηideal(ǫ2,k)]
2,

where the sample valuesǫ2,k, k = 1, . . . , K, are evenly spaced on the interval[ǫ2,a, ǫ2,b]. Since
we do not have a closed-form expression forηave as a function ofα, β and other parameters,
a computer search must be used in the optimization. Figure 3.3 shows the average throughput
of the adaptive SR scheme in [P4] with different values ofα andβ, and the upper boundηideal,
as functions ofǫ2 (the BER in stateB) for a given set of values of the parameters specifying
the SR scheme. The difference between the ideal curve and theoptimal actual performance
curve corresponding to(α, β) = (2, 16) is at most points too small to be visible. The two other
parameter combinations illustrated here are clearly inferior choices.

3.5 Summary of Optimization Results

The optimal value ofn2 is determined essentially by the proportion of time that theforward
channel stays in stateB. The smaller the value ofπB is, the bigger is the optimal value ofn2.
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Figure 3.3: The performances of the ideal scheme and the adaptive SR scheme with different
(α, β)-combinations whenγ0 = δ0 = 10−6

It is hardly surprising that the optimal values ofα andβ are larger for more slowly varying
forward channels. An increased value of the round-trip delay or the probability of feedback
erasure tend to decrease the optimal values ofβ slightly, as can be seen in Table 3.3, whereD0

is the round-trip delay expressed as the number of bits that can be transmitted during the time.

Table 3.3: Optimization results whenPf = 0.
γ0 δ0 D0 (α, β)opt

10−5 10−5 1000 (2, 8)
10−6 10−6 1000 (3, 26)
10−7 10−7 1000 (3, 37)
10−8 10−8 1000 (4, 56)
10−9 10−9 1000 (4, 65)
10−5 10−5 10000 (2, 7)
10−6 10−6 10000 (2, 13)
10−7 10−7 10000 (3, 35)
10−8 10−8 10000 (4, 55)
10−9 10−9 10000 (4, 64)
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Chapter 4

ARQ with Diversity Combining

4.1 The EARQ Scheme with Time Diversity

In [67], Sindhu proposed a simple idea of combining incorrectly received packets to recover
the correct packet. A crucial procedure in this scheme was the computation of the bit-wise
XOR (Exclusive-OR) or, equivalently, the bit-wise modulo-2 sum of two incorrectly received
versions of a packet. The purpose of this operation was to getinformation about the potential
locations of the errors in the packets. The analysis in [67] considered only a burst-error channel
environment. In [P1], this idea has been applied to a simple SR ARQ scheme resulting in what
is called theextended ARQ (EARQ)scheme.

The EARQ scheme uses only one(n, k) code, which is used for error detection only. The
scheme operates as follows. If errors are detected in the first transmission of a codeword, the
received vector is stored in the receiver buffer and a retransmission is requested. If the retrans-
mission is error-free, the received vector is assumed to be the original codeword and an ACK is
sent to the transmitter. If errors are detected also in the retransmission, the bit-wise XOR of the
two erroneous copies of the codeword is computed.

The output of the XOR operation is ann-bit vector with 0s in the bit positions where the copies
coincide and 1s in the bit positions where they differ. The positions with 1s are the ones where
exactly one of the copies has an error. If, on the other hand, there is at least one bit position
where both copies have an error, this results in a 0 in the output of the XOR operation. This
event is called adouble errorin [P1].

The next step is to try to recover the original codeword by a straightforward search procedure.
This procedure begins from one of the two copies and starts togo through the potential error
patterns: the corresponding bits are inverted and the syndrome of the resulting vector is com-
puted based on the error-detecting code. This process continues until either a vector with zero
syndrome has been obtained or all the possibilities have been checked without a positive result.
In the first case, it is assumed that the correct codeword has been recovered and an ACK is sent
to the transmitter, which proceeds to transmit the next codeword. In the second case, a double
error has occurred and a NACK is sent requesting second retransmission of the codeword.
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If the second retransmission is found to be error-free, it isaccepted and an ACK is sent to
the transmitter. If errors are detected, the packet combining procedure is carried out with, if
necessary, both the earlier received erroneous copies. If one of these operations is successful,
an ACK is sent. Otherwise, yet another retransmission is requested. This time, the new copy, if
found erroneous, can be combined with three earlier copies,and so on. The process, of course,
continues until the codeword has been received correctly orrecovered by the packet combining
procedure.

One aspect that deserves special attention is thecomputational complexityof the search process
mentioned above. If there aren1 1s in the output of the XOR operation, there arenp = 2n1 − 2
potential error patterns, all of which are checked if the search is unsuccessful. It is easy to see
thatnp increases very rapidly with the noisiness of the channel. One solution to this problem is
to define some limitNmax, as in [P1]: packet combining is not attempted with a pair of packets
if the output of the XOR operation contains more thanNmax 1s.

4.2 Approximate Throughput Analysis

In [P1], the EARQ scheme is analyzed assuming a BSC with BER equal to pe. Further, it is
assumed that the round-trip delay is negligible and that theapplied code provides perfect error
detection. The packet throughput of the scheme is obtained from

(4.1) TEARQ =
1

E[L]
,

where the random variableL is defined as the number of transmissions required until a codeword
has been successfully received, and its expectation valueE[L] is naturally obtained from

(4.2) E[L] =
∞

∑

L=1

L · P (L) .

Clearly, the probability that one transmission is sufficient is equal toPc = 1 − Pe. ForL > 1,

(4.3) P (L) =

[

1 −
L−1
∑

r=1

P (r)

]

[

Pc + Pe(1 − αd(L))
]

,

whereαd(L) is the conditional probability that, given that all theL copies are erroneous and
that all pairs taken out of the firstL − 1 copies have double errors, theLth copy has a double
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error with all theL − 1 earlier copies. The exact calculation ofαd(L) gets complicated when
L ≥ 3. For example, whenL = 3, the events of the pairs(1, 2), (1, 3) and(2, 3) having double
errors are not independent. However, it turns out that the assumption of ‘independent double
errors’ is a good approximation of reality, as demonstratedby the good agreement between the
simulations and theoretical calculations in [P1]. Using the independence assumption, we get

(4.4) αd(L) =

∑n
k1=1 · · ·

∑n
kL=1 P (k1, . . . , kL) ·

∏

1≤i,j≤L
i<j

Pi,j

P L
e ·

∏L−1
l=2 αd(l)

,

where

(4.5) P (k1, . . . , kL) = P (k1)P (k2) · ·P (kL)

is the joint probability of theL copies havingk1, . . . , kL errors, respectively. Since the BSC
model is assumed, the numbers of errors in the copies are independent and identically distributed
random variables with binomial distributions:

(4.6) P (ki) =

(

n

ki

)

pki
e (1 − pe)

n−ki .

Further,Pi,j is the probability that two copies withki andkj errors, respectively, have a double
error. With the assumption thatk1 + kj ≤ n, it is easy to show that

(4.7) Pi,j = 1 − (n − ki)!(n − kj)!

n!(n − ki − kj)!
.

If the parameterNmax is also taken into account, the situation where there are more thanNmax

1s in the output of the XOR operation has the same effect as a double error. Thus, the following
modification is needed:

(4.8) Pi,j =

{

1 − (n−ki)!(n−kj)!

n!(n−ki−kj)!
, if ki + kj ≤ Nmax,

1, if ki + kj > Nmax .

The ‘limited’ EARQ scheme has been simulated with three different values ofNmax using 100-
bit packets. Figure 4.1 provides the results from these simulations along with approximated
theoretical packet throughputs for both ‘limited’ and ‘unlimited’ EARQ schemes. In this case,
the probabilitiesP (L) have been computed up toL = 5, andP (6) has been approximated by
the tail distribution. Even withNmax = 10, packet throughput of approximately 33% can be
achieved at BER as high as 0.05.

33



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BER

P
ac

ke
t t

hr
ou

gh
pu

t f
or

 1
00

−
bi

t p
ac

ke
ts

: Nmax=10 (theoretical and simulated)

: Nmax=11 (theoretical and simulated)

: Nmax=12 (theoretical and simulated)

: No Nmax (theoretical)

Figure 4.1: The packet thoughput of the EARQ scheme with and withoutNmax

4.3 The EARQ Scheme with Spatial Diversity

The throughput performances of four different ARQ schemes are compared in the context of
space diversity reception in [P7]: (i) the basic SR ARQ scheme (no diversity); (ii) the SR ARQ
scheme with switched diversity, where only one receiving antenna is active at a time, and the
active antenna is changed after every erroneously receivedpacket (the ‘SAD’ scheme in the
paper); (iii) the SR ARQ scheme with modified selection diversity, where both the antennas are
always at use, and an ACK is sent to the transmitter if at leastone of the antennas receives the
packet without errors (the ‘NSD’ scheme in the paper); (iv) the EARQ scheme studied in [P1],
this time utilizing spatial diversity and combining two erroneous copies of a packet that have
been received simultaneously on the two antennas.

In the AWGN channel, the throughputs can be calculated analytically. If the BPSK modulation
scheme is used, and the channel code rate isRc, the bit error probability in an AWGN channel
with the SNR equal toEb/N0 is given by [6]

(4.9) p =
1

2
erfc

(

√

EbRc

N0

)

.

Note that, since bit errors are random in AWGN channel, packet errors are also random. Thus,
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the SAD scheme does not provide any benefit over simple SR scheme in AWGN channels.
In the NSD scheme, the probability of successfully receiving a packet is that of a successful
reception over either of the diversity branches, that is,

(4.10) P1 = 1 − (1 − (1 − p)n)2,

and the throughput is

(4.11) ηNSD =
k

n
P1.

In the SR-NSD-EARQ scheme, when both copies are erroneous, apacket is retrieved correctly
if the combined copy does not have a double error, and if the total number of errors in the
combined copy is at mostNmax. The probability that both these conditions are satisfied is

P2 =

Nmax−1
∑

k1=1

{(

n

k1

)

pk1(1−p)n−k1 · (1−p)k1

Nmax−k1
∑

k2=1

[(

n−k1

k2

)

pk2(1−p)n−k1−k2

]}

=

Nmax−1
∑

k1=1

Nmax−k1
∑

k2=1

(

n

k1

)(

n−k1

k2

)

pk1+k2(1−p)2n−k1−k2 ,

(4.12)

and the throughput of the EARQ scheme is given by

(4.13) ηEARQ =
k

n
(P1 + P2).

In Figure 4.2, the throughput curves of these schemes are plotted withk = 84 andn = 100. It
can be seen that, even withNmax = 4, the EARQ scheme provides considerable performance
gain over the other schemes with very reasonable additionalcomputational complexity.

The performances of the four schemes in Rayleigh fading channels are compared by simulations
using the Jakes model. The throughput curves of the four ARQ schemes as functions of the
average SNR, whenv = 1 m/s, n = 100 bits, andNmax = 10, are shown in Figure 4.3. One
observation that can be made is that the SAD scheme is clearlysuperior to the basic SR scheme
over the wide range of SNR considered here. This indicates that the average duration of fades
is fairly long, and the switched antenna diversity improvesthe performance significantly. The
SR-NSD and EARQ schemes can provide further performance improvements.
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Figure 4.2: Throughput curves of four ARQ schemes in AWGN channel, withk = 84 andn =
100
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Chapter 5

Summary of Publications

In [P1], we present an approximate (packet) throughput analysis and a simulation study of an
ARQ scheme with packet combining in the stationary BSC environment. The packet combining
algorithm, where the bitwise modulo-2 sum of two erroneous copies of a packet is computed to
locate the errors, was first proposed by Sindhu in [67]. The validy of the approximate analysis
is verified by the good agreement with the simulation results. The packet combining algorithm
involves a straightforward search procedure, the computational complexity of which easily be-
comes prohibitive. As a solution to this, a modified scheme isproposed, where the search
procedure is attempted only when there are at mostNmax 1s at the output of the modulo-2
adder. Packet throughput curves of the modified scheme (boththeoretical and simulated) as a
function of the channel BER are shown with various values ofNmax.

Publication [P2] introduces an adaptive SR ARQ scheme with two transmission modes, mode
L for ‘good’ and modeH for ‘bad’ channel conditions. In modeL, the packet size isn1

and in modeH n2 bits, wheren1 = 2n2. The smaller packets are acknowledged in pairs
by sending ‘bitmaps’ to the transmitter. The switching between the two transmission modes
is done according to the algorithm introduced by Yao in [79]:in modeL, if the transmitter
receivesα NACKs contiguously, it switches immediately to modeH and starts to transmit
smaller packets; if the transmitter is in modeH and receivesβ ‘double ACKs’ contiguously, it
switches to modeL. The round-trip delay is assumed to be negligible, and the return channel
is assumed to be error-free. The time-varying forward channel is represented by a packet-level
G-E model, where the statesG andB are defined by the BER valuesǫ1 andǫ2, respectively,
whereǫ2 ≫ ǫ1. The system is modelled by a Markov chain with2(α+β) states, and the average
throughput of the adaptive SR scheme is obtained as the time average of the throughput over the
states of the Markov model. As a basis of comparison, we definea hypothetical ideal adaptive
scheme which knows the channel state and chooses the transmission mode accordingly: when
the forward channel is in stateG (B), the transmission mode isL (H). For all the values of the
design parametersα andβ, the average throughput of the adaptive scheme is upper-bounded by
that of the ideal scheme.

In [P3], the same adaptive SR scheme is studied as in [P2], andthe assumptions about the return
channel and the round-trip delay are the same. However, the states of the forward channel
model represent now Rayleigh fading channels defined by the values of the parametersρ and
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fD according to the threshold model described in Section 2.1.2. The performance analysis is
very similar to that presented in [P2].

The same adaptive SR scheme is also studied in [P4], and the round-trip delay is still assumed
to be negligible. The time-varying forward channel is now represented by a bit-level G-E model
so that the channel model is defined independently of the packet size, and this time a G-E model
is assumed also for the return channel: stateg is error-free, and in stateb an acknowledgment is
erased with probabilityPf . The system model has now4(α + β) states. In this paper, we also
study optimization of the 3 independent design parameters of the adaptive SR scheme:n2, α
andβ. This is done in two steps. First we try to find the best possible value ofn2 by optimizing
the performance of the ideal scheme. Then we fixn2 and optimizeα andβ by minimizing
(approximately) the mean-square difference between the ideal and actual performance curves
(or ‘surfaces’ in the case of two-dimensional optimization). Probably the most important ob-
servation of this article is the importance of the judiciousselection of the value ofn2 for the
performance of the adaptive scheme.

Publication [P5] also studies analysis and optimization ofthe same adaptive SR scheme. The
forward channel model is the same as in [P4], but now the acknowledgments are assumed to
be erased randomly with probabilityPf in the return channel. The important difference from
the earlier articles is that the round-trip delay is no longer assumed to be negligible. The state-
space explosion with the increasing delay, which was encountered by the authors in an earlier
work [14], is avoided by using a modified Markov model, which has always2(α + β) states
irrespective of the round-trip delay. The optimal value ofβ is seen to depend slightly on the
values of the round-trip delay andPf .

In [P6], an adaptive GBN scheme using Yao’s algorithm is analyzed and optimized. The two
transmission modesL andH correspond tom1-copy andm2-copy GBN schemes, respectively.
In all the numerical examples, we have setm1 = 1. A packet-level G-E model is assumed
for the forward channel, where the statesG andB are characterized by the PER valuesPe,1

andPe,2, with Pe,2 ≫ Pe,1. A similar model is assumed also for the return channel: state g is
error-free, and in stateb the acknowledgments are erased with probabilityPf . The performance
of the adaptive scheme is measured by its average packet throughput over the4(α + β) states
of the system model, and the optimization ofα andβ is carried out in the same manner as in
[P4] and [P5]. The paper also contains a brief discussion of how the burstiness of the forward
channel errors affects the performance of the adaptive GBN scheme.

Publication [P7] is about ARQ and spatial diversity. The communication system consists of one
transmitting antenna and two receiving antennas. The two diversity branches are assumed to
behave like two independent flat Rayleigh fading channels, which are simulated by using the
Jakes model. The BPSK modulation scheme is used with coherent demodulation. We compare
the simulated throughput performance of four different ARQschemes: (i) the basic SR ARQ
scheme (no diversity); (ii) the SR ARQ scheme with switched diversity, where only one receiv-
ing antenna is active at a time, and the active antenna is changed after every erroneously received
packet; (iii) the SR ARQ scheme with modified selection diversity, where both the antennas are
always at use, and an ACK is sent to the transmitter if at leastone of the antennas receives the
packet without errors; (iv) the EARQ scheme studied in [P1],this time utilizing spatial diversity
and combining two erroneous copies of a packet that have beenreceived simultaneously on the
two antennas. The theoretical throughput performances of the schemes in the AWGN channel
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are also compared. The main contribution of this article is to present the EARQ scheme as a
potential method of choice for systems using spatial diversity reception.
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Chapter 6

Conclusions

In publications [P2–P6] of this thesis, adaptive ARQ schemes based on Yao’s channel sensing
algorithm have been analyzed and optimized in Gilbert-Elliott channels. There are two kinds
of non-ideal behaviour that make the throughput curves of the adaptive ARQ schemes deviate
from those of the ideal schemes. Firstly, there is delay in reacting to changes in the channel
state. This delay becomes of course longer if the values ofα andβ are bigger. Secondly, ‘false
alarms’ occur, making the scheme switch between transmission modes unnecessarily. Here,
bigger values ofα andβ make the scheme more ‘reliable’. Neither of these phenomenacan be
avoided completely. Instead, they must be ‘balanced’ by finding the optimal(α, β)-combination
based on the time-varying characteristics of the channel. The closest comparison is to the work
of Annamalai and Bhargava in [3, 4, 5], where these authors did not specify any time-varying
channel model, but analyzed the performance of the adaptivescheme in stationary channels.
Their approach to the optimization ofα andβ was thus to minimize the degrading effect of
‘false alarms’ on the performance of the scheme. This appears to be the reason why the optimal
solutions ‘lie in the infiniteα−β space’, as the authors put it. Finite sub-optimal solutionswere
found only by introducing an artificial upper boundαmax for the values ofα . The articles [P4–
P6] of this thesis presents a different approach to the optimization of the adaptive ARQ schemes
based on Yao’s algorithm for time-varying channels. In our case, finite optimal solutions exist,
because too large values ofα andβ would make the scheme react too slowly to channel state
changes. Our results demonstrate that the optimal parameter values depend strongly on the time-
varying characteristics of the channel. An important new contribution of publications [P4–P5]
is the optimization of the packet size(s) used by the adaptive SR scheme.

The EARQ scheme is an ARQ scheme with packet combining. In [P1], time diversity was
utilized, whereas space diversity reception was considered in [P7]. In both cases, the scheme
gives a considerable gain in throughput performance over the basic SR ARQ scheme. However,
this gain is not achieved without cost; if the expected number of bit errors per block increases,
the complexity of the search procedure associated with the combining algorithm quickly be-
comes prohibitive. To avoid this problem, the value of the parameterNmax must be selected
judiciously, so that significant performance gain is still achieved but excessive processing delay
at the receiver is avoided. An interesting further study would be to compare the performance of
the EARQ scheme to that of some soft combining schemes, whichpreserve more information
about the received symbols.
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