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He who controls magnetism controls the universe!
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Tiivistelmä

(Ga,Mn)As ja (Ga,Mn)N ovat magneettisia puolijohteita, joita voi-
daan valmistaa vastaavista yhdistepuolijohteista seostamalla niitä so-
pivalla magneettisella alkuaineella kuten mangaanilla. Nämä mate-
riaalit ovat luonnostaan hyvä vaihtoehto elektroniikkakomponenttien
hankalille metalli-puolijohde -rajapinnoille. Ne soveltuvat myös sellai-
senaan nk. spintroniikka-sovelluksiin, joissa hyödynnetään samanai-
kaisesti elektronin varausta ja spin-tilaa. Ensin on kuitenkin ymmär-
rettävä magnetismiin johtavat fysikaaliset mekanismit, jotta voisimme
suunnitella uusia magneettisia puolijohdemateriaaleja tai kehittää so-
velluksia olemassaoleville. Tässä väitöskirjassa esitän teoreettisen tut-
kimuksen kahden tärkeimmän prototyyppimateriaalin — (Ga,Mn)As
ja (Ga,Mn)N — rakenteellisista ja magneettisista ominaisuuksista.

Ferromagnetismi pohjautuu kvanttimekaaniselle vaihtovuorovaikutuk-
selle, mutta on luonteeltaan makroskooppinen järjestäytymisilmiö. Fer-
romagneetteja täytyykin tarkastella eri mitta-asteikoilla lähtien kvant-
timekaniikasta. Niin mikroskooppisten rakenteiden energiat kuin nii-
hin liittyvät magneettiset vuorovaikutuksetkin lasketaan ab initio-
menetelmällä. Näitä energioita käytetään Monte Carlo -simulaatioissa,
joilla tutkitaan makroskooppisia ja äärellisen lämpötilan ominaisuuk-
sia. Curie -lämpötilat lasketaan sekä Weissin molekyylikenttäteorialla
että Monte Carlo -simulaatioilla.

Näytän tässä väitöskirjatyössä, että tarkastellut prototyyppimateri-
aalit (Ga,Mn)As ja (Ga,Mn)N rakentuvat oleellisesti mangaanikluste-
reista, ja nämä klusterit ovat elektronisilta ja magneettisilta ominai-
suuksiltaan hyvin erilaisia kuin yksittäiset mangaaniatomit.
(Ga,Mn)As:lle esitän myös vakanssidiffuusiomekanismin, joka kineet-
tisten Monte Carlo -simulaatioiden mukaan johtaa klusterointiin tyy-
pillisissä kiteenkasvatus- ja toivutusolosuhteissa. Klusterointi alentaa
kummankin materiaalin Curie -lämpötiloja, joskin alenemisen aiheut-
tava vyörakenteen kehitys on erilaista. (Ga,Mn)As:n Curie -lämpötila
arvioidaan Weissin molekyylikenttäteoriasta, mutta (Ga,Mn)N:lle käy-
tetään tarkempaa Monte Carlo -menetelmää.
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Abstract

(Ga,Mn)As and (Ga,Mn)N are so called diluted magnetic semicon-
ductors, i.e. semiconductor based materials made ferromagnetic by
inclusion of a magnetic element—in this case Mn. This type of ma-
terials bridge over the incompatibilities in metal–semiconductor in-
terfaces in electronics components and have an enormous potential
for future spintronics applications, where both charge and spin de-
grees of freedom can be employed simultaneously. In order to design
new—or employ the existing—diluted magnetic semiconductor mater-
ials, the underlying mechanisms of magnetism must be understood. In
this work a theoretical study of the structural and magnetic proper-
ties of the two most important prototype materials, (Ga,Mn)As and
(Ga,Mn)N, is presented.

Ferromagnetism arises from the quantum mechanical exchange in-
teractions, but is by its very nature a macroscopic ordering effect.
Therefore a multiscale approach is employed, beginning from quantum
mechanical interactions. Both microscopic configurational energies
and corresponding magnetic interactions are calculated from first prin-
ciples. These energies are used in Monte Carlo simulations to study
macroscopic and finite temperature properties. Curie temperatures
are estimated using the Weiss molecular field theory, as well as a more
sophisticated Monte Carlo approach.

We show that both (Ga,Mn)As and (Ga,Mn)N consist largely of Mn
clusters, and that the electronic and magnetic properties of these
clusters differ significantly from those of single substitutional impur-
ities. For (Ga,Mn)As we also show using lattice kinetic Monte Carlo
methods that clustering occurs during growth and annealing via the
Ga monovacancy mediated diffusion. For both materials clustering
efficiently reduces the Curie temperatures even though the underlying
band structure trends are different. The Curie temperatures are es-
timated for (Ga,Mn)As using the Weiss molecular field theory, while
for (Ga,Mn)N we employ Monte Carlo methods in order to obtain the
Curie temperatures.
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Chapter 1

Introduction

Conventional, nonmagnetic semiconductors can be made magnetic by
inclusion of transition metal atoms in the semiconductor lattice. The
first material of this kind was (In,Mn)As [1], where Mn atoms substi-
tutionally replace In atoms in the InAs semiconductor. Ferromagnetic
semiconductors would be the natural choice to overcome material in-
compatibilities in metal-semiconductor interfaces, and exhibit a pleth-
ora of new possibilities to intertwine magnetic properties with existing
semiconductor technologies [2, 3]. The enormous potential of this type
of materials was immediately recognized, which initiated the ongoing
quest for a fully-fledged room temperature magnetic semiconductor
material that is compatible with existing semiconductor technologies.
Numerous new magnetic materials have been discovered or proposed,
mostly based on III-V and II-VI compound semiconductors with em-
bedded Cr, Mn or Co atoms. These materials are usually referred to
as diluted magnetic semiconductors.

Theoretical understanding of basic material properties is crucial before
actual applications can be designed. In diluted magnetic semiconduct-
ors, the key task lies in unveiling the origin of ferromagnetic ordering.
Magnetic atoms are introduced into a typically nonmagnetic host ma-
terial, and one needs to understand what is the coupling mechanism
between these magnetic atoms and why they align ferromagnetically.
More practically, what is the critical temperature where ferromag-
netic order disappears (i.e. Curie temperature TC). More importantly,
for what materials is the Curie temperature above room temperature.
The basic magnetic properties may be described in terms of phenomen-
ological models [4, 5], which however include a number of ambiguous
parameters, and it is not obvious when and where the models are
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1. Introduction

applicable. Nevertheless, the microscopic interactions are directly ac-
cessible via quantum mechanical first principles, i.e. parameter free
calculations, but alas, the description of the physical properties of
macroscopic bodies based solely on the microscopic properties is not
possible and some approximations must be made.

There has been a tremendous theoretical effort to understand the ba-
sic properties of the diluted magnetic semiconductor materials [4–7],
especially based on first principles calculations [8–19]. In spite of these
efforts a number of open questions remain. It turns out that in some of
these diluted magnetic semiconductors the ferromagnetism is carrier
mediated, i.e. magnetic properties can be tuned by charge carrier ma-
nipulation, while in other materials the mechanism of magnetism may
be different. Predicting the Curie temperature, whether it is related
to carrier mediated ferromagnetism or some other mechanism remains
one of the main tasks.

A key aspect in understanding the magnetism of diluted magnetic
semiconductors lies in understanding their magnetic structures at dif-
ferent length scales. Large scale disorder effects in the dilute limit have
a tendency to increase the Curie temperature [20–23], while at large
concentration of the magnetic atoms (i.e. in the atomic percent regime)
the effect is opposite [17, 23–27]. The relevance of large scale disorder
effects and percolation depends also on whether the microscopic in-
teractions are of long or short range [16, 18, 24, 26], and whether the
microscopic interactions on the other hand depend on the microscopic
(cluster) structure [28–30]. The main objective of this thesis work is to
find a way to combine these different length scale effects in the study
of magnetic properties of diluted magnetic semiconductors.

In this Thesis we focus on two prototype III-V diluted magnetic semi-
conductor materials (Ga,Mn)As and (Ga,Mn)N. Although these ma-
terials exhibit quite different properties from one another, their micro-
scopic structures are closely related. We find, common for both these
materials that the Mn atoms have a tendency to form clusters around
the As or N atom. We take this microscopic clustering into account
and estimate the Curie temperatures for (Ga,Mn)As and (Ga,Mn)N.
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Figure 1.1. Typical density of states for a half-metal.

§1.1 III-V based materials

Soon after the discovery of (In,Mn)As [1], similar materials have been
prepared by introducing Mn 1 atoms into a III-V compound semicon-
ductor. The diluted magnetic semiconductor no longer exhibits the
typical band structure of a semiconductor, as one of the spin compon-
ents has a partially filled band, while the other one is fully occupied.
This kind of materials are called half-metals [31, 32], and a typical
band structure of a half-metal is given in Figure 1.1. The half-metals
are thus metallic for one spin component, and insulating (or semicon-
ducting) for the other one. This leads to the interesting property that
half-metals are fully spin polarized: all charge carriers have the same
spin. Furthermore, half-metals have a “quantized” magnetic moment
M . As the bands of the non-conducting spin component are fully oc-
cupied, the occupation number of electrons per unit cell with that spin
(↓ in Fig. 1.1) must be an integer N↓, and consequently also the metal-
lic bands get an integer occupation number (N↑ = N −N↓, where N
is total numer of electrons per unit cell). Thus also the magnetic mo-
ment M = (N↑ −N↓)µB has an integer value of Bohr magnetons µB.
In normal magnetic metals both N↓ and N↑ are partially occupied

1Also other transition metals have been applied, as well as rare earths such as
Gd.
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1. Introduction

and neither of them is necesarily an integer (e.g. for iron the magnetic
moment per atom is 2.2 µB).

The most important and most widely studied prototype materials of
the III-V diluted magnetic semiconductor family are (Ga,Mn)As and
(Ga,Mn)N. Both of these materials have rather high Curie temperat-
ures [33–35], but the electronic properties, and possibly also the origin
of magnetism, are quite different.

§1.2 (Ga,Mn)As

(Ga,Mn)As has been widely studied [36–38], because of its rather high
Curie temperature (TC) of up to 170 K [33, 34]. The ferromagnetic
coupling is generally believed to be mediated by the holes that are
created by the Mn atoms when they substitute Ga atoms. In principle,
each substitutional Mn atom (MnGa) should induce one hole. However,
the hole concentrations observed in the experimental samples are only
a fraction of the expected (0.03–0.3 of the Mn concentration [Mn]) [39].

The material is usually grown epitaxially at low temperatures and the
as-grown samples typically exhibit TC . 110 K. The epitaxial growth
leads also to the formation of As antisites (AsGa) and interstitial Mn
(Mni), which act as donors, thus compensating MnGa induced holes.
This hole compensation also hampers the hole mediated ferromagnet-
ism. Post-growth annealing at temperatures close to the growth tem-
perature leads to out-diffusion of the undesired Mni, thus increasing
TC up to 170 K [33, 34]. However, TC exhibits twofold behavior with
respect to the annealing time: (1) annealing for a few hours increases
TC due to the out-diffusion of Mni, while (2) prolonged annealing for
ten hours or longer reduces TC again. [40–42] The mechanism behind
the long-term lowering of TC is not known.

The band structure and magnetic properties of a single substitutional
Mn are rather wellknown [14, 19, 43–47], but effects due to inhomogen-
eous Mn substitution and consequential Mn clustering lack compre-
hensive understanding. This is also reflected to the Curie temperature,
as first principles calculations usually predict significantly larger TC

values [14–19, 25] than experimentally observed. These inhomogenity
induced effects are explored in Publications I–V, and summarized in
Chapter 3.
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§1.3. (Ga,Mn)N

§1.3 (Ga,Mn)N

The growth of (Ga,Mn)N is not as well controlled as that of (Ga,Mn)As
(see e.g. [35]). Second phase formation is difficult to avoid [48, 49],
which is also reflected in the lack of theoretical understanding of this
material. The mechanisms underlying ferromagnetism are not un-
derstood, and there is no clear consensus of what is the microscopic
structure of (Ga,Mn)N.

The magnetic interactions between individual substitutional Mn atoms
are widely studied, and known to have shorter range than those in
(Ga,Mn)As [16–18, 25]. However, the effects of inhomogenieties in Mn
substitution need to be investigated in detail. Contrary to (Ga,Mn)As,
the Curie temperature of (Ga,Mn)N is not even experimentally well
established, as measured values range from close to zero Kelvin to 940
K [49–56]. Especially the high TC values observed experimentally lack
theoretical understanding. The inhomogenity effects as well as related
fluctuations in TC calculated within different approximations are in-
vestigated in Publications VI and VII, and summarized in Chapter 4.
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Chapter 2

Theoretical modeling

Paramagnetic materials exhibit a macroscopic magnetization ~M par-
allel to an external field ~B, which vanishes in the absence of ~B. The
magnitude and temperature dependence of ~M were already described
in 1905 by Langevin [57]. Ferromagnetic materials are the ones com-
monly known as magnets, where a non-vanishing magnetization re-
mains even in the absence of an external field.

In this chapter the temperature dependence of ferromagnetism is de-
scribed using the Weiss molecular field theory [58] combined with
a quantum mechanical description for the molecular field based on
the model suggested by Heisenberg [59]. To calculate these quantum
mechanical interactions the density-functional theory [60] together
with the projector augmented-wave method [61, 62] are introduced.
We also present a Monte Carlo scheme based on the calculated quantum
mechanical interactions which improves the evaluation of the finite
temperature magnetic properties of diluted magnetic semiconductors.

§2.1 Temperature dependence of

ferromagnetism

Assume that a ferromagnetic material consists of magnetic particles
with magnetic moment ~µ. The magnetic moments are aligned parallel
at low temperatures, exhibiting the magnetization ~M = N~µ, where N
is the number of magnetic particles per unit volume. Weiss postulated
that this alignment is due to an internal field—the molecular field
~Bmol—that is (i) parallel to the magnetization, i.e. ~Bmol ↑↑ ~M ; and (ii)
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2. Theoretical modeling

proportional to the magnetization, i.e. ~Bmol = aµ0
~M = aµ0N~µ [58].

µ0 is the vacuum permeability and a a constant to be determined. For
paramagnetic materials, the magnetization ~M is proportional to the
external field ~B, but in the case of ferromagnetic materials ~B must be
replaced by the sum ~B′ = ~B + ~Bmol = ~B + aNµ0~µ.

Quantum mechanically we may identify the single magnetic moments
as those of atoms, determined by their spin quantum number S and
having the magnitude −SgµB in the chosen direction, where g is the
Landé factor and µB the Bohr magneton. The Curie temperature TC

based on the Weiss molecular field theory can be written as [63, 64]

TC =
Naµ0S(S + 1)(gµB)2

3kB

. (2.1)

It is easy to deduce from experimental Curie temperatures what values
the inner field ~Bmol should have. The origin of ~Bmol remained unknown
until Heisenberg suggested that the internal field is due to the quantum
mechanical exchange interactions [59]. In the Heisenberg model, the
Hamiltonian of a ferromagnet may be written as

H = −
∑

i,j

Jij~si · ~sj = −2
∑

(i,j)

Jij~si · ~sj , (2.2)

where ~si denote the individual spins and Jij is the exchange integ-
ral [59]. Notice that Jii ≡ 0,

∑

i,j and
∑

(i,j) denote a double sum and
a sum over all pairs, respectively. The interaction energy operator
of atoms i and j with localized orbitals—assuming that the inter-
atomic exchange integrals only depend on internuclear distance, and
that intra-atomic exchange leads to the same total energy irrespective
of the atom’s angular momentum—can be expressed as [63]

−2Jij(
atom i∑

k

~sk) · (

atom j
∑

l

~sl) = −2Jij
~Si · ~Sj (2.3)

=⇒ H = −
∑

i,j

Jij
~Si · ~Sj = −2

∑

(i,j)

Jij
~Si · ~Sj . (2.4)

Here ~Si is the vector sum of spins ~sk belonging to the ith atom. The
energy operator of atom 0 with magnetic moment −gµB

~S0 in the inner
magnetic field ~Bmol is gµB

~S0 · ~Bmol, and on the other hand according
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§2.1. Temperature dependence of ferromagnetism

to Eq. (2.3) this should equal −2~S0 ·
∑

i Ji0
~Si, which describes the

interaction energy of the 0th atom with all other atoms in the system.
Thus the Weiss inner field operator and its expectation value read

~Bmol =
−2

∑

i Ji0
~Si

gµB

, 〈 ~Bmol〉 =
−2 (

∑

i Ji0)〈~S〉

gµB

, (2.5)

where 〈~S〉 is the average spin per atom, which corresponds to the

magnetic moment −〈~S〉gµB. On the other hand, the average magnetic

moment per atom in unit volume is ~M/N , yielding the inner field
expectation value

〈 ~Bmol〉 =
2
∑

i Ji0

(gµB)2

~M

N
= aµ0

~M . (2.6)

The above expression identifies the coefficient aµ0 that gives the inner
field magnitude, and substituting to Eq. (2.1) yields

TC =
2
∑

i Ji0

3kB

S(S + 1) . (2.7)

In order to predict Curie temperatures, one has to estimate the mag-
nitude of the exchange field, or more precisely the sum of exchange
integrals

∑

i Ji0. In general, it cannot be solved exactly, but to rather
good approximation from state-of-the-art total energy calculations as
outlined below. The total energy Etot consists of a term from the Heis-
enberg Hamiltonian and some other terms, i.e. Etot = E0−〈

∑

i,j Jij
~Si ·

~Sj〉. Assuming that E0 is constant, the total energy difference per
atom ∆ between a system in antiferromagnetic EA and ferromagnetic
EF states is approximately

∆ =
1

N
(EA −EF) =

1

N

〈 ∑

i,j

Jij
~Si · ~Sj

〉

= S2
∑

i

Ji0 , (2.8)

because the Heisenbergian term for an antiferromagnetic state is ap-
proximately zero, and the product of spins ~Si and ~Sj yields an expect-
ation value of S2 [65]. Substituting this into Eq. (2.7) gives

TC =
2∆

3kB

S(S + 1)

S2
≈

2∆

3kB

. (2.9)
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2. Theoretical modeling

The approximation holds for large S. Now the Curie temperature
is easily accessed through total energy calculations that will be de-
scribed in §2.2. Virtually the same equation has also been presented
in Refs [29, 30, 46, 66–69]. In the coherent-potential approximation
usually the local moment disorder state is considered as the reference
instead of the antiferromagnetic state—either one may be used as their
total energies are nearly the same [68].

§2.1.1 Effects of inhomogeneities

The above mean field description tends to overestimate Curie temper-
atures, because actual samples are never completely homogeneous, and
therefore neither the inner field is necessarily homogeneous.1 Spins
may locally form clusters that have a strong internal field, while the
inner field between such clusters may be weaker. One way to go about
this is to regroup the Heisenberg Hamiltonian as

H = −
∑

i,j

Jij(
cluster i∑

k

~sk) · (

cluster j
∑

l

~sl) = −
∑

i,j

Jij
~Si · ~Sj , (2.10)

instead of expression (2.4). Now ~Si represents the cluster spin instead
of that of a single atom, but the Curie temperature may be estim-
ated exactly in the same manner as above using Eq. (2.9) and simply
replacing the atoms with clusters.

This expression neglects the internal magnetic structure of the clusters,
and thus still may exaggerate Curie temperatures. In particular for
large clusters, the assumption that intra-cluster exchange may be neg-
lected not necessarily holds. Therefore a term Ei, which describes
the internal energy of the ith cluster is added, yielding the modified
Hamiltonian

H ′ = −
∑

i,j

Jij
~Si · ~Sj −

∑

i

Ei . (2.11)

Due to the Ei term however, TC is no longer directly accessible with
simple expressions like Eq. (2.9). It becomes computationally con-
venient to describe a system of clusters with a classical Hamiltonian

1Even for structurally homogeneous systems the inner field will fluctuate at
temperatures close to TC .
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§2.2. Density-functional theory

(Publication VII)

Hcl = −
∑

i,j

Jninj
(rij)~S

′
i · ~S

′
j −

∑

i

Eni
(S ′

i) , (2.12)

where ~S ′
i denote the classical spins (S ′

i varies between 0 and 1) of the
ith cluster of ni atoms, Jninj

(rij) is an inter-cluster exchange para-
meter given as a function of inter-cluster separation rij , and Eni

(S ′
i)

denotes the internal energy of cluster i with spin S ′
i. Total energies

calculated for different spin configurations have to be mapped onto the
Hamiltonian (2.12), and magnetic properties of macroscopic systems
can be accessed via Monte Carlo simulations. In Publication VII we
first calculate microscopic structures using Metropolis Monte Carlo
method [70], followed by a two-stage simulation of the magnetic prop-
erties, where inter-cluster interactions are sampled using the Wolff
algorithm [71] and the intra-cluster interactions using the Metropolis
method.

§2.2 Density-functional theory

Calculating total energies of a many-electron system is cumbersome,
as one needs to deal with both many-body effects as well as quantum
effects. Exact solutions can only be obtained for system sizes up to
just a few electrons, so for larger systems one has to be satisfied with
numerical solutions. Hohenberg and Kohn have shown that the ground
state energy of a system is uniquely given by the electron density [60].
The actual calculations follow the Kohn–Sham formalism [72] outlined
below.

The full total energy functional of an interacting many-electron system
reads [73, 74]

E[n↑(~r ), n↓(~r )] =

occ∑

iσ

∫

d~r Ψ∗
iσ

[

−
1

2
∇2

]

Ψiσ +

∫

d~r n(~r )Vion

+
1

2

∫

d~r

∫

d~r ′ n(~r )n(~r ′)

|~r − ~r ′|
+ EXC[n↑(~r ), n↓(~r )] , (2.13)

where Ψiσ (σ ∈ {↑, ↓}) are one-electron (Kohn–Sham) spin orbitals,
Vion is the ionic potential due to the nuclei, n(~r ) = n↑(~r ) + n↓(~r )
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2. Theoretical modeling

is the total electron density, and EXC[n↑(~r ), n↓(~r )] is the exchange-
correlation (XC) energy as defined by Kohn and Sham [72]. (Here
Hartree atomic units are used.) The total energy can be minimized
using the Hohenberg–Kohn principle resulting in the Kohn–Sham con-
straint equation for the spin orbitals

[

−
1

2
∇2+

(

Vion(~r ) +

∫

d~r ′ n(~r ′)

|~r − ~r ′|
+ V σ

XC[n↑(~r ), n↓(~r )]

)

︸ ︷︷ ︸

V σ
eff

]

Ψiσ = ǫiσΨiσ .

(2.14)
This constraint equation is of the form of an effective Schrödinger
equation and gives Kohn–Sham spin orbitals in the effective potential
V σ

eff . This effective potential consists of the following three terms:

1. The first term Vion represents the ionic potential caused by the
positive ionic charges located at atomic positions.

2. The second term called the Hartree potential, represents the
electron electrostatic potential and has the form

VHartree =

∫

V

d~r ′ n(~r ′)

|~r − ~r ′|
, (2.15)

where n(~r ) = n↑(~r ) + n↓(~r ) is the total electron density

n(~r ) =
∑

σ

nσ(~r ) =
∑

σ

∑

states i

fiσ|Ψiσ(~r )|2. (2.16)

fiσ is the occupation number of the spin orbital Ψiσ(~r ).

3. The spin-dependent XC potential V σ
XC is generally not known

exactly. Formally V σ
XC is defined as the functional derivative of

the XC energy EXC = EXC[n↑(~r ), n↓(~r )]

V σ
XC(~r ) =

δ EXC

δnσ(~r )
. (2.17)

The XC energy EXC is defined in Eq. (2.13).

The many-electron problem has been mapped onto a set of single-
electron Schrödinger like equations (2.14). By making some initial
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§2.2. Density-functional theory

guess for the electron density n, the above Kohn–Sham equations
(2.14) can be solved self-consistently. In principle we can obtain the
exact ground state provided that V σ

eff is known exactly. Unfortunately
this is not the case and the XC term V σ

XC must be approximated. The
basic approximations used for the XC term and the wave function
basis, implemented in the vasp code [62] are described below.

§2.2.1 XC functionals

The local density approximation (LDA) is a widely used scheme, which
describes an XC energy at a point ~r depending only on the electron
density n(~r ) at that point:

ELDA
XC =

∫

d~r n(~r )ǫXC(n(~r )). (2.18)

The XC energy per electron ǫXC(~r ) is approximated with the corres-
ponding term describing a homogeneous electron gas. In the local spin
density approximation (LSD) the XC potential is given by

V σ,LSD
XC (~r ) =

δ EXC[n↑(~r ), n↓(~r )]

δnσ(~r )
, (2.19)

and the XC energy can be written as

ELSD
XC =

∫

d~r n(~r )ǫXC(n↑(~r ), n↓(~r )). (2.20)

A more sophisticated approach is the generalized gradient approxima-
tion (GGA) in which also gradients of the electron density are included
in the XC energy term. In GGA the XC energy is given by

EGGA
XC =

∫

d~r f(n↑, n↓,∇n↑,∇n↓) (2.21)

Here f(n↑, n↓,∇n↑,∇n↓) is a function of the local spin densities and
their gradiends. There are several forms for EGGA

XC . In this work the
XC functional by Perdew and Wang (PW91 [75]) is used.

The above XC functionals based on the local density contain the
so called self-interaction error [74]. An improvement to the above
local approximations can be made by the on-site Coulomb correction
U [76, 77], which however is a parameter which cannot be determined
unambiguously. To study the effects of these corrections, in Publica-
tion VI we also use the LSD+U functional.
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2. Theoretical modeling

§2.2.2 The projector augmented–wave method

Solving numerically the Kohn–Sham equations (2.14), it is conveni-
ent to describe the orbital part of Ψiσ (henceforth simply called wave
function |Ψ〉) as an expansion onto some set of basis functions. The
behavior of the wave function in different regions of space varies con-
siderably, and finding a universal set of basis functions is cumbersome.
In Publication I various computational methods are compared, and the
projector augmented–wave method is found to be the most suitable
one for the modeling of magnetic semiconductors. In augmented–wave
methods, space is divided into regions based on physical arguments:
around atomic nuclei (known as the augmentation region ΩR) the wave
function oscillates rapidly, and it is convenient to expand the wave
function as partial waves (spherical harmonics); while in the region
between atoms outside the nuclei (called interstitial region), i.e. out-
side ΩR, the wave function behaves rather smoothly so that envelope
functions expanded into e.g. plane waves are convenient. Following
the notation used by Bloechl [61], the wave function reads

|Ψ〉 =

{

|ψPW〉 =
∑

G cG|e
i ~G·~r〉 outside ΩR∑

i ai|φi〉 inside ΩR ,
(2.22)

where |ψPW〉 is the plane wave expansion and |φi〉 are atomic partial
waves.2 Naturally the wave function must be continuous and differen-
tiable at the augmentation–interstitial border, and further, the plane
wave part of the wave function should vanish inside the augmentation
spheres.

In the projector–augmented wave method introduced by Bloechl [61]
the wave functions are linearly transformed into auxiliary functions
(denoted with the tilde ‘∼’) |Ψ〉 = T |Ψ̃〉 with rapidly converging plane
wave coefficients, so the entire system can be described using solely
a plane wave basis. Because the interstitial region already behaves
smoothly, the transformation should be of the form

T = 1 +
∑

R

TR, (2.23)

2Here |φi〉 is a short-hand notation for |φ~R,l,m,n
〉, where ~R denotes atomic site,

L = (l, m) the angular momentum quantum numbers and n is an additional index
to label different partial waves on the same site.
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§2.2. Density-functional theory

where TR is a local operator. For each partial wave |φi〉 a correspond-
ing auxiliary function |φ̃i〉 is chosen such that

TR|φ̃i〉 = |φi〉 − |φ̃i〉 ,

|ψPW〉 =
∑

i

ai|φ̃i〉 inside ΩR , and

|φ̃i〉 = |φi〉 outside ΩR . (2.24)

Now the total wave function can be written as

|Ψ〉 = |ψPW〉+
∑

i

ai

(

|φi〉 − |φ̃i〉
)

. (2.25)

We introduce a set of projector functions |p̃i〉, to expand the auxiliary
wave function |Ψ̃〉 in terms of the auxiliary partial waves |φ̃i〉, so we
may write

|Ψ̃〉 =
∑

i

〈p̃i|Ψ̃〉|φ̃i〉 inside ΩR . (2.26)

These projector functions need to fulfill the completeness relation
∑

i |φ̃i〉〈p̃i| = 1, which further implies orthonormality 〈p̃i|φ̃j〉 = δi,j .
Using this completeness relation, the plane wave part inside augment-
ation region can be written as

|ψPW〉 =
∑

i

|φ̃i〉〈p̃i|ψ
PW〉 =

∑

i

〈p̃i|ψ
PW〉|φ̃i〉 inside ΩR . (2.27)

Comparing this with the previous expression for the plane wave part
(Eq. 2.24) the coefficients ai are identified as overlap integrals of the
projector functions 〈p̃i| and the interstitial region wave function |ψPW〉:

ai = 〈p̃i|ψ
PW〉 . (2.28)

Finally, the total wave function (2.25) gets the form

|Ψ〉 = |ψPW〉+
∑

i

〈p̃i|ψ
PW〉

(

|φi〉 − |φ̃i〉
)

. (2.29)

Here the total wave function is expressed only in terms of the projector
functions, the plane wave basis, and the physical and auxiliary partial
waves.
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2. Theoretical modeling

§2.2.3 Total energy calculations

The density-functional calculations presented in this thesis are car-
ried out using the Vienna ab initio simulation package vasp [62].
The Kohn–Sham equations (2.14) are solved self-consistently begin-
ning from some initial spin densities n0

σ. These initial spin densities
also define the effective potential V σ

eff , and the spin orbitals Ψiσ are
solved from the Kohn–Sham equations. New spin densities n1′

σ and
the corresponding total energy can be calculated from equations (2.16)
and (2.13), respectively. n1′

σ could be used directly as the initial spin
densities for the next iteration cycle, but instead usually the new spin
densities n1

σ are generated by mixing n1′
σ and n0

σ (we use the Broyden
and Kerker mixing schemes [62]), and equations (2.16) and (2.13)
are solved as above. This iteration is continued until a self-consistent
solution is found, i.e. the total energy during cycle j + 1 changes less
than some predefined tolerance energy Ebreak: Ej − Ej+1 < Ebreak

(here Ebreak = 10−4 eV).

Total energies can be easily calculated for a number of configurations.
For example binding energies Eb are calculated by comparing the total
energies of different geometrical configurations. Besides different geo-
metrical configurations, also magnetic ones can be calculated by giving
the appropriate initial spin densities. Typically we calculate both fer-
romagnetic spin configurations ‘F’ and antiparallel spin alignments
‘A’—the total energy difference EA −EF then yields the spin-flip en-
ergy ∆.
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Chapter 3

(Ga,Mn)As

This chapter overviews Publications I–V for (Ga,Mn)As. First, res-
ults considering the microscopic structure and cluster formation are
presented, followed by a discussion on magnetic coupling. The atomic
scale interactions and band structures are calculated from first prin-
ciples using the vasp code [62] in supercells of 64–128 atoms. The
eperimental lattice constant of a = 5.65 Å is used throughout to-
gether with a plane wave basis up to the cut-off energy of 275 eV and
a Monkhorst–Pack ~k-mesh with ~k-point density of (0.14 Å−1)3. Large
scale cluster distributions are calculated using kinetic Monte Carlo
methods. The Curie temperature is approximated with the Weiss mo-
lecular field theory.

§3.1 Microscopic structure

The energetically most favorable configurations consist of nearest neigh-
bor substitutional MnGa’s in ferromagnetic high symmetry config-
urations, as shown in Publications I–IV. The first principles cal-
culations describe the experimentally relevant Mn concentrations of
[Mn] = 6.3 %, with the exception of five substitutional Mn atoms
in the supercell corresponding to [Mn] = 7.8 %. The energetically
most important Mn cluster configurations are shown in Fig. 3.1. For
the cases of 2–4 Mn atoms in the supercell the configuration where
the Mn atoms share the same neighbouring As site is always found
to be energetically most favorable (see the upper left-hand corners in
Figs 3.1 (a)–(c)). Also, it is energetically favorable to form one cluster
from two separate components in all cases shown in Figs 3.1 (a)–(c).
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3. (Ga,Mn)As

Figure 3.1. [From Publication IV] Calculated Mn cluster configurations and
total energies. The dark and gray balls denote the Mn and As atoms, respectively.
Separated components are placed at the maximum distance available. All the
black horizontal bars show the (ferromagnetic) separation (or binding) energies;
the corresponding values are given in the units of meV in the black bars. The
gray horizontal bars with the arrow diagrams show the spin-flip energies; the
corresponding values are given in the units of meV inside the gray bars. All the
black and gray horizontal bars are drawn in the same scale.
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§3.1. Microscopic structure

In the case of five Mn atoms in the supercell the energetically most fa-
vorable configuration is obtained by attaching the fifth Mn atom to the
stable tetramer [Fig. 3.1 (d)]. The energies needed to separate single
clusters into two components (or the binding energies for the compon-
ents) are shown graphically in Fig. 3.1 as black horizontal bars which
contain also the corresponding energy values in the units of meV. In
all these cases the ferromagnetic order is the stablest magnetic phase.

The binding of a MnGa atom to a cluster can to good accuracy be es-
timated from the dimer binding energy Eb(= 0.1 eV) [see Fig. 3.1 (a)]
as n · Eb, where n is the number of nearest neighbor MnGa atoms in
the resulting cluster. Consequently, the lowest energy microstructure
is composed of Mn clusters instead of separated single MnGa, or even
of second phase precipitates for very high Mn concentrations. How-
ever, to approach this lowest energy microstructure within reasonable
time requires an efficient diffusion mechanism for the substitutional
MnGa atoms, which is discussed below.

§3.1.1 Kinetic considerations

As shown in Publication V, MnGa may diffuse on the Ga sublattice
using Ga vacancies as a vessel of migration. This diffusion leads to
the Mn clustering discussed above. Although the formation of MnGa

clusters is energetically favorable as shown above and in Ref. [28],
it requires an abundance of mobile vacancies. The gallium vacancy
(VGa) concentrations in (Ga,Mn)As up to 1018cm−3 [78] are rather
high, and our combined density-functional theory and kinetic Monte
Carlo study yields that these vacancies actually are mobile at the
relevant temperatures.

The vacancy mediated substitutional Mn migration over the Ga-sub-
lattice illustrated in Fig. 3.2 consists of the following three steps: (i)
the MnGa atom and a vacancy form a pair; (ii) the MnGa atom and
the vacancy exchange places; and (iii) the pair dissociates. To under-
stand this pair formation-dissociation mechanism we calculate from
first principles the migration energy for VGa, the migration barrier for
the Mn→VGa transition, and the Mn–VGa interaction potential (i.e.
binding energy).

In contrast to the MnGa–MnGa interaction, bringing together a MnGa
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3. (Ga,Mn)As

Figure 3.2. [From Publication V] Schematic representation of the Mn/Ga mi-
gration path. The intermediate stages, where the Mn/Ga atom is in a planar
configuration with surrounding As atoms 2, 4, and 5, and where the Mn/Ga atom
passes through the (1̄10) plane close to the TGa interstitial site are also given, and
bonds in these configurations are denoted with the thick dashed lines.

and a VGa is energetically unfavorable and costs 0.2 eV, i.e Eb =−0.2 eV.
The negative binding energy means that the pair dissociation barrier
will be 0.2 eV lower than the pair formation barrier. Nonetheless, such
pairs may be formed kinetically if the formation barrier is reasonably
low. The efficiency of the vacancy mediated diffusion is determined by
the relation of the activation barriers for direct MnGa ↔VGa exchange
and MnGa–VGa pair formation-dissociation processes.

The migration barriers obtained in Publication V are 1.6 eV and 0.8 eV
for the Ga and Mn migration, respectively.1 Although the Mn rich
metallic environment studied in this work differs from pure GaAs,
the migration barrier for the vacancy mediated Ga self-diffusion of
1.6 eV is well in agreement with the first principles calculation for a
neutral vacancy [79], and also with the experimental values around
1.5-1.9 eV [80–82] in pure GaAs (Table 3.1). Considering the barriers
given above, the probability of the MnGa–VGa exchange vs. the VGa

migration jump differs at relevant growth and annealing temperatures
of around 250◦C by a factor of 107. For the dissociation of a MnGa–
VGa we obtain an activation barrier of 1.4 eV by combining the VGa

1These barriers may be overestimated, because only nearest neighbor atoms
are allowed to relax as described in more detail in Publication V.
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Table 3.1. [From Publication V] Migration barriers Qb for Ga-self diffusion and
Mn diffusion via the Ga monovacancy mechanism. PWPP denotes the plane wave
pseudopotential method, and Expt experiment.

Process Qb ( eV) PWPP (eV) Expt (eV)

Ga→ VGa 1.6 1.7a 1.5-1.9b

MnGa → VGa 0.8
a [79], b [80–82].

migration barrier with the negative MnGa–VGa binding energy. The
Boltzmann factor for this dissociation barrier is 100 times larger than
that for the VGa migration barrier, but still 105 times smaller than the
MnGa–VGa exchange probability. Therefore the bottleneck for MnGa

diffusion via the pair formation–dissociation mechanism is the mobil-
ity of VGa. However, at large MnGa concentrations, MnGa–VGa pairs
are formed more frequently, and due to the low pair dissociation and
exchange barriers the VGa diffusivity is expected to increase.

The pairwise binding energies 2 and migration energies (Table 3.1)
are used to study structural evolution with lattice kinetic Monte Carlo
simulations using the Casino-LKMC code [83]. The number of clusters
as a function of annealing time and temperature are given in Fig. 3.3.
The Mn–Mn attraction combined with efficient Mn diffusion at in-
creasing temperatures of 250◦C or higher leads to increasing cluster-
ing. The clustering rate exhibits typical Arrhenius dependence, i.e.
the logarithm of the clustering rate depends linearly on the inverse
temperature. Further, an increase in Mn concentration increases the
clustering rate as well, because fewer migration jumps are required for
Mn to reach another Mn atom. At the same time significant clustering
starts to occur at lower temperatures. This behavior is seen explicitly
in Figs 3.3 (a) and (b), and the sensitive temperature dependence is
seen for [Mn] = 5 % in Figs 3.3 (c) and (d). A similar rapid clustering
occurs as the Mn concentration increases from 5 % to 8 % even at
250◦C. Thus at these large concentrations significant clustering will
occur already during growth, which takes a few hours [2]. Further-
more, the increasing number of large clusters may lead to formation

2The cluster binding energies are slightly overestimated in the approximation
based solely on pair interactions—cf. Publications II and III. Therefore using the
pairwise interaction approximation may overstate the number of large clusters.
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3. (Ga,Mn)As

Figure 3.3. [From Publication V] Percentage of Mn atoms included in clusters as
a function of annealing time for the Mn concentrations of 0.5 % (a) and 5 % (b),
and cluster portion percentages for the Mn concentration of 5 % as a function of
annealing time corresponding to temperatures of 250◦C (c) and 300◦C (d).

of a secondary MnAs phase with the NiAs structure, as observed in
growth of (Ga,Mn)As samples with Mn concentrations beyond 7 % [2].
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§3.2. Band structure

§3.2 Band structure

The density of states (DOS) together with the branching diagram for
a uniform substitutional Mn distribution in our dilute limit of x = 1.6
% (or one substitutional Mn atom in the 128 atom supercell) is shown
in Fig. 3.4. The most important feature of the DOS is the single hump
in the majority spin (↑) channel at the Fermi level (EF ) which makes
(Mn,Ga)As a half-metal (Figs 3.4 (b) and (c)). The hump is formed
mainly from the ta↑ antibonding states (Fig. 3.4 (a)). Each Mn atom
contributes one hole state in the unoccupied part of the hump as well
as the net magnetic moment of 4µB [two e↑ and two ta↑ electrons, see
Fig. 3.4 (a)] (µB is the Bohr magneton).

The dilute-limit majority-spin hump at the Fermi energy EF in Fig. 3.4
(c) is found to split when Mn clusters are formed, and new nar-
rower unoccupied bands appear in the gap. This is shown for the
Mn monomer, dimer, trimer, and tetramer systems at the constant
Mn concentration of x = 6.3% in Fig. 3.5. At the same time the hole
density grows at the As atom which is situated in the center of the
Mn cluster. This was shown for the Mn dimer in Publications I and
IV and a similar splitting is also found in Ref. [29]. The increasing
localization at the center As atom is reflected in the increasing sep-
aration and size of the split-off part of the hump in Fig. 3.5. The As

Figure 3.4. [From Publication IV] The calculated density of states (DOS) for the
Mn concentration of x = 1.6 %. (a) Branching diagram for a substitutional Mn
atom. The states of the substitutional Mn atom are formed via the hybridization
of the VGa t2 and Mn 3d states. (b) DOS. EF denotes the Fermi level. The dashed
and dotted lines give the site and orbital projected DOS. (c) The magnification of
the DOS around EF .
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3. (Ga,Mn)As

Figure 3.5. [From Publication IV] Densities of states (DOSs) around the band
gap (upper figures) and the magnifications of the majority spin DOSs around the
Fermi energy (EF ) (lower figures). The dashed and dotted lines give the site
and orbital projected DOS. Figures (a), (b), (c), and (d) give the DOSs for the
Mn monomer, dimer, trimer, and tetramer, respectively for the Mn density of
x = 6.3%.

p-projection in the split-off part of the hole DOS is seen to increase in
relation to the Mn d-projection in Fig. 3.5 and even to exceed the Mn
d projection in the cases of the Mn trimer and tetramer [Figs 3.5 (c)
and (d)].

Along the band splitting the unoccupied As p states (hole states)
become increasingly localized inside the Mn cluster. The total number
of holes induced by a cluster of N Mn atoms is N , but approximately
N − 1 holes get localized inside the cluster. Therefore, effectively one
cluster contributes only one mobile hole outside the cluster regardless
of the cluster size. The As p component of the spin-polarized hole
density as a function of the distance to the closest Mn atom is shown
in Fig. 3.6 for several different cluster sizes. At short distances r < 7 Å
to the closest Mn atom of the cluster, the hole concentration increases
with increasing number of Mn atoms. However, for larger distances
r > 7 Å the hole concentrations approach approximately the same
curve. Therefore, the long-distance magnetic coupling between the
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Figure 3.6. [From Publica-
tion IV] The As p hole distri-
bution for different cluster sizes.
The average number of p holes
per As site at each As coordin-
ation cell is given. The num-
bers are obtained by integration
from the orbital decomposition.
Although the orbital decompos-
ition as well as the choice of
the integration volume are not
unambiguous, the relative mag-
nitudes are directly comparable.

Mn clusters depends only on their mutual distance, not on the size of
the cluster, and thus the cluster–cluster exchange interaction is well
described with a single exchange coefficient Jij (cf. Eq. 2.10).

§3.3 Curie temperature

As mentioned in §3.1, the ferromagnetic alignment is always energet-
ically most stable compared with other magnetic alignments. Because
of the strong increase in the p–d hybridization inside a Mn cluster
both the bonding and the magnetic interaction inside the clusters are
strong. This is also reflected in the strong intra-cluster spin-flip en-
ergies typically of around 200 meV or more, which yield large crit-
ical temperatures of around 500–1000 K for the magnetic ordering
inside the clusters (see Publication III). This indicates that the Curie
temperature of (Ga,Mn)As will be given by the cluster–cluster (inter-
cluster) exchange interactions, which are characterized by the smaller
spin-flip energies ∆ given in Fig. 3.1.

The Curie temperatures calculated using Eq. (2.9)

TC =
2∆′

3kB

corresponding to various cluster–cluster systems, are given in Table 3.2.
Notice that the energy values ∆ in Fig. 3.1 correspond to energy dif-
ference per supercell, and as one supercell contains two clusters, one
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Table 3.2. [From Publications III and IV] Curie temperatures from inter-cluster
spin-flip energies for supercells containing two Mn clusters calculated from the
energy difference between anti-parallel (A) and ferromagnetic (FM) spin states.
[Mn] and [cl] denote the Mn and cluster concentrations, respectively.

System FM A TC (K) [Mn] (%) [cl] (%)

Mn1+Mn1 ↑ ·· ↑ ↑ ·· ↓ 660 6.3 6.3

Mn2+Mn1 ↑↑ ·· ↑ ↑↑ ·· ↓ 514 6.3 4.1

Mn1+Mn1 ↑ ·· ↑ ↑ ·· ↓ 220 3.1 3.1
Mn2+Mn1 ↑↑ ·· ↑ ↑↑ ·· ↓ 282 4.7 3.1
Mn3+Mn1 ↑↑↑ ·· ↑ ↑↑↑ ·· ↓ 244 6.3 3.1
Mn2+Mn2 ↑↑ ·· ↑↑ ↑↑ ·· ↓↓ 313 6.3 3.1
Mn4+Mn1 ↑↑↑↑ ·· ↑ ↑↑↑↑ ·· ↓ 220 7.8 3.1
Mn3+Mn2 ↑↑↑ ·· ↑↑ ↑↑↑ ·· ↓↓ 255 7.8 3.1

should use ∆′ = ∆/2 in estimating the Curie temperatures. One im-
mediately notices for the fixed cluster concentration of [cl] = 3.1 % that
although the Mn concentration varies between 3.1–7.8 %, the Curie
temperature remains more or less constant. Furthermore, TC grows
as the cluster concentration increases. This behavior shows that in
(Ga,Mn)As the Curie temperature is determined by the cluster con-
centration instead of the Mn concentration.

The Curie temperature in the Weiss molecular field theory is propor-
tional to the energy ∆ that corresponds to the spin-flip energy of one
Mn cluster. On the other hand, we recall from Eq. (2.8) that ∆ is
proportional to the sum of exchange interactions

∑

i Ji0, which may
be assumed to decay rapidly. As Mn clusters are formed, the total
number of clusters or cluster concentration naturally decreases, and
so will also decrease the sum

∑

i Ji0. Therefore increasing clustering
will inevitably reduce TC . Recalling Eq. (2.1), the Curie temperature
according to the Weiss model actually is directly proportional to the
number of magnetic particles N , i.e. TC ∝ [cl].

The actual cluster concentration in experimental samples has not been
measured to date, but cluster distributions and cluster concentrations
can be calculated e.g. using kinetic Monte Carlo methods, as discussed
in §3.1. The calculated cluster distributions given in Fig. 3.3 at the
Mn concentration of [Mn] = 5 % correspond to cluster configurations
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ranging from 3.6 (as-grown) to 3.3 % (annealed for 24 h at 250◦C).
Using a linear expression for TC based on the data in Table 3.2 the
cluster concentrations [cl] = 3.3–3.6 % would correspond to a TC of
270–320 ±50 K. Present high-quality (Ga,Mn)As samples where the
amount of the harmful interstitial Mn and AsGa defects has been min-
imized yield TC ’s in the range of 159–173 K [33, 34]. The theoretically
estimated Curie temperatures are expectedly overestimated, because
the model excludes the compensation effect due to AsGa antisites and
neglects magnetic fluctuations. Nonetheless, the TC values of around
300◦ may be regarded as an upper limit for an ideal uncompensated
sample with [Mn] ≈ 5 %, and the TC decrease of about 40 K due
to thermal annealing at 250◦C for 24 h agrees closely with experi-
ment [40, 42].
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Chapter 4

(Ga,Mn)N

This chapter overviews Publications VI and VII for (Ga,Mn)N. The
microstructure is obtained from first principles binding energies of sub-
stitutional Mn atoms combined with Metropolis Monte Carlo (MC)
simulations. In the vasp calculations carried out in 48–108 atom
supercells representing the wurtzite structure with lattice optimized
parameters a = 3.217 Å and c : a = 1.631. The plane wave cutoff
energy is 425 eV, and the ~k-point sampling is modified according to
supercell size keeping the sampling density roughly uniform, as de-
scribed in Publication VI. Both the mean field theory and Monte
Carlo methods are used to estimate Curie temperatures for (Ga,Mn)N.

§4.1 Microscopic structure

Two different Mn cluster distributions are considered: a fully random
distribution and a distribution in thermal equilibrium at 1000 K. The
former is obtained simply by randomly substituting Ga atoms by Mn
atoms, and the latter is obtained from a Metropolis MC simulation [70]
using the ab initio binding energies given in Table 4.1. Notice that
the Mn binding energy values are significantly larger than those in

∆E (meV)

Mn1+Mn1←→Mn2 521
Mn1+Mn2←→Mn3 615
Mn1+Mn3←→Mn4 622

Table 4.1. [From Publication VII]
Monomer-cluster binding energies.
These binding energies are calculated
using 72 atom supercells as described in
Publication VI.
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Figure 4.1. [From Publication VII] Percentage portions of clusters in the case
of random distribution of substitutional Mn atoms (wide left columns) and in the
case of thermal equilibrium at T = 1000 K (narrow right columns).

(Ga,Mn)As, so one may expect the clustering effect in (Ga,Mn)N to
be stronger. Nonetheless, one should keep in mind that the realistic
Mn distribution lies somewhere between the fully random and thermal
equilibrium, and computationally it can only be found by taking kin-
etic considerations into account (cf §3.1.1).

The cluster portions for the random and equilibrium distributions are
given in Fig. 4.1 as a function of Mn concentration [Mn]. In the
case of the random distribution (left wide columns) one immediately
notices the relatively large dimer portion at large [Mn] while the tri-
mer portion and especially the tetramer portion remain small. In the
case of the thermal equilibrium distribution at 1000 K (right narrow
columns) considerable clustering has taken place: almost all monomers
have vanished and the portion of dimers has considerably diminished,
while the portion of the trimers and especially that of the tetramers
have grown markedly. Therefore also in order to understand the mag-
netic properties of (Ga,Mn)N clustering effects cannot be neglected—
clustering effects on the band structure as well as on the magnetic
coupling need to be investigated.
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Figure 4.2. [Partially from Publication VI] GaN density of states (DOS): Clus-
tering induced splitting of the DOS at the Fermi level EF . The panels from left
to right represent a Mn monomer, dimer, trimer and tetramer, corresponding to
Mn concentrations of 2.8 %, 5.6%, 8.3 % and 11.1 %, respectively.

§4.2 Band structure and magnetic

properties

The band splitting developments in (Ga,Mn)N given in Fig. 4.2 are
similar to those in (Ga,Mn)As (cf. Fig. 3.5 and discussion in §3.2),
but as the impurity states initially are different, so are the effects and
consequences of band splitting, too. In (Ga,Mn)N the Mn induced
acceptor level is mid-gap, and thus corresponds to a strongly localized
Mn d hole. The clustering induces shallow, more delocalized hole states
that will strengthen hole mediated ferromagnetism. On the other
hand, simultaneously the acceptor levels with the anti-parallel spin-
alignment also become split, which strengthens anti-ferromagnetic in-
teractions eventually cancelling the ferromagnetic interactions. The
effects on magnetism are described in more detail below.

§4.2.1 Molecular field theory

First the Curie temperatures are determined directly from the first
principles calculations for different cluster configurations using Eq. (2.9).
The calculated spin-flip energies together with estimated TC values are
given in Table 4.2. The TC of monomer–monomer systems exhibits
very strong dependence on Mn concentration [Mn]. Dimer formation
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Table 4.2. [From Publication VI] Spin-flip energies (∆) and mean field approx-
imation Curie temperatures (TC) for two clusters in the supercell. The fourth
and fifth columns are GGA calculations, the sixth and seventh columns LSD+U

calculations (denoted by the index “+U”). d is the minimum distance between
the Mn atoms belonging to the different centers.

System x (%) d (Å) ∆ (meV) TC (K) ∆+U T+U
C

Mn1 - Mn1
a 5.6 7.65 10 39 1 4

Mn1 - Mn1
b 8.3 6.15 92 355 - -

Mn2 - Mn1
a 8.3 6.13 133 514 160 618

Mn3 - Mn1
a 11.1 6.13 76 294 117 453

Mn3 - Mn1
c 7.4 9.28 33 128 - -

Mn4 - Mn1
c 9.3 7.66 7 27 10 39

Mn4 - Mn3
c 13.0 6.19 1 4 - -

a 72 atoms/supercell (SC), b 48 atoms/ SC, c 108 atoms/SC

appears to increase TC significantly, but trimer and tetramer form-
ation again reduces TC compared with dimer systems, the tetramer
configurations exhibiting a TC of virtually zero.

The increase in the Curie temperature for the dimer configurations
is due to the increased delocalization of the impurity band shown in
Fig. 4.2. The lowering of TC for the larger clusters on the other hand
is due to the increased splitting of the impurity levels that in turn
changes the p−d hybridization around Fermi level seen pronouncedly
in Fig. 4.2 (d). The mean field estimate TC depends very sensitively on
cluster size and geometry, and as actual systems consist of a mixture
of different size clusters, some kind of averaging of different cluster
configurations could give more realistic TC esimates. A straightfor-
ward approach—presented in Publication VII—based on Monte Carlo
methods is described below.
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§4.2.2 Monte Carlo simulations
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Figure 4.3. [From Publica-
tion VII] Intercluster exchange
constants Jninj

. The distance is
measured between the centers of
mass of the Mn atoms of the two
clusters.

The magnetic interactions are modeled
using the classical Hamiltonian

H = −
∑

i,j

Jninj
(rij)~Si ·~Sj−

∑

i

Eni
(Si) ,

(Eq. 2.12)
where the functions Eni

(Si) are con-
structed from intra-cluster energies, and
the Jninj

(rij) are obtained by fitting H
to first principles inter-cluster spin flip
energies as described in Publication VII.
First the J12 are fitted for the monomer-
dimer pair for which a high spin-flip en-
ergy was obtained (see Table 4.2). The
fit is done on ten ab initio values cal-
culated at different separations. From
various functional forms r−3 most nat-
urally describes the general behaviour.
The best fit is then obtained by choos-
ing a function composed of the decaying
r−3-term and a local term describing a
peak at 6 Å:

A

r3
+B(r − r1)e

−α(r−r2)2 , (4.1)

where A, B, r1, α, and r2 are constants.
This same form is then chosen for the
other cluster pairs as well, and the local
term is assumed to be of the same shape
i.e. α, r2 − r1, and Br3

1/A are kept the same for all cluster pairs. The
remaining coefficients A and r1 are fitted independently for all other
cluster pairs using 2-3 calculated ab initio values. In the supercell
density-functional calculation the cluster-cluster separation reaches up
to 11 Å, but in the fitting also the coupling to periodic images is in-
cluded up to the cut-off radius of 13 Å (≈ 4a). This cut-off is also
used throughout the MC simulations, i.e. the magnetic coupling bey-
ond 13 Å equals zero. Figure 4.3 shows the resulting ten Jninj

exchange
coefficients needed to describe the magnetic interactions. Notice that
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Figure 4.4. [From Publication VII] Curie temperatures TC for the random substi-
tutional Mn distribution (filled squares), the thermal equilibrium Mn distribution
at 1000 K (filled circles), the regular monomer-dimer lattice (filled triangle), and
the regular monomer lattice (filled diamonds). Also the CPA values calculated by
Bergqvist et al. [26] (open squares) and Sato et al. [16] (open circles) are given for
comparison. The lines are only to guide the eye.

the exchange coefficients correctly depend only on geometry, not on
temperature or concentration.

First we briefly glance at percolation threshold Mn concentrations
at which a percolation network of cluster pairs with Jninj

> 0 meV
is formed. The percolation thresholds for the random distribution
and the thermal equilibrium distribution at 1000 K are only [Mn]≈
0.01 and 0.03, respectively. The Curie temperatures are estimated us-
ing the classical Hamiltonian of Eq. (2.12). Monte Carlo simulations
are carried out in two alternating stages keeping the atomic configur-
ation fixed. The Wolff algorithm [71] is used to sample the classical

cluster-spins ~Si and the Metropolis algorithm [70] to sample the clas-

sical spin vectors ~Sik of the individual Mn atoms inside each cluster (i
denotes the cluster and k its internal degree of freedom). Finite size
effects are taken into account using Binder’s cumulant method [84].
Mn distributions are generated such that they have the same cluster
portions as in Fig. 4.1 in the MC cells consisting of about 55300–
187000 atoms. Each simulation is replicated 20–50 times which gives
TC with an accuracy of about 3 K.
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The TCs for the random distribution and the thermal equilibrium dis-
tribution at 1000 K are given in Fig. 4.4 (filled squares and circles,
respectively). TC depends on the Mn concentration [Mn] linearly. Our
approach using ten slowly decaying Jninj

s leads to higher TCs than that
using the more rapidly decaying exchange constant obtained from the
coherent potential approximation (CPA) (compare filled squares with
the open squares and circles from Refs [16, 26] in Fig. 4.4). This differ-
ence is due to different treatments of microscopic interactions in our
and in the CPA calculations. TC for the random distribution is seen
to exceed the room temperature at the Mn concentration of about
13.5 %. However, in thermal equilibrium at 1000 K, where significant
clustering has taken place (compare the narrow right columns with
the wide left ones in Fig. 4.1) we see a large drop in TC which is
directly related to clustering. To compare the Monte Carlo method
against molecular field theory (§4.2.1) TCs are also calculated for reg-
ular monomer and monomer-dimer lattices. These values are around
10-20 % higher than the TCs for the random distribution (compare
filled diamonds and triangle with the filled squares in Fig. 4.4). The
high value of 514 K obtained for the regular monomer-dimer lattice
at [Mn]= 0.08 in §4.2.1 has lowered drastically to the value of 187 K
(filled triangle in Fig. 4.4) which is due to the inclusion of magnetic
fluctuations and intra-cluster energies Eni

in the present calculations.
A similar large drop in TC for (Ga,Cr)N (from 600 to less than 50 K)
is found in Ref. [27].

Clustering reduces TC for two principal reasons. First, clustering leads
to an overall increase in inter-cluster separations and simultaneously
decreases the number of clusters which apparently has a tendency to
decrease TC . Second, the microscopic inter-cluster exchange coeffi-
cients Jninj

depend sensitively on the cluster size with a net effect of
reducing TC . This can be seen by comparing the Jninj

s in Fig. 4.3.
It is immediately clear that all Jni4s with a tetramer as a partner are
significantly weaker than the corresponding other Jninj

s: J14 is weaker
than J12 and J13; J24 is weaker than J22 and J23; J44 is weaker than
J34 that is weaker than J33. Thus, when the portion of tetramers in
thermal equilibrium at 1000 K grows up to 20-40 % (depending on x,
Fig. 4.1) it is natural that the TC values undergo the dramatic drop
shown in Fig. 4.4 (compare the filled circles with the filled squares).
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Chapter 5

Summary and outlook

Diluted magnetic semiconductors are promising candidates for spin-
tronics materials, as they naturally overcome the material incompat-
ibilities in metal-semiconductor interfaces. Of particular interest are
the III-V based semiconductor materials made magnetic by inclusion
of Mn (or some other suitable transition metal) that can easily be
integrated in the existing III-V semiconductor technologies. In order
to exploit the possibilities of this new family of materials it is crucial
to understand the fundamental mechanisms behind ferromagnetism in
semiconductor based materials. (Ga,Mn)As and (Ga,Mn)N are con-
sidered as important prototype materials because of their relatively
high Curie temperatures TC , and further these materials provide us
with a good testing ground in the quest for new, similar materials with
optimized properties.

In this thesis both (Ga,Mn)As and (Ga,Mn)N are studied theoretic-
ally starting from quantum mechanical interactions, and reaching to
macroscopic properties. For both materials we find that the key ele-
ment in understanding the ferromagnetism lies in understanding the
atomic clustered structures and the corresponding quantum mechan-
ical interactions. The most important findings for both materials are
summarized below.
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§5.1 (Ga,Mn)As

In Publications I–IV we show that the lowest energy microstructure
of (Ga,Mn)As consists of Mn clusters, where the Mn atoms occupy
nearest neighbor Ga sites. In Publication I we show that Mn dimers
localize holes, which reduces the effective hole concentrations, and
consequently also the hole mediated ferromagnetism gets weakened.
The findings in Publication I are then generalized for larger clusters
in Publications III and IV, confirming that the macroscopic magnetic
properties will be determined by inter-cluster interactions instead of
interactions between the individual Mn atoms. Finally in Publica-
tion V we discover the dynamic process—the vacancy mediated dif-
fusion of Mn—which leads to clustering during growth and thermal
annealing. The Curie temperatures and their long-term annealing de-
crease calculated based on the realistic cluster distributions are in close
agreement with experimental results.

The Curie temperatures for (Ga,Mn)As are estimated only using the
Weiss molecular field theory, which is known to overestimate TC . Fur-
thermore, known compensators such as As antisites and interstitial
Mn are not included, as only idealized samples are investigated. A
more quantitative description of the true experimental samples could
be obtained by inclusion of further defects and using Monte Carlo
methods to estimate TC .

§5.2 (Ga,Mn)N

In Publications VI–VII we show that also in (Ga,Mn)N the lowest en-
ergy microstructure consists of substitutional Mn clusters. In (Ga,Mn)N
the band splitting tendency is similar as in (Ga,Mn)As, but may lead
to an increased delocalization for the Mn induced hole states, in partic-
ular for the Mn dimer, as shown in Publication VI. Within the Weiss
molecular field theory the dimer formation leads to an increase in Curie
temperature (Publication VI) due to the increased delocalization, but
due to changes in p− d hybridization the formation of tetramers dra-
matically reduces TC . In Publication VII more sophisticated Monte
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Carlo methods are used, showing that clustering effectively reduces
TC .

In Publications VI–VII only microscopic structures corresponding to
random substitution and thermal equilibrium at 1000 K are considered.
In order to quantitatively describe the experimental samples kinetic
considerations should be taken into account. The more realistic micro-
structures can be obtained straightforwardly by calculation of migra-
tion barriers followed with kinetic Monte Carlo simulations, as done
for (Ga,Mn)As in Publication V.
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romagnétique, J. de Phys., 4◦ série 6, 661 (1907).
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tronic structure of hcp Gd and the Gd(0001) surface, J.
Phys.:Condens. Matter 14, 6353 (2002).
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