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Surface integral equation method is one of the most popular numerical methods in the computational
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surface integral equation methods are studied.

First, a recursive technique is developed to evaluate the singular integrals arising from the electromagnetic surface
integral equation methods. The technique is based on singularity subtraction method in which the most singular terms
are extracted and evaluated analytically. A similar recursive algorithm is also developed for higher order basis
functions. The technique is efficient and easy to apply for different surface integral equation formulations and
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this junction problem to model the fields separately in each region and to properly enforce the electromagnetic
boundary conditions on the interfaces of the regions. The developed method is very simple and independent of the
surface integral equation formulation and thus makes it easy to apply to different formulations.

The third and most important problem is the choice of the electromagnetic surface integral equation formulation.
Various traditional type of formulations are developed in this thesis and their behavior is studied especially with
respect to the iterative methods.

The most significant part of this thesis is the new type of a surface integral equation formulation and new techniques
developed for it. The main idea in this new formulation is to use the surface charge densities as unknowns in addition
to the traditional surface current densities. The formulation does not have problems with the low frequencies, it is
well-balanced and the convergence of the iterative methodsis fast for a very wide frequency range. The new
formulation seems to be the first well-conditioned, truly broadband formulation that can be used from static to high
frequencies in a general case of composite metallic and dielectric structures.

The relation between the new formulation and the Picard’s extended Maxwell system is also studied.
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Pintaintegraaliyhtälömenetelmä on yksi suosituimmista laskennallisen sähkömagnetiikan numeerisista menetelmistä.
Tässä väitöstyössä tarkastellaan taajuusalueen pintaintegraaliyhtälömenetelmien implementoinnin ja formuloinnin
kolmea ongelma-aluetta.
Ensiksi kehitetään rekursiivinen menetelmä sähkömagnetiikan pintaintegraaliyhtälöiden yhteydessä tarvittavien
singulaaristen integraalien laskemiseksi. Menetelmä perustuu singulaarisuuden vähennysmenetelmään, jossa kaikkein
singulaarisimmat termit vähennetään ja lasketaan erikseen analyyttisesti. Samankaltainen rekursiivinen algoritmi
kehitetään myös korkeamman asteen kantafunktioille. Menetelmä on tehokas ja helppo soveltaa erilaisille
pintaintegraaliyhtälöille ja polynomaalisille kantafunktioille.
Toinen ongelma-alue on sähkömagneettisten kenttien mallintaminen pintaintegraaliyhtälömenetelmillä
monimutkaisissa rakenteissa. Tähän nk. liitosongelmaan kehitetään menettelytapa, jossa kentät mallinnetaan erikseen
jokaisessa alueessa ja sähkömagneettiset reunaehdot pakotetaan oikella tavalla alueiden rajapinnoilla. Kehitetty
menetelmä on hyvin yksinkertainen ja riippumaton käytetystä pintaintegraaliyhtälön muodosta ja on siten helppo
soveltaa erilaisiin pintaintegraaliyhtälöformulointeihin.
Kolmas ja tärkein ongelma-alue on sähkömagneettisen pintaintegraaliyhtälöformulaation valinta. Väitöskirjassa
kehitetään lukuisia perinteisen muotoisia formulointejaja niiden käyttäytymistä tarkastellaan erityisesti iteratiivisten
menetelmien yhteydessä.
Väitöskirjan tärkein osa on uudentyyppinen pintaintegraaliyhtälömuoto ja sitä varten kehitetyt uudet menettelytavat.
Uuden formuloinnin pääidea on käyttää pintavaraustiheyksiä tuntemattomina perinteisten pintavirtatiheyksien lisäksi.
Formulaatiolla ei ole ongelmia matalilla taajuuksilla, seon hyvin vakaa ja iteratiivisten menetelmien suppeneminen
on nopeaa laajalla taajuusalueella. Uusi pintaintegraaliyhtälömuoto näyttää olevan ensimmäinen hyvin määritelty,
laajan taajuusalueen formulaatio, jota voidaan käyttää statiikasta korkeille taajuuksille yleisissä yhdistettyjen
metallisten ja dielektristen kappaleiden tapauksissa.
Väitöskirjan yhteenveto-osassa tarkastellaan myös uudenpintaintegraaliyhtälömuodon ja Picardin laajennetun
Maxwell-järjestelmän välistä suhdetta.
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nique for integral equation methods with higher order basis functions on plane trian-
gles and tetrahedra. Int. J. Numer. Meth. Engng, 58:1149–1165, October 2003.
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1 Introduction

Surface integral equation method is one of the most popular numerical methods in the elec-
tromagnetic scattering analysis of metallic, homogeneous dielectric and composite objects.
It is used in many important applications e.g., in the radar technology, antenna design and
microwave engineering.

In the frequency domain surface integral equation method, the electromagnetic fields are
simulated with a fixed frequency, i.e. the fields are assumed to be time harmonic. The
electromagnetic fields are dictated by the time harmonic Maxwell’s equations in which the
electric and magnetic fields are tied together with partial differential equations. In ho-
mogeneous regions the fields inside the region can be expressed as surface integrals of the
surface fields and so, to simulate the fields in the region numerically, only the surface fields
need to be modeled. Traditionally in the surface integral equation method these surface
fields are modeled with the surface currents densities. The fields of neighboring regions are
related to each other by the electromagnetic boundary conditions on the interfaces of the
regions.

The surface integral equations are usually implemented by discretizing the region interfaces
with triangular or quadrilateral meshes and by expressing the surface currents with vector
valued basis functions. The equations are often discretized by the Galerkin procedure, in
which the equations are tested with the same basis functions.

In this thesis three problem areas in the implementation and formulations of the electro-
magnetic surface integral equations are studied.

The first problem area is the evaluation of the singular integrals arising from the sur-
face integral equations. These integrals can be calculated numerically, for example, with
so called singularity cancellation methods, in which the singularity is cancelled by a proper
transformation of the coordinates. Widely applied techniques are e.g., Duffy’s method [1]
and polar coordinate transformation [2]. These techniques, however, have accuracy prob-
lems with non-regular elements.

Another possibility is the singular subtraction (or extraction) technique ([3], [4] and [5]) in
which the singularity is extracted and integrated analytically. The same singular function
is typically shared by the integrals of the neighboring basis functions or different oper-
ator terms in the surface integral equation formulation. With the singularity extraction
technique, significant time savings can be obtained, because similar integrals need to be
evaluated only once. In the original singularity extraction, only the most singular term
was extracted. The remaining function is, however, not necessarily smooth enough for
numerical integration.

In article [P1] the singularity subtraction method was further extended by subtracting more
than one singular term and a recursive technique was developed to evaluate the singular
integrals of arbitrary order. In [P2] and [P3] the technique was further extended to higher
order basis functions.
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The second problem area in the electromagnetic surface integral equation methods is
how to model the fields in complex structures. The surface fields need to be modeled with
proper basis functions, the surface integral equations need to be tested properly on the
surfaces and the electromagnetic boundary conditions need to be enforced properly on the
interfaces.

In the case of a simple interface of two dielectric regions, the modeling is quite straightfor-
ward process. The problem becomes more complicated in the intersections, or ”junctions”
of more than two regions. Some authors ([6], [7] and [8]) first formulate the surface integral
equations on the surfaces and then use half basis functions to expand the currents and to
test the equations at the junctions. This, however, unnecessarily complicates the modeling
procedure. Other authors combine the currents of regions of the junctions into so called
multiplets [9], but the testing is then more problematic.

In article [P4] this junction problem was studied and a procedure was developed to model
and test the surface fields separately in each region and properly enforce the electromagnetic
boundary conditions between the regions in a computationally simple way. The procedure
does not depend on the surface integral equation formulation and thus makes it easy to
apply to different formulations.

The third and the most important problem area is the choice of the surface integral
equation formulation. There are many different properties that a good electromagnetic
surface integral equation formulation should satisfy. The formulation should always give
the correct and accurate results. A good surface equation formulation should also manage
large variety of different materials and shapes of the objects. Materials may vary from
free space to highly insulating, absorbing or conducting objects, and the objects may have
sharp edges or resonant cavities or shapes. The discretized equation of the formulation
should also have good numerical properties. The system should be solvable with the finite
precision of the computers. This can usually be detected by the (singular value) condition
number of the discretized system matrix.

In the case of metallic objects the fundamental integral equations are the electric field
(EFIE), the magnetic field (MFIE) and the combined field (CFIE) integral equations [10].
For dielectric objects, the most popular formulations are the PMCHWT [11] and the Müller
[12] formulations.

In article [P5], a new CFIE type formulation was presented to be used as a general for-
mulation for composite objects of dielectric and metallic regions. The CFIE formulation
removes the problems with the internal resonances of the metallic objects and with proper
weighting coefficients, leads to better conditioned systems and faster converging iterative
solutions.

Most of the traditional electromagnetic surface integral equations suffer from the so called
low frequency problems. A good formulation should not have problems with low frequen-
cies, because the low frequency solutions are typically smoother.
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In [P6] a well-conditioned Müller type formulation was developed for the case of homoge-
neous dielectric objects. The Müller type formulations are not infected by the low frequency
problem in simple dielectric cases.

The discretized electromagnetic surface integral equations typically lead to very large dense
matrices and usually iterative methods are needed to solve the system. A good formulation
should also have good convergence properties which depend on the spectral (or eigenvalue)
distribution of the system matrix. The low frequency problem of the traditional formula-
tions slows down the convergence of the iterative methods.

In [P7] different traditional formulations and those developed by the authors were studied
with iterative methods. It was found that the second kind of integral equation formulations
with properly scaled identity operators give the best overall convergences.

The traditional formulations can be enhanced by proper coupling coefficients [13], [14] and
the low frequency problem can be partially removed by the loop-star and loop-tree basis
functions [15], [16]. Also, certain preconditioning methods [17], [18] can be used to improve
the condition of the system. These analytical preconditioners are, however, currently de-
veloped only for the metallic objects. The best way to improve the situation is a better
choice of the surface integral equation formulation.

In [P8] a novel well-conditioned surface integral equation formulation, Current and Charge
Integral Equation (CCIE), is presented for general case of composite metallic and dielectric
structures. The new formulation does not suffer from the low frequency breakdown, is well
balanced and converges rapid for a very wide frequency range. This new formulation and
techniques developed in [P8] are the most important and essential parts of this thesis.

The new formulation is shown to be related to the Picard’s extended Maxwell system [19],
[20]. This elliptic, first order system has a correct static behavior which is not the case with
the Maxwell’s system used with the traditional electromagnetic surface integral equations.

3



2 Electromagnetic Surface Integral Equations

In the frequency domain surface integral equation method the modeled objects are assumed
to be combinations of homogeneous regions. The time harmonic electromagnetic fields are
modeled inside each homogeneous region as surface integrals of the surface field values.

In this work the regions are assumed to be isotropic, either ”dielectric” or ”metallic”. In
isotropic dielectric regions the electromagnetic parameters, electric permittivity ε and mag-
netic permeability µ are scalar valued. If the region is conductive, the electric permittivity
ε may contain the (finite) conductivity σ as the imaginary part,

ε = ε0 εr + i
σ

ω
,

where i =
√
−1 and ω = 2πf is the angular frequency. The metallic regions may be either

perfectly electric conducting (PEC) or perfectly magnetic conducting (PMC).

In each region, the fields are independently modeled with the time harmonic Maxwell’s
equations. The fields in different regions are related to the fields of the neighboring regions
by the electromagnetic boundary conditions.

Electromagnetic surface integral equations are derived from the surface integral represen-
tations of the electromagnetic fields. In the traditional formulations the surface current
densities on the region interfaces are used as the unknowns and a given primary field is the
source term.

2.1 Time Harmonic Maxwell’s Equations

In a homogeneous, isotropic region having no sources, the time harmonic (e−iωt) Maxwell’s
equations tie the electric (E) and the magnetic (H) field values together as











∇× E = iωµH,
∇× H = −iωεE,
∇ · E = 0,
∇ · H = 0.

(1)

If the frequency is zero (ω = 0), the fields are decoupled.

2.1.1 Normalized Fields and Maxwell’s Equations

The electromagnetic material parameters, the electric permittivity ε and the magnetic
permeability µ are typically of very different scales. For example, in the free space they
are

ε0 = 8.85418782 · 10−12 As

V m
,

µ0 = 4π · 10−7 V s

Am
.
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A modified set of Maxwell’s equations can be formed by using normalized electromagnetic
fields [21],

Ẽ =
√

εE,
H̃ =

√
µH,

(2)

where the normalized electric (Ẽ) and magnetic (H̃) fields are of the same scale, since

Ẽ =
√

εE ≈ √
µH = H̃.

Using these normalized fields, a better balanced, normalized Maxwell’s equations are














∇× Ẽ = ik H̃,
∇× H̃ = −ik Ẽ,
∇ · Ẽ = 0,
∇ · H̃ = 0,

(3)

where k = ω
√

εµ, the wave number, is the only material parameter.

2.1.2 Boundary Conditions

The electromagnetic fields in separate regions are not independent of each other. The fields
are tied together by the boundary conditions which consist of the continuity relations on
dielectric interfaces and of the vanishing field components on metallic surfaces.

On the interface of two dielectric regions the tangential components of the electric and
magnetic fields are continuous across the interface,

E
(1)
tan = E

(2)
tan,

H
(1)
tan = H

(2)
tan.

(4)

Similarly, the normal components of the electric (D = εE) and the magnetic (B = µH)
flux densities are continuous across the interface

D(1)
n = ε1E

(1)
n = −ε2E

(2)
n = −D(2)

n ,

B(1)
n = µ1H

(1)
n = −µ2H

(2)
n = −B(2)

n ,
(5)

where the direction of surface normal is assumed to point into each region (inner normal)
and leads to the change of the sign above.

Neither the tangential nor the normal components of the normalized fields (2) are directly
continuous across the interfaces, but

1√
ε1

Ẽ
(1)
tan = E

(1)
tan = E

(2)
tan =

1√
ε2

Ẽ
(2)
tan,

1√
µ1

H̃
(1)
tan = H

(1)
tan = H

(2)
tan =

1√
µ2

H̃
(2)
tan,

√
ε1 Ẽ(1)

n = D(1)
n = −D(2)

n = −√
ε2 Ẽ(2)

n ,

√
µ1 H̃(1)

n = B(1)
n = −B(2)

n = −√
µ2 H̃(2)

n .

(6)
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On perfectly electric conducting (PEC) surfaces the tangential components of the electric
field Etan (and Ẽtan) and the normal components of the magnetic field Hn (and H̃n) vanish,
and the remaining field components are independent on opposite sides of the surface.

Similarly, on perfectly magnetic conducting (PMC) surfaces the tangential components of
the magnetic field Htan (and H̃tan) and the normal components of the electric field En (and
Ẽn) vanish and the remaining field components are independent on opposite sides of the
surface.

2.2 Surface Integral Representations of the Electromagnetic Fields

In each separate region the electromagnetic fields can be expressed as surface integrals of
the equivalent electric (J) and magnetic (M) surface current densities

J = n × H,
M = n × E,

(7)

where n is the inner unit normal of the surface and the positive sign convention of the
magnetic current density M follows the choice in [P8]. In all the other articles of this
thesis the more common negative sign is used in M.

Note that the ”electric” surface current density J is related to the rotated tangential com-
ponents of the magnetic field and similarly ”magnetic” current density M equals to the
rotated tangential components of the electric field.

The time harmonic (total) electric and magnetic fields E and H can be expressed on a
surface of a region as

E = Ep − 1

iωε

(

D − 1

2
n∇·

)

(J) +

(

K − 1

2
n×
)

(M),

H = Hp +
1

iωµ

(

D − 1

2
n∇·

)

(M) +

(

K − 1

2
n×
)

(J),

(8)

where Ep and Hp are the primary fields. D and K are surface integral operators

D(f) =
(

∇∇ · +k2
)

S(f),

K(f) = ∇× S(f),

S(f)(r) =

∫

G(r, r′) f(r′) ds(r′),

where G(r, r′) =
1

4π

eikR

R
, R = |r − r′| is the free space Green’s function.

The surface integral representations (8) include four terms related to the residual terms
of the singular principal value integrals. These terms play crucial roles when considering
proper surface integral equation formulations of the second kind with identity operators.
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2.2.1 Divergences of Currents and Normal Components of Fields

The ∇∇· part of the D operator can be further modified into

∇∇ · S(J) = ∇
∫

G(r, r′)∇s
r
′ · J(r′) ds(r′) = ∇S (∇ · J) = N (∇ · J) ,

where
N = ∇S

and the integral representations (8) of the fields are

E = Ep − 1

iωε

(

N − 1

2
n

)

(∇ · J) + iωµS(J) +

(

K − 1

2
n×
)

(M),

H = Hp +
1

iωµ

(

N − 1

2
n

)

(∇ · M) − iωεS(M) +

(

K − 1

2
n×
)

(J).

(9)

Outside of the sources, the divergences of the surface current densities and the normal
components of the fields are related as

∇ · J = −n · ∇ × H = iωεn · E = iωε En,

∇ · M = −n · ∇ × E = −iωµn · H = −iωµ Hn,

and the surface integral representations (9) can be expressed as

E = Ep −
(

N − 1

2
n

)

(En) + iωµS(J) +

(

K − 1

2
n×
)

(M),

H = Hp −
(

N − 1

2
n

)

(Hn) − iωεS(M) +

(

K − 1

2
n×
)

(J).

(10)

2.2.2 Normalized Surface Integral Representations

The electromagnetic field surface integral representations (9) and (10) can be expressed
with the normalized fields (2) as

Ẽ = Ẽp − 1

ik

(

N − 1

2
n

)

(∇ · J̃) + ik S(J̃) +

(

K − 1

2
n×
)

(M̃),

H̃ = H̃p +
1

ik

(

N − 1

2
n

)

(∇ · M̃) − ik S(M̃) +

(

K − 1

2
n×
)

(J̃)

(11)

and

Ẽ = Ẽp −
(

N − 1

2
n

)

(Ẽn) + ik S(J̃) +

(

K − 1

2
n×
)

(M̃),

H̃ = H̃p −
(

N − 1

2
n

)

(H̃n) − ik S(M̃) +

(

K − 1

2
n×
)

(J̃),

(12)

where

J̃ = n × H̃ =
√

µJ and M̃ = n × Ẽ =
√

εM

are the normalized surface current densities. As with the normalized Maxwell’s equations,
the only material parameter present in the normalized surface integral representations is
the wave number k.
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2.3 Traditional Surface Integral Equations

The surface integral representations of the electromagnetic fields are used to derive surface
integral equations having the current densities J and M as unknowns and the primary fields
Ep and Hp as known ”right hand sides” of the equations. Traditionally, three different
surface integral equation formulations can be derived from the original surface integral
representations (8) by considering the tangential field components,







H
p
tan

E
p
tan






=







− 1

iωµ
Dtan

−1

2
n ×−Ktan

−1

2
n ×−Ktan

1

iωε
Dtan













M

J






(13)

or the rotated tangential components,






n × Ep

n × Hp






=







I
2
− n ×K

− 1

iωµ
n ×D

1

iωε
n ×D

I
2
− n ×K













M

J






, (14)

or by combining the tangential and rotated tangential components into a CFIE type of
equation (JMCFIE in [P5]),







n × Ep − η H
p
tan

n × Hp +
1

η
E

p
tan






=







L

−1

η
n × L

η n × L

L













M

J






, (15)

where I is the identity operator, η =

√

µ

ε
and

L =
I
2
− n ×K +

1

ik
Dtan.

In a simple PEC metallic case the magnetic current density M disappears because of the
boundary conditions and the first equation (13) is usually reduced to the EFIE formulation
containing only the D operator whereas the second equation (14) is usually reduced to a
MFIE type of formulation with the K operator. The third equation (15) is reduced to the
traditional CFIE formulation.

In dielectric case, the first equation leads to the well known PMCHWT formulation [11].

The last two equations have an identity operator I/2 in the diagonal and so they are
integral equations of the second kind and, therefore, usually lead to better behaving im-
plementations.

In all cases, the unknown current densities J and M are typically expanded with RWG
basis functions [22] on discretized region interfaces and the equations are discretized with
the Galerkin procedure by testing with the same basis functions.

Three problem areas arise from the surface integral equations. The integral operators in the
surface integral equation are singular, the discretized surface integral equations of separate
regions need to be combined according to the electromagnetic boundary conditions and
the most important problem is the choice of the surface integral equation formulation.
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3 Singular Integrals

The discretized electromagnetic surface integral equations usually involve evaluations of
integrals that are singular when the supports of the testing and basis functions overlap or
touch each other. When discretized with Galerkin procedure, the singular integrals of the
discretized surface integral equations (13), (14) and (15) can all be evaluated from integrals

∫

Tm

Nm(r)

∫

Tn

g(r, r′) Nn(r′) ds(r) ds(r′),

where g is either the free space Green’s function G, its normal derivative or surface gradient,

g(r, r′) =



















G(r, r′)

∂G(r, r′)

∂nr
′

∇s
r
′G(r, r′)

.

The double surface integration is usually over a pair of elements Tm and Tn and the func-
tions Nm and Nn are typically either constants or the linear nodal shape functions.

In the articles of this thesis, the evaluation of these singular integrals is based on the
singularity extraction technique [3]. The extraction (or subtraction) of the singular terms
is extended in [23] with recursively evaluated integrals of arbitrary order and these formulas
are applied to the CFIE formulation in [P1]. The method is further generalized for higher
order basis functions in [P2] and [P3].

3.1 Singularity Subtraction Technique

The singularity subtraction is based on the Taylor series of the exponential function,

ex =
∞
∑

j=0

xj

j!
= 1 + x +

x2

2
+

x3

6
+

x4

24
+ . . . ,

so the free space Green’s function G(r, r′) has a series expansion

4π G(r, r′) =
eaR

R
=

∞
∑

j=0

ajRj−1

j!
=

1

R
+ a +

a2R

2
+

a3R2

6
+

a4R3

24
+ . . . , (16)

where a = ik. The idea is to subtract some of the first, non-smooth terms from the Green’s
function,

∫

eaR

R
N(r′) ds(r′) =

∫

(

eaR

R
−

N
∑

j=0

a2jR2j−1

(2j)!

)

N(r′) ds(r′)+
N
∑

j=0

a2j

(2j)!

∫

R2j−1N(r′) ds(r′)

(17)
and to calculate the extracted integrals analytically. The remaining integral is relatively
smooth and can be calculated numerically.
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The analytical integrals of the odd powers Rn can be evaluated recursively from the lower
order surface and edge integrals. The recursion is ended to surface integral of R−3 and edge
integral of R−1 where the former can be calculated from the solid angle of the element.

The smooth, even power terms could also be calculated analytically. The recursion of the
even terms is ended to surface and edge integrals of R0, i.e. the area and edge lengths of
the element.

The integrals with derivatives of the Green’s function are integrated by subtracting deriva-
tives of the series expansion terms and integrating the extracted terms analytically using
the same integrals of Rn as in (17).

Singular integrals containing scalar or vector valued linear basis functions are integrated
analytically by expressing the integrands with surface gradients of Rn. For example, an
integral containing RWG basis functions [22] can be calculated with

∫

T

Rn(r′ − pj) ds(r′) =
1

n + 2

∫

T

∇s
r
′Rn ds(r′) + (ρ − pj)

∫

T

Rn ds(r′),

where ρ is the projection of the point r into the triangle T plane and pj is the free vertex
of the triangle opposite to the edge of the RWG basis function.

3.2 Singularity Subtraction for Higher Order Basis Functions

The singularity subtraction is extended to higher order basis functions in [P2]. The higher
order basis functions are expressed with polynomials of local (u, v) coordinates. One power
of u (or v) at the time is expressed with the surface gradient of Rn and the integral is
translated into surface and edge integrals having lower orders of u (or v). This recursion
is performed until the remaining integrals do not anymore contain polynomials of u or v
and can, therefore, be calculated from the same integrals as in (17).

The translation from the higher order basis function to a polynomial of the local (u, v) co-
ordinates is a bit complicated process and in order to simplify the calculation of the actual
integrals containing the higher order basis functions, the recursion was further improved in
[P3]. Instead of using polynomials of the local coordinates, the higher order basis functions
are expressed as polynomials of the linear nodal shape functions.

The linear nodal shape functions can be expressed with RWG bases as

Nj(r
′) = 1 − (r′ − pj) · mr

′

hj

and, therefore, the integrals can be translated similarly using surface gradients of Rn and
recursion can be applied to lower the powers of the shape functions.
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4 Junction Problem: Modeling Complex Structures

In the case of composite objects containing dielectric and metallic regions, the electromag-
netic fields can still be modeled separately inside each region, but when combining the
surface integral equations of separate regions, the enforcing of the boundary conditions
on the region interfaces is not a straightforward process. This is known as the junction
problem.

The fourth article [P4] describes how the boundary conditions should be applied by properly
orienting the RWG basis functions which are used to model the current densities on regions.

4.1 Oriented RWG Basis Functions

An RWG basis function [22] is build from two adjacent triangles with a common edge and
it models the flow of the current component normal to the edge continuously from one
triangle to the other. Furthermore, on the basis edge, the RWG basis functions assigned
to the other edges do not have components normal to the edge, so the RWG bases are
semi-orthogonal on the edges.

Because the currents are 90 degree rotated tangential components of the fields (7), the
RWG basis function models the flow of the field component parallel to the edge continu-
ously from one triangle to the other.

If the edge is shared by more than one RWG basis functions, it is important to orient the
RWG bases to the same orientation around the edge in order to model the same parallel
orientation of the field.

Because the tangential field components are continuous across the dielectric interfaces (4)
and the field component parallel to the edge is tangential to all of the triangles attached
to the edge, all the oriented RWG basis functions of the edge are modeling the same field
values and, therefore, they all share the same (unknown) coefficient of the field.

4.2 Metallic Junctions

If any of the triangles connected to the edge is on a PEC (or PMC) surface, the tangential
component of the electric (magnetic) field is always zero also on the edge and, therefore,
all the magnetic (electric) currents have to be removed from these edges.

Because the non-zero components of the fields are independent on opposite sides of the
metallic surface, the oriented RWG basis functions around an edge share the same unknown
coefficient only between two metallic triangles. The currents inside a closed metallic region
do not interact with the outer world and they can simply be removed.

4.3 Enforcing the Boundary Conditions

The boundary conditions are now straightforward to enforce. When using the oriented
RWG basis functions, the dielectric continuity relations (4) are enforced simply by using
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the same unknown coefficients. This can be done by adding the columns of the discretized
local system matrices together and in order to get the same number of discritized equations
and unknowns, the corresponding rows of the matrices are added together, too.

The metallic boundary conditions are enforced simply by ignoring certain currents on edges
having metallic triangles.

As a consequence of the simplicity of the enforcing of the boundary conditions, different
surface integral equation formulations can be easily applied.

5 Well-Conditioned Surface Integral Equation Formu-

lations

The choice of the surface integral equation formulation used for the solving the unknown
surface current densities is a more difficult problem. Even using the traditional surface
integral equations (13), (14) and (15), there are infinite number of ways to choose different
formulations. The equations can be multiplied by arbitrary coefficients and several formu-
lations can be build from the linear combinations of the equations.

In article [P5], a new CFIE type formulation was presented for general composite objects.
This formulation does not have problems with internal resonances of metallic objects.
In article [P7] different formulations were studied to be used with iterative solvers and
in article [P6] Müller type formulations were developed to overcome the low frequency
problem in the case of simple homogeneous objects.

5.1 Internal Resonances

In the case of PEC (or PMC) objects the magnetic (electric) current densities are removed
from the system and there remains only one unknown current J (or M). It is well known
that in order to solve the system for all the frequencies, a CFIE type of the surface integral
equation formulation is needed because of possible internal resonances.

In article [P5], a new CFIE type formulation, JMCFIE (15), was presented to be used as
a general formulation for composite objects having combinations of dielectric and PEC or
PMC metallic regions. Two different CFIE type equations are used, one for the electric
current density J and another for the magnetic current density M. In the simple PEC
cases, this formulation reduces to the traditional CFIE formulation.

The iterative convergence of the JMCFIE formulation was also studied and the best con-
vergence was achieved by choosing coefficients of the equations so that the diagonal blocks
of the system matrix were identical.

5.2 Formulations for Iterative Methods

The convergence of the iteration methods depends heavily on the surface integral equation
formulation. The behavior of different formulations was studied in article [P7].
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In all the articles of this thesis, the surface integral equations are discretized by the Galerkin
method in which the equations are tested with the same functions that are used in expand-
ing the unknown current densities. In the Galerkin method, the basis functions are assumed
to span not only the space of the current densities but also the image space of the surface
integral equation formulation. This can be achieved by using formulations that map the
current densities back to themselves.

For a good convergence, the discretized system matrix should be diagonally dominant.
Integral equation formulations of the second kind with identity operators in the diagonals
are typically diagonally dominant and if the coefficients of the identity operators are scaled
to ones (or 1/2 actually), the formulation is also suitable for the Galerkin method. The
most optimal formulation would be a Fredholm integral operator of the second kind with
identity and compact operators.

Numerically, the convergence of a typical iterative method depends on the eigenvalue dis-
tribution of the discretized system matrix. If the eigenvalues are distributed into finite
number of clusters away from the origin, the convergence is faster. In the most optimal
case the eigenvalues are on the positive real axis in which case the formulation leads to a
positive definite matrix.

In [P7] the rotated tangential (14) and the JMCFIE (15) formulations are found to have the
best overall convergences. Both are integral equations of the second kind and the identity
operators are properly scaled.

5.3 Low Frequency Problem

The traditional electromagnetic surface integral equation formulations do not work cor-
rectly when the frequency is low. This can be seen from the surface integral representations
of the fields (9),

E = Ep − 1

iωε

(

N − 1

2
n

)

(∇ · J) + iωµS(J) +

(

K − 1

2
n×
)

(M),

H = Hp +
1

iωµ

(

N − 1

2
n

)

(∇ · M) − iωεS(M) +

(

K − 1

2
n×
)

(J).

(18)

When the frequency gets small (ω → 0), the divergences of the currents ∇ · J and ∇ · M
become dominant in the equations because 1/ω → ∞ and the contributions of the current
densities J and M disappear. Therefore, at low frequencies in the general case J and M

cannot be directly reconstructed from the integral equations derived from these integral
representations.

Although the low frequency problem seems not to be a major problem if the modeled object
is moderate large compared to the wave length, the low frequency problem can, however,
occur locally, if the object for example has small details that must be modeled with small
elements.
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Another important problem is that the usual numerical procedure for modeling the objects
more accurately by making the discretization of the surface denser, leads to a system with
a higher condition number because of the low frequency problem with the smaller elements.

There are a couple of formulations that do not suffer from the low frequency problem. In
the case of PEC objects, the rotated tangential component formulation (14) reduces to the
n × MFIE formulation which does not include the hypersingular N operators and thus the
behavior at low frequencies is better. Another well-conditioned formulation is the Müller
type formulation for simple dielectric objects.

5.3.1 Müller Formulations

In article [P6] a surface integral equation formulation of the Müller type [12] is presented
for homogeneous dielectric objects. The low frequency problem can be removed by properly
choosing the coefficients so that the frequency dependence of the N operator is changed in
(18).

In the case of a dielectric object, the combined system matrix of the rotated tangential
formulations (14) is of the form







(ε1 + ε2)
I
2
− n × (ε1K1 − ε2K2)

− 1

iω
n × (D1 −D2)

1

iω
n × (D1 −D2)

(µ1 + µ2)
I
2
− n × (µ1K1 − µ2K2)






, (19)

where the electric equations are multiplied with εj, the magnetic equations with µj and
the inner normals are combined (n = n1 = −n2).

The off-diagonal terms containing the difference of the D operators are

1

iω
(D1 −D2) =

1

iω
∇∇ · (S1 − S2) +

k2
1 − k2

2

iω
(S1 − S2) ,

where the first difference of the S operators is

∇∇ · (S1 − S2) (J) =

∫

(∇G1 −∇G2) (r, r′) ∇s
r
′ · J(r′) ds(r′).

The difference of the gradients of the two Green’s functions can be expressed with the
series expansion (16) as

∇G1 −∇G2 =
1

4π

∞
∑

j=0

j − 1

j!
Rj−3

(

(ik1)
j − (ik2)

j
)

(r − r′),

where the two first terms vanish and, therefore, the frequency behavior of the off-diagonal
terms actually is

1

iω
(D1 −D2) ∼ O(ω),

and not ∼ O(1/ω).
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Because of this cancellation of the most singular terms of the hypersingular operator D,
the divergences are not anymore dominant at low frequencies and therefore the Müller type
formulations are not infected by the low frequency problem.

In article [P7] the Müller formulation is further improved by multiplying the electric equa-
tions with εj/(ε1 + ε2) and the magnetic equations with µj/(µ1 + µ2). This way all the
coefficients of the identity operators in the diagonals of (19) are equal to one and the con-
vergence of the iterative methods is better.

However, in dielectric junctions of more than two regions, the cancellation of the singular
terms is not complete and, therefore, the Müller type formulation works at low frequencies
only in the simple cases of two dielectric regions.
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6 Current and Charge Formulations

In article [P8] a new extended electromagnetic surface integral equation formulation is pre-
sented. The new formulation, Current and Charge Integral Equation (CCIE) formulation
is not infected by the low frequency problem of the traditional formulations.

The low frequency problem can be prevented by using the surface integral representations
(10) in which the divergences of the currents are replaced by the normal components of
the fields and the frequency dependence of the N operator is changed,



















E = Ep −
(

N − 1

2
n

)

(En) + iωµS(J) +

(

K − 1

2
n×
)

(M),

H = Hp −
(

N − 1

2
n

)

(Hn) − iωεS(M) +

(

K − 1

2
n×
)

(J).

(20)

The main idea is to use these normal field components as independent unknowns in addition
to the traditional (rotated) tangential components. The integral representations (20) have
altogether four different residual terms of the singular principal value integrals and these
can be used to build an integral equation of the second kind with four unknowns and four
identity operators.

6.1 Extended System of Currents and Charges

Because the continuity relations of the normal components of the fields (5) are related to
the flux densities D and B, the new unknowns are chosen to be the normal components of
these flux densities, i.e. the electric (d) and magnetic (b) surface charge densities

d = n · D = εn · E =
1

iω
∇ · J,

b = n · B = µn · H = − 1

iω
∇ · M.

(21)

Two additional equations can be obtained from the normal components of (20) and together
with the rotated tangential component equations, an integral equation formulation of the
second kind can be constructed as























εn · Ep

n × Ep

n × Hp

µn · Hp























=























I
2

+n · N −εn · K −iωεµn · S 0

1

ε
n ×N I

2
−n ×K −iωµn × S 0

0 iωεn × S I
2
−n ×K 1

µ
n ×N

0 iωεµn · S −µn · K I
2

+n · N













































d

M

J

b























. (22)

6.2 Normalized Extended System

The new extended system of currents and charges (22) is quite ill-balanced. Different
source terms and off-diagonal terms have coefficients of very different scales and quanti-
ties. A better balanced system can be constructed from the normalized surface integral
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representations (12) and by using the normalized charge densities

d̃ = n · Ẽ =
d√
ε

and b̃ = n · H̃ =
b√
µ

.

With the normalized unknowns and sources, the new formulation is






















n · Ẽp

n × Ẽp

n × H̃p

n · H̃p























=























I
2

+n · N −n · K −ik n · S 0

n ×N I
2
−n ×K −ik n × S 0

0 ik n × S I
2
−n ×K n ×N

0 ik n · S −n · K I
2

+n · N













































d̃

M̃

J̃

b̃























. (23)

From this form, it is easy to see that at zero frequency (k → 0) the electric and magnetic
fields are decoupled as they should be.

6.3 Scaled Boundary Conditions

Since none of the components of the normalized fields are directly continuous across the
region interfaces (6), enforcing of the boundary conditions is more complicated with the
normalized equations.

To enforce the continuity and at the same time maintain balance of the system, the normal-
ized unknowns are further scaled by dividing them with carefully chosen relative coefficients
sU

j = ±cU
j /CU ,

cd
j =

1
√

εj

, cM
j =

√
εj, cJ

j =
√

µj, cb
j =

1
√

µj

, and CU =

√

√

√

√

m
∑

j=1

(

cU
j

)2
,

where m is the number of the regions sharing the same unknown. If there is only one
region, the relative constant is one.

This means that instead of the original normalized continuity relations (6), scaled boundary
conditions are applied,

Cd

√
ε1Ẽ

(1)
n = CdD

(1)
n = −CdD

(2)
n = −Cd

√
ε2Ẽ

(2)
n ,

CM√
ε1

Ẽ
(1)
tan = CME

(1)
tan = CME

(2)
tan =

CM√
ε2

Ẽ
(2)
tan,

CJ√
µ1

H̃
(1)
tan = CJH

(1)
tan = CJH

(2)
tan =

CJ√
µ2

H̃
(2)
tan,

Cb

√
µ1H̃

(1)
n = CbB

(1)
n = −CbB

(2)
n = −Cb

√
µ2H̃

(2)
n ,

(24)

where the constant scaling coefficients Cd, CM , CJ and Cb may vary for each edge (cur-
rents) or element (charges) of the system as long as all the currents and charges sharing
the same unknown have the same coefficients.
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The sign of the coefficient is positive for the oriented basis functions of the currents but
for the charges the sign needs to be opposite on the opposite sides of the interface and can
be fixed, for example, to be positive on the region of the lower index.

For symmetry, also the source terms and the equations are scaled and the system is












sd n · Ẽp

sM n × Ẽp

sJ n × H̃p

sb n · H̃p













= SZS













d̃/sd

M̃/sM

J̃/sJ

b̃/sb













, (25)

where Z is the same matrix as in (23) and S is a diagonal matrix containing [sd, sM , sJ , sb].

The normalized and scaled unknowns are continuous across the interfaces and the scaling
coefficients are chosen so that the identity operators in the diagonal are without extra
coefficients in the combined system matrix, since

m
∑

j=1

(

sU
j

)2 I
2

=
I
2

1

(CU)2

m
∑

j=1

1
(

cU
j

)2 =
I
2

m
∑

j=1

1

(cU
j )

2

m
∑

j=1

1

(cU
j )

2

=
I
2
. (26)

6.4 Removing Linear Dependences

The new normalized and scaled formulation (25) has two linear dependence problems. The
currents and charges are mutually linearly dependent (21) and the charges are internally
linearly depended.

In both cases additional restrictions are needed in order to be able to solve the system
numerically in all cases. Usually adding new equations makes the system to have more
equations than unknowns and thus it is overdetermined and the system has to be con-
verted into a square system somehow.

In both cases of the linear dependence of the new formulation the overdetermined system
is squared by picking up adequate number of linear combinations of the equations so that
every equation is used at least once.

6.4.1 Linear Dependence between Currents and Charges

The surface currents and charges are linearly dependent by (21). The linear dependence
can be removed with additional equations formed from normalized equations

ik d̃ = ∇ · J̃
−ik b̃ = ∇ · M̃

, (27)

by applying integral operator S,

ik S(d̃) = S(∇ · J̃) = ∇ · S(J̃)

−ik S(b̃) = S(∇ · M̃) = ∇ · S(M̃)
. (28)
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Because of the good balance in the system (23), these new equations can be added directly
into the first and last equations thus creating a square system with linear combination of
the equations of the overdetermined system,






















sd Ẽp
n

sM Ẽp
r

sJ H̃p
r

sb H̃p
n























= S























I
2
−ik S+Nn −Kn −ik Sn+∇ · S 0

Nr

I
2
−Kr −ik Sr 0

0 ik Sr

I
2
−Kr Nr

0 ik Sn−∇ · S −Kn

I
2
−ik S+Nn























S























d̃/sd

M̃/sM

J̃/sJ

b̃/sb























,

where Fn = n · F and Fr = n × F.

It is, however, not so clear that the equality of (27) ⇒ (28) holds in the opposite direction.
This and also the choice of the sign of the diagonal ik S terms is motivated by the Picard’s
extended system presented in section 7.

6.4.2 Linear Dependence in Charges

Since ∇ · E = 0 (H and b̃ similarly), integrating the normalized terms over the volume of
a closed region gives

0 =

∫

∇ · Ẽ dv =

∫

n · Ẽ ds =

∫

d̃ ds =
∑

j

djAj = ATd,

where the charge density d̃ is assumed to be discretized with piecewise constant functions
so that d = [d1, . . . , dN ]T are the unknown coefficients and A = [A1, A2, . . . , AN ]T are the
element areas.

One of the coefficients can be expressed as weighted sum of the others,

0 =
∑

j

djAj ⇒ dN= − 1

AN

N−1
∑

j=1

djAj,

so the unknowns are linearly dependent and this must be considered as an additional re-
striction (or equation) the system should satisfy. Otherwise, the system is ill-posed and
one of the eigenvalues can be zero or very small.

In order to get a square system, the additional equation ATd = 0 can be combined with
every original row of the d̃ equations in a symmetric form cAAT , where row j is multiplied
with Aj and c is a constant coefficient. A properly scaled coefficient c is calculated with
the deflation method, [24], [25], and [26].

The deflation method can be used to move the small eigenvalue caused by the linear de-
pendency. For the iterative methods, the best place for any eigenvalue would be among
the other eigenvalues. The mean of the eigenvalues can be calculated using the diagonal
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terms of the matrix. Namely, the trace of a matrix, the sum of the diagonal elements, is
equal to the sum of the eigenvalues of the matrix.

The system matrix is modified for every closed surface by adding equations of normalized
area vectors a = A/|A| as

Z + (λnew − λold) a aT . (29)

where λold = aTZa and λnew = trace(Z)/size(Z).

6.5 Current and Charge Integral Equation Formulations

The new Current and Charge Integral Equation (CCIE) formulation is now ready and reads
as






















sd Ẽp
n

sM Ẽp
r

sJ H̃p
r

sb H̃p
n























= S























M + Dd −Kn −ik Sn + ∇ · S 0

Nr

I
2
−Kr −ik Sr 0

0 ik Sr

I
2
−Kr Nr

0 ik Sn −∇ · S −Kn M + Db























S























d̃/sd

M̃/sM

J̃/sJ

b̃/sb























(30)

and it’s CFIE (15) form, Combined Current and Charge Integral Equation (CCCIE) for-
mulation is














sd Ẽp
n

sM
(

Ẽp
r − H̃

p
tan

)

sJ
(

H̃p
r + Ẽ

p
tan

)

sb H̃p
n















= S













M + Dd −Kn −ik Sn + ∇ · S 0

Nr L Lr −Ntan

Ntan −Lr L Nr

0 ik Sn −∇ · S −Kn M + Db













S













d̃/sd

M̃/sM

J̃/sJ

b̃/sb













, (31)

where

M =
I
2
− ik S + n · N , (32)

L =
I
2
− ik Stan − n ×K, (33)

and Dd and Db contain the deflation terms.

The CCCIE formulation can be used as a general formulation for composite objects having
PEC or PMC regions and problems with the internal resonances.

Both of the formulations have identity operators in the diagonal and therefore they are
integral equations of the second kind. The CCCIE formulation has ik S terms in all of
the diagonals and so for higher frequencies it may be more diagonally dominant than the
CCIE formulation.
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7 Picard’s Extended Maxwell System

The low frequency problem is more deeply hidden in the Maxwell’s system. The traditional
electromagnetic surface integral equations are usually derived from the curl equations of
the Maxwell’s system. If considering only the curl equations of the normalized Maxwell’s
system (3),

(M + ik)

(

Ẽ

H̃

)

= 0, M =

(

0 ∇×
−∇× 0

)

, (34)

the divergence equations are still build into the system when the frequency is not zero.
If the frequency is zero, the divergence restrictions are lost and the static behavior is not
correct. Also the null space of the M operator, i.e. the space of the functions mapped to
zero is always infinite dimensional.

In [19] and [20] (see also [27], [28] and [29]) (Rainer) Picard presented an extended system

(P(∇) + ik)









Ψ

Ẽ

H̃

Φ









= 0, P(∇) =









0 0 ∇· 0

0 0 ∇× ∇
∇ −∇× 0 0

0 ∇· 0 0









, (35)

having two additional scalar unknowns, Ψ and Φ. The solutions of the Maxwell’s system
(34) and this Picard’s extended Maxwell system (35) (or Picard’s system) are the same if
these scalar functions are assumed to be identically zeros,

Ψ ≡ 0 ≡ Φ.

The similar system in [28] is a modified version of (35) so that these scalar functions have
formal definitions. Here these functions are neglected.

All the four original Maxwell’s equations (3) are included in the system (35) and so the
static behavior is correct. The system also contains additional operators combining the
linear acoustics and Maxwell’s equations into a unified system [27].

The linear acoustics and Maxwell’s equations are mutually orthogonal in a way that the
Picard’s system (35) is elliptic and the dimension of the null space of the P(∇) operator is
finite and does not depend on the material parameters [19].

Furthermore,

P(∇)T = P(∇),

P(∇)2 = ∆,

(P(∇) + ik)(P(∇) − ik) = ∆ + k2.
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7.1 Surface Integral Representation of the Picard’s System

On the surface of a region, the surface integral representation of the Picard’s system (35)
is (see [29])

U = Up +

(I
2
− (P(∇) − ik)S P(n)

)

U, (36)

where

U =









0

Ẽ

H̃

0









and P(n) =









0 0 n· 0

0 0 n× n

n −n× 0 0

0 n· 0 0









.

This integral representation has only first order derivatives of the single layer integral oper-
ator S, whereas the original representations (8) of the Maxwell’s system have second order
derivatives in the hypersingular D operator.

The integral representation (36) can be expressed with the normalized currents and charges
as

U = Up +
U

2
− (P(∇) − ik)S











b̃

J̃

−M̃

d̃











. (37)

7.2 Picard’s System and Current and Charge Formulations

As with the surface integral representations of the Maxwell’s system, there are infinite
number of ways to derive surface integral equations from the surface integral representation
of the Picard’s system (37). The integral representation can be projected into a surface
integral equation of the currents and charges for example by operating with P(n),

P(n)Up =











n · H̃p

n × H̃p

−n × Ẽp

n · Ẽp











=

(I
2

+ P(n) (P(∇) − ik)S
)











b̃

J̃

−M̃

d̃











=























I
2

+ Nn −Kn −ik Sn 0

Nr

I
2

+ n∇ · S − Kr −ik Sr −ik nS

−ik nS ik Sr

I
2

+ n∇ · S − Kr −Nr

0 −ik Sn Kn

I
2

+ Nn

































b̃

J̃

−M̃

d̃











.
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If the signs of the M̃ rows and columns are changed,






















n · H̃p

n × H̃p

n × Ẽp

n · Ẽp























=























I
2

+ Nn −Kn ik Sn 0

Nr

I
2

+ n∇ · S − Kr ik Sr −ik nS

ik nS −ik Sr

I
2

+ n∇ · S − Kr Nr

0 −ik Sn −Kn

I
2

+ Nn

































b̃

J̃

M̃

d̃











,

it can be seen that this is almost the same as the CCIE formulation (30) with reverse
order of the equations and unknowns. The operators of the linear dependence removal be-
tween currents and charges are, however, as normal components in the tangential equations.

Instead of P(n), a proper transformation from the surface integral representation of the
Picard’s system (37) into the CCIE formulation is obtained by the operator

N =









1 0 n· 0

0 0 n× 0

0 −n× 0 0

0 n· 0 1









.

In this case,

NUp =











n · H̃p

n × H̃p

−n × Ẽp

n · Ẽp











=

(I
2

+ N (P(∇) − ik)S
)











b̃

J̃

−M̃

d̃











=















M −Kn −ik Sn + ∇ · S 0

Nr

I
2
−Kr −ik Sr 0

0 ik Sr

I
2
−Kr −Nr

0 −ik Sn + ∇ · S Kn M

























b̃

J̃

−M̃

d̃











,

where M is the same operator as in (32). This surface integral equation is the same as
the CCIE formulation (30) if the signs of the M̃ rows and columns are changed. The N

operator is, however, not an actual projection, since N
2 6= N.

An actual projection (C2 = C) would be

C =























1 0 n· 0

0 −1

2
n × n× 1

2
n× 0

0 −1

2
n× −1

2
n × n× 0

0 n· 0 1






















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and the surface integral equation obtained from this projection is

CUp =















n · H̃p

1

2

(

Ẽ
p
tan + H̃p

r

)

1

2

(

H̃
p
tan − Ẽp

r

)

n · Ẽp















= C

(I
2

+ (P(∇) − ik)S
)











b̃

J̃

−M̃

d̃











=























M −Kn −ik Sn + ∇ · S 0

1

2
Nr

1

2
L 1

2
Lr

1

2
Ntan

1

2
Ntan −1

2
Lr

1

2
L −1

2
Nr

0 −ik Sn + ∇ · S Kn M

































b̃

J̃

−M̃

d̃











,

where M and L are the same operators as in (32) and (33).

If the signs of the M̃ rows and columns above are changed and the tangential equations
are multiplied with 2,











n · H̃p

H̃p
r + Ẽ

p
tan

Ẽp
r − H̃

p
tan

n · Ẽp











=











M −Kn ik Sn −∇ · S 0

Nr L −Lr Ntan

−Ntan Lr L Nr

0 −ik Sn + ∇ · S −Kn M





















b̃

J̃

M̃

d̃











,

and this is the same as the CCCIE formulation (31) with reverse order of the equations
and unknowns.

So, although developed independently, the current and charge formulations are closely
related to the Picard’s extended Maxwell system (35). The Picard’s system transforms
naturally into surface integral equations of currents and charges where the linear depen-
dence between them is taken into account with integral operators.
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8 Some Numerical Examples of Large Systems

The new surface integral equation formulations CCIE (30) and CCCIE (31) have been im-
plemented with Galerkin testing procedure for triangular discretization. The normalized
and scaled surface current densities J̃/sJ and M̃/sM are expanded with RWG basis func-
tion and the normalized and scaled surface charge densities d̃/sd and b̃/sb with piecewise
constant functions.

In all the examples below CCCIE formulation is used, a simple diagonal preconditioning
is applied and the equations are solved iteratively with residual tolerance 10−2 using the
Generalized Minimum Residual Method (GMRES).

The matrix-vector product of the iteration is calculated the ”slow way” by integrating over
all the element pairs without acceleration methods. The calculation is divided row-wise
(testing) and computed in parallel with 25-40 computers.

8.1 Spheres

In article [P8] three simple sphere models are chosen to verify and compare the new formu-
lation: (PEC) metallic, dielectric and hybrid metallic-dielectric. The radius of the sphere
is r = 4.7713 cm so at 1 GHz the wave length of the outer region is the same as the cir-
cumference of the sphere (or k r = 1). The spheres are illuminated by a x-polarized plane
wave propagating in the z-direction.

The spheres are discretized with about 100 000 unknowns and the convergence rate of the
iteration is studied for some selected frequencies:

Metallic Dielectric Hybrid

Triangles: 40 500 20 480 31 264
Unknowns: 101 250 102 400 110 380

Matrix: 152 GB 156 GB 182 GB

Freq. 1 Hz 1 GHz 20 GHz
Iter. 5 7 13

1 Hz 1 GHz 7 GHz
5 9 39

1 Hz 1 GHz 6 GHz
9 13 37
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8.2 Plastic Cover with Metallic Back Plate

As a more complex example, a hollow plastic cover on top of a PEC back plate was modeled.
The size of the box is 106 × 44 × 19 mm. The cover and the metallic back plate are 2 mm
thick and the relative permittivity of the cover is 2. The frequency is 4 GHz and the source
is a x-polarized electric dipole inside the cover.

Convergence of the iteration is studied with three different discretization of about 60 000,
200 000 and 500 000 unknowns:

Triangles 14 552 57 232 129 504
Unknowns 59 824 235 936 534 260
Matrix 53.3 GB 829 GB 4253 GB
Iterations 21 21 21

As it can be seen, increasing the number of unknowns almost tenfold does not increase the
number of iterations.
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9 Conclusions

In this thesis problems with implementation and formulation of the electromagnetic surface
integral equations were studied. The research can be divided into three main categories.

First, a technique for evaluation of the singular integrals arising from the electromagnetic
surface integral equations was developed. The singular integrals of various degrees can
be evaluated by recursively computed analytical integrals. The technique was further ex-
tended to the higher order basis functions.

The second problem, the modeling of the electromagnetic fields and enforcing the bound-
ary condition in complex structures, was solved by properly oriented basis functions. The
developed procedure can model arbitrary complex structures, is simple to implement and
does not depend on the formulation.

The third and most important problem is the choice of the electromagnetic surface in-
tegral equation formulation. A new CFIE type formulation was developed as a general
formulation for composite objects of dielectric and metallic regions. In the case of simple
dielectric regions, a well-conditioned Müller formulation was developed that doesn’t have
problems with the low frequencies. The behavior of different formulations with iterative
methods was studied. It was found that the second kind of integral equation formulations
with properly scaled identity operators give the best overall convergences.

The most important part of this thesis is the new surface integral equation formulation
(CCIE) and the new techniques developed for it. The new formulation does not have prob-
lems with the low frequencies and the combined field (CFIE) form of it (CCCIE) is also
immune to the internal resonances of the metallic regions and can be used as a general
surface integral equation formulation for composite objects. The new formulations have
low condition numbers and the convergence of the iterative methods is fast for a very wide
frequency range.

Both the surface current and charge densities are unknowns in the new formulations. The
balance of the system is achieved using normalized field quantities, and the continuity of
the fields across the domain interfaces is handled with carefully chosen scaling factors so
that both the continuity and the balance are maintained, and at the same time the identity
operators are properly scaled.

Linear dependence between the currents and charges is taken into account with an integral
operator, and the linear dependence in charges is removed with the deflation method. The
deflation method was found to be very stable and efficient and it can be used for similar
linear dependency problems.

The new formulation was found to be related to the Picard’s extended Maxwell system.
This elliptic, first order system has a correct static behavior which is not the case with the
Maxwell’s system used with the traditional electromagnetic surface integral equations.
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