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Abstract

This thesis is concerned with recursive Bayesian estimatfonon-linear dyna-
mical systems, which can be modeled as discretely obsetvetastic differen-
tial equations. The recursive real-time estimation atbaons for these continu-
ous-discrete filtering problems are traditionally callgdimal filters and the algo-
rithms for recursively computing the estimates based ooHet of observations
are called optimal smoothers. In this thesis, new practitgdrithms for approxi-
mate and asymptotically optimal continuous-discreterfitgeand smoothing are
presented.

The mathematical approach of this thesis is probabilistit the estimation
algorithms are formulated in terms of Bayesian inferendais Tneans that the
unknown parameters, the unknown functions and the physaaé processes are
treated as random processes in the same joint probabibiyes he Bayesian ap-
proach provides a consistent way of computing the optimiglriilg and smooth-
ing estimates, which are optimal given the model assumgtaon a consistent
way of analyzing their uncertainties.

The formal equations of the optimal Bayesian continuossréie filtering
and smoothing solutions are well known, but the exact amalysolutions are
available only for linear Gaussian models and for a few otkstricted special
cases. The main contributions of this thesis are to show hewdcently deve-
loped discrete-time unscented Kalman filter, particlerfib@d the corresponding
smoothers can be applied in the continuous-discrete geftime equations for the
continuous-time unscented Kalman-Bucy filter are alsovadri

The estimation performance of the new filters and smootlsetssied using
simulated data. Continuous-discrete filtering based mwisitare also presented to
the problems of tracking an unknown number of targets, egtirg the spread of
an infectious disease and to prediction of an unknown timese






Tivistelma

Tama vaitoskirja kasittelee diskreetein véliajoin haeaina stokastisina diffe-

rentiaaliyhtaléind mallinnettavissa olevien epalinéstian dynaamisten jarjestel-
mien rekursiivista bayesilaista estimointia. Tallaisfatkuva-diskreettien suoda-
tusmallien rekursiivisia reaaliaikaisia estimointialijmeja kutsutaan perinteises-
ti optimaalisiksi suotimiksi ja algoritmeja, jotka laskdwekursiivisesti estimaat-
teja kayttden kokonaisia datajoukkoja kutsutaan optiisiial silottimiksi. Tassa

vaitoskirjassa esitetdan uusia kaytanndéllisia algoijarlikimaaraiseen ja asymp-
toottisesti optimaaliseen jatkuva-diskreettiin suollaen seka siloitukseen.

Vaitoskirjan matemaattinen lahestymistapa on probdiniéis ja estimointial-
goritmit formuloidaan bayesilaista paattelya kayttaeama tarkoittaa sitd, et-
ta tuntemattomat parametrit, tuntemattomat funktiot dgkékaaliset kohinapro-
sessit kasitelladn satunnaisprosesseina samassa ysdeigdennakoisyysavaruu-
dessa. Bayesilainen lahestymistapa tarjoaa yhtenaisan taskea optimaalisia
suodatus- ja silotus-estimaatteja, jotka ovat optimealisallioletusten valossa,
seké yhtenaisen tavan niiden epavarmuuksien analysointii

Optimaalisen bayesilaisen jatkuva-diskreetin suodatuka silotuksen for-
maalit yhtalot ovat laajasti tunnettuja, mutta tarkat gpttiiset ratkaisut ovat ole-
massa vain lineaaris-gaussisille malleille sekd muutienmaliulle rajoitetulle eri-
koistapaukselle. Taman vaitoskirjan paakontribuutionasoittaa, kuinka vahan
aikaa sitten kehitettyja diskreettiaikaisia hajustaorata Kalmanin suotimia, par-
tikkelisuotimia seka vastaavia silottimia voidaan sa@ljatkuva-diskreetissa ta-
pauksessa. Myos jatkuva-aikaisen hajustamattoman KairBarcyn suotimen
yhtal6t johdetaan.

Uusien suotimien ja silottimien suorituskyky testataamudoidulla datalla.
Jatkuva-diskreetteihin suotimiin perustuvat ratkaisitietdan myos kohteiden seu-
rantaan tapauksessa, jossa kohdemaara on tuntemattuvaiathudin leviamisen
estimointiin seka tuntemattoman aikasarjan ennustamisee
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Notation

General Notation

a,bc,x,t, o, Scalars

a,f,s,x,y,a,3 Vectors

AF.S. XY Matrices

A F, S, XY Sets

o, F,S X, % Algebras

AF. S, XY Spaces

A,F,8,X,Y Operators and functionals

Notational Conventions

Derivative of functiong(t) with respect ta
Partial derivative ofy; with respect tar;

Diagonal of matrix A

Diagonal matrix with diagonal values, ..., a,
Expectation ofk

Expectation ofk giveny

Probability density of continuous random variabteor
point probability of discrete random variabie
Conditional probability (density or point) of giveny
Probability of discrete random variable
Conditional probability of discrete random variale
p(x) is proportional tag(x)

Trace of matrix A

Random variablex has the distributiom(x)

x is defined to be equal to

x is much greater thap

Time derivative ofx(t)

The elemenj of the vectorx, which is related to the parti-
clei on time stepk



viii Notation
Symbols

« Parameter of unscented transform

a Angular velocity or unknown parameter

a Action or decision in statistical decision theory

a, Optimal action or decision

a(t) Action or decision function

a,(t) Optimal action or decision function

A Lower triangular Cholesky factor of covariance matrix

A(t) Transition matrix

Ay Dynamic model matrix (i.e., transition matrix) of jump frostepk
to stepk + 1

o o-algebra on the space of evefils

Al Characteristic operator of 1t diffusion

Al Kolmogorov forward (i.e., Fokker-Planck) operator

I} Parameter of unscented transform

B(t) Scalar Brownian motion

B(t) Multidimensional Brownian motion

B Dispersion matrix of importance process

2#10,00) Borels-algebra or0, co)

c Scale parameter of matrix form unscented transform

Ck Data association indicator on time step

C(t) Time varying matrix in matrix fraction decomposition

Cy Gain matrix in optimal smoother or cross-covariance madtrigp-
timal filter/smoother

Cr Cross-covariance in linear approximation of a non-lineansform

Co Cross-covariance in quadratic approximation of a nondlinteans-
form

Cy Cross-covariance in unscented approximation of a noraditrans-
form

5(+) Dirac delta function

5i () Detection indicator

02() Second order correction term in quadratic approximatioBDE

dgs(t) Differential of Brownian motion

ox Small but finite perturbation of vecter

ot Small but finite perturbation of time variabie

At Small but finite perturbation of time variabie

AB Increment of Brownian motion on finite time interval

dt Differential of time variablel

dx Differential (stochastic or deterministic) of vectar

D(t) Time varying matrix in matrix fraction decomposition

D, Gain matrix in optimal smoother



Gaussian white noise process, which is defined as the forenizbd
tive of Brownian motiore(t) = dn(t)/dt

Gaussian random variable

Unit vector in the direction of the coordinate axis

Visibility indicator on time stepk

Stochastic process

Drift function of stochastic differential equation or tsition func-
tion in discrete-time dynamic model

Feedback matrix of linear stochastic differential equatio
Jacobian matrix of functiofi(-)

Hessian matrix off;(-)

Natural filtration of Brownian motion

Simple stochastic process

Some anonymous function or drift function of importanceqass
Jacobian matrix of functiog(+)

Hessian matrix ofy;(+)

Anonymous filtration

Measurement matrix on time stégin linear Gaussian model
Jacobian matrix of functioih(-)

Hessian matrix of;(-)

Set of hypotheses

Anonymous functional

Measurement model function or an arbitrary function
Integer valued index variable

Identity matrix

Ité integral of argument

Jacobian matrix

Parameter of unscented transform

Discrete time step number

Kalman gain matrix in optimal filter

Kalman gain matrix in continuous-time optimal filter
Parameter of unscented transform

Logarithm of likelihood ratio

Latent variable

Dispersion matrix of stochastic differential equation
Loss function or likelihood function

Positive integer, usually the dimensionality of measuneime
Mean of Gaussian distribution

Mean of scalar discrete-time Gaussian process on timeistep
Mean of discrete-time Gaussian process on time ktep
Predicted mean just before measuremgnt

Mean computed by optimal smoother



Notation

Q(t)

RnXm

Mean of a Gaussian process as function of time

Mean computed by optimal smoother

Predicted mean of measurememnt

Mean in linear approximation of a non-linear transform

Mean in quadratic approximation of a non-linear transform
Mean in unscented approximation of a non-linear transform
Brownian motion (in continuous-time measurement model)
Positive integer, usually the dimensionality of state

Brownian motion

Positive integer, usually number of Monte Carlo samples
Normal distribution

Function such that(g(At))/g(At) — 0 whenAt — 0

Function such thaD(g(At))/g(At) — constant wher\t — 0
Importance distribution

Variance of scalar discrete-time Gaussian process on tiepss
Probability measure

Transformed probability measure

Covariance of Gaussian distribution

Covariance of discrete-time Gaussian process on timekstep
Predicted covariance just before measurengent

Covariance computed by optimal smoother

Covariance of a Gaussian process as function of time
Covariance computed by optimal smoother

Spectral density of scalar white noise process, diffusaefficient
of scalar Brownian motion or variance of scalar Gaussiancgss
noise

Time varying spectral density of scalar white noise processif-
fusion coefficient of scalar Brownian motion

Discrete-time Gaussian process noise

Discretized process noise covariance

Covariance of discrete-time process noise at jump from ktep
k+1

Diffusion matrix of a Brownian motion or spectral densitytbg
corresponding white noise process

Covariance matrix of measurement at skep

Diffusion matrix of a Brownian motion or spectral density &f
white noise process (in continuous-time measurement rhodel
Space of real numbers

Space of positive real numbels oo)

n-dimensional space of real numbers

Space of reah x m matrices

Variance of measurement noise



Xi

X1:k

Range measurement at time step

Discrete-time Gaussian measurement noise

Variance

The minimalo-algebra

Time variables € [0, co0) or the dimensionality of process noise
Importance process

Normalized importance process

Stratonovich integral of argument

Index of the first time step or the start time of a time interval
Innovation covariance in optimal filter

Covariance in linear approximation of a non-linear transfo
Covariance in quadratic approximation of a non-lineargfarm
Covariance in unscented approximation of a non-lineaisfam
Angular measurement on time step

A scalar random variable

A random variable

A random process

Time variabler € [0, c0)

Time variablet € [0, 00)

Time instance of time step (usually of measurement.)

Index of the last time step, the final time of a time intervaltioe
number of targets in multiple target tracking

Number of targets on time stép

Sufficient statistics

Known deterministic function of time (input function)

Utility function

Innovation vector in optimal filter

Volume of measurement space

Dispersion matrix of stochastic differential equation imntnuous-
time measurement model

Outcome (event) of random experiment

Space of events

Weight of particlei in importance sampling

Gaussian white noise process, which is defined as the forenabtive
of Brownian motionw (t) = d3(t)/dt

Mean weight of unscented transform

Covariance weight of unscented transform

Mean weight vector in matrix form unscented transform
Covariance weight matrix in matrix form unscented transfor
Random variable

State on time step

Set containing the vectoss, . .., x



Xii Notation
x(t)  State at time instance
X Matrix of sigma points ok
2 The natural filtration of stochastic procesg; w)
X(w) Stochastic process
Yk Measurement at time stép
yi.x  Setcontaining the vectoss,, . .., yx
y(t)  Continuous-time measurement at time instahce
Y Matrix of sigma points ofy
%, The natural filtration of stochastic proceg§&; w)
z(t)  Formal derivative of continuous-time measuremeft) = dy(¢)/dt
Z(-)  Likelihood ratio of stochastic processes
Z, Normalization constant of filtering distribution
00 Infinity
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Chapter 1

Introduction

1.1 Purpose and Contributions of the Thesis

The purpose of this thesis is to provide new algorithms fdinogl continuous-
discrete filtering and smoothing, that is, new algorithmsrézursive estimation
of states of systems, which can be modeled as discretelyn@usstochastic
differential equations. The emphasis is in stochastiediffitial equations with
non-linear drift terms and measurement models with noeairand non-Gaussian
components, where the classical linear Kalman filter cabraised. These kind
of non-linear continuous-discrete filtering problems hpveviously been solved
using Taylor series expansion based approximation metf@dended Kalman
filters), but other types of methods have less been develfypetie continuous-
discrete case. In this thesis, it is shown how more recerteatis-time filtering
algorithms, the unscented Kalman filter and particle fileaa be modified for
use in continuous-discrete filtering problems.

The mathematical treatment of the models and algorithmdig thesis is
entirely Bayesian, which means that all the results araeceas being approxi-
mations to certain probability distributions or their paweters. Probability dis-
tributions are used for modeling both the uncertaintieshia inodels and for
modeling the physical randomness. In this thesis, the yhefoprobabilistic non-
linear optimal filtering is formulated in terms of Bayesiarierence and both the
classical and recent filtering algorithms are reviewed giite same notation and
formalism. The emphasis is in the continuous-discreterifiige problems, but
also the pure discrete-time (discrete-time dynamics relisetime measurements)
and pure continuous-time (continuous-time dynamics,inantis-time measure-
ments) cases are analyzed. Also the corresponding optimabthers are ana-
lyzed.

In addition to the theory of optimal filtering, the purposeaiso to present
practical numerical algorithms for non-linear discreatad, continuous-discrete
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time and continuous-time filtering and smoothing. As wellls classical ex-
tended Kalman filters and smoothers also the more recenénteztKalman filter
and smoother, particle filter and smoother, and the idea ofackwellization of
particle methods are analyzed. Unscented filters and sraxsotne presented for
the discrete-time, continuous-discrete and continuons-filtering problems, and
particle filters are presented for discrete-time and cowtirs-discrete time cases.
The algorithms are also empirically compared using nuraésitnulations, which
illustrate the performance of different algorithms whitgilng to imitate physical
situations that might arise in real world applications.

Multiple target tracking problems, where an unknown nundfenoving tar-
gets is measured using multiple sensors is a very importaplication of the
continuous-discrete filtering. The dynamics of the targegsmost naturally mod-
eled with stochastic differential equations and the camtirs-discrete formula-
tion is necessary, because the measurements arrive atlarégstances of time.
Because of the multiple sensors the probabilistic treatroémhe uncertainties
in the system is the most appropriate. In this thesis, it @sshhow particle
filters can be used for estimating the states of the multgigets and how Rao-
Blackwellization can be used for improving the efficiencytioé particle filter.
The idea behind the Rao-Blackwellization is that by conditig on the data
associations and the birth and death processes, the posiaiributions of the
states of the targets can be approximated with Gaussiarnbdiins. For this
reason, the target states can be integrated out analytimathe Kalman filter and
the particle filter only needs to be applied to the data aatioois and to the birth
and death processes. This significantly reduces the cotigahrequirements
and increases the efficiency of the patrticle filter.

Spread of an infectious disease in population can be motgledlifferential
equation model, which is measured at discrete instancamef if some of the
model parameters are unknown, as often is the case, tha@redtimation of
the spread and parameters can be formulated as a contidismuste filtering
problem. Because of the strong non-linearities in both dyinaand measurement
models, the filtering problem is most efficiently solved bytjée filtering meth-
ods. The structure of the model also allows closed form maligiation, that is,
Rao-Blackwellization of certain model parameters, whichances the efficiency
of the patrticle filter.

The theory of continuous-discrete Kalman filtering is rethto the Gaussian
process regression and to the more general non-parametyiesian modeling, es-
pecially in the case of time series data. For this reason Kalfitters and Kalman
smoothers are very well suited to non-parametric and semwarpetric modeling
and estimation of both long term and short term dependerinig¢sne series.
In this thesis, also the winning solution to the CATS (Contjmet on Artificial
Time Series) time series prediction competition is presgntThe competition
was organized as a special session of the IJCNN (Interratimint Conference
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on Neural Networks) 2004 conference. The Kalman smoothezdmethod gave
the best prediction and won the first price in the competiti@milar methods

could be applied to other time series prediction or analpgsiblems including

both trend (long term) and auto-correlative (short termjiponents.

1.1.1 Contributions

The contributions of the thesis can be summarized as follows

e The matrix form unscented transform:

A new matrix form of the unscented transforns presented. Using this
matrix form, theunscented Kalman filter (UKF) and the unscented Kalman
smoother (UKSare presented imatrix form which eases the mathematical
treatment of the equations and provides new insight to odtiores with
other filtering and smoothing methods.

e Continuous-discrete and continuous-time unscented Kalmafiltering
and smoothing:

By taking the formal limit of the unscented Kalman filter ahd unscented
Kalman smoother when the prediction time step size goegtalzecontin-
uous-discrete unscented Kalman filter and smooéerderived. By taking
the formal limit, when both the prediction and measuremieme step sizes
go to zero thaunscented Kalman-Bucy filtewhich is a continuous-time
version of the unscented Kalman filter, is derived. Theswaléons would
not be possible, or at least would be very much harder witttoitmatrix
formulations of UKF and UKS.

e Continuous-discrete sequential importance resampling:

Novel Girsanov theorem based methods for perfornaioigtinuous-discrete
sequential importance resamplintipat is,continuous-discrete particle fil-
tering are derived. Also @&ao-Blackwellized continuous-discrete particle
filter is developed.

e Applications of continuous-discrete filtering:

The complete applications ahultiple target trackingin the case ofun-
known number of targetestimating the spread of an infectious disease
based on measured data and the winning solution t@€ES time series
prediction competitiorare presented. Several smaller simulation examples
that model real physical situations involving non-lineantnuous-time
dynamics are also presented.
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1.1.2 Outline of the Thesis

This thesis starts with short presentation of the existimdy@otential applications,
and the general ideas of discrete-time, continuous-dis@ad continuous-time
filtering. These topics are covered in Section 1.2.

Chapter 2 contains short reviews of stochastic differéatiaations and Bayes-
ian inference. The purpose of these sections is to introdineenotation and
terminology used in this thesis, because especially tteginattends to vary much
between the mathematical and the applied probabilityditee. The notation is
chosen to be closer to the notation of applied Bayesiananfar and optimal
filtering than to the notation of mathematical probability.

Section 3.1 reviews the classical theory of discrete-titeriing and smooth-
ing in Bayesian point of view and brief derivations of the Bayn non-linear
filtering, Bayesian non-linear smoothing, Kalman filterizugd Kalman smooth-
ing equations are also given. The discrete-time extenddoh#tafilter, the un-
scented Kalman filter, particle filtering and Rao-Blackizeld particle filtering
and smoothing are also presented in probabilistic term® ridin contributions
of this section are the matrix form of the unscented Kalmaarfand the matrix
form of the unscented Kalman smoother.

Section 3.2 presents the theory and relevant algorithmerttfrtuous-discrete
filtering. The section starts with presentation of the dgtadsheory of continu-
ous-discrete filtering as sequential solving of certainigbdifferential equations
and application of the Bayes’ rule. Then the continuousrdi® Kalman filter
and smoother, and the extended Kalman filter and smooth@resented, which
are the classical algorithms of continuous-discrete filteand smoothing. The
main contributions of this section are the continuous+eigc unscented Kalman
filter, the continuous-discrete unscented Kalman filterctimer, the Girsanov the-
orem based continuous-discrete sequential importancelsmmand continuous-
discrete Rao-Blackwellized sequential importance samgpli

Section 3.3 briefly presents the theory of continuous-tirpénaal filtering
and smoothing. The most general optimal filtering equatamesnot given, but
the continuous-time Kalman-Bucy and extended Kalman-Biiteys are covered.
The main contribution of this section is the continuouseimnscented Kalman-
Bucy filter.

Chapter 4 presents applications of the optimal filteringpatgms. Complete
solutions are presented for tracking of an unknown numbeaigfets, estimat-
ing the spread of an infectious disease and to the CATS timessprediction
competition.
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1.2 What is Optimal Filtering?

Optimal filtering refers to the methodology that can be used for estimating the
states of time varying systems, which are indirectly obsérthrough noisy mea-
surements. Thetateof the system refers to the dynamic variables such as posi-
tion, velocities and accelerations or orientation andtiotal motion parameters,
which describe the physical state of the system. fbisein the measurements
refers to a noise in the sense that the measurements argaimcémnat is, even

if we knew the true system state the measurements would ndete@ministic
functions of the state, but would have certain distributidpossible values. The
time evolution of the state is modeled as a dynamic systenthwl perturbed

by a certainprocess noise This noise is used for modeling the uncertainties in
the system dynamics and in most cases the system is not taglyastic, but the
stochasticity is only used for representing the model uag#ies.

1.2.1 Applications of Optimal Filtering

Phenomena, which can be modeled as time varying systems abtive type are
very common in engineering applications. These kind of neodan be found, for
example, in navigation, aerospace engineering, spacaagrijig, remote surveil-
lance, telecommunications, physics, audio signal praegssontrol engineering,
finance and several other fields. Examples of such applitatiee the following:

e Global positioning system (GP&aplan, 1996) is a widely used satellite
navigation system, where the GPS receiver unit measuraslaimes of
signals from several GPS satellites and computes its poditised on these
measurements. The GPS receiver typically uses an extendkedal filter
or some other optimal filtering algorithm for computing thesftion and
velocity such that the measurements and the assumed dynéimics of
physics) are taken into account. Also the ephemeris infaamawhich is
the satellite reference information transmitted from theeBites to the GPS
receivers is typically generated using optimal filters.

e Target tracking(Bar-Shalom et al., 2001) refers to the methodology, where
a set of sensors such as active or passive radars, radicefregsensors,
acoustic arrays, infrared sensors and other types of sermserused for
determining the position and velocity of a remote target.ewthis tracking
is done continuously, the dynamics of the target and measnts from the
different sensors are most naturally combined using amtfilter. The
target in this (single) target tracking case can be, for gptama robot, a
satellite, a car or an airplane.

¢ Multiple target tracking(Bar-Shalom and Li, 1995; Blackman and Popoali,
1999; Stone et al., 1999) systems are used for remote danasl in the
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cases, where there are multiple targets moving at the same iti the

same geographical area. This arises the concept of dateiatiso (which

measurement was from which target?) and the problem of agtm of

the number of targets. Multiple target tracking systemstgoically used

in remote surveillance for military purposes, but possitié applications

are, for example, monitoring of car tunnels, automaticralaystems and
people tracking in buildings.

Inertial navigation(Titterton and Weston, 1997; Grewal et al., 2001) uses
inertial sensors such as accelerometers and gyroscopesrfgruting the
position and velocity of a device such as a car, an airplana issile.
When the inaccuracies in sensor measurements are takeacdobont the
natural way of computing the estimates is by using an optfittaf. Also

in sensor calibration, which is typically done in time vanyienvironment
optimal filters are often applied.

Integrated inertial navigatiorfGrewal et al., 2001; Bar-Shalom et al., 2001)
combines the good sides of unbiased but inaccurate sessotsas altime-
ters and landmark trackers, and biased but locally accumatéal sensors.
Combining of these different sources of information is muesturally per-
formed using an optimal filter such as the extended Kalmaan.fitthis kind

of approach was used, for example, in the guidance systenpoficA11
lunar module (Eagle), which landed on the moon in 1969.

GPS/INS navigatiofGrewal et al., 2001; Bar-Shalom et al., 2001) is a form
of integrated inertial navigation, where the inertial sessare combined
with a GPS receiver unit. In GPS/INS navigation system thartsterm
fluctuations of the GPS can be compensated with the ineeti®'s and the
inertial sensor biases can be compensated with the GP$eecan addi-
tional advantage of this approach is that it is possible tapiararily switch

to pure inertial navigation, when the GPS receiver is unableompute
its position (i.e., has no fix) for some reason. This happfarsexample,
indoors, in tunnels and in other cases when there is no diresbf-sight
between the GPS receiver and the satellites.

Spread of infectious diseasésnderson and May, 1991; Hethcote, 2000)
can often be modeled as differential equations for the numitsisceptible,
infected and recovered/dead individuals. When unceitairdre induced
into the dynamic equations, and when the measurements argerfect,
the estimation of the spread of a disease can be formulated aptimal
filtering problem.

Biological processegMurray, 1993) such as population growth, predator-
pray models and several other dynamic processes in biolagyatso be
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modeled as (stochastic) differential equations. The edtim of the states
of these processes from inaccurate measurements can beldtethas an
optimal filtering problem.

e Telecommunicationss also a field where optimal filters are traditionally
used. For example, optimal receivers, signal detectorspdrade locked
loops can be interpreted to contain optimal filters (Van $rd®68, 1971)
as components. Also the celebrated Viterbi algorithm (Hitel967) can
be interpreted as a combination of optimal filtering androptismoothing
of the underlying hidden Markov model.

e Audio signal processingpplications such as audio restoration (Godsill and
Rayner, 1998) and audio signal enhancement (Fong et ak) 20@n use
TVAR (time varying autoregressive) models as the undegyindio signal
models. These kind of models can be efficiently estimatedgusptimal
filters and smoothers.

e Stochastic optimal contrgMaybeck, 1982b; Stengel, 1994) considers con-
trol of time varying stochastic systems. Stochastic cdletr® can typically
be found in, for example, airplanes, cars and rockets. Tlienajty, in
addition to the statistical optimality, means that consighal is constructed
to minimize a performance cost, such as expected time td rémsctarget
state, the amount of fuel consumed or average distance fabgsised posi-
tion trajectory. Optimal filters are typically used for eséting the states of
the stochastic system and a deterministic optimal coetr@dl constructed
independently from the filter such that it uses the estiméthe filter as
the known state. In theory the optimal controller and optifilier are not
completely decoupled and the problem of constructing ogitistochastic
controllers is far more challenging than constructing gt filters and
(deterministic) optimal controllers separately.

e Learning system®r adaptive systems can often be mathematically for-
mulated in terms of optimal filters. The theory of stochasliiferential
equations has close relationship with Bayesian non-parantaodeling,
machine learning and neural network modeling (MacKay, 1%i8hop,
1995). Methods, which are similar to the data associatiothauks in mul-
tiple target tracking are also applicable to on-line adaptlassification
(Andrieu et al., 2002).

e Physical systemwvhich are time varying and measured through unideal
sensors can sometimes be formulated as stochastic statergpaels, and
the time evolution of the system can be estimated using aptfitters
(Kaipio and Somersalo, 2005). In Vauhkonen (1997) and mecently,
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for example, in Pikkarainen (2005) optimal filtering is applto Electrical
Impedance Tomography (EIT) problem in time varying setting

All the applications described above can be modeledissrete-time continu-
ous-discreter continuous-timeptimal filtering problems, depending on whether
the state and measurements are discrete or continuousoimcif time. These
concepts will be introduced next.

1.2.2 Origins of Bayesian Optimal Filtering

The roots of Bayesian analysis of time dependent behawioinahe optimal lin-
ear filtering. The idea of constructing mathematically wyati recursive estimators
was first presented for linear systems due to their matheaiaimplicity and the
most natural optimality criterion in both mathematical anddeling point of view
was the least squares optimality. For linear systems thimapBayesian solution
(with MMSE utility) coincides with the least squares sabutj that is, the optimal
least squares solution is exactly the posterior mean.

The history of optimal filtering starts from théiener filter(Wiener, 1950),
which is a spectral domain solution to the problem of (leagtagses) optimal
filtering of stationary Gaussian signals. The Wiener filgestill important in com-
munication applications (Van Trees, 1968) and digital aigirocessing (Hayes,
1996). The disadvantages of the Wiener filter are that it cayloe applied to sta-
tionary signals and that the construction of a Wiener fikesften mathematically
demanding and these mathematics cannot be avoided (i@e, naasparent). Due
to the demanding mathematics the Wiener filter can only béexpto simple low
dimensional filtering problems.

The success of optimal linear filtering in engineering aggilons is mostly
due to the seminal article of Kalman (1960b), which deserithee recursive so-
lution to the optimal discrete-time (sampled) linear filgrproblem. The reason
to the success is that thk&lman filtercan be understood and applied with very
much lighter mathematical machinery than the Wiener filtAtso, despite its
mathematical simplicity, the Kalman filter (or actually tk@lman-Bucy filter;
Kalman and Bucy, 1961) contains the Wiener filter as its Imgispecial case.

In the early stages of its history, the Kalman filter was sognalered to be-
long to the class of Bayesian estimators (Ho and Lee, 1964,;1%64; Jazwinski,
1966, 1970). An interesting historical detail is that whflalman and Bucy were
formulating the linear theory in the United States, Stratéch was doing the
pioneering work on the probabilistic (Bayesian) approacRiissia (Stratonovich,
1968; Jazwinski, 1970).

As discussed in the book of West and Harrison (1997), in tkiiesi Kalman
filter like recursive estimators were also used in the Bayesbmmunity and it is
not clear whether the theory of Kalman filtering or the theofylynamic linear



1.2 What is Optimal Filtering? 9

models(DLM) was the first. Although these theories were originadlgrived

from slightly different starting points, they are equivale Because of Kalman
filter's useful connection to the theory and history of stastic optimal control,
this thesis approaches the Bayesian filtering problem frioenktalman filtering

point of view.

Although the original derivation of thKalman filterwas based on the least
squares approach, the same equations can be derived frqmariag@robabilistic
Bayesian analysis. The Bayesian analysis of Kalman fitjeisnwell covered
in the classical book of Jazwinski (1970) and more recemtlthe book of Bar-
Shalom et al. (2001). Kalman filtering, mostly because oleiést squares inter-
pretation, has widely been used in stochastic optimal obn# practical reason
to this is that the inventor of the Kalman filter, Rudolph E.Iidan, has also
made several contributions (Kalman, 1960a) to the theoriinefar quadratic
Gaussian(LQG) regulators, which are fundamental tools of stoclsasfitimal
control (Stengel, 1994; Maybeck, 1982b).

1.2.3 Optimal Discrete-Time Filtering

Optimal discrete-time Bayesian filtering (see, e.g. Jagkijnl970; Bar-Shalom
et al., 2001; Doucet et al., 2001; Ristic et al., 2004) carsidtatistical inversion
problems, where the unknown quantity is a vector valued 8eres(x;, Xa, . . .)
which is observed through noisy measuremésts yo, .. .) as illustrated in the
Figure 1.1. An example of this kind of time series is shownha Figure 1.2.
The process shown is actually a discrete-time noisy resométh a known an-
gular velocity. The state;, = (x, @) is two dimensional and consists of the
position of the resonatar; and its time derivative:,. The measurementis, are
scalar observations of the resonator position (signal) taegt are corrupted by
measurement noise.

observed: y1 Y2 y3 Y4
hidden: X1 X9 X3 X4

Figure 1.1: In discrete-time filtering a discrete sequence of hiddetestg, is indirectly
observed through noisy measuremeyys

The purpose of thetatistical inversiorat hand is to estimate the hidden states
{x1,...,x7} given the observed measuremefys, ..., yr}, which means that
in the Bayesian sense (Bernardo and Smith, 1994; Gelman, 4985) the pur-
pose is to compute the joint posterior distribution of ak thtates given all the
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Figure 1.2: An example of time series, which models a discrete-timenmatw. The ac-
tual resonator state (signal) is hidden and only observeditih the noisy measurements.

measurements. In order to do that prior and likelihood n®éta the time series
are needed (called tH#tering mode):

e Initial distribution specifies therior distribution p(x) of the hidden state
X at initial time stepk = 0.

e Dynamic model models the system dynamics and its uncertainties as a
Markov sequencelefined in terms of the transition distributip(x, | x_1).

e Measurement modelmodels how the measuremegnt depends on the cur-
rent statex;,. This dependence is modeled by specifying the distribution
the measurement given the state . | xx).

Because computing the full joint distribution of the stadeall time steps is com-
putationally very inefficient and unnecessary in real-tmpglications, iroptimal
(Bayesian) filteringhe objective is to compute thH#tering distributions

P(Xk | ¥1,---, V), k=1,...,T. (1.2)

The filtering distribution is the marginal distribution tife current statex;, given

the previous measuremeritg, ..., yx}. It turns out that these distributions can
be computedecursivelyby the Bayesian filtering equations (Ho and Lee, 1964;
Lee, 1964), which have the following form:
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¢ Prediction stepuses th&Chapman-Kolmogorov equatidor computing the
step-a-head prediction distribution of the state

e Update stepuses theBayes’ rulefor computing the posterior distribution
of the statex;, given the current measuremeyy.

The Bayesian filtering equations arecursive which means that the previous
computations do not need to be redone at each measuremetiieaachount of
computations is, in principle, constant per time step. Aameple of filtering result
is shown in the Figure 1.3. The prediction step can also béegbpecursively to
compute theprediction distributions

P(Xkan | Y15+ -5 Vi), k=1,....T, n=12,..., 1.2)

which are the marginal distributions of the future statesteps after the current
time step.

X Signal
O Measurement |
—— 95% Quantile | |
o % Filter Estimate

-0l
-0.15
-0.2

-0.25

0 2 4 6 8 10 12 14 16
Time

Figure 1.3: The result of computing the filtering distributions for thisctete-time res-
onator model. Thestimatesre the posterior means of the filtering distributions ared th
guantiles are the 95% quantiles of the filtering distribngio

Additional useful distributions are ttemoothing distributions

p(Xk|Y1,---,YT), k::la"'aT, (13)

which can also be computed with recursive equations reguaiconstant amount
of computations per time step. These distributions are tagyimal distributions
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of the statex, given a certain intervaly, ..., yr} of measurements with' >

k. The difference to the filtering distributions is that theaathed distributions are
conditional to thefuture (k > T) measurements also. An example of a smoothing
result is shown in the Figure 1.4.

X Signal
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-0.25
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Figure 1.4: The result of computing the smoothing distributions for tliscrete-time
resonator model. Thestimatesare the posterior means of the smoothing distributions
and the quantiles are the 95% quantiles of the smoothinghditibns. The smoothing
distributions are actually the marginal distributionsioé full state posterior distribution.

Because the equations of Bayesian filtering can rarely beedah closed

tions or to explicitly approximate the filtering distribatis by Gaussian distribu-
tions. The former approach is employed in tha¢ended Kalman filtefsee, e.g.,
Jazwinski, 1970; Maybeck, 1982a; Bar-Shalom et al., 200&n@l and Andrews,
2001), which is perhaps the most commonly used variatiom®fidalman filter.
The latter approach is used in thascented Kalman filtgisee, e.g., Julier et al.,
1995; Julier and Uhlmann, 2004b; Wan and van der Merwe, 20@igre theun-
scented transforris used for approximating the evolution of Gaussian digtitn
in non-linear transforms.

Significantly different approach to optimal filtering pgrticle filtering (Gor-
don et al., 1993; Kitagawa, 1996), where a set of Monte Caroges is used
for approximating the filtering solution. The idea of palidiltering is not new
(see, e.g., Akashi and Kumamoto, 1977), but until receimiye have not been
computers that are powerful enough for real time computatié the particle
filtering solutions. Particle filtering is well covered, fexample, in the books
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of Doucet et al. (2001) and Ristic et al. (2004).

Finite state hidden Markov models (HMM) are also a class ofl@s which
allow closed form solutions to the optimal filtering and sriiog equations (see,
e.g., Ristic et al., 2004). In communications literature tiptimal smoothing
solution (actually the MAP estimate) to the HMM model is rede to as the
Viterbi algorithm (Viterbi, 1967). Ingrid based methodthe distributions are
approximated by discrete distributions and the computatire performed in the
similar manner as in hidden Markov models.

van der Merwe (2004) generalizes the unscented Kalmansfiiad other
similar filters such as central difference filters to sigmanpdilters, which are
a class of derivative-free non-linear Gaussian approdondtased filters. Statis-
tical linearization (Gelb, 1974) is related to the theorgetcribing functions and
the resulting approximations are much similar to the apjpnaxions obtained by
the unscented Kalman filter (van der Merwe, 2004).

Mixtures of Gaussian distributions can also be used for @pprating the
filtering and smoothing distributions. In Gaussian sum roésh(Alspach and
Sorenson, 1972) and in multiple model estimators (see, Bag-Shalom et al.,
2001; Ristic et al., 2004) either the filtering distributsoof the model are approx-
imated as Gaussian mixtures or the model itself is formdlatea latent variable
model. Generalized pseudo-Bayesian estimators (GPB)raedhcting multiple
model (IMM) estimators (see, e.g., Bar-Shalom et al., 208r&) extensions of
the Gaussian mixture approximations, where the latenalbes are modeled as a
Markov chain.

In multiple target tracking context there are a number oftrads, which can
also be used in more general context. Multiple target tragkind the related
estimation methods are discussed in Section 4.1.

The optimal smoothing methods have evolved at the same tinfédtering
methods, and as in the filtering case the optimal smoothingtens (Lee, 1964)
can be solved in closed form only in a few special cases. Tieati Gaus-
sian case is such special case, and it leads to the RauchSktiagel smoother
(Rauch et al., 1965). Analogously to the extended Kalmagrdilthere also exists
extended Rauch-Tung-Striebel (or Kalman) smoothers (SageMelsa, 1971,
Gelb, 1974), which use linearization for handling non-éinenodels. There also
exists unscented Kalman smoother (Wan and van der Merwd,) 20Mere the
linearization of the extended Kalman smoother is replacét the unscented
transform.

Particle filters, in principle, produce smoothed estimatatomatically and
all one has to do is to store the samples from previous timass{itagawa,
1996). However, this can lead to very degenerate approiomamt(Kitagawa,
1996; Doucet et al., 2000) and for this purpose better meathwle been de-
veloped (Godsill et al., 2004).
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1.2.4 Optimal Continuous-Discrete Filtering

Because in the Nature time is continuous, not discretenafighysically more re-
alistic approach than discrete-time filtering@ntinuous-discrete filteringlazwin-
ski, 1966, 1970). In continuous-discrete filtering theestnamics are modeled
as continuoustime stochastic processes, that is,stachastic differential equa-
tions (Karatzas and Shreve, 1991; @ksendal, 2003) and the mezsuie are
obtained atliscreteinstances of time. This differs from the discrete-time filg,
because in that approach both the dynamics and measurearemsodeled as
discrete-time processes.

The idea of continuous-discrete filtering can be illustlaby considering a
time series, which is not measured on each time step butaithdtetween the
discrete time steps (measurement steps) there are addigiaes as shown in the
Figure 1.5. If we now imagine that we add an infinite numberdafitonal states
between the measurements, the state sequence becoanel®m functionwhich
is observed at discrete instances of time. This kind of meég visualized in the
Figure 1.6. The process is a simulation of a discretely afesenoisy continuous-
time resonator.

observed: Yf y{ yf
hidden: x(t1) =x(t)) =x(t]) -+ x(t2)=x(th) --- x(t3)

Figure 1.5: Continuous-discrete filtering can be considered as limitase of discrete-
time filtering, where we add an infinite number of states betwthe measurements.

The random functions are mathematically modeledtashastic differential
equationgSDE), which can be considered as ordinary differentiabtigns driven
by random white noise processest) as follows?

dx

3 = )+ L) wt). (1.4)

Herex(t) is the statef(x, t) is the drift function,L(¢) is the dispersion matrix,
andw(t) is the white noise process.

In continuous-discrete filtering the measurementsare obtained at discrete
time instanceyt,to,...}. The measurement model is of the same form as in

IFormally, stochastic differential equations are defineteims of Itd integrals with respect to
Brownian motions, but this issue is considered later in thésis. This less rigorous white noise
interpretation of the equations is more common in applieatdture.
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Figure 1.6: An example of continuous-discrete filtering data.

discrete-time filtering. However, to emphasize that the susment model is a
function of state at timey,, not time indexk, it is written asp(y, | x(tx)).

The advantage of the continuous-discrete model formulaticer the discrete
model formulation is that the time step si2g; = ¢;,1 — t; does not need to be
constant, that is, the sampling interval may change asifumof time.

In theory, the optimal (Bayesian) solution to the continstdiscrete filtering
problem can be computed by the following prediction and tgpdteps (Jazwinski,
1966, 1970):

¢ Prediction stepsolves the predicted probability density at time stefsrom
theKolmogorov forward partial differential equatiamsing the old posterior
probability density at time stefg._; as the boundary condition.

e Update stepuses theBayes' rulefor computing the posterior probability
density of state at time step from the predicted probability density of the
prediction step, and the measuremgpt

An example of continuous-discrete filtering is shown in tliguFe 1.7. In the
figure the characteristic property of the continuous-disefiltering solution can
be seen: the filtering estimate changes smoothly betweeméasurements and
jumps (has discontinuity) at the measurements. This isusecthe information
in the measurements is discrete in nature, but between tlsurements only
information from the continuous-time dynamic model is used
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Figure 1.7: An example of continuous-discrete filtering result.

The continuous-discrete smoothing solution (Leondes .et1870) can be
computed for each instance of time and the smoothing salugiatypically a
continuous function of time. An example of smoothing saatis shown in the
Figure 1.8.

Thefiltering, smoothing and prediction distributioase of the following form:

e Filtering distribution is the distribution of the state(¢;) at the time in-
stancef;, which is the time when the measuremegipthas been obtained:

p(x(tk) | y1,- -, ¥k)- (1.5)
The filtering distributions can be extended to be defined ffor by replac-
ing the filtering distribution with the prediction distriban between the

measurements.

¢ Prediction distributions can be computed for all times> ¢,

p(x(t)|y1,.. . yk), > (1.6)

by solving the corresponding Kolmogorov forward equati®he marginal
posterior distributions of the states between the measmesrconditional
to all the previous measurements are given by these predidistributions.
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Figure 1.8: Example of continuous-discrete smoothing result.

e Smoothing distributions can be computed for all timgse [0, ¢7] if the
measurements up to the time instaggehave been observed:

p(x(t) | y1,---,¥7T)s 0<t<tr. @.7)
Thus the smoothing distributions are also defined contislydior all ¢.

Instead of solving the corresponding Kolmogorov forwardiagpn it is also
possible to find a (weak or strong) stochastic process salut the stochastic
differential equation directly. In theory, it is always pildle to find at least a
weak solution such that it can be written in discrete-timanfavith a suitably
defined transition density(x(¢x) | x(tx—1)). This kind of discrete-time process
is a solution in the sense that the state distributions asorement timesg, are the
same as the state distributions of the continuous-timeegssocFinding this kind
of equivalent discrete-time modisloften extremely difficult, because it requires
a closed form solution to the (law of) stochastic differeahtquation. In most
cases the corresponding discrete time transition derssitgtiGaussian, and often
it is infinite-dimensional or cannot be even representeceims of elementary
functions.

The idea of continuous-discrete filtering itself is not newd #he classic book
about the Bayesian approach to continuous-discrete fijgrioblems is the book
of Jazwinski (1970). Actually, in the seminal article (Kam 1960b) also the
discretization of continuous-time dynamic systems isulised and in that sense
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it already covers the continuous-discrete Kalman filtet,amdy the discrete-time
Kalman filter.

Because trying to find the closed form expression of the lagtathastic pro-
cess in terms of, for example, Brownian motion and its irdésgis very difficult in
general and can be practically applied only in a few speeisés (Kalman, 1960b;
Bene, 1981; Daum, 1984, 1986), a more feasible approach is taHedolution
numerically. The continuous-discrete extended Kalmaerf(EKF) (Jazwinski,
1970; Gelb, 1974; Grewal and Andrews, 2001) uses a Tayl@ssapproximation
to the non-linear drift functiof(-) and forms a Gaussian process approximation
to the SDE. Another possible approach is to simulate sanglespof the SDE
(Kloeden and Platen, 1999) and use patrticle filters for egton (Doucet et al.,
2001; Ristic et al., 2004). Continuous-discrete filteriag been well developed in
context of Kalman filters and extended Kalman filters, but @tinooous-discrete
version of the unscented Kalman filter has not existed up it ghint. Also
there has not existed continuous-discrete particle fikegaificantly beyond the
bootstrap filter.

In Section 3.2 of this thesis it is shown how the solution & 8DE can be
approximated with a Gaussian process by using a contintimesform of the
unscented Kalman filter (Julier and Uhlmann, 2004b; Julied.e1995; Wan and
van der Merwe, 2001). In the same section also novel measmeférmation
based methods to continuous-discrete sequential impearteasampling are pre-
sented. The methods are based on transformations of plidpabeasures by
the Girsanov theorem. Measure transformation based apipesare particularly
successful in continuous-time filtering (Kallianpur, 1988ut have less been used
in continuous-discrete filtering.

The general idea of using the Girsanov theorem in importaaeepling of
SDEs has been presented, for example, in Kloeden and PIE288)( lonides
(2004) presents idea of using transformations of prokghilieasures for com-
puting the likelihood ratios between importance processthe true process in
context of continuous-discrete filtering. However, theulessof lonides (2004)
only apply when the Euler integration scheme is used and wiemlispersion
matrix is invertible.

Interacting and branching particle systems are particketd@olutions to non-
linear filtering problems also in the continuous-discreddtisg. In these methods
the Girsanov theorem is used for transforming the measutheobbservation
process. A thorough review of these methods can be found argMand Miclo,
2000). The convergence rates of these methods have bedadstedently in
(Kouritzin and Sun, 2005).

Roberts and Stramer (2001) and Elerian et al. (2001) préd€nC (Markov
chain Monte Carlo) based methods for computing the full grimts (smoothing
solutions) of scalar diffusion processes, which are oleskat discrete instances
of time. The methods are based on modeling the paths betleatata points as
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missing data. However, they are not filtering algorithms;auese they are batch
(non-recursive) algorithms and the states itself are nredsat the discrete time
steps without an error. Eraker (2001) presents a similahatefor multidimen-
sional case, and the model is more general in the sense ¢hstate is allowed to
be only partially measured, as in filtering models. Unfoaigty, the method can
only be applied to the case where diffusion matrix of theegpabcess is invertible,
which rules out many physically relevant models.

In the non-linear projection filter (Gunther et al., 1997 tidea is to in-
tegrate the Kolmogorov forward equation of the non-linegnaimic model by
the method of Galerkin (see, e.g., Guenther and Lee, 1988)Challa et al.,
2000) the solution of the Kolmogorov equation is approxedatvith generalized
Edgeworth series and Gauss-Hermite quadrature. In Gaussia filter (Alspach
and Sorenson, 1972) the posterior density is approximatetja weighted sum
of Gaussian distributions. Statistical linearization {§4.974) can also be used
in the continuous-discrete filtering case. GeneralizedigggdBayesian estimators
(GPB) and interacting multiple model (IMM) estimators (seey., Bar-Shalom
et al., 2001) as well as multiple model estimators (see, Bay-Shalom et al.,
2001; Ristic et al., 2004) are also applicable in the cowtirsadiscrete filtering
case.

In multiple target tracking(see, Section 4.1) the sensors are typically asyn-
chronous and for this reason most multiple target trackimghods are based on
continuous-discrete filters. Also the dynamics of the tergee often most natu-
rally modeled in continuous-time, which leads to stoclegifferential equations
that are observed at discrete instances of time.

Optimal continuous-discrete smoothing can be performégube discrete-
time smoothing equations once the transition densitieg heen solved and if
the smoothing solution at the measurement times is enoudilen\&lso the times
between the measurements are considered the continusarstdi smoothing is
closer to continuous-time smoothing than to discrete-smeothing. The partial
differential equations of the continuous-discrete smimgtisolution are given in
Leondes et al. (1970).

In linear Gaussian case the continuous-time Rauch-Turigh®t smoother
(Rauch et al., 1965) can be used in continuous-discrete Isiadesuch. Also the
continuous-time extended Rauch-Tung-Striebel (or Kaksaroothers (Sage and
Melsa, 1971; Gelb, 1974) are applicable in the continudssrete case.

In Section 3.2 of this thesis it is shown how the linearizatibthe continuous-
time extended Kalman smoother can be replaced by the uestcérinsform,
which leads to the novel continuous-time unscented Kalnmaoogher, which
is also applicable in the continuous-discrete case. Aseéndilcrete-time case,
continuous-discrete particle filters also automaticaligdace an estimate of the
smoothing solution, but the problems of this direct solutere the same as in
discrete-time case. This issue is discussed in Section 3.2.
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1.2.5 Optimal Continuous-Time Filtering

observed: y(t) y(t+dt) y(t+2dt) y(t+ 3dt)

o

hidden:  x(t) — x(t + dt) — x(t + 2dt) — x(t + 3dt) — - -

Figure 1.9: Continuous-time filtering can be considered as limitingeoafsdiscrete-time
filtering, where the time interval between the successiagestand the corresponding
measurements goes to zero.

In analog communication systems the measured signals pieally con-
tinuous-time processes and analog receivers are devidash wiemodulate or
estimate the actual transmitted continuous-time sigmals the noisy measured
signals. Also in many analog (electrical or mechanicaltemrsystems operating
without digital computers the measured signals are coatiattime, not discrete-
time signals.

Optimal continuous-time filteringBucy and Joseph, 1968; Jazwinski, 1970;
Gelb, 1974; Liptser and Shiryayev, 1977; Kallianpur, 1980 siders stochastic
inference problems, where the system model consists of encowis-time state
processx(t) and a continuous-time measurement procg$$. Thus, continu-
ous-time filtering considers the limiting filtering problemhere the time interval
between the states and measurements goes to zero, aatédstr the Figure 1.9.
In the limit d¢ — 0 both the state and measurement sequences become random
functions, which can be modeled as stochastic differeatialtions of the form

dx(t)
Tl f(x(t),t) + L(t) w(t)

z(t) = h(x(t),t) + V(t) e(t),

(1.8)

wherew (¢) ande(t) are white noise processes.

The purpose of the continuous-time optimal (Bayesian)rfikgo compute
the posterior distribution (or the filtering distributionf the process(t) given
the observed proceqs () : 0 <7 <t}

px(t)[{z(r) : 0<7 <t} (1.9)

2As in the continuous-discrete filtering case, formally, tieatinuous-time filtering problem is
defined in terms of Brownian motion driven I1td processes. Buthis the formal measurement
process is actually the integral of measurement progéss = fot z(t) dt. In this thesis we only
consider non-linear continuous-time optimal filtering lplems with additive noise, which is also
the reason why we can safely use the white noise interpoetafithe equations.
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An example of continuous-time filtering is shown in the Figdr10. The under-

lying signal is the same noisy resonator as in the contirgligete filtering case

in the previous section. The measurement sig(@lis a continuous-time process
and it has been truncated a bit for visualization purposel that it does not take

values from minus infinity to plus infinity as it formally shiou
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Figure 1.10: An example of continuous-time filtering result.

The optimal continuous-time smoothing equatidrsondes et al., 1970) can
be used for computing the (smoothed) posterior distriloutio

p(x(t)|{z(r) : 0 <71 <T}), (2.10)

of the state at timegiven the history of the measurements up to the time instance
T >t.

The Kalman filter equations can be generalized to contintious measure-
ment processes and the resulting filter is calledKaéman-Bucy filtefKalman
and Bucy, 1961). In this filter both the state process and umeagents are mod-
eled as linear stochastic differential equations. Theinants-time linear filter-
ing equations consist of a vectorial linear differentialiation for the mean and a
non-linear matrix Riccati differential equation for thevemiance.

The non-linear Bayesian filtering equations can also bergéimed to contin-
uous time and the resulting equation is calledKlushner-Stratonovich equation
(Kushner, 1964; Stratonovich, 1968; Bucy, 1965), which imeasure valued
stochastic partial differential equation. The unnormedizersion of the equation
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is calledZakai equation(Zakai, 1969) (see also Kallianpur, 1980). However,
the problem in these equations is that they only give the &suolution, and the
actual computation of the distribution or its expectatiormaild require an infinite
amount of computational resources. For this reason, inrgerepproximations
must be used. In certain cases, the equations do have fimtndional solutions,
which lead to Kalman-Bucy filters (Kalman and Bucy, 1961) &mhe filters
(Benes, 1981).

The extended Kalman-Bucy filter (EKBF) (see, e.g., Gelb,4)%pproxi-
mates the exact solution by replacing the non-linear modti & suitably lin-
earized approximate model, which can be solved by the KalBay filter. The
EKBF can be interpreted as a method for forming a Gaussiacepsoapproxi-
mation to the optimal filtering solution (i.e., the posterfrocess). In Section
3.3 the equations of the new unscented Kalman-Bucy filtedared, in which
the continuous-time optimal filtering solution is approai®d by using the con-
tinuous-time form of the unscented transform. Another gaineay of forming
approximations is Monte Carlo sampling (Crisan and Lyoi®871 1999), where
a set of weighted patrticles is used for approximating theegums probability
measure.

More information on practical continuous-time Kalman filbg and lineariza-
tion based non-linear filtering can be found in books of Gdl®7@), Stengel
(1994), Bar-Shalom et al. (2001), and Grewal and Andrew®I20A bit more
theoretical material and also material on more generallimaayr filtering can be
found in books of Bucy and Joseph (1968) and Jazwinski (192®alysis of
continuous-time filtering problems in 1t6 calculus pointvaéw can be found,
for example, in books of Liptser and Shiryayev (1977), Kadfur (1980) and
@ksendal (2003). Good introduction to this point of view igem in the lecture
notes of Karatzas (1988).

For general treatment of the probabilistic continuousetsmoothing problem
and the related stochastic partial differential equatiees (Liptser and Shiryayev,
1977). There also exists so called Zakai forms of these emsafAntonelli and
Elliott, 1986; Krishnamurthy and Elliott, 2002). Leondedsag (1970) presents
partial differential equations, which can be used for cotimguthe smoothing
solution once the filtering solution has been computed.

As in the filtering case, the optimal continuous smoothingbfgm can be
solved exactly only if the model is linear Gaussian (Raucllgt1965; Gelb,
1974). Approximate solutions to more general non-lineamtiomous optimal
smoothing problems can be computed by using the extendetihgons-time
Kalman-Bucy (Rauch-Tung-Striebel) smoother (see, e.gondes et al., 1970;
Sage and Melsa, 1971; Gelb, 1974), which uses a linear orrati@@pproxi-
mation of the non-linear continuous-time model. The noweitmuous-discrete
unscented Kalman smoother derived in Section 3.2 can alsgdstfor approxi-
mating the smoothing solutions of continuous-time filtgnmodels.



Chapter 2

Probabilistic Inference and
Stochastic Processes

This chapter briefly presents the principles of Bayesiaargrice and the theory
of stochastic differential equations. The mathematicahglexity is kept to the

minimum but still at the level, which should be enough for ersanding the

theory of optimal filtering in the next chapter.

2.1 Bayesian Inference

This section provides a brief presentation of the philosmgdhand mathematical
foundations of Bayesian inference. The connections to thssical statistical
inference are also briefly discussed.

2.1.1 Philosophy of Bayesian Inference

The purpose of Bayesian inference (Bernardo and Smith, ;1G8man et al.,
1995) is to provide a mathematical machinery that can be medodeling
systems, where the uncertainties of the system are takenagtount and the
decisions are made according to rational principles. Tbéstof this machinery
are the probability distributions and the rules of prohiapitalculus.

If we compare the frequentist statistical analysis to Bayeinference the
difference is that in Bayesian inference the probabilityanfevent does not mean
the proportion of the event in an infinite number of trialst the uncertainty of
the event in a single trial. Because models in Bayesianenfar are formulated in
terms of probability distributions, the probability axisnand computation rules
of the probability theory (see, e.g., Shiryaev, 1996) algplain the Bayesian
inference.
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2.1.2 Connection to Frequentist Statistics

Consider a situation, where we know the functional forfy;, | x) of the distribu-
tion of conditionally independent random variables (measents)y, ..., yn»,

but the parametex € R" is unknown. The classical statistical method for es-
timating the parameter is thmaximum likelihood methofMilton and Arnold,
1995), where we maximize the joint probability of the measuents, also called
the likelihood function

L(x) = [ p(yx %) (2.1)
k

The maximum of the likelihood function with respecttajives theML-estimate
(ML-estimate)
X = arg max L(x). (2.2)
X

The difference between the Bayesian inference and thedreipt statistics is that
the starting point of Bayesian inference is to consider trametex as a random
variable. The posterior distribution of the parametezan be computed by using
theBayes' rule

Y1 Yn | X)p(x) 2.3)
p(y17 s 7yn)

where p(x) is the prior distribution, which models the prior beliefs thie pa-
rameter before we have seen any datag(iyd, . ..,y,) is a normalization term,
which is independent of the parameterOften this normalization constant is left
out and if the measuremenys, . ..,y, are conditionally independent giveq
the posterior distribution of the parameter can be written a

p(x|y1s- - yn) o< p(x) [ p(ys [%)- (2.4)
k

PX|y1,-- yn) =

Because we are dealing with a distribution, we might now skdbe most proba-
ble value of the random variable (MAP-estimate), whichiggiby the maximum
of the posterior distribution. However, better estimateigan squared sense is the
posterior mean of the parameter (MMSE-estimate). Theramiafinite number
of other ways of choosing the point estimate from the digtiin and the best
way depends on the assumed loss function (or utility fungtidhe ML-estimate
can be considered as a MAP-estimate with uniform prior orpirametei.

2.1.3 The Building Blocks of Bayesian Models

The basic blocks of a Bayesian model are gn®r model containing the pre-
liminary information on the parameter and tlielihood modeldetermining the
stochastic mapping from the parameter to the measuremésdgig the com-
bination rules, namely the Bayes’ rule, it is possible teirdn estimate of the
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parameters from the measurements. The distribution of #nanpeters, which
is conditional to the observed measurements is callegtiséerior distribution
and it is the distribution representing the state of knowtedbout the parameters
when all the information in the observed measurements amadnibdel is used.
Predictive posterior distributioris the distribution of new (not yet observed)
measurements when all the information in the observed measnts and the
model is used.

e Prior model
The prior information consists of subjective experienceduhbeliefs on
the possible and impossible parameter values and thetivieeléelihoods
before anything has been observed. The prior distribusamathematical
representation of this information:

p(x) = Information on parametet before seeing any observations.
(2.5)
The lack of prior information can be expressed by using ainésrmative
prior. The non-informative prior distribution can be se&#t in various
different ways (Gelman et al., 1995).

¢ Likelihood model
Between the true parameters and the measurements thardésofteausal,
but inaccurate or noisy relationship. This relationshipriathematically
modeled using the likelihood distribution:

p(yx | x) = Distribution of observations given the parameters (2.6)
e Posterior distribution

Posterior distribution is the distribution of the parametafter the measure-
menty has been obtained and it can be computed by using the Bayes' ru

~ oy |x)p(x)
p(x|y) = BT 2.7
where
p(y) = | ply 1) px) dx (2.8)

In the case of multiple measuremests . . ., y,, if the measurements are
conditionally independent the joint likelihood of all measments is the
product of individual measurements and the posterioridigion is

p(x1y1,-- - yn) < p(x) [ [ pve | %), (2.9)
k

where the normalization term can be computed by integrdtiagight hand
side overx. If the random variable is discrete the integration reduces
summation.
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e Predictive posterior distribution
The predictive posterior distribution is the distributiaf new measure-

mentsy;, 1:

p(Yn+1|y1a~-->Yn):/p(YnJrl|X)p(X|Y1a~--aYn)dX- (2.10)

After obtaining the measuremenys, ..., y, the predictive posterior dis-
tribution can be used for computing the probability digitibn forn + 1:th
measurement, which has not been observed yet.

In the case of tracking, we could imagine that the parametéiné sequence of
dynamic states of a target, where the state contains théqmoand velocity. Or
in the continuous-discrete setting the parameter wouldhbefaite-dimensional
random function describing the trajectory of the target given time interval. In
both cases the measurements could be, for example, notayciksand direction
measurements produced by a radar.

2.1.4 Bayesian Point Estimates

The distributions as such have no use in applications, botinlBayesian compu-
tations finite dimensional summaries (point estimateshaezled. This selection
of a point from space based on observed values of randonblesiss a statistical
decision, and therefore this selection procedure is mastrally formulated in
terms of statistical decision theoryBerger, 1985; Bernardo and Smith, 1994;
Raiffa and Schlaifer, 2000).

Definition 2.1 (Loss Function) A loss functionL(x, a) is a scalar valued func-
tion, which determines the loss of taking thetiona, when the true parameter
value isx. The action (or control) is the statistical decision to bedadased on
the currently available information.

Instead of loss functions it is also possible to work witHitytifunctions
U(x,a), which determine the reward from taking the actiarwith parameter
valuesx. Loss functions can be converted to utility functions antewersa by
definingU (x,a) = —L(x, a).

If the value of parametex is not known, but the knowledge on the parameter
can be expressed in terms of the posterior distributicn|y1, . ..,y»), then the
natural choice is the action, which gives tmmimum (maximum) of the expected
loss (utility) (Berger, 1985):

E[L(x,a)|y1,...,¥n] = /L(x7 a)p(x|y1,...,yn)dx. (2.11)

Commonly used loss functions are the following:
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e Quadratic error loss If the loss function is quadratic
L(x,a) = (x —a)T (x — a), (2.12)

then the optimal choice, is theposterior mearof the distribution ofx:

aO:/xp(x\yl,...,yn)dx. (2.13)

This posterior mean based estimate is often callediih@num mean squatr-
ed error (MMSEestimate of the parametgr The quadratic loss is the most
commonly used loss function, because it is easy to handlbemettically
and because in the case of Gaussian posterior distributioMAP estimate
and the median coincide with the posterior mean.

e Absolute error lossThe loss function of the form
L(x,a) = Y |a; — ail, (2.14)
7

is called an absolute error loss and in this case the optilmgice is the
medianof the distribution (i.e., medians of the marginal disttibas in
multidimensional case).

e 0-1 loss If the loss function is of the form

1 , ifx=a
L(x,a) = { 0 ifxZa (2.15)
then the optimal choice is the maximum of the posterior itiistion, that
is, themaximum a posterior (MAR3stimate of the parameter.

In the case of continuous-discrete filtering, the loss fiematan be interpreted
to be a functional of the form

L(x,a) = /0 " (x(t) — a®)” (x(t) — at)) dt, (2.16)

and the mean estimate produced by the optimal smoother ifutiotion a,(t)
such that the expected value of the loss function above isnizad.

Loss functions are also used as the performance criterien@astic optimal
control (Maybeck, 1982b; Stengel, 1994). For example, aclshstic quadratic
regulator problems the loss function at timis typically of the form

L(x,a) = /ttT [aT(t) Ual(t) + xT(t) X x(t)] dt, (2.17)
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whereU andX are some positive definite matrices. However, stochastitrab
problems are much more complicated than simple expectexdnidsimization,
because at every time instance there exists past measusearghfuture mea-
surements, which have not been observed yet. Also the fotaesurements have
to be modeled, because the optimal control (action) depend®w much infor-
mation the future measurements give, which in turn dependf® future states
that are indirectly determined by the selected control.soperty of stochastic
control is called the dual effect or the active learning ety (Maybeck, 1982b).

Expected utilities and losses are also commonly used indiabapplications
(Karatzas and Shreve, 1991). Expected utilities have blsensaccessfully ap-
plied to practical Bayesian model selection problems (&h2001; Vehtari and
Lampinen, 2003).

2.1.5 Numerical Methods

In principle, Bayesian inference provides the optimal wagaving any model

once the model specification has been set up. However, tleqadaproblem is

that computation of the integrals involved in the equaticars rarely be performed
analytically and numerical methods are needed. The integead to be over
spaces with high dimensionality, which renders all diszegton based integration
method useless. Here we shall briefly describe numericahodet which are
also applicable in higher dimensional problems: Gausgi@naximations, Monte
Carlo methods and importance sampling.

e Very common types of approximations @@aussian approximation&sel-
man et al., 1995), where the posterior distribution is apipnated with a
Gaussian distribution

p(x|y1,-..,¥n) = N(x|m,P). (2.18)

The mearmm and covarianc® of the Gaussian approximation can be either
computed by matching the first two moments of the posterisiritiuition,
or by using the maximum of the distribution as the mean eséraad ap-
proximating the covariance with the curvature of the pastam the mode.

¢ In directMonte Carlo methoda set of N samples from the posterior distri-
bution is drawn

x(i)wp(x|y1,...,yn), i=1,...,N, (2.19)

and expectation of any functigg(-) can be then approximated as the sam-
ple average

Blgt 11, yal = 1 3 gx) 220
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Another interpretation of this is that Monte Carlo methodisyf an approx-
imation of the posterior density of the form

N
1
PX| V1,5 Yn) NNZ x — 2l (2.21)

where () is the Dirac delta function. The convergence of Monte Carlo
approximation is guaranteed by thentral limit theorem (CLT]see, e.g.,
Liu, 2001) and the error term is, at least in theory, indegenaf the di-
mensionality ofx.

o Efficient methods for generating non-independent MontéoGamples are
the Markov chain Monte CarldMCMC) methods (see, e.g., Gilks et al.,
1996). In MCMC methods, a Markov chain is constructed suétt th
has the target distribution as its stationary distributi@y simulating the
Markov chain, samples from the target distribution can beegated.

e Importance samplingsee, e.g., Liu, 2001) is a simple algorithm for gener-
ating weightedsamples from the target distribution. The difference to the
direct Monte Carlo sampling and to MCMC is that each of thdiglas
contains a weight, which corrects the difference betweeratttual target
distribution and the approximation obtained from an imaode distribu-
tion 7 (-).

Importance sampling estimate can be formed by drawihgamples from
theimportance distribution

xD ~ (x| y1, .., ¥n), i=1,...,N. (2.22)

Theimportance weightare then computed as

. (4)
W@ = P YL V) (2.23)
(x| y1,...,¥n)

and the expectation of any functigy-) can be then approximated as

S w g(x®)
vazl w(®) .

Elg(x)|y1,.--,¥n] = (2.24)

2.1.6 Notational Conventions

All probability distributions in this thesis can be reprated as either probability
density functiong(x) of continuous random variables or as discrete probability
distributions P(x) of discrete random variables. Because the cardinality, (i.e
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discrete or continuous space) of the random variable ajrdatermines whether
the probability distribution should be a density or a diserdistribution, we can
simplify the notation a bit. In this thesis, the common shand notation (as in,
e.g., Bernardo and Smith, 1994) for distributions and diarssis used:

e If the random variablex is continuous,p(x | H) denotes the conditional
probability density function of the random variabte given a set of hy-
pothesedH.

e If the random variablex is discrete,p(x | H) denotes the conditional dis-
crete probability distribution of the random variabegiven’.

e If the random variable contains both continuous and discrete components,
thenp(x | H) denotes the conditional hybrid probability distributievhich
is density with respect to the continuous part and discristilolition with
respect to the discrete part.

e The integral notation is always used and the an integratigar a distri-
bution should be interpreted as a summation if the randoralarx is
discrete:

> p(x|H) 2 / p(x|H)dx. (2.25)

This convention can also be interpreted such that when tidora variable
x is discrete and has the distributidt{x), it has a (generalized) probability
density of the form

p(x|H) = ZP(XZ-) 0(x — %), (2.26)

whered(-) is the Dirac delta function.

e The term probability distribution is used for both probéildistributions
and densities.
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2.2 Stochastic Differential Equations

This section briefly reviews the 1t6 calculus and the thedrgtochastic differen-
tial equations. The presentation is quite informal and tla¢hematical technical-
ities are kept to minimum, but still rigorous enough for thegoses of theory of
optimal filtering. For proofs of the theorems and detailshef definitions reader is
referred to Karatzas and Shreve (1991). Easier to readdimttans to the subject
are the lecture notes of Karatzas (1988) and the book of @ié€¢R003).

The presentation of 1t6 calculus is mostly based on the ttefssences men-
tioned above. The definitions of Stratonovich integrals fewen (Stratonovich,
1968). The notation, however, resembles more closely ttegino used in more
engineering related filtering theory books (e.g., Bucy askph, 1968; Jazwinski,
1970) because this notation is closer to the notation usagptied Kalman filter-
ing and stochastic control literature (e.g., Gelb, 1974ybhék, 1979, 1982a,b;
Stengel, 1994; Grewal and Andrews, 2001; Bar-Shalom e2@Q}). In applied
literature the white noise notation is often preferred tithore rigorous notation
with Brownian motion.

2.2.1 Motivation

As discussed in Section 1.2, many dynamic processes in egrgig, physics,
finance, and other fields can be modeled as differential emsatvith an unknown
driving functionw (t) as follows:

dx

dt
The unknown functiorw (¢) would be ideally modeled as a process that is Gaus-
sian and completely “white” in the sense thatt) and w(s) are uncorrelated
(and independent) for atl# s. However, the problem is that this kind of process
cannot exists in any mathematically or physically meanihgense (dksendal,
2003).

The solution to this existence problem is that actually théevprocess does

not need to exist as long as its integral exists. Integrdtieg=quation (2.27) once
with respect to time gives the stochastic integral equation

x(t) — x(s) = / Pt i+ / "Lk ) wit) dt (2.28)

The first integral on the right hand side does not cause anglgnes, but the
second integral is problematic because of the appearanehitef noise process.
Fortunately, this integral can be defined to be a integrdi véispect to the stochas-
tic “measure”s(t), which has independent Gaussian increments:

/ "Lx. ) wit)dt 2 / "Lix. ) dB(1). (2.29)

= f(x,t) + L(x,t) w(t). (2.27)
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The procesg$3(¢) is the Brownian motion to be defined in the next section. This

kind of integral is called a stochastic or Itd integr&ll/hite noisds then, at least

in formal sense, the time derivative of the Brownian motw(t) = d3(t)/dt.
Because by a stochastic differential equation it is agtualéant the corre-

sponding stochastic integral equation, this point is erajziea by writing stochas-

tic differential equations in form

dx(t) = £(x, t) dt + L(x, t) dB(t). (2.30)

where the usage of the problematic white noise process igledo The next
sections define what is actually meant by the integral wiipeet to Brownian
motion.

2.2.2 Stochastic Processes, Brownian Motion and Martingas

Definition 2.2 (Stochastic processAn indexed collection of random variables
X(w) ={x(t;w),0 < t < o0}, (2.31)
is called astochastic process

e Eachw — x(t;w) is a measurable function defined on a probability space
(Q, o, P).

e For eachw € Q) the functiont — x(t;w) is called thesample path(or
realization or trajectory) of the process.

Definition 2.3 (Filtration). The increasing family of-algebras.2; C </ on (2
such that

0<s<t=Z;C 2, (2.32)

is called afiltration. The stochastic procesgt;w) is said to beadaptedo the
filtration 2} if for eacht > 0 the functionw — x(t;w) is Z;-measurable. The
natural filtrationof a stochastic process is the smallest filtration such that t
process is adapted to it.

The natural filtrationZ; of stochastic process(t; w), that is,
2y =0(x(s),0<s<1), (2.33)

can be thought of as the history of the stochastic process tipettimet. The
filtration contains all the information that can be known atbthe process at the
timet.
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Definition 2.4 (Markov process) A stochastic process(t) is a Markov process
if its future is independent of its past given the present:

p(x(s) | Z1) = p(x(s)|x(t)), forall s > ¢. (2.34)

Definition 2.5 (Martingale) An.2;-adapted stochastic proces$t) with bounded
expectatiorE[x(t)] < oo is called amartingalewith respect to the filtratior?; if

E[x(s) | Zi] = x(t), forall s > t. (2.35)

= Path of p(t)
6l = Upper 95% Quantile | |
'+ == Lower 95% Quantile
- | Mean

B(®)

Figure 2.1: Single trajectory (realization) of Brownian motion.

Definition 2.6 (Standard Brownian motion)A process3(¢) is called astandard
Brownian motiod if it has the following properties:

1. B(0) = 0.

2. B(t1),B(t2)—pB(t1), ..., B(tx) — B(tx—1) are independent for ath < to <
< T <t < 00.

3. B(t) — B(s) ~ N(0,t — s) for everyd < s < t < 0.

4. The sample path— ((t;w) is continuous for all € €.

!Standard Brownian motion is also called Wiener process
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P(B.1)

Figure 2.2: Probability density of Brownian motion.

An n-dimensional vector process(t) = (31(t) --- Bn(t))T where each scalar
processs;(t) is an independent standard Brownian motion is callechasimen-
sional standard Brownian motion.

Definition 2.7 (Brownian motion) A (scalar) Brownian motion with diffusion
coefficientq(t) can be defined as the process

B(t) =V Q(t) Bs(t)’ (2.36)

where 5,(t) is a standard Brownian motion. Am-dimensional vector process
B(t) = (Bi(t) --- Bn(t))T whereg;(t) are independent Brownian motions with
diffusion coefficients;(¢) is calledn-dimensional Brownian motiowith diffusion
matrix Q.(t) = diag(qi(t), ..., qn(t)).

2.2.3 Stochastic Integral
In this section we shall define the It6 integral, that is, ttoelsastic integral of a
function (or stochastic procesg)with respect to Brownian motiof(t)

T
1] :/5 f(t,w)dps. (2.37)

We shall also define the multidimensional generalizatiorthef integral. The
symmetrized stochastic integral, which is called the Stratich integral is also
discussed.
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Definition 2.8 (Simple process)Stochastic process,, (t,w) : [S,T] x Q@ — R
is calledsimpleif there exists partitionS = tg < t1 < ... <ty < tp1 =T
such thatp,, (s, w) = 6;(w),t; < s < t;41 whered;(w) is arandom variable. For
technical reasons we shall also require that ed¢fw) is measurable with respect
to a filtration .77 such the Brownian motiofi(t) is martingale with respect to the
filtration.

Thus, simple process is a piecewise constant stochastiesso For simple
processes the It6 integral can be defined as follows:

T
J[¢n] = / ¢n(tvw) dg

= 29 (tj41) — B(t5))-

(2.38)

It6 integral of a more general stochastic process can be rdiwed! as limit
of integrals of simple processes:

Definition 2.9 (Itd integral) Let (2, o7, P) be a probability space3(¢) a Brow-
nian motion with natural filtration#; C < and f(t,w) : [0,00) x Q — R a
stochastic process with the following properties:

1. (t,w) — f(t,w)is A[0,00) x &/-measurable.

2. There exists filtration’#; such thatg(t) is martingale with respect to7;
and f(t,w) is .#4;-adapted.

fS dt | < o0.

Then theltd integralof f(¢,w) with respect to the Brownian motiof(¢) can be
defined as

T
/ f(t,w)dB(t;w) = nhm on(t,w)dB(t;w), (2.39)
where{¢, } is a sequence of simple processes such that
T
lim E [/ (f(t,w) — Pn(t,w)) dt] =0. (2.40)
n—oo S

Note that the It6 integral is always a martingale.

Definition 2.10 (Multi-dimensional It6 integral): Let 3(t) = (81(t), ..., Bn (1))
be an-dimensional Brownian motion arld(¢; w) a matrix valued process where
each component;; satisfies 1-3 in the definition 2.9. The It6 integrallgf; w)
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with respect to the:-dimensional Brownian motion can be defined to be a vector,
where thei'th component is given as

n T
Z /S Lij (t; w) dﬂ] (241)
Jj=1

It6 integrals can also be defined with respect to more geneagingales than
Brownian motion (Karatzas and Shreve, 1991; Applebaum#4R0This kind of
processes are for example general Lévy processes of whicRdlsson process
(and also the Brownian motion) is a special case. Howevdhimthesis only
stochastic integrals and stochastic differential equatefined in terms of Brow-
nian motions are considered.

The symmetrized stochastic integral or S8teatonovich integra(Stratonovich,
1968) can be defined as a limit of the symmetrized integraklmple functions
defined as follows:

T
S[an] = /S ¢n(t’w) odp

P (2.42)
:Z (9]( )+9j+1( )> (ﬂ(tﬁ_l)—ﬁ(t]‘))-
j=0

2

The Stratonovich integral can be defined in analogous maam#re I1t6 integral,
but with a bit less general conditions for the procgss w).

The disadvantage of the Stratonovich integral over Itbédgrgkis that the
Stratonovich integral is not a martingale. However, theaatage and also the
reason for its development is that the normal rules of cakapply, when the
Stratonovich interpretation of stochastic integrals iscus

2.2.4 Stochastic Differential Equations

Definition 2.11 (Stochastic differential equatianptochastic differential equation
(SDE) is an equation of the form

dx(t) = f(x,t) dt + L(x,t) dB(t), (2.43)

wheref : R™ x [0, 00) — R is thedrift function , L : R” x [0, 00) — R™*4 is
thedispersion matrixand3(t) is ad-dimensional Brownian motion with diffusion
matrix Q.(t). The matrixL(x,t) Q.(t) LT (x,t) is then the diffusion matrix of
the stochastic differential equation. The stochasticedffitial equation(2.43)is
actually a short hand notation to the stochastic integrali@ipn

x(t) —x(s) = / f(x,t)dt +/ L(x,t)dB(t), (2.44)

where the last integral is an It stochastic integral. Thachiastic process solution
x(t) to the stochastic differential equation is calltd process
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The Stratonovich stochastic differential equatior{Stratonovich, 1968; @k-
sendal, 2003) are similar to Ité differential equationst mstead of It inte-
grals they involve stochastic integrals in the Stratonlo\sense. A Stratonovich
stochastic differential equation can always be convened an equivalent I1td
equation by using simple transformation formulas (Stratach, 1968; @ksendal,
2003). If the dispersion term is independent of the skate t) = L(t) then the
It and Stratonovich interpretations of the stochastited#intial equation are the
same.

To distinguish between Itdé and Stratonovich stochastiediftial equations,
the Stratonovich integral is denoted by a small circle betbe Brownian differ-
ential as follows:

dx(t) = f(x,t)dt + L(x,t) o dB(t). (2.45)

The white noise interpretation of SDEs naturally leads tzlsastic differential
equations in Stratonovich sense. This is because the thisiomee approximations
of white noise driven differential equations converge tockastic differential
equations in Stratonovich sense, not in It6 sense. For &@son higher order
numerical integration schemes also approximate the quureing Stratonovich
equation when applied to stochastic differential equation

A solution to a stochastic differential equation is calltdng if for given
Brownian motion3(¢) with filtration .%; it is possible to construct a solution
x(t), which is.%;-adapted. Uniqueness of a strong solution means that the pat
of the process are unique for given Brownian motion and f@ thason strong
unigueness is also called path-wise uniqueness.

A solution is calledweakif it is possible to construct some Brownian motion
B(t) and a stochastic processt) such that the pair is a solution to the stochastic
differential equation. Weak uniqueness means that theapitity law of the
solution is unique, that is, there cannot be two solutionth wlifferent finite-
dimensional distributions.

The required conditions for drift functiofi and dispersion matri¥,, which
guarantee existences of strong and weak solutions can be fauthe books of
Karatzas and Shreve (1991) and @ksendal (2003).

The most important tool for computing strong solutions tochistic differ-
ential equations is the 1td6 formula, which can be intergiete counterpart of the
chain rule in ordinary calculus:

Theorem 2.1(1td formula) Assume that the procesgt) is generated by the
stochastic differential equation

dx = f(x,t) dt + L(x, t) dB. (2.46)

where3(t) is a Brownian motion with diffusion matriQ.(t). Letg be a twice
differentiable function. Then the components of the ststahgrocessy(t) =
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g(x(t), t) satisfy the stochastic differential equations

9% g 1 g,
dyy, = dt+z d$i+§ > 3, axjdxidxja (2.47)

where the termdx; dx; are computed according to the rules

dtdg =0
dBdt=0 (2.48)
dBdp" = Q.(t)dt

Remark 2.1 (Stratonovich formula) If the Equation(2.46)was a stochastic dif-
ferential equation in Stratonovich sense

dx = f(x,t)dt + L(x,t) o dg3, (2.49)

then the differential would be

9 P
dyn g’“ dt+z Ik o da. (2.50)

That is, the familiar result from calculus.

In Bayesian inference all information about the unknownrdjitias is as-
sumed to be contained in the probability distribution of thknown quantities.
For this reason, when doing Bayesian inference on stochdsterential equa-
tions weak solutions to stochastic differential equatiaresoften enough, because
we are only interested in the probability laws, not the dgbaths of the processes.

The probability distribution, that is, the law of any weaklwgimn to a stochas-
tic differential equation can be computed by the Kolmogdmward equation:

Theorem 2.2 (Kolmogorov forward equation) The probability density of the
stochastic process(t¢) which is generated by the differential equation

dx = f(x,t)dt + L(x,t) dB. (2.51)

satisfies theKolmogorov forward partial differential equatipralso called the
Fokker-Planck equation
o i) 4 3 L (L) QU LT (x 2)])
- Ox; 2 0x;0x; ’ VIR
(2.52)

where the probability density(x(t)) = p(x, t) is interpreted as function of and
t. The equation can also be written in the operator form

Op

o = Af[pl, (2.53)
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where the operatos; is

AT ==Y o () () +5 Y 5

- ([L(x, ) Q) LT (x, )] (1)) »

(2.54)
which is theformal adjointof the characteristic operata#; of the diffusion pro-
cess.

Example 2.1(Diffusion equation) An interesting connection to statistical physics
is that a plain standard Brownian motion can be defined by DE S

dz = dg. (2.55)
Now the Kolmogorov forward equation reduces to
op 1%
— =—-—= 2.56
ot 20x%’ ( )

which can be recognized as the diffusion equation of siedisphysics. This
connection between the Brownian motion and the diffusiaraton was already
known by Einstein (1905).

2.2.5 Girsanov Theorem

Theorem 2.3(Girsanov) Assume thaff(t) € R* : 0 <t < T}is a</-
measurable process, which is adapted to the natural fittrat¥?; C < of n-
dimensional standard Brownian motidB(¢) € R™ : 0 < ¢ < T'} with respect

to measureP. If
t
E [exp (/ Ha(t)wdt)] < 0, (2.57)
0

20 =0 ([0 wap) - [lowiar).  @s9)

satisfies the equation

Z(t) =1+ /t Z(t) 8T (t)dB(t), (2.59)
0

then

and is a martingale. Then under the measitglw) = Z(t;w) P(dw) the pro-
cess

Bl =B~ [ 0w (2.60)

is n-dimensional standard Brownian motion. The random vagab(t; w) is the
likelihood ratiobetween laws” and P
dp

d—P(w) = Z(t;w). (2.61)

Ft
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Proof. See (Karatzas and Shreve, 1991; @ksendal, 2003). O

The Girsanov theorem can readily be applied to finding wedltisns and
for removing drifts from stochastic differential equatsaf the form

dx =f(x,t)dt + Ldg 2 62
x(0) = xo, (2.62)

wheref(x,t) is bounded and measurablk,is invertible matrix and3(t) is a
Brownian motion with respect to measure

Theorem 2.4(Weak solution of SDE)Assume that the processt) is generated
by the stochastic differential equati¢®.62) If we now define

Z(t;w) = exp (/ [L™" f(xo + Lﬁ(t;w),t)]T dB(t;w)
° (2.63)

1 t
—5/0 ||L_1f(X0+Lﬂ(t;w),t)||2dt>,

then the expectation of any function (or functiorla()) can be expressed as
Efh(x(t))] = E[Z(t;w) h(xo + L B(t; w))]. (2.64)
and thusZ (t; w) is the likelihood ratio between processgs$) andxy+L B(t; w).
Proof. If we define
x(t) =x0+ LB(tw) (2.65)
0(t) =L ' f(xo +LB(1),1) (2.66)

B =00 - [ Co(r)ar

t
=L (%(t) — x0) —/ L™ f(x(t),t) dt. (2.67)
0
then by rearranging the last equation we get that the pres&ss), 3(t) satisfy
dx = f(x,t) dt + L dB(t) (2.68)
x(0) = xg. (2.69)

By the Girsanov theorem, under the measlé(dw)f Z(t;w) P(dw) the process
B(t) is a Brownian motion and thus the pai(t), 3(t)) is a weak solution to the
SDE. For any functiorh(-) we now have

E[h(x(1))] = E[Z(t;w) h(xo + L B(t;w))]. (2.70)

But by definition of a weak solution we should haliéh(x(t))] = E[h(x(t))]
and the result follows. O
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Theorem 2.5(Removal of drift) Assume that the processt) is generated by
the stochastic differential equatidg.62). If we define

Z@w)zmm<—3£[L”f@@xwfhﬂ@w—éA|m*%@@»wwdﬁ,
(2.71)

Then under the measuB(dw) = Z(t;w) P(dw) the processx(t) — xq is a
Brownian motion with diffusion matrik L™ and thus the law of(t) is the same
as the law ofky + L 3(t).

Proof. If we define

0(t) = —L™1f(x(t),t) (2.72)
P(dw) = Z(t;w) P(dw), (2.73)

then by Theorem 2.3 we get that under the measure

B@zﬂ@—AO@&

—71x—x—t71x tilx

— L (x(t) — x0) /OL £ (t),t)dt+/0 L (x(1), ) dt
— L (x(t) — x0)

is a standard Brownian motion and thué) — x( is a Brownian motion with
diffusion matrixL L. O

Example 2.2(Solution of Beng SDE) Consider the It process

dz = tanh(z)dt + d5(¢) (2.74)
x(0) = xo, (2.75)

wherej(t) is a standard Brownian motion. The likelihood ratio is now

t t
Z(t) = exp </ tanh(xo + 5(¢t)) dB(t) — %/ tanh?(zo + B(t)) dt> :
’ ’ (2.76)
The first integral can be evaluated by applying the It6 formul
d(log(cosh(zo + 3(t))))

1 (2.77)
= tanh(zo + B(t)) dB(t) + 5 (1 - tanh®(zo + 3(t))) dt,
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that is
t 1 t 5
/ tanh(zg + 5(0)) dB(1) — 5 / tanh? (20 + B(2))) dt
0 0 ‘ (2.78)
= log(cosh(zg + ((t))) — log(cosh(zg)) — /0 5 dt,
which gives
"1
Z(t) = exp ( log(cosh(zg + [(t))) — log(cosh(xg)) — | =dt
[t DL g

- (2)

Because this term depends only on the state of Brownian matitiimet, the
probability density can be computed explicitly. The pralighdensity ofz(t) =
xo + ﬂ(t) is

N(#(£)]0,1) = \/% exp (-i(@(t) - w0)2> , (2.80)

and thus the probability density aft) is
1 cosh(z(t)) ox (
V2rt cosh(zo) P

Because this is true for any initial condition, it impliesatithe transition density
is given as

p(z(t) =

——t> exp <—i(x(t) _ x0)2> . (281)

pla(t)|a(ti1)) = e T o ()

X exp <— 2A1tk (x(ty) — x(tkl))2> )

(2.82)

whereAt, =t — tp_1.

2.2.6 Solutions of Linear Equations

Theorem 2.6(Solution of linear SDE) Linear stochastic differential equatiaf
the form
dx = F(t) x(t) dt + u(t) + L(¢) B8(¢), (2.83)

where

e the initial conditions arex(0) ~ N(m(0), P(0)),



2.2 Stochastic Differential Equations 43

e F(¢) andL(¢) are matrix valued functions,
e u(t) is a known deterministic (non-random) function,
e and3(t) is a Brownian motion with diffusion matri®..(¢),

can be solved exactly using the ordinary differential eopret

drgt(t) — F(t)m(t) + u(t) (2.84)
di—f) =F()P(t) +P)FT(t) + L(t) Q.(t) LT (¢). (2.85)

The solution is a Gaussian process with meaft) and covarianceP (¢):
p(x(t)) = N(x(t) [m(t), P(t)). (2.86)

Theorem 2.7(Solution of LTI SDE) The solution ofinear time-invariant stochas-
tic differential equatior(LTI SDE) of the form

dx = Fx(t)dt + L 3(¢), (2.87)
where
e the initial conditions arex(0) ~ N(m(0), P(0)),
e F andL are constant matrices,
e andg(t) is a Brownian motion with constant diffusion matfi.,
is a Gaussian process with the following meaiit) and covarianceP (t):

m(t) = exp(F¢) m(0) (2.88)
P(t) = exp(Ft) P(0) exp(Ft)”

+ / t exp(F (t — 7)) L QLT exp(F (t — 7))T dr, (2.89)
0

whereexp(-) is the matrix exponential function.

Remark 2.2 (Matrix fraction decompoasition) The covariance of linear time in-
variant stochastic differential equatiof2.89)can be solved by using matrix frac-
tions (see, e.g., Stengel, 1994; Grewal and Andrews, 2004k define matrices

2pactually the method applies to the time varying case alsbirbthat case the benefit is smaller
because the solution cannot be expressed in terms of thixrgbonential function.
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C andD such thafP = C D!, itis easy to show th& solves the matrix Riccati
differential equation

dP(t)

— =FPO+POF +LQ.L". (2.90)

if matricesC andD solve the differential equation

aCH/dt\ [ F LQLT\ [ C)
( dD(t)/dt ) B < 0 —FT > < D(t) > ) (2.91)
andP(0) = C(0)D(0)"!. We can select, for example,

C(0) = P(0) (2.92)
D(0) = L. (2.93)

Because the differential equatid@.91) is linear and time invariant, it can be
solved using the matrix exponential function:

(80)-en{(5 M9 ) (50) oo

The final solution is then given &(t) = C(¢t) D(¢)!.

Theorem 2.8(Discretization of linear SDE)The transition density of the linear
differential equation(2.83)with u(¢) = 0 can be written in form

p(x(tk+1) | x(tk)) = N(x(tg41) | Ap x(tk), Qk)s (2.95)

where the matricesA;, and Q;, are the solutionsA;, = A(ty,;) and Q; =

Q(tx+1) to the differential equations

dﬁf) =F() A1) (2.96)
d(igt) =F(t)Q(t) + Q(t)FT(t) + L(t) Q.(t) LT (¢), (2.97)

with the initial conditionsA (¢;) = I andQ(¢;) = 0. The mean and covariance
of the Gaussian process solution to the equat@83)at discrete time instances
t1,t9, ... are exactly given by the recursion equations

my 1 = Apmy (2.98)
P = APy AL + Qy, (2.99)

wherem;, = m(t;) andP;, = P(ty).
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Theorem 2.9(Discretization of LTI SDE) In LTI case(2.87)the discretization
equations can be explicitly solved:

Ay = exp(F Aty) (2.100)
Aty
Qr = / t exp(F (At — 7)) L QLT exp(F (At, —7))Tdr,  (2.101)
0

whereAt;, = ti1 — tx. The matrixQj can be efficiently computed by the matrix
fraction decomposition if the integré2.101)cannot be computed in closed form.

The idea of discretization above is particularly usefuhie tase of the Kalman
filter (Kalman, 1960b), because the canonical form of then&a filter has this
kind of discrete dynamic model. The conclusion is that itdloet matter that the
Kalman filter was originally designed for discrete modélstill is exact for linear
continuous-time dynamical models with discrete measungsne

Example 2.3(Discretized Wiener velocity model)n Wiener velocity model (see,
e.g., Bar-Shalom et al., 2001) the velocity (the first ddieaof the process) is
modeled as a Wiener process, that is, as a Brownian motionwHite noise
interpretation this means that the acceleration (i.e., seeond derivative) is a
white noise process with spectral densjty

d2x(t)
2 v (2.102)
In more rigorous state space form this model can be written as
(m) - <o o> <x2> dt + <1> ds(t), (2.103)
— ——
F L

where3(t) is a Brownian motion with diffusion coefficieptwherex, (t) £ z(t)
is the actual process aneh(t) is its derivative. Now the matrices of the equivalent
discrete-time model are given as follows:

A(Af) = (é Alt>

(2.104)
1 A3 1 A42
Q(At):< At 2At>q.

%M At

2.2.7 Monte Carlo Simulation of SDEs
Assume that we are interested in forming a Monte Carlo appration to the
probability density of the state(¢), which is generated by the stochastic differ-

ential equation
dx = f(x,t)dt + L(x,t) dB. (2.105)
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whereg(t) is a Brownian motion with diffusion matriQ.(t).
Perhaps the simplest algorithm for simulation of stocleadifferential equa-
tions is the Euler-Maruyama method (see, e.g., Kloeden &atdri? 1999):

Algorithm 2.1 (Euler-Maruyama method)Draw x, ~ p(x() and divide time
[0, ] interval into K steps of lengtti\¢. On each stef do the following:

1. Draw random variableA 3, from the distribution (where;, = k At)
AB, ~ N(0,Q(tr) At). (2.106)

2. Compute
X1 = Xp + £(xp, 1) At + Li(xg, tg) ABy, (2.107)

The disadvantage of this method is that although the detéstit Euler algo-
rithm is of orderO(At) of convergence this stochastic algorithm is actually only
of strong ordeiO(At'/?) (Kloeden and Platen, 1999). It still is of the weak order
O(At), but the strong order of convergence is what counts, for @@nin the
case of numerically evaluating the importance weights énrtéxt section.

Fortunately, it is possible to modify any higher order nuiterintegration
method for deterministic differential equations such tiitstrong order is half
the deterministic order (Wilkie, 2004). For example, theckiastic weak fourth
order, strong second order Runge-Kutta method can be ingoltrd by defining
the function

filx,t,AB) = f;(x,1) ZLM 8LJ’“ x,t)

ZLJ,c x,t)AB,,/At.

(2.108)
Now the algorithm can be implemented as follows:

Algorithm 2.2 (Stochastic Runge-Kutta methodpn each steg: do the follow-
ing:
1. Draw random variableA3,, from the distribution §, = k£ At)
AB ~ N(0,Q(tr) At). (2.109)

2. Compute

f(xk, ti, ABy,) At

(xk + Ax /2,1, + At/2, AB,) At

(xi, + AX? /2, 1), + At/2, AB,,) At (2.110)
f(xx + AX? b + At, ABy,) At

|| ||
L P R o 7 93

Xkt1 = X + = (AX + 2Ax% 4+ 2Ax3 + Ax?).
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The idea of this algorithm is that the 1td6 SDE is actually cented into the
corresponding Stratonovich differential equation (hette® correction term in
f). The fortunate property of this Stratonovich form is thae fraylor series for
functions can be formed in the same way as in deterministie.cehus the Runge-
Kutta method can be derived in the same way as in deterntirdage, but now
the strong order is half, becauge3? is of the ordeiO(At).
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Chapter 3

Optimal Filtering and Smoothing

This chapter presents the theory and relevant algorithnaisafete-time filtering
and smoothing, the theory and relevant algorithms of caotis-discrete filtering
and smoothing, and Gaussian approximation based algarifomcontinuous-
time filtering and smoothing. Most of the methodological #meoretical contri-
butions of this thesis can be found in this chapter:

Thematrix form of the unscented transfoimpresented in Section 3.1.

Thecontinuous-discrete unscented Kalman fitied thecontinuous-discre-
te unscented Kalman smoothame presented in Section 3.2.

Measure transformation basedntinuous-discrete particle filteimnd par-
ticle smootherare presented in Section 3.2.

The continuous-time unscented Kalman filter, timscented Kalman-Bucy
filter is presented in Section 3.3.

3.1 Discrete-Time Filtering and Smoothing

This section first presents the classical formulation ofdiserete-time optimal
filtering as recursive Bayesian inference. Then the clab¢extended) Kalman
filters and smoothers are presented in terms of the genexahth In addition

to the classical algorithms the unscented Kalman filter amstented Kalman
smoother are compactly formulated in terms of the matrixfamnscented trans-
form. Sequential importance resampling, as well as RackBlallized particle

filtering and smoothing are also covered.
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3.1.1 Discrete-Time Filtering and Smoothing Equations

Before going into the practical non-linear filtering algbms, in the next sections
the theory of probabilistic (Bayesian) filtering is pressht The Kalman filter-
ing and smoothing equations, which are the closed form isolsitto the linear
Gaussian discrete-time optimal filtering problem, are disived.

Discrete-Time State Space Models

Definition 3.1 (Discrete-time state space moddDiscrete-time state space model
is a recursively defined probabilistic model of the form
X Xk | Xk—
Kk~ D(Xk | Xk—1) (3.1)
Yi ~ p(Ye [ Xk),

where
e x;. € R” is thestateof the system on the time step
e y; € R™is the measurement on the time skep

e p(xi | xk_1) is thedynamic modelwhich models the stochastic dynamics
of the system. The dynamic model can be a probability demsggunting
measure or combination of them depending on if the statis continuous,
discrete or hybrid.

e p(yk | xx) is themeasurement modelvhich models the distribution of the
measurements given the state.

The model has the following properties (i.e., assumptions)

Property 3.1 (Markov property of states)

States{x; : k= 1,2,...} form a Markov sequence (or Markov chain if the state
is discrete). This Markov property means that (and actually the whole future
Xk+1, Xk+2, - - -) Qivenxg_q is independent from anything that has happened in
the past:

p(Xk | X1k—1,Y1:6-1) = P(Xk | Xp—1)- (3.2)
Also the past is independent of the future given the present:

P(Xp—1 | Xk, Vi) = P(Xp—1 | X1)- (3.3)
Property 3.2 (Conditional independence of measurements)

The measurement, given thex;, is conditionally independent from the measure-
ment and state histories:

Py | X1k, Y1k—1) = P(Yk | Xk)- (3.4)
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Example 3.1 (Gaussian random walk)Gaussian random walk model can be

written as

Tp = Tp_1+ w1, wg_1~ N(O,
k k—1 k—1 k—1 ( Q) (3.5)
Yk = T + g, er ~ N(0,7),

wherez,, is the hidden state angl, is the measurement. In terms of probability
densities the model can be written as

p(ak | xp—1) = N(zk | 2K-1,9)

(3.6)

which is a discrete-time state space model.

The filtering model actually states that the joint prior dizttion of the states

(x0,-..,x7) and the joint likelihood of the measuremefis,...,yr) are, re-
spectively
T
(X0, - .., X7) = p(X0) HP(Xk | x—1) (3.7)
k=1
T
Pyt yrl %o, ... xr) = [ [ plyr | xx). (3.8)
k=1

In principle, for givenT we could simply compute the posterior distribution of
the states by the Bayes rule:

P(YM---aYT|X0>~oaXT)P(XO>~'>XT)
p(y1> o ayT) (39)
X p(¥1,---,¥7 | %05 -, X7) p(X0, - . ., XT).

p(X0>"'7XT|y1a--'>YT):

However, this kind of explicit computation is not feasibha€al time applications,
because the amount of computations per time step incredses mew observa-
tions arrive. Thus, this way we could only work with small @aets, because if
the amount of data is not bounded (as in real time sensoripigcapons), at some
point of time the computations will become intractable. tpe with real time
data we need to have algorithm where we do constant amountrgfatations per
time step.

Due to the problem formulation, instead of the full joint pasor distribution
of the states more useful distributions arefittering distributionsandsmoothing
distributions which shall be discussed next.
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Discrete-Time Optimal Filtering Equations

The purpose obptimal filteringis to compute thenarginal posterior distribution
of the statex;, on the time stef: given the history of the measurements up to the
time stepk

p(xk | y1:k)- (3.10)

The fundamental equations of the Bayesian filtering theoeygaven by the fol-
lowing theorem:

Theorem 3.1(Discrete-time Bayesian filtering equationdjhe recursive equa-
tions for computing theredicted distributiorp(xy, | y1.x—1) and thefiltering dis-
tribution p(xy, | y1.x) on the time step are given by the followin@ayesian filter-
ing equations

e Initialization. The recursion starts from the prior distributigrix).
e Prediction. The predictive distribution of the staig, on time stepk given
the dynamic model can be computed by the Chapman-Kolmogquation

P(Xk | Yik—1) = /P(Xk | Xk—1) P(Xk—1 | Y1:5—1) dXk—1. (3.11)

¢ Update.Given the measurement, on time stegk the posterior distribution
of the statex;, can be computed by the Bayes’ rule

1
P(Xk | Yik) = Z—kp(yk | %) p(Xk | Y1:6—1), (3.12)

where the normalization constagj, is given as
2= [ bl 30) b y101) (3.13)

If some of the components of the state are discrete, the spwraling integrals
are replaced with summations.

Proof. The joint distribution ofx;, andx;_; giveny;.,_1 can be computed as

P(Xpey X1 | Y1:k—1) = P(Xk | X—1, Y 1:6—1) D(Xk—1 | Y1:5-1)

(3.14)
= p(Xk | Xp—1) P(Xp—1 | Y1:6—1),

where the disappearance of the measurement histogy; is due to the Markov
property of the sequencgx,,k = 1,2,...}. The marginal distribution oky
givenyi.,_1 can be obtained by integrating the distribution (3.14) axgr,
which gives theChapman-Kolmogorov equation

P | Yie_1) = / Pk | K1) POkt | Y1) dxp_1. (3.15)
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If x,_1 is discrete, then the above integral is replaced with sum gye;. The
distribution ofx;, giveny, andy;.;_1, thatis, giveny;., can be computed by the
Bayes' rule

1
p(Xk | y1k) = PRACL | Xk, Y1k-1) P(Xk | Y1:0-1)

k (3.16)
1

= Z—P(Yk | %k) (X% | Y1:6—1)
k

where the normalization constant is given by Equation (3.TBe disappearance
of the measurement histogy;.;._1 in the Equation (3.16) is due to the conditional

independence of ;. from the measurement history, given. O

Discrete-Time Optimal Smoothing Equations

The purpose obptimal smoothingjis to compute the marginal posterior distri-
bution of the statex;, at the time steg: after receiving the measurements up to a
time stepl’, whereT > k:

p(Xk | y17)- (3.17)

The difference between filters and smoothers is thatoptimal filtercomputes

its estimates using only the measurements obtained befof@mthe time step

k, butthe optimal smoothenses also the future measurements for computing its
estimates. After obtaining the filtering posterior stat&ritbutions, the following
theorem gives the equations for computing the marginalepiastdistributions for
each time step conditionally to all measurements up to the stepr":

Theorem 3.2 (Discrete-time Bayesian fixed interval smoothefhe backward
recursive equations for computing temoothed distributions(xy, | y1.7) for any
k < T are given by the followin@ayesian (fixed interval) smoothing equations

P(Xpt1 | Y1) = /P(Xk+1 | xk) (X | Y1) dX

P\ Xk+1 | Xk ) P\XE+1 | Y1:T
s yir) = e i) [ [ O i1 [0) POkt 31 ]
P(Xkt1 | Y1:k)

(3.18)

wherep(xy | y1.1) is the filtering distribution of the time stefp Note that the
term p(xx+1 | y1.£) IS simply the predicted distribution of time stép+ 1. The

integrations are replaced by summations if some of the stateponents are
discrete.

Proof. Due to the Markov properties the statg is independent of 1.7 given
Xj+1, Which givesp(xy, | Xg41,¥1:7) = p(Xk | Xk41,¥1:6). By using theBayes’

1In this thesis only fixed-interval smoothing is considered.
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rule the distribution ofx;, givenx;, andy;.7 can be expressed as

P(Xp | Xpt1,Y1.7) = D(Xk | Xk 1, Y1:8)

p(Xp, Xpt1 | yik)

P(Xpy1 | Vi)
P(Xpt1 | Xp, Yiek) P(X | Y1:k) (3.19)
P(Xpt1 | Y1:k)
_ P(Xk1 [ Xp) P(Xk | Y1:k)
P(Xpt1 | Y1:k)
The joint distribution ofx;, andxy; giveny;.7 can be now computed as

P(Xk, Xkt 1 | y1.7) = P(Xk | X1, Y1u1) P(Xkt1 | y1:7)
= p(Xp | Xps1, Y1:6) P(Xit1 | Y1:7) (3.20)
~ p(Xpg | xk) p(Xk | Y1) P(Xy1 [y 17)
P(Xk+1 | y1k)
wherep(xx+1 | y1.7) is the smoothed distribution of the time stépt 1. The

marginal distribution ofx;, givenyy.r is given by integral (or summation) over
xj11 in Equation (3.20), which gives the desired result. O

)

Discrete-Time Kalman Filter

The discrete-time Kalman filt¢Kalman, 1960Db) is the closed form solution to the
optimal filtering equations of the discrete-time filteringdel, where the dynamic
and measurements models are linear Gaussian:

X = Ag—1Xp-1+ Q-1 (3.21)

yi = Hpxp + 1y,
wherex; € R" is the statey, € R™ is the measuremendy,_; ~ N(0,Qx_1)
is the process noisey, ~ N(0, Ry) is the measurement noise and the prior dis-
tribution is Gaussiaxy ~ N(mg, Py). The matrixA_; is the transition matrix
of the dynamic model anHl;, is the measurement model matrix. In probabilistic
terms the model is

P(xE | Xp—1) = N(xp | Ap—1 Xp—1, Qr—1)
p(yr | xk) = N(yx | Hp xi, Ry).

Theorem 3.3(Discrete-time Kalman filter) The optimal filtering equations for
the linear filtering mode{3.21)can be evaluated in closed form and the resulting
distributions are Gaussian:

(3.22)

P(Xk | y16—-1) = N(xx |m, ,P,)
P(xk | Y1) = N(xi | my, Py) (3.23)
P(ye |yir—1) = N(yx | Hymy, S).
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The parameters of the distributions above can be computéd theé following
discrete Kalman filtepredictionandupdate steps

e The prediction stes

m; = Ap 1my;

i (3.24)
P, =A 1P AL + Q1.

e The update stej
v =yr — Hymy
Sy = H, P, H] + R,
K,=P_ Hi S ' (3.25)
my = m; + Kk Vi
P, =P, - K;S;Ki.
Proof. By Lemma A.1 on page 207, the joint distributionxof andx;_, given
Yik-11S

P(Xk—1, Xk | Y1:—1) = D(Xk | Xp—1) P(Xk—1 | Y1:6—-1)
= N(xp | Ap—1xp-1, Qr—1) N(xp—1 | myp_1,Pp_1)

(] men)

(3.26)
where
my_q Py P11 Al )
m; = , P1= .
! (Ak—l mk—1> ! <Ak—1 Pio1 A1 Prg AL 4+ Qpy
(3.27)
and the marginal distribution of;, is by Lemma A.2
P(Xk [ y1k-1) = N(xp [my, P, (3.28)
where
m; = A;_myg_q, P, =A 1P AL + Qo (3.29)
By Lemma A.1, the joint distribution of; andx; is
P(Xk, Vi | Y1k—1) = p(Yr | Xk) P(Xk [ Y1:0-1)
= N(yr | Hp xx, Ri) N(xp [m, P) (3.30)

= (] mer),
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where

_ (e _( Py P Hy
2 (Hk m,;> P2 <Hk P, H,P,H +R;/" (3:31)
By Lemma A.2 the conditional distribution of; is

P(Xk | Y, Y1:k—1) = P(Xk | Y1:8)

(3.32)
= N(xy, | mg, Py),
where
Sy = H; P, Hf + Ry
— 7 q-1
K =Py Hi: 5 3 (3.33)
my, = m, + K; [yy — Hym, |
P, =P, - K;S;Kf.
O

The functional form of the Kalman filter equations given hisraot the only
possible one. In the numerical stability point of view it idie better to work
with matrix square roots of covariances instead of plairaci@nce matrices. The
theory and details of implementation of this kind of methadsell covered, for
example, in the book of Grewal and Andrews (2001).

Example 3.2(Kalman filter for Gaussian random walkhssume that we are ob-
serving measurementg of the Gaussian random walk model given in Example
3.1 and we want to estimate the statg on each time step. The information
obtained up to time step — 1 is summarized by the Gaussian filtering density

p(rr—1|yrr—1) = N(@p_1 [mp_1, Pr_1). (3.34)
The Kalman filter prediction and update equations are noveIgi&s

my = M1

P =P1+q
kT B ( k) (3.35)
mg =1m —-m .
k k P];—Fryk k
P—2
pk:p];_(#

P];—{—T‘.
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Figure 3.1: Simulated signal and measurements of the Kalman filteriagngte (Exam-
ple 3.2).

Discrete-Time Kalman Smoother

The discrete-time Kalman smootHefsee, e.g., Rauch et al., 1965; Gelb, 1974;
Bar-Shalom et al., 2001) can be used for computing the clém®ad smoothing
solution
p(Xk | Y1:T) = N(Xk | mzv Pz)v (3.36)
to the linear filtering model (3.21). The difference to thduson computed
by the Kalman filteris that the smoothed solution is conditional on the whole
measurement datg;., while the filtering solution is conditional only on the
measurements obtained before and on the timekstidyat is, on the measurements
Yik-
Theorem 3.4(Discrete-time Kalman smootherThe backward recursion equa-
tions for the discrete-time fixed interval Kalman smootheauch-Tung-Striebel
smoother) are given as
m;. ., = Apmy

P, =AP AT +Q

Cp=P,AL [P, ]! (3.37)

mj, = my, + Cy [mj | — mi;rl]

P} =P+ Cy [Pi, — Py, ] CL,

2Also called discrete-time Rauch-Tung-Striebel (RTS) sthep
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Figure 3.2: Signal, measurements and filtering estimate of the Kalmtarmifip example
(Example 3.2).

wherem;, and P, are the mean and covariance computed by the Kalman filter.
The recursion is started from the last time sigpvith m?, = mr andP7, = Pr.
Note that the first two of the equations are simply the Kalmiger fprediction
equations.

Proof. Similarly to the Kalman filter case, by Lemma A.1, the joinstdbution
of x; andxj1 giveny.; is

P(Xk, Xpt1 | Y1:k) = P(Xpet1 | i) D(Xk | Y1:)

= N(xp 11| A x5, Qi) N(x | m, P) (3.38)

m; = , P, = k . 3.39
! (Ak mk> ! (Ak P APrAT +Qy (3.39)
Due to the Markov property of the states we have

P(Xk | X1, Y1.7) = P(Xp | Kbt 1, Y121, (3.40)

and thus by Lemma A.2 we get the conditional distribution

P(Xp | Xit1, Y1.1) = P(Xks | Xpot 1, Y 1:8)

(3.41)
= N(x}, | my, Py),
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where
P, =AcP AL +Qp
Ci =P, A] [P,
my = my, + Cp (X411 — Apmy) (3.42)
= Crxp41 + (I — Cp Ag) my

P, =P, - C,P,,,C}.

]—1

The joint distribution ofx; andx;; given all the data is

P(Xpt1, Xk | Y1.1) = (XK | Xpot 1, Y1.1) P(Xpot 1 | Y1:7)
= N(xz | mg, P2) N(xz1 | mZJrl?Perl)

(3.43)
_ Xk+1
N[5 om)
where
_ mj
meaq =
s (Ck Xpr1+ (I — CrAy) mk)
. i . (3.44)
Ps — ( Pi Py (;k ) .
CiPjy, CiPi,Cp+Po
Thus by Lemma A.2, the marginal distributionxf is given as
p(Xk | Y1:T) = N(Xk | mzv PZ)? (3.45)
where
m; =my +Cr(m;_ , — Aym
/; k k ( Sk-i—l 7k k)T (3.46)
Pi =P+ Ci (Piy, — Pk+1) Cy-
O

Example 3.3(Kalman smoother for Gaussian random walkhe Kalman smooth-
er for the random walk model given in Example 3.1 is given byetijuations

My = Mk

P i=PF+q
s Py -

mg = my + ——— (M4 — my,) (3.47)

k+1

po\?

3 _
P} =P, + (P—> [P§+1—Pk+1]>
k+1

wherem;, and P, are the updated mean and covariance from the Kalman filter in
Example 3.2.
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Figure 3.3: Filter and smoother variances in the Kalman smoothing eXaiftfxample
3.3).

3.1.2 Filtering and Smoothing by Gaussian Approximations

Often the dynamic and measurement processes in practiphtatons are not
linear and the Kalman filter cannot be applied as such. Homveti# often the
filtering and smoothing distributions of this kind of proses can be approximated
with Gaussian distributions. In this section two types ofttnes for forming
the Gaussian approximations are considered, the Taylgssbased extended
Kalman filters and smoothers, and unscented transform hassgtnted Kalman
filters and smoothers.

Taylor Series Based Approximations

Next linear and quadratic approximations of transfornragiof Gaussian random
variables are presented. These methods try to approxirhatdistribution of a
random variabley, which is generated as a non-linear transformation of a Gaus
sian random variabl& as follows:

x ~ N(m,P)
y = g(x).

wherex € R”, y € R™, andg : R" — R™ is a general non-linear function.
Formally the probability density of the random varialytes® (see, e.g Gelman

(3.48)

3This actually only applies to invertible(-), but it can be easily generalized to the non-invertible
case.
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Figure 3.4: Filter and smoother estimates in the Kalman smoothing elafixample
3.3).

etal., 1995)
p(y) = 3(y)| N(g™(y) [ m, P), (3.49)

where|J(y)| is the determinant of the Jacobian matrix of the inversesfam
g 1(y). However, it is not generally possible to handle this disttion directly,
because it is non-Gaussian for all but lingar

Linear and quadratic approximations can be used for forn@agissian ap-
proximations to the marginal distribution gf and to the joint distribution ok
andy. The derivations of these approximations can be found,¥ample, in the
book of Bar-Shalom et al. (2001).

Algorithm 3.1 (Linear approximation of non-linear transformJhe linear ap-
proximation based Gaussian approximation to the jointriistion of x and the
transformed random variablg = g(x) whenx ~ N(m, P) is given as

5)~~(Gn) (e s0)) @50)

pr =g(m)
S; = Gx(m)P GI(m) (3.51)
C,=PGL(m),

where
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and Gx(m) is the Jacobian matrix of with elements

- 0gi(%)
W' T oxy

[Gx(m)] (3.52)

X=m

In quadratic approximations, in addition to the first oraents also the second
order terms in the Taylor series expansion of the non-lifigaction are retained:

Algorithm 3.2 (Quadratic approximation of non-linear transfornfjhe second
order approximation is of the form

x m P CQ>>
~N , , 3.53
() () (e 8 @so
where the parameters are
1 i
ko = g(m) + 3 Zei tr {G,((,)((m) P}
Sg = Gx(m)P GL(m) + L Z e;el tr {Ggf,)((m) P Ggf,;)(m) P} (3.54)
257
Cq =P Gy (m),

Gx(m) is the Jacobian matrix3.52)and Gﬁf,)((m) is the Hessian matrix af; ()
evaluated ain:

@) - e

= 3.55
7,3’ (%j ij/’ ( )

X=m

e, =(0---010---0)T is avector with 1 at position and other elements are
zero, that is, it is the unit vector in direction of the coordie axis:.

Discrete-Time Extended Kalman Filter

The extended Kalman filter (EKF) (see, e.g., Jazwinski, 18¥@ybeck, 1982a;
Bar-Shalom et al., 2001; Grewal and Andrews, 2001) is amsita of the Kalman
filter to non-linear optimal filtering problems. The filtegmmodel i$

xp =f(xp_1,k— 1)+ ap_1

(3.56)
yi = h(xg, k) + g,

wherex;, € R" is the statey; € R™ is the measurementy, 1 ~ N(0, Qx_1) is
the Gaussian process noisg, ~ N(0, Ry ) is the Gaussian measurement noise,

“In this thesis only models with additive noise are considere
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f(-) is the dynamic model function arie() is the measurement model function.
The first and second order extended Kalman filters form Gansgyproximations

p(xk | y1:) = N(xp | my, Py), (3.57)

to the filtering densities using the linear approximatioga@ithm 3.1 and quadratic
approximation Algorithm 3.2, respectively.

Algorithm 3.3 (First order extended Kalman filter)rhe prediction and update
steps of the first order extended Kalman filter are:

e Prediction:

m;, =f(my_i,k—1)
b ., (3.58)
Pk = Fx(mk_l, k— 1) P11 Fy (mk_l, k— 1) + Qr_1-

e Update:

Vi =Yyr — h(m k)

Sk = Hy(m, , k)P, HI (m . k) + Ry,

Ky =P, HL (m; ,k)S; ' (3.59)
my = m, + Kj vy

P, =P, - K;S;Kf.

where the matrice¥«(m, k£ — 1) and Hx(m, k) are the Jacobian matrices &f
andh, respectively, with elements

_ 8f-(x, k — 1)

[Fx(m, k—1)], . = J(?T o (3.60)
 Ohi(x. k)

[Hx(m, k:)].%]/ = éT]/ x:m. (361)

In the second order EKF the non-linearity is approximatethwjuadratic
approximation Algorithm 3.2.

Algorithm 3.4 (Second order extended Kalman filtefhe prediction and update
steps of the second order extended Kalman filter are:
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e Prediction:
1 i
my; = f(my k= 1)+ 5 Y e tr {F;,{(mk,l, k—1) P,H}
P, =Fx(my_1,k — 1) Py FL(my_q1,k — 1)
1 i it
+5 > el {Fﬁ(,{(mk,l, k— 1P F& (my_ 1, k — 1)P,H}
+ Q1.
(3.62)

e Update:
_ 1 (i), — _
vi =y~ h(mg k) - 5 Y e tr {HG (g, 1) Py |
Sk = Hx(m; , k)P, HL(m; k)
1 i _ T _ _
+5 2 eel tr {H;,{(mk k)P HE) (my k) P;, } + Ry
K =P Hy(my k) S, !
my =m; + K vy

P, =P, - K;S; Ki.
(3.63)

where matrice¥ (m, k — 1) and Hx(m, k) are given by Equation€3.60)and
(3.61) The matricedF (m, k — 1) andH\(m, k) are the Hessian matrices of
fi and h; respectively:

0 0 fi(x,k — 1)
Fi(mk—1)| =22 3.64
[ (m )]j,j’ O Oy | _ oo

() B (92hi(x, k)
H&m. k)] = Fr, 00y | (3.65)

Discrete-Time Extended Kalman Smoother

The first order (i.e., linearized) extended Kalman smoof@ex, 1964; Sage and
Melsa, 1971) can be obtained from the Kalman smoother emsatiy replac-
ing the prediction equations with the first order approxiorat. Higher order
extended Kalman smoothers are also possible (see, e.g., 1864; Sage and
Melsa, 1971), but only the first order version is presentaé.he
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Algorithm 3.5 (Extended Kalman smoother)'he equations for the extended
Kalman smoother are

m; = f(my, k)

P, =Fy(my, k)P, FL (my, k) + Qy
Ci =Py F (my, k) [P ]! (3.66)
mj, = my, + Cy [mj | — m/;+1]
P} =Py + Cy[Pi, — P | CL,

where the matri¥y (my, k) is given by the Equatio(8.60)

Unscented Transform

Theunscented transforrfUT) (see, e.g., Julier and Uhlmann, 1995, 2004b; Wan
and van der Merwe, 2001) can be used for forming a Gaussiamxpyation to
the joint distribution of random variables andy, when the random variablg
is obtained by the non-linear transformation of the Gaussidom variablex
in the equation (3.48). The idea of UT is to form a fixed numtetaierministi-
cally chosen sigma-points, which capture the mean and iemwa of the original
distribution ofx exactly. These sigma-points are then propagated throwgmah-
linearity and the mean and covariance of the transformeidiviar are estimated
from them. Note that although the unscented transform rbEmrMonte Carlo
estimation the approaches are significantly different,abee in UT the sigma
points are selected deterministically (Julier and Uhim&a94b).

As discussed in Julier and Uhlmann (2004b) the unscentedftran is able to
capture the higher order moments caused by the non-lineasform better than
the Taylor series based approximations. Other advantdgesing UT instead of
linearization are discussed in Julier and Uhimann (2004b).

Algorithm 3.6 (Unscented transform)The unscented transform can be used for
forming Gaussian approximation

)~ (e ) e
to the joint density ok andy. The unscented transform is the following:
1. Compute the set @f-+1 points from the columns of the matrjX(n + \) P:
x© =m
x(i):m%—[\/m], 1=1,...,n (3.68)

x(i):m—[ (n—i—)\)P}, i=n+1,...,2n
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and the associated weights:
W™ =X/ (n+A)
Wi =N (n+A) + (1 —a®+ )
wi™ =1/{2(n+\)}, i=1,....2n
w9 =1/{2(n+ N}, i=1,... 2n.

Parameter) is a scaling parameter defined as

(3.69)

A=a?(n+k)—n. (3.70)
The positive constants, 5 andx are are used as parameters of the method.
2. Transform each of the sigma points as
y? =gx®), i=0,...,2n. (3.71)

3. Mean and covariance estimates focan be calculated as

2n

py =Y wimy® (3.72)
=0
2n ‘ '

Su~ Y Wy = ) (v = )" (3.73)
=0

4. The cross-covariance betwererandy can estimated as
2n
Cy~ Y W (x® —m) (yO — )T (3.74)
i=0

The matrix square root of positive definite matlxmeans a matrbA = P
such that
P=AAT. (3.75)

Because the only requirement fAris the definition above, we can, for example,
use the lower triangular matrix of théholesky factorizatiorfsee Appendix A.2).

Lemma 3.1(The matrix form of UT) The unscented transform can be written in
matrix form as follows:

X = [m m] ++/c [0 VP —\/ﬁ} (3.76)
Y = g(X) (3.77)
py =Y wy, (3.78)
Sy=YWY" (3.79)

Cy=XWYT, (3.80)
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whereX is the matrix of sigma points, functig{-) is applied to each column of
the argument matrix separately,= o (n + &), and vectorw,,, and matrixW
are defined as follows:

Wy = [ © W},?”)} (3.81)
W (I W W)
x diag(WO) ... w2n)
X (T=[wp o wp)) . (3.82)
Proof. If we define the matrix of sigma points as
X = [X(O) X(2n)] ’ (3.83)

then the sigma point computation in equations (3.68) can fitew in form of
Equation (3.76). The Equation (3.77) is simply the vectonfef the Equation
(3.72).

If we define the weight vectow,, and matrixW_. as in equations (3.81)
and (3.82), respectively, and denote the matrix of sigmatpadfy asY the
transformed mean and covariance equations can be written as

py =) Wiy?

)

— Y w, (3.84)
Su =Y WY —uy) W - p)”

= Z W (yD - Yw,) (y? — Yw,,)T

= (Y=Y e w))
x diag(W(©) ... W)

x (Y=Y [wp, - wm])T

=YWYT (3.85)

Cy = WY —m)y?” - py)"

= Z W (x® — Xw,,) (v — Yw,,)"

= (X=X [wp - wil)
x diag(W ) ... wn)
(Y =Y [wy - wn])"

=XWYT, (3.86)
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which leads to equations (3.78), (3.79) and (3.80). O

Unscented Kalman Filter

The unscented Kalman filtefUKF) (Julier et al., 1995; Julier and Uhlmann,
2004b; Wan and van der Merwe, 2001) is a discrete-time optfitb@ring al-
gorithm, which utilizes thaeinscented transforfor computing Gaussian approx-
imations to the filtering solutions of non-linear optimatdiing problems of the
form®

xp = f(xp_1,k—1)+qr1 (3.87)
ye = h(xg, k) +r, (3.88)

wherex;, € R” is the statey;, € R™ is the measurementy,_; ~ N(0, Qx_1)
is the Gaussian process noise, apd~ N(0, Ry) is the Gaussian measurement
noise.

Algorithm 3.7 (Unscented Kalman filter)using the matrix form of the unscented
transform (see Lemma 3.1) the UKF prediction and updatesstep be written
as follows:

e Prediction: Compute the predicted state mear), and the predicted co-
varianceP, as

Xpo1=[mp_1 - my_q] +vc[0 /Pr1 —/Pi_1]
X, = f(Xp_1,k—1)
m, = Xk Wi
P, =X W [X, " +Qp1.

(3.89)

e Update: Compute the predicted mear), and covariance of the measure-
mentS;, and the cross-covariance of the state and measurefdgnt

X =[mp o m]+velo By —y/P]

%In this thesis only the case of additive noise is considésetiJKF can also be applied to more
general filtering problems with non-additive noise.
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Then compute the filter gailid;, and the state meam;, and covariancé?,,
conditional to the measuremeyt (i.e., the updated mean and covariance):

K; = C;S;*
m; = m,; + Kk [yk - p’k] (391)
P, =P, —K;S; K}.

A thorough treatment of the unscented Kalman filtering, sigpuint filtering
in general and connections to several other filtering algors can be found in the
PhD thesis by van der Merwe (2004). In the thesis, van der MdR004) also
presents efficient square root versions of UKF.

Unscented Kalman Smoother

The unscented Kalman smoothisr a Gaussian approximation based smoother,
where the conventional linearization of thetended Kalman smoothésee, e.g.,
Cox, 1964; Sage and Melsa, 1971) is replaced with the uredeérgnsform. This
idea of the unscented Kalman smoother is presented, for ggam (Wan and
van der Merwe, 2001), but without explicit equations. In tbowing these
equations will be presented in terms of the matrix form unsee transform.
These smoothing equations can be derived from the UKF pgiediequations in
the same way as the first order extended Kalman smootheriegsiand for this
reason it is possible that alternative (higher order) foafthe equations could be
developed.

Algorithm 3.8 (Unscented Kalman smoothefysing the matrix form of the un-
scented transform (see Lemma 3.1) thescented Kalman smoothprediction
and update steps can be written as follows:

e Prediction:Compute the predicted state meary  , and the predicted co-
varianceP,_ ;, and the cross covariand€y ; as

Xip=[mp - m]+vc[0 VPr —VPy]

Xpr1 = (X, k)

my = Xj41 Wi, (3.92)

P, = Xpr1 W [Xip1]” + Qi1

Cir1 = X W X ] 7.
wherem;, and P, are the mean and covariance estimates computed by
the unscented Kalman filter. Note that this prediction is ¢hee as the
unscented Kalman filter prediction step and thus we can dtwe ¢he pre-

dicted means and covariances and cross-covariances intiari addition
to the updated means and covariances.
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e Update:Compute the smoother gald;, and the smoothed mean; and
the covarianceP}:

Dy = Crpa [Pl;tl]il
mj = my, + Dy [mj, — ml;rl] (3.93)

P; =P, +D, [P;,, — P, ] Df.

3.1.3 Sequential Importance Resampling

Although in many problems Gaussian distributions appratarwell the filtering
and smoothing distributions, sometimes these distribstican be, for example,
multi-modal in which case Gaussian approximations do nakweell. In this
kind of cases and, for example, when some of the state comoaee discrete,
sequential importance resampling based patrticle filtersandother approxima-
tions can be a better alternative. This section considerscleafilters, which
are methods for forming Monte Carlo approximations to thenoal filtering and
smoothing solutions.

Sequential Importance Resampling Filter

Sequential importance resampling (SiRGordon et al., 1993; Kitagawa, 1996;
Doucet et al., 2001, Ristic et al., 2004), is a generaliratibtheparticle filtering
framework for the estimation of generic state space moddltseoform

X ~ p(xXp | Xp—1)
Vi~ (Y | X&),

wherex; € R" is the state on time stdpandy; € R™ is the measurement. The
state and measurements may contain both discrete and lwm;itmomponents.
The SIR algorithm uses a weighted set of partlc{é@k ,xk ) D=
., N'} for representing the filtering distributignx, | y1.x) such that on every
time stepk an approximation of the expectation of an arbitrary funtiggx) can
be calculated as the weighted sample average

(3.94)

Elg(xk) |y1x] = Zwk g(x (3.95)

Equivalently, SIR can be interpreted to form an approxioratdf the posterior
distribution as

p(Xk | y1:k) = Zw Xk—Xk)), (3.96)

6Sequential importance resampling (SlR)also often referred to asampling importance re-
sampling (SIR) osequential importance sampling resampling (SISR).
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whered(-) is the Dirac delta function.

The set of particles is updated and reweighted using a rigeuversion of
importance sampling. An additioneésamplingprocedure is used for removing
particles with very small weights and duplicating partickth large weights. The
variance introduced by the resampling procedure can becegtloy proper choice
of the resampling method. Thatratified resamplinglgorithm (Kitagawa, 1996)
is optimal in terms of variance.

Usually resampling is not performed on every time step, Iy avhen it is
actually needed. One way of implementing this is to do resiagnon everynth
step, wherer is some predefined constant. This method has the advantgeish
unbiased. Another way, which is used in this thesis, isatlteptive resamplingln
this method the effective number of particles, which isreated from the variance
of the particle weights (Liu and Chen, 1995), is used for rtaririg the need
for resampling. An estimate for the effective number of jgtes based on an
approximation of the variance of importance weights candreputed as:

1
Z@-N:l <w,(f)) .
(@)

wherew,’ is the normalized weight of particle on the time stepe (Liu and

Chen, 1995). Resampling is performed when the effectivebrauraf particles is
significantly less than the total number of particles, foample,n.s < N/10,

whereN is the total number of particles.

Neff R (3.97)

Algorithm 3.9 (Sequential importance resamplingjhe SIR algorithm can be
summarized as follows:

1. Draw new poimng) for each point in the sample s{akﬁfll,z' =1,...,N}
from the importance distribution:

x](f) ~ (X | x](le,ylzk), 1=1,...,N. (3.98)
2. Calculate new weights

o Pl e %)
Wy X Wy

|
[

LN, (3.99)

)

() [, yix)
and normalize them to sum to unity.
3. If the effective number of particl€3.97)is too low, perform resampling.

The performance of the SIR algorithm is dependent on the itapoe dis-
tribution 7 (-), which is an approximation of posterior distribution oftsggiven
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the values at the previous step. The importance distribwtwould be in such
functional form that it is easy to draw samples from it ang possible to evaluate
the probability densities of the sample poiritéie optimal importance distribution
in terms of variance (see, e.g., Doucet et al., 2001; Ristt. £2004) is

T(Xp | Xp—1,¥1:6) = P(Xk | X—1, Y1:k)- (3.100)

If the optimal importance distribution cannot be directlsed, good importance
distributions can be obtained liycal linearizationwhere a mixture of extended
Kalman filters (EKF) or unscented Kalman filters (UKF) is uasdhe importance
distribution (Doucet et al., 2000; van der Merwe et al., 20@&n der Merwe et al.
(2001) also suggest a Metropolis-Hastings step after (ptdne of) resampling
step to smooth the resulting distribution, but from thesuks, it seems that this
extra computation step has no significant performanceteffeparticle filter with

UKF importance distribution is also referred towasscented particle filtefUPF).

The bootstrap filteGordon et al., 1993) is a variation of SIR, where the
dynamic modep(xy | xx—1) is used as the importance distribution. This makes
the implementation of the algorithm very easy, but due toittedficiency of
the importance distribution it may require a very large nembf Monte Carlo
samples for accurate estimation results.

By tuning the resampling algorithm to specific estimatiooljems and pos-
sibly changing the order of weight computation and samplguracy and com-
putational efficiency of the algorithm can be improved (FRbaad and Clifford,
2003). An important issue is that sampling is more efficieth@ut replacement,
such that duplicate samples are not stored. There is alserse that in some
situations it is more efficient to use a simple determinigtgorithm for preserving
the V most likely particles. In the article (Punskaya et al., 200% shown that
in digital demodulation, where the sampled space is dis@stl the optimization
criterion is the minimum error, the deterministic algontiperforms better.

Sequential Importance Resampling Smoother

Optimal smoothingan be performed with the SIR algorithm with a slight modi-
fication to the filtering case. Instead of keeping Monte Caamples of the states
on single time stepc,(j), we keep samples of the whole state histo&éﬁ%. The
computations of the algorithm remain exactly the same, muesampling stage
the whole state histories are resampled instead of thesstétgingle time steps.
The weights of these state histories are the same as in n@iRalgorithm and
the smoothed posterior distribution estimate of time sStegiven the measure-
ments up to the time steép > k is given as (Kitagawa, 1996; Doucet et al., 2000)

p(Xk | y1.7) =~ Zw (xg —Xk))‘ (3.101)
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whered(-) is the Dirac delta function anﬂ,(j) is thekth component ID(&Z)T

However, if T" > k this simple method is known to produce very degen-
erate approximations (Kitagawa, 1996; Doucet et al., 2000)(Godsill et al.,
2004) more efficient methods for sampling from the smoothdisgributions are
presented.

Rao-Blackwellized Particle Filter

One way of improving the efficiency of SIR is to use Rao-Blaekization. The
idea of theRao-Blackwellized patrticle filte(RBPF) (Akashi and Kumamoto,
1977; Doucet et al., 2001; Ristic et al., 2004) is that somei it is possible
to evaluate some of the filtering equations analytically gévedothers with Monte
Carlo sampling instead of computing everything with purmgbng. Accord-
ing to theRao-Blackwell theorenfsee, e.g., Berger, 1985; Casella and Robert,
1996) this leads to estimators with less variance than wdatidoe obtained with
pure Monte Carlo sampling. An intuitive way of understamgdihis is that the
marginalization replaces the finite Monte Carlo particlerspresentation with an
infinite closed form particle set, which is always more aateithan any finite set.

Most commonly Rao-Blackwellized particle filtering refers marginalized
filtering of conditionally Gaussian Markov models of therfor

P(Xp | Xk—1,0k-1) = N(xp | Ap—1(0k-1) Xi—1, Qr—1(0x—1))
P(yk | Xk, 0k) = N(yi | Hi(01) xi, Ry (04)) (3.102)
p(0r | 0x—1) = (any given form)

wherexy, is the statey,, is the measurement, afig is an arbitrary latent variable.

If also the prior ofxy, is Gaussian, due to conditionally Gaussian structure of the
model the state variableg, can be integrated out analytically and only the latent
variables@;, need to be sampled. The Rao-Blackwellized particle filtesusIR

for the latent variables and computes everything else isedldorm.

Algorithm 3.10 (Conditionally Gaussian Rao-Blackwellized particle fijiteGiven
an importance distributionr(6y, | Oglz)k—l’ylik) and a set of weighted samples
w,(jzl,eszl,m,le,P,le : i = 1,...,N}, the Rao-Blackwellized particle

filter processes each measuremgptas follows (Doucet et al., 2001):

1. Perform Kalman filter predictions for each of the Kalmatefimeans and
covariances in the particles = 1,..., N conditional on the previously
drawn latent variable valueg'” |

mZ(i) = Ak—l(agﬁ mgl

< . i | (3.103)
Pk( ) = Ak_1(9,(§11) P;(.Cll Ag—l(ol(cll) + Qk—l(el(cll)'
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2. Draw new latent variable@,(f) for each particle ini = 1,..., N from the
corresponding importance distributions

0y ~ m(0: | 61 y1)- (3.104)

3. Calculate new weights as follows:

() @ PV 9%, Yik-1) P(eg) | 9;(21)

w;’ X w A . , (3.105)
T w6160 i)

where the likelihood term is the marginal measurementilikeld of the
Kalman filter

(Yk|01kaY1k 1)
=N (i [ Hu(0) m, © 1e(6)") PO BT (6]) + Ry(6]) ).
(3.106)

such that the model parameters in the Kalman filter are caowit on the
drawn latent variable valueﬁ,(j). Then normalize the weights to sum to
unity.

4. Perform Kalman filter updates for each of the particlesditbonal on the
drawn latent variable®”

vi) =y, — Hi(6))) mj,
s\ =H,(6)) P, HI(6)) + R.(6))

KV —p W HT (08! (3.107)
m( = m® 4 KO0

pl) — p-() _ g s,<;> KO

5. If the effective number of particl€3.97)is too low, perfornresampling

The Rao-Blackwellized particle filter produces for eachetistepk a set of
weighted sample$w,(j),Ol(j),mg),Pg) : i =1,..., N} such that expectation
of a functiong(-) can be approximated as

Elg(xs. 61) | y1:] ~ Zwk / (x,0)) N(x; | m{”, P{) dx;,. (3.108)
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Equivalently the RBPF can be interpreted to form an appraion of the filtering
distribution as

p(xk, O | Y1) = Z“’k (65, — 6) N(x; |m” P), (3.100)

In some cases, when the filtering model is not strictly Gausdue to slight
non-linearities in either dynamic or measurement modeis possible to re-
place the exact Kalman filter update and prediction stepBiRRwith extended
Kalman filter (EKF) or unscented Kalman filter (UKF) predictiand update
steps.

In addition to the conditional Gaussian models, anotheeg@mlass of mod-
els where Rao-Blackwellization can often be applied are stpace models with
unknown static parameters. These models are of the fornmviit@002)

Xg ~ p(xXp | Xp—1,0)
Yi ~ p(yr | Xk, 0) (3.110)
0 ~ p(0),

where vecto contains the unknown static parameters. If the postergtridu-
tion of parameter® depends only on some sufficient statistics

Ty = Tr(x1:,¥1:8), (3.111)

and if the sufficient statics are easy to update recursitiedy) sampling of the state
and parameters can be efficiently performed by recursivelpmiting the suffi-
cient statistics conditionally to the sampled states aadribasurements (Storvik,
2002).

A particularly useful special case is obtained when the dyoamodel is
independent of the parametdds In this case, if conditionally to the state,
the priorp(0) belongs to the conjugate family of the likelihopdy, | xx, 8), the
static parametem can be marginalized out and only the states need to be sampled

Rao-Blackwellized Particle Smoother

The Rao-Blackwellized particle smoothem be used for computing the smooth-
ing solution to the conditionally Gaussian RBPF model (2)1A weighted set
of Monte Carlo samples from the smoothed distribution ofgheameter®;, in
the model (3.102) can be produced by storing the historisiead of the single
states, as in the case of plain SIR. The corresponding lastof the means and
the covariances are then conditional on ffle@ameter historie®,.-. However,
the means and covariances at time gteye only conditional on themeasurement
historiesup to &, not on the later measurements. In order to correct thisnidal
smoothers have to be applied to each history of the meandarmbvariances.
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Algorithm 3.11 (Rao-Blackwellized particle smootherj set of weighted sam-
ples {wi® 63 mW) pol) . = 1 N} representing the smoothed
distribution can be computed as follows:

1. Compute the weighted set of Rao-Blackwellized staterigsto

(o000 PO i1 ) @12

by using the Rao-Blackwellized particle filter.

2. Set
(4) (@)

S, _
Wp "~ = Wp

_ : (3.113)
(@) _ gl0)
0L = O
3. Apply the Kalman smoother to each of the mean and covaiarstories
gZ)T, P&’)T fori =1,..., N to produce the smoothed mean and covariance
historiesm?\), P50,

The Rao-Blackwellized particle smoother in this simplermioalso has the
same disadvantage as the plain SIR smoother, that is, thetlsetbestimate of
6, can be quite degenerate’if > k. Fortunately, the smoothed estimates of
the actual stateg; can still be quite good, because its degeneracy is avoided
by the Rao-Blackwellization. To avoid the degeneracy innestes offy, it is
possible to use more efficient sampling procedures for geimgr samples from
the smoothing distributions (Fong et al., 2002).

As in the case of filtering, in some cases approximately Gangzarts of a
state space model can be approximately marginalized by @sitended Kalman
smoothers or unscented Kalman smoothers.

In the case of Rao-Blackwellization of static parametetsr{@k, 2002) the
smoothing is much easier. In this case, due to lack of dyrgntie posterior
distribution obtained after processing the last measungrisethe smoothed dis-
tribution.

3.1.4 lllustrative Examples
Tracking a Sine Signal in Clutter
In this example scenario the true signal is the sine signal
x(t) = sin(at), (3.114)

where the angular velocity is only approximately known. Half of the measure-
ments are corrupted by additive Gaussian noise with knoandstrd deviation
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1/5 and half of them are completely corrupted so that they cam &ily value in
the sensor’s dynamic range, which in this case-ig, 2.

Assuming the sampling periodt, the true signal (3.114) can be approxi-
mately modeled by the discretized Wiener velocity modeé (EBgample 2.3 on

page 45)
rp\ (1 At\ (xR

where the discrete Gaussian white noise proegss has the moments
Elgr-1] =0
AL AL
T 1 2
wheregq is the spectral density of the continuous-time white noikke state is
two dimensionalx, = (z; )7 wherex, is the value of signal at time step
tr = to + kAt andziy is the derivative of signal at the same time step.

The likelihood of the measuremept can be modeled by defining a latent
variable ordata association indicator,, which has the value df if the measure-
ment is a corrupted measurement (clutter/outlier) aifd is a measurement from
the signal. If the measurement is clutter, it is assumed tevealy distributed
in the measurement spage2, 2] (which is the dynamic range of sensor). The
likelihood is

( ’X C)— 1/4 y ifck:O
PR T G = N(yy, | Hxp,, 1/52) , if g = 1,

whereH = (1 0). The prior distributions of the signal and its derivativeree
chosen to bey ~ N(0,1/10%) andig ~ N(1,1/10?).

This model is conditionally Gaussian given the data asioniendicators and
thus the Rao-Blackwellized patrticle filter (Algorithm 3)1€an be applied. The
idea of using Rao-Blackwellized patrticle filtering in this#t of data association
problems is generalized in Section 4.1 to general multipiget tracking of un-
known number of targets. This algorithm framework is heremed to as the
Rao-Blackwellized Monte Carlo data associati®BMCDA) algorithm.

Table 3.1 shows the RMSE results of tracking the simulated signals with
the following methods:

e RBMCDA, 10 particles Rao-Blackwellized Monte Carlo data association
algorithm with 10 particles.

e RBMCDA, 100 particlesRao-Blackwellized Monte Carlo data association
algorithm with 100 particles.
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Table 3.1: Root mean squared error values for the different methodsdoking a sine

signal in 50% clutter. The means (RMSE) and standard devisa{(STD) from 10 differ-

ent simulated data sets are given in the table. The same elatasre used with all the
methods.

Method RMSE STD
RBMCDA, 10 particles 0.16 0.02
RBMCDA, 100 particles 0.15 0.01
Bootstrap filter, 1000 particles 2.07 2.31

Bootstrap filter, 10000 particles 0.16 0.02
Kalman filter, assuming no clutter  0.39 0.02
Kalman filter, clutter modeled 0.32 0.03

Kalman filter, perfect associations 0.11 0.01

e Bootstrap filter, 1000 particlesBootstrap filter with adaptive resampling
and 1000 particles, such that the joint distribution ofedand data associ-
ations is represented as a set of weighted Monte Carlo samplee high
RMSE values are due to filter divergence in many of the tesscas

e Bootstrap filter, 10000 particlesThe same bootstrap filter as above with
10000 particles.

e Kalman filter, assuming no clutteKalman filter with the assumption that
there are no clutter measurements at all.

e Kalman filter, clutter modeledKalman filter with increased measurement
variance such that the presence of 50% clutter is taken ouwousnt.

e Kalman filter, perfect association&alman filter with perfect data associa-
tion knowledge, such that clutter measurements are sirhpbyvin away as
would an ideal data association algorithm do.

Typical conditional means of the estimated marginal stagilutions when the
Rao-Blackwellized Monte Carlo data association methodsieduare shown in
Figure 3.5. It can be seen that the estimate follows the fgrabtrajectory quite
well despite the high number of clutter measurements.
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Figure 3.5: Result of tracking a sine signal in the presence of 50% clatEasurements
with RBMCDA and 100 patrticles.
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3.2 Continuous-Discrete Filtering and Smoothing

This section starts by formulating the continuous-disefdtering as sequential
solving of the Kolmogorov forward equation and the applaratof the Bayes’
rule. The general equations of probabilistic continuoissr@te smoothing are
also presented. Then the classical methods of continuisasete filtering are re-
viewed, namely, the continuous-discrete Kalman filter ésectbntinuous-discrete
extended Kalman filter. It is also shown how the more recetdyeloped un-
scented Kalman filter can be applied to non-linear contistdiacrete filtering
and smoothing problems. The novel continuous-discreteamed Kalman fil-
ter and smoother are based on the new matrix form of the utestéransform.
Novel algorithms for continuous-discrete sequential intgrace sampling are also
presented, which are based on application of the Girsarenr¢m.

Most of the continuous-discrete filtering problems consgden this section
have the same form as in the classic book of Jazwinski (1918.dynamics of
the processes are modeled asdtochastic differential equationSDE) driven
by Brownian motions and the measurements are modeled alneamn-functions
of the state, which are corrupted by Gaussian measuremésgsno The con-
tinuous-discrete particle filters have the same kind of dyimamodels, but the
measurement model is allowed to be an arbitrary probalidligyribution. A bit
more general class of dynamic models is implicitly coveredantext of multiple
target tracking in Section 4.1. However, in that sectiondyreamic models, which
cannot be presented as Brownian motion driven stochadfaretitial equations
are directly modeled in terms of transition probabilitiest directly as continu-
ous-time processes.

3.2.1 Continuous-Discrete Filtering and Smoothing Equatins

Next the general formal solutions to the Bayesian contistaigcrete filtering and
smoothing problems are presented. Then the closed fornicmuto the linear
Gaussian problem, the continuous-discrete Kalman filtdri&alman smoother,
are presented.

Continuous-Discrete State Space Models

Definition 3.2 (Continuous-discrete state space madé)continuous-discrete
state space model is a model of the form
dx = f(x,t)dt + L(¢t) dB(t
x = £(x,1) dt +L(t) dB(1) (3.115)
Vi ~ p(yr [ x(t)),
where

e x(t) € R"is the state,



3.2 Continuous-Discrete Filtering and Smoothing 81

yr € R™ is the measurement obtained at time instatice

e f:R™ x R, — R"is the drift function,

L(t) € R™*# is the dispersion matrix,

B(t) € R® is Brownian motion with diffusion matri@Q.(¢t) € R%**,

p(yx | x(t)) is the measurement model, which defines the distribution (or
likelihood) of measurement, given the state(ty),

Note that the dispersion teri(-) is not allowed to depend on the staté).
This is clearly a restriction, because for example in finaheapplications the
dispersion matrix typically depends on the state. Howewethe models found
in navigation, tracking, control, communications and ptgisapplications, which
are the main targets of this thesis the dispersion matrieetypgically independent
of the state. Still the results presented here could be géned to models with
state dependent dispersion matrices.

In estimation and stochastic control context (Gelb, 1974&ybéck, 1979,
1982a; Bar-Shalom et al., 2001; Grewal and Andrews, 2004 stbchastic dif-
ferential equation in (3.115) is often stated in terms of é&vhoise process (t)

as
dx

dt
where the white noise is defined as the formal derivative @Blownian motion
w(t) = dB/dt. As already discussed in Section 2.2, the theoretical probl
in this white noise formulation is that the white noise as @clsastic process
cannot exists in the mathematical sense, because Browrnidionms nowhere
differentiable. For this reason the integral equation folation of the SDE as
in (3.115) is often used in mathematical analysis. In pcactmodels are much
easier to formulate in terms of white noise and for this reasds often used in
engineering and physics applications. Fortunately, aisdde models involving
white noise can also be interpreted in terms of Brownian omoti

=f(x,t) + L(t) w(t), (3.116)

Continuous-Discrete Filtering Equations

A conceptually simple way of dealing with the continuousedete time filter-
ing model is to solve the transition densitipék(t;) | x(tx—1)) from the Kol-
mogorov forward partial differential equatiofsee, Section 2.2, Theorem 2.2, p.
38). Given the transition densipy(x(¢x) | x(tx—1)) and the measurement model
p(yr | x(tx)) the discrete-time filtering equations can be applied as.stitlus
the general continuous-discrete filtering algorithm camvhéien as follows:

Algorithm 3.12 (Continuous-discrete Bayesian filtering equationsH)r each
measuremengy, do the following:
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1. Discretization: Solve the transition density(x(tx) | x(tx—1)) from the
boundary value problem

op

9t = Ay [P]

p(X7 tkfl) = (S(X — X(tkfl)),

where the operatar; is the Kolmogorov forward operator defined in Equa-
tion (2.54)and the transition density is interpreted as function of t@oi-
ablesp(x(t) | x(tr—1)) = p(x,t) and the final solution is the function at
timet = t;.

(3.117)

2. Prediction: Compute the predicted probability density by the Chapman-
Kolmogorov equation

p(x(t) | y1:6-1) = /p(X(tk) | x(te-1)) p(xX(tk—1) [ y1:6-1) dX(tg—1).
(3.118)

3. Update:Compute posterior distribution of statgt;) by the Bayes’ rule
p(x(tk) | y1x) < plyr [ %)) p(x(tk) [ Y1:6-1)- (3.119)

The algorithm above can be used in practice only when theitran density
can be solved analytically from the Kolmogorov forward etipra This is the
case, for example, in continuous-discrete Kalman filtenmaylel, where the tran-
sition density is Gaussian. However, in numerical comjat point of view it
is more reasonable to avoid computation of the transitiamsitig The filtering
algorithm can be equivalently stated as follows:

Algorithm 3.13 (Continuous-discrete Bayesian filtering equations H)r each
measuremengy, do the following:

1. Prediction: Solve the predicted probability densipyx(tx) | y1.x—1) from
the boundary value problem

dp .
or il (3.120)
p(x,th—1) = p(X(tk—1) | Y1:6—1)

where the predicted density is interpreted as a functionnaf variables
p(x(t) | yis—1) = p(x,t) and the final solution is the function at time
t =t.

2. Update:Compute posterior distribution of statgt;) by the Bayes’ rule

p(x(tr) | y1:k) < p(yr | x(tk)) p(x(tk) | Y1:6-1)- (3.121)
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Note that in the first algorithm we actually solve the Greduisction of the
Kolmogorov forward equation first and then construct thedfmtéon from that. In
the second method we directly solve the prediction densityfthe Kolmogorov
forward equation. Neither of these filtering algorithms fen explicitly used in
practice, because solving the partial differential equretiis impossible in all but
simple cases.

Definition 3.3 (Generalized filtering distribution) The filtering distribution can
be defined for alt € R, (not only timeg;,) as follows:

1. At the measurement timgsthe filtering distribution is the distribution of
x(tx) given the measuremenys.:

p(x(tk) [y1:k) (3.122)

2. Attimest, < t < tx; the filtering distribution ofx(¢) is the distribution
obtained fromp(x(tx) | y1.x) by prediction to time:

) y1a) [ pOx0) x(00)) pxlt) [yia) dx(t), (3223)

This generalized definition of the filtering distribution llwhe subsequently
used in the text.

Example 3.4(Ben&-Daum filter) By Equation(2.82) in Example 2.2 on page
41, the transition density of the BEn8DE

dz = tanh(z) dt + dj5(t), (3.124)

p(x(ty) [ z(tk-1)) = @;Sﬁ?ﬁglzg) exp <—%Atk>

(3.125)
X oxp (—2 A ((h) - x(tk_n)?) ,

whereAt;, = t;, — tp_1. This is also the solution to the associated Kolmogorov
forward equation. Assume that the measurements are obtioe the model

p(yk | z(tr)) = N(yk | x(tr), o). (3.126)
If we assume that the filtering solution at time ; is of the form

1
2pg—1

p((tx1) | g11) ox cosh(e(ty_1)) exp (— (e(tho1) mk_n?) ,

(3.127)
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for some knowmn_1, px_1, then the Chapman-Kolmogorov equation gives

p(x(tg) | y1.p—1) o< cosh(x(tx)) exp (—%(:ﬂ(t/ﬁ) — mk)2> . (3.128)

Dy,
where
M = Mk (3.129)
P = Pr—1 + Aty
The Bayes'’ rule gives
1
p(x(tr) | y1.k) o< cosh(z(ty)) exp (—%(x(tk) — mk)2> . (3.130)

where the equations for the parameters (sufficient stesistian be written as

_ p _

(P )
pp +0°

(3.131)

Pk =Dy —

This result can be easily obtained by completing the squierdbe exponent.
These prediction and update equations of the Bddaum filter (Daum, 1984)
are functionally exactly the same as the equations for arelisty observed Brow-
nian motion, but now the probability density is given by thgu&tion (3.130)
Particularly, the conditional mean is given as

E[z(tx) | y1.k] = mg + Pr tanh(my). (3.132)

Continuous-Discrete Smoothing Equations

The optimal smoothing of continuous-discrete models ishmass discussed in
literature than discrete-time smoothing. As in the cordimtdiscrete filtering
case if the transition density of the process can be solvedbsiically (see, Algo-
rithm 3.12) then the optimal smoothing can be performedgutie discrete-time
smoothing equations.

In continuous-time optimal filtering context the optimal@pthing equations
are well known and can be expressed in several forms (seg,Léptser and
Shiryayev, 1977; Antonelli and Elliott, 1986; Krishnanturtand Elliott, 2002).
The problem in these equations is that they are functiondh@fmeasurement
process and they are not easy to use in the continuous-diddtering case.

Leondes et al. (1970) presents patrtial differential equiatiof the smoothing
distribution, which are not functions of the measuremeinisctly, but functions
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of the filtering distributions instead. The disadvantag¢heke equations is that
not only the filtering distribution, but also the first and @ed order derivatives
of the filtering distributions needs to be known. Fortunatéhe discrete-time
smoothing equations, which also are functions of the filgistributions only,
can be used for computing the smoothing solution of any tims&ancer.

Algorithm 3.14 (Continuous-discrete Bayesian smoothing equatio@éyen the
(generalized) filtering distributiong(x(¢) | y1.x) the optimal smoothing distribu-
tion for any time instance such thatt; < 7 < t;11, wheret; andt;,, are the
times of the measurementsandy; 1, respectively, can be computed as follows:

1. Solve the transition densitiegx(tx11) | x(tx)) for k = i +1,...,T
from the boundary value proble(3.117) Also solve the transition density

p(x(tit1) [ x(7)).

2. Compute the smoothing solution at time stepl, that is,p(x(¢;+1) | y1.7)
using the discrete-time smoothing recursions in the The@e

3. Compute the smoothed distribution at time instanty

p(x(7) [ y1.1)

ol p(x(tiv1) [ x(7)) p(x(tivs) Y1) | 0oy
= () [yu) [ [P H DR dx(tion).
(3.133)

Note that this equation is simply computation of the digetahe solution
to the additional time instance. Although this time instance is not a
measurement time instance, the equations are still the Ssame

Continuous-Discrete Kalman Filter

In the continuous-discrete Kalman filt¢see, e.g., Jazwinski, 1970) the dynamic
model is alinear stochastic differential equation (see, Section 2.2.6) #e
measurements are obtained at discrete instances of timedrtinear Gaussian
model:

dx(t) = F(t) x(t) dt + L(t) dB(t)

(3.134)
yr = Hpx(ty) +ry,

wherer; ~ N(0,Ry), F(¢) andL(¢) are time dependent matrices, afgdt)
is a Brownian motion with (possibly time varying) diffusionatrix Q.(¢). The
stochastic process(t) has the initial distributionk(0) ~ N(m(0),P(0)). As

"The proof is not given here, but conceptually we can imagimaeasurement with infinite
amount of noise, that is, an uninformative measurementedithe instance-.
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shown in Section 2.2.6 the solutiotit) is a Gaussian process with its mean and
covariance given by the differential equations (2.84) ah8%) in Section 2.2.6.
That is, the solution of the corresponding Kolmogorov eiuais a Gaussian
process, which has the mean and covariance given by thosti@ugi

By using the Theorem 2.8 the continuous-time linear dynanadel in (3.134)
can be converted into treguivalent discrete modekhich is of the same form as
the dynamic model of the discrete-time Kalman filter (3.2Ihis model corre-
sponds to the close form solution to the associated Kolnoagfmrward equation.

Algorithm 3.15 (Continuous-discrete Kalman filter. I)The discretization based
continuous-discrete Kalman filter can be now expressed|msvia

e Discretization: Solve the discrete-time model matricAs,_; = A(t),
Qi1 £ Q(t,) from the differential equations

dAD) _ iy aq)
. gt(t) (3.135)
SV F(1) Q) + QM) FT (1) + L(1) Qult) L7 (1),

with initial conditionsA(¢;_1) = I andQ(tx—1) = 0. According to the
Theorem 2.8 the transition density is now of the form

p(x(tr) | x(tr—1)) = N(x(tr) | Ap—1x(tp—1), Qr-1), (3.136)
and thus the discrete-time Kalman filter equations can béiegas such.
e Prediction:

m; = Ap 1my;

k (3.137)
P, =Ar Py AL + Qo

e Update:

v =yr — Hymy

Sy = Hy P, H] + R,

K,=P_ Hi S ' (3.138)
my = m, + Kj vy

P, =P, —K;S;Ki.

The prediction and update steps above are functionally #meesas in discrete-
time Kalman filter (repeated here for convenience).



3.2 Continuous-Discrete Filtering and Smoothing 87

Note that if the dynamic model in (3.134)ligear and time invarian{LT]I),
that is, the matrice¥ andL do not depend on time, the discrete model matrices
will depend only on the time differenc&¢_1 =t — tx_1, Ax—1 = A(Atg_1),
Qi_1 = Q(Atx_1). These matrices can be then solved in closed form or by
numerical methods (see, Theorem 2.9).

The continuous-discrete Kalman filter corresponding tostéeond version of
the continuous-discrete filter (Algorithm 3.13) is as falk

Algorithm 3.16 (Continuous-discrete Kalman filter Il)The continuous-discrete
Kalman filter consist of the following prediction and updateps:

e Onpredictionstep, the differential equations

dm(?) =F(t)m(t
- (t)m(t) (3.139)
% = F(t)P(t) + P(t) FT(t) + L(t) Qu(t) LT (t),

are integrated from the initial conditionm (tx_1) = mg_1, P(tx—1) =
P,_1 to time instance;,. The predicted mean and covariance are given as
m, = m(t;) andP,_ = P(;), respectively.

e Updatestep is the same as the discrete Kalman filter update (8t&b) of
Theorem 3.3 (repeated here for convenience):

v =yr — Hymy

Sy = Hy P, H] + R,

K, =P, Hi S ' (3.140)
my = m, + Kj vy

P, =P, - K;S;Ki.

In both continuous-discrete Kalman filter formulations tesults of filtering
are the mean and covarianng(t), P(¢), which are defined for all when the fil-
tering result is interpreted in the generalized sense (Diefin3.3). Note that these
functions are not continuous at the measurement times. Taerfy solution is
then of the form

p(x(t) [ y1) = N(x(t) [ m(t), P(1)), (3.141)

wherek is such that € [tg, tri1).

Example 3.5(Kalman filter for Wiener velocity model)Assume that the state
dynamics of a system can be modeled with the Wiener veloodglim
d?z(t)
dt?

= w(t). (3.142)
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already analyzed in Example 2.3. Further assume that the s{a) is observed
at discrete instances of time from the model

Yk = z(tr) + €, (3.143)

wheree;, ~ N(0,7). The model is now a special case of the continuous-discrete
Kalman filtering mode{3.134)with the following parameter matrices:

01 0
(o) 2= ()
The spectral density of noise is a scal@. = ¢ as is the covariance of the
measurement noisB; = r. If we denote the mean and covariancera$t) =
ml(t) Pll(t) Plz(t)
and P(t) =
<m2(t)> () <P21(t) Pos(t)
differential equations are given as

H, = (1 0) (3.144)

) then the component wise prediction

dmy /dt = my
dmg/dt =0
dPy/dt = Po1 + Pio
dPra/dt = Py

APy, /dt = Py
dPyy/dt = q.

(3.145)

The same result would be obtained by using the mat(2d94)for discrete-time
prediction. The update equations are given as

mig =my, + (7131_”3 ) (g —may)
k=M g - 1k
P+
p-
_ 21,k -
Mo =My + | 5= (Yk — ml,k)
(Pn,k + r)
_ (P
Py = Pll,k - ﬁ
Plj”“ . (3.146)
_ 11,6421k
P12,k:P12k—%
’ P+
Py Por e
Py =Py — ————
’ P+
(P
P22,k = P227]<; -

Pﬁ7k+r.



3.2 Continuous-Discrete Filtering and Smoothing 89

0.5

00, - Filter estimate

= < Smoother estimate
—— True signal

O Measurement

Signal

-15f

Figure 3.6: Simulated signal, measurements and the estimation réstte continuous-
discrete Kalman filtering/smoothing example (Example®&/ The signal is a partially
observed Wiener velocity model signal.

Continuous-Discrete Kalman Smoother

The continuous-discrete (fixed-interval) Kalman smoothi€auch-Tung-Striebel
smootherRauch et al., 1965; Gelb, 1974) provides the exact smogtotution
to the Kalman filtering model (3.134). The smoothing solutise a Gaussian
process, and the probability density at timis

p(x(t) |yrr) = N(x(t) [m® (1), P*(t),  to <t <tr. (3.147)

A straight forward application of the optimal smoothing Atghm 3.14 means
computing the discretization matricés, andQy, as in the Algorithm 3.15. Given
these matrices the smoothing algorithm reduces to theades&alman smoother
in Theorem 3.4. The algorithm can be summarized as follows:

Algorithm 3.17 (Continuous-discrete Kalman smootherThe meamm?(7) and
covarianceP?(7) of the smoothed distribution at time instancsuch thatt; <
T < t;31 can be computed as follows:

1. Solve the matriced; and Q, for £k = 0,...,T7 — 1 from the Equation
(3.135) Also solve the matrices far — ¢, 1, here denoted ad (7) and
Q(7), in the analogous manner.
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2. Compute the meam?(¢;,;) and covarianceP*(¢;;1) of the smoothing
distribution at timet; ; by using the Kalman smoother Equatiof3s37)
with definitions:nk = m(tk), Py £ P(tk), mz = ms(tk), PZ = Ps(tk).

3. Finally compute
C =P(1) AT(7) [P(t;1)]
mS(T) = m(’T) + C [ms(tzqu) — m(ti+1)] (3148)
P*(1) = P(7) + C[P*(ti41) — P(ts41)] C7,

wherem(t) and P(t) denote the mean and covariance of the generalized
filtering solution at time instance

An alternative approach to the smoothing problem is to ddifie differential
equations for the smoothed solution at every time step agiumof the general-
ized filtering solution. This results in the algorithm givieelow. These equations
are also well known as they already appeared in the origiradlex of Rauch
et al. (1965) (see also Gelb, 1974). However, the derivaifdhese equations is
presented in Appendix A.3.2 for completeness and as pripata the derivation
of the continuous-discrete unscented Kalman smoothettiegsgresented later
in this section.

Algorithm 3.18 (Continuous-discrete Kalman smoother Mhe differential equa-
tions for the smoothed mean?(¢) and smoothed covariande®(¢) are

drrclist(t) =F({#)m®(t) + L(t) Q.(t) LT(t) Pfl(t) m () — ()
df:;t(t) = [F(t) + L(t) Q(t) L) P71 (t)] P*(¢)

+PS(t) [F(t) + L) Qu(t) LT (1) P~ ()] — L(t) Q.(t) LT (1),
(3.149)

with terminal conditionan®(7") = m(7T'), P*(T) = P(T"). The functionan(t)
andP(t) are the mean and covariance of the generalized filteringtemiu

Example 3.6 (Kalman smoother for Wiener velocity modelJhe differential
equations of the Kalman smoother for the Wiener velocity ahsample 3.5
can be written component wise as

dmji/dt = m3

dms/dt = q Py,' (m§ —m1) 4 q Py (m5 — my)
dPy,/dt = P5) + Py

AP}y /dt = P3y +q Py Py + q Py Pyy'

dP5y/dt = P3y +q Py Py 4 q P3y Pyy!

dPs,/dt = q Py' Piy+2q Pyy' Psy +q Psy Pyy' — g,

(3.150)
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WherePi;1 denotes the elemei of the inverse of the covariance mati(t).

3.2.2 Continuous-Discrete Gaussian Approximations

Next Gaussian approximation based methods for non-lineatiruous-discrete
filtering problems are presented. First the classical Tas#wies based continu-
ous-discrete extended Kalman filters and smoothers arergezs Then the novel
continuous-discrete unscented Kalman filters and smaotrerpresented, which
are based on the continuous-time and discrete-time urestémainsforms.

The approximate filters presented in this section are baseth® second
version of the optimal continuous-discrete filter (Alghrit 3.13). In the first
order continuous-discrete extended Kalman filter it wouddgmssible to con-
struct a transition density corresponding to the linearaximation of the SDE,
but because this does not generalize to the second ordénwoms-discrete ex-
tended Kalman filter or to the continuous-discrete unsckeita/man filter, this
discretization based approach is not presented here.

Linear and Quadratic Approximations of SDEs

Next we consider methods for forming Gaussian approximatto the probability
density of the stat&(t), which is generated by the stochastic differential equatio

dx = f(x,t) dt + L(t) dB. (3.151)

where3(t) is a Brownian motion with diffusion matriQ.(¢). In Gaussian ap-
proximations the idea is to form a Gaussian process, whishtlia same mean
and covariance as the process. The exact differential ieqsdafor the mean and
covariance are (see, e.g., Jazwinski, 1970; Gelb, 1974)

dm(t)
= = EIE(x(t).1)
%it) = E[x(t) fT(X(t),t)] — E[x(t)] E[fT(x(t)7t)]
+E[E(x(t), £) x" (1)] — B[ (x(t), £)] Bx" (1)] + L(t) Qe(t) L(1).

(3.152)

where the expectations are taken with respect to the prityaddensity of x(¢).
That is, these expectations could be computed only if we khewrue probability
density ofx(t) at all times.

By forming Taylor series expansions of the functifn) around the mean it
is possible to form approximations to the exact mean andrizowee equations
(see, e.g., Gelb, 1974, for derivations). These approximstcan be formed as
follows:
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Algorithm 3.19 (Linear approximation of SDE)When only the first order terms
in the Taylor series expansion ) are retained, the following mean and covari-
ance propagation equations are obtained:

dm(t)
dt
dP(t)
Sdt

(3.153)
— F(m(t),) P(t) + P(t) F (m(t), £) + L(t) Qu(t) L(2),

where the matri¥ (-) is the Jacobian matrix of the drift term with the elements

_ 9fi

N (%cj'

Fy; (3.154)
Algorithm 3.20 (Quadratic approximation of SDERetaining the first and sec-
ond order terms in the Taylor series expansionfof results in the following
equations for the mean and covariance:

dm(t) 1
5 = fm(t),t) + 582(f, P(t))
aP(1) (3.155)
—q = Fm(),)P(t) + P(t) F(m(t),t) + L(t) Q.(t) L(t),
where 9
(£, P) = tr{ [&f gx } P} . (3.156)

The term in the brackets is the Hessian matrix;ofvhere the elemeni; is given
asd?f;/(0x,0z,) andF(-) is the Jacobian matrix defined (8.154)
Continuous-Discrete Extended Kalman Filter

The continuous-discrete extended Kalman filter (see, &glb, 1974) is a classi-
cal method for approximating both the discrete and the naptis-discrete non-
linear optimal filters by using Taylor series expansionse Tiliering model has
the general form

dx = f(x,t)dt + L(t) d8(¢) (3.157)
p(yr | x(tk)) = N(yr [h(x(tk), tk), Rk),
where
e x(t) € R"is the state,
e yi. € R™ is the measurement obtained at time instamce

e f:R™ x R, — R"is the drift function,
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e L(t) € R"*¢is the (state independent) dispersion matrix,

e 3(t) € R?® is Brownian motion with diffusion matriQ.(t) € R**#,
e h:R"” x R} — R is the measurement model function,

e R, € R™*™ is the covariance matrix of the measurement

The first order continuous-discrete extended Kalman filpgareximates the
dynamic model SDE by the linear approximation given in Algon 3.19 and the
update step is approximated in the same manner as in didireteEKF. Here
the term first order means that the dynamic model is appraeidhaith first order
(linear) approximation and on update step either the firsdemond order EKF
update step may be used

Algorithm 3.21 (First order continuous-discrete EKFJhe prediction and update
steps of the first order continuous-discrete extended Kitliittar are:

e Prediction.Integrate the differential equations

dm(t)
— = fm(),?)
di—it) =F(m(t),t)P(t) + P(t)FT (m(t), t) + L(t) Qe(t) L(2),

(3.158)

whereF(-) is the Jacobian matrix of(-) with elementsF;; = 0f;/0z;
from the initial conditionam(tx_1) = my_1, P(tx—1) = Py_; to the time
instancety,.

e Update.Perform update step according to the update step of the fidgtro
discrete-time EKF in Equatiof8.59)or the second order discrete-time EKF
in Equation(3.63)

The second order continuous-discrete extended Kalmanu s the quadratic
approximation in Algorithm 3.20 for approximating the niimear dynamic model.

Algorithm 3.22 (Second order continuous-discrete EKFhe prediction and up-
date steps of the second order continuous-discrete exdaddinan filter are:

e Prediction.Integrate the differential equations

dm(t) 1
5~ fm(0).0) + 30, P)
%it) =F(m(t),t) P(t) + P(t) FT(m(t), t) + L(t) Q.(t) L(t),

(3.159)

8Actually, the UKF update step could be used as well.
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whereF (-) is the Jacobian matrix df(-) and9?(-) is as defined in Equation
(3.156) The equations are integrated from initial conditions(t;,_1) =
my_1, P(tp_1) = Pi_; to the time instance;.

e Update.Perform update step according to the update step of the fidgtro
discrete-time EKF in Equatiof8.59)or the second order discrete-time EKF
in Equation(3.63)

Example 3.7(CD-EKF Solution to Bere Daum filtering problem)Consider the
Ben&-Daum filtering problem presented in Example 3.4

dz = tanh(z)dt + dp

(3.160)

yr = z(ty) + 11,
whereg(t) is a standard Brownian motion (i.e., has the diffusion coiefitq = 1)
andr, ~ N(0,0?). The first order continuous-discrete extended Kalman filter
equations for this model are

e Prediction:
dm/dt = tanh(m)
9 (3.161)
dP/dt = 2 (1 — tanh“(m)) P + 1.
e Update:
B Py B
_ (3.162)
_ (P, )?
(02 +P,)

Continuous-Discrete Extended Kalman Smoother

The continuous-discrete extended Kalman smoother is axippate smoothing

solution to the filtering model (3.157), which is based onldageries approxi-

mation of the SDE in the same way as the continuous-discréénaed Kalman

filter. The smoother presented here is the one, which resultentinuous-time

limit of the discrete-time extended Kalman smoother in Aidpon 3.5 and it has

the similar form as the continuous-discrete extended Kalsmoother presented
(without proof) by Gelb (1974). Higher order forms of the sitfter can be found
in Leondes et al. (1970) and Sage and Melsa (1971).
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Algorithm 3.23 (Continuous-discrete extended Kalman smooth&he (first or-
der) continuous-discrete extended Kalman smoother usebnisar approxima-
tion of SDE in Algorithm 3.19 and the equations are given as

dni(t) = f(m,t) + [F(m, ) P + L(t) Q.(t) LT ()] P~'(t) [m®(t) — m(t)]
df:t(t) = [F(m,t) P + L(t) Q.(t) L (t)] P~ P*(t)

+PS(t) P [PF  (m,t) + L(t) Q.(t) L (t)] — L(t) Qc(t) L™ (1),
(3.163)

wherem(¢) and P(¢) are the mean and covariance of the (generalized) filtering
solution computed by the continuous-discrete extendeth&alffilter. The inte-
gration is performed backwards starting from the terminahditionsm?®(7") =
m(7T), P*(T) =P(T).

Example 3.8 (CD-EKS solution to BerieDaum filtering problem) The equa-
tions of the first order extended Kalman smoother for the Béyeum filtering
problem in the Example 3.4 are

dm?®(t) (1 — tanh?(m(t))) P(t) + 1
ek tanh(m(t)) + ( 0 >
x (m®(t) —m(t)) (3.164)
dPs(t) (1 —tanh?(m(t))) P(t) + 1\
@ ( P(t) ) P -1,

wherem(t) and P(t) are the mean and covariance from the continuous-discrete
extended Kalman filter.

Unscented Approximations of SDEs

Next a novel method for forming Gaussian process approiimstto stochas-
tic differential equations is presented. The method is ¢basecontinuous-time
version of the unscented transform.

Theorem 3.5(Unscented approximation of SDEdJhe continuous-time unscent-
ed transform based Gaussian process approximation hasfogfng differential
equations for the mean and covariance

dm

5 = FX(0), ) Wi (3.165)
% = £(X(t),t) W XT(1) + X (1) W7 (X (t), 1) + L(t) Qe(t) LT (1).

(3.166)
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The expression for the sigma point matxt) is given a$
X(t)=[m() - m@)]+ve[o VPt —/P(), (3.167)

where/P(t) is a matrix square root oP(¢) (e.g., Cholesky factor) and vector
w,,, and matrixW are defined in(3.81)and (3.82) respectively.

Proof. On the small time interval\t = ¢, — ¢,,—1 the stochastic differential
equation (3.151) can be locally approximated to an arlyitpecision with the
finite differencé®

Xn — Xp—-1 = f(Xn—lv tn—l) At + Adn—1 + O(At)7 (3168)
whereq,,_1 is discrete white noise with covariance
Q1 = L(tn_1) Qe(tn_1) L(t,_1)T At. (3.169)

The functiono(At) is such thab(At)/At — 0 whenAt — 0.
The matrix form unscented transform for the function fram_; to x,, is

X, 1 = [mnfl mnfl]
+ Velo VPoo1 —/Pui] (3.170)
X, = X, 1+ f(Xnu_1,ta1) At + o(At) (3.171)
m, = X,w, (3.172)
P, = X,W[X,]¥
4+ L(tp-1) Qe(tn_1) LT (tn_1) At. (3.173)

We can now eliminate the sigma poirXs, from these equations, which gives

m, = [anl + f(anl, tnfl) At + O(At)] W,

3.174
=my, 1+ f(anl, tnfl) Atw,, + O(At), ( )
and
P, = [Xn—l + f(Xn—h tn—l) At + O(At)] W
X [Xn—l + f(Xn—h tn—l) At + O(At)]T
+ L(tn_1) Qc(tn_1) LT (t,_1) At
(tn—1) Qe(tn—1) L (tn-1) (3.175)

=P, + (X1, tp 1) WXL At
+ X, WET(X,, 1t 1) At
+ L(tp-1) Q(tn_1) LT (t,_1) At + o(At),

®The sigma pointsX (t) act here merely as temporary variables, because they ceutain-
pletely eliminated by substituting them into the mean andidance equations.

%The analysis is simple, because in this case the Stratdmawid It6 interpretations of the SDE
are functionally the same, and the results of normal catcapply. This could be extended to case
L(x, t) instead ofL.(¢), but then more formal analysis based on It8’s formula woddbeded.
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where we have used the identities,_; = X,,_1w,, andP,,_; = Xn_1WX£1
and combined alb(At) terms to one. By rearranging the equations we get

m, —1m,__
n -l F( X1, tn1) Wi

At
+ o(At)/At (3.176)
Pn - Pnfl T
— = X1, th1) WX,
A7 (Xn—1,tn-1) 1

anl WfT(anly tnfl)

L(tnfl) Q(tnfl) LT(tnfl)
o(At)/At, (3.177)

+ o+ 4

and in the limitA¢ — 0 the meamm(¢) and covarianc® (t) satisfy the differential
equations in the theorem. O

In the case that the drift terfhin SDE is linear, we have
£(X(t),t) = F(t) X(t), (3.178)

and thus

=P()F'(t) (3.179)
£(X(t),t) W = F(t) X(t) Wy,
= F(t) m(t). (3.180)
The differential equations now reduce to
dm(t)
@~ F)m() (3.181)
dl?iit) =F(t)P(t) + P() F' () + L(t) Qe(t) L' (¢), (3.182)

which are the prediction equations of the continuous-digcKalman filter.

Continuous-Discrete Unscented Kalman Filter

The dynamic model of the continuous-discrete filtering mode also be approx-
imated using the unscented approximation of SDE in Algarith5. This results
in the novelcontinuous-discrete unscented Kalman fjltghich will be presented
next. The filter can be applied to models of the similar forntheescontinuous-
discrete EKF, that is, to models of the form (3.157).
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Algorithm 3.24 (Continuous-discrete unscented Kalman filtéfhe continuous-
discrete unscented Kalman filter consist of the followingdpmtion and update
steps:

e Prediction.Integrate the differential equations

X(t)=[m(t) - m()]+ve[0o P{t) —/P(t)]

dm
S = B(X(1), 1) win
% = £(X (1), ) W XT () + X(6) W7 (X (t), ) + L(t) Qu(t) L (2).

(3.183)

from the initial conditionsm(tx_1) = mg_1, P(tx—1) = Pr_; to time
instancet;,. The predicted mean and covariance are givemgs = m(t;,)
andP, = P(t;), respectively.

e Update.The update step is the same as the discrete-time unscent@auika
filter update stef3.90)of Algorithm 3.7 (repeated here for convenience):

O R s

Y, = h(X} k)

pyp =Y W,

S =Y, WY ]" + Ry (3.184)
CrL=X, WY, "

K) =CyS;!

my, = my + Ky [yr — py)
P, =P, - KS;Ki.

Example 3.9 (CD-UKF solution to Beng-Daum filtering problem) The con-
tinuous-discrete unscented Kalman filter equations forBea&-Daum filtering

problem in Example 3.4 are
e Prediction.
X=(m m++vcP m-—+ecP)
dm/dt = tanh(X) w,, (3.185)
dP/dt = tanh(X) W X + X W tanh(X)? 4 1,
wherec = 0.75 and

—0.3333 4.4444  —2.2222 —2.2222
wy, = | 0.6667 W = | —2.2222 1.4444  0.7778
0.6667 —2.2222  0.7778 1.4444

(3.186)
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e Update. Because the measurement model is linear the update step is th
same as in EKF solution and it is not repeated here.

Continuous-Discrete Unscented Kalman Smoother

Using the same idea as in the derivation of the continuosisrelie Kalman smooth-
er in Appendix A.3.2 it is also possible to find the continutinge limit of the
unscented Kalman smoother equations. This derivatioreisgmted in Appendix
A.3.4 and the result is the following novel algorithm:

Algorithm 3.25 (Continuous-discrete unscented Kalman smoothEne contin-
uous-discrete unscented Kalman smoother equations ae@ gis

d“i(t) — F(X, 1) Wi,
FIFCK, )W X7 (1) + (1) Qult) LT (0] P~ (1) (1) — m(1)
T _ 15X,y WXT (1) + L) Qul) L7 (1] P PA(1)
PR P X)W T (X, 1) + (1) Qu(t) L7 (1)

L(t) Qc(t) L™ (1),
(3.187)

where the sigma pointX(¢) are the sigma points of the continuous-discrete un-
scented Kalman filteP (t) = X (t) W X7 (t) andm(t) = X(t) w,,. The inte-
gration is performed backwards starting from the terminahditionsm?®(7") =
m(T), P5(T) =P(T).

If the drift term is linearf(x, t) = F x, these smoother equations can be seen
to reduce to the Rauch-Tung-Striebel smoother equations.

Example 3.10(CD-UKS solution to Ben&Daum filtering problem)The contin-
uous-discrete unscented Kalman smoother solution to timeSEi@aum filtering
problem in Example 3.4 can be written as

F(t) = tanh(X(t))

dme(t) F(H) WXT(t) +1
o = F(t) wm + < X (t) W XT (1) ) (3.188)
" ( (t) X(t) Win) |
5 T
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3.2.3 Continuous-Discrete Sequential Importance Resaniph

This section presents sequential importance resamplieg farticle filtering)
based methods for optimal estimation of continuous-discfétering models.
First the bootstrap filter solution is provided, which is ceptually simple method
for approximating the optimal solution. Then novel measuamsform based
methods for more general continuous-discrete sequentiabitance resampling
are presented.

Continuous-Discrete Bootstrap Filter

A bootstrap filter can be very easily implemented for the twrdus-discrete fil-
tering problems of the general form

dx = f(x,t)dt + L(x,t) d3
Yi ~ p(yr | x(tk)),

because samples from the transition density of the dynanoideincan be eas-
ily generated by numerically simulating the stochastid¢edédntial equation (see,
Section 2.2.7).

(3.189)

Algorithm 3.26 (Continuous-discrete bootstrap filteBootstrap filtering for dis-
cretely observed stochastic differential equation candéxgomed as follows:

1. Simulate trajectorie§x®(t) : t,_, <t < t,i = 1,..., N} from the
equation
dx® = £(x®, ) dt + L(x®, ) d8W(¢)

, ; (3.190)
xO(t_1) = x,(czl.

with independent Brownian motiop® (¢) and setx\” = x( (z). Now
eachxl(j) is a random draw from the transition distributigr(xy, | XI(QO-

2. Compute the new weights

w,(j) x w,(jzl p(yk | xl(j)). (3.191)

3. Resample by choosing froﬁst,(j) : i = 1,..., N} with the probabilities
given by the weights.

The bootstrap filter suffers from the problem that using theainic model as
the importance distribution is not very efficient, and thetstrap filter is likely
to produce degenerate approximations if the dynamic maedebi very accurate.
In the next sections it is shown how more efficient importadistributions (or
actually importance processes) can be used in the consndisarete filtering
problem.
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Sequential Importance Resampling Filter for Absolutely Cantinuous SDEs

Now the sequential importance resampling of a restrictedscSDEs is consid-
ered. This will serve as the basis for the sequential impogaresampling of
more general SDEs. First the sequential importance resiagnalgorithm for the

restricted class of SDEs in the following form is derived:

dx = f(x,t)dt + Ldg, (3.192)

whereL is time independent and invertible.
Assume that there exists importance process with the exuati

ds = g(s,t)dt + Bdg, (3.193)

whereB is time independent and invertible. Because the maticesd B are
invertible, the probability measures gfands are absolutely continuous with re-
spect to the probability measure of the driving Brownianiomof3. The likelihood
ratio of the processes can be computed as follows:

Theorem 3.6(Likelihood ratio of SDEs I) Assume that the processe§&) and
s(t) are generated by the stochastic differential equations

dx = f(x, 1) dt + Ldg, x(0) = %o (3.194)
ds = g(s,t)dt + Bdg, s(0) = xo, (3.195)

wheref(x,t) and g(s,t) are bounded and measurablk,and B are invertible
matrices and3(t) is a Brownian motion with respect to measufe Then the
expectations ok(t) under measuré’® can be expressed as

Elh(x(t))] = E[Z(t;w) h(s" (2))]; (3.196)
where the scaled version of the process is defined as
s*(t) = xo + LB !(s(t) — xq), (3.197)

and the likelihood ratiqd P, /d Ps.)(t;w) = Z(t;w) is
Z(t;w) = exp (/0 [L~'f(s*(t),t) - B! g(s(t),t)]T dB(t;w)
- /t[L1 f(s*(t),t)]T B~ g(s(t),t)]dt (3.198)
0

- /0 (I £ (), DI + B g(s(0), 1)) dt>.
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Proof. Define

Z'(t;w) = exp (—/ [Blg(s(t),n)]" dB(t:w)

to (3.199)
-5 HBlg<s<t>,t>u?dt>,

then by Theorem 2.5(¢) = B~! (s(t) — xo) is a standard Brownian motion with
respect to measu®’ (dw) = Z'(t; w) P(dw). Now define

Z"(t;w) = exp (/t L' f(xo + Ln(t;w),t)]T dn(t;w)
‘ (3.200)

1 t
— 5/ HL_1 f(xo +Ln(t;w),t)H2 dt)
0

By Theorem 2.4 the expectation of functitrix(¢)) with respect to the measure
P’(dw) can be expressed as

E'lh(x(t))] = E'[Z"(t;w) h(xo + Ln(t))]
= FE/[Z"(t;w) h(xo + LB™! (s(t) — x0)] (3.201)
= E'[Z"(t;w) h(s™(1))].

Because the likelihood ratio between the measi#édw) and P(dw) is Z'(t; w),
the expectation can be written as

Eh(x(t))] = E[Z(t;w) h(s* ()], (3.202)
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where

Z(t;w) = 2" (t;w) 7 (t;w)

— exp (— /O B als(,0]” dB(1w)
= ||B—1g<s<t>,t>||2dt>

X exp (/Ot L' f(xo + Ln(tw), )] dn(t;w)
- %/Ot L F(xo + Ln(t;w),t)||2dt,>

= ex — t -1 S T )
— p< /O B g(s(t),1)]" dB(t;w)

: (3.203)
-3/ ||B1g<s<t>,t>||2dt>
X exp (/Ot L f(s*(t),t)]T B! [g(s,t)dt + BdB(t)]
L t||L1f<s*<t>,t>||2dt,>
2 Jo
— exp (/ L £(s(8),1) - B g(s(6),0)] " dB(tw)
0
[ s 007 B gt n)ar
0
—3 | (I @01 + B (s(0). 0 dt>.
]

Theorem 3.6 actually states that given a set of samples fnenpriocess(¢)
we can form a set of importance samples fraift) by scalings(¢), computing
the corresponding valugg(t; w) and using them as the importance weights. The
values can be computed by using any numerical integratidhaedeas long as the
method approximates the strong solution, not only a wealitisol. The strong
solution is needed to ensure that the weighis;w) are adapted to the same
Brownian motion as(t).
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Algorithm 3.27 (Importance sampling of SDE.I)Using the process(t) as the
importance process, weighted sample fre() at time7" can be generated as

follows:

1. Randomly drawN' Brownian motions{ 3" (#),0 <t < T,i =1,...,N}
and simulate the corresponding (scaled) importance pEegs

ds® = g(s(i),t) dt + Bdg®, s (0) = x¢ (3.204)
fromt =0tot¢t =T, and compute
s* 0 (1) = xg + LB~ (s(t) — x0), (3.205)

and set
x® = s*0)(T). (3.206)

2. For eachi compute

w® = exp (/T [Lfl £(s*D @), 1) — B ' g(s® (t),t)}T dp®

0

+ /T[L_1 £(s" O (t), 6)]" B~ g(sW(¢), )] dt
0

T
—1/ (||L1f(S*(i)(t),t)||2+||B1g(s(i)(t),t)||2)dt>.

2 Jo
(3.207)
3. Now{(x®,w®) : i =1,..., N}is aset ofimportance samples such that
for any functionhy(-)
Ehx(T))] ~ Y w h(x), (3.208)

wherex(T') is the solution to the stochastic differential equation
dx = f(x,t)dt + Ldg, x(0) = %o (3.209)
at timeT'.
Assume that the filtering model is of the form

dx = f(x,t)dt + Ldg

3.210
Yo ~ oy | x(t)), (3.210)
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where L is an invertible matrix. Further assume that there existpaiance
processs(t), which is defined by the SDE

ds = g(s,t)dt + Bdg, (3.211)

and which has the law that is a rough approximation to theifilgg(or smoothing)
result of the model (3.210), at least at the measuremenstifie matrixB is
also assumed to be invertible.

Now it is possible to generate a set of importance samples fle condi-
tioned (i.e. filtered) process(t), which is conditional to the measuremegtsy,
usings(t) as the importance process. The motivation of this is thaaee the
processs(t) is already an approximation to the optimal result, usingsittize
importance process is likely to reduce the degeneracy @nolh the bootstrap
filter.

Because the measures of both the processes are absolutélyucas with
respect to the measures of the driving Brownian motions poissible to use the
Algorithm 3.27 for generating the importance samples. Tt@tiouous-discrete
SIR filter for the model can be now constructed with a slightification to the
discrete-time SIR (Algorithm 3.9) as follows:

Algorithm 3.28 (Continuous-discrete SIR.I)Given the importance proces§t),

a weighted set of sample{xl(ﬁl,wgzl} and the new measuremeyp, a single
step of continuous-discrete sequential importance re§amgan be now per-
formed as follows:

1. Draw N Brownian motions{3" (¢),t;_, < t < 3, = 1,...,N} and
simulate the corresponding importance processes

ds® =g(s@ t)dt + BB,  sO(p_q)=x, (3212
fromt = ¢;,_; tot = t;, and compute
sOt) =x), + LB (s (t) —x{)), (3:213)

and set

x0 = 0 (1), (3.214)
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2. For eachi compute

. . 173 . . T ;
w,(;) = w,(;ll exp </ [Lfl f(s*(z) (t),t) —B~! g(S(Z) (t)ﬂf)] dg®

te—1

" /tk L (5" t), 0] B (s (1), 1)) dt

th—1

tr ' |
T s CRCHIE R ERI ORI dt>
x plyx | x).

(3.215)

and re-normalize the weights to sum to unity.
3. If the effective number of weigh(ts.97)is too low, perform resampling.

Example 3.11(CD-SIR solution to Beri@Daum filtering problem)Consider the
Ben&-Daum filtering problem presented in Example 3.4, whicH th@form

dz = tanh(z)dt + dS

, (3.216)
Yk :x(tk)—krk, TL NN(O,O’ )

Assume that sampling interval is 1. If the state at tife is 2.1 and theyy, is
measurement at timg, then a reasonable importance process can be formed by
using either the EKF in Example 3.7 or the UKF in Example 38is Tesults in
Gaussian approximation with meam;, and varianceP.

A process, which starts at,_; and has the above mean and covariance at
th =tp_1+11is

ds = (mg — xp—1) dt + / Prdf  s(tg-1) = zp-1, (3.217)

and this process can be used as the importance process. ales sSmportance
process now has the equation

mg — Tg—1
ds* = (| ——=——— ) dt +dp, s (tk—1) = Tk_1, (3.218)
< VP ) )
and the likelihood ratio at;, can be explicitly written as
~_ cosh(s*(tx))
2t w) = cosh(zg_1)

2
< exp [— (P2 ) (aten) = i) - 5 - 5 () ] |
(3.219)
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Sequential Importance Resampling Filter for More General PEs

Next we derive the SIR algorithm for models, where there ialasolutely contin-
uous type of model, which ismbeddednside adeterministicdifferential equa-
tion model. This kind of models are typical in navigation atdchastic control
applications, where the deterministic part is typically laip integral operator.
Because the outer operator is deterministic, the likelthaadios of processes are
determined by the inner stochastic processes alone anihtipestance sampling
of this kind of process is very similar to sampling of the meses considered
above.
The following kinds of models are considered:

dxy
dt
dxy = fQ(Xl, X2, t) dt + Ldg, XQ(O) = X2,0, (3.220)

= f1(x1,x2,1) x1(0) = x1,0

wheref (-) andfy(-) are deterministic functiong3(¢) is a Brownian motion and
L is invertible matrix. Note that because the dimensionaiftf8rownian motion
is less than of the joint statex; x»)” it is not possible to compute the likelihood
ratio between the process and Brownian motion by the Girstremrem directly.

However, it turns out that if the importance process(for x»)” is formed as
follows

ds
o = filsis2.0) 51(0) = x10
dsy = gQ(Sl, S, t) dt+ B dﬁ, SQ(O) = X2.0, (3.221)

then the importance weights can be computed in exactly thne sgay as when
forming importance sample of,(t) usings,(t) as the importance process. This
is because now; (¢) is adeterministicfunctional ofxs(t) in the sense that given
a realization{xz(t) : 0 < t < T} there is (informally speaking) unique
{x1(t) : 0 <t < T} corresponding to that realization. This deterministic
part has no effect on the functional form of the importancégive provided that

it is the same in both the original and importance processhis can be proved
as follows:

Theorem 3.7(Likelihood ratio of SDEs IlI) Assume that process&s(¢), x2(t),
s1(t) andss(t) are generated by the stochastic differential equations

dx
d—tl = fl(Xl,XQ, t), X1 (0) = XLQ (3222)
dxy = fQ(Xl, X9, t) dt + Ldg, XQ(O) = X2, (3.223)
ds
d—tl = fl(Sl, S9, t), S1 (0) = XLO (3224)

dsp = ga(s1,s2,t) dt + Bdg, s2(0) = x2,0, (3.225)
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wherefy, f; andg, are bounded and measurableandB are invertible matrices
and3(t) is a Brownian motion with respect to measute Then the expectations
of x(¢) under measuréd® can be expressed as

E[h(x1(t),x2(t))] = E[Z(t;w) h(s1(t), 85(1))]; (3.226)

where the equations for the scaled processés) ands’(t) are

ds] * ok *
dtl = f1(s},s5,1), s7(0) = x1 (3.227)
s3(t) = %90 + LB~ (s(t) — x2,0), (3.228)

and the likelihood ratiqd P, /d Ps,)(t;w) = Z(t;w) is

T

Z(t;w>:exp< /0 LYo (s5 (), 53(8), 1) — B~ ga(s1 (8),s2(1), )] dB(2)

+ /0 [L™ fa(s7(t), 85(t), )] [B™" ga(s1(t), s2(t), 1)) dt

1 ! - * * -
= /0 (I E(s1(6),35(6), )11 + B ga(s1(6),32(), 1)) dt>.
(3.229)
Proof. As in the proof of Theorem 3.6 define
t 1 T
Z'(t;w) = exp —/ [B_ gQ(Sl(t),SQ(t),t)] dB(t;w)

0

(3.230)

_%/0 HB_lgg(S1(t)7S2(t)vt)Hth>v

then because processgst) andss(t) are both adapted to the Brownian motion
B(t), by Theorem 2.m(t) = B~ !(sa(t) — x2) is a standard Brownian mo-
tion with respect to measu®’ (dw) = Z'(t;w) P(dw). Now define the process
Z"(t;w) analogously to the Equation (3.200):

Z"(t;w) = exp (/t L™ f5(x0 + Ln(t;w),t)]T dn(t;w)
’ (3.231)

1 t
—5/ HL1f2(X0+Ln(t;w),t)H2dt>
0

The expectation of any deterministic functioffé{xz(¢)), which depends only on
the past{x2(7) : 0 < 7 < t}, with respect to the measuf®(dw) can be now
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written as
E'[H(x2(t))] = E'[Z2" (t;w) K Ln(t
(xa(®)] = E2" () H(xo +Ln(t)) (3.232)
= E'[Z"(t;w) H(s3(1))],
where
s3(t) = xo + LB (sa(t) — x90). (3.233)
Taking the functional to bé{( : x, — h(x;,x2), where
d
—E =t xi(0) =i (3.234)

gives that the expectation of an arbitrary functiefx,, x,) can be expressed as
E'[h(x1 (), x2(1))] = E'[Z"(t;w) h(s} (t), s5(1))]. (3.235)

where the equations for the scaled processes can be wist{@227) and (3.228).
With respect to the measure the expectation can be now written as

E[h(x:(t), x2(t))] = E[Z(;w) h(s1 (), 85(1))]; (3.236)

where the explicit expression fdf(t;w) = Z'(t;w) Z”(t;w) can be derived in
the same way as in the proof of Theorem 3.6. O

Algorithm 3.29 (Importance sampling of SDE lIWeighted sample from the pro-
cess(x; (t) x2(t))T at timeT', using the process () s»(t))” as the importance
process, can be generated as follows:

1. Draw N Brownian motions 3" (¢),0 <t < T,i =1,..., N} and simu-
late the importance process

dsgl)

dt = fl(sgi)?sgi)at)a Sgl) (0) = X1,0 (3237)
dsy) = ga(s\”, sy, ) dt + BB, sy (0) = xz0, (3.238)

fromt = 0tot =T, compute the scaled importance processes

dsc;{:) = f1(s;?, 537, 1), $;70(0) =x10  (3.239)
557 (1) = x20 + LB (53 (t) — x2,0), (3.240)

and set
% = gt (1) (3.241)

%) = s50(1). (3.242)
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2. For eachi compute

T .
W = exp </ L (i (1,557 (1), 1)
0

~B (s (1), 55 (1).0)] ag?

+ B (st (1), sgm),t)”z) dt>.

(3.243)
3. Now{(x{", %) w®) : i =1,...,N} is a set of importance samples
such that for any functioi(-)

Elh(x (7). xo(T)] = Yo hx”, %), (3.244)
where (x; (T),x2(T))" is the solution to the stochastic differential equa-
tion

dX1

? = f1 (Xl, X2, t) X1 (0) = XLO (3245)

dxy = fQ(Xl, X9, t) dt + L dﬁ, XQ(O) = X2, (3246)
at timeT'.

The continuous-discrete SIR Algorithm 3.28 can be now gaized to filter-
ing models of the form
dxy
dt
dxy = fQ(Xl, Xa, t) dt + Ldg
Y ~ P(yk [ x(tk)),

- fl(xla X2, t)
(3.247)

where the state consists of two componexi(ts = (x1(t),x2(t)), f1(-) andfa(-)
are deterministic functiong3(¢) is a Brownian motion andl, is invertible matrix.
When the importance process is selected to be of the form

d

% = fi(s1,82,1)

dsy = gQ(Sl, S92, t) dt +B dﬁ,

(3.248)
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then importance sampling can be performed with the Algorith29. The SIR
algorithm takes now the following form:

Algorithm 3.30 (Continuous-discrete SIR l)Given the importance process, a
weighted set of sample{&%_l,igi_l,w,(ﬁl} and the new measuremeyi, a
single step of continuous-discrete sequential importamsampling can be now
performed as follows:

1. Draw N Brownian motions{8 (¢),t;_, < t < 3, = 1,...,N} and
simulate the importance process

= =hs sy, 0), si(te—1) = %1}, (3.249)
dsy) = ga(s\, s, ) dt + BABY,  sP(t1) = %0y ),
(3.250)

fromt¢ = t;_; tot = t;, and compute

ds;(@

=L - fl(sﬂlﬁ(i)’ S;(i),t), s“{(“(o) _ Xﬂq
(3.251)
$50(8) = x)_, + LB (s (1) = x) ), (3.252)
and set
Xg;g =Dt (3.253)
x5y = sy (t). (3.254)

2. For eachi compute

w? = w®  exp (/ [L_l £(s1 (1), (1), 1)

th—1
. . T .
~ B go(s! ()5 (1).1)] aB®

* / L (s (1), 550, OFF (B gals (8), 857 1), )]

te—1
t . .
‘1/ (I &6 0.5 @), 017

2 th—1
+ B~ (st (1), (1), DI dt)

x plyx | %\, %5)),
(3.255)
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and re-normalize the weights to sum to unity.
3. If the effective number of weigh®97)is too low, perform resampling.

Analogously to the discrete-time sequential importaneeiag it would be
now desirable to use (optimal) importance process, whichldvbave the law

(%) | yrr L))

() (3.256)
=p(x(t) |yr, x(ts—1) = %57 1), te <t <tp_1,

wherey; is the (new) measurement at time instartge This solution is the
continuous-time smoothing solution, when the smoothettdaged from initial
conditionsx(t,—1) = i,(jzl and (the filter and) the smoother processes only the
single measurement,. However, in order to apply the importance sampling
theory presented here the importance process should bekoWarocess.

As in the discrete-time case it could be possible to use w@oatis-discrete
versions of the extended Kalman filters/smoothers and atsgeKalman fil-
ters/smoothers for forming the importance processes. Memvéurther investi-
gation of the possibility of using the smoothers is left te fhture.

Example 3.12(CD-SIR estimation of noisy physical pendulunijhe stochastic
differential equation for the angular position of a phydipandulum (Alonso and
Finn, 1980), which is distorted by random white noise aaegiens w(t) with
spectral density; can be written as

d2

d—tf + a? sin(z) = w(t). (3.257)
whereq is the angular velocity of the (linearized) pendulum. If vefink the state
asx = (z dz/dt)” and change to state space form and to the integral equation
notation in terms of standard Brownian motion the model camibtten as

d.%'l
= $2

dt (3.258)
dzy = —a? sin(z;) dt + g% dg,

which is model of the forr8.220)

Assuming that the measurement model is such form that it eaapproxi-
mated by a Gaussian model, an importance process can be momeddyy using
either EKF or UKF using a Gaussian approximation to the measient model
and the result is a 2-dimensional Gaussian approximatiomhe joint distribution
of the statex(t;) = (21(t) w2(tx))?. If the marginal mean and covariance of
x2(ty) are ms, and Py i, then a suitable importance process is (assuming that
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sampling interval isAt)

d51

=2 51(th—1) = T1 k-1

dsy = <%> dt + 1/ 2“ £ a4 $o(tp_1) = Top_1. (3.259)

The equations for the scaled importance process can be natervas

ds7 . .

dtl = 83, $1(tk—1) = 1 k-1
* q 1/2 *

ds; = Mma g — T2k—1) dt + dg,  s3(tk—1) = va k-1,
= (i) (e — k) e 208, siltin) =

(3.260)

and the likelihood ratio is given by the formula

Z(t;w) = exp [/—— sin(s3(t))dg — / <m2 kp;izﬁ 1) ds

a Mok — T k1

2
1 [a* 1 Mok — T2 k-1

—= | —s T(t)dt — = —_— dt|.
2/ g " (si () 2/( V Poz i At }

Continuous-Discrete Sequential Importance Resampling Soother

As in the case of discrete-time SIR smoothing in Section33.dptimal con-
tinuous-discrete smoothingan be performed with the continuous-discrete SIR
by keeping the whole trajectories instead of the sampleseatsorement times.
However, this approximation can be quite degenerate ané efticient methods
using the ideas in (Godsill et al., 2004) could be developed.

Rao-Blackwellized Sequential Importance Resampling Fitr

Next the SIR algorithm for the class of models is derived, wtadinear stochastic
differential equation is driven by a model, from which it iegsible to generate
importance samples by the methods already described ifs#dson. This kind
of models can be handled such that only the inner processripled and the
linear part is integrated out using the continuous-disckadlman filter. Then it is
possible to form a Rao-Blackwellized estimate, where ttebability density is
approximated by a mixture of Gaussian distributions. Thasoeement model is
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assumed to be of the same form as in previous sections, leatr limith respect to
the state variables corresponding to the linear part of yimauhic process.

Consider a model of the form

dx; = F(XQ,Xg, t) x1 dt + fl(Xg,Xg, t) dt
+ V(x2,x3,t) dn, x1(0) ~ N(mo,Po) (3.262)
dx
d—t2 = fy(x2,x3,1t) x2(0) = x20
dxs = f3(x2,x3,t) dt + L dg, x3(0) = x3.0,

where3(t) andn(t) are independent Brownian motions. In this case an impor-
tance process can be formed as

ds; = F(SQ, S3, t) sy dt + fl(SQ, S3, t) dt
+ V(s2,s3,t) dn, s1(0) ~ N(mo,Pg)  (3.263)
ds
d—tQ = f5(s2,s83,1) s2(0) = X2,
ds3 = g3(s2,s3,t)dt + Bdg, s3(0) = x3,0,

In both the original and importance processes, conditiptalthe filtration of the
second Brownian motio#; = o(8(s),0 < s < t) the law of the first equation is
determined by the mean and covariance of the Gaussian proagbih is driven
by the process(t). Thus, conditionally to the filtratior%, of 3(¢) (and thusx,
andxs) the proces; (t) is Gaussian for all. The same applies to the importance
process.

Now it is possible to integrate out the Gaussian parts of flmthprocesses.
This procedure results in the following marginalized egue for the original
process:

dmy, (¢
n(lit( ) = F(x9,x3,t) m,(t) + £ (x2,x3,t) m,(0) = my,

dP, (¢t

dt( ) - F(X2a X3, t) P:E(t) + P:E(t) F (XQ’X?n t)
+ V(X27X3,t) VT(XQ,X?nt)a P:E(O) = PO (3264)

dx
d—z€2 = fr(x2,x3,1) x2(0) = x2,0
dxs = f3(x2,x3,t) dt + Ldg, x3(0) = x3,0,

wherem, (t) andP(¢) are the mean and covariance of the Gaussian process. For
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the importance process we get similarly:

dmyg (¢
n(lit( ) F(s2,s3,t) mg(t) + fi(s2,s3,1), m,(0) = my,

dPg(t

) sy 5.0) (1) + (1) T (52,51
+ V(s2,83,t) VI (s, 83, 1), P,(0) =P, (3.265)

ds
d—t2 - fQ(S27S37 ) SQ(O) = X270
ds3 = g3(s2,s3,t)dt + Bdg, s3(0) = x3.0,

The models (3.264) and (3.265) have now the form, where terhm 3.29 can
be used. The importance sampling now results in the set afhwed samples

{w®, m® PO ) 21 (3.266)

such that the probability density of the stat€l’) = (x1(7'),x2(T),x3(T)) at
time 7' is approximately given as

p(x1(T),x2(T),x3(T))
~ 3wl Ny (T) [0, PO) §(xa(T) — %5) 6 (T) — ). (3:267)

If the measurement model is of the form

yi = Hy (x2(tr), x3(tx)) x1(tx) + 11, ri ~ N (0, Ry (x2(tx), x3(tk))) ,
(3.268)
that is,

p(yr | x(tk)) = N (yi | H (x2(tr), x3(tk)) x1(tk), Ri (x2(tk), x3(tk))) ,
(3.269)
then conditionally taxa(ty), x3(tx) also the measurement model is linear Gaus-
sian and the Kalman filter update equations can be applied.rdsulting algo-
rithm is as follows:

Algorithm 3.31 (Conditionally Gaussian continuous-discrete Rao-Blaalkned
SIR) Given set of importance samplgs}, ;. %), _;,my |, P\’ wl’, :i=
., N} and the measuremepi; do the foIIowmg

1. Draw N Brownian motions{3® (¢),t_1 < t < t4,i = 1,...,N} and
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simulate the importance process

dm{) i i ; D) (i
o = P08, om0 + (s )
pl i) (G ; ; i) (i
S =T, 0 PO ) + PO 6 5, 1)
+ V(sg), s:(f),t) VT(sgi), s:(f),t) (3.270)
ds? i) G
d—i = f2(sg)’sg)at)

dsf) = ga(sf, s, 1) dt + Bag,

with initial conditions

m{) (1) = m;,
PO (1) =P,
8 o (3.271)
Sy (th—1) = X34
Sgsl) (te-1) = if(il,)kfl’

and the scaled importance process

dm:(i) *(1 *(1 (i *(1) _*(i
o = FEU 0.5 0m00 + (575570
dlji; _ F(S;(Z), S;,(Z) ’ t) P:(Z) (t) + P:(Z) (t) FT(S;(Z) , S;(z) , t)
+V(si?,s5@ ) VT (s5@ 30 1) (3.272)
2 :f2(32(),33(),t)

v, @ =m0 (1) (3.273)
P, = POt (3.274)
x5y = sy (tr) (3.275)

%) =537 (). (3.276)
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2. For eachi perform the Kalman filter update

) = 5 @277
S = He(g k%) P HL (G %50) + Re( ko %3) - (3278)
Kfc) — P, — () HT(iéi)k’igzac) [Sl(ci)]fl (3.279)
m{’ =m, " + K (yi - pf) (3.280)
P,(f) _ P,;(i) _ K,(j) S,(f) [K,(f)]T, (3.281)

and compute the importance weight

tr .
S’—wé%exp(/ L (55 (0,55 0), 1)

. . T .
~ B gs(sy (), (1).1)] aB®

* / T s (1), 550 (1), ) B (5 (1), 88 (1), 1)] it
(3.282)

x N(yx |, 8\

)

and re-normalize the weights to sum to unity.
3. If the effective number of weigh®&97)is too low, perform resampling.

Example 3.13(Noisy pendulum problem with correlated nois€onsider again
the noisy pendulum in Example 3.12. Assume that the measoramise is
autocorrelated with approximately the following speciiahsity

1

_. 3.283
v2 + w? ( )

S(w) =

The stochastic differential equation of the measuremeisenqt) is thus given as
dv=—vyuvdt+dn (3.284)

wheren is a standard Brownian motion. The measuremgnis the state of the
pendulum plus the correlated noiséy,):

Y = xl(tk) —+ v(tk). (3285)
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Further assume that the correlation parameteactually depends on the state of
the pendulum as follows:
y(z1) = ca?. (3.286)

That is, the correlation depends linearly on the distancthefpendulum from the
center position. The whole model can be now written as

dv=—cz?vdt+dy

doy _
a7 (3.287)
dag = —a? sin(zy) dt + ¢*/2dg3

Y = wl(tk) + U(tk),

which is a model suitable to the continuous-discrete Raai®lellized particle
filter presented in this section. Note that because thereisvhite noise term
in the measurement likelihood, a plain particle filter coulot be applied to this
problem at all, except by including artificial white meaguent noise. However,
extended and unscented Kalman filter can be applied to tHagmoas such.

An importance process for the model can be formed by contpat{Baussian
approximation by EKF or UKF and retaining only the part cagponding to the
processrs. The importance process can be then formed in the same masiier
Example 3.12 and the likelihood ratio can be computed intixdoe same way.

Sometimes, when the model is not exactly conditionallydmé is still pos-
sible to approximately marginalize some of the state coraptsnby using contin-
uous-discrete extended or unscented Kalman filters.

Analogously to the discrete-time case (Storvik, 2002) Baekwellization
can often be applied to models with unknown static pararediaving the general
form

dx = f(x,0,t)dt + L(x,0,t)ds3

Y& ~ p(yx | x(tr), 0) (3.288)
0 ~ p(0),

where vectod contains the unknown static parameters. If the posteriiridu-
tion of the unknown static parametétslepends only on a suitable set of sufficient
statisticsT, = Ty (x1.x, Y1.1 ), the parameter can be marginalized out analytically
and only the state needs to be sampled.

As in the discrete case (see Section 3.1.3), particularfifulispecial cases
are the models, where the dynamics are independent of thenpger and given
the statex () the prior distributionp(@) belongs to the conjugate class of the
likelihood p(yy | x(tx), @). This is the case, for example, in estimation of spread
of infectious diseases in Section 4.2 and in the noisy pemdwxample in the
next section.
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Rao-Blackwellized Sequential Importance Resampling Smaloer

Optimal smoothing of continuous-discrete conditionallguSsian models can be
performed analogously to the discrete-time case. The mantis-discrete condi-
tionally Gaussian Rao-Blackwellized particle smoothes lanost the same form
as the discrete-time Rao-Blackwellized particle smooigorithm 3.11. The
smoothed estimate for each measurement time can be obtaynednsidering
the state sequences discretely only at measurement poidtinahis case the
algorithm is exactly the discrete-time smoothing algorithBut also the whole
trajectories of the means, covariances and state inneegses can be stored
during the simulation in Algorithm 3.31 and instead of theatdete-time Kalman
smoother the continuous-discrete Kalman smoother can é@ fas computing
the smoothed estimate for all instances of time.

The case of unknown static parameters (Storvik, 2002) isogoas to the
discrete case and the smoothed distribution is the disimibiobtained after all
the measurements have been processed.

3.2.4 lllustrative Examples
Benes-Daum Filtering Problem

TheBend&-Daum filtering problenfDaum, 1984, 1986) considered here isoa-
tinuous-discretdiltering problem, where the dynamic model is a scalar ststiba
differential equation

dz = tanh(x) dt + dj, (3.289)

where((t) is a standard Brownian motion. The measuremegptare obtained at
discrete times;, from the model

y(tk) = .%'(tk) + 7k, (3290)

wherer;, ~ N(0, ¢?). The formal solution to the filtering problem was analyzed
already in Example 3.4 and several approximate filters arab#imers were given
in Examples 3.7, 3.8, 3.9, 3.10 and 3.11.

The filters in the examples and couple of additional filterseastested using
simulated data and the results can be summarized as follows:

e The Gaussian approximation based continuous-discretbau&t that is,
the continuous-discrete unscented Kalman filter (Exam@leadhd the con-
tinuous-discrete extended Kalman filter (Example 3.7) graztically the
same results as the theoretically optimal Bebaum filter (Example 3.4).

e Also the Gaussian approximation based discrete-time rdethbat is, the
discrete-time unscented Kalman filter (Algorithm 3.7) amel discrete-time
extended Kalman filter (Algorithm 3.3) give practically teame results
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as the Beng&Daum filter. In the discrete filters the dynamic model was
discretized using a single step of Euler integration.

e The bootstrap filter (Algorithm 3.26) constructed for theefiing model
gives almost the same result as the Gaussian approximasisedbUKF
and EKF filters, but with moderate number of particles theltds slightly
inferior to the results of the Gaussian filters.

e The continuous-discrete particle filter (Example 3.11egiquite much the
same result as the bootstrap filter with moderate and largéeuof parti-
cles, but with low number of particles the results are slightferior to the
results of the bootstrap filter.

The results indicate that the non-linearity in this pattcdiltering problem is not
very strong and for this reason Gaussian approximationdofibers work very
well. The dynamic model is quite linear and thus the simpléEintegration
gives a good approximation. Because Gaussian approximb#ieed filters give
almost an optimal result, particle based methods can réedhgerformance only
when quite high number of particles is used. The importamoeqss constructed
in Example 3.11 seems to be quite inefficient, because ukigynamic model
as the importance process (in bootstrap filter) leads tebetsults with a low
number of particles. One reason for the better result of dwdtrap filter can be
the quite high measurement noise variance.

The conclusion is that the best choice for this kind of filigrproblem would
be one of the Gaussian approximation based filters.

Noisy Physical Pendulum

Consider the noisy pendulum model in Example 3.12, whichthasdynamic
model
do
ac 2 (3.291)
dzy = —a® sin(z) dt + q“/?ds,

Assume that the state of the pendulum is measured once petirnaiand the
measurements are corrupted by Gaussian measurement rithisermunknown
varianceo?. A suitable model in this case is

i ~ N(z1(tg), 0%)

3.292
0% ~ |nV-X2(V0,O'(2]), ( )

The variancer? is now an unknown static variable, where the procedure of Rao
Blackwellization can be applied:
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e Assume that the posterior distribution @f, given the state and measure-
ment histories up to step— 1 is

o ~Inv-x?(vp_1,08_1). (3.293)
where the parameters,_; ando; , are known.

e Given the state at step, that is, x(¢;) the marginal distribution of the
measuremenyy, is Student’s T:

p(ye | x(t)) = / N(yi | 21(t0), 02) v (0 | vy, 02 1) d(0?)

=ty (yn |21 (tk), 07),
(3.294)
with parameters
Vg =Vg—1+1
Vi1 04y + (yr — z1(t))? (3.295)
vp—1+1 '

o2 =

e Given the measuremenj, and the statex(¢;), the posterior distribution
of o2 given the state and measurement histories up to timekstemgain
Inv-y2:

o? | x(tr), yr ~ Inv-x2(vg, 02). (3.296)

As already discussed in Example 3.12 the importance prazesde formed by
using either EKF or UKF such that we obtain 2-dimensional$3&un approxima-
tion to the posterior distribution of the statét;) = (z1(t3) z2(t))”. Forming
this approximation requires that the variancé is assumed to be known, but
fortunately a very rough approximation based on the estithaf is enough in
practice.

The full state of the algorithm at time stéry 1 consists of the set of particles

2
{wk 17x1k 17-%';)]? 17Vk 1 k(l)} (3.297)

(4)

wherew,” | is the importance Welghjr;1 Eo1 m(QL , is the state of the pendulum,

andy,gzll, Jk—(l) are the sufficient statistics of the variance parameter. Dy of
the resulting continuous-discrete Rao-Blackwellizediplarfiltering algorithm is
the following:

1. For each particle, perform EKF/UKF prediction frag.; to t; and update
the state by the measuremept. Assume that the marginal mean and

covariance ofry(t;), when the EKF/UKF was started fromy (tx_1) =

ok walthr) = a) Ly aremy Py
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2. For eachi simulate the scaled importance process, and the logarithm o
likelihood ratio from timet;,_; to timety:

;"
dt 2
(@) (%)
. me) —
dS;(l) = | 2E_S2RL ) gt 4 41248
Py, At
2 ) ( @ @) )
A\ = sin(s @) t))dg — 2k T2k
(@) (%)
a2 Moy — Lop—1
7 sm(sl( )(t)) ( ’ 5 ’ dt
Py, At

@ _ 0 \?

4 ;i m — X

- %“_ sin?(s*0 (1)) dt — £ (M) at.
q

starting from initial conditionss}” (t,_1) = 2\ |, s5@ (1) = 2},
MO (t,_1) = 0 and set

= 55Dt (3.299)

3. Compute the new sufficient statistics:
=
. A\ 2
vy o 4 (yk _ x%) (3.300)

(%)

U?(i) _
N 1

4. Compute the new weights as
i i i D) 2,
wlg) x wézl Zli ) t’/z(f) (yk | m(lgg, ak( )) . (3.301)

5. Resample if needed.

Figure 3.7 shows the result of applying the continuousrdiscparticle filter
with UKF proposal and 000 particles to a simulated data. The data was generated
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Figure 3.7: The result of applying continuous-discrete patrticle filtéth UKF proposal
to a simulated noisy pendulum data.

Figure 3.8: The prior distribution of variance in the noisy pendulumpeom.
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Figure 3.9: The evolution of variance distribution in the noisy pendulproblem.

from the noisy pendulum model with process noise spectrasitleq = 0.01,
angular velocitya = 1 and the sampling step size wAs = 0.1. The estimate
can be seen to be quite close to the true signal.

In the simulation, the true measurement variance sfas- 0.25. The prior
distribution used for the unknown variance parameter was- Inv-y2(2,0.2),
which is shown in the Figure 3.8. The chosen prior distrifiutiloes support the
true value, but there are also several other values whick kagn higher prior
probability than the true value.

The evolution of the posterior distribution of the variamqaameter is shown
in the Figure 3.9. In the beginning the uncertainty aboutvdsgance is higher,
but the distribution quickly converges to the area of the tralue.

Reentry Vehicle Tracking

Here we consider the reentry tracking problem, where a risdased for tracking
a space vehicle, which enters the atmosphere at a very hagds@he purpose
of including the simulation into this thesis is to test thagiical applicability of
the new filters proposed in this thesis into a previously psaal difficult tracking
problem. The reentry problem was used for demonstratingpdréormance of
UKF in (Julier and Uhimann, 2004b) and slight correctionshte equations and
simulation parameters were later published in (Julier ahtiiann, 2004a).

The stochastic equations of motion for the space vehiclejiaen as (Julier
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and Uhlmann, 2004b,&)

) = — g;v(%to) (3.302)
@1(t) = x3(t

g (t) = 4 (t)

&3(t) = D(t) z3(t) + G(t) z1(t) + wi(t)

24(t) = D(t) z4(t) + G(t) x2(t) + wa(t)

a5(t) = ws(t),

wherew (t), wa(t), ws(t) are white Gaussian process noises with known joint
spectral density. The constants are (Julier and Uhimar(t20

bg = —0.59783
Hy = 13.406
5 (3.303)
Gmp = 3.9860 x 10
Ry = 6374.

In the article (Julier and Uhimann, 2004b) the radar measLidgimes per second
and the simulated discrete process noise covariance is

2.4064 x 1075 0 0
Qk) = 0 2.4064 x 1075 0 (3.304)
0 0 0

In the actual filter implementation the lower right cornemtein the modeled
process noise covariance was set to the value (Julier and Uhlmann, 2004a).
This additional small noise term is used for the constardupater to enhance the
filter stability.

If we interpret the dynamic model (3.302) as originally donbus time model,
we may assume that the discretized covariance is actualBparoximation to
a non-linear continuous-time process driven by continttoue process noise
with spectral densityQ.. In this interpretation it is reasonable to assume that

Here we have used the Newton’s notation for derivatives dz /dt.
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the relationship between the discrete covariance and thigncous-time spectral
density is originally the approximatio® (k) ~ Q. At whereAt = 0.1s. Thus
the true spectral density matrix is the matrix in (3.304) tiplied by 10.

The continuous-time 1td stochastic differential equatiaterpretation of the
dynamic model (3.302) is

dry = x3dt

daxy = x4 dt

deg = D(t) xgdt + G(t) x1 dt + dFi(t) (3.305)
dzy = D(t) x4 dt + G(t) zo dt + dFa(t)

das = dps(t),

where(3:(t), 52(t), 3(t)) is a Brownian motion with diffusion matriQ..
The radar is located &t:,, y.) = (Ro, 0) and the measurement model is

re =V (w1(tk) — 2)? + (w2(te) — yr)? + €

- th) —y (3.306)
0, — tan—! za(tk) — yr a
L an (xl(tk) ey + e,

where theel, ~ N(0, 0?) andef ~ N(0, 02).

The initial distribution of the state is assumed to be mirtehsional Gaus-
sian with mean and covariance (Julier and Uhlmann, 2004b)

6500.4
349.14
mgy = | —1.8093
—6.7967

(3.307)

— o O O O

In simulations, the initial state was drawn from Gaussiastrifiution with the
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following mean and covariance:

6500.4
349.14

miM = | —1.8093
—6.7967
0.6932 3308
1076 0 0 0 0 (3.308)
0 100 0 0 0

Pim=|[ o 0 100 0 0
0 0 0 107% 0
0 0 0 0 0

In order to test theoerformance of different types of filtersontinuous-discrete
extended Kalman filter, continuous-discrete unscentednKalfilter, continuous-
discrete bootstrap filter and continuous-discrete sedplemtportance resampling
filter were implemented and tested with simulated data. Th@oitance process
for the CD-SIR was constructed in analogous manner to thengka3.11. The

same standard deviations as in (Chang et al., 1977) (whigr dund Uhlmann

(2004b) also refers to) were used in the simulation:

or = 1073 km

(3.309)
0o, = 0.17mrad,

and the state was measured once per second. The results sambmrized as
follows:

e The EKF gives the best result, which is most likely due to theyvow
process and measurement noises. That s, if one filter shhewélected for
a real implementation, it would be EKF.

e The UKF gives quite much the same result as EKF, but for somsore
it gives a slightly higher error than EKF. However, the impkntation of
UKF in this case is much easier than of EKF, because the Jacaimtrices
of the drift and measurement functions are quite complitatgressions.

e The bootstrap filter gives the worst result and it divergesiany of the test
cases. The reason for this might be that the measurementergraccurate
and thus many of the predicted particles “miss” the next messent on
each step, which leads to divergence with significantly nero probability.

e The continuous-discrete importance resampling filter gji@eresult, which
is worse than the result of EKF and UKF, but which is quite elts the
truth. As opposed to the bootstrap filter the continuousrdige importance
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resampling filter does not diverge, because the importarmeeps keeps it
approximately on the track. However, the importance praégesot a very
good one, because the results are still worse than of EKF &id U

In order to test theffect of discretizatiome increased the process noise by factor
of 100 (factor 10 in standard error scale) and the process noise was

0.0241 0 0
Q. = 0 0.0241 0] . (3.310)
0 0 0

The above diffusion matrix was used in simulation, but in filker we used
slightly different diffusion matrixQ., following the convention in (Julier and
Uhlmann, 2004a)

0.0241 0 0
Q.= 0 0.0241 05 . (3.311)
0 0 10~

The simulated data were generated by simulating the stocttifferential equa-
tion (3.305) with 100 steps of Euler-Maruyama scheme (Kéoednd Platen,
1999) between each measurement.

The standard deviations of the measurements in simulatine selected to
be

o, = 0.01km

0, = 1.7mrad,

(3.312)

which are 10 times the standard deviations in (Chang et@r.71l The standard
deviations were selected to be higher in order to make thielgmo harder and to
reveal the differences between the different approxinmatio

The discrete UKF (DUKF) and continuous-discrete UKF (CDUKEre both
implemented using 10 steps of Runge-Kutta integration éetwmeasurements,
but the difference was in handling of process noise:

e In DUKF, each measurement is processed as follows:

1. Integrate each of the sigma point through the noise freamjc model
using 10 steps of the Runge-Kutta integration.

2. Compute the predicted and mean covariance, and modegyrooise
effect by approximating the discrete covariance@yk) ~ Q.. At.

3. Perform standard UKF update step for the measurement.

e In CDUKF, each measurement is processed as follows:
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Figure 3.10: Mean squared error (MSE) versus time step size in the reditteying

problem. Results are from 200 Monte Carlo runs per time stiép the continuous-
discrete UKF (CDUKF) and discrete UKF (DUKF). The higheroesrof DUKF with

longer time step sizes are caused by numerical problemsegprédiction step.

1. Integrate the mean and covariance differential equsiising 10 steps
of the Runge-Kutta integration, and usi@j as the diffusion matrix
(or spectral density) of the process noise.

2. Perform standard UKF update step for the measurement.

The amount of computations required by the CDUKF is slighityher than of
DUKF, but the number of evaluations of the dynamic model fioncis the same
for both the models and thus the practical total differerscemall. The algorithm
parameters in the unscented transforms were selecteddobe /2,3 = 2,k =
—2.

Simulations were performed using different time stepAof= 0.1,0.2,...,3
seconds and the results from 200 Monte Carlo simulationstpersize are shown
in Figure 3.10. The continuous-discrete UKF (CDUKF) andiite UKF (DUKF)
have very much the same performance when the time step sheis However,
when the time step grows, DUKF encounters numerical problamd its error
grows rapidly. At the same time, no numerical problems carséen in the
CDUKF and its error grows much slower.

In this simulation scenario the advantage of the contindione formulation
over the discrete-time formulation is the numerical sighilThis stability is due
to that when the noise process is modeled as a continuoesgtiotess the non-
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linear dynamic model cannot force the covariance to becamepositive definite.
In the discrete-time formulation the covariance can becoorepositive definite.
In this particular problem it is not essential whether uteieties are modeled
as discrete-time or continuous-time stochastic procesSixe the performance
of CDUKF seems to be at least that of DUKF, in cases where théntmus-time
stochastic process formulation is more accurate in mogedmint of view, the
continuous-discrete UKF is likely to perform better thaa thiscrete UKF.
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3.3 Continuous-Time Filtering and Smoothing

This section presents the theory of Gaussian approximaid@ed non-linear op-
timal filtering and smoothing. The novel contribution ofdlsiection is the contin-
uous-time unscented Kalman-Bucy filter.

3.3.1 Continuous-Time Filtering Model

The most general form of the continuous-time filtering medwnsidered in this
thesis is

dx(t) = £(x(t),t) dt + L(t) dB(t)

dy(t) = h(x(t),t)dt + V(t)dn(t), (3.313)

where

e x(t) € R" is the state process,
e y(t) € R™is the (integrated) measurement process,

f is the drift function,

e h is the measurement model function,

L(t) andV (¢) are arbitrary time varying matrices, independenk¢f) and
y(®),

B(t) andn(t) are independent Brownian motions with diagonal diffusion
matricesQ.(¢) andR.(t), respectively.

The filtering model can also be formulated in terms of formhite/noisesw (¢) =

da(t)/dt, e(t) = dn(t)/dt, and differential measuremenft) = dy(¢)/dt as
follows (Jazwinski, 1970):

O _ fx(t). 1) + Lty wit)

z(t) = h(x(t),t) + V(t) e(t),

where the white noise processest) ande(t) have spectral densiti€.(¢) and
R.(t), respectively.

(3.314)

3.3.2 Kalman-Bucy Filtering and Smoothing

The Kalman-Bucy filter (Kalman and Bucy, 1961) is the formalugion to the
linear Gaussian optimal filtering problem
dx =F(t)xdt + L(t)dB

dy = H(t)xdt + V(¢)dn, (3.315)
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where
e x(t) € R™ is the state process,

e y(t) € R™ is the measurement process,

F(t) is the dynamic model matrix,

e H(¢) is the measurement model matrix,

e L(t) andV (¢) are arbitrary time varying matrices, independenk¢f) and
y(®),

e 3(t) andn(t) are independent Brownian motions with diagonal diffusion
matricesQ.(¢) andR.(t), respectively.

The solution is given as follows:
Theorem 3.8(Kalman-Bucy filter) The optimal filter, which computes the pos-

terior distribution p(x(t) | %) = N(x(t) | m(¢),P(t)) for the systen{3.315)is
given as

K.(t) = P(t) HT(t) [V(#) Re(t) VI ()]

dm(t) =F(t)m(t) + K.(t) [z(t) — H(t) m(t)]
P (3.316)
di—it) =F(t)P(t) + P(t)FT(t) + L(t) Q.(t) LT (¢)

— K(t) V) Re(t) VI (1) K¢ (1),
wherez(t) = dy(t)/dt is theformal derivative of the measurement process.

Proof. See Appendix A.3.1. O

The equations of theontinuous-time Kalman-Bucy smootlage exactly the
same as the equations of the continuous-discrete Kalmaateero That is, the
smoother equations are the ones given in the Algorithm &4&pt thain(¢) and
P(t) are defined to be the mean and covariance computed by the Koy
filter.

3.3.3 Continuous-Time Gaussian Approximations

Extended Kalman-Bucy Filter and Smoother

The extended Kalman-Bucy filter (see, e.g., Gelb, 1974) isxaension of the
Kalman-Bucy filter to non-linear models of the form (3.313).
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Algorithm 3.32 (Extended Kalman-Bucy filter)The equations of the Extended
Kalman-Bucy filter (EKBF) are:

K.(t) = P(t)H  (m(t),t) [V Ro(t) VI ()]

dm(t) _ f(m(t),t) + Ke(t) [z(t) — H(m(t),t) m(t)]
at (3.317)
dP(t) _ F(m(t),t) P(t) + P(t) F" (m(t), t) + L(t) Qc(t) L (t)

dt
—K.(t) V) Ro(t) VT () KT (1),

wherez(t) = dy(t)/dt is theformal derivative of the measurement procgss),
F(-) is the Jacobian matrix of(-) with elementd’;; = 0f;/0x;, andH(-) is the
Jacobian matrix oh(-) with elementd?;; = Oh;/0x;.

This filter is actually the first order EKBF, but analogousithe discrete case
and continuous-discrete case, second order approxinsationld be applied as
well.

The equations of theontinuous-time extended Kalman-Bucy smoothes
exactly the same as the equations of the continuous-disesdended Kalman
smoother in Algorithm 3.23, but with the difference tha{t) andP(¢) are the
mean and covariance computed by the (continuous-timehdeteKalman-Bucy
filter.

Unscented Kalman-Bucy Filter and Smoother

By taking the formal limit of the discrete-time unscentedrdan filter equations
in Algorithm 3.7, the following novel continuous-time filtean be derived:

Theorem 3.9(Unscented Kalman-Bucy filter)The stochastic differential equa-
tions corresponding to the UKF in the continuous-time liofistate and measure-
ment processes, that is, the unscented Kalman-Bucy filtetieqs, are given as

X(t) = [m(?) m(t)] +ve [0 VP({H) —/P{)]  (3.318)
K.(t) = X(t) Wh'(X(t), 1) [ (&) Re(t) VT (1)] (3.319)
di—Z@:X(t)WfT (X (1), 1) + £(X(¢),t) W XT (1)

+L(t) Qe(t) L7 (¢)
~Ke() V(O Re(t) VI (1) K¢ (1) (3.320)
drngt) = £(X(1), ) Wi + Ke(t) [2(t) = h(X (), 1) Win] , (3.321)

where we have formally defined the differential measurem@nt= dy(¢)/dt.
In terms of the procesg(t) the mean equation can be written as Ité stochastic
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differential equation
dm(t) = [f(X(t),t) — Ke(t) h(X(t),t)] wi, dt + K(8) dy (). (3.322)
Proof. See Appendix A.3.3. O

Corollary 3.1 (Prediction differential equationsYhe approximate predicted mean
m(¢) and covarianceP(¢) of the state for times > ¢, given the mean and
covariance at the time instangg can be computed by integrating the differential
equations

X(t)=[m@) - m@)]+ve[o VPE —P@)]  (3.323)
di_it) = X(t) WfT(X(t),t) + (X (1), 1) WXT(t)

+L(t) Qe(t) L (2) (3.324)

drngt) = £(X(#), 8) W, (3.325)

from initial conditionsm(¢y) andP(¢() to time instance.

Proof. Formally setR.(t) = oo I in the Theorem 3.9, which results K.(t) =
0. O

The equations of theontinuous-time unscented Kalman-Bucy smooéner
exactly the same as the equations of the continuous-disarefcented Kalman
smoother in Algorithm 3.25.

3.3.4 lllustrative Examples
Benes Filtering Problem

In the Bené filtering problem(Benes, 1981) considered here a scalar signal pro-
cessx(t) is observed through a scalar measurement progggsand the models
for these processes are given as

dz(t) = tanh(z(t)) dt + dS(¢) (3.326)
dy(t) = dz(t) + dn(t), (3.327)
where(t) andn(t) are standard Brownian motions, an) = 0,y(0) = 0.

The following estimation methods are tested:

e Bené filter (BF). The exact equations for the sufficient statist¢s), ()
of the posterior distribution are (Besigl981):

du(t) = o(t) dy(t) - o(t) p(t) dt

do(t)/dt =1 - o (t), (3.328)
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with 1(0) = 0,0(0) = 0. The posterior distribution is then of the form

2(8) — 2
p(z(t) | %;) o cosh(x(t)) exp {—%} , (3.329)

and the posterior mean can be computed as

Elz(t)| %] = u(t) + tanh(p(t)) o (t). (3.330)

e Unscented Kalman-Bucy filter (UKBFJhe filtering equations are given as

X(t) = [m(t) m(t)++/cPt) m(t) —/cP(t)]

F(t) = tanh(X(t))
dm(t) = F(t) w,, dt + P(£) (dy(t) — m(t) dt) (3.331)
di—f) = 2F(t) WXL (t) +1 — P2(t).

e Extended Kalman-Bucy filter (EKBFJhe filtering equations are

dm(t) = tanh(m(t)) dt + P(t) (dy(t) — m(t) dt)
dP(t) (3.332)

—o =201~ tank®(m(1)) P(t) + 1 - P*(1).

e Linearized Kalman-Bucy filter (KBFAs a base line solution the following
linearized Kalman-Bucy filter is used. It differs from EKBFR the mean
eqguation:

dm(t) = (1 — tanh?®(m(t))) m(t)dt
+ P(t) (dy(t) —m(t) dt) (3.333)
= 2(1 — tanh?(m(t))) P(t) + 1 — P*(t).

dP(t)
dt
e Unscented Kalman-Bucy smoother (UKBE)e smoothing equations are
given as
F(t) = tanh(X(t))
dm?(t)

FO)WXT(t)+1
- FOwm ( X (1) W X7 () )
x (m*(t) — X(t) W)
dPs(t) FO)WXT(t)+1\ _,
a ( X () WX (1) )P(t)_l’

(3.334)

whereX(¢) are the sigma points from the UKBF.
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e Extended Kalman-Bucy smoother (EKBB)e smoothing equations are

dm?(t) (1 — tanh?(m(t))) + 1
e tanh(m(t)) + ( 0 >
x (m®(t) —m(t)) (3.335)
dPs(t) (1 —tanh?(m(t))) + 1Y\ _,
ar < P(t) ) Pt — 1,

wherem(t) and P(t) are the mean and covariance from the EKBF.

¢ Linearized Kalman-Bucy smoother (KB$he equations for this base line
smoother are

dm*(t) _ s
e (1 —tanhQ(m(t))) m®(t)
+ (1/P(t)) (m*(t) — m(t)) (3.336)
dPs(t) [ (1—tanh®(m(t) +1\ _,
e < P(t) ) P -1,

where m(t) and P(t) are the mean and covariance from the linearized
Kalman-Bucy filter.

The results from 10000 simulated data realizations are sHowrable 3.2.
The values are the means of the root mean squared error (RBIEs averaged
over the realizations and the standard deviations of the RM8ans (RMSE-SE).
It can be seen that the results of BenhEKBF and UKBF filters are practically
the same and the differences are not significant when thdatéerrors are taken
into account. The KBF gives slightly worse results, mostliikdue to its more
inaccurate mean propagation approximation.

As could be expected, the results of smoothers are all btiarof the corre-
sponding filters and again KBS gives worse results than EKRISHKBS. Still it
can be concluded that the performances of UKBF and UKBS deasit as good
as performances of EKBF and EKBS.

Continuous-Time Adaptive Control

In this section we shall test the performance of the unsddkgman-Bucy filter
in a continuous-time recursive system identification peahlwhich is much sim-
ilar to the identification problems that arise in context déptive control (Astréom
and Wittenmark, 1995). The system has input-output trarigfection

B 1
 s24as

H(s) (3.337)
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Table 3.2: RMSE values of signal estimates in the Bgfigtering/smoothing problem
averaged over 10000 Monte Carlo runs and standard errang etimated RMSE values.

Model | RMSE| RMSE-SE

BF 32.13 | 0.07
UKBF | 32.22 | 0.07
EKBF | 32.27 | 0.07
KBF 39.23 | 0.09
UKBS | 21.92 | 0.05
EKBS | 21.98 | 0.05
KBS 23.51 | 0.05

where the parameter is unknown. The purpose is to recursively estimate the
unknown parameter using noisy measurements when the system is probed with
a known input signal:(t).

The input to the system consists of an unknown disturbanbiehas modeled
as a white noise process(t) with spectral densityy = 1, and a known input
signalu(t) which is chosen to be a square wave with valfied, 1} and period
of 2 time units. The Laplace transfori(s) of the signal process(t) is

X(s)=H(s)W(s)+ H(s)U(s), (3.338)

where W (s) is the Laplace transform the white noise process &ifs) is the
Laplace transform of the known input signal. For estimaponposes the system
model is written as state space model

dxl(t)/dt = XI9 (t)

dao(t)/dt = —a(t) z2(t) + w(t) + u(t) (3.339)

da/dt = wg(t),

wherew, (t) is a white noise process with small spectral dengjty= 10~%, which
is included to enhance the filter stability. Both the signglt) and its derivative
x9(t) = dz1(t)/dt can be measured, but the measurements are corrupted by white

noise processes, (t) andes(t) with spectral densities; = 0.1 andry = 0.1,
respectively:

21 (t) = xl(t) + e (t)
29 (t) = T2 (t) + e2 (t)

In simulation, the initial conditions for both the signa] and derivative were
drawn randomly from normal distribution with zero mean amit wariance. The

(3.340)
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Figure 3.11: Single realization of the signal process and measuremei®iparameter
adaptation problem.

true value of parameter in the simulation was= 0.2. The simulation was
performed over time period € [0, 20] with Euler integration and with time steps
of At = 0.01. Single realization of the process is shown in the Figuré 3.1

The following estimators were tested:

e EKBF: First order extended Kalman-Bucy filter, where a firstes Taylor
series approximation is used as approximation to the sfzeesmodel
(3.339).

e EKBF2: Second order extended Kalman-Bucy filter, where duisd or-
der terms in the state space model (3.339) are also takeadatmnt.

e UKBF: Unscented Kalman-Bucy filter.

Single estimation result using each of the filters is showFigure 3.12. It is
interesting to notice that the results of EKBF2 and UKBF arialy identical.

It seems that both the filters are able to take into accoungffieet of the second
order terms exactly and because of this the estimationtseats identical. The
estimation result of first order EKBF seems to converge a biterslowly, but also
its estimate seems to approach the correct value. Tableh8W8ssRMSE values
of the estimates of parameterand signalz, (¢) averaged over 100 Monte Carlo
simulations.
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Time

Figure 3.12: Single parameter estimation result using each of the filters

Table 3.3: RMSE values of the parameter and signal averaged over 108eM@arlo runs
in the parameter adaptation problem.

Model | RMSER] | RMSE[ ()]
EKBF | 0.23 0.11
EKBF2 | 0.22 0.11
UKBF | 0.22 0.11
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Chapter 4

Case Studies

This chapter presents applications of continuous-disdikering. Although many
of the data in this chapter are simulated, the differencéécekamples presented
in the previous chapter is that the applications in this tdragre more problem
oriented than in the previous chapter. This means that thgopea here is to solve
existing problems, not only demonstrate the filtering mdgho The following
applications are presented:

¢ Rao-Blackwellized particle filtering based solutiomtailtiple target track-
ing in the case of an unknown number of targstpresented in Section
4.1. Most of the contents of the section have previously lrdaished in
(Sarkka et al., 2004a, 2006b).

e Rao-Blackwellized particle filtering based solution to #simation of the
spread of an infectious diseaisepresented in Section 4.2.

e Kalman filtering and smoothing based solution to DATS time series
prediction competition{Lendasse et al., 2004) is presented in Section 4.3.
Most parts of the section have previously been publishe@érkka et al.,
2004b, 2006a).

4.1 Multiple Target Tracking

This section presents a Rao-Blackwellized particle filtasdal solution to the
problem of tracking an unknown number of targets using rpldtsensors. The
simpler case of a known number of targets was presented iarttode (Sarkka
et al., 2004a) and the extension to an unknown number ofttamgas presented
in (Sarkka et al., 2006b).
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4.1.1 Overview of the Problem

The basic tracking scenario consistsseinsors which produce noisy measure-
ments, for example, azimuth angle measurements as illedtna Figure 4.1. The
purpose of tracking algorithm is to determine theget trajectoryusing the sensor
measurements. There is additiopaior information on the dynamics of targets,
which restricts the forms of target trajectories into thtisat are possible when
the laws of physics are taken into account.

(_ target

Sensor

Figure 4.1: Sensor generates angle measurements of the target, andithese is to
determine the target trajectory.

More general tracking scenario consistsmiltiple sensorswhich may have
different precisions, and they can produce different kioflmeasurements, also
other than azimuth angle measurements. Typically, semseraot synchronized
and they produce measurements during irregular intenkigure 4.2 illustrates
the case of multiple sensors. In estimation point of viewreéasing number of
sensors will ease the estimation procedure, since we get mfmrmation on the
same target trajectory.

In case of multiple targets there is an additional difficuttgcause without
additional information we do not know which of the measurataeorrespond to
which targets. Figure 4.3 illustrates this problem — if theserved information
are the angle measurements 1 — 4, how do we know which tafgstdelong to?
This is called the problem afata associationThe same problem appliesfalse
alarm or clutter measurementsince we do not know if a given measurement was
false alarm or a measurement from one of the targets.

Also thenumber of targetés unknown in all realistic multiple target tracking
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Figure 4.2: Multiple sensors give us more information on the same ttajgcand thus
ease the estimation procedure.
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Figure 4.3: In case of multiple targets, it is impossible to know withaoy additional
information, which target produced which measurement.
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scenarios and it has to be estimated also.

Approaches to Data Association

The classical data association methods for multiple targeking can be divided
into two main classes (Blackman and Popoli, 1999hique-neighbor data as-
sociationmethods, such asultiple hypothesis trackingMHT), associate each
measurement with one of the previously established traéitsneighbors data

associationrmethods, such gsint probabilistic data associatio@JPDA), use all

measurements for updating all the track estimates.

The idea of MHT (Bar-Shalom and Li, 1995; Blackman and Popl$09;
Stone et al., 1999) is to associate each measurement witlofotie existing
tracks, or to form a new track from the measurement. Becahiseassocia-
tion is not necessarily unique, several hypotheses areéncmnisly formed and
maintained. The MHT algorithm calculates the likelihooddhe measurements
and the posterior probabilities of the hypotheses, stooinly the most probable
hypotheses. To enhance the computational efficiency, $teumethods such as
gating, hypothesis merging, clustering and several otlrategiies can be em-
ployed.

Theprobabilistic multiple hypothesis tracki@MHT) (Streit and Luginbuhl,
1994) is a modification of the MHT, where the data associatame assumed to be
independent over the target tracks. This way the computaticomplexity of the
method is substantially reduced, but it is also impossibladdel certain practical
constraints, for example, to restrict the number of costaar target to one on
each scan. The RBMCDA method (Séarkka et al., 2004a) in itgrai form had
this same restriction, but it can be easily overcome by aligwdependencies in
the data association priors, as shown later in this section.

JPDA (Bar-Shalom and Li, 1995; Blackman and Popoli, 1999raamates
the posterior distributions of the targets as separate €saudistributions for each
target. If the number of targets 8, thenT’ separate Gaussian distributions are
maintained. The number of Gaussian distributions is kepstamt by integrating
over the distribution of data associations of the previdep.sThis results in an
algorithm where each of the target estimates gets updatesdsy measurement
with weights that depend on the predicted probabilitiehefassociations. Gating
is used for limiting the number of measurements for eactktréicthe predicted
probabilities are too low (i.e., below a predefined thredhdbr certain targets,
those targets are not updated at all. Clutter measuremantbe modeled simi-
larly.

Sequential Monte Carl(SMC) based multiple target tracking methods (Gor-
don, 1997; Karlsson and Gustafsson, 2001; Hue et al., 29pidally belong to
the class ofinique-neighbor data associationethods, as they are based on rep-
resenting the data association and state posteriors astdisets of hypotheses.
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These kind of SMC methods can be considered generalizaifdvisiT. Instead of
maintaining theN most probable data association hypotheses, the jointitigick
and data association problem is modeled as a Bayesian @stinpaoblem and
the posterior distributionis estimated with SMC methods. Thparticle filtering
approach has the advantage that there are no restrictiotieeamnalytic form of
the model, although the required number of particles fovamiaccuracy can be
high.

In article (Sarkka et al., 2004a) it is proposed how SMC basstking and
data association algorithms can be made more accurate feidréfusing Rao-
Blackwellization. In the Rao-Blackwellized Monte Carlaaassociation (RBM-
CDA) algorithm the states are integrated out in closed fonch@MC is only used
for the data association indicators. Instead of a puregdanepresentation, this
leads to a mixture of Gaussians representation of the jaistgpior distribution,
which reduces variance and requires less particles forahmsaccuracy.

Approaches to Tracking Unknown Number of Targets

The JPDA method was originally formulated for a known numdietargets, but
it is possible to include track formation and terminatiogitoin cascade with the
algorithm (Bar-Shalom and Li, 1995). There is no expliciolpability model for
target appearance and disappearance, but instead thelee aamMarkov chain
model for the number of data associations before trackaiim is confirmed.
Tracks are terminated when the probability of target eristegoes below a pre-
defined threshold.

MHT based methods (Bar-Shalom and Li, 1995; Blackman an@Rd®99;
Stone et al., 1999) as well as PMHT (Streit and Luginbuhl498rm hypotheses
of associations with new targets for every measurementrdctige, to reduce the
computational complexity, new target hypotheses (or naskthypotheses) are
formed only when the measurement falls into an area wherdikbihood of
the association with the existing targets is too low. A tr&ckleleted when its
likelihood becomes too low compared to the other tracks.

Random sets and finite set statistics (FISST) (Mahler, 2p@ayide a very
general framework for Bayesian modeling of multiple tatgatking in the case of
an unknown number of targets. A tractable implementatiatheframework is to
use the first order moment of the multi-target posterior,pfubability hypothesis
density (PHD) (Mahler, 2003) as an approximation. SMC basgiementations
of the PHD have been reported, for example, in the articlesef\l., 2003; Siden-
bladh, 2003). Vihola (2005) presents a random set partitée Hased solution to
tracking an unknown number of targets using bearings-ordgsurements.

In the SMC based method presented in the article (Hue et@)1)2he ex-
tension to an unknown number of targets is based on hypsthesting. Because
the algorithm generates estimates of data associatiombildles, these estimates
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can be used for approximating the probability of the hypsiththat the target has
disappeared from the surveillance area. The detectionecdpipearance of a new
target is based on testing the hypothesis between associgith the old targets
and with the new target.

The article (Kreucher et al., 2003) presents a SMC basedadgthhich is
similar to the method presented here except that a plaiiclgapresentation of the
joint posterior distribution is used. In the method, birttdaleath moves in particle
proposals are used, and the moves resemble the birth aridrdedels used here.
Due to the plain particle presentation, the method in thielar{Kreucher et al.,
2003) is also applicable to the more general case of tamghitrg without explicit
thresholding of measurements.

The method in (Doucet et al., 2002) also resembles the mettesented here,
except that the article does not suggest any particular forrthe birth and death
models. The approximation based on limiting the number ihbiand deaths on
each time step is also discussed in (Doucet et al., 2002).

The particle filtering based method in (Isard and MacCorm®H01) uses
exponential (Poisson) models for target appearance aagukarance a bit simi-
larly to the method here. The branching particle based isplBallantyne et al.,
2001) also models target appearance as a stochastic (Manamess.

The tracking of an unknown number of targets is also closalgted to model
selection. An application of SMC methods to estimating thenber of RBF
network weights from data is presented in (de Freitas e2@0}1).

In this section the SMC based RBMCDA method (Sarkka et ab4ap is
extended to tracking an unknown number of targets. The sideris based on
modeling the birth and death stochastic processes, sutlralck formation and
termination (or initiation and deletion) are not based ourtstic rules, but on the
rules determined by the estimation algorithm designedHemrobability model.
However, this probability model of the extension to an unknamumber of targets
is closer to the approach presented in (Stone et al., 1988)tththe approach in
(Mahler, 2003) despite the more strict Bayesian nature efdtier.

4.1.2 RBMCDA with Known Number of Targets

Next the Rao-Blackwellized Monte Carlo data associatioBNKEDA) method

that was proposed in (Sarkka et al., 2004a) is reviewed argdshown how it
is related to the general Rao-Blackwellized particle fittgrframework. The
method described here is basically the same as in the oraiticle except that the
requirement of IID prior data association probabilitiesdplaced with a Markov
chain assumption.
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Filtering Model
The filtering model of the RBMCDA algorithm is the following:

e Clutter or false alarm measuremertan be modeled using any probability
density, which is independent of the target statgs= (xx1 - xk1)"

p(yr | cx = 0). 4.1)

Herec; is the data association indicator, which has the vajue= 0 for
clutter andc;, = j for the targetsi = 1,...,7. The clutter measurements
can be, for example, uniformly distributed in the measunetmepace of
volumeV

p(yk | ek =0) =1/V. (4.2)

e Target measurementse linear Gaussian
p(Yk | Xk g ek = J) = N(yx | Hg jXk j, Rej)- (4.3)

where the measurement matricHs, ; and covariance matriceR;, ; can
be different for each target. Non-linear measurement nsodah be used
by replacing the non-linear model with@cally linearizedmodel as in the
extended Kalman filter (EKF) (Jazwinski, 1970; Bar-Shaldnale 2001)
or by using theaunscented transformatioas in the unscented Kalman filter
(UKF) (Julier and Uhlmann, 2004b).

e Target dynamicare linear Gaussian
p(Xkj [ Xp—1,5) = N(Xp 5 | Ap—1,5%Xk-1,5, Qk—1,7) (4.4)

where the transition matriA;_; ; and process noise covariance matrix
Qr—1,; may be different for different targets. The motions of indival tar-
gets are a priori independent. Because for any continumsslthear Gaus-
sian dynamic model there exists an equivalent discreteltimear Gaussian
model (Jazwinski, 1970; Bar-Shalom et al., 2001), thisdaliyegeneralizes
to continuous time linear models. Non-linear discrete ortitmous time
dynamic models can also be used by forming Gaussian appativing by
EKF (Jazwinski, 1970; Bar-Shalom et al., 2001) or by UKF i€tuand
Uhlmann, 2004b). With slight modifications to the algorithirwould be
possible to use the interacting multiple model (IMM) filtd&af-Shalom
et al., 2001), which allows the modeling of target maneuvers

e Target and clutter association prioe known and can be modeled as an
mth order Markov chain

p(ck | Ck—1y-- ) Ch—m)- (4.5)
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This is kind of higher order models are needed for implenmgntionstraints
to the data associations on a single measurement scan. Bécthe model
can also be a first order Markov chaim (= 1) or the associations can be
completely independentr{ = 0).

e The number of target§ is known and constant.

e Target state priorsan be represented as a weighted importance sample set

p(xos) = > w N(xq; | m;, P{)). (4.6)

Relationship with the Rao-Blackwellized Particle Filter

The RBMCDA model described above fits exactly to the RaoRlatlized par-
ticle filtering framework (see, e.g., Doucet et al., 2001hew the sampled latent
variable A\, is defined to contain the data association event indicatgrat time

stepk

AL = ¢k 4.7)

1. The states;, on time stepk consists of the stacked vector of target states

Xk,1
Xp = : . (4.8)

Xk, T

2. The prior distribution of the joint stafe(x() is Gaussian, because the indi-

vidual target prior distributions are Gaussian.

. The joint dynamic model of targets is linear Gaussian

P(xk | Xp—1) = N(xg | Ap_1x5-1, Qr—1), (4.9)

whereA;_; is a block diagonal matrix consisting of the dynamic models
of the targets an€);_ is the block diagonal process noise covariance.

. The joint measurement model of the targets can be wrien a

p(¥& | Xk, cr) = N(yi | Hi(cr)xk, Ri(cr)), (4.10)

where the measurement model maix (¢, ) is formed conditional on the
data association;, such that the only nonzero entries are the ones corre-
sponding to the measurement model of the target The measurement
noise covarianc®y(cy) is the measurement noise covariance of the target

Ck+
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5. The clutter measurements are simply state independeagurements with
a measurement model of the fopy, | ¢, = 0).

6. The data associations are modeled as a Markov chain of lz&ables as
in the Rao-Blackwellized patrticle filter model.

Sequential Measurement Update Issues

Up to now we have formulated the model such that exactly ongsorement is
obtained at one time step. This way, the data association procedure can be
reduced to processing one measurement at a time. Howeigeddbs not mean
that we are restricted to one measurement per time instaecescan), because
the successive time steps may occur at the same time instance

Table 4.1: Several measurement steps can occur on the same time imstascan.

scan 1 (3 measurementg)t; =ty =t3=15S
scan 2 (2 measurements)tys =t5 =2 S

scan 3 (3 measurements)ts = t7 = tg = 2.5 S
scan 4 (1 measurement); tg = 3.5 s

In the example presented in Table 4.1 the time steps 1,2 afido8car on
time instancel s, time steps 4 and 5 occur on time instaBceand so on. Now,
for example, time steps 1,2 and 3 can be processed seqlyehtiadetting At =
0 in the dynamic model and in the prediction step, which is wment to not
performing the prediction step at all between the measunésne

The original RBMCDA that was presented in (Sarkka et al.,4220thad the
restriction that the data associations were required t@hditonally independent
as in PMHT (Streit and Luginbuhl, 1994). This makes it implolesto model
certain joint effects in sets of measurements obtained attiome instance (i.e.,
scan). For example, it is impossible to restrict the maxinmumber of data
associations with each target to one per time instance. kewey allowing the
data association priors to depend on previous data asemsaiat least on the
same time instance) this restriction can be included in tbdeh

As already discussed in this section, the data associatitinators may also
depend on previous data associations, that is, they maydornth order Markov
chain

pck | Ck—1y- -y Ch—m)- (4.12)
This kind of model can be used for restricting the data assiocis to at most one
data association to each target at single time instancdlag$o
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e The joint prior model can be written in the general form

P(Chpmts- - s Ck)- (4.12)

We can encode the desired restriction into the prior by agsigzero prob-
ability to any joint event, which would have two associatido the same
target.

e The joint model can also be expanded as follows:

p(ck+m—1> .. ack)

m
413
=[] plcrss I crs - erejmr). (4.13)
j=1

This means that exactly the same model can be realized by using the
following priors for the data associations:

¢k has the priop(cy).
— cx4+1 has the priop(cxy1 | ck)-

— Cp+m—1 has the priop(cr1m—1 | Ckrm—2y---Ck)-

Using the above idea it is possible to reduce any joint desacation prior of
form (4.12) to an equivalent Markov prior model, which istabie for sequential
processing.

Assume, for example, that we are tracking two targets andach éme in-
stance we may obtain zero or one detections from each of thet$a The rest of
the detections are false alarms, that is, clutter. The tatgiection probabilities
of both targets are the same and given as

p(detection = pg. (4.14)

Assume that on time instanc¢e.a,we obtainm measurementgy, ..., Yiim—1
(i.e., the times of the steps atg, ..., tx1m—1 = tscan- The prior for the data
associations can be now defined sequentially as follows:

e Define detection indicators as follows

1, ifthere is target 1 detection i), ;_1...cy

61(4) = { 0, otherwise (4.15)
if there is target 2 detection i), j_1...cy '

%20)) = { 0, otherwise
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e Compute the data association priors given each of the pdesddiection
indicator combinations:

)=0)
; - é; (4.16)
)=1)

Prior models having the restriction of one data associatiorach target per time
instance can be defined in similar manner for any number gétar The resulting
prior is of the recursive (Markov) form, which is a speciakeaof the model
described in this section.

Data Representation

The algorithm state consists of a set/éfparticles, where each particleat time
stepk contains the following:

(@) (#) (#) () p@ (#) () @
{cklfmﬂ:k, m,jv17 e ,m,ij7 . 7me,Tv Pkil? . 7Pkl,j7 . 7PkZ,T7 wkZ }, (4.17)
where
. Cgmﬂzk are the data association indicators of time stepsm +1,...,k

with integer value9), ..., T, whereT is the number of targets. If the data
association prior model is amth order Markov model, them previous
data associations should be stored. If the data associgtionis time
independent, the data association indicators do not neleel $tored at all.

o m; Py
tional on the data association histmé?k.

are the mean and covariance of the targeand they are condi-

o w,(f) is the importance weight of the particle.

Evaluating and Sampling from the Optimal Importance Distri bution

For each patrticle, the optimal importance distribution is given by

pler | Vi ). (4.18)
The marginal measurement likelihood is given by (Sarkkd.e2@04a)

p(yk | CkrY1:k—1, Cgl;)k_l)
[y if ¢, =0 (4.19)
- VP H R if o =

KFp(yx, m;,



152 Case Studies

wherej = 1,...,T andKFy,(-) denotes the Kalman filter measurement like-
lihood evaluation. H; ;, and R;;, are the measurement model matrix and the
measurement covariance matrix of the targetespectively. Foy = 1,...,T
we have

m, ) P = KF,(m!)_ | PY) A 1,Qu),  (4.20)

whereKF,(-) denotes the Kalman filter prediction step, 3"'&7171)?1171 are

the mean and the covariance of targein particle i, which is conditioned on
the state historygf)k_l. A -1 andQ; ,—; are the transition matrix of dynamic
model and the process noise covariance matrix of the tgrgespectively.

The posterior distribution of;, can be calculated using Bayes’ rule

p(ck ‘ Yik, ngz)kfl)
x p(yi | cr Y11, ¢ 1) (4.21)
X p(Ck ’ cl(czzm:k—l)7

where we have used the fact that an associatjatoes not depend on the previous
measurementg,.,_1, and depends only on the previous associations,_,,,.x—1
if the order of the Markov model is.

We can sample from the optimal importance distribution dsvics:

1. Compute the unnormalized clutter association prokigbili
i) =ply | ¢ = 0,y1a-1,¢)_,)

(4)

0 (4.22)
xpley” =01 p 1)

2. Compute the unnormalized target association probisilfor each target

j=1,...,T
~ (1) _ (i) _ - (4)
= p(if) | Cr, —(;7; Yik-1, 01;k71) (4.23)
xpley,” =7l mp—1)-
3. Normalize the importance distribution:
-~ (i)
. T
S QU j=o0,...,T. (4.24)

i T T ~G)
Zj/zoﬂ'j/

4. Sample a new associatioﬁ) with the following probabilities:

e Drawc!”) = 0 with probability |



4.1 Multiple Target Tracking 153

Drawc\” = 1 with probability 7",

Draw ¢\ = 2 with probability 7",

Draw cl(f) = T with probability ﬂgf).

Now it is easy to evaluate also the probabilities of data@ation hypotheses
in the optimal importance distribution, because the prdieis are given by the
termSWJ(.Z),j =1,...,T conditional on each patrticle.

Algorithm Implementation

As already shown in this section the RBMCDA algorithm is aciglecase of the
generic RBPF algorithm. However, due to the conditionaépehdences between
the targets, the full Kalman filter prediction and updat@stier all targets can be
reduced to single target predictions and updates. Actubfigause the targets
are a priori independent, conditional on the data assodisti;, the targets will
remain independent during tracking. This leads to the ¥alg simplifications to
the RBPF computations:

1. The Kalman filter prediction steps can be done for eacletamgeach parti-
cle separately. That is, we do not need to do Kalman filteriptied to the
joint mean and covariance of all targets, but only to eadetaseparately.

2. We can always use the optimal importance distributionjciwlwas de-
scribed in the previous section, as the importance digtabifor the latent
variables.

3. The marginalized measurement likelihoods can be cordgateach target
separately. Note that these likelihoods have already bempated for each
target during the evaluation of the optimal importanceriistion.

4. The measurement updates can also be performed for egeh $aparately.
This means that the Kalman filter update is actually perfarom@y to one
target in each particle.

4.1.3 RBMCDA with Unknown Number of Targets

In the next sections we extend the RBMCDA algorithm to an emkmand time
varying number of targets. The probabilistic construct@fnthe model for an
unknown number of targets, that is, the probability modeMarying state space
dimension follows roughly the approach described in (Stetnal., 1999), which
extends MHT to tracking an unknown number of targets. Tha iddo assume



154 Case Studies

that there is always a (very largepnstant number of targetg,,. But an un-
known, varying number of them are visible (or alive)d they are the ones we are
tracking. The visibility of targets is represented with @t of discrete indicator
variables.

The numbefl,, ensures that the joint distribution of the target state<3saas-
sian distribution with constant dimensionality and thusedldefined probability
distribution. The model is formulated such that we do nofieitly need to know
the actual number of targefs,, as long as it is theoretically large enough.

As an extension to the MHT method, we construct a probaicilstbchas-
tic process model for the births and deaths of the targetssand/ how Rao-
Blackwellized particle filtering can be applied to this plexo.

Filtering Model

1. Clutter or false alarm measuremertave the same kind of model as in the
RBMCDA model in Section 4.1.2.

2. Target measurementge (approximately) linear Gaussian as in the RBM-
CDA model in Section 4.1.2. EKF and UKF based approximatitars be
used for handling non-linear models.

3. Target dynamicsre linear (approximately) Gaussian as in the RBMCDA
model in Section 4.1.2. EKF, UKF or IMM can be used for harglinore
general dynamic models.

4. The targetd, = j) and clutter ¢, = 0) association priors, in the case that
births and deaths do not occur at the current time step, ane@rkand can be
modeled as amth order Markov chain(ck | ck—m:k—1, Tk—m:k—1), Where
T._m:k—1 CONtains the number of targets at time stéps m, ...,k — 1.
For example, we might have a uniform prior over targets anttex:

1

— 4.25
T, (4.25)

p(ck | Ck—m:k—laTk—m:k—l) =

5. Target births may happen only when a measurement is @lota@md in that
case a birth happens with probability. For simplicity, the model is defined
such that a birth may happen only jointly with an associateant, so that
if there is no association to a newborn target, there is rth.bir

This is equivalent to stating that the target state prioraigs constant until
the first measurement is associated, that is, the dynamieintms not
affect the target state before the first measurement hasdsseriated to
the target. This indicates that it is sufficient to considher time of the first
associated measurement as the actual birth moment.
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6. After associating a measurement with a target, the lifet, (or time to
death) of the target has a known probability density

ta ~ p(ta), (4.26)
which can be, for example, an exponential or gamma distabut

7. Atthe time of birth each target has a known Gaussian pigtrildution

p(XkO’j) = N(XOJ | m(],j,Pk()’j). (4.27)

Probabilities of Birth and Death

If a birth has occurred, it is assumed to be certain that theeotimeasurement is
associated to the newborn target:

1, fe=Tp_1+1

p(cy | birth) = { 0 otherwise (4.28)

In the case of no birth, the Markov model for the data assiotiatapplies:

p(ck ’ no blrth) = p(ck ’ Ck,m;kfl). (429)

The data association and birth events can be divided intfotlosving cases with
different probabilities:

1. Atargetis born and the measurement is associated withetltborn target:

b, = birth

(4.30)
cp = T + 1.

2. A target is not born and the measurement is associated omthof the
existing targets or with clutter:

b, = no birth

o (4.31)
Ck =1, ]:OvaTk

3. Other events have zero probability.

Thus, given the associations_,,.;._1 on them previous steps, the joint distribu-
tion of the event;, € {no birth birth} and the associatiot), is given as

p(br, k| Ch—muk—1) =
Dy in case (1) (4.32)

(1 —pp) p(ck | Ch—mik—1) incase (2)
0 in case (3)
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wherep,, is the prior probability of birth.

The restriction to one data association per target at sitigie instance in
the case of unknown number of targets can be handled in the s@mner as in
the case of known number of targets. We simply assume thed thgpositive
probability of detecting a newborn target on each step. ®hah addition to the
existing targets we model the possibility detection of a tasget which has the
detection probabilityp,. This probability of detecting a new target is equivalent
to the probability of birth, because we have defined the lotbe the event of
detecting the target for the first time. However, the differe to the restriction
of one association per target is that births may occur as rtiamgs as there are
measurements on scan, not only once per scan.

The filtering model presented in this section states thafr afssociating a
measurement with a target, the life timgof the target has the known probability
density (4.26). Thus if the last association with targetas at timer;, ;, and on
the previous time stefy,_; we sampled a hypothesis that the target is alive, then
the probability that the target is dead at current time stdp

death ofj | ¢4, th—1, T%.;
p( 5 |ty th—1 /w) (4.33)
= P(tq € [tho1 — Thjsth — Thjl | ta > tho1 — T j)-

Relationship to RBPF

The RBMCDA algorithm with an unknown number of targets fitshie RBPF
framework, if the latent variablé\;, contains the visibility indicatoe;, and the
data association indicatey, at the current time step

i = {ex, cr} (4.34)

The visibility indicators and the data associations inipicdefine the number of
(visible) targetsl, at each time step.

Given that the targets are a priori unordered, there is a pigtmutation
symmetry in the posterior distributions of the target statésibility indicators
and data association indicators. We can change the indfcasyotwo targets,
including the visibility indicators and data associatioasd the probability of
the configuration will remain the same. For this reason, wadl stelect one of
the permutations arbitrarily and use it for representiridghad permutations. This
permutation is based on the times of the first associatiotts thé targets. This
does not change the model, because this is not a priori agidout is merely a
way of selecting a compact representation for a very highbemof redundant
permutations.
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1. The joint statex; contains the states of tlfg, targets

Xk,1
Xk, Too

2. Atthe initial time step the targets have Gaussian prisirithutions
N(XQJ ’ my, PQ) (436)

The model is constructed such that the invisible targetsatiane stepk
(indicated bye;) do not have a dynamic model. This means that the targets
which have not yet become visible (have not been born yethwttiane
stepk have independent Gaussian prior distributiof(scy, ; | mg, Pg). If

we denote the sets of not visible and visible target indicits W and 71,
respectively, the joint prior distribution of all targetsdf the form

p(xk | y1:x) = [ Nxkj | myj, P j)
JjeT

X H N(Xk,j’ ’ mO,PO).
J'€Jo

(4.37)

That is, the distribution of the visible targets is complgiedependent of
the distributions of the invisible targets and thus it s&f§ito store only the
states of the visible targets instead of Al targets. The joint distribution
of all targets is still always theoretically Gaussian digttion of dimension
Tro.

3. When a target birth occurs, that is, a new target beconséisl&i(i.e., pro-
duces the first measurement) a new item in the indicator vegtds set
and the corresponding target prior distribution is upddiedialized) by
the measurement. Because we only need to store one possibietation
from a high number of equivalent target permutations, weatththe new
target to the first empty place in the indicator veatgr

4. When a target dies, that is, becomes invisible again,atget distribution
again becomes the prior and the target state is moved to thefehe joint
state vectork;, and indicator vectoe,. The targets in the vectors can be
shifted such that the visible targets always remain in thgirimeng of the
vectors.

5. The target dynamics, target measurements and cluttesuraaents are
modeled in the same way as in the RBMCDA model of Section ahd
thus they fit into the RBPF framework easily.
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6. By constructing a prior model for births and deaths, wetlgetistribution

p(ek | ek_l), (438)

which defines the dynamics of births and deaths. The dateciatiso
model is of the form

pck | ck—mk—1,€k), (4.39)
and thus these two models together give a joint Markov chaidehfor the
indicators:

P(ek, Ck ! Ckfm:kfhekfm:kfl)

(4.40)
= p(ck | Chem:k—1,€xk) Plek | €x—1),

which is the form required by the RBPF model.

Evaluating and Sampling from the Optimal Importance Distri bution

The possible events between two measuremgnts andy, and at the associa-
tion of measuremeny;, are:

1. Targets may die (indicated by elements:gf:

(a) none of the targets dies
(b) one or more targets die

2. y;. is associated with (indicated lay):

(&) clutter
(b) one of the existing targets
(c) anewborn target

Death events are independent of the measurements. Howeérno event fam-
ilies are related such that a new measuremgntan be associated only to the
targets that have not died between the measurenggntsandy.

The model (4.40) assigns unigue prior probabilities to ezdhe finite num-
ber of different events, but the problem is that the nhumbepadsible events
grows exponentially with the number of targets. The comtaoirial problem in
the number of events is solely due to the exponential humbpossible com-
binations of target deaths. There is no combinatorial gnobln target births,
because we can always use the sequential update schemewss@isin Section
4.1.2. However, the purpose of the death model is only to ventize targets with
which no measurements have been associated for a long tiezauBe the death
model is built only for serving this purpose without any pilegs meaning, it is
not desirable to spend most of the computing power on it.
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For the above reason we shall use an approximation where stéctehe
possible number of deaths at each time step to one. This nikanhst each
time step (measurement time) either none or exactly oneeofdigets dies. The
probability of two or more death events between measuresrierdssumed to be
zero. Note that the varying time step size is accounted dyraathe death model
(4.33) and thus the survival rate will change only a bit, seawe assume that
there cannot be more deaths than there are measurementsoulleowercome
this restriction by performing redundant measurement tgpdeeps, for example,
by generating artificial clutter measurements, which hai@ probability one of
being clutter.

Because due to restricting the number of deaths on each tapdte number
of events grows only linearly with the number of targets, vem construct an
approximate prior distribution of births, deaths and a&gams as follows:

1. Enumerate all possible combinations of joint birth, ¢zer one) deaths, and
association events and compute probabilities for eacheo€dmbinations.

2. Normalize the list of events such that their probabaitsim to one.

For each combination of birth, death and association ev@et® is a transition
pair (e1.x—1,c1.k—1) — (e, cx) With a probability given by the above procedure.
That is, we have an approximate representation of the loligioin

plek, ck | €1k—1, Cr:k—1)- (4.41)

The likelihood termp(yy, | ek, cx) can be computed similarly as in the case of a
known number of targets (see Equation (4.19)). By multigfygach of the birth,
death, and association combinations with the measurerietihbod and nor-
malizing, we can form the optimal importance distributiamigarly as in Section
4.1.2.

Data Representation

The algorithm state consists of a setMéfparticles, where each particleat time
stepk contains the following:

(o) el mi . om o m P P Pl
(4.42)
where

. C/(Qmﬂ:k are the data association indicators of the time stepsm +
L...,k.

o e,(j) is the life-indicator, which is a binary vector of lengih, indicating
which of the targets are alive at current time step.
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. m,(;)] P,(j)j are the mean and covariance of the targednd they are condi-
tional on the data association histmé?k.

o w,g) is the importance weight of the particle.

The following information is also implicitly or explicithstored for each particle:
1,79 1)y, (4.43)
where

. T,gi) is the number of targets.

° T,E ! is the time of the last measurement associated with target

° 1d( ) is a unique integer valued identifier, unique over all tasgetall par-
tlcles which is assigned at the birth of the target.

Algorithm Implementation

Similarly to the case of RBMCDA with known number of target®cause the
targets are a priori independent, conditional on data #ssmasc;, and indicators
ey, the targets will also remain independent during trackifithis means that
exactly the same simplifications to RBPF apply to the case ah&nown number
of targets as to a known number of targets.

4.1.4 Simulations
Bearings Only Tracking of a Known Number of Targets

First we shall consider a classical bearings only multiplget tracking problem,
which frequently arises in the context of passive senseking. The simulation
scenario is similar to that was presented in (Sarkka et@04a), but now the sim-
ulation includes clutter measurements and the restriaifoone data association
per target on single time instance is also modeled.

There are two targets on the scene and the dynamics of tavgéh the state
vectorx;, = (zjx yjx Zik Usk). can be modeled with a discretized Wiener
velocity model (Bar-Shalom et al., 2001)

Tjk 1 0 At 0 Tjk—1
Y5k o 0 1 0 At Yjk—1
x| “loo 1 o iip | T (4.44)
Ui k 00 0 1 Yjk—1
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whereqy_1 is the Gaussian process noise with moments

Elqx-1] =0
A0 AP0
0 LA 0 iAg?
Elax 19t 4] = | 1 3 2 q,
! A2 0 At 0
0 A2 0 At

whereq is the spectral density of the noise. In the simulation, thleeq = 0.1
was used for both the targets. The noise in an angular maeasatdrom targeyj
by sensor can be modeled as Gaussian

i
0, = arctan <M> + 7k, (4.45)

where (s, s},) is the position of sensar andr;, ~ N(0,0?) with ¢ = 0.02
radians.

Because the measurement model is non-linear we replacedimeal filter
in the data association algorithm with EKF. The uncertaintgata associations
can be modeled by defining a variahlg, which has the value, = j if the
measurement at time stégs associated with target

The target detection probability is setjig = 80% and the number of clutter
measurements at a single time instance (uniform on rangen]) is Poisson-
distributed with mean 5. The measurement data obtained $iorlated sensors
is shown in Figure 4.4. The initial distribution was on pusposelected such
that all the four crossings of measurements from the twomsnsontain some
probability mass, and the distributions of the targets are-tnodal as shown
in Figure 4.5. The particles in the figure are a random samge/nl from the
posterior distribution estimate, used for visualizing thistribution. The actual
posterior distribution estimate is a mixture of Gaussiahg&tvis hard to visualize
directly. The number of Monte Carlo samples used in the egion method was
100.

Figure 4.6 shows the final tracking result, and it can be deatnin the begin-
ning of the trajectory the posterior distribution is muitiedal. Also the posterior
distributions of the trajectories are a bit wider in the abedween the sensors,
because in that area the position uncertainty is higherardttection of the line
connecting the two angular sensors. Again, particles aeel fisr visualizing
the distribution, although the true posterior distribatiestimate is a mixture of
Gaussians.

Figure 4.7 shows themoothedracking result, which is an estimate where
the distributions of all time steps are conditioned on all theasurements. This
kind of estimate can be easily calculated with (fixed intBrik@lman smoothers
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Figure 4.4: Measurement data obtained from angular sensors.

== True Target 1
== « True Target 2

Figure 4.5: The prior distributions of the targets. Half of the prior pebility mass is
located in the wrong sensor measurement crossings.

(Jazwinski, 1970; Bar-Shalom et al., 2001) and particle atimers (Kitagawa,
1996) also in the Rao-Blackwellized particle filtering cageonditional on all
the measurements the trajectory no longer contains multatities. Also the
position uncertainty on the line connecting the sensorswet.
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== Estimated Target 1
=  Estimated Target 2

Figure 4.6: Filter estimates for each time step. In the beginning of thgttory the

posterior distribution is multi-modal. The multivaluedrcbe seen from the two extra
clouds of particles, which are located quite far away from #ttual target trajectories.
The higher position uncertainty on the line connecting the $ensors can also be seen.

== Smoothed Target 1
= + Smoothed Target 2

Figure 4.7: Smoothed estimates do not have the multivalued in the begjrof the
trajectory, because later measurements have resolvetié pdsition uncertainty on the
line connecting the two sensors is also lower than in the #isimates.

Unknown Number of 1D Signals

The algorithm extension to an unknown number of signals virasilated with
the appearing and disappearing signals as described ia #&hl The true signals
and simulated data are shown in the Figure 4.8. All the sggas# modeled with
discretized white noise acceleration models (Bar-Shalbah €2001)

x 1 At\ [xp_
D-(E) e
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Table 4.2: Signal appearance and disappearance schedule in the 1Briscefith an
unknown number of signals.

Signal ‘Appears Disappears

D)y [t=0 [t=8
@) [t=0 |t=15
2O@) [ t=1 |[t=4
@)y [t=2 |[t=5
2O [ t=55 ] t=10
O [t=6 |t=15

Figure 4.8: Simulated data of the 1D scenario with an unknown numbergofads.

wherex, = xz(t;), &, = @(tx), the sampling period i€\¢ = 1/100, and the
process noise spectral densityyis= 1/10. The signal conditioned measurements
are modeled (and simulated) as measurements of the sigisah pthite Gaussian
noise component

Yk = 29 (tk) + 7, (4.47)

wherer;, € N(0,1/52), given that the measurement is from signaEvery mea-
surement has an equal chance of originating from each ofitlildes signals and
1% change of being a corrupted measurement uniformly diged on the area
[—5,5]. The prior distribution for a new born signal was a Gaussiitridution
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with meanm, = (0 O)T and covarianc®, = diag(100,10). The number of
signals is unknown and the following model for the births dedths is used:

e The prior probability of birthp, = 1/100.

e A priori time to deatht; from the last data association has the gamma
distributiont
tq ~ Gammal(ty | o, 3), (4.48)

with constant parametersandf.

The number of Monte Carlo samples used in estimation Was- 10. Figure
4.9 shows the result of filtering with parameters= 2 and3 = 1. The plotted
result is the hypothesis contained in the particle withdatgveight. As can be
seen from Figure 4.10 there is slight delay after the disafgee of the signals
before they disappear from estimation. The longest deldg the signal that
ends very near the other signal. Also the 1 time step gap idatest signal
is not detected. Figure 4.11 shows the result of applying lmKa smoother to
the filtering result in the particle with the largest weighitis corresponds to the
maximum a posteriori signal estimate. It can be seen thaestiemation result
follows the actual signal paths quite well except for thgtglidelays in signal
disappearance.

Figures 4.12, 4.13 and 4.14 show the results when the diasgpee model
parameters were set to = 2 and = 10, which means that the signals disap-
pear almost ten times faster than in the previous figuresarithie seen that in
this case the signals are estimated to disappear and reagpeavhen there are
random gaps in the signals due to uneven measurement tirissteBult is quite
natural, because the model states that even quite smalligéps measurement
sequence (or actually in the signal) should be interpretedisappearances and
reappearances of the signal.

Tracking an Unknown Number of Targets in 2D

In this section we demonstrate the algorithm in case of amowk number of

targets moving in 2D space. The prior model for the data aasons is defined

such that only zero or one associations with each targetnghesscan is allowed.
The dynamic model for the targets is

Tjk 1 0 At 0 Tjk—1
Yjk o 0 1 0 At Yjk—1
Uj k 00 0 1 Yjk—1

INote that in the article (Sarkka et al., 2006b) the gammaibligton was defined such that the
parametegs is here the reciprocal of the parameter in the article, 1.65.
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Time

Figure 4.9: Filtering result of the 1D scenario with an unknown numbesighals and
parametersx = 2 and = 1. The circles represent the estimated starting points of the
signals.

whereqy_1 is process noise. The model for the measurements

21k =Tk + Tk

(4.50)
2ok =Yk + Ty k

wherer, , 7.1, ~ N(0,02). The sampling period\t = 1/100, process noise
q = 1/10 in  andy directions, and measurement variamée= 1,/202.

The detection probability of each targef = 95% and at each time step a
random number of clutter measurements on &€ 2] x [—2.2] is drawn from a
Poisson distribution with meah The clutter measurement prior is chosen to re-
strict maximum the number of data associations per targatéo The birth/death
model parameters are setfp= 1/100, o = 2 andg = 2. The number of Monte
Carlo samples wa&” = 100.

Figures 4.15, 4.16 and 4.17 show the filtering results, edéoh number of
targets and smoothed results, respectively. Again, atdliglay in the estimated
target disappearance can be seen after the actual disappeabut yet the es-
timated trajectories follow the true trajectories quitellweAlso the estimated
number of targets matches the actual number of targets well.

The restriction of maximum number of data associations aeget is very
important for tracking performance, especially when theant of clutter is sig-
nificant. As we have seen 100 particles is enough for in thisquéar scenario,
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Figure 4.10: Estimated number of signals in the 1D scenario with an unknoumber
of signals and parametess= 2 andj = 1.

when the restriction is used. A quick test shows that if therietion is not used,
even with 1000 patrticles the result is much worse.
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Time

Figure 4.11: Smoothing result of the 1D scenario with an unknown numbesigrials
and parameters = 2 andg = 1. The circles represent the estimated starting points of
the signals.

Time

Figure 4.12: Filtering result of the 1D scenario with an unknown numbesighals and
parametersy = 2 and3 = 10. The circles represent the estimated starting points of the
signals.
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= = True Number of Signals
- Estimated Number of Signals

2 4 6 8 10 12 14
Time

Figure 4.13: Estimated number of signals in the 1D scenario with an unknoumber
of signals and parametetis—= 2 and3 = 10.

Time

Figure 4.14: Smoothing result of the 1D scenario with an unknown numbesigrials
and parameters = 2 andg = 10. The circles represent the estimated starting points of
the signals.
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Figure 4.15: Filtering result of the 2D scenario with an unknown numbetaofiets. The
circles represent the estimated starting points of theadign

5 : : : :
= = True Number of Targets
- Estimated Number of Targets
4+t r .
I
I
3 - i
2 - 4
1
0 I I I I
0 1 2 3 4

Time

Figure 4.16: Estimated number of targets in the 2D scenario with an unkrmawwmber of
targets.
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Figure 4.17: Smoothing result of the 2D scenario with an unknown numbedangfets.
The circles represent the estimated starting points ofitreats.
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4.2 Spread of Infectious Diseases

This section considers the application of continuousrdiscoptimal filtering and
smoothing methods to estimation and prediction of spreadfettious diseases.
The dynamics in this application are determined by the oowotiis-time model
for the infection dynamics and the measurements are thededgmumbers of
infected or recovered/dead individuals.

4.2.1 Classic Epidemic Model (SIR)

The classic model for the dynamics of infectious diseast®iSIR model (Ker-
mack and McKendrick, 1927; Anderson and May, 1991; Murr&23t Hethcote,
2000)

dX/dt = —bY X/N, X(0) = Xo, (4.51)
dY/dt =bY X/N — g, Y (0) = Yy, (4.52)
dZ/dt = g, Z(0) = Zo, (4.53)

where

e X(t) is the number of susceptibles at timehat is, the number of individ-
uals that can become infectely > 0 is the initial number of susceptibles.

e Y (t) is the number of infectives, who are capable of transmittiveginfec-
tion. Yy > 0 is the initial number of infectives.

e Z(t) is the number of recovered or dead individuals, which catveoin-
fected anymoreZ; > 0 is the initial number of individuals in this class.

e N =X(t)+Y(t)+ Z(t) is the (constant) total number of individuals.

e b is the contact rate, which determines the rate of indivisluabving from
susceptible class to infectious class.

e g is the waiting time parameter such thialy is the average length of the
infectious period.

Dividing the equations by the population sixeyields

dz/dt = —byz, z(0) = xo, (4.54)
dy/dt =byz —gu, y(0) = yo. (4.55)

>The model is called the SIR model, because the varialilés, Y (¢), and Z(t) are often
denoted a$5(t), I(t), andR(t), respectively.
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wherex(t) = X(t)/N, y(t) = Y(t)/N, andz(t) = 1 — z(t) — y(¢). Without
loss of generality we shall assum@) = 0 from now on.

The analysis of the asymptotic behavior of solutions of tifferdntial equa-
tions results in the following useful indicators, which dasused for monitoring
the behavior of the model (see, e.g., Hethcote, 2000):

e The contact number = b/g is the number of contacts of a typical infective
during the infectious period.

e The replacement number:(¢) determines if there will be an epidemic or
not. If ox(t) < 1 then the number of infectives will decrease to zero as
t — oo. If ox(t) > 1 then the number of infectives will first increase up to
a maximum and then decrease to zero.

1000
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Figure 4.18: The data from Bombay plague 1905-1906 and the fit from (Keknaa
McKendrick, 1927).

Example 4.1(Bombay Plague 1905-1906)n the article (Kermack and McK-
endrick, 1927) the accuracy of the SIR model was demondtiaimg the data
from Bombay plague during the period December 1905 to JuB619he data
consists of number of deaths on each week. The model was skeatedh by fitting
the parameters of an approximate solution of the diffeadm®iijuations to the data.

The result was 17
7 =890 sech?(0.2t — 3.4). (4.56)
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which is an approximation to the number of deaths on each wEké& data and
the fitted approximation are shown in the Figure 4.18.

4.2.2 Stochastic Epidemic Model

The SIR model is only an approximation to the reality and $amses completely
homogeneous mixing of individuals, that is, there are ndiapdependencies
in infections. Because of this homogeneity, the dynamidb@iystem are deter-
mined by the time-invariant (although non-linear) diffetial equations. In reality
there exists spatial dependencies in infection rates.isrstiction these unknown
spatial dependencies are modeled by letting the contacbewm= b/g depend
on time in an unknown manner.

Stochastic Model of Dynamics

Because the contact number= b/g is constant in the ideal model, it could be
sensible to model it as a Brownian motion with a small ditbmstoefficient. How-
ever, because the parameters required to be positive, it is more conveniently
modeled as exponential of Brownian motion. The resultinglsastic differential
model is
dz/dt = —g exp(N) yx
dy/dt = g exp(\)yx — gy (4.57)
d=¢'2dp,
whereg(t) is a standard Brownian motion.
The Kolmogorov forward (or Fokker-Planck) equation cop@sding to the
stochastic model is
dp 0 0 1 9%p
- = — A —[- A —q—, (4.58
51 = o 9 PN yep] + ay[ g exp(\)yxp+gypl+ 50555, (4.58)
which is the equation for the probability densit(t), y(t), A(t)) = p(z, y, A, t).

Prior Distribution

It is unreasonable to assume that the initial conditiof® andy(0) are knows.
Instead, assume that the information on the initial coadgican be represented
through a joint distributiorp(z(0),y(0)). A suitable initial distribution forz(0)
andy(0) is
y(0) ~ Beta(ay, By), (4.59)
z(0) =1 —y(0), (4.60)

wheres3, > a.

3The initial conditionsz(0) can be assumed to be zero without loss of generality.
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Poisson Measurement Model

Because both in the classical SIR model and in the stoctaiiticnodel the values
X(t),Y(t)andZ(t) are not restricted to integer values, they cannot be ineéegr
as counts as such. A sensible stochastic interpretatidmesgtvalues is that they
are the average numbers of individuals in each class andctbalaanumbers of
individuals are Poisson distributed with these means.cBlyi either the number
of newly infected or the number of recovered/dead indivisaae recorded, which
correspond to the following models:

e The number of newly infected individuatg on time period[t;_1, tx] has
the distribution

plex | {z(7),y(7) : 0 <7 < tx}, N) = Poisson(cg | N ¢x), (4.61)

where
¢k = w(tkfl) — .%'(tk) (4.62)

e The number of the recovered/dead individudjson time period[ty_1, t1]
has the distribution

p(dy | {z(7),y(7) : 0 < 7 < t}, N) = Poisson(dy, | N 6;),  (4.63)

where
O = 2(tp—1) — 2(ty) + y(te—1) — y(tr). (4.64)

Unknown Population Size N

The model is not practical yet, because the population ize assumed to be
known. In practice, the exact value is unknown in all but dated scenarios.
However, there often exists prior information, which canused for setting an
appropriate prior distribution for the population size.
The prior information on the population siZé can be modeled as a Gamma
distribution
p(N) = Gamma(N | o, Ho). (4.65)

with some suitably chosety and 3;. Note that this model does not restrist
to integer values, but it does not matter, becaisé only a model parameter
and there is no mathematical reason to restrict it to intggkres. This particular
choice of the form of prior distribution has the advantags thallows closed form
marginalization of the population size as will be seen latdsing continuous
distributions as approximations to discrete distribusios common practice in
Bayesian analysis (Gelman et al., 1995).



176 Case Studies

4.2.3 Estimation of the Disease

Next the implementation of the SIR filter to the stochastiR &lodel is consid-
ered. The filter is constructed by the following steps:

1. A Gaussian approximation based filter (EKF) is constiaifte the case of
known N. This filter is later used as the importance process in SIR.

2. The equations for Rao-Blackwellization of the unknowpudation size are
derived.

3. The equations for the scaled importance process andkgigtiod ratio are
derived and using these, the final SIR filter is constructed.

Gaussian Approximation

The extended Kalman filter cannot be applied to the stoch&®R model as
such, because the model is not a non-linear model driven lng$an noise, but
instead the distribution of measurements is explicitly «@aussian. However,
it is possible to form a Gaussian approximation to the fitigrsolution, which
results in an algorithm that is much similar to the extendednian filter. The
Gaussian approximation is constructed by assumingthistknown.

Assume that the state is

z(tk)
x, = | y(tx) (4.66)
A(tk)-
and approximately
p(Xp—1|crp—1) = N(xp—1 |my_1,Pp_y). (4.67)

The continuous-discrete EKF or UKF prediction can be nowddee forming a
Gaussian approximation to the predicted distribution

p(xk | €rp—1) = N(xg | my, Pro). (4.68)

If now C is a matrix such that(¢) = C x(¢) and the distribution of measurement
is
¢ ~ Poisson(N z(tx—1) — N x(tg)), (4.69)

then the conditional mean and variance:pfire
Eleg |z] = N z(tg—1) — N x(tg)
=NCx;_1— NCxy (4.70)
Var[cg | x] = N x(tk—1) — N x(tg)
=NCx,_1 — NCxy. 4.71)
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It is now possible to form a Gaussian approximation to thagyas distribution
of x;, as follows:

e Assume that the variance of is approximately given as
Var[cy |z] ~ NCmy_; — N Cm, . (4.72)
wherem,,_; andm,_ are the estimated and predicted means of the state.
e Assume that the mean is approximately given as

E[Ck |x] ~NC myg_1 — NCXk. (4.73)

e If we introduce an artificial measuremetjt = ¢, — N Cmy_; then the
measurement model can be approximated by the linear Gaussiasure-

ment model
C;g = Hk Xk + Tk, TE ~ N(O7 Rk), (4.74)
where
R, =NCmy;_; —-C m; (4.75)
H,=-NC. (4.76)

The Gaussian approximation
p(xx | c1.1) = N(x | mg, PEk). 4.77)

can be obtained by applying the Kalman filter update steukia approximate
model (4.74)
The Gaussian approximation corresponding to the measutemedel

dy ~ Poisson(dy | N z(tp—1) — N x(tx) + Ny(tk—1) — Ny(tr)), (4.78)

can be formed in analogous way except now the m&irig replaced with a matrix
D such thate(t) + y(t) = Dx(t).

It would be also possible to estimate the unknownby using Gaussian
approximation based filtering. The idea is to simply appdm unknownN
into the state and treat it as a state component having nondgaa Gaussian
approximation can be then formed in a similar manner as irctise of known
N. However, this kind of joint Gaussian approximation doeswork well in
practice and for this reason the importance process wagnhode formed using
the Gaussian approximation where the population size wasrasd to be known.
An estimated value ofV was used as the known value in approximation. Note
that in the Gaussian approximation case it is not possiblaaminalize out the
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parameterN, because the conjugacy of distributions disappears wherssgm
approximations are employed.

Preliminary experiments using EKF and UKF predictions stdvhat the
EKF works better with this model. Both the EKF and UKF havéiitg prob-
lems, but the stability problems of UKF are more severe nikstyl due to the
type of approximation used. The EKF probably works bettecduse the predic-
tion uses the deterministic equations for mean predictidrich do preserve the
normalizations and other restrictions better than theiptieth of UKF.

Rao-Blackwellization of Unknown Population SizeN

The model for the measurementis of the form
p(c1 | ¢1, N) = Poisson(cq | N ¢1), (4.79)

whereg; is a deterministic function of histories afandy.

The population sizéV can be marginalized out (Rao-Blackwellized) from the
filtering model such that there is no need to sample it. Asstimaewe have just
obtained the first measuremant Integrating the joint distribution of; and NV
over N gives

pler| 1) = /p<c1,N\¢1>dN

= /Poisson(cl | N ¢1) Gamma(N | «g, By) AN (4.80)

= Neg-bin(c; | ao, Bo/¢1),

which means that treatingy as an unknown variable with Gamma prior turns
the measurement model from Poisson to negative binomiath @ien ¢, the
posterior distribution ofV is as

p(N |1, ¢1) = Gamma(N [ e1 + oo, d1 + o). (4.81)

Thus, given the measurement and ¢, the distribution ofV is still a Gamma
distribution. This updated distribution @f can be now used in place of the prior
and the procedure can be applied recursively.

The result above can be generalized to an arbitrary/steq the more general
recursions are:

e Givenp(N |c1.5-1, P1.k—1) = Gamma(N |ag_1, Ox—1) and the value of
o1, the marginal distribution of, is given as

plck | p1:x) = Neg-bin(cy | ag—1, Bp—1/dk)- (4.82)
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e The posterior distribution olV is then given as

p(N | e1:k, ¢1.1) = Gamma(N | ¢ + ag—_1, dk + Br—1)- (4.83)

The recursion above can be used for forming a Rao-Blackzeellparticle filter
for the stochastic model. The result applies to the measemesy,, in an analo-
gous manner:

e Givenp(N |dy.x—1,01.k—1) = Gamma(N | ai_1, k1) and the value of
0, the marginal distribution ofl, is given as

p(dy | $1.6) = Neg-bin(dy, | ax—1, Br—1/0k). (4.84)

e The posterior distribution ol is then given as

P(N | dy.g, p1:1) = Gamma(N | di, + ag—1, 0k + Br—1)- (4.85)

Continuous-Discrete SIR Implementation

The approximate Gaussian solution can be used as the imperf&ocess in a
continuous-discrete sequential importance sampling.fltecause the population
size can be easily estimated from the current values;ofnd 5, the Gaussian
approximation can be formed by assuming thais known.

Assume that the state vector is defined as

xp = | y(te) (4.86)

Whenx,_1 = x(tx—1) is given, by using the extended Kalman filter like al-
gorithm it is now possible to form a Gaussian approximatiorthe distribu-
tion of x(¢;). If the approximate marginal distribution of the variab\¢f) is
N(ms , P 1) then it is possible to form an importance process for it as

m3k — T3k [ P3 j;
7’ ) —’ . 7
ds = ; dt + tdﬂ, (4.87)

whereAt = t;, — t,_1. The Algorithm 3.29 can be now used for performing the
sequential importance sampling. Because the stochasiatieq of \(¢) has no
drift term, the likelihood ratio has now the following singplorm:

— _ 2
2(t:) = exp (7@% ) (3 1) - o) - 5 ) (4.89
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The continuous-discrete SIR filter can be now implementefblésvs. Given a
set of weighted particles

{w? 2Dy D A 6D 89 =1 ), (4.89)

representing the distribution of population at time stgp; the SIR filter pro-
cesses the measuremept(or d;) as follows:

1. For each particle, use the Gaussian approximation bagedfér forming
Gaussian approximation to the joint posterior distribatad state variables
(D (t,), y@ (tx), A (t;,))T given the measurement.

2. Form a predicted particle set by simulating the scaledoimamce process

(4.87) fromt;_; to t; using the Gaussian approximations above and using

each particle as a starting point. This results in the ﬂastik:c,(f) , y,(:), )\,(f) }.

3. Compute the likelihood ratio by Equation (4.88) using shene simulated
Brownian motions as in simulation of the importance proassve. This
results in likelihood ratiosz'”.

4. Compute weights as follows (if measurement,is
wy) w2 Neg-bir(er [ i, 7, /6”),  (4.90)
whereqzs,(f) = :::,(f) - x,(ﬁl or as follows (if measurement i,):
w o w? |z Neg-bindy, | o\” |, 87 6\, (4.91)
whered\” = 2@ (1, 1) — 2@ () + y® (tp_1) — yO (tz).

5. Update the population size parameters foi &l measurement igy):

ag) = agll + Ck

. . . (4.92)
0= B2+ o)
or (if measurement idy,):
o =l +di (4.93)

50 = 0, o)

6. Resample by deleting/duplicating particles proposibfnto the weights.
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4.2.4 Results
Bombay Plague

The continuous-discrete SIR filter described in this sectias applied to the
classical Bombay plague data shown in Figure 4.18. The EKEd&aussian
approximation was used as the importance procesd @l particles was used.
The prior distribution for proportion of initial infectiewas Betél, 100). The
population size prior was Gamrfi®, 0.001). The waiting time parameter was
assumed to bg = 1. The prior distribution forA(0) wasN(In(5), 4). The diffu-
sion coefficient of the Brownian motion wags= 0.001. Between measurements
the EKF predictions were integrated using 5 steps of fourtteloRunge-Kutta
integration and the importance processes and likelihotidsravere simulated
using the stochastic Runge-Kutta method.

15

— Mean x(t)
—— Mean y(t)

Mean z(t)
—  99% Quantile of x(t)
-+ 95% Quantile of x(t)
—  99% Quantile of y(t)
95% Quantile of y(t) | 4
99% Quantile of z(t)
95% Quantile of z(t)

05

Figure 4.19: Filtered estimates of values oft), y(¢), andz(t) from the Bombay data.

The final filtered estimates of the historiesudt), y(¢), andz(¢) are shown in
Figure 4.19. These estimates are filtered estimates, thaeig are conditional to
the previously observed measurements only. That is, tihe&st on week is the
estimate that could be actually computed on wieeithout any knowledge of the
future observations. The estimates look quite much as whatdwbe expected.
The proportion of susceptibles decreases monotonicalyntimber of infectives
increases up to a maximum and then decreases to zero. Howmas estimated
values are not very useful themselves. The reason for tisais for example,
the valuex, which is the remaining value of susceptibles in the end dépemn
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the choice ofy and other prior parameters. That is, these estimated vaheasot
absolute in the sense that their values depend heavily goritreassumptions.

1400

© Measurements
K&M Fit
1200 - Filtered Estimate
+ Filtered 99% Quantiles
= Filtered 95% Quantiles

1000

800

600 [

400

200

Figure 4.20: Filtered estimate oflZ/dt from the Bombay data. The estimate of (Ker-
mack and McKendrick, 1927) is also shown for comparison.

Much more informative quantity is the valugZ/dt, whose filtered estimate
is shown in Figure 4.20. The classical estimate presentédeérmack and McK-
endrick, 1927) is also shown. The SIR filter estimate can ke $e differ a bit
from the classical estimate, but still both the estimate& Iguite much like what
would be expected. Note that the classical estimate is b@satl measurements,
whereas the filtered estimate is based on observations npattetibat time only.
That is, the filter estimate could be actually computed onkwebut the classical
estimate could not.

The filtered estimates of valuest) are shown in Figure 4.21. The value can
be seen to vary a bit on time, but the estimated expected vatlnains on the
range[1.4, 1.8] all the time. As can be seen from the figure, according to the da
the value ofs(¢) is not constant. This is not surprising, because the speaatic!
other unknown effects are not accounted at all in the clakSikR model and these
effects typically affect the number of contacts.

A very useful indicator value is(t) z(t), whose filtered estimate is shown in
Figure 4.22. In the deterministic SIR model with constarthis indicator defines
the asymptotic behavior of the epidemic (see, e.g., Heth@®00): Ifox(t) < 1
then the number of infectives will decrease to zere as co. If oz(t) > 1 then
the number of infectives will first increase up to a maximund dmen decrease
to zero. As can be seen from the Figure 4.22 the filtered esinfahe indicator
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Figure 4.21: Bombay plague: Filtered estimate of valug).
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Figure 4.22: Bombay plague: Filtered estimate of valug@) o (t).

value goes below 1 just after the maximum somewhere betwesmkawl5-16,
which can be seen in Figure 4.20. That is, the estimated \&lu€t) z(¢) could
be used as an indicator, which tells if the epidemic is overatr

Using the particles itis also possible to predict aheaddduture and estimate
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Figure 4.23: Bombay plague: Filtered estimate of time of maximum of epide

the time when the maximum of the epidemic will be reached. 83tamate com-
puted from the filtering result is shown in the Figure 4.23 alkg the estimates are
filtered estimates and the estimate on wee&uld be actually computed on week
t, because it depends only on the counts observed up to that fline filtered
estimate can be seen to quickly converge to the values neaothect maximum
on weeks 15-16. Itis interesting to see that the predicauite accurate already
around the week 10, which is far before reaching the actualman. If this kind
of prediction had been done on, for example, week 10 of theadis, it would
have predicted the time of actual epidemic maximum quiteiately. After the
maximum has been observed, the estimate quickly conveogesdnstant value,
which according to the Figure 4.20 is likely to be near the tmaximum.

A very useful estimate is also the expected total number aftdecaused by
the epidemic. This can be computed from the filtered estisnatel the result
is shown in Figure 4.24. In the beginning the estimate is \diffyuse, but after
maximum has been reached the estimate converges near teetoc@lue. The
estimate is a bit less than the observed value long befoohirgathe maximum,
which might be due to existence of two maximums in the obskdata (see,
Figure 4.20). Because the second maximum is not predictetidoynodel, the
extra number of deaths caused by it cannot be seen in thecposdi.
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Figure 4.24:Bombay plague: Filtered estimated of number of deaths.
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4.3 CATS Time Series Prediction Competition

This section presents the winning solution to the time seguiediction competi-
tion, the CATS benchmark (Lendasse et al., 2004), which wgenized as a spe-
cial session of the IJCNN 2004 conference. The originaltamiuvas presented
in article (Sarkka et al., 2004b) and extended results in{&éet al., 2006a). The
solution is based on the classical Kalman smoother withsevatidated process
noise variances.

4.3.1 CATS Benchmark

800
600 | .
400 | / \ .
5 200¢ \ .
C
2
0 0 / |
200 A
-400 | -
_600 1 1 1 1
0 1000 2000 3000 4000 5000

Time

Figure 4.25: The CATS benchmark time series. The purpose of the competitias
to predict the missing data (marked with arrows) such thatrttean squared error is
minimized.

The goal of the CATS competition (Lendasse et al., 2004) wawdvide a
new benchmark for the problem of time series prediction armbmpare different
methods and models that can be used for the prediction. Tm®ged time series
is theCATS benchmar{Competition on Atrtificial Time Series).

This artificial time series with 5,000 data was given. Wittlinse 100 values
were missing. These missing values were divided in 5 blocks:

e elements 981 to 1,000;

e elements 1,981 to 2,000;
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e elements 2,981 to 3,000;
e elements 3,981 to 4,000;
e elements 4,981 to 5,000;

The purpose was to predict the 100 missing values based attibedata. The
performance criterion was the mean square error, which wagpated on the 100
missing values. The time series is shown in Figure 4.25.

Relationship of Gaussian Process Regression and Kalman téting

The continuous-discrete Kalman filter usBaussian processess its dynamic
models. Gaussian processes are the most common signal sxindeassical

continuous-time signal processing, especially in comeations applications.
The theory of Wiener filtering (Wiener, 1950), which is thedhnetical basis for
optimal signal detection and demodulation (Van Trees, 1988ls with signals
that can be modeled as stationary Gaussian processes. rkfliang (Kalman,

1960b) and Kalman-Bucy filtering (Kalman and Bucy, 1961) barconsidered
as extensions to Wiener filtering theory, in which also ntatignary Gaussian
process models can be used. Stochastic control theory @¢&yti982b) builds
on the grounds of Kalman-Bucy filtering by including a cotiéoaside with the
optimal state estimator.

Gaussian processes, Gaussian random fieldare also used in spatial and
spatio-temporal modeling (Christakos, 1992; Banerjeé £2@04), and in general
regression and classification problems (O’Hagan, 1978jaffik and Rasmussen,
1996; Barber and Williams, 1997; MacKay, 1998; Neal, 199Qithermore, the
functional prior implied by an MLP neural network model cenyes to a Gaussian
process as the number of hidden units increases, provigedhite MLP weight
priors are chosen suitably (Neal, 1996).

The relationship between the Gaussian processes usedr@ssam and the
Gaussian processes used in filtering is that continuowsedés filtering can be
thought of as regression from timeo partially observed states(t), which we
observe through the measuremen(s). The Gaussian process dynamic model is
the prior for the functions — x(¢). The optimal filter solves the state estimates
recursively at each time instance, and it can be considéredrn-line learning
solution to the Gaussian process regression problem. Hawtie filter provides
the on-line estimates only forward in time, not at arbitréirpe instances, and
to compute the state estimates at arbitrary time instantoessinoothing step
is required. The Gaussian processes used in regressionninatidimensional
time-variables (i.e., regressors) and for this reason #reyoften called Gaussian
random fields.
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4.3.2 Description of the Model
The Long Term Model

For long term prediction, a linear dynamic model is likelyli® a good approx-
imate model because if we ignore the short term periodicitghe data, the
data could be well generated by a locally linear Gaussianga®with Gaussian
measurement noise. The data seems to consist of lines wdttesly changing
derivatives. Thus, it would be reasonable to model the déve as Brownian
noise process, which leads to a white noise model for thenskderivative. Using
higher derivatives does not seem useful, because the congsts of a set of
straight lines rather than parabolas or other higher orderes.

The dynamic model is formulated as a continuous time modael,then dis-
cretized to allow for a varying sampling rate, that is, potidn over the missing
measurements. The selected dynamic linear model for tlgeteym prediction is
the stochastic differential equation model

d?x(t)

oz = w(t), (4.94)

wherew(t) is a continuous-time Gaussian white noise process with mgsne

Ew(t)] = 0

Elw(t) w(t +7)] = ¢°6(7). (4.95)

This can be written in equivalent discrete form as

T, 1 At Tro1 4 -1 )
: = : + ’ ; 4.96
<$k> <0 1 ><fﬂk—1> (qg,kl (499
where the process noisg; = (¢f ,_; ¢ ,_,)", has zero mean and covariance

At3/3  At?/2
Q1= ( A;?Z tAt/ >q:”, (4.97)

and whereAt is the time period between samples ajtddefines the strength
(spectral density) of the process noise. The measuremeafelriso

yp =z + 15, 8~ N(0,02). (4.98)

A quick testing of the long term model produces a smooth cawveshown in
Figure 4.26. It can be seen that the locally linear dynamidehmay be a bit too
simple, because the residual signal still seems to cont@ticeable periodicity.
This periodicity can be best seen from the residual autetaiion in Figure 4.27.
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Figure 4.26: Data 400-500 (black) and the result of prediction with thegleerm model
(gray).

The Short Term Model

The short term periodicity of the residual time ser{es : k = 1,..., N} can be
modeled with a time varying autoregressive (TVAR) model $i\end Harrison,
1997), in which as an extension to conventional AR models/éda1996), the
weights are allowed to vary according to a Gaussian randolk mvadel

Wi = Wg_1 + vzr

ar
€ = Z Wi kCk—i + T -

7

(4.99)

The process noise?" has zero mean and covarian@ = ¢ I. The weight
vector w;, is estimated from the known part of the residual time serigfie

measurement noise has a Gaussian distributién~ N(0, 2, ). A second order
AR-model was chosen such that the weight vector was two difoeal,

wy, = (le’f) . (4.100)

Wak

After the TVAR-model weights have been estimated from ttsidgal time
series data, the final estimation solution is obtained biynesing the short term
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Figure 4.27: Autocorrelation in the residual of the long term predictiondel.

signald;, from the model

dy = Z w; pdj—; + v}
: (4.101)
ep = dy + 1}, T'ZNN(O,O’%),

where the process nois€ has variancg®. The final signal estimate is then given
asiy, = &x+dy, Wherey, is the estimate produced by applying Kalman smoother
to the long term model, and, is produced by the short term model.

In practice only the distributions of weight vectaxs. are known, not their ac-
tual values, and in order to use the model (4.101) we woule baintegrate over
these distributions at every time step. This integratios agproximated by using
the most likely estimate of the weight vector time serieliis single estimate
regarded as being known in advance. In classical stafisiigaal processing this
estimate is calculated by linear least squares (see, e.gyed11996). Because
here the weight vector is allowed to vary in time, in this cése corresponding
estimate is produced by applying the Kalman smoother to theein(4.99).

The Prediction Method

The long term prediction is done in two steps:

1. Run theKalman filterover the data sequence and store the estimated means
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and covariances. Predict the missing measurements sucthéh@iltering
result contains estimates also for the missing steps.

2. Run theKalman smootheover the Kalman filter estimation result, which
results in the smoothed (MAP) estimate of the time seriekidiicg the
missing parts.

The short term prediction consists of four steps:

1. Run theKalman filterover the residual sequence with the model (4.99) in
order to produce a filtering estimate of the TVAR weight vestoPredict
the weights over the missing parts.

2. Run theKalman smootheover the Kalman filter estimation result above,
which results in a smoothed (MAP) estimate of the weight tsages in-
cluding the missing parts.

3. Run theKalman filter over the residual sequence with the model (4.101)
in order to produce a filtering estimate of the short term quéidity. The
periodicity is also predicted over the missing parts.

4. Run theKalman smootheover the Kalman filter estimation result above,
which results in a smoothed (MAP) estimate of the periogitine series
including the missing parts.

Due to the Gaussian random walk model of the weights the skaont model po-
tentially has a large effective number of parameters. A fnepror minimization

procedure with respect to the noise parameters (e.g., Maritikelihood) would

lead to a badly over-fitted estimation solution. By applysrgss-validation the
predictive performance can be maximized and the overfiltiag be avoided.

4.3.3 The Original Results
Selection of Measurement Noises

The long term measurement noise strength can be approxirbgtiooking at a
short time period of the curve. Assuming that it was appratad it with a dy-
namic linear model, we could approximate the standard tewiaf the model’s
measurement noise by looking at the strengths of the rdsidughe selected
variance of the noise was2 = 10%, which fits to the observed residual as can
be seen in the Figure 4.26 quite well.

The choices of the measurement noises both in the long anshthre term
models can be done, for example, by visual inspection, tsecthe exact choice
of the noise strengths is not crucial. In fact, the choicesdoet matter at all
when the cost function of the CATS competition is considet@etause in this
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case the selection of measurement noise strength is degemadehe selection
of the process noise strength in all the models. The proces® rstrength is
selected based on cross-validation, which implicitly eots also the choice of
the measurement noise strength. By visual inspection tit@bdel measurement
noise for the TVAR-estimation model (4.99) wag = 1.

Because we are only interested in the missing parts of dadeefiction with
the model (4.101), the best way to do this is to follow the meawments exactly
whenever there are measurements and use the TVAR-modetddiction only
when there are no measurements. This happens when the emeastirnoise
level is set to as low as possible and the process noise is agnhbderate value.
The choice for the measurement noise level in model (4.1@:]5)5@/: 107,

Cross-Validation of The Process Noises

The process noise parametefsandq®’ were selected using a decision theoretic
approach by minimizing the expected cost, where the costifamwas the target
error criterion. The expected cost can easily be computedrbgs-validation,
which approximates the formal Bayes procedure of computiegexpected costs.

Cross-validation methods for model selection have beepgs®ed by several
authors: for early accounts see (Stone, 1974; Geisser,) ¥8®bfor a more re-
cent review see (Gelfand et al., 1992; Shao, 1993). BernandoSmith (1994)
and Vehtari and Lampinen (2002) discuss how cross-vatidagpproximates the
formal Bayes procedure of computing the expected utilitysihg a model for
predictions.

Based on the cross-validation, the best process noises were

q* =0.14

¢ = 0.0005. (4.102)

These values were based on cross-validation over a rangaluwds; which was
selected in advance. However, it later turned out that Hmige could have been
selected better. As already discussed in this section, rilyerequirement for the
selection of the process noig8 is that it should be high enough. Because the
measurement noise was chosen to be very low, our choiceRvasl.

The Original Prediction Results

Figure 4.28 shows the estimated TVAR-coefficients for eank tnstance. It can
be seen that the weights vary a bit over time, but the perigiart term process
seems to be quite stationary.

Figures 4.29, 4.30, 4.31, 4.32 and 4.33 show the resultsedligting over the
missing intervals. It can be seen that on the missing inketha short term model
differs from the long term model only near the measuremendstae combined
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Figure 4.28: Estimated filter coefficients for the TVAR-model.

estimate is closest to the long term prediction in the middlée prediction pe-
riod. The result is intuitively sensible, because when veegaming away from the
measurements, we have less information about the phase tddal periodicity,

and it is best just to guess the mean given by the long term Inode

The following mean squared errors were obtained by the ndetho

L [ 1ooo 2000 3000
_ a2 a2 a2
Ey = 100 [ Z (ye — )" + Z (ye — )" + Z (ye — 9¢)
=981 t=1981 t=2981
4000 5000
DI DD <yt—gt>2] = 408
t=3981 t=14981
1 [ Looo 2000 (4.103)
Er=35 D=9+ Y, (w—d)
=981 t=1981
3000 4000
+ 3 -+ > (yt—z)tf] = 346.
#=2081 +=3981

The error £; was the actual CATS competition objective, and the apprafeh
scribed in this section gave the lowest error in the comipeti{Lendasse et al.,
2004). The second error criterion was used in further amalgs the different
methods in (Lendasse et al., 2004).
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Figure 4.29: The original prediction over missing data at 981 — 1000. Tiag/ dine is
the true signal, the dashed line is the long term predic&sult, and the black line is the
combined long and short term prediction result.

4.3.4 Improved Results
Extended Cross-Validation of Process Noises

Further analysis of the cross-validation results of thgiogl prediction compe-
tition indicated that if we had used a larger range of possitdise levels in the
cross-validation, we would have obtained a better prestiatesult. Extending the
cross-validation to zero noise levels reveals that basati@nross-validation the
following parameters are better than the original ones us#lte competition:

T'=0.14
qzr Y (4.104)
The difference to the original parameters is that the TVARJIgi@rocess noise
level is exactly zero, not only almost zero as in the origmablel. This means that
it is better to use a stationary AR-model, not a time-varyiigymodel in predic-
tion. Fitting the AR model to the data with the cross-val@hhoise parameters
resulted in the following AR-parameters:

wy = 0.6089

(4.105)
wy = —0.1517.
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Figure 4.30: The original prediction over missing data at 1981 — 2000. gita line is
the true signal, the dashed line is the long term predic&sult, and the black line is the
combined long and short term prediction result.

The error criteria are also better than in the original pcédn:

L [ 1000 2000 3000
El:ﬁ[Z(yt—@t)z‘F Z (ye — 50)° + Z (ye — 1)
=981 t=1981 #=2081
4000 5000
+ > =)+ Y (- gt)2] = 381
+=3981 t=4981
| [ 1000 2000 (4.106)
Ey = 20 Z (ye — ) + Z (ye — 9e)°
=981 t=1981
3000 4000
+ > =)+ Y (- gt)2] = 312.
1=2981 t=3981

The Improved Prediction Results

Figures 4.34, 4.35, 4.36, 4.37 and 4.38 show the resultsatfigiing over the
missing intervals with the improved method. The differeicthe result is that in
the improved prediction the AR model seems to get slighthg leight and the
long term prediction dominates more.
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Figure 4.31: The original prediction over missing data at 2981 — 3000. gitag line is
the true signal, the dashed line is the long term predic&sult, and the black line is the
combined long and short term prediction result.

4.3.5 Summary of Prediction Results

In this section the winning solution to the CATS time seriesdiction competi-
tion has been presented. The solution is based on applyingldlssical Kalman
smoother method to estimating the long term and short teaitisstal models for
the CATS benchmark time series. The good prediction perdoca is likely due
to that the long term prediction gives a very good overallragination of the
signal and the short term prediction catches the local gdmity ignored by the
long term model.

It has also been shown that the original prediction resudts lee improved
by simplifying the model, namely by removing the time-deg@mce from the
AR model. This model choice would have turned out also in ttgireal cross-
validation if a bit larger parameter range in the crossdation had been used.

Although all the used models were linear (and dynamic) inrgathey seem
to model this non-linear time series well. The good perfarogais not sur-
prising, because the long term Gaussian process modelysnvech related to
the Gaussian processes which have obtained good resulesy@siBn non-linear
regression. The short term prediction model is also a Gangsocess model, but
of the type which is more common in the signal processingednt

It could be possible that by using some kind of non-lineatestpace models
(filtering models) the prediction results would be bettart lb is very hard to
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Figure 4.32: The original prediction over missing data at 3981 — 4000. ditag line is
the true signal, the dashed line is the long term predic&sult, and the black line is the
combined long and short term prediction result.

judge what kind of model really is the best. Using more compfedels would
restrict the generality of the approach and even though spmeific models could
improve the results with this particular time series, finggenerally better models
than the classical Gaussian process models is difficult.
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Figure 4.33: The original prediction over missing data at 4981 — 5000. dit&y line is
the true signal, the dashed line is the long term predic&sult, and the black line is the
combined long and short term prediction result.
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Figure 4.34: The improved prediction over missing data at 981 — 1000.
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Figure 4.35: The improved prediction over missing data at 1981 — 2000.
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Figure 4.36: The improved prediction over missing data at 2981 — 3000.
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Figure 4.37: The improved prediction over missing data at 3981 — 4000.
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Figure 4.38: The improved prediction over missing data at 4981 — 5000.



Chapter 5

Conclusions and Discussion

5.1 Conclusions

This thesis has presented new algorithms for non-linearraimdGaussian con-
tinuous-discrete (Bayesian) optimal filtering and smawghthat is, for recursive
Bayesian estimation of states of stochastic differentiplagions, which are ob-
served through discrete-time measurements. The claghieaties of discrete-
time and continuous-discrete-time optimal filtering haee first presented in
Bayesian terms and new algorithms have been developed tooore limitations

of the classical continuous-discrete methods. New algmst have also been
developed for the continuous-time filtering models.

The novel continuous-discrete unscented Kalman filter amabsher are con-
tinuous-discrete versions of the unscented Kalman filtdrsanoother, where the
continuous-time prediction is performed using a novel tnr@us-time unscented
transform based approximation method for stochastic miffgal equations. In
this thesis, the equations for the new filter and smoothee eeen derived and
using simulated data, the performance of them has beenimemally compared
to other filters and smoothers. Also the equations of the Inoyatinuous-time
Kalman-Bucy filter have been derived and experimentally mared to the ex-
tended Kalman-Bucy filter.

The continuous-discrete unscented filter and smoother @od glternatives
to the extended Kalman filter and smoother in models, whexeléitobian and
Hessian matrices of the drift terms are not available. Ugu#the estimation
performance is quite much the same with both the approadhgsyith some
models the unscented Kalman filters and smoothers giverbregalts (and in
some cases, not). However, in addition to the availabilityavivatives, according
to the simulation results there does not seem to be cleargegéidelines on
which should be chosen for a given filtering problem.

This thesis has also presented new class of methods fomoons-discrete
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particle filtering and smoothing. These methods are basdthosformations of

probability measures by the Girsanov theorem. The new ndsthge applicable
to a general class of models, in particular, they can be egpth many mod-

els with singular dispersion matrices, unlike many presigwproposed measure
transformation based sampling methods. The new methodslean illustrated

in simulated problems, where both the implementation tetdithe algorithms

and the simulation results have been reported. The methmds dlso been ap-
plied to estimation of the spread of an infectious diseasedban counts of dead
individuals.

The new continuous-discrete unscented Kalman filter as agethe classi-
cal continuous-discrete extended Kalman filter can be usedbfming impor-
tance processes for the new continuous-discrete partitdesfi This way the
efficiency of the Gaussian approximation based filters cacopebined with the
accuracy of the particle approximations. Closed form meaiigation or Rao-
Blackwellization can be applied if the model is conditidpabaussian or if the
model contains unknown static parameters and has a suiabjegate form. In
most cases Rao-Blackwellization leads to significant irm@neent in efficiency
of the patrticle filtering algorithm.

This thesis has also presented a new patrticle filtering bafgatithm for
tracking an unknown number of targets. The algorithm is tamse constructing
a Rao-Blackwellized particle filter for the probabilisticoael constructed for the
target states, the data associations and the birth and pleathsses. Simulations
have been used for demonstrating the performance of thethigo It seems that
particle filtering is well suited to multiple target trackinbecause it allows flexible
modeling of data associations, appearances and disappeargthe targets. Rao-
Blackwellization significantly reduces the dimensionabif the parameter space
that needs to be sampled and improves the efficiency of thielpdilter. Approx-
imate Rao-Blackwellization with EKF or UKF can be used whangingle target
tracking sub-problem is solvable with EKF or UKF.

In this thesis, also a new stochastic version of the SIR mimdehodeling the
spread of infections diseases is presented. This modeleid as the dynamic
model in a Rao-Blackwellized particle filter, which is usem £stimating the
spread of the disease and its parameters from measured nuibdeaths or
infected individuals. The performance of the algorithm &rsbnstrated using
the classical Bombay plague data. In this case, the pakiaded methods have
the advantage that it is easy to compute predictive quasitiich as estimates of
the time when the maximum of the epidemic will be reached atidhates of the
expected total number of deaths. Due to the recursive natutiee algorithm,
the estimates can be computed at each day of the epidemitardtimates can
be updated recursively when new data arrives without neepeidorming all the
previous computations again.

The continuous-discrete Kalman filter and smoother hava bpplied to the
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CATS benchmark time series data with very good results. Thgnal solution,
which won the CATS competition that was organized as a spsession of the
IJCNN 2004 conference and a slightly improved solution Haeen presented in
this thesis. These results show that Kalman filtering basetthadls, even though
they are linear methods, can sometimes be used for modedindimear looking
time series and the results can be better than the resulgs aidre complicated
non-linear methods.

5.2 Practical Considerations

Although in theory particle filters with sufficient number pérticles should al-
ways be better than Gaussian approximation based methodsilinear filtering
problems, the classical methods should also always bealteBte general guide-
line is that the extended Kalman filter should always be appio the filtering
problem first. It is almost always possible to approximate mearize the filter-
ing model such that EKF or a similar algorithm can be appllédot, some of the
model parameters can be assumed to be known and the EKF castée with
simulated data.

The unscented Kalman filter can also be used in place of thegBK it has the
advantage that it can be implemented without computing yhebslic Jacobian
(and Hessian matrices) of the drift and measurement modetitins. The UKF
solution can also be used for validating (debugging) the HEiplementation,
especially if the derivative computations are very congikcd and thus error-
prone. The approximation of the UKF is closer to the secomtoEKF than
to the first order EKF and for this reason it is a good alteweatd EKF in cases,
where a second order approximation would be needed but tesiddematrices
are very hard to compute.

When the EKF/UKF solution works, it is a good idea to impletreebootstrap
filter based solution. If the EKF/UKF based solution has begpiemented to
a simplified model, where some of the parameters are assumbd known,
the bootstrap filter can also be implemented to this simplifreodel first. The
bootstrap filter with a sufficient number of particles shogide results that are
comparable or better than the results of the EKF/UKF. Attlaes results of the
bootstrap should not be significantly worse.

If the model is conditionally Gaussian or if there are unknaostatic param-
eters, where Rao-Blackwellization can be applied, thistmdone next. Imple-
menting the Rao-Blackwellization to the bootstrap filteowd not be a difficult
task. Itis good idea to Rao-Blackwellize as many parametgsossible because
closed form computations are always more efficient than §agp

When the bootstrap filter works, a better importance prooess be con-
structed with help from the EKF/UKF based solution. At thiage also other
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possible enhancements to the particle filter can be appliéeé. results after the
enhancements should be the same as with the bootstrap Hilteless particles
should be needed for the same accuracy. At this stage it estaisheck that the
final particle filter solution is also in practice better théwe EKF/UKF solution.
Sometimes this is not the case.

5.3 Future Work

As in the discrete-time case, the explicit covariance foohshe continuous-
discrete and continuous-time unscented Kalman filters arubthers are not very
stable numerically. The numerical stability could be immo by using square
roots of the covariances instead of the plain covariancéss dould be achieved
by formulating the differential equations of the filters @rrmns of the sigma-points
instead of the means and covariances.

In the filtering models of this thesis the dispersion matltix) is allowed to
depend on time only, and not on the state, that is, the digpemsatrix cannot
be of the general fornL(x,¢). It would be possible to generalize the continu-
ous-discrete (and continuous-time) unscented Kalmandieations to allow the
more general dispersion matrices. This would allow modebf, for example,
exponential processes, which are common in financial agtjics. However,
in many cases it is possible to convert a model with state ribbgre dispersion
matrix into a model with state independent dispersion mdlyia suitable change
of variables.

In this thesis the importance processes used in contindisggete particle
filtering examples are very simple and better alternativefiniely exists. In prin-
ciple, the optimal importance process in the continuogsréie particle filtering
case would have the same law as the smoothing solution. Tamstructing
the importance process based on the smoothing solutiosaithstf linearly inter-
polated filtering solutions, as in this thesis, could leadntare efficient particle
filtering methods. In some cases it could be possible to nartsh process, which
would have exactly the same law as the optimal importanceggss

A weakness in the continuous-discrete patrticle filteriragrfework is that the
importance process has to be scaled before sampling. htigeathis restricts
the possible forms of importance processes to those hakimgame dispersion
matrix as the original process. It could be possible to mpotlieé equations such
the scaling of the importance process would not be needed.

The continuous-discrete particle filtering framework abbk also extended
to cover the case of time dependent dispersion maifiy. This extension should
be quite straightforward, because the Girsanov theorenbeapplied also in this
time-varying case.

The continuous-discrete sequential importance resamptamework could
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be extended to the case of stochastic differential equatiltiven by more gen-

eral martingales, for example, general Lévy processes asichmpound Poisson
processes. This would allow modeling of sudden changegimais. This exten-

sion could be possible by simply replacing the Brownian oroin the Girsanov

theorem by a more general martingale.

It could be possible to generalize the continuous-discsetguential impor-
tance sampling framework presented in this thesis to coatie-time filtering
problems. Then the extended Kalman-Bucy filter or the urtecedalman-Bucy
filter could be used for forming the importance process amddttual filtering
result would be formed by weighting the importance processgges properly.

The contributions of this thesis are more on the theoresadg than on the
practical side of optimal filtering and for this reason marftte experimental
data in the thesis are simulated. In the future it would ber@#ting to see more
applications of the algorithms to real world problems. Canigbns to alternative
approaches would be also interesting, even with simuladtal d
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Appendix A

Additional Material

A.1 Properties of Gaussian Distribution

Definition A.1 (Gaussian distribution)Random variablex € R™ has Gaussian
distribution with meann € R"™ and covariancd € R™*" if it has the probability
density of the form

1

NexIm, P) = g o0 <—%(x —m)T P (x — m)) (A1)

where|P| is the determinant of matrile.

Lemma A.1 (Joint density of Gaussian variabled) random variablesx € R”
andy € R™ have the Gaussian probability densities

x ~ N(x|m,P)

(A.2)
y|x~N(yHx+u,R),

then the joint density of, y and the marginal distribution of are given as
N m P PHT
Y Hm+u|’ |HP HPH? +R (A3)
y~NHm+u, HPH” +R).

Lemma A.2 (Conditional density of Gaussian variable#f)the random variables
x andy have the joint Gaussian probability density

o@D w
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then the marginal and conditional densitiesxodndy are given as follows:

A)

N(a,
y~N( B)
x|y ~N@+CB!(y—b),A—CB'cT) (A.5)
y|x~Nb+CTA ' (x—a),B-CTA'C).

A.2 Cholesky factorization

The Cholesky factor of the symmetric positive definite maRiis a lower trian-
gular matrixA such that
P=AAT. (A.6)

The matrixA can be computed by the Cholesky factorization algorithre,(sey.,
Golub and van Loan, 1996) presented below.

Algorithm A.1 (Cholesky factorization) The Cholesky factoA of matrix P can
be computed as follows:

1. procedure cHoOL(P)

2: fori<—1...ndo

3 Aii =\ Pi = Yopei A,

4 forj«—i+1...ndo

5: Aji = (Pji = Ly Aji Aik) [Aui
6: end for

7 end for

8 return A

9: end procedure

A.3 Derivations of Filters and Smoothers

A.3.1 Derivation of Kalman-Bucy Filter

In this section the equations of the Kalman-Bucy filter anéved. The equations
are stochastic differential equations for the mean andr@wvee of the Gaus-
sian filtering distribution of the linear Gaussian contingdgime filtering model
(3.315).

The linear state dynamics

dx = F(t)xdt + L(t)dg, (A7)

where3(t) is a Brownian motion with diffusion matriQ.(¢) can be discretely
approximated as
Xy =Xp1 +Fxp 16t +qp1, (A.8)



A.3 Derivations of Filters and Smoothers 209

whereq;_; ~ N(0,L Q.L” 6t). The Kalman filter prediction equations for this
model are
m, =my_1 +Fmit
P, =(I1+Fd&t)P, I+Fit)! +LQ.L” ot (A.9)
~Pi_1+FP,_16t+P,_ 1 FT 6t + LQ.LT ét,

where we have retained only the first order terms. The measnemodel
dy = H(¢t) xdt + V() dn, (A.10)

wheren(t) is a Brownian motion with diffusion matriR.(¢) can be similarly
approximated as

z6t = Hx 6t + v, (A.11)

wherez(t) = dy(t)/dt andv ~ N(0, VR, VT 4t). The corresponding Kalman
filter update equations are

Sy =HP, H' 6t* + VR. VT 6t
K, =P, H 6tS;!

m;, = m; + K;, [zét—Hétmﬂ
P, =P, —K;S; K}.

(A.12)

The Kalman gain can be written as
K, =P, H 6tS;*
=P, H' 6t HP, H' 6> + VR, VT 51)! (A.13)
=P, H' (HP, H' 6t + VR. V)™,
and the second term in covariance update can be written as
K Sy Ki =P, H 6t HP, H' 6> + VR, V' 5t)"' 6t P, H
=P, H' (HP, H' 6t + VR. V') "' P, Hit (A.14)
=K, (HP, H' 6t + VR, V)KT 4t.

If we now substitute the dynamic model we get

m; =my_; +Fmdt + K [z — Hmﬂ ot
P.=P,_1+FP,_16t+P,_1F 6t + LQ.L” 6t (A.15)
- K, (HP, H' 6t + VR. VK] 6t.
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By rearranging

mg — Mg
ot
P, —Pj_

ot

=Fm+ K, [Z—Hm;]

— F Pk,l + Pk,l FT + L Qc LT (A16)
- Ky (HP, H' 6t + VR, V))K].

In the limit 5t — 0 we get the result in the Theorem 3.8.

Another way of deriving the Kalman-Bucy filter equations asconvert the
Wiener-Hopf equation (Wiener, 1950) into differential etjons for the sufficient
statistics (see, e.g., Van Trees, 1968). That is the darivéihat was presented in
the original article of Kalman and Bucy (1961).

A.3.2 Derivation of Kalman-Bucy Smoother

In this section we derive the optimal smoother to the filgrproblems where
the state dynamics are linear Gaussian and the filteringhiibns are Gaussian.
This kind of filtering problems are the continuous-discri§@man filtering prob-
lem and the continuous-time Kalman-Bucy filtering problefus, the optimal
smoother is the same for both of these filtering problems.

For the discretized dynamic model

Xkp+1 = Xg + F(tk) Xk ot + qk, (A17)

whereq;, ~ N(0,L(t;) Q(t) LT (t;) ot), the first two discrete-time smoothing
equations can be written up to first orderiinas
m/;-i-l =my + F(tk) my, Ot
me1 = T+ F(tp) 0t) Py T+ F(tp) 0t)" + L(ty) Q(tx) LT (tx) 6t (A.18)
~Pp+ F(tk) P, ot + Py, FT(tk) ot + L(tk) Q(tk) LT(tk) ot.
By the normal differentiation rules, the differential ofetigain (when P is fixed)
can be written as

O[Ckl =PLOAL P — P, P, ' 0P, P!, (A.19)

and thus up to first order it the gain is
Cr~I1+P,F(ty) P, ot — PP, [F(ty) Py ot
+PrFT (1) 6t + L(ty) Q(t) L7 (tx) 6t P},
=1+P,F(t,) P} ' ot (A.20)
— [F(ty) Py 6t + PR FT () 6t + L(ty) Q(ty) LT (tg) 6t] P
=1 — F(ty) 0t — L(ty,) Q(tx) L7 (tx) P 6.



A.3 Derivations of Filters and Smoothers 211

The smoothed mean is given as
mj} = my + Cp [mj ;| —m;_ ]
~my, + (I - F(ty) 6t — L) Q(¢) LT (1) P, ' Dt)
x [mjy —my — F(tg) my 0t] (A.21)
~mj ., — F(ty) mi 6t — L(ty) Q(t) LT (8) P mj,, 6t
+ L(t) Qte) L7 (t) Py ' my, 6t
where we have again retained only the first order terms. Thm#mad covariance
is given up to first order as
P; =P, +Cy[P},, — P, ,|C{
~ P, + (I— F(tg) 6t — L(ty) Q(te) L" (t) P ' 6t)
x [Piy — Pr — F(tp) P ot — P FT (1)) 6t — L(ty,) Q(tx) L (1) 6t]
x (I—F(ty) 6t — L(ty) Q(tx) L (t) Pyt 61)T
~ Piiy — F(tk) Piy 6t — Lty) Q(tx) LT (1) P PRy 6
— Pi F () 6t — Pi o Pt Lite) Q(tx) L7 (1) 6t
+ L(t) Q(tr) L (1) 6t.
(A.22)

Rearranging and dividing byt gives
m?s —m?d
e = F(ty) mj; + L(tx) Q(tx) L (4) P mi,
— L(tx) Q(tx) LT (t) Py my,
= F(t) Pipy + L(te) Qtr) LT (1) P Py + Py FT (1)

+ P L(ty) Q(te) LT (t:) Pyt — Lite) Q(t) L7 (2),
(A.23)

P}y, — P
ot

and in the limitét — 0 we get the result in the Algorithm 3.18.

A.3.3 Derivation of Unscented Kalman-Bucy Filter

In this section we give the details of derivation of the uméed Kalman-Bucy

filter equations in Theorem 3.9, which are the differentiqi&ions for the un-
scented transform based approximation to the mean andiaongarof the filtering

distribution of the non-linear continuous-time filteringodel. As opposed to the
derivation of Kalman-Bucy filter in Section A.3.1 this deation explicitly uses

the integral equation interpretation of the Itd stochadifterential equations in

the continuous-time filtering model.
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The continuous-time filtering model

dx(t) = £(x(t),t) dt + L(t) dB(t)

dy(t) = h(x(t),t)dt + V(t)dn(t), (A.24)

where3(t) andn(t) are independent Brownian motions with diagonal diffusion
matricesQ.(¢) andR.(t) can be interpreted as a pair of stochastic integral equa-
tions such that for abt > 0 we have

x(t + 6) — x(t) = / (b)) i+ / L) B (A.25)

t+0t

t+6t
y(t+5t) —y(t) = /t h(x(t),0)dt+ [ V@) dn().  (A26)

For givenét the dynamic model (A.25) is discrete and the UKF predictitaps
can be written ds

A(t) = chol(P(t)) (A.27)
X(t)=[m(t) --- m(t)]

+Vc[0 A(t) —A(t)] (A.28)

X(t+6t) = X(t) + /t o £f(X(t),t)dt (A.29)

m~ (t + 6t) = X(t + 0t) Wy, (A.30)

~ ~ t+ot
P (t+6t) = X(t +6t) WX (t +6t) + / L(t) Q.(t) LT (t)dt. (A.31)
t
Eliminating the sigma pointX (¢ + 4t), from equations (A.27) — (A.31) gives

m~ (t + 0t) = X(t) wy, + [/:Mt £(X(1),1) dt] Wi

= m(t) + utJr&f(X(t),t) dt} Won, (A.32)

INote that the equations should be interpreted as implitétirl equations for the solution,
because the integrals 3f(¢) cannot be evaluated before knowikXg¢).
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and

P (t+dt) = [X(t)—i—/tH& f(X(t),t) dt] W [X(t)+/tt+& f(X(t),t) dt]T

t+6t
+ /t L(t) Q.(t) LT (t) dt
=P(t)+ X(t) W [ /t o £(X(t),1) dt] '
- [ /t o f(X(t),1) dt] W XT(t)

n [ /t o F(X(t), 1) dt] \U { /t o F(X(t), 1) dt]

t+6t
- / L(t) Q.(t) LT (¢) dt. (A.33)

T

If we assume that we actually measure the difference
Ay(t+dt) =y(t+dt) — y(t), (A.34)

the UKF update step can be written as

B(t + 6t) = chol(P™ (¢t + dt)) (A.35)
X (t+6t)=[m (t) -+ m (t)]
++/c [0 B(t+4dt) —B(t+6t)] (A.36)
AY (t+0t) = / o h(X™(t),t)dt (A.37)
p(t+ 6t) = AY (t + 0t) wy, (A.38)
S(t + t) = AY (t + 0t) W AY T (t + 6t)
- o V() R.(t) VI (t)dt (A.39)
C(t+dt) = X~ (t + 6t) W AY T (t 4 dt) (A.40)
K(t + 6t) = C(t + 6t) S~ (t + 6t) (A.41)
m(t + 6t) = m~ (t + 6t) + K(t + ot)
X [Ay(t + ot) — pu(t + ot)] (A.42)

P(t+ 6t) = P~ (t + 6t)
— K(t + 6t) S(t + 6t) KT (t + 6t). (A.43)
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If we eliminate the predicted mean and covariance we get

m(t + 6t) = m(t) + [ /t o £(X(t), 1) dt} Wi

VKt 4 6t) | Ay(t + 5t) — ( / o h(X~(t),1) dt) Wi
(A.44)
t+6t T
Pt 4 6t) = P(t) + X() W { / f(X(t),t)dt]
+ [ / o f(X(t),t)dt} w X7 (1)
t+6t t+6t T
4 [ / " f(X(t),t)dt} W [ / ” f(X(t),t)dt}
st t
+ / L(t) Q.(t) LT (t) dt
~K(t + 1) { [ / o h(X~ (%), 1) dt}
x W UH& h(X~ (1), 1) dt]T
+ o V() R.(t) VI(t) dt} K7 (t + ot). (A.45)
Whenét is small, the drift terms become
t+6t
/ £(X(t), t)dt = £(X(t),t) 6t + o(5t) (A.46)
/ X (1), 1) dt = h(X (1), 1) 5% - o(61). (A.47)

The following terms vanish completely:

[/tt+6t f(X(t)ﬂf)dt} W [At+6tf(X(t),t)dt] = o(0t) (A.48)

{ / ot h(X (1), 1) dt} W [ / o h(X ™ (t), 1) dt]T =o(6t),  (A49)
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and the diffusion and gain terms become

o V() Re(t) VI () dt = V(t) Re(t) VI (1) 6t + o(0t) (A.50)

/ o L(t) Q.(t) LT (t) dt = L(t) Q.(t) LT (t) 6t + o(6t) (A.51)
K(t + 6t) = X (t + 6t) WhT (X~ (t),1)
X [V(t) R.()VT ()] +o(5t)/5t. (A52)

Substituting these into the mean and covariance equatiges g

m(t + 6t)
=m(t) + F(X(t), 1) Wy, 6t
+ K(t + 6t) [Ay(t + 6t) — (X (t),t) Wy, 6t + o(6t) (A.53)
P(t + 6t)
=P(t) + X(t) WET(X(t),t) 6t
+£(X(t),t) W XT () 6t + L(t) Q.(t) LT (t) ot
—K(t+6t) V() Re(t) VI (1) KT (¢ + 6t) 6t + o(dt). (A.54)

where
Ay(t+6t) =y(t+dt) —y(t). (A.55)

Rearranging, dividing byt and taking the limitdt — 0 gives the equations
(3.321) and (3.320) in the Theorem 3.9. If the stochasticessy(t) is not
differentiable, the limit has to be taken without dividingthwét, and the result
is the integral form stochastic differential equation @2Bfor the mean. Note
that the equation (3.322) has been rearranged such thattbalifferential and
stochastic differential parts of the equation have beelectald together.

A.3.4 Derivation of Unscented Kalman-Bucy Smoother

The continuous-time stochastic differential equation
dx = f(x,t)dt + L(t) dg, (A.56)
can be approximated up to first orderdihby a discretized dynamic model

Xp1 = X + F(xp, 1) 0t + g, (A.57)
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whereq, ~ N(0,L(t) Q(t) LT () 6t). UKF prediction equations for this
model can be written as

m, = my + £(Xy, tg) Wi, 0t
P, ., =Py + (X, t) WXL 6t + X, WL (X, 1) 0t
+ L(tx) Q(tx) L7 (1) 6t
=Py + 0Py, dt,
where we have introduced the new variable
P, = £(Xy, b)) W XY + Xy W ET (X, 1) + Lite) Q(ti) L7 (1), (A.58)
and the cross-covariance xf andxy 1 is
B, = X W (X;, + f1(Xy, tx) 6t)
=X, WX, + X, W (X, 1) 6t (A.59)
=P, + X, WL (X, 1)t

As in the continuous-discrete Kalman smoother case, we eayhe differential
formula in Equation (A.19), and up to first orderdhthe gain is

Cr~P. P+ X WET(Xy, ty) Pyt 6t — P P [F(Xg, ) W X7
+ X5 W (X, ) + L(te) Q(tr) LT (1) Pyt 6t
~1+ X, W (X, ) Pyt ot
— £(Xp, tr) WXL P16t
— X W T (X, t5) Pt 6t — Lity) Q(tx) LT (1) Pt 6t
~ 1 —f(Xp, tp) WXL P ot — L(ty) Q) LT (t5) Pt 6t
=1+ 0Cy dt,

k+1

(A.60)
where
OCy, = —F (X, i) WXL Pt — L(ty) Q(te) LT (t5) PRt (A.61)
The smoothed mean is given as (up to first order)
mj, = my, + Cy, [mj ; —m;_ ]
=my, + Cy, [my, — my — £(Xy, tg) Wy, 5]
~my + (I+0Cy 6t)[my_ | —my — £(Xy, ) wpy, 0t]
~mj | — f(Xy, ) Wy, 6t + 0C,my_; 6t — 0C my, 6t
=my | — £(Xy, tg) Wy, 0t
— £(Xp, ) WXL Pt mg 6t — Lity) Q(ts) LT (4) Pt mj 4 0t

+ £(Xy, tr) W X] Pyt my 6t + L(t) Qtx) LT (1) Py my 6t
(A.62)
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The covariance can be written as (up to first order)

Pi =P+ Cp(Piyy —P,,)CF
=P; + (I+ 0C 6t) (Pi,, — Py — 0P 0t) (I + OCy t)
~Pj., — 0P 0t + 0C. P, 6t — OC; Py 6t
+P; ., OCL 6t — P OC} ot
~Pi — f( Xy, t) WXE P PS, 6t
—L(ty) Q(tx) LT (ty) P Py, 0t — Py P X WET (X, 1) O
— P P L(t) Qi) LT (1) 0t + L(tx) Q(t) L7 (t4) 0t

which gives

m; . —m;j
—RHL R (X, i) Wi Ot

ot
+ £(Xy, tr) WXL P mg 6t
+L(ty) Qtx) LT (t) Pt mi 4 8t
— £(Xp, tr) WXL Pt my, 0t
= L(t) Q(t) L7 (t4) Py my 6t
P, — P _
+T = £(Xy, ty) W X[ P, Py

+ L(tx) Qtr) LT (12) P Pl
+ P P X W T (X, 1)
+ P P L) Q(tk) LT (1)
— L(t) Q(tx) L (1),

and in the limité¢t — 0 we get the result in the Algorithm 3.25.
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for Wiener velocity model, 87
Kalman smoother
continuous-discrete |, 89
continuous-discrete Il, 90
continuous-time, 132
discrete-time, 57
for Gaussian random walk, 59
for Wiener velocity model, 90
Kalman-Bucy filter, 132
Kalman-Bucy smoother, 132
Kolmogorov forward equation, 38

Likelihood distribution, 25
Loss function, 26

MAP-estimate, 27

Markov chain Monte Carlo, 29
Markov process, 33

Martingale, 33

Matrix fraction decomposition, 43
ML-estimate, 24
MMSE-estimate, 27

Monte Carlo method, 28

Multiple target tracking, 142

Natural filtration, 32

Noisy physical pendulum problem, 120

Non-linear transform
linear approximation, 61

matrix unscented transform, 66

guadratic approximation, 62

unscented transform, 65

Optimal filtering
continuous-discrete, 14, 81, 82
continuous-time, 20
discrete-time, 9, 52

Optimal importance distribution, 72

Optimal smoothing
continuous-discrete, 15, 85
continuous-time, 21
discrete-time, 11, 53

Particle filter
continuous-discrete |, 105
continuous-discrete I, 111
discrete-time, 71
for Ben&s-Daum problem, 106
for noisy pendulum, 112

Particle smoother
continuous-discrete, 113
discrete-time, 72

Posterior distribution, 25

Prior distribution, 25

Rao-Blackwellized Monte Carlo data as-

sociation, 146, 153
Rao-Blackwellized particle filter
continuous-discrete, 115
discrete-time, 73
for noisy pendulum, 117
Rao-Blackwellized particle smoother
continuous-discrete, 119
discrete-time, 76
Rauch-Tung-Striebel smootheeeKal-
man smoother
Reentry vehicle tracking, 124

Sequential importance resamplirgge

Particle filter

Simple process, 35

State space model
continuous-discrete, 80
continuous-time, 131
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discrete-time, 50
Stochastic differential equation

Unscented Kalman-Bucy smoother, 134
Unscented prediction equations, 134

Benes, 41
definition, 36
discretization of linear, 44
discretization of LTI, 45
importance sampling |, 104
importance sampling I, 109
Ité interpretation, 36
likelihood ratio I, 101
likelihood ratio Il, 107
linear, 42
linear approximation, 92
linear time invariant, 43
Monte Carlo simulation, 45
guadratic approximation, 92
removal of drift, 41
Stratonovich interpretation, 37
unscented approximation, 95
weak solution, 40

Stochastic epidemic model, 174

Stochastic process, 32

Stochastic Runge-Kutta method, 46

Stratonovich
formula, 38
integral, 36

Unscented transform
classical form, 65
continuous-time, 95
matrix form, 66

Utility function, 26

Weak solution, 37

White noise, 32

Wiener processseeBrownian motion
Wiener velocity model, 45

stochastic differential equation, 37

Strong solution, 37

Time varying autoregressive model, 189

Unscented Kalman filter
continuous-discrete, 98
continuous-time, 133
discrete-time, 68
for Ben&-Daum problem, 98

Unscented Kalman smoother
continuous-discrete, 99
continuous-time, 134
discrete-time, 69
for Ben&s-Daum problem, 99

Unscented Kalman-Bucy filter, 133
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