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ABSTRACT
This study addresses the problem of k-connectivity of a wire-
less multihop network consisting of randomly placed nodes
with a common transmission range, by utilizing empirical
regression models for the threshold range for k-connectivity
when the nodes are uniformly distributed in a square re-
gion. The cases k = 1, 2, 3 are considered: with k = 1,
the models are based on known asymptotic results to assure
correct limiting behavior; with k = 2, 3, an attempt is made
to generalize these results and the models are built accord-
ingly. Verification with independent simulation data shows
all the models to be able to predict k-connectivity with good
accuracy under this network model.

Categories and Subject Descriptors
C.2.1 [Computer-communication networks]: Network
architecture and design—wireless communication, distributed
networks, network topology ; G.2.2 [Discrete mathemat-
ics]: Graph theory; G.3 [Probability and statistics]: dis-
tribution functions, correlation and regression analysis; I.6.6.
[Simulation and modeling]: Simulation output analysis

General Terms
Reliability, Performance, Design, Theory

Keywords
Ad hoc networks, Boolean model, connectivity, empirical
models, geometric random graphs, sensor networks

1. INTRODUCTION
The problem of connectivity in wireless multihop net-

works has been widely studied and can be formulated as
follows. Suppose that two network nodes can establish a
direct link between them if and only if they are each within
the other’s transmission range (this is commonly referred to
as the Boolean network model). Suppose further that all
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the nodes have a common transmission range r (or, more
generally, limit for the range). Assuming that there are n
nodes randomly located in some region, how are the number
of nodes and the transmission range (relative to the dimen-
sions of the region) related so that the resulting network
topology is connected with high probability?
Equivalently, we may try to find the probability that the

transmission range r exceeds the threshold range for connec-
tivity R for a random set of nodes. The threshold range is
defined as the smallest value of r for which a given set of
nodes is connected, and it is equal to the greatest edge length
in the minimum spanning tree of the nodes when the length
of an edge is defined as the Euclidean distance between its
endpoints (see e.g. [8]; hereafter, we will refer to graphs with
such edge length definition as Euclidean graphs). The con-
nectivity problem therefore reduces to knowing the distri-
bution of the greatest edge length of the random Euclidean
minimum spanning tree: the probability of connectivity of a
random network with transmission range r equals the value
of the corresponding cumulative distribution function at r.
The distribution in question is known asymptotically (as

the number of nodes n tends to infinity), for uniformly dis-
tributed points in a square domain. The asymptotic distri-
bution has been derived by Penrose in [4] and is presented
in the next section. In contrast, no exact analytical results
exist for finite n. There is hence a gap in the knowledge of
the distribution of R that prevents accurately predicting the
connectivity of this network model with a finite number of
nodes. The importance of knowing this distribution in the
physically realistic non-asymptotic regime has been recog-
nized by e.g. D’Souza et al. in [2]: studying the distribution
by simulation when the nodes are uniformly distributed in
a square region, their aim was to see whether determining
the distribution with various n had predictive power, by
modelling the behavior of the mean of the distribution as a
function of n.
The estimated parameter characterizing the model for the

mean in [2] was the asymptotic value of R as n tends to
infinity while the node density remains fixed. On the other
hand, it has been shown already by Philips et al. in [7] that
with a constant node density, R2 must grow logarithmically
with the network area - and hence the number of nodes - and
therefore does not have a finite limit. Thus, the model used
in [2] is in contradiction with known asymptotic results. As
it happens, the purely empirical models in our earlier work
[3] have the same shortcoming, as noted therein.
In this study, we have the same objective of predicting

the distribution of R by extrapolation from simulation data
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as in [2] and [3], but we take the known asymptotic results
in [4] as the starting point. Keeping to the case of uni-
formly distributed nodes in a square region, we focus on
the convergence of individual quantiles of R to the asymp-
totic distribution. Furthermore, we attempt to generalize
this treatment to k-connectivity: a k-connected network re-
mains connected after the removal of any k − 1 nodes. The
notion of the threshold range can be readily generalized to
k-connectivity: in general, the threshold range can be de-
fined as the minimized greatest edge length of a spanning
k-connected Euclidean graph, i.e., a k-connected Euclidean
graph containing all the nodes in a given set. Accordingly,
we denote the threshold range for k-connectivity with Rk,
making R1 the threshold range R discussed above. Also, for
later reference, we denote by Mk the greatest edge length of
the k-nearest neighbor graph, which is the Euclidean graph
where each node is connected by an edge to the kth nearest
other node.
One supplementary remark is in order. While the goal in

the analytical treatment of k-connectivity in this paper is
to derive an approximation to the asymptotic distribution
of Rk, k > 1, the distribution has recently been derived
exactly by Wan and Yi in [9]. Although it is straightforward
to take this exact distribution as the basis of our regression
models, we became aware of these results regrettably late
with respect to the publication schedule of this paper to
make the required modifications.
This document is organized as follows. The next section

deals with modelling R1. The attempt to generalize the
treatment to Rk, k > 1, is made in Section 3. Section 4
demonstrates the ability of the models to predict indepen-
dent simulation results and at the same time presents one
possible application scenario for the models. Section 5 con-
tains discussion of our models and of the generality of ap-
plicability of the used approach. Finally, Section 6 presents
some concluding remarks.

2. QUANTILE MODELS FOR R1

2.1 Preliminaries
Let us use the following results given by Penrose in [4]

and [6], respectively, as the starting point.

Theorem 2.1. For n points placed uniformly at random
on the unit square, let M1 denote the longest edge-length of
the nearest neighbor graph on these points. Then

lim
n→∞

P[nπM2

1 − logn ≤ α] = exp(−e−α), α ∈ R. (1)

In other words, asymptotically nπM2
1 − logn is Gumbel-

distributed. As remarked by Penrose, the qualitative mean-
ing of this theorem is that the asymptotics of M1 are as if
the nearest-neighbor distances of the points were indepen-
dent. The validity of this statement will be demonstrated
in detail in Section 3.1.

Theorem 2.2. For n points uniformly randomly distributed
on the unit cube in d dimensions, with d > 1, let Rk (re-
spectivelyMk) denote the minimum r at which the graph, ob-
tained by adding an edge between each pair of points distant
at most r apart, is k-connected (respectively, has minimum
degree k). Then P [Rk = Mk]→ 1 as n→∞.

In the context of our model, this theorem means that when
the number of nodes is large enough, then with high prob-
ability, if one starts to increase the common transmission
range of the nodes from zero, the network becomes k-connected
as soon as the last node with only k−1 direct links vanishes.
Thus, Rk and Mk have the same asymptotic distribution,
and therefore R1 can be substituted for M1 in Theorem 2.1.
Fixing the right hand side of (1) to a desired probability

q (which implies that α = αq = − log(− log q)) then allows
us to write

lim
n→∞

P

[

R1 ≤

√

logn+ αq
nπ

]

= q. (2)

This means that as n tends to infinity, the q-quantile of R1

- denote this by r1(q, n) - tends to the square-root expres-
sion in (2), which contains the q-quantile αq of the Gumbel
distribution present in (1). This gives us important prior
information for finding a model for r1(q, n) with the correct
asymptotic behavior: interpreting αq as the limit of some
function αq(n), we assume that

r1(q, n) =

√

logn+ αq(n)

nπ
(3)

for all n. It then remains to find an empirical model for
αq(n) = nπr2

1(q, n)− logn using quantile estimates r̂1(q, n)
obtained by simulation.

2.2 Building the model
The sample size in the simulations was 5000 for each n,

with n ranging from 5 to 350. Because the quantile esti-
mates are obtained from simulation data with limited sam-
ple sizes, the model is initially built for the 50% quan-
tile so that the most accurate estimates are used. Fig-
ure 1 shows the quantile estimates and the corresponding
estimates α̂0.5(n) plotted against n. We know now that
limn→∞ α0.5(n) = α0.5 = − log(log 2). We first concentrate
on the tail of α0.5(n) to find the rate at which it decays to-
wards this limit; therefore, we observe instead the deviation
from the limit, α̃0.5(n) = α0.5(n) − α0.5, and use only the
data points forming the tail, i.e. those from n = 25 onwards.
When plotted on a log-log scale, the tail seems to decrease

linearly, which implies a power-law decay. This is verified
by the residuals (the differences between the data points
and the fitted model) of all the data points with respect to
such a tail model, which are plotted in Figure 2(a). It then
remains to find a supplement to the model for the low-end
data points. Figure 2(b) shows the logarithms of the first
residuals after their signs have been changed. The linear
trend implies that the low-end supplement could be of the
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(a) r̂1(0.5, n)
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(b) α̂0.5(n)

Figure 1: Values obtained from the 50% quantile
estimates of R1
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Figure 2: Residuals of the model fitted for the tail
of α̃0.5(n)

form −c exp(−dn).
This proved to be a fair assumption: Figure 3(a) shows

the final model of the form

αq(n) = an−b − c exp(−dn) + αq, a, b, c, d > 0 (4)

(where, for now, q = 0.5), and Figure 3(b) its residuals,
obtained after all the parameters have been re-estimated
using nonlinear regression to eliminate the effect of consid-
ering only part of the data points in fitting the piecewise
models. In particular, the residuals seem to be evenly scat-
tered around zero level, showing no trend as an indication
of an invalid form for the model. The same applies to the
overall model thus obtained for r1(0.5, n), the absolute and
relative residuals of which are shown in Figures 3(c) and
3(d), respectively. Figures 3(b) and 3(d) are almost iden-
tical in pattern which implies that fitting the parameters
by minimizing the sum of squared errors of α̂q(n) is nearly
equivalent to minimizing the sum of squared relative residu-
als of r̂1(q, n). This is a sensible choice because, as shown by
Figure 3(c), the variance of R1 (and hence that of r̂1(q, n))
decreases with n, and the data points with smaller variance
yield more accurate information and therefore deserve more
emphasis when fitting the model.
To sum up, we have found a model for the 50% quantile of

R1 given by equations (3) and (4) where α0.5 = − log(log 2);
the parameter estimates are given in Table 1. The confi-
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Figure 3: The model (a) and its residuals (b) ob-
tained for α0.5(n) and the overall absolute (c) and
relative (d) residuals for r1(0.5, n).

Table 1: Parameter estimates and their confidence
intervals for the model (4) for α0.5(n)

Parameter Estimate Confidence interval

a 4.41 [4.23,4.60]

b 0.0829 [0.0741,0.0917]

c 4.18 [3.80,4.60]

d 0.179 [0.157,0.202]

dence intervals of the parameters a and c can be seen to
overlap, implying that these two parameters could be com-
bined.
Encouraged by the well-performing model obtained for

the 50% quantile, the same model was fitted to a selection
of other quantiles. As shown by Figure 4, the behavior of
the relative residuals of all these models resemble that of
the first model, except for the variance that increases with
the quantile due to the inaccuracy inherent in estimating
extreme quantiles from a limited sample size. The parame-
ter estimates are given in Table 2; the confidence intervals
were no longer valid for statistical inference. It can be seen
that whereas parameter b in the power law does not seem
to change significantly with the quantile, the effect of the
exponential part lasts longer as the rate of decay (deter-
mined by parameter d) becomes slower. The overall effect
of these trends is shown by Figure 5. The ”amplitudes” a
and c seem to remain close to each other as observed with
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Figure 4: Relative residuals for various quantiles of
R1

Table 2: Parameter estimates for the model (4) for
αq(n), for various quantiles of R1

Quantile a b c d

75% 5.49 0.0787 4.92 0.183

90% 7.18 0.0789 5.83 0.159

95% 8.03 0.0644 6.05 0.142

99% 12.2 0.0742 11.0 0.122
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Figure 5: The models for α̃q(n) = αq(n) − αq, with
q ranging from 50% (lowest curve) to 99% (highest
curve)

the first model. However, the attempt to combine them
resulted in the deterioration of both the representation of
low-end data and the predictions of independent simulation
data.

3. GENERALIZATION TO Rk

3.1 Preliminaries
As presented in [4], the generalization of Theorem 2.1 to

the k-nearest neighbor graph is

lim
n→∞

P [nπM2

k − logn− (k − 1) log(log n) + log(k − 1)!

≤ α] = exp(−e−α), α ∈ R (5)

which, combined again with Theorem 2.2, also applies to
Rk. The problem here is that this was proven to hold for
k > 1 only in the toroidal model where the opposite borders
of the unit square are assumed to coincide, which eliminates
boundary effects and in effect makes the domain a torus.
However, let us now demonstrate the qualitative mean-

ing of Theorem 2.1. Consider the approximation derived by
Bettstetter in [1] for the probability that a random network,
with n À 1 nodes generated from a homogeneous Poisson
process with intensity λ and employing a transmission range
r, has minimum degree at least one (i.e., every node is con-
nected to at least one other node). In the spirit of Theorem
2.1, let us focus on the unit square so that we may take
λ = n. Using our notation, the approximation then states

P[M1 ≤ r] = (1− exp(−nπr2))n. (6)

Here, 1 − exp(−nπr2), the probability that a single ran-
dom node is not isolated, can be interpreted as the cumu-
lative distribution function of a single nearest-neighbor dis-
tance, and the distribution of M1 is calculated as that of the
maximum of n such independent and identically distributed
nearest-neighbor distances. Equivalently, we have

log P[M1 ≤ r] = n log(1− exp(−nπr2)).

With the assumption nÀ 1, we may say that the expected
degree of a node (neglecting boundary effects) nπr2 À 1,
for such r that the probability in question differs signifi-
cantly from zero. (In fact, Theorem 2.1 states that it is very
likely not much less than log n, but this is the essence of

the weaker result derived already in [7] and mentioned in
Section 1.) This makes exp(−nπr2) small, so we may use
the approximation

log(1 + x) ≈ x, |x| ¿ 1 (7)

to obtain

log P[M1 ≤ r] ≈ −n exp(−nπr2)

⇔ − log(− log P[M1 ≤ r]) ≈ nπr2 − logn
def
= α.

Expressing the event M1 ≤ r equivalently using the right
hand side, we get

P[nπM2

1 − logn ≤ α] ≈ exp(−e−α),

which is precisely the limit in Theorem 2.1.
Having thus found that the very simple expression (6) is

in fact asymptotically correct, it then seems tempting to
conjecture that its generalization to k > 1 is as well, i.e.,
to assume that the asymptotics are as if also the k-nearest-
neighbor distances were independent. Thus, take the gener-
alized form of (6),

P[Mk ≤ r] =

(

1− exp(−nπr2)

k−1
∑

i=0

(nπr2)i

i!

)n

, (8)

where we merely preclude the Poisson point probabilities
up to k − 1 independently for each node. Regarding only
k ¿ nπr2, we again utilize (7) and arrive at

− log(− log P[Mk ≤ r]) ≈ nπr2−log n−log

(

k−1
∑

i=0

(nπr2)i

i!

)

.

Writing the sum in the following nested form

k−1
∑

i=0

(nπr2)i

i!
=

(

1 + nπr2

(

1 +
nπr2

2

(

1 +
nπr2

3

(

...

))))

and keeping in mind that nπr2 À 1, we make the approx-
imation log(1 + nπr2/i) ≈ log(nπr2/i), the error of which
diminishes as nπr2 →∞, obtaining

− log(− log P[Mk ≤ r]) ≈

nπr2 − logn− (k − 1) log(nπr2) + log(k − 1)!
def
= α

⇔

P[nπM2

k − log n− (k − 1) log(nπM2

k ) + log(k − 1)! ≤ α]

≈ exp(−e−α), (9)

because α is an increasing function of r when nπr2 > k− 1.
Comparing this with (5), we see that the two are the same if
we assume log(nπM2

k ) ≈ log(log n). Although Theorem 2.1
shows this assumption to be valid when k = 1, this is not
necessarily the case with k > 1. In fact, equation (9) implies
that nπM2

k ≈ log n+(k− 1) log(nπM2

k )− log(k− 1)! which,
when substituted recursively into log(nπM 2

k ) in (9), suggests
that this approximation would not be very far off. As this
would nevertheless result in a less conservative requirement
for Mk - which might account for the relaxed conditions for
network connectivity induced by the toroidal distance metric
- we will not make this approximation and will therefore use
equation (9) as our approximated generalization of Theorem
2.1.
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Substituting againMk with Rk according to Theorem 2.2,
we may then write accordingly

P

[

Rk ≤

√

logn+ (k − 1) log(nπR2

k)− log(k − 1)! + αq

nπ

]

−−−−→
n→∞

q. (10)

If the right-hand side of the inequality in (10) increased ev-
erywhere slower as a function of Rk than Rk itself, we could
say that the q-quantile of Rk is the unique fixed point of the
square-root expression with each n; this is in general not the
case. However, taking the equivalent squared inequality

R2

k ≤
logn+ (k − 1) log(nπR2

k)− log(k − 1)! + αq
nπ

and requiring that the derivative with respect to Rk of the
left hand side is greater than that of the right hand side
yields

2Rk ≥
2(k − 1)

nπRk
⇔ nπR2

k ≥ (k − 1),

i.e. the right-hand side increases slower whenever nπR2

k, the
expected degree of a node with range Rk, is at least k − 1,
which must hold almost surely. Based on the approximate
equation (9), we may therefore after all say that as n tends
to infinity, the q-quantile of Rk denoted by rk(q, n) satisfies

rk(q, n) =
√

logn+ (k − 1) log(nπrk(q, n)2)− log(k − 1)! + αq
nπ

.

(11)

Just as with R1, we may now assume that this holds for
all n with αq = limn→∞ αq(n) and find an empirical model
for αq(n) = nπrk(q, n)

2 − logn− (k − 1) log(nπrk(q, n)
2) +

log(k − 1)!.

3.2 Models for R2 and R3

The simulations of R2 and R3 were carried out with the
same sample sizes and the same n as with R1, using the
algorithms presented in [3] for determining the threshold
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Figure 6: Relative residuals for quantiles of Rk

Table 3: Parameter estimates for the model (4) for
αq(n), for various quantiles of Rk

Quantile

50% 75% 90% 95% 99%

k = 2 a 5.73 7.21 9.48 11.3 16.1

b 0.0754 0.0650 0.0620 0.0616 0.0588

c 4.32 5.29 7.00 9.51 13.5

d 0.140 0.143 0.129 0.124 0.0875

k = 3 a 7.01 9.27 11.4 13.0 15.6

b 0.0639 0.0621 0.0463 0.0380 0.0125

c 5.25 6.52 9.24 10.8 14.0

d 0.137 0.123 0.126 0.115 0.107

ranges. It turns out that the model (4) remains sufficient
to describe αq(n) when k > 1. The relative residuals of the
most extreme quantiles of Rk (in terms of quantile estimate
variance), k = 2, 3, are shown in Figure 6 and the parameter
estimates for the different quantiles in Table 3.

4. MODEL VALIDATION USING
INDEPENDENT SIMULATION DATA

The most important argument for the models presented
here is their ability to predict the independent simulation
results presented in [1]. This is demonstrated here with the
aid of the following example scenario used therein:
”(Design of a large-scale wireless sensor network): A wire-

less sensor network should cover an area of size A = 500 ×
500 m2. Since all sensors exchange information, e.g. for en-
vironmental monitoring, the network should be connected.
The sensors are equipped with transceivers that transmit a
range of r0 = 20 m in free space and do not perform power
control. How many sensors do we need to distribute over
the area?”
With permission of the author, Figure 7 is excerpted from

[1] and shows the related simulation results (the analytical
curve represents the asymptotic relation (6)); the predic-

Figure 7: ”Simulation results for n nodes with r0 =
20m uniformly distributed on A = 500 × 500m2 〈...〉,
3000 random topologies” [1]
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Table 4: Predictions of the quantile models for
R1, R2, R3 for the required number of nodes n

Probability

50% 75% 90% 95% 99%

k = 1 2057 2387 2790 3144 3871

k = 2 2805 3262 3807 4208

k = 3 3533 4065

tions of our quantile models to this example scenario are
given in Table 4. Comparison of the two shows that al-
though the models were fitted to simulation data involving
no more than n = 350 nodes, their predictions turn out to
be quite accurate up to n = 2000; there are some visible
deviations when n > 2500. Furthermore, the models for R2

and R3 seem to perform as well as those for R1, implying
that equation (9) serves as a reasonable approximation to
the real asymptotic distribution of Rk when k > 1.

5. DISCUSSION
Let us first remark that although the total of four parame-

ters can be regarded as excessive to define the above models,
it is easy to see that the effect of the exponential portion of
the model is only relevant with up to 50 nodes and can be
neglected in scenarios involving much more nodes. The two
parameters characterizing the power-law portion are there-
fore sufficient to describe larger-scale networks.
The generality of applicability of the approach used in this

study, i.e. modelling the convergence of the distribution of
Rk to the asymptotic one by regression, is dictated by the
various definitions and assumptions that it relies on. First
of all, the underlying Boolean model of a wireless multihop
network does not take the effects of interference of concur-
rent transmissions on connectivity into account. Instead, it
can be used to represent such a network in the presence of a
constant-level background noise only and is therefore appli-
cable in studying ultimate limits for connectivity or connec-
tivity in networks with low transmission activity. Further-
more, the definition of the threshold range for connectivity
is based on the assumption that all network nodes have the
same transmission range. As for the spatial distribution of
the nodes, one can of course study the distribution of Rk
with any spatial distribution (note that this also applies to
the stationary spatial distribution of a mobility model), but
the asymptotic distribution of Rk is not known for arbitrary
spatial distributions (for R1 it has been derived for a sym-
metrical normal distribution by Penrose in [5]).
Moreover, the asymptotic distribution can also depend on

the shape of the network domain; in this study, we have only
focused on the square-shaped region. However, the fact that
the asymptotic distribution in Theorem 2.1 was reached by
starting from the approximation (6) that in no way takes
the domain shape into account implies that the asymptotic
distribution of R1 is to some extent independent of the shape
of the domain. This is in fact verified in [9]: it turns out that
the asymptotic distribution of R1 is the same in a unit-area
square and a unit-area disk. As, nevertheless, the shape
does affect the distribution with finite n by determining the
strength of the boundary effect, the methods presented here
could be used in studying the convergence to the asymptotic

distribution in domains of different shapes. On the other
hand, as shown in [9], the asymptotic distribution of Rk,
k > 1 is different in the square and in the disk, and therefore
presumably in every individual shape of domain. It thus
appears that under rather general conditions for the shape
of the domain, the border effect has a negligible contribution
to the asymptotic distribution when k = 1, whereas this
is no longer the case when k > 1. This implies that the
determination of the asymptotic distribution in the latter
case requires a separate analytical treatment for every shape
of domain.

6. CONCLUSION
This study presented empirical regression models for in-

dividual quantiles of the threshold range for k-connectivity
when the network nodes are uniformly distributed in a square
region. The aim of the work was to fill some of the gap in
the knowledge of the distribution of the threshold ranges
which has prevented accurately predicting k-connectivity
of random networks with a finite number of nodes under
this network model. The models took into account known
asymptotic results and were obtained by fitting to simu-
lation data that accurately characterizes connectivity, and
therefore they do not rely on approximating the connec-
tivity of a network with its minimum degree in other than
the asymptotic regime as justified by Theorem 2.2. Conse-
quently, they were able to predict results from independent
simulations with good accuracy.
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