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Abstract We study the connectivity properties of an ad hoc network consisting ofn nodes
each moving according to the Random Waypoint mobility model. In particular,
we focus on estimating two quantities, the probability that the network is con-
nected, and the mean durations of the connectivity periods. The accuracy of the
approximations is compared against numerical simulations. For the probability
of connectivity, an approximation is given that is remarkably accurate. By nu-
merical examples we also show that in sparse network the mobility has a positive
effect on connectivity, whereas in dense network the situation becomes the op-
posite. For the mean length of the connectivity periods results are also accurate
in the important region where the probability of connectivity rises rapidly.
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1. Introduction

The connectivity problem in wireless networks deals with determining if it
is possible to transfer information between any two nodes, typically ignoring
all capacity and traffic related phenomena, most notably interference effects.
The most popular network model – and the one used in this study – defining
when two nodes are directly connected has been the Boolean one, in which two
nodes are connected if they are both within each other’s transmission ranges.
When this model is augmented with an assumption that all nodes have an equal
transmission range, the connectivity problem reduces to determining the dis-
tribution of the threshold range for connectivity: for a given set of nodes, this
is equal to the greatest edge length in the minimum spanning tree of the nodes
[6]. It has been shown in [7] that for uniformly distributed nodes in the unit
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square, as the number of nodes tends to infinity, the threshold range for con-
nectivity has asymptotically the same, previously known, distribution as the
threshold range for minimum degree 1, i.e., the greatest edge length in the
nearest-neighbor graph. The result has been generalized tok-connectivity in
[8]. Furthermore, the identity in the casek = 1 has been shown to hold for
normally distributed points in [9]. Recently, the asymptotic distributions of
the threshold range fork-connectivity whenk > 1, for uniformly distributed
points inside a circle and square have been derived in [10]. The distribution of
the threshold range fork-connectivity is not known when the number of nodes
is finite. The results above motivate approximatingk-connectivity of finite net-
works by minimum degreek, as has been done, e.g., in [11]; this is also the
basis of our approach.

In this paper we present approximations for the probability that a network
with n nodes isk-connected. The network nodes are assumed to move ac-
cording to random waypoint (RWP) mobility model [1–4], which concentrates
more nodes in the center of the area. In particular, for our purposes an impor-
tant quantity is the stationary node distribution. For this approximate results for
various movement areas (circle, rectangle) have been obtained in [1, 3], and, as
a part of our earlier work, in [4] we have also derived an exact expression for
an arbitrary convex domain. In the RWP model the nodes move independently
and the number of neighbors a given node has is binomially distributed with
a certain parameterp. These are needed in our approximation for the proba-
bility that all nodes have at leastk neighbors, which is used to approximate
the probability ofk-connectivity. In our first approximation the parameterp
is computed exactly using the results of our earlier work [4]. Additionally,
two numerically simpler approximation schemes are given, which are based
on making some additional poissonian assumptions. Our approach is similar
to the one in [11], with the distinction that in [11] the binomial distribution
characterizing the number of neighbors a given node has is approximated by
a Poisson distribution. Also, we have an exact result for the node distribution,
whereas in [11] an approximation has been used (although a rather accurate
one). The quality of the approximations for 1-, 2- and 3-connectivity are evalu-
ated by means of numerical simulations in a unit disk, while the approach itself
is not limited to any special geometry. In the simulations, the threshold ranges
for k-connectivity have been determined using the efficient algorithms given in
[12]. The results show that especially our first approximation gives remarkably
accurate results. We also give an approximation for the mean time a network
remains 1-connected (or disconnected). The approximation utilizes the results
on the node arrival rate into a given subset given in [5]. The numerical simu-
lations show that the approximation gives reasonably accurate estimates in the
most important region where the probability of connectivity rises rapidly.



2. Preliminaries

In the RWP model, a node moves, independently of the others, directly
towards the next waypoint at a certain velocityv in a convex domain denoted
by A. Upon reaching the waypoint, the next waypoint and velocity are drawn
randomly from the uniform distribution overA and the velocity distribution,
respectively. Next we state the necessary results from [4, 5] for our purposes.
Let ¯̀denote the mean length of a leg andA the area of the domainA. Define

h(r, φ) =
1
2
· a1a2(a1 + a2),

wherea1 = a1(r, φ) denotes the distance fromr ∈ A to the border ofA in
directionφ, anda2 denotes the distance to the border in the opposite direction.
The stationary distribution of an RWP node is given by (see [4])

f(r) =
1
C

∫ 2π

0
h(r, φ) dφ =

h(r)
C

, whereC = ¯̀A2. (1)

The mean arrival rate into a subsetAj ⊂ A is given by [5]

λ(Aj) =
∫

∂Aj

λ(r, θ(dr)) dr, (2)

whereθ(dr) is the direction of the tangent at pointr, and

λ(r, θ) =
1

C · E[1/v]

∫ π

0
sin φ · h(r, θ + φ) dφ.

For unit disk the pdf of node location, denoted byf(r) with r = |r|, is given
by

f(r) =
2(1 − r2)

C

∫ π

0

√
1 − r2 cos φ dφ, (3)

whereC = 128π/45 ≈ 8.936 [4]. Let λ(r, d) denote the mean arrival rate into
a disk with a radius ofd locatedr units from the origin. Using (2) gives

λ(r, d) =
45/64

π E[1/v]

π∫
α0

dα d(1−x2)

π∫
0

dφ sinφ
√

1 − x2 cos2(φ+α−β), (4)

wherex2 = r2 + 2rd cos α + d2, β = arctan(r + d cos α, d sin α), and

α0 =




0, whenr + d < 1,

arccos 1−r2−d2

2rd , whenr − d < 1 ≤ r + d,
π otherwise.

For the special caser = 0 we havex = d, α0 = 0 andα = β yielding

λ(d) =
45 · d(1 − d2)
64 · E[1/v]

∫ π

0
sin φ ·

√
1 − d2 cos2 φ dφ. (5)



3. Analytical Approximations for Connectivity

We studyk-connectivity and focus on the case where the movement of the
nodes is restricted to a unit disk. In particular, we are interested in the probabil-
ity that a network withn nodes isk-connected at an arbitrary point of time and
denote this byCn,k(d), whered is the transmission range. A network is said to
be (1-)connected if there exists a path between all node pairs, andk-connected
if for each node pair at leastk node disjoint paths exist. Due to the assumed
circular shape, the node distribution depends only on the distancer = |r| from
the center, as given by (3). The coverage area of each node is also assumed
to be circular with a radius ofd and is denoted byBd(r). Note that in princi-
ple, the domain of movement can be any convex region, and our general result
(1) on the pdff(·) holds. The approximations presented below depend on the
shape of the domain throughf(·) and thus hold for any convex region.

Approximation 1: Denote byQn,k(d) the probability that an arbitrary node
has at leastk neighbors. Consider an arbitrarily chosen node and condition on
its location, denoted byr. Let p(r, d) denote the probability that a given node
is within Bd(r), where we emphasize that this probability depends only on the
distancer = |r| from the center. We can expressp(r, d) as

p(r, d) =
∫
x∈Bd(r)

f(|x|) dA,

wherex denotes the vector for the location of a point insideBd(r). With a
probability of1−p(r, d) the arbitrary node is outsideBd(r). Since all nodes are
independent, the number of other nodes within domainBd(r) obeys a binomial
distribution,Nr,d ∼ Bin(n − 1, p(r, d)), and the probability that a given node
is connected to at leastk nodes equals

1 −
k−1∑
i=0

(
n − 1

i

)
· p(r, d)i · (1 − p(r, d))n−1−i.

With the RWP model in unit disk the probability density that a node is at a
distancer from the center is2πrf(r), andQn,k(d) is given by

Qn,k(d) = 2π

1∫
0

rf(r)
(

1−
k−1∑
i=0

(
n−1

i

)
p(r, d)i(1−p(r, d))n−1−i

)
dr, (6)

which is an exact result. As in [11], we approximatek-connectivity by

Cn,k(d) = P{n nodes arek-connected} ≈ (Qn,k(d))n . (7)

Note that forn=2 andk=1 one should use the exact resultC2,1(d)=Q2,1(d)
given by (6) instead.



The formal motivation of this approximation is as follows. As remarked in
[7], for uniformly distributed random points, the asymptotics of the greatest
edge length in the nearest neighbor graph are as if the nearest-neighbor dis-
tances were independent, and the longest edge is likely to be the same for the
nearest neighbor graph and the minimum spanning tree. Because this holds
for normally distributed points [9], the same can be expected to hold for more
general spatial distributions. Here, we make the additional assumption that
this generalizes tok-connectivity and thek-nearest neighbor graph. Note that
Qn,k(d) can, as a function ofd, be interpreted as the cumulative distribution
function of a singlek-nearest-neighbor distance. Hence(Qn,k(d))n is the cu-
mulative distribution of the maximum ofn such i.i.d.k-nearest-neighbor dis-
tances, and by the above, this is approximated to be the distribution for the
greatestk-nearest-neighbor distance. The final approximation then sets this
distribution equal to that of the threshold range fork-connectivity.

Approximation 2: A more simple approximation can be developed by also
making an approximation in computing the probability that a certain number
of nodes exist within the coverage area of a given node. More specifically,
we make a local Poisson assumption and assume that the nodes within the
coverage areaBd(r) result from a homogeneous Poisson point process with
intensityλ = f(r), i.e., the number of nodes withinBd(r) obeys a Poisson
distribution with mean equal toλ times the area ofBd(r).

Similarly as in the case of Approximation 1, we condition on the location
of a single node, and have a superposition ofn − 1 identical Poisson point
processes yielding a total intensity of(n−1)·f(r) per unit area. Consequently,
the number of nodes residing inBd(r) obeys a Poisson distribution with mean

a(r) = (n − 1)πd2 · f(r), (8)

and the probability that the number of nodes withinBd(r) is less thank is

given by
∑k−1

i=0
a(r)i

i! e−a(r). Thus, our approximatation forQn,k(d) is

Q̂n,k(d) = 1 − 2π
∫ 1

0
r f(r)

k−1∑
i=0

a(r)i

i!
· e−a(r) dr. (9)

In the above, it is assumed that the coverage area is a full circle even on the
border of the RWP domain. The limiting effect of the border can be taken into
account by introducing a functionA(r, d) which gives the area of the intersec-
tion of the unit disk and a disk with radiusd at a distance ofr from the origin,
A(r, d) = |B1(0) ∩ Bd(r)|. With this notation the slightly more accurate ap-
proximation fora(r) can be expressed as

a(r) = (n − 1) · A(r, d) · f(r). (10)

Finally, we use the same approximation for the probability ofk-connectivity
as in (7), i.e.,Cn,k(d) ≈ (Q̂n,k(d))n.



Length of Connectivity Periods

Another important performance measure is the mean time the network re-
mains connected. Let random variablesTc andTd denote the lengths of the
time periods the network is connected and disconnected, respectively. Clearly,

Cn,1(d) = P{n nodes are 1-connected} =
T̄c

T̄c + T̄d
. (11)

As we are interested in̄Tc, knowledge ofCn,1(d) and T̄d is sufficient. For
small values ofd the network is disconnected with high probability, but asd
increases beyond a critical value (depends onn) the probability of connectivity
starts to increase rapidly. In practise, this is perhaps the most interesting region,
where, whenn is large, typically only one node is separated from the network
when the network becomes disconnected. We propose estimatingT̄d by the
mean interarrival time of nodes into a diskBd(r) (radiusd, centerr units away
from the origin). Recall that,λ(r, d) denotes the arrival rate of a single node
into a diskBd(r), and using either (4) or (5), as the case may be, one can

computeλ(r, d). Let T̄
(r)
d denote the mean disconnectivity time on condition

that a single node gets isolated at pointr, which we can estimate by

T̄
(r)
d ≈ T̂

(r)
d =

1
(n − 1) · λ(r, d)

.

Next we approximatēTd by T̂
(r)
d with somer,

T̄d ≈ T̂
(r)
d (12)

or in general case by the integral

T̄d ≈
∫

r
T

(r)
d · g(r) dr, (13)

whereg(r) corresponds to the probability that the isolated node is located at
the distance ofr from the origin. Note that in (12) and (13) we assume that
disconnectivity is due to one isolated node. In (12) we are parameterizing
the approximation with respect to the distancer from the center, and in the
numerical experiments we user = 0 andr = 1, which imply that we assume
that the network network typically becomes disconnected when a single node
gets isolated either at the center(r = 0) or on the border(r = 1). In (13)
we assume some distribution for the location of the isolated node, and in the
numerical experiments we use the uniform distribution,g(r) = 2πr(1/π) =
2r. Finally, combining the above with (7) gives us an estimate forT̄c:

T̄c =
Cn,1(d)

1 − Cn,1(d)
T̄d ≈ pn

1 − pn
· T̂d, (14)

wherep denotes the probability that a node has at least one neighbor,p=Qn,1(d).
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Figure 1. Validation of 1-connectivity forn = 20, 100, 500 nodes (from left to right) as a
function ofd, dashed lines depict simulations and solid lines analytical results.
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Figure 2. Validation of k-connectivity forn = 20, 100, 500 nodes (from left to right) as a
function ofd, dashed lines depict simulations and solid lines analytical results.

4. Numerical Examples

Probability of Connectivity

First we compare the accuracy of the approximations for 1-connectivity for
the different number of nodesn. We refer as A1 to Approximation 1. Approxi-
mation 2 contains two approximations and they are referred to as A2a and A2b,
where A2a refers to the approximation witha(r) given by (8), i.e., the domain
Bd(r) is a full circle even at the border, and A2b refers to the approximation
with a(r) given by (10), i.e., the “border effect” is taken into account. The
results are shown in Fig. 1, where the dashed lines correspond to simulated re-
sults and solid lines to the approximations (as indicated in the figures). As can
be seen, A1 is remarkably accurate asn increases. Also, both A2a and A2b are
able to predict well the initial rise, but they do not rise as steeply as they should.
Somewhat surprisingly, the more detailed approximation A2b which includes
the proper handling of the border effect, is less accurate than the simpler A2a.

The results for 2- and 3-connectivity are shown in Fig. 2, where in each
graph we show simultaneously 1-, 2- and 3-connectivity as a function ofd. In
the simulations thek-connectivity has been determined using the algorithms
from [12]. The results only compare the accuracy of A1 (solid lines) to sim-
ulated results (dashed lines) as the accuracy of A2a and A2b is similar to that
already shown before. It can be seen that A1 is very close to the simulated
values asn increases, and the higher the value ofk the better the fit.

Finally, we compare A1 with the approximation given in [11], where the aim
has been to study connectivity in large networks. Fig. 3 shows the results of
1-connectivity for A1 (solid lines), the approximation from [11] (dotted lines)
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Figure 3. Comparison of the accuracy of A1 (solid lines) and the approximation in [11]
(dotted lines) against simulations (dashed lines) forn = 100, 500 (left, right) nodes.
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Figure 4. Comparisons forCn,1(d) with RWP node distribution (solid lines) and uniform
node distribution (dashed lines) using our approximations (left) and simulations (right).

.

and simulations (dashed lines) forn=100 nodes (left figure) andn=500 nodes
(right figure). As can be seen, A1 is more accurate, especially forn=500.

Next we compare the impact on 1-connectivity of auniform vs. the RWP
node location distribution. The analytical results for the RWP case corre-
spond to approximation A1, and the results for the uniform case are obtained
from A1 by usingf(r) = 1/π. The results are shown in Fig. 4, where the
figure on the left contains results obtained by using our analytical approxima-
tions, and the figure on the right contains the corresponding simulated results.
Each figure depictsCn,1(d) as a function ofd for n = 20, 100, 500. Solid lines
correspond to connectivity under RWP node distribution and dashed lines to
connectivity under uniform node distribution. It can be seen that the mobil-
ity induced by the RWP model can either improve or degrade the connectivity
probability depending on the number of nodes. In particular, for small number
of nodes, connectivity properties gain from mobility. However, as the number
of nodes is increased, the situation becomes the opposite. This phenomenon
occurring in the simulations is also captured by our analytical approximations
although numerical accuracy is not perfect for small number of nodes.

Mean Length of Connectivity Periods

In Fig. 5 the estimated mean lengths of the connectivity periods are de-
picted as a function ofd and compared against simulations, when the speed
is constant,v = 1, and the number of nodesn = 20, 100, 500. Simulation
results are indicated with dashed lines and triangle markers. Lines with square
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Figure 5. Mean connectivity period length forn = 20, 100, 500 nodes (from left to right).
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markers correspond to our approximation where we have assumed a uniform
location for isolated node. Lines with star markers correspond to our approxi-
mation withT̄d ≈ T̂

(0)
d , i.e., that a node becomes most likely disconnected in

the center. Lines with diamond markers correspond to our approximation with
T̄d ≈ T̂

(1)
d , i.e., that a node becomes most likely disconnected on the border.

The results show that in the interesting region, where connectivity probability
rises steeply, usinḡTd ≈ T̂

(0)
d andT̄d ≈ T̂

(1)
d act as if they were lower and up-

per bounds for the mean connectivity durations, while the approximation with
uniform assumption for the isolated node gives rather accurate results.

Finally we study how thevelocity distribution affects the mean length of
the connectivity period. Note that as the quantityλ(r, d) is inversely propor-
tional to quantityE[1/v], our approximation (14) is directly proportional to
quantity E[1/v]. In Fig. 6 the simulation results with three different veloc-
ity distributions are illustrated forn = 20, 100, 500 nodes, i)v = 1 (i.e.,
constant), ii)v ∼ U(0.1, 1.9) (i.e., v̄ = 1), and iii) v ∼ U(0.356, 2.156)
(i.e.,E[1/v] ≈ 1). Diamond markers correspond to i), star markers to ii), and
square markers to iii). It can be seen that withn = 20, 100, 500 nodes i) and
iii) are almost identical, while ii) generally leads to longer connectivity dura-
tions. Also note that the relative difference in the results for ii) and cases i,iii)
is close toE[1/v] ≈ 1.64, in agreement with our approach.

5. Conclusions

In this paper, we have studied the connectivity properties of ad hoc networks
where the nodes move according to the RWP mobility model. Analytical ap-
proximations have been given for estimating the probability that a network
consisting ofn nodes isk-connected based on estimating the probability that
the network has minimum degreek. The approximations were validated by
numerical simulations showing remarkably good agreement.

Additionally, we have also studied the mean lengths of the connectivity peri-
ods, for which we have given an (parameterized) approximation, which utilizes
the results on the arrival rate of the RWP process into a given subset area. The
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Figure 6. Mean connectivity period length forn = 20, 100, 500 nodes (from left to right)
with different velocity distributions.
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numerical results show that in the interesting region where connectivity prob-
ability rises steeply, approximation works fairly well. Furthermore, according
to our approach the mean length of the connectivity period is directly propor-
tional to quantityE[1/v], which matches well with the numerical experiments.
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