
ON IMPROVING CONNECTIVITY OF STATIC
AD-HOC NETWORKS BY ADDING NODES∗

Henri Koskinen†, Jouni Karvo‡, and Olli Apilo§
Helsinki University of Technology (TKK), Networking Laboratory
P.O. Box 3000, FIN-02015 TKK, Finland

{Henri.Koskinen, Jouni.Karvo, Olli.Apilo}@tkk.fi

1. Introduction

Ad hoc networks are by nature constructed “automatically”, by the nodes
adapting to the neighboring nodes and building up a network. In this context,
the network topology is random, and in particular, no connectivity is guaran-
teed: the nodes may be so sparsely located that they are unable to make up a
connected network.

This has motivated a wide range of research, with a primary interest in the
connectivity of random networks. In this paper however, we are concerned
with what can be done when an ad hoc network needs to be formed but the
users are too far apart to form a network with a desired level of connectivity.
More precisely, we study the option of improving the connectivity of a static
ad-hoc network by carrying extraneous nodes to the scene. The problem is
where to put these nodes so as to minimize the number of nodes required for
a connected network, or to maximize the utility of the network. We present
algorithms that suggest locations for such additional nodes. Networks where
adding extraneous nodes is feasible are some sensor networks and such ad-hoc
networks that are used in a controlled situation where some central entity can
organize the deployment of the nodes. To our knowledge, the connectivity
problem in ad hoc networks has not been addressed so far from this practical
viewpoint.

This paper is organized as follows: in the next section we describe the prob-
lem setting and the underlying assumptions, and define essentially two opti-

∗We thank the anonymous reviewers of this paper for their constructive suggestions, and Petteri Kaski
(TKK) for pointing out the reference [2].
†Financially supported by the Finnish Defence Forces Technical Research Centre and in part by a grant
from the Nokia Foundation.
‡Funded by the EU FP6-507572 project WIDENS.
§Funded by the Academy of Finland (grant n:o 202204).

mization problems for the node addition. Section 3 describes the first heuristic
algorithm, the Minimum Spanning Tree algorithm. A more efficient algorithm,
the Greedy Tessellation algorithm is presented in Section 4, and the last and
most evolved algorithm, the Greedy Triangle algorithm in Section 5. Section 6
contains performance analysis of the algorithms, aided by simulation results.
Finally, Section 7 concludes the paper with some final remarks.

2. Problem Statements

The motivation for our problem stems from an emergency scenario. We
consider a group of agents, e.g. fire fighters, deployed in some region, who
need to establish communications in the form of an ad hoc network. For this
purpose, each agent is equipped with a terminal device; from now on, we will
refer to these devices as terminal nodes. In support of forming the network,
there is a team in possession of additional transceivers that can be used as relays
in the network; we will call these transceivers relay nodes. We assume that both
the terminal nodes and the relay nodes are based on same standard hardware
and therefore have equal transmission and reception capabilities. The task of
the support team is to place relay nodes in the region so that the terminal nodes
and the relay nodes together can form a connected wireless multihop network
where each link can provide a desired rate of communication to support the
service required by the agents, say, a speech application. The problem we are
interested in is to optimize the points where the support team should place relay
nodes, given the locations of the terminal nodes.

The key assumptions behind our problem statement are that the locations of
the terminal nodes are known and that the location information of these nodes
can be collected even though the network is not connected. The motivation
behind the latter assumption is that depending on the solutions on the physical
layer, it can be possible to be able to sustain low bitrate communications over
much further distance than to provide quality of service. In this case, the net-
work is able to convey control information even if efficient communications
are not possible. In other words, in this problem we define connectivity using
a linkwise throughput requirement.

We use the commonly studied Boolean model for the network. Within this
model, any two nodes are assumed to be directly bidirectionally connected if
and only if they are within a common transmission range from each other.

Formally, we assume that the network deployment region (where the termi-
nal nodes are located and the relay nodes may be placed) is a bounded convex
subset S of the Euclidean space R

d, d > 1. In all the problems that we are
about to define, the problem instance is completely defined by the set of loca-
tions of N terminal nodes, N = {xi ∈ S | i = 1, 2, . . . , N}, and the transmis-
sion range r. Together these imply the pre-existing network topology in the

form of an undirected geometric graph G(N , E(N , r)) = G(N , r) with vertex
setN and edge set E(N , r) = {(xi,xj) |xi,xj ∈ N , i 6= j, ||xi − xj || ≤ r}.

A solution to any of the problems is a set of locations to place relay nodes,
Nr = {yi ∈ S | i = 1, 2, . . . , Nr}. Given a configuration of terminal and relay
nodesN ⋃Nr and transmission range r, we call a cluster the set of all terminal
nodes in a single maximal connected component in the graph G(N ⋃Nr, r).

We are hereby ready to define the first optimisation problem:

Problem 1 GivenN and r, findNr with minimum cardinality that makes
the graph G(N ⋃Nr, r) connected.

We point out that in the limit r → 0, this problem reduces to finding the
Euclidean Steiner minimal tree for the set N : the optimal solution is then to
place the relay nodes along the edges of this tree. Finding Steiner minimal
trees is known to be NP-hard [3]. In the general case, our problem poses the
additional complications that we are not connecting single points to each other,
but clusters where the best points in the clusters for connecting to other clusters
must be chosen, and that the objective function has been discretized from the
total length of edges in the Steiner tree to the number of added relay nodes.
In the following, we suggest heuristic algorithms that are suboptimal but give
results without excessive computing requirements.

A greedy approach to solving the problem is to add new relay nodes trying
to get as good an improvement as possible in each step, until the connectivity
target has been met. A utility metric is required for this approach, and it should
reflect how close we are to achieving the target. The utility metric is also
needed for cases where it is not possible to make the network connected, due
to having too few relay nodes available. This gives rise to the second problem:

Problem 2 Find Nr that maximizes the chosen utility metric U , subject
to Nr ≤ Nmax

r ∈ Z+.

Provided that the constraint Nr ≤ Nmax
r actually prevents us from achieving

connectivity, this problem can be viewed as the maximization of the chosen
utility metric in SNmax

r . This is a difficult task but allows applying, e.g., simu-
lated annealing. Our algorithms can readily be used for greedy approaches to
Problem 2 as well as Problem 1.

The choice of the utility metric depends on the target application. In all
examples and simulations where applicable in this paper, we have used the
number of nodes in the biggest cluster after each step as the utility metric.

3. Minimum Spanning Tree Algorithm

Our first algorithm arises naturally if we only require that each relay node
or contiguous chain of relay nodes connect exactly two clusters of the graph

G(N , r). Under this limitation, the optimal solution is to place the relay nodes
along the edges of the Euclidean minimum spanning tree (MST) calculated for
the clusters, when the distance between two clusters is defined as the shortest
distance between two terminal nodes in these distinct clusters.

In fact, it is not difficult to show that this MST consists of exactly those
edges that are longer than the transmission range r, in the MST calculated for
all the terminal nodes. This can be seen by considering Kruskal’s algorithm
for finding the MST (see e.g. [4]).

The steps of the algorithm are thus as follows:

1 Calculate the Euclidean minimum spanning tree for N .

2 Place the relay nodes on the edges of the minimum spanning tree that
are longer than r. If there are too few relay nodes available to span all
such edges, select the edges that result in maximizing the chosen utility
metric.

In two dimensions, step 1 can be completed in O(N logN) time by utilizing
the Delaunay triangulation; when d = 3, the complexity of finding the mini-
mum spanning tree has at least been brought down to O(N 4/3 log4/3 N) [1].
In a higher number of dimensions, step 1 is likely to require exhaustively cal-
culating the distance matrix of the terminal nodes, which is a quadratic task.
Step 2 is linear in N if all the necessary edges can be spanned, since the whole
minimum spanning tree has N − 1 edges. If, on the other hand, not all nec-
essary edges can be spanned, the optimal selection of edges generally requires
going through all possibilities. In this case, we propose the greedy method of
selecting edges in the order of added utility (with respect to the initial clus-
ters) per used relay node. In this method, the initial clusters can be found in
linear time by traversing the minimum spanning tree (edges longer than r in
the tree separate different clusters), and rating and sorting the O(N) potential
edges takes O(N logN) time. With this approach, the overall complexity of
the algorithm is in any case determined by step 1.

The Minimum Spanning Tree algorithm is illustrated in Figure 1.

4. Greedy Tessellation Algorithm

The stricter requirement that a single relay node should, when possible, con-
nect more than two clusters suggests points that are equally distant from several
clusters as potential points of placement. Such points can be found from the
Voronoi tessellation (or Voronoi diagram) of the nodes: see [1] for a rather
comprehensive survey on Voronoi diagrams.

What makes the Voronoi tessellation interesting for our problem is that it
efficiently captures the geometric neighbor relationships of the nodes: points
equally distant from three clusters are a subset of the vertices, i.e. the coincid-

Figure 1. Minimum Spanning Tree algo-
rithm. The initial clusters in this example
realization of 70 terminal nodes are con-
nected with solid edges, and the edges to
place relay nodes are dotted. The transmis-
sion range is 10% of the side of the domain,
as illustrated by the circle.

Figure 2. The Greedy Tessellation algo-
rithm, applied to the same realization as in
Figure 1. The edges of the Voronoi tessel-
lation are shown with dotted lines, the can-
didate points for relay node insertion with
’+’-signs. The first location to add a relay
node is marked with an asterisk.

ing corners of the convex sets also called cells, of the Voronoi tessellation of
the nodes. Note that in practise, points equally distant to more than three nodes
do not exist. However, placing a relay node at a vertex close to other vertices
may well result in connecting more than three clusters.

For this reason, we examine coinciding corners of Voronoi cells that contain
nodes all in different clusters, and the corner where inserting a new node yields
the maximal increase in the chosen utility metric is selected as the place to
insert the next relay node. To sum up:

1 Find the maximal connected components and clusters of the graph
G(N ⋃Nr, r). (Initially, Nr = ∅.)

2 Construct the Voronoi tessellation of N ⋃Nr.

3 Regard as candidate points the coinciding corners of such Voronoi cells
that contain nodes all in different connected components, excluding cor-
ners further than r from the nodes and corners not in S .

4 Add toNr the candidate point that yields maximal increase in the chosen
utility metric.

5 If there were more than one candidate points in step 3 and the problem
constraints allow further addition of points, go to step 1.

6 If allowed by the constraints and the graph G(N ⋃Nr, r) is not yet con-
nected, finish with the Minimum Spanning Tree algorithm.

The last step is required since connected components can be too far apart to be
connected with the addition of a single relay node.

Our complexity analysis is mainly based on results gathered in [1]. On
the first run through steps 1–5, step 1 amounts to finding and traversing the
minimum spanning tree of the nodes, as described in the previous section.
The computational complexity of constructing the Voronoi tessellation in step
2 is O(N logN) in the plane, quadratic in three dimensions, and increases
exponentially with the number of dimensions, along with the maximal size
of a diagram. The number of vertices in the tessellation to consider potential
candidate points in steps 3 and 4 is O(N) in the plane and O(N 2) in R

3.
On subsequent rounds, the addition of new points to Nr can be updated

to the connected components and the tessellation without having to find them
from scratch. Updating the tessellation is the more complicated task but takes
only O(n) time, where n = N+Nr, when d = 2 or d = 3. Although updating
the candidate points should also be a light task, the increase in utility must
still be checked for each one in step 4, on every round. The number of rounds
made (i.e., the number Nr before proceeding to the last step) with fixed N
depends on the density of the network: a very sparse network is unlikely to
result in any addition due to too large distances between clusters, as is a very
dense network due to a high probability of being connected. With fixed average
density of terminal nodes and transmission range, the number of additions is
O(N), since it is bounded by the number of initial clusters.

As a conclusion, because of the O(N) repetitions of step 4, the overall run-
ning time of this algorithm before the final step is O(N 2) in R

2 and O(N3) in
R

3, which also dominates the final step. Figure 2 illustrates the algorithm.

5. Greedy Triangle Algorithm

The Greedy Tessellation algorithm uses points that are equally distant from
different clusters as potential places for relay nodes. However, with a closer
look we see that this is not always optimal: for example, the point marked in
Figure 2 as the place for the first relay node falls outside the triangle spanned by
the three terminal nodes to be connected, meaning that it cannot be the optimal
place for a relay node to connect the three terminal nodes (optimal in the sense
that the range required from the relay node to connect the terminal nodes is
minimized). Hence, taking only the vertices of the Voronoi tessellation into
account, one may not find all the places where connecting three clusters with a
single relay node is possible.

Having made this observation, we may simply select triplets of nodes where
the nodes are pairwise at most 2r apart and all belong to different clusters, as

corners of candidate triangles. The point equally distant from the corners of
a candidate triangle is a candidate point for node insertion only if this point
is inside the triangle; if the point is outside the triangle, the midpoint of the
longest side of the triangle is the candidate point (see Figure 3(a) and compare
with Figure 2). Finally, it needs to be checked whether the distance from the
candidate point to each corner of the triangle is less than r. Of these feasible
candidate points, the one yielding the maximal increase in the chosen utility
metric is chosen as the location of the next added relay node.

It is of course possible for a single relay node to connect more than three
distinct clusters. The occurrence of such cases is, however, rare, and thus
deliberately seeking these cases is omitted in order to simplify the algorithm.
It should be noted however that a proper candidate triangle can still result in
connecting more than three clusters.

This method is easily extended to handle triangles whose vertices are too
far apart to be connected by a single relay node. The idea is to place two
nodes optimally in order to connect the clusters. Consider an addition of two
nodes, targeting in connecting three clusters: find a candidate triangle with
no side longer than 4r, and find jointly optimal points for two relay nodes
(optimality being defined as above). Where to add these two nodes optimally
is divided into different cases, depending on the shape of the triangle; we omit
the analysis of these cases in this paper due to space limitations.

Like the Greedy Tessellation algorithm, this algorithm must also be finished
with the Minimum Spanning Tree algorithm. The Greedy Triangle algorithm
has thus the following phases:

1 Find the maximal connected components and clusters of the graph
G(N , r), and the candidate triangles.

2 Find the point (if any exist) where adding a single relay node results
in connecting the candidate triangle that yields the maximal increase
in the chosen utility metric, and add this point to Nr. Maintaining the
connected components, the clusters, and the candidate triangles, repeat
this as long as new candidate triangles can be connected and the problem
constraints permit.

3 Repeat the previous step, now adding to Nr pairs of points where relay
nodes connect candidate triangles.

4 If allowed by the constraints and the graph G(N ⋃Nr, r) is not yet con-
nected, finish with the Minimum Spanning Tree algorithm.

The Greedy Triangle algorithm can be used as such in a Euclidean space with
an arbitrary number of dimensions. However, because among n nodes there are
altogetherΘ(n3) triplets of nodes, it is again a good idea to utilize the geomet-
ric neighbor relationships of the nodes in finding sensible candidate triangles,

(a) (b)

Figure 3. Applying the Greedy Triangle algorithm to the realization of Figure 1. (a): The
first point to place a relay node, as determined in step 2 and indicated by the ’+’-sign. Note the
difference from Figure 2 in the placement. (b): The first pair of points to place relay nodes, as
determined in step 3, after several relay nodes have been added in step 2. Note that in this case,
four clusters are connected.

at least in the two-dimensional case. In this case, we propose requiring that
at most one pair in any considered triplet of nodes not have neighboring cells
in the Voronoi tessellation of the nodes, which limits the number of triplets to
examine down to O(N). (We found requiring all three nodes to have pairwise
neighboring cells, i.e. considering only the triangles in the Delaunay triangu-
lation, too restrictive.) With this choice, the complexity of the algorithm is the
same as that of the Greedy Tessellation algorithm, namely, O(N 2) in R

2 and
O(N3) in R

3. The phases of the algorithm are illustrated in Figure 3.

6. Performance Analysis

In this section, we present and discuss results from applying our three al-
gorithms to simulated realizations of randomly and uniformly distributed ter-
minal nodes in a square-shaped domain in the plane. The purpose is partly to
compare the performance of the algorithms relative to each other, and in part
to gain some idea on how close to optimal their solutions are.

The latter is a problematic task, as finding the optimal solution for a general
realization is very difficult. As mentioned in Section 2, when the transmission
range is infinitely shrunk, the optimal solution to Problem 1 is to cover the
edges of the Euclidean Steiner minimal tree for the terminal nodes with chains
of relay nodes. In this limit, we know the so-called Steiner Ratio: for any
set of points in the plane, the total edge length of their Euclidean minimum

spanning tree is at most 2/
√
3 ≈ 1.15 times the optimal solution, i.e. the

total edge length of their Euclidean Steiner minimal tree [2]. However, with a
non-negligible transmission range the case is completely different: as a simple
example, consider a regular pentagon whose vertices are on a circle with radius
equal to the transmission range, and assume one terminal node at each of these
vertices. These initially disconnected terminal nodes can be connected with
a single relay node placed at the center of the circle, whereas utilizing the
minimum spanning tree results in placing four relay nodes.

Nonetheless, we used as a benchmark for our algorithms the method of plac-
ing the relay nodes on those edges of the Euclidean Steiner minimal tree that
connect different clusters. This method should be close to optimal with sparse
networks, i.e. when the transmission range is small compared to the typical dis-
tance between neighboring terminal nodes. Figure 4 shows the average number
of relay nodes needed to connect random configurations with varying number
of terminal nodes using each of the different algorithms. The transmission
range was set to 10% of the side of the square domain, in order to demonstrate
a "feasible" scenario where the number of relay nodes needed is still a fraction
of the number of terminal nodes, making the addition of relay nodes sensible.
As expected, our three algorithms produce gradually better solutions. The two
greedy algorithms also outperform utilizing the Steiner tree with these param-
eters, as the Steiner minimal tree simply optimizes the wrong measure from
our problem’s viewpoint.

0 50 100 150 200 250
0

5

10

15

20

25
Minimum spanning tree
Greedy Tessellation
Greedy Triangle
Euclidean minimum Steiner tree

PSfrag replacements

N

N̄r

Figure 4. Average number of relay
nodes needed to connect the network, as a
function of the number of terminal nodes
initially in the network, taken over 1000
random realizations. The transmission
range is 10% of the side of the square-
shaped domain.

5 10 50 100 150 200

30

40

50

60

70

80

90

Minimum spanning tree
Greedy Triangle
Euclidean minimum Steiner treePSfrag replacements

N

N̄r

Figure 5. Average number of relay
nodes needed to connect the network, taken
over 1000 random realizations and plot-
ted on log-log -scale. The transmission
range is 5% of the side of the domain. The
Greedy Tessellation algorithm has been
omitted for clarity.

The gain from utilizing the Steiner tree is captured in Figure 5 which shows
corresponding results with the transmission range set to 5% of the side of the
domain. In a very sparse initial network, the existence of suitable candidate
triangles is unlikely, and the Greedy Triangle algorithm practically reduces to
the Minimum Spanning Tree algorithm, while the Steiner tree yields the best
results. As the density of the initial network increases, the Greedy Triangle
algorithm surpasses the Steiner tree method in performance.

The quantity that best describes what we referred to as the density of the
network is the average number of other terminal nodes directly connected to a
random terminal node in the initial configuration. Not accounting for boundary
effects, this quantity is given by N/A · πr2 where A is the area of the domain.
In essence, this quantity determines which method yields the best results, and
for example the two greedy algorithms bring significant advantage to using the
MST at proper intermediate values of this quantity, when suitable candidate
triangles are likely to exist. It is interesting to note in both figures that the
average number of relay nodes needed increases with the number of terminal
nodes up to the point where N/A · πr2 ≈ 1: when r2/A = (10%)2, this point
is at N ≈ 32, and with r2/A = (5%)2 at N ≈ 127. This is especially true
with the two greedy algorithms.

7. Discussion

We assumed throughout this paper that all the nodes have equal transmis-
sion range. It would also be reasonable to assume that the relay nodes can have
a larger range when communicating with each other than when communicat-
ing with the terminal nodes. It takes only slight modifications to adjust our
algorithms to this relaxed assumption.

We also precluded the mobility of terminal nodes in our assumptions. The
approach of adding relay nodes in optimized locations has little application
if all the terminal nodes tend to move all over the network region. However,
by keeping track of the locations of terminal nodes over time, it should be
possible to recognize those nodes that are nearly stationary and place relay
nodes to connect these nodes. Studying this question is left as further work.

References
[1] F. Aurenhammer. Voronoi diagrams – a survey of a fundamental geometric data structure.

ACM Comput. Surv., 23(3):345–405, 1991.

[2] D.-Z. Du and F. Hwang. An approach for proving lower bounds: solution of Gilbert-
Pollak’s conjecture on Steiner ratio. In Proceedings of 31st Annual Symposium on Foun-
dations of Computer Science, volume 1, pages 76–85, Oct. 1990.

[3] M. R. Garey, R. L. Graham, and D. S. Johnson. The complexity of computing Steiner
minimal trees. SIAM J. Appl. Math., 32(4):835–859, June 1977.

[4] R. Sedgewick. Algorithms in C. Addison Wesley, 1990.

	Copyright: © 2005 Springer Science+Business Media. Reprinted with permission from Proceedings of the Fourth Annual Mediterranean Workshop on Ad Hoc Networks (Med-Hoc-Net), 10 pages, June 2005, printed proceedings to appear.

