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ABSTRACT
In [3], it was shown that the optimal throughput scaling in
wireless multihop networks is achieved using slotted Aloha,
and quantitative performance results for this protocol were
derived under the assumption of exponentially distributed
transmission powers. In this paper, we extend the analy-
sis of this MAC scheme: assuming that all nodes employ
some common constant power, we evaluate the probability
of successful transmission in a random time slot. When in-
terfering nodes are assumed to be randomly located, this
temporal probability is a random variable with its own dis-
tribution. We develop numerical approximations for evalu-
ating both the mean and the tail probability of this distri-
bution; as far as we are aware, the distribution itself has not
been studied before. The accuracy of our approximations
can be improved indefinitely, with the cost of added numer-
ical computations. We validate the approximations against
simulation results.
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1. INTRODUCTION
Wireless multihop networks are known to pose several de-

sign problems, one of them being medium access control
(MAC). Although not so much of an issue in wired net-
works, the solution used in wireless networks should allow
the spatial reuse of the shared medium. Moreover, the time-
varying network topology and the lack of centralized control
in multihop networks render the use of coordinated MAC
schemes difficult, making random access seem like the pre-
ferred choice.

Probably the simplest random-access protocol is Aloha [1],
in which network nodes transmit any time they desire, and
conflicts due to simultaneous transmissions destructively in-
terfering are deduced from missing acknowledgements. Re-
transmissions are randomly delayed to avoid repeated col-
lisions. The efficiency of this scheme is improved if trans-
missions are only allowed to occupy synchronized time slots;
this is referred to as the slotted Aloha [2].

Another approach to accessing the medium, known as
Carrier Sense Multiple Access (CSMA), is that network nodes
determine whether or not to transmit by ”listening” to any
possible ongoing transmissions [8]. Although perfectly vi-
able as such in wired networks, the implementation in wire-
less networks requires additional procedures around the re-
ceiver to overcome problems concomitant with the spatial
aspect, such as so-called hidden and exposed terminals.
CSMA is the basis for the medium access protocols used in
WLANs, while slotted Aloha is used e.g. on the Random
Access CHannel of GSM [5].

The information-theoretic transport capacity of these net-
works is an important quantity when assessing any MAC op-
tion, giving an upper bound for the achievable throughput
no matter what the used solution. In [6], Gupta and Kumar
derive bounds and scaling laws for the throughput of wireless
multihop networks under different network models. In par-
ticular, for a network of nodes located randomly with spatial
density λ that all employ the same transmission power, the
upper bound for total throughput is shown to be Θ(

√
λ),

i.e. Θ(1/
√
λ) per node, when a one-hop transmission is as-

sumed successfully received (in [6] referred to as the Physi-
cal Model) whenever a signal-to-noise-and-interference ratio
(SINR) threshold is exceeded at reception. (f(λ) = Θ(g(λ))
denotes that f(λ) = O(g(λ)) and g(λ) = O(f(λ)).)

The main reference of this paper [3] presents an analysis
of random slotted-Aloha networks under the above physical
model. Accounting for all interferences in an exact way, un-
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like in previous studies of Aloha, it is shown that the above
capacity bound is reached by applying slotted Aloha. Fur-
thermore, the only parameter of the protocol, the medium
access probability, can be optimized a priori, depending only
on the required SINR threshold and, more importantly, not
on the spatial density of nodes. This allows for a decentral-
ized implementation, provided that nodes have some local
information on the location of other nodes. In contrast, the
authors point out that for optimal spatial reuse and hence
optimal throughput scaling in a network using CSMA, the
carrier sense range must be adapted to the node density. In
other words, the range within which one transmission should
be prohibited from another depends on the density of nodes.
This is an impediment to the decentralized implementation
of CSMA in wireless multihop networks.

The quantitative analysis in [3] assumes the transmission
powers of the network nodes to be i.i.d. random variables
with exponential distribution. To be precise, although the
authors in [3] claim their protocol to reach the optimal ca-

pacity bound Θ(
√
λ) cited above, this bound was only shown

to hold with a given fixed power employed by all nodes in
[6]. The same bound remained a conjecture for arbitrary
networks, i.e., for networks where everything, including the
individual transmission powers, can be arbitrarily selected
and optimized. The aim of the present paper is to extend the
analysis of the Aloha protocol proposed in [3]. In particular,
we wish to determine the probability of successful transmis-
sion (or, more aptly, reception) in a random time slot – one
of the most fundamental performance quantities in the net-
work – when all the nodes employ a common transmission
power. When taken as an average over all configurations of
interfering nodes around the receiver, this probability can
be evaluated by deriving the distribution of near-by inter-
ference exactly and utilizing the Laplace transform of the
remaining interference in an approximation adapted from
one presented by Bahadur and Rao in [4]. The use of this
approximation is motivated by the observation that the re-
maining interference has, in a limit, a Gaussian distribution.
We also address the distribution of the temporal (over time
slots) probability of successful reception. This probability
is a random variable since interfering nodes are randomly
located around the recipient; its distribution (over different
recipients) has not been studied before to our knowledge.
We develop a recursive method for assessing the tail proba-
bility of this distribution, where the main idea is to divide
the neighborhood of the receiver into concentric zones, with
the interference from every node in a given zone approxi-
mated to be equal, and to average out the effect of different
configurations beyond some maximum distance. All our re-
sults are approximations that, with sufficient computation
effort, can be used to evaluate all the studied quantities to
an arbitrary level of accuracy. We validate these approxi-
mations against simulation results.

The structure of this paper is the following. The next sec-
tion gives a review of the essential assumptions and results
in [3], and our assumptions and problem statements are pre-
sented in Section 3. The first performance quantity, namely,
the probability of successful reception averaged over all re-
cipients is evaluated in Section 4, whereas the distribution of
this probability over different recipients is addressed in Sec-
tion 5. Section 6 concludes the paper with a summary and
some discussion. For completeness, the Bahadur-Rao ap-
proximation, applied to evaluating exceedance probabilities

both above and below the mean in Section 4, is presented
in the Appendix.

2. BACKGROUND
This section reviews the network modelling assumptions

and some of the results in [3] relevant for this paper. Readers
familiar with [3] may skip this section.

2.1 Network model
The network studied in [3] is infinite, with nodes located

at the points of a Poisson point process Φ = {Xi} with
intensity λ on the plane R

2.
The medium access control in the network is arranged in

the spirit of slotted Aloha: the operation of the network is
divided into time slots, and each node is allowed to transmit
in any time slot with a fixed medium access probability p.
For any time slot, the states of the nodes are denoted by
the indicator variables {ei}: if ei = 1, node i is allowed to
transmit, and ei = 0 means that node i refrains from trans-
mitting, thus making it a potential receiver. The variables ei
are independent (among both the nodes and the time slots)
Bernoulli-distributed random variables with parameter p.

In the general case considered in [3], the transmission pow-
ers {Pi} for nodes i with ei = 1 are also random, assumed
i.i.d. among both nodes and time slots. The quantitative
results were based on exponentially distributed powers.

To determine the effect of interferences between concur-
rent transmissions, the model includes the attenuation func-
tion L(x, y) that gives the path loss in power for a signal
propagated from point x ∈ R

2 to point y. Most of the
quantitative results in [3] assume the commonly used power-
law attenuation function that only depends on the distance
||x− y||:
L(x, y) = l(||x− y||) = C||x− y||−α with C > 0, α > 2.

(1)
The condition for the successful reception of a transmis-

sion is as given by the Physical Model in [6]: in any time
slot, given a potential receiver node i at point Xi = xi and
a transmitting node j at Xj = xj , the receiver can success-
fully decode the transmission from node j – producing what
is chosen as the unit throughput from j to i over this time
slot – if and only if the Signal-to-Interference-and-Noise Ra-
tio (SINR) at reception exceeds some common threshold T ,
i.e.

Pj l(||xj − xi||)
N0 + I

≥ T, (2)

where N0 is a time and location independent power of the
background noise on the frequency channel utilized by the
network, and I denotes the interference power sum∑

k �=i,j ekPkl(||Xk − xi||).

2.2 Existing results
Assume that all the fixed network parameters and the

distance ||xj −xi|| between the transmitter and the receiver
are given. Then we may ask what is the probability, ac-
counting for both the random locations {Xk} and medium
access states {ek} of all other nodes, that (2) holds in a ran-
dom time slot? In other words, if a random configuration
{Xk} is observed in a random time slot, what is the prob-
ability that (2) holds, given the distance d = ||xj − xi||?
(Indeed, by the stationarity of the homogeneous Poisson
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process, this probability does not depend on xi, nor does
it depend on xj , by the independence of nodes existing in
non-intersecting regions.) Let us write this probability as
Pr{Xk},{ek}[(2) holds | ||xj − xi|| = d].

Because we are interested in any random configuration
for only one time slot, we may limit our attention in any
configuration to the nodes that transmit in that time slot.
By the properties of the Poisson process, we may then write
the interference power sum in (2) as I =

∑
k Pkl(||Yk−xi||),

the shot noise of a Poisson process {Yk} with intensity λp
at xi. Because of the stationarity, we may without loss of
generality assume that the point xi is at the origin, i.e. let
I = IΦ(λp) =

∑
k Pkl(||Yk||).

As pointed out in [3], the Laplace transform of a general
Poisson shot noise IΦ(λ) with i.i.d. transmission powers Pk ∼
P, calculated at the origin, is

I∗Φ(λ)(s) = exp

(
−λ

∫
R2

1 − EP [exp(−sP · l(||x||))] dx
)
.

(3)
The generalization of the above to the interference at the
origin from transmitters in some arbitrary domain simply
amounts to integrating over that domain instead of R

2.
The basis of the quantitative analysis of the above network

model in [3] was that for transmission powers {Pk} i.i.d.
exponentially distributed with mean 1/µ,
Pr{Xk},{ek}[(2) holds | d] = I∗Φ(λp)(µT/l(d)) ·N∗

0 (µT/l(d))
where N∗

0 (s) is the Laplace transform of the background
noise. As a corollary, for exponential {Pk}, N0 ≡ 0 and the
power-law attenuation function (1), we have

Pr{Xk},{ek} [(2) holds | ||xj − xi|| = d] = I∗Φ(λp)

(
µT

l(d)

)

=exp

(
−λp

∫
R2

1 − µ

µ+ [µT/l(d)]l(||x||)dx
)

=exp

(
−2πλp

∫ ∞

0

r

1 + rα/(Tdα)
dr

)

=exp

(
−2πλp(T 1/αd)2

α

∫ ∞

0

r2/α−1

1 + r
dr

)

=exp

(
−2πλp(T 1/αd)2

α
Γ(2/α)Γ(1 − 2/α)

)
, (4)

where Γ(z) =
∫ ∞
0
tz−1e−tdt is the Gamma function. The

authors also presented the following scaling result: for a gen-
eral distribution of the transmission powers, N0 ≡ 0 and the
power-law attenuation function (1), Pr{Xk},{ek}[(2) holds | d]
only depends on λ, p, T and d through the product dT 1/α√λp.

Also in [3], an optimization criterion, referred to as the
mean density of progress, was proposed for selecting the
medium access probability p with given SINR threshold T .
The density of progress is measured in bits per second cross-
ing a meter of the line perpendicular to the direction of
transfer in the planar network. For later reference, Table 1
shows thus optimized values of p in the case N0 = 0 when
α = 3 and the transmission powers are assumed exponen-
tially distributed, with various values of the SINR threshold
T .

3. NETWORK MODEL AND PROBLEM
STATEMENTS

We study the slotted-Aloha network model presented in
[3] and described in Section 2.1, assuming that all nodes

Table 1: Optimized values of the medium access
probability p (as given in [3]; partly determined vi-
sually* from figures therein) when N0 = 0, α = 3,
and the transmission powers of the nodes are as-
sumed i.i.d. exponentially distributed.

T [dB] 0 4 8 10 13 15

popt 0.17* 0.11* 0.07* 0.052 0.034 0.026

are stationary. In particular, we depart the somewhat un-
realistic assumption of exponentially distributed and hence
unbounded transmission powers, and assume instead that all
nodes employ some common, constant transmission power:
Pk ≡ P . Note that this makes quite a difference: for in-
stance, the ratio of two transmission powers has infinite ex-
pectation in the exponential case.

Throughout this paper, we also assume the power-law at-
tenuation function (1), and as with most results in [3], we
assume that the power of the background noise N0 = 0. By
the stationarity of the homogeneous Poisson process, with-
out loss of generality we select the location xi of the receiving
node i as the origin.

Under these assumptions, the condition (2) for successful
reception over distance d = ||xj − xi|| = ||xj || reduces to
the one for the Signal-to-Interference Ratio (SIR) and can
be written in the following equivalent forms:

PCd−α

I
≥ T ⇔ I ≤ PC(T 1/αd)−α

⇔ I

PC(T 1/αd)−α
=

∑
k

ek

( ||Xk||
T 1/αd

)−α

≤ 1, (5)

where I =
∑

k ekPC||Xk||−α is the interference power sum
at the recipient. In this paper, we are interested in the
probability that this condition holds given d, i.e., in the
same quantity that played key role in the analysis in [3].
However, as will next be explained, we take a deeper look
at this quantity than was done in [3].

The next section is devoted to evaluating the same prob-
ability as determined in [3], namely, the probability that (5)
holds for a random configuration {Xk} in a random time
slot, given d. We will write this probability as
Pr{Xk},{ek}[(5) holds | d].

We may also study the probability that (5) holds in a
random time slot for a given configuration of surrounding
nodes {Xk} = {xk} representing – and completely char-
acterizing – the interference environment of one receiving
node in the network; we write this conditional probability as
Pr{ek}[(5) holds | d; {Xk} = {xk}]. This probability is dif-
ferent for different configurations {xk}, but it is fully deter-
mined once given {xk}. It is thus a function of the random
node locations {Xk} and therefore itself a random variable
with a probability distribution over {Xk}. This distribution
describes how different nodes in the network are in different
positions with regard to the success of communication; we
will study this distribution in Section 5. In fact, the proba-
bility Pr{Xk},{ek}[(5) holds | d] discussed in the next section
can be seen to be the expected value of this distribution over
{Xk}.
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4. PROBABILITY OF SUCCESSFUL RECEP-
TION FROM DISTANCE d: EXPECTED
VALUE OVER {Xk}

We begin with Pr{Xk},{ek}[(5) holds | d], the probability
that (5) holds for a random configuration {Xk} in a random
time slot, given d. As already mentioned in Section 2.2,
we may in this case treat I in (5) as the shot noise of a
Poisson process {Yk} with intensity λp at the origin, i.e. let
I = IΦ(λp) =

∑
k P · l(||Yk||).

Let Pr denote the power received from a transmitter at

distance r, i.e. Pr = P ·l(r) = PCr−α = PT1/αd

(
r

T1/αd

)−α

.

By (3), the Laplace transform of I is now

I∗Φ(λp)(s) = exp

[
λp2π

∫ ∞

0

(
e
−sP

T1/αd

(
r

T1/αd

)−α

− 1

)
r dr

]

⇒ I∗Φ(λp)

(
s

PT1/αd

)
=

exp

[
λp2π(T 1/αd)2

∫ ∞

0

(
e−st−α − 1

)
t dt

]
, (6)

where the last expression can also be seen as the Laplace
transform of I/PT1/αd. Note that it is precisely I/PT1/αd

whose distribution we are interested in, since (5) is also
equivalent to I/PT1/αd ≤ 1. Consistent with the scaling
result mentioned in Section 2.2, we see that this Laplace
transform – and hence the probability of interest to us –
indeed only depends on the product dT 1/α√λp.

A closer look reveals that I/PT1/αd has infinite expecta-
tion and variance. This is a side effect caused by the assumed
power-law attenuation function (1) which has a singularity
at zero distance. This shortcoming is implicitly dealt with
by the decomposition of the interference that is about to fol-
low. Actually, the Laplace transform of I/PT1/αd could also
be utilized directly in approximating the probability that
(5) holds, but as we will demonstrate by numerical studies
in Section 4.3, this method turns out to work poorly.

For more accurate approximations, we will treat the to-
tal interference I as the sum of two parts. The distribution
of one part is approximated using its Laplace transform as
implied above, whereas the distribution of the other part is
calculated exactly. The key observation allowing this divi-
sion is that for (5) to hold, there may be at most m active
transmitters at distances y satisfying

PCd−α

(m+ 1)PCy−α
< T ⇔ y < [(m+ 1)T ]1/αd

def
= rm,

i.e., m + 1 active transmitters alone at distance rm would
still satisfy the condition (5), but moving them any closer
would violate this condition. Now, we will partition the
total interference into that originating from two zones, i.e.
IΦ(λp) = I = Iin + Iout where Iin denotes the interference
originating from distances up to rm and Iout denotes that
from distances beyond rm (see Figure 1). Because of the
above limitation to up to m active transmitters within rm,
we may determine the distribution of Iin exactly, as follows.

4.1 Distribution of Iin

By the properties of the Poisson process, given the num-
ber of nodes in the inner zone, their locations in that zone
are i.i.d. uniformly distributed. Thus, the distribution of the
interference I1 from a single node in this zone can be easily

d

rm = [(m + 1)T ]1/αd

Iin

Iout

Figure 1: Division of the interference into that orig-
inating from two zones, for some (m + 1)T > 1

determined: denoting by R the distance of the node from

the origin and noting that I1 = PR = PT1/αd

(
R

T1/αd

)−α

def
= PT1/αdQ where PT1/αd is constant, we obtain the prob-
ability density of Q as follows:

Pr(R ≤ r) =
πr2

πr2m
= Pr

[(
R

T 1/αd

)−α

≥
( r

T 1/αd

)−α
]

⇔ Pr(Q ≤ q) = 1 − (T 1/αd)2q−2/α

r2m
= 1 − q−2/α

(m+ 1)2/α

⇒ fQ(q) =

{
2

α(m+1)2/α q
−(2+α)/α, q > 1

m+1
,

0, q ≤ 1
m+1

.

Note that this distribution has infinite expectation. The
summed interference from i nodes in the inner zone is then
PT1/αd ·

∑i
j=1Qj , where the probability density of

∑i
j=1Qj

is obtained as the convolution of i instances of the above
density fQ(q), which we denote by f∗i

Q (q). Given the condi-
tion that there are at most m active transmitters within rm,
the conditional distribution of Iin is then obtained by con-
ditioning on i with the truncated Poisson distribution with
parameter λpπr2m:

fIin/P
T1/αd

(q) =

∑m
i=0

(λpπr2
m)i

i!
f∗i

Q (q)∑m
k=0

(λpπr2
m)k

k!

.

As an example, with m = 2 it is possible to calculate this
conditional distribution analytically. The above numerator
now becomes

m∑
i=0

(λpπr2m)i

i!
f∗i

Q (q)

= 1 · δ(q) + λpπr2mfQ(q) + (λpπr2m)2/2[fQ ∗ fQ](q)

=



δ(q), q ≤ 1

m+1
,

2λpπ(T 1/αd)2/α · q−(2+α)/α, 1
m+1

< q ≤ 2
m+1

,

2λpπ(T 1/αd)2/α · q−(2+α)/α

+(λpπr2m)2/2[fQ ∗ fQ](q), q > 2
m+1

,

(7)

where δ(·) is the dirac delta function representing the dis-
tribution of the deterministic value 0. The convolution is
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obtained as

[fQ ∗ fQ](q) =

∫ ∞

−∞
fQ(t)fQ(q − t)dt =

2

α(m+ 1)4/α
g(q),

where g(q) equals{
q−(2+α)/α

[
(m+ 1)2/α − (q − (m+ 1)−1)−2/α

]
+

2

α+ 4

[
(q − (m+ 1)−1)−(α+4)/α − (m+ 1)(α+4)/α

]}
.

4.2 Distribution of Iout

Let us next turn to approximating the distribution of Iout.
Applying (3) again yields the Laplace transform

I∗out(s) = exp

[
λp2π

∫ ∞

rm

(
e
−sPrm

(
r

rm

)−α

− 1

)
r dr

]

⇒ I∗out

(
s

Prm

)
= I∗out

(
s

PT1/αd/(m+ 1)

)

=exp

[
λp2πr2m

∫ ∞

1

(
e−st−α − 1

)
t dt

]
,

where the last expression can also be seen as the Laplace

transform of J
def
= Iout/Prm = (m + 1)Iout/PT1/αd. In the

last integral, all the variables are dimensionless. For α > 2
the integral is convergent and can easily be evaluated for any
s. For numerical computations, however, it is advantageous
to make a change of variables u = t−(α−2), which yields the
alternative form

J∗(s) = exp

[
λp2πr2m
α− 2

∫ 1

0

e−suα/(α−2) − 1

uα/(α−2)
du

]
.

For the logarithmic moment generating function ϕ(β) =
log E

[
eβJ

]
= log J∗(−β) of J , we then have

ϕ(β) = 2λpπr2m

∫ ∞

1

(eβt−α − 1)t dt

=
2λpπr2m
α− 2

∫ 1

0

eβuα/(α−2) − 1

uα/(α−2)
du,

ϕ′(β) =
2λpπr2m
α− 2

∫ 1

0

eβuα/(α−2)
du, (8)

ϕ′′(β) =
2λpπr2m
α− 2

∫ 1

0

uα/(α−2)eβuα/(α−2)
du,

whereby the mean and variance of Iout are

E[Iout] = Prmϕ
′(0) = PC

2λpπ

α− 2
r2−α

m ,

Var[Iout] = P 2
rm
ϕ′′(0) = (PC)2

2λpπ

2α− 2
r2−2α

m . (9)

Now, consider generating a random realization of Iout,
taking only nodes within some maximum distance into ac-
count for conceptual simplicity. This can be done by draw-
ing the Poisson-distributed number of interfering nodes, plac-
ing these nodes independently and uniformly at random on
the considered domain, no closer than rm nor further than
the maximum distance, and calculating Iout as the sum of
the individual interference powers. Thus, Iout is the sum
of i.i.d. random variables, and hence, by the Central limit
theorem (see e.g. [7]), should obey a distribution that tends
to the Gaussian as the node density tends to infinity. More
precisely, provided that the density is so large that there is

likely to be many nodes at the smaller distances with nearly
equal contributions to Iout, the distribution of Iout – and
hence that of the scaled quantity J – should be close to
Gaussian.

Recall that given α, the distribution of J is fully charac-
terized by the product λp r2m. In fact, the quantity λpπr2m is
the expected number of transmitting nodes within distance
rm from an arbitrary reference point. This quantity also de-
termines how close to Gaussian the distribution of Iout – and
hence J – is: if this number is small, then the total interfer-
ence is likely to be dominated by few terms, resulting in a
distribution far from the Gaussian. Accordingly, the larger
the value, the better the Gaussian approximation. Figure
2 shows how the Gaussian approximation agrees with the
simulated distribution of J with different values of λpπr2m.
To cater for the simulation, interference from distances be-
yond k · rm, with k chosen to be some large number, was
neglected; this changes the results in (8) so that the upper
limit ∞ in any of the integrals now becomes k and the lower
limit 0 becomes k−(α−2). One can see in the figure that the
accuracy of the approximation indeed improves as λpπr2m
increases, but the fit at the tails of the distribution remains
poor. This can be remedied by adopting an approximation
from large deviations theory (see [4, Section 6]) and applying
it also below the mean; this approximation is introduced in
the Appendix. This Bahadur-Rao (BR) approximation sig-
nificantly improves the fit in the tails, while it coincides with
the Gaussian approximation at the mean of the distribution:
it is also shown in Figure 2.

4.3 Adding up Iin and Iout

We may now combine the means to evaluate the distri-
butions of Iin and Iout to obtain an approximation for the
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(a) λpπr2m = 0.1
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Figure 2: Cumulative distribution of J = Iout/Prm

with different values of λpπr2
m when α = 3. The

simulation domain has been defined using k = 100.
Upper line: simulated distribution; dashed line:
Gaussian approximation; lower line: Bahadur-Rao
approximation.
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probability that (5) holds: this can be written as

Pr [(Iin + Iout)/PT1/αd ≤ 1]

=Pr(At most m active transmitters within rm)

×
∫ 1

0

fIin/P
T1/αd

(q)Pr [Iout/PT1/αd ≤ 1 − q] dq

=e−λpπr2
m

m∑
k=0

(λpπr2m)k

k!

∫ 1

0

∑m
i=0

(λpπr2
m)i

i!
f∗i

Q (q)∑m
k=0

(λpπr2
m)k

k!

(10)

× Pr[(m+ 1)Iout/PT1/αd ≤ (m+ 1)(1 − q)]dq

=e−λpπr2
m

∫ 1

0

m∑
i=0

(λpπr2m)i

i!
f∗i

Q (q)Pr[J ≤ (m+ 1)(1 − q)]dq.

In the case of the example with m = 2, plugging in (7) gives
this in the form

e−λpπ[(m+1)T ]2/αd2
{

Pr[J ≤ (m+ 1)]

+
2λpπ(T 1/αd)2

α

∫ 1

1
m+1

q−(2+α)/αPr[J ≤ (m+ 1)(1 − q)]dq

+

[
λpπ(T 1/αd)2

]2

α

∫ 1

2
m+1

g(q)Pr[J ≤ (m+ 1)(1 − q)]dq
}
,

(11)

where the dependence only on the product
√
λpT 1/αd (be-

cause it also applies to the distribution of J) is more appar-
ent than in (10).

The accuracy of different approximations for
Pr{Xk},{ek}[(5) holds | d] is demonstrated in Figure 3. As
mentioned earlier, the Laplace transform (6) of I/PT1/αd can
also be used directly, by applying the BR approximation;
this method has also been included in the figure and can
be seen to result in a very poor approximation. On the
other hand, using (10) with m = 2 already proves to be
notably accurate and gives a significant improvement from
using m = 0.

Note that we can improve the approximation to any level
of accuracy by choosing sufficiently large m. The gain from
increasing m is twofold. First, through increasing λpπr2m, it
allows approximating the distribution of J more accurately,
as shown by Figure 2. Second, it decreases the share of Iout

in the total interference, thus mitigating the effect of the
remaining inaccuracy. The cost of increasing m is the added
numerical labor in computing further convolutions f∗i

Q (q).
(Note that (11) already involves several nested numerical
integrations, most of them contained in applying the BR
approximation.)

One may also note in Figure 3(a) how the probability
behaves differently under the assumption of exponentially
distributed transmission powers. In particular, the proba-
bility makes a sharper transition with increasing distance d
in our case. This is because the Signal-to-Interference ratio
at reception varies less due to the lack of randomness in the
transmission powers.

5. PROBABILITY OF SUCCESSFUL RECEP-
TION FROM DISTANCE d: DISTRIBU-
TION OVER {Xk}

We now turn to evaluating Pr{ek}[(5) holds | d; {Xk} =
{xk}], the probability that (5) holds in a random time slot,
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Pr{Xk},{ek}[(5) holds | d = t/(
√
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(a) m = 0
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Pr{Xk},{ek}[(5) holds | d = t/(
√

λpT 1/α)]

(b) m = 2

Figure 3: The probability of (5) holding when α = 3,
determined using (10) and applying the BR ap-
proximation with different values of m (solid lines),
and by simulation (points). For comparison, the
corresponding probability in the case of exponen-
tially distributed transmission powers as given by
(4) (gray line) and the result of applying the BR
approximation directly to the Laplace transform (6)
of I/PT 1/αd (dashed line) are also shown. The inter-

ference from distances beyond 100T 1/αd has been
neglected in all cases (this results in the upper limit
100α in the last integral in (4)).

given the distance d and the configuration of surrounding
nodes {Xk} = {xk}. As we mentioned earlier, this prob-
ability is a function of {Xk} and therefore itself a random
variable. For brevity, we will use the notation
Pr{ek}[(5) holds | d; {Xk}] = Π({Xk}). In this section, we
are interested in the distribution of Π({Xk}).

With α and T fixed, the last form in (5) can be seen
to be a condition for the transmission indicators {ek} and
the distances of the other nodes from the recipient, relative
to the distance T 1/αd. Thus, with {Xk} fixed, Π({Xk})
only depends on the medium access probability p. Under
the assumption that {Xk} is a realization of a Poisson pro-
cess, the distribution of Π({Xk}) then depends only on p

and the average number of nodes within distance T 1/αd,
equal to λπ(T 1/αd)2. This should be contrasted with the
scaling result referred to earlier, according to which the av-
eraged probability Pr{Xk},{ek}[(5) holds | d], i.e. the mean of
the distribution of Π({Xk}), only depends on the product

λpπ(T 1/αd)2.
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In what follows, we will concentrate on the tail probability
Pr{Xk}[Π({Xk}) > P̂ ]. Let I(S) denote the random inter-

ference originating from the set S ⊆ R
2 and observed by the

recipient at the origin in any time slot, with the convention
I = I(R2). Also, let Br denote the disk with radius r cen-
tered at the origin, i.e. Br = {x : ||x|| ≤ r}, and denote
its complement with B̄r. With this notation, given the loca-
tions of nodes in Br and hence the probability distribution
of I(Br) in any time slot, the conditional tail probability of
Π({Xk}) can be written as

Pr{Xk∈B̄r}
{
Π({Xk}) > P̂ |FI(Br)(i)

}
, (12)

where we have denoted the distribution of I(Br) by its cu-
mulative distribution function FI(Br)(i).

5.1 Recursive approximation for the tail prob-
ability of Π({Xk})

We will now derive a method to approximately evaluate
this conditional probability. Let us partition the exterior of
Br as B̄r = (B̄r

⋂Br̂)
⋃ B̄r̂, i.e. into an annulus with inner

radius r and some outer radius r̂ > r, and the rest (see
Figure 4). Next we make the approximation that the inter-
ference from every transmitting node in the annulus B̄r

⋂Br̂

(drawn as black points in the figure) is equal to Pr̃, for some
r ≤ r̃ ≤ r̂. Then, given the number of nodes N in the an-
nulus, the interference originating from the annulus in each
time slot is I(B̄r

⋂Br̂) |N = X · Pr̃ with X ∼ Bin(N, p),
and we have I(Br̂) |N = I(Br) + I(B̄r

⋂Br̂) |N . Since this
allows computing the distribution of I(Br̂) |N , conditioning
on N – which in our model is Poisson-distributed with mean
λπ(r̂2 − r2) – now leads to the following recursion for the
conditional probability (12):

Pr{Xk∈B̄r}
{
Π({Xk}) > P̂ |FI(Br)(i)

}
=

∞∑
n=0

Pr(N = n) · Pr{Xk∈B̄r̂}
{
Π({Xk}) > P̂ |FI(Br̂)|N (i|n)

}
.

In fact, by starting with r = 0 and FI(B0)(0) = 1, this
recursion can be used to evaluate the tail probability

r r̃ r̂

Br

B̄r

⋂Br̂ B̄r̂

Figure 4: Schematic representation of the partition-
ing of B̄r and the approximation made in the annulus
B̄r

⋂ Br̂

Pr{Xk}[Π({Xk}) > P̂ ] to an arbitrary level of accuracy, by
partitioning the plane into sufficiently thin annuli.

Of course, this recursion in itself is infinite, through the
infinite sum on the one hand and through the partition-
ing of R

2 into an infinite number of annuli on the other.
Proper pruning and termination conditions are therefore
needed. The first and obvious termination condition is that
(12) equals 0 for such a distribution of I(Br) for which

Pr[I(Br) ≤ PT1/αd] ≤ P̂ . Since a high enough value of
N gives I(Br̂) |N such a distribution, we only need to add
new terms to the sum as long as the conditional probability

Pr{Xk∈B̄r̂}
{
Π({Xk}) > P̂ |FI(Br̂)|N (i|n)

}
differs from zero

by this termination condition.
As for dealing with the infinite plane, we may, for some

rmax, ignore how different configurations of nodes in B̄rmax

result in different distributions of I(B̄rmax), and instead use
the distribution averaged over all possible configurations,
as if the configuration of nodes producing the interference
was different in every time slot. This amounts to approxi-
mating the distribution of interference from transmitters in
B̄rmax , located according to a Poisson process with inten-
sity λp, by utilizing its Laplace transform exactly as done in
the previous section. With such an approximation for the
distribution of I(B̄rmax), the final level of recursion simply
gives

Pr{Xk∈B̄rmax}
{
Π({Xk}) > P̂ |FI(Brmax )(i)

}

=

{
1, Pr

[
I(B̄rmax) + I(Brmax) ≤ PT1/αd

]
> P̂ ,

0, Pr
[
I(B̄rmax) + I(Brmax) ≤ PT1/αd

] ≤ P̂ ,

where the probability is calculated by conditioning on
I(Brmax), which has a discrete distribution with a finite num-
ber of values.

Because of the scaling result that applies to the distri-
bution of Π({Xk}), the parameter that completely charac-
terizes the above recursion for evaluating the tail probability
Pr{Xk}[Π({Xk}) > P̂ ] is an increasing sequence {r/(T 1/αd)}
of distances r, starting with zero and ending with rmax, given
relative to T 1/αd. These are the outer radii of the nested
annuli to consider at the successive levels of recursion. Be-
cause no other node may transmit within distance T 1/αd for
(5) to hold, it is sensible to choose the first two distances

as {r/(T 1/αd)} = {0, 1}. Our method of choosing the re-
maining distances has been to fix rmax and the number of
annuli to divide the distances [T 1/αd, rmax], and select the
annuli so that the expected interference from each annulus

is equal, i.e. the integral
∫ r̂

r
λp2πtPCt−αdt is the same for

each annulus.
The choice of r̃ with which the interference from every

node in an annulus with inner and outer radius r and r̂,
respectively, is taken to be Pr̃, determines the nature of our
approximation: choosing r̃ = r naturally results in a conser-
vative approximation, whereas setting r̃ = r̂ results in un-
derestimating the interference. To aim at an approximation
as accurate as possible, we may choose Pr̃ as the expected
interference from a node placed uniformly at random in the
annulus; this has been our choice in the demonstration that
follows. The fact that this expected interference from the
inmost, degenerate annulus is infinite does not affect the fi-
nal result, since the condition (5) in any case prohibits all
nodes in this annulus from transmitting.
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5.2 Validation
In Figure 5 we compare the results given by this recur-

sion with simulated distributions of Π({Xk}). Each simu-
lated sample represents the proportion of 1000 time slots in
which (5) was satisfied in a given configuration of nodes, and
10000 random configurations were considered. The two sub-
plots show how the accuracy of the recursion improves as the
range covered by the annuli is increased and a larger num-
ber of annuli is used. This is particularly clear in the latter
subplot, where the most accurate setting already required
rather extensive computation time from the recursion, due
to the high value of λπ(T 1/αd)2, i.e. wide ranges of numbers
of nodes to consider in each annulus. For comparison, up-
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Figure 5: Empirical cumulative distribution func-
tions of 10000 simulated estimates of Π({Xk})

(solid curves) and 1 − Pr{Xk}
[
Π({Xk}) > P̂

]
as

determined by the recursion using different ra-
dius sequences (see legends), with α = 3 and

λpπ(T 1/αd)2 = 0.598. To ease simulations, interfer-

ence from distances beyond 10T 1/αd was neglected
in all cases.

per and lower bounds obtained by choosing r̃ = r and r̃ = r̂
have also been plotted; these points have been connected
with dashed lines in the figure.

The (T/p)-pairs selected for the two validation cases rep-
resent the extreme ends of reference values in Table 1, and
λπd2 was chosen to make λpπ(T 1/αd)2 the same in both
cases, implying the same means for the two distributions.
The means obtained from the simulation data can be com-
pared with Figure 3, considering that here

√
λpT 1/αd ≈

0.44. The slightly lower value predicted by the figure is
due to the fact that here we have only taken interference
from distances up to 10T 1/αd into account, as opposed to
100T 1/αd in Figure 3; substituting these distances in the
place of rm along with the assumed α = 3 in (9), we see
that we have here neglected 1/10 of the expected interfer-

ence from distances beyond T 1/αd, whereas only 1/100 was
neglected in Figure 3.

The fact that the latter distribution with a higher value of
λπ(T 1/αd)2 has a smaller variance can be explained by the
fact that the number of nodes in any annulus with given in-
ner and outer radii (relative to T 1/αd) is Poisson-distributed

with parameter proportional to λπ(T 1/αd)2, whereby a higher
value implies a lower coefficient of variation for this num-
ber. Therefore, the number of nodes located within any dis-
tance interval has the smaller relative variance the greater
the λπ(T 1/αd)2, resulting in a smaller variance for Π({Xk}).

6. SUMMARY AND DISCUSSION
We analyzed the random planar wireless multihop net-

work using slotted Aloha as proposed and modelled in [3].
As our contribution, we developed numerical approxima-
tions for evaluating the temporal probability of successful
reception when all nodes in the network are assumed to em-
ploy a common constant transmission power. The accu-
racy of these approximations can be improved indefinitely,
with the cost of added numerical computations. We demon-
strated the accuracy of the approximations with simulation
results.

We first focused on the probability of successful reception
averaged over all configurations of other nodes surrounding
the receiver, which was derived analytically in [3] assuming
exponentially distributed transmission powers. This proba-
bility only depends on the distribution of a certain Poisson
shot noise. The approximation was obtained by deriving
the distribution of interference from the proximity of the
receiver exactly and utilizing the Laplace transform of the
remaining interference in an approximation adapted from
[4].

We also addressed the distribution of the temporal proba-
bility of successful reception over different configurations of
surrounding nodes and hence over different recipients. Di-
viding the neighborhood of the receiver into zones where
each transmitter is assumed to produce equally strong in-
terference and taking the effect of different configurations
outside this neighborhood as an average, we obtained a re-
cursion for evaluating the tail probability of this distribu-
tion.

As seen in Figure 3(a), under the assumption of one com-
mon transmission power the probability of successful recep-
tion has a stronger dependence on the distance of transmis-
sion than with random transmission powers. As a potential
direction for future work, it might be interesting to utilize
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the results in this paper to see how this assumption changes
the values of the medium access probability that maximize
the mean density of progress.
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APPENDIX

The Bahadur-Rao approximation
Assume a random variable X with probability density f(x)
and logarithmic moment generating function ϕ(β). The tail

probability of X can be written in terms of the distribution
f(x) twisted with parameter β:

Pr(X > x) =

∫ ∞

x

f(y)dy =

∫ ∞

x

e−βy+ϕ(β)fβ(y)dy

= e−βx+ϕ(β)

∫ ∞

x

e−β(y−x)fβ(y)dy.

Because the value of the last integral does not exceed 1,
this yields the bound Pr(X > x) ≤ e−βx+ϕ(β). The tightest
bound obtained by minimizing with respect to β, i.e. solving
ϕ′(βx) = x, is known as the Chernoff bound. This amounts
to making the mean of the twisted distribution fβx(·) equal
x.

If we further approximate the twisted distribution in the
last integral by the normal one N(ϕ′(βx) = x, ϕ′′(βx)), we
obtain ∫ ∞

x

e−βx(y−x)fβx(y)dy

≈ 1√
2πϕ′′(βx)

∫ ∞

x

e−βx(y−x)e−
1
2 (y−x)2/ϕ′′(βx)dy

=
e

1
2 β2

xϕ′′(βx)

√
2π

∫ ∞

βx

√
ϕ′′(βx)

e−
1
2 z2
dz,

which leads to a pretty accurate approximation for Pr(X >
x) when x ≥ E[X], i.e. βx ≥ 0, that naturally coincides
with the one obtained by using the normal approximation
for f(·) when x = E[X]. This approximation is presented in
[4]. On the other hand, we may repeat the above procedure
for values of x below the mean, and combining the results,
we have an approximation which is applicable everywhere:

Pr(X > x) ≈

e−βxx+ϕ(βx)+ 1

2 β2
xϕ′′(βx)Q(βx

√
ϕ′′(βx)),

x ≥ E[X] ⇔ βx ≥ 0,

1 − e−βxx+ϕ(βx)+ 1
2 β2

xϕ′′(βx)[1 −Q(βx

√
ϕ′′(βx))],

x ≤ E[X] ⇔ βx ≤ 0,

where Q(x) is the tail probability of the standard normal
distribution N(0,1). In this paper we use the Bahadur-
Rao approximation in this form which is applicable also
in the non-asymptotic regime, in contrast to the form usu-
ally referred to as the Bahadur-Rao approximation in the
literature, which is based on using the asymptotic form

e−
1
2 x2
/(
√

2πx) for Q(x).
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