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Joint ground states of two directed polymers in a random medium are investigated. Using
exact min-cost flow optimization, the true two-line ground-state is compared with the
single line ground state plus its first excited state with “worst-possible” initial conditions,
where the two lines start next to each other. It is found that these two-line configura-
tions are (for almost all disorder configurations) distinct implying that the true two-line
ground-state is nonseparable, which means that the two-line ground state cannot be
obtained by adding a second line to the first line in the one-line ground state without
deforming the first line. The effective interaction energy between the two lines scales
with the system size with the scaling exponents 0.39 ± 0.03 and 0.21 ± 0.02 in 2D and
3D, respectively.
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1. Introduction

The physics of disordered systems has attracted a lot of attention due to the dis-
covery that free energy of extended objects — lines, surfaces and so on — has
singular corrections because of the domination of zero-temperature or ground-state
effects.1 The paradigm of such systems is a directed polymer (DP) in a random
medium (DPRM). In this particular example, the object minimizes its energy which
is determined by two competing forces: the elastic energy cost of wandering on one
hand and the energy gain using energetically favorable pins in the environment
on the other hand. The result is super-diffusive behavior, and constrained energy
fluctuations. The phase space of the DPRM problem is very rich depending on
the nature of the correlations in the disorder and dimensionality. In low enough
dimensions, the physics is (at arbitrary temperatures) governed by the so-called
zero-temperature fixed point if the noise has weak enough correlations including the
uncorrelated case. The case with one transverse dimension becomes exactly solvable
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in terms of the roughness and energy fluctuation exponents ζ and θ, respectively, due
to a mapping to the Kardar–Parisi–Zhang equation.2 The values are ζ = 2/3 and
θ1 = 1/3 in d = 2(= 1 + 1) dimensions and fulfill the exponent relation 2ζ − 1 = θ.
In the 3(= 2 + 1)-dimensional case, the roughness exponent is approximately 0.62.

In this paper, we study the problem of two polymers in a joint random medium
(TPRM) with mutual interactions3–8 and focus on the repulsive strong coupling
limit, i.e., hard core interaction.9 The work is related to the question of the physics
of high-Tc-superconductors in the low field limit. In these systems, the magnetic
field penetrates above the lower critical field, the system in well-defined flux-
lines (FL) each carrying a flux quantum. These lines interact with the disorder
in the material, have internal elasticity, and repulse each other. It is also related to
the field-theoretical issues of interacting line-systems in general.10 The physics of
the problem is similar to that of the one-line case11,12,3 but shows interesting twists
if one tries to understand the problem in the light of individual, independent ob-
jects/lines. In particular, we are going to consider by numerical, exact min-cost flow
optimization computations, the difference in energy between the TPRM problem,
the single-line ground-state and the “first excited state”.

This excited state results from adhering to a hierarchical picture, in which the
first polymer is first optimized given a disorder configuration, and then the next
one is added by applying a hard-core repulsion, by increasing sufficiently the energy
of the bonds already taken up by the first line. The procedure gives us two energies
to compare with the true TPRM ground state energy E2: the single line ground-
state energy doubled, 2E1, and the sum of the ground-state energy E1 and the
energy of the first excited state E′1 in the single line problem. The two energy
differences, E2 − 2E1 and E2 − E1 − E′1 define two interaction energies of the two
polymers. In an earlier paper, Tang5 studied the TPRM in hierarchical lattices and
in two dimensions with binary disorder. His main conclusion was, for the physically
relevant real-space case, that the probability for an interaction energy exactly equal
to zero (with binary disorder) decayed much faster than expected, the exponent
being −2/3 instead of the −1/3 expected based on single-DP geometric arguments.
We study both the interaction energies discussed above. We also comment on the
topology of the TPRM ground-state. One of the main conclusions of our paper is
that the TPRM ground-state is nonseparable at least in the particular geometry
we use: the lines start next to each other but have arbitrary endpoints. This means
that the optimization of the TPRM ground-state cannot be done in two quasi-
independent steps by adding a second line to the first line in the one-line ground
state without deforming the first line.

In addition to our choice for an ensemble for the TPRM system, there are at least
two others. First, one may allow the polymers to start and exit the system in the
longitudinal direction at arbitrary positions (with or without imposed periodicity).
In this limit, once the system size H transverse to the polymer fluctuations is
much larger than the geometric single-line w, H � w can consider the two lines to
reside in independent valleys of the energy landscape. Then, the interaction energy
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results from extremal statistics and the joint optimization is semi-trivial.13 The
second choice is to choose H constant, let the line length L vary, and study the
problem in the presence of translational invariance, as a function of H . The latter
one would be more closely related to a “true” TPRM problem, but it is on the other
hand easy to see that in the thermodynamic limit, it is difficult to insert a second
line (the excited state) into the system due to the mutual hard-core exclusion.

The structure of the paper is as follows. In Sec. 2, we formulate the problem and
outline the relevant scaling exponents to be studied later. Section 3 discusses the
numerical method, which is computationally much faster than the transfer matrix
method when the latter is applied correctly to the two polymer problem. We show
that the problem is NOT separable, so, there is no way in which the problem can
be dealt with recursively and thus no way in which the transfer matrix method
can be applied efficiently. In Sec. 4, we give the numerical data concerning the
scaling behavior. Finally, Sec. 5 finishes the paper with conclusions.

2. Two Directed Polymers in a Random Medium

The continuum Hamiltonian for the TPRM problem is written in all generality as:

H = Helastic{x1(t), x2(t)}+Hrandom{x1(t), x2(t)}+Hinteraction{x1(t), x2(t)} , (1)

where the configuration of the two lines is defined by the two coordinates x1(t)
and x2(t), parameterized by the variable t. For directed polymers, t can identified
with the longitudinal coordinate in d-dimensional space and x1,2 with the d − 1
transverse coordinates. The first term Helastic describes the elastic energy of the
lines being quadratic in the derivatives and the second Hrandom{x1(t), x2(t)} =∫ tmax

0
dt{Vr(x1(t))+Vr(x2(t))} the interaction with the quenched random potential

being the same for both lines. Here, we consider uncorrelated point disorder, i.e.,
we have 〈Vr(x)Vr(x′)〉 ∝ δd(x − x′).

The last term Hinteraction{x1(t), x2(t)} =
∫ tmax

0
dtVint(x1(t) − x2(t)) is the in-

teraction energy between the two lines and gives rise to a variety of phenomena.
First, for ground-state problems, the case of an attractive potential or zero poten-
tial is obviously trivial: the two lines will localize to the same ground-state. In this
paper, we are going to deal with a hard-core repulsion between lines 1 and 2. This
implies a delta-function-like Vint ∼ V0δ

d(x1 − x2) with V0 →∞ so that overlap be-
tween the lines is strictly excluded. Would one allow for e.g., a finite V0, then, the
one-line ground-state would act as a pinning defect and the physics would slowly
cross-over from the hard-core case to that of two lines with soft-core repulsion as
V0 is decreased.

The simplest scaling picture for the TPRM in the presence of a hard-core inter-
action Vint consists of two independent directed polymers, one being in the one-line
global minimum and the second being in the first local minimum or the first excited
state. This picture implies that the TPRM ground-state would be separable that is
it could be constructed by a successive optimization procedure. This turns out to
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be false, but the construction gives a definition for the effective interaction energy

Vint,eff = E1 + E′1 − E2 ∝ LθV , (2)

where E1 refers to the single-DP ground-state energy in a particular sample, E′1 to
the first excited state, and E2 is the true TPRM ground-state energy. θV defines
a scaling exponent for this particular form of interaction energy. Recall that one
has E1 ' AL + ĀLθ1 + · · · and that the same is expected of E′1 as well where
A, Ā are disorder and dimension-dependent nonuniversal pre-factors. For E2, it is
to be expected that the scaling is of the same form E2 ' BL + B̄Lθ2 where the
exponent θ2 measures the energy fluctuations of the TPRM ground-state, ∆E2 =
〈E2

2 〉−〈E2〉2 ∝ Lθ2 . The ensemble-averaged Vint,eff allows one to note that since the
energy and its fluctuations have an upper bound, the separable trial ground-state
θV should be limited from above by θ1.

Likewise, the interaction energy can be described by the energy of the TPRM
ground-state minus twice the single line energy, i.e.,

δE2 = E2 − 2E1 ∝ LθE . (3)

Here, θE defines another scaling exponent characterizing the TRPM groundstate.
One has naturally δE2 + Vint,eff = E′1 − E1 ≥ 0 and in particular if the single-line
problem has two geometrically independent, energetically degenerate solutions then
the sum is zero. Since δE2 is positive semi-definite sample-to-sample, a lower limit
for θ2 is θ1 and therefore by this dual construction, one would expect that θ2 = θ1.
In this work, we do not consider the roughness properties of the two-line system
but note that one would likewise expect that ζ2 = ζ1. Figure 2 shows examples
from two and three dimensions of situations in which the true TPRM ground-state
is nonseparable, i.e., it cannot be constructed out of the states with energies E1 and
E′1 and has thus a nonzero Vint,eff . A closer look reveals that this is due to changes
in the configurations of both the lines.

3. Numerical Method

Here, we define the lattice version of the continuum model of two random polymers
with hard-core interactions in a random environment introduced in the preceding
section. The polymer configuration will live on the bonds of a square lattice, each
bond can only be occupied by a segment of a single polymer (hard-core interactions)
and the occupation of each bond (ij) costs a particular amount of energy eij . This
models the random part Hrandom of the continuum Hamiltonian, Eq. (1), but also
the elastic part Helastic, since all bonds cost some positive energy such that in case
of no disorder straight lines are the minimum energy configurations. In such a way,
we formulate the lattice model that the connection to a minimum cost flow problem
becomes obvious.14 Consider the energy function

H(z) =
∑
(ij)

eij · zij , (4)
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Fig. 1. Sketch of the successive shortest path algorithm for the solution of the minimum cost
flow problem described in the text. (a) Network for N = 0, the numbers are the bond energies (or
costs) eij . If the flow is nonzero, a counter-flow will reduce the cost of the bond and thus, there
are two costs associated to each direction. The dark thick line is a shortest path from source s to
sink t. (b) The residual network G0

c for a flow as in (a) with the update node potentials. (c) G0
c

from (c) with the updated reduced costs plus the shortest path from s to t in G0
c indicated by the

bright thick line. (d) Optimal flow configuration for N = 2 in the original network. Note that the
2-line state is not separable, i.e., it does not consist in the line of (a) plus a 2nd line.

where
∑

(ij) is a sum over all bonds (ij) joining site i and j of a d-dimensional
lattice, e.g., a rectangular (Ld−1 × H) lattice, with periodic boundary conditions
(b.c.) in d − 1 space direction and free b.c. in one direction. The bond energies
eij ≥ 0 are quenched random variables that indicate how much energy it costs to
put a segment of a polymer on a specific bond (ij). For convenience, we consider
forward and backward arcs such that for each pair of sites i, j, there is a bond (ij)
and a bond (ji). Initially, the costs for bond (ij) and (ji) are the same, but in the
residual graph, after the first line has been added, this is not true any more. The
variables describing the two polymers are zij ∈ {0, 1} (for hard-core interactions),
zij = 1 if a FL runs from site i to j, zij = 0 otherwise. For the configuration to
form lines on each site of the lattice, all incoming flow should balance the outgoing
flow, i.e., the flow is divergence free, which means that

∀i: (∇ · z) :=
∑

j n.n. of i

zji −
∑

j n.n. of i

zij = 0 . (5)

Obviously, the polymer has to enter, and to leave, the system somewhere. We attach
two neighboring sites of one free boundary to an extra site (via energetically neutral
arcs, e = 0), which we call the source s, and the other side to another extra site, the
target, t as indicated in Fig. 1(a). Now, one can push one line through the system
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Fig. 2. (a) Two-polymer ground-state in 2D, (b) the same system but with the first (1-line GS)
frozen first. The energy of the configuration in (a) is lower. Note that in (a), the 1-line GS is the
left line of (b). The fact that in (a), the 1-line GS is minimally deformed (in the lower part in
order to give the 2nd line a bit of space where energetically favorable) produces a 2-line GS that is
totally different (concerning the 2nd line) from the configuration in (b). (c) The TPRM GS in 3D,
(d) as (b) but in 3D. In both the 2D and the 3D comparisons, the disorder landscape is the same.

by inferring that s has a source strength of +1 and that t has a sink strength of
−1, i.e.,

(∇ · z)s = +N and (∇ · z)t = −N , (6)

with N = 1. Thus, the 1-line problem consists in minimizing the energy in Eq. (4)
by finding a flow z in the network (the lattice plus the two extra sites s and t)
fulfilling the constraints of Eqs. (5) and (6). Naively, one would expect that the
2-line problem consists simply in adding a second line to the 1-line configuration,
avoiding the bonds already occupied due to the hard-core interaction we consider
here. A glance at Fig. 1 convinces us that this is not correct and actually the main
issue of the present paper is to provide evidence that the correct solution of the
TPRM problem is significantly different from what one gets when assuming the
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separability of the ground state. The algorithm by which one solves the TPRM
problem is a standard application of min-cost flows to elastic line problems14–16

but its detailed description sheds some light into why the GS is not separable.
The first key ingredient to treat the two-line problem (and the N -line problem

in general14) is that one does not work with the original network. One considers
the residual network Gc(z) corresponding to the actual polymer configuration z,
which contains also the information about possibilities to send flow backwards (now
with energy −eij since one wins energy by reducing zij), i.e., to modify the actual
flow. Suppose that we put one polymer along a shortest (smallest energy) path
P (s, t) from s to t, which means that we set zij = 1 for all arcs on the path
P (s, t). Then, the residual network is obtained by reversing all arcs and inverting
all energies along this path, indicating that here we cannot put any further flow
in the forward direction (since we assume hard-core interaction, i.e., zij ≤ 1), but
can send flow backwards by reducing zij on the forward arcs by one unit. This
procedure is sketched in Fig. 1. Note that now the energy cost of a bond is not
symmetrical ((ij) versus (ji)).

The second key ingredient is the introduction of a so called node potential ϕ
that fulfills the relation

ϕ(j) ≤ ϕ(i) + eij (7)

for all arcs (ij) in the residual network, indicating how much energy ϕ(j) it would
at least take to send one unit of flow from s to site j, IF it would cost an energy ϕ(i)
to send it to site i. Obviously, ϕ is not uniquely defined via Eq. (7), for instance,
ϕ(i) = 0 (for all i) is a node potential that is often used to initialize the algorithm
discussed below. With the help of these potentials, one defines the reduced costs

cij = eij + ϕ(i)− ϕ(j) ≥ 0 . (8)

The last inequality, which follows from the properties of the potential ϕ in Eq. (7)
actually ensures that there is no loop L in the current residual network (corre-
sponding to a flow z) with negative total energy, since

∑
(ij)∈L eij =

∑
(ij)∈L cij ,

implying that the flow z is optimal.15

The idea of the successive shortest path algorithm is to start with an empty
network, i.e., z0 = 0, which is certainly an optimal flow for N = 0, and set ϕ = 0,
cij = eij . One now successively adds lines to the system using the following iteration:
suppose we have an optimal (N − 1)-line configuration corresponding to the flow
zN−1. The current potential is ϕN−1, the reduced costs are cN−1

ij = eij +ϕN−1(i)−
ϕN−1(j) and we consider the residual network GN−1

c corresponding to the flow
zN−1 with the reduced costs cN−1

ij ≥ 0. The iteration leading to an optimal N -line
configuration zNij is:

(1) Determine shortest distances d(i) from s to all other nodes i with respect to
the reduced costs cN−1

ij in the residual network GN−1
c .

(2) For all nodes i, update the potential: ϕN (i) = ϕN−1(i) + d(i)− d(t).
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428 V. T. Petäjä, M. J. Alava & H. Rieger

(3) Let P (s, t) denote a shortest path from node s to t. To obtain zNij , increase
(decrease) by one unit the flow variables zN−1

ij on all forward (backward) arcs
(ij) along P (s, t) (see Fig. 1).

Note that due to the fact that the numbers d(i) are shortest distances one has
again cNij ≥ 0, i.e., the flow zN is indeed optimal. To estimate the complexity of this
algorithm, it is important to note that it is not necessary to determine shortest paths
from s to all other nodes in the network; a shortest path from s to t is sufficient if
one updates the potentials in a slightly different way.15 Thus, the complexity of each
iteration is the same as that of Dijkstra’s algorithm for finding shortest paths in a
network, which is O(M2) for a naive implementation (M is the number of nodes in
the network). We find, however, for the cases we consider (d-dimensional lattices),
it roughly scales linearly in M = Ld. Thus, for N polymers, the complexity of this
algorithm is O(NLd).

In Fig. 2, we show the true ground state configuration for a specific disorder
configuration in 2D and in 3D and compare it with the one-line ground state plus
the first excited state (the latter defined as the ground state in the network that is
left when the bonds occupied by the one-line ground state are excluded). This is a
typical example in which the two-line configurations in 2D and 3D are distinct.

4. Results

For the actual computations reported in the following, we set the height of the
system H equal to its lateral size L, i.e., H = L, yielding a square geometry in 2D
and a cubic one in 3D and considered system sizes from L = 16 to L = 256 in 2D
and from L = 8 to L = 64 in 3D. For each system size, the results are averaged
over N = 12 000 (2D) and N = 8000 (3D) disorder configurations, and quantities
like E1, E2, δE2, Vint,eff denote disorder averages from now on. As discussed in
the previous section, the lines are forced by the boundary condition to start at
neighboring sites. This is the “worst-possible” boundary condition, since obviously
the interaction cost will be the highest (see the Introduction for a discussion).

We expect the various exponents that we estimate to be independent of the
actual disorder we put in (as long as it is uncorrelated and does not have algebraic
tails), nevertheless, we took two different probability distributions for the bond
energies: (1) a uniform distribution for which P (eij) = 1 for eij ∈ [0, 1] and 0
otherwise; (2) a binary distribution in which eij is 1 with probability p and 0 with
probability 1− p.

4.1. Two dimensions

Figure 3 shows the scaling of the two-line system energy and energy fluctuations
for both a uniform distribution for the eij ’s and a binary one with p = 0.8. As
expected, the scaling of the total energy E2 is linear and the fluctuations ∆E2 scale
with an exponent θ2 with θ2 ' θ1, the one-line energy fluctuation exponent. This
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Fig. 3. Energy E2 (black and white circles) and energy fluctuations ∆E2 (grey circles and white
squares) of the TPRM problem in two dimensions in a log–log plot. We show data for binary
disorder (eij ∈ {0, 1}) (filled symbols) and the uniform distribution of eij ’s (open symbols). One
expects E2 ∝ L and ∆E2 ∝ Lθ = L1/3, correspondingly the straight lines have slopes 1 (top) and
1/3 (bottom).
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Fig. 4. P (δE2 = 0) (squares) and P (Vint,eff ) = 0 (circles) versus L in 2D in a log–log plot. Data
for both binary (filled symbols) and uniform (open symbols) distribution of the bond energies eij .
The data follow the relations P (δE2 = 0) ∝ L−a1 and P (Vint,eff = 0) ∝ L−a2 with a1 and a2

given by the slopes of the straight lines: a1 = 0.63(≈ 1− θ) and a2 = 0.15.

adheres to the picture that the energetics of the DP problem are in general dictated
by the one-line exponent.

In Fig. 4, we show the probability that δE2 = 0 as a function of system size.
This measures the true degeneracy of the two-line system as the joint ground-state



June 6, 2001 15:34 WSPC/141-IJMPC 00181

430 V. T. Petäjä, M. J. Alava & H. Rieger

can be obtained from two independent minima with the same energy. P (δE2 =
0) ∝ L−a1 with a1 = 0.63± 0.03 which is compatible with a1 = 2/3 adhering thus
to Tang’s result,5 which indicated a1 = 1 − θ1. One can compare this with the
scaling of P (Vint,eff = 0), which scales with an exponent a2 = 0.15 ± 0.02 for both
distributions (P ∝ L−a2). For δE2 to be zero, one can assume that the groundstate
and the first excited state (E1, E

′
1) configurations come from two, geometrically

distinct “trees”. Then, we are left with a picture which explains the frequency
of separable ground-states (with δE2 = 0) by a picture in which the two lines
belong to two neighboring trees in the energy landscape. This means that one
considers an inverted structure in which the two lines end up next to each other but
belong to two different trees (starting from x = L) with the same energy. Meanwhile,
the interaction energy in general shows increasing “entanglement” meaning that
the TPRM groundstate is restructured in the optimization, with a corresponding
probability for a separable GS that decays with an exponent a2 = 0.15.

Figures 5 and 6 discuss further the scaling of the mean interaction energies δE2

and Vint,eff for the both distributions. Fitting our data for δE2 to a simple power
law, we obtain an effective exponent θE = 0.39 ± 0.03 for the system sizes we
have studied. This estimate is close to the single line energy fluctuation exponent
θ = 1/3, but not exactly equal (even within the error bars). We cannot rule out
the possibility that for larger system sizes the θE exponent crosses over to the one-
line exponent, but the accuracy of our data does not provide a serious hint about
such a crossover. In the limit L → ∞, a two-line state that is made up of two
optimal single line configurations confined to either half of the system (x < L/2
and x > L/2) gives an upper bound to δE2 that scales with the single line exponent
θ1, but such a state does not fulfill the requirement that we explicitly force the two

10 100
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10

δΕ
2

Fig. 5. δE2 in 2D for binary (filled symbols) and uniform (open symbols) distribution of the
bond energies eij in a log–log plot. It is δE2 ∝ LθE with θE = 0.39± 0.03.
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Fig. 6. Vint,eff in 2D for binary (filled symbols) and uniform (open symbols) distribution of the
bond energies eij in a log–log plot. It is Vint,eff ∝ LθV with θV = 0.39± 0.03.

lines to start close to each other. This interaction effect, which is not included in
the single line scaling theory, leads to an enhancement of δE2 and therefore to an
increased effective exponent. Similarly, for θV = 0.39± 0.03, is found. In addition,
as shown in Fig. 7, we can collapse the energy probability distributions for δE2

and Vint,eff by using a two-exponent collapse. Note that this is different from the
simple collapse one could attempt by using θE and θV . However, the two exponents
combined make it so that the averages scale with θE and θV .

4.2. Three dimensions

Figure 8 shows the scaling of three-dimensional case again for both a uniform
distribution for the eij ’s and a binary one with p = 0.8 for the case of the two-line
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symbols) and uniform (open symbols) distribution of the bond energies eij in a log–log plot.
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Fig. 7. (Continued)
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Fig. 8. Energy E2 (circles) and energy fluctuations ∆E2 (squares) of the TPRM problem in
three dimensions in a log–log plot. We show data for binary disorder (eij ∈ {0, 1}) (filled symbols)
and the uniform distribution of eij ’s (open symbols). One expects E2 ∝ L and ∆E2 ∝ Lθ,
correspondingly the straight lines have slopes 1 (top) and 0.24 (bottom).

system energy and energy fluctuations. As expected, the scaling of the total energy
E2 is linear and the fluctuations ∆E2 scale with an exponent θ2 with θ2 ≈ θ1 ≈ 0.24,
the one-line energy fluctuation exponent in three dimensions.

In Fig. 9, we show the probability that δE2 = 0 as a function of system size. In
3D, for binary disorder, P (δE2 = 0) ∝ L−a1 with a1 ' 0.25 ' θ1 in contrast with
the geometric picture valid in 2D that would imply that a1 ' 0.75. The scaling
of P (Vint,eff = 0) cannot be described with a clear-cut universal exponent. We
find a2 = 0.11 ± 0.01 for binary, and a2 = 0.05 ± 0.01 for continuous disorder
(P ∝ L−a2). Due to the fact that the decrease in P (Vint,eff = 0) is small for
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Fig. 9. P (δE2 = 0) (squares) and P (Vint,eff ) = 0 (circles) versus L in 3D in a log–log plot. Data
for both binary (filled symbols) and uniform (open symbols) distribution of the bond energies eij .
The data follow the relations P (δE2 = 0) ∝ L−a1 and P (Vint,eff ) = 0 ∝ L−a2 with a1 and a2

given by the slopes of the straight lines: a1 = 0.25 and a2 = 0.11, 0.05 for binary and continuous
disorder, respectively.

the range of system sizes considered, this does not exclude that the value of the
exponent a2 has a general, small value a2 ' 0.1. The value of a2 is trivially bounded
from above by a1, which is in agreement with the observations.

Again, the interaction energy in general shows increasing entanglement with a
probability for a separable GS that decays with novel exponents a1, a2. The result

10
L

0.1

1.0

δE
2

Fig. 10. δE2 in 3D for binary (filled symbols) and uniform (open symbols) distribution of the
bond energies eij in a log–log plot. It is δE2 ∝ LθE with θE = 0.26 ± 0.02.
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Fig. 11. Vint,eff in 3D for binary (filled symbols) and uniform (open symbols) distribution of the
bond energies eij in a log–log plot. It is Vint,eff ∝ LθV with θV = 0.21± 0.02.

that a1 6= 1 − θ1 in 3D can be attributed to the lack of hard-core expulsion. This
means that one can now consider two paths “inside the same valley” (i.e., the trans-
verse distance of the paths is not affected by the hard-core repulsion). The question
how often two lines can have a degenerate energy, E1 = E′1, is thus answered indi-
rectly by our scaling result for the exponent a1. The physical implication is that in
3D, it is relatively easier for two lines to have the same energy, compared to 2D.
Like in 2D, we are left without an effective argument for the exponent a2. Here,
matters are further complicated by the fact that the two exponents for respective
disorders are slightly different, and the effective value is very small.

Figures 10 and 11 further discuss the scaling of the mean interaction energies
δE2 and Vint,eff for the continuous distributions. The 3D exponents become θE =
0.26 ± 0.02 and θV = 0.21 ± 0.02. Now, in particular, θV is closer to θ1 than in the
2D case. As shown in Fig. 12, we can collapse the energy probability distributions
for δE2 and Vint,eff by using, as in 2D, a two-exponent collapse. For binary disorder,
the collapse of the data makes sense in both cases, for continuous, we restrict
ourselves to δE2.

5. Conclusions

In this paper, we have investigated the joint ground-state of two directed polymers
in a random medium, the TPRM problem. The main questions addressed here are
whether the scaling of the TPRM can be described with the one-line exponents
and an associated picture of behavior and if not, when. To this effect, we define
here the interaction energy Vint,eff which measures the energy difference to a sep-
arable groundstate, i.e., a state that can be constructed successively out of the
one-line groundstate and the one-line excited state excluding the groundstate.
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Fig. 12. Scaling plots of the probability distributions of δE2 and Vint,eff in 3D for the uniform
distribution of the bond energies eij in a log–log plot.

Unsurprisingly, it turns out that Vint,eff as defined here seems to result in an
independent exponent that cannot be explained by the one-line scaling arguments,
if one considers the probability of a separable groundstate in which Vint,eff can
be constructed trivially using two one-line state energies. This is natural since the
probability measures the difference of the true TPRM ground-state to the “Ansatz”
of two separable states and is thus the first nonanalytic and nontrivial correction
characterizing the unique nature of the TPRM problem. This should generalize to
situations with more than two lines in a natural fashion. The numerical value(s) for
the interaction energy exponents θE , θV are in the vicinity of the energy fluctuation
exponent, θ1 in both 2D and 3D. On physical grounds, one would expect that the
exponents are limited from below by θ, and this agrees with our estimates in all
the cases. Our numerical data cannot exclude the case that these exponents are in
fact equal to θ1. In 2D, an upper bound for E2 is given by the energy increase of a
DP starting next to a self-affine wall, which problem to our knowledge has not been
studied in this context. In 3D, the situation is more difficult since the lines can pass
(wind around) each other. This is reflected in some of the features of the TPRM
energetics, like the degeneracy of δE2, which is clearly related to the single-line
picture in two dimensions. In three dimensions, this is no longer true due to the
lack of excluded volume effects (like in 2D). We lack a geometrical explanation for
the scaling of the degeneracy exponent a1 in this higher-dimensional case.

Finally, we would like to point out some directions for further studies. In this
work, we have restricted ourselves to the “wedge boundary condition”. That is, the
two DP’s of the TPRM problem are forced to start next to each other. There are
two other scaling limits worth a study. Varying the start- and endpoints/boundary
conditions would make it possible to study the competition of independent val-
ley effects to internal reorganization — like here — inside the same valley. In the
former case, the statistics of the energetics are expected to follow from rare event
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436 V. T. Petäjä, M. J. Alava & H. Rieger

statistics,13 and since the DP’s search for the two lowest energy minima in the land-
scape Vint,eff = 0 (the GS is separable) while δE2 follows from extremal statistics
since it is the difference between two extremal variables. The second possibility for
the scaling limit, is to use free boundary conditions for the ends but study sys-
tems with periodic boundary conditions or hard walls in the transverse direction.
In the former case, one could investigate the center-of-mass behavior, while the
latter, one has a caveat mentioned in the introduction (the first excited state is
severly restricted by the GS). Our work also implies that the scaling functions of
the distributions of the interaction energy would merit further study.
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