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ABSTRACT 

The atomic layer deposition (ALD) method was applied for fabricating high permittivity 

(high-k) dielectrics, viz. HfO2, ZrO2 and rare earth oxides, which can be used to replace 

SiO2 as gate and capacitor dielectric. The dielectrics were processed by ALD using novel 

cyclopentadienyl (Cp, -C5H5) precursors together with water or ozone as the oxygen 

source. ALD, which has been identified as an important thin film growth technique for 

microelectronics manufacturing, relies on sequential and saturating surface reactions of 

alternately applied precursors, separated by inert gas purging. The surface-controlled 

nature of ALD enables the growth of thin films of high conformality and uniformity with 

an accurate thickness control.  

The ALD technique is introduced and ALD processes for HfO2, ZrO2 and rare earth oxide 

films, as well as the applications of the high-k dielectrics in microelectronics are reviewed. 

The need for developing new ALD processes for the high-k materials is emphasized. 

ALD processes for HfO2 and ZrO2 were developed using Cp-type precursors. The effect of 

different oxygen sources, namely water or ozone, on the film growth characteristics and 

properties of the ALD-processed films was examined in detail. The oxide films were 

stoichiometric, with impurity levels below even 0.1 at-% for C or H. Electrical 

measurements showed promising dielectric properties such as high permittivity values and 

low leakage current densities. Other properties, such as structure, interfacial layer thickness 

and morphology, were also characterized. Compared to films processed by water, the 

ozone-processed films on H-terminated Si showed improved dielectric properties, as well 

as higher density, lower roughness and better initial growth rate. In addition, in situ gas-

phase measurements by quadrupole mass spectrometry (QMS) were performed in order to 

study the ZrO2 growth mechanism. 

A number of Cp-precursors were tested for the ALD of several rare earth oxide films. The 

thermal stability of many of the precursors was limited, but nevertheless, ALD-type 

processes were developed for Y2O3 and Er2O3 films. High reactivity of the Cp-precursors 

towards water resulting in high growth rates (1.2-1.7 Å/cycle) and purity of the Y2O3 and 

Er2O3 films were realized. Despite the detected partial decomposition of the (CpMe)3Gd 

precursor, Gd2O3 films with high growth rate and purity as well as effective permittivity of 

about 14 were deposited.  



 

Finally, promising processes for ternary scandates, namely YScO3, GdScO3, and ErScO3, 

were developed using either Cp- or β-diketonate-based processes. These as-deposited 

ternary films were amorphous exhibiting high effective permittivity (14-15), low leakage 

current density, and resistance towards crystallization upon annealing even up to 800°C.  
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1. INTRODUCTION 

Thin layers of material, i.e. thin films or overlayers, on supporting substrates are used in 

numerous applications in modern technology, from optics and optoelectronics to 

microelectronics and nanotechnology as well as protective coatings and in devices where 

functional properties, such as magnetic, catalytic, gas sensing or superconductive, are 

needed.  

 

In microelectronics, continuous shrinking of devices is necessary to improve the 

performance, which sets challenging requirements for the integrated circuit (IC) 

fabrication. New materials and techniques are required and materials must be grown in the 

form of very thin films into deep trenches and other 3-D structures with good conformality. 

As requirements tighten, novel thin film deposition techniques are needed in many 

applications. Atomic layer deposition (ALD) technology, originally known as atomic layer 

epitaxy (ALE), was developed and patented in the 1970s1 for thin film electroluminescence 

(TFEL) display fabrication, where high quality insulating and luminescent films on large 

area substrates were required. The current interest in ALD in the microelectronics industry 

stems from the unique characteristics that this method offers: ultrathin films can be 

deposited on a large substrate area with excellent conformality and with control of 

thickness and composition at nanometer level.2 ALD has high potential for use as a tool in 

microelectronics for high permittivity (high-k) film growth for complementary metal oxide 

semiconductor (CMOS) devices and dynamic random access memory (DRAM) capacitors 

as well as for ferroelectrics, barrier materials, and conductors such as metal gates.3,4 

 

High-k dielectrics have been extensively studied due to the fact that SiO2, which is 

traditionally used as a gate oxide in metal-oxide semiconductor field effect transistors 

(MOSFETs), can no longer function as an effective gate insulator as higher capacitance 

density with decreased gate oxide thickness is required for near-future device 

generations.3,5-7 The tunneling current through the SiO2 gate oxide would otherwise 

degrade the device performance. The solution for this problem is to choose another 

material with higher permittivity than 3.9, which is characteristic for SiO2. In fact, silicon 

oxynitride, SiOxNy has already been used to extend the use of silicon oxide-based gate 

dielectrics but a long-term alternative solution needs to be found. The leading candidates 

considered to replace silicon oxide-based gate dielectrics are the oxides, silicates, and 
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oxynitrides of hafnium and zirconium as well as also those of the rare earth (RE) 

elements.8 ALD has already been a widely studied method for the growth of HfO2 and 

ZrO2.  

 

As ALD is a chemical deposition method, the precursor chemistry has a decisive effect on 

the quality and properties of the deposited films.9,10 The most commonly used Zr and Hf 

precursors, viz. the halides, have potential drawbacks such as chlorine contamination of the 

films11 and generation of corrosive by-products during the ALD-processing. For these 

reasons, new precursor chemistry needs to be developed. Another factor in the precursor 

chemistry of oxide film growth is the selection of the oxygen source, which can strongly 

affect the resulting properties.12 Water, which is a commonly used oxygen source, can be 

replaced, when needed, by a more aggressive oxidant, ozone.  

 

The deposition of RE oxides has not been as widely studied by ALD as the growth of 

group 4 oxides (TiO2, ZrO2 and HfO2). Prior to this study, only a few processes were 

reported and the potential of ALD-grown RE oxides has not yet been fully exploited. 

 

The purpose of this work was to develop new processes for the ALD of HfO2, ZrO2, and 

the RE oxides by applying a novel group of ALD precursors, viz. the true organometallic 

cyclopentadienyl (Cp, -C5H5) precursors. The literature part of this thesis reviews the 

current status of the ALD of high-k oxides focusing on Hf, Zr and RE oxides. The 

experimental part describes the development of ZrO2 and HfO2 ALD-processes from Cp-

precursors. In order to better understand the chemistry involved in the Cp-based oxide 

processes, reaction mechanism studies are also presented. The effects and suitability of 

ozone as the oxygen source for high-k film deposition is experimentally evaluated. In 

addition, ALD processes for various RE oxides, both binary and ternary, were developed 

and the suitability of Cp-precursors as well as a comparison with the β-diketonate-based 

processes is presented. The majority of the experimental results are reported in 

publications I-IX. However, the applicability of several Cp-type RE precursors, including 

La-, Pr-, and Gd-precursors are reported here for the first time. In addition, novel processes 

for GdScO3 and ErScO3 are briefly introduced.  
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1.1 Dielectric layers in microelectronics 

The key component of the ICs, the MOSFET structure consists of source, drain, channel, 

gate and gate oxide (Figure 1). In order to keep in pace with the demands of the 

semiconductor industry, the IC performance should be continuously improved. One aspect 

of improving the device performance, e.g. to create more powerful computers, has been the 

exponential increase in the number of transistors on a silicon chip. This exponential 

increase is known as the Moore’s law, predicted already some 40 years ago,13 described 

that the number of transistors integrated on a chip would double approximately every 2 

years. The semiconductor industry has up to now closely followed this prediction, which 

requires the dimensions of a MOSFET to continuously decrease. In 2004, the Intel 

Itanium® 2 integrated about 592 million transistors, which is some 200 times more than in 

1993 when the Intel Pentium® processor was introduced.14 To obtain this scaling, the gate 

oxide layer, nitrided SiO2 has been downscaled to as thin as 1.2 nm, or to a thickness of 

only a few monolayers. This thickness is already at a level where severe problems occur, 

and as a result the dielectric is not able to effectively withstand voltages, as tunneling 

current through the dielectric is detrimental on device performance. Another problem 

related to the SiO2 scaling is reliability; the requirements for reliability are even more 

difficult to meet than the leakage current requirements.8 

 

Figure 1. A Schematic showing a MOSFET structure. 



 16

The solution for the aforementioned problems related to SiO2 scaling is to select a gate 

dielectric with a higher permittivity than that of SiO2 (k = 3.9). The capacitance density 

(C/A) is directly proportional to permittivity: 

ox

r

tA
C εε 0=             (1) 

where ε0 is the permittivity of the free space, εr permittivity (also referred to as relative 

dielectric constant), A the capacitor area, and tox the gate oxide thickness. It should be 

noted that the permittivity is also represented by the Greek letter κ, thus the expression 

high-κ or, as used in the current text, high-k are equivalent terms. The equation (1) can be 

rewritten in terms of EOT (equivalent oxide thickness) and the permittivity of SiO2 (k = 

3.9): 

)high(
9.3

EOT
-k

t

r

ox

ε
=           (2) 

The term EOT thus represents the theoretical thickness of SiO2 that would be needed to 

achieve the same capacitance density as with the high-k dielectric, e.g. if high-k material 

with a permittivity value four times higher than that of SiO2 is used as gate dielectric, a 4 

nm thick layer would have the same capacitance as a 1 nm thick SiO2 layer; thus the EOT 

is 1 nm. It should be noted here, however, that if the equivalent thickness is determined 

solely from the accumulation capacitance and quantum mechanical effects are not taken 

into an account, another term CET (capacitance equivalent oxide thickness) is used, which 

yields slightly higher values than the EOT. Usually, the gate dielectric consists of several 

layers, e.g. a lower k interfacial layer (or layers) and higher k layer. In terms of EOT (or 

CET) the series capacitance can be written: 

 

EOTtotal = EOThigh-k + ΣEOTlow-k        (3) 

 

Any low-k interfacial layer contributes to the overall EOT value and thus should be 

minimized in order to achieve the low enough EOT required. 

 

Possessing sufficient permittivity is not the only condition an alternative high-k candidate 

must meet, actually the requirements are numerous, out of which five can be considered as 

the major requirements. First of all, as mentioned, for a longer term solution the 

permittivity of the material should be considerably higher than 3.9, preferably higher than 
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12.7 This requirement excludes some candidates, such as Al2O3, which has a permittivity 

value of 9. Then, the metal oxide has to be thermally (up to 1000°C) and chemically stable 

in contact with Si in order to prevent reactions with Si leading to formation of thick 

interfacial SiOx or silicide layers.8,15,16 This requirement eliminates a number of potential 

high-k oxides, e.g. TiO2, Ta2O5 and Nb2O5.15,17 In addition, the candidate material is 

required to have high enough bandgap (>5 eV) to reduce the leakage current flowing 

through the structure.7 Also the conduction band offset, in other words the barrier for 

electrons travelling from the silicon substrate to the gate, has to be sufficient (>1 eV).7,17 If 

this value is low, high leakage currents may result, precluding the use of some materials 

(e.g. TiO2 and Ta2O5) as alternative gate oxides. The low density of defects at the 

Si/dielectric interfacial region is also a challenging requirement.8 An amorphous 

microstructure of the candidate material, even after post-deposition annealing, is most 

desirable, because a polycrystalline structure offers pathways for leakage current along 

grain boundaries. Epitaxial oxides would be a good solution, but they are difficult to grow 

on silicon.18 Other important requirements include reliability,19 as well as gate and process 

compatibility issues.20 

 

Identifying the most promising high-k candidate is a demanding task. The requirements 

mentioned above limit the gate dielectric candidates to only a few (Table 1), among which 

the oxides of Zr and Hf are probably the most promising. The rare earth oxides can also be 

counted as potentially promising candidates, despite the fact that in some cases the 

permittivity increase is only moderate. Quite recently, amorphous ternary rare earth 

scandates have also been introduced as high-k candidates, e.g. GdScO3 has been reported 

to have permittivity value of about 20,21 which is considerably higher than those of the 

constituent oxides, Gd2O3 and Sc2O3. Besides the materials listed in Table 1, there are also 

other technical solutions of hafnium-based silicates and oxynitrides and some 

combinations of them such as HfSiON,22 which has recently gained considerable interest. 

In addition to the silicates, aluminates have also been studied. However, their drawback, 

similarly as in the case of silicates, is the decreased permittivity due to the mixing of Al2O3 

which has a lower permittivity than that of HfO2. Unfortunately, aluminates have higher 

density of defects than the silicates.17 Generally, the purpose for adding silicon, nitrogen or 

aluminum is to extend the crystallization onset temperature.  
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Table 1. Examples of high-k candidates as alternative gate or capacitor dielectrics. 

Material Permittivity Material Permittivity 

Si3N4 75,8 La2O3 20-305,8 

Al2O3 95,8 PrOx 3023 

ZrO2 14-258 Gd2O3 9-148 

HfO2 15-268 
Other Ln2O3 (Ln=Nd, 

Sm, Dy, Ho, Er, Yb, Lu) 9-148,24 

Y2O3 12-155,8 REScO3 20-2221 

 

High-k materials are needed for memory applications as well. A DRAM stores each bit in a 

storage cell consisting of a capacitor and a transistor. Capacitors tend to quickly loose their 

charge and must be repeatedly recharged. The charge storage capacity of a capacitor is 

dependent on the capacitance. The capacitance can be increased by decreasing the SiO2 

dielectric thickness, increasing the surface area, and/or introducing a high-k dielectric. 

Storage capacitors can be divided in two types, stacked-capacitors and trench capacitors, of 

which the latter offers highest density, but the manufacturing process complexity can be 

considered as a drawback.25 Figure 2 shows a schematic view of current DRAM 

architectures. The stacked-capacitors have now been introduced into the sub-100 nm 

technology CMOS nodes and the metal-insulator-metal capacitors where high-k materials, 

such as Ta2O5, are applied.3 However, potential long-term solutions are based on ultrahigh-

k dielectrics, such as perovskites. In trench capacitor structures (Figure 2) the capacitors 

are constructed into high aspect ratio trenches in order to increase the surface area and thus 

the effective capacitance density. The area can further be increased by widening the trench 

profile (bottle-shape trenches) and by roughening the sidewalls of the trenches.3 A near-

future solution for insulator in trench capacitor structures is similar as in the case of gate 

dielectric applications where Hf-based materials and in addition Al2O3 have been applied. 

As the trench aspect ratio is expected to increase up to 80:1 by the year 2007, ALD is 

probably the only viable technique for such depositions.3 
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Figure 2. A schematic showing two types of DRAM capacitor structures: trench and stack 

architecture. 

1.2 Atomic layer deposition 

As briefly described earlier, the ALD technology was developed and patented some 30 

years ago by Suntola and co-workers in Finland.1 The purpose was to develop TFEL 

displays where ALD, then known as ALE, was used to deposit the high quality 

electroluminescent and dielectric layers, the latter being closely related to the high-k 

dielectrics. The TFEL display production was the first industrial application of ALD and 

the successful industrial production still continues.26 The strength of the ALD technology 

lies in its capability to produce high-quality, dense, and pinhole-free films on large surface 

areas with excellent uniformity and conformality as well as with thickness and composition 

control at an atomic level.2,9 These characteristics are now especially needed for the 

processing of high-k dielectrics. 

 

The ALD processes and their applications have been frequently reviewed,2,12,27-29 most 

extensively and recently by Puurunen30 as well as by Ritala and Leskelä.9 ALD is a variant 

of chemical vapor deposition (CVD) method, but unlike CVD, ALD relies on sequential 

and saturating surface reactions of the alternately applied precursor pulses. The precursor 

Access  
transistor

Access 
transistor

Silicon 
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Doped Si Metal or 
Poly Si electrode 

Poly Si 

Trench capacitor Stacked capacitor 

Dielectric
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pulses are separated by inert gas purging or evacuation of the reaction chamber to avoid 

gas phase reactions between the precursors. The growth proceeds in a cyclic manner 

enabling easy thickness control. The basic principle of ALD is shown in a simplified 

manner in Figure 3, where one ALD cycle of an imaginary metal oxide deposition is 

presented. At first the exposure of the substrate surface to the gaseous metal precursor (a) 

and its chemisorption on the available surface sites (here –OH groups) leaves the surface 

saturated. After inert gas purging of the excess precursor and ligand exchange by-products 

(b), the surface is exposed to the oxygen source (here H2O) (c). The surface reaction 

produces the desired oxide film and after inert gas purging the surface is ready for the next 

ALD cycle (d).  
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Figure 3. Schematic illustration of an ALD cycle of a hypothetical metal oxide process 

where precursors, L1ML2 (M=metal, L1,2=ligands, e.g. CH3, Cl, Cp, alkylamide) and H2O 

are alternately pulsed and separated by inert gas pulsing. Instead of inert gas pulsing 

evacuation of the reaction chamber can be used. 
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In order to achieve a surface saturative ALD-type process, the growth rate has to be 

independent of the precursor dose provided that the dose is sufficiently large so that all the 

available surface sites have been occupied (Figure 4a). In other words, the precursor 

decomposition leading to a CVD-type growth mode should be avoided. In theory, the ALD 

growth proceeds by one atomic layer per cycle, but in practice, due to steric hindrances and 

possible limited number of reactive surface sites, the growth rate per cycle usually is only a 

distinct fraction of a monolayer (ML) thickness, typically less than 0.5 ML. As the growth 

proceeds in a cyclic manner, and the purging periods take some time, the ALD technique is 

rather slow for some applications, but for high-k depositions where very thin films are 

grown this is not a critical issue.  

 

Often, but not always, a region with a constant deposition rate, also known as ALD 

window, is observed.12,31 The ALD window is not a requirement for an ALD-type growth 

mode, but it is a desirable feature that leads to the reproducibility of the film growth. 

Especially if a ternary material is to be deposited, overlapping ALD windows of the 

constituent binary processes offer a good starting point for the development of a ternary 

process. The observed growth rates vs. temperature in ALD processes are shown in Figure 

4b.  

 

Figure 4. Different types of growth rate vs. precursor pulse time curves in ALD processes 

at a constant temperature (a) and factors limiting the self-limiting growth at various 

temperatures (b). 
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In addition to the above-mentioned applications in microelectronics, ALD certainly offers 

potential solutions in many other areas, such as optics and optoelectronics, 

nanotechnology, micro-electromechanical systems, catalysis, magnetic recording head 

technology, and protective and antireflective coatings.9 

1.3 Precursor chemistry in ALD of oxide films 

Besides having an efficient reactor with uniform gas distribution within the reaction 

space,32 careful selection of the precursor is of an utmost importance for a successful ALD 

process. The main requirements for a good ALD precursor can be listed as follows. The 

precursor must be sufficiently volatile and must not undergo significant self-decomposition 

at deposition temperature, a problem which leads to a CVD-type growth mode. The 

precursor must adsorb or react with the surface sites, and its reactivity must be sufficient 

also towards the oxygen source. In contrast to CVD, the ∆G value for the reaction should 

be as negative as possible.9 Furthermore, the precursor and its reaction by-products should 

not etch the surface or the growing film. Important factors include also practical aspects, 

such as safety and economical requirements.9,12 In addition, liquid or gaseous precursors 

are generally preferred over the solid ones. 

1.3.1 Metal precursor types 

The various metal precursor types applied in ALD of oxide films are schematically 

presented in Figure 5. Here, the metal precursor types are introduced only briefly; more 

detailed examples of the precursors used for high-k materials will be presented in Section 

1.4.  

 

The most common group of inorganic precursors in ALD are the halides, where the metal 

atom is bonded to halogen atoms (F, Cl, Br or I). For example, HfCl4 together with water is 

one the most frequently studied ALD process and will be discussed in more detail in 

Section 1.4.2. The beneficial characteristics of many metal halides include their high 

thermal stability over a wide temperature range, good reactivity and wide availability as 

volatile compounds for many metals. Furthermore, they are readily available and/or can be 

easily synthesized. However, drawbacks include possible generation of particles and 

corrosive by-products as well as halide contamination in the deposited films. Other purely 
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inorganic precursors are occasionally used despite their limited stability, for instance, the 

metal nitrates.33  

 

Alkoxides, where the metal ion is bonded to the oxygen, have been frequently applied for 

the ALD of various oxide films. However, thermal stability of the alkoxides is limited and 

ALD-type growth mode is not often achieved.34,35,36 The β-diketonates, used frequently in 

CVD,37-39 have also been studied for the ALD of RE oxide films.40,24 Because the C-O 

bond is relatively strong, powerful oxidizers are needed, but still, some carbon is left in the 

film.24 In addition, steric hindrance, caused by the bulky size of the ligands results in low 

growth rates. It should be noted, though, that for the rare earth oxides not many other types 

of viable precursors exist and thus the β-diketonates form an important group of precursors 

in ALD of RE oxides.24  

 

Figure 5. Examples of precursor types applied in the ALD of oxide thin films. The R’s 

represent alkyl groups such as methyl (Me) or ethyl (Et).  

 

Among the precursors where the metal is bonded to nitrogen, dialkylamido (alkylamides) 

and amidinato complexes have recently gained attention.10,41 Alkyl amides are volatile and 

reactive towards water, which makes the group interesting as precursors for high-k 

M

O

R

M

X

M

R

M

NR

R
n

n
n

n

M

O
O

R
R

n

n
R

R

N
N

M

R
n

M

Halides
(X=F, Cl, Br, I)

Alkoxides β-diketonates Alkyls

Cyclopentadienyls Alkylamides Amidinates



 25

materials. However, as described in Section 1.4.1 the thermal stability can be a problem in 

some cases. The self-decomposition of the precursor seems to be affecting the growth 

characteristics also in the case of amidinates.42  

 

The true organometallics, viz. the metal alkyls and cyclopentadienyl compounds, can be 

exploited in ALD for high quality film growth. For example, AlMe3/H2O is an excellent 

ALD process for the deposition of Al2O3.30 Alkyls are highly volatile and reactive but their 

availability is rather limited and presently they are used as precursors for Al and Zn 

containing films.30,43 Cyclopentadienyl or metallocene compounds, having at least one 

direct metal-carbon bond to the Cp-ligand (C5H5), offer a wider range of possibilities as 

precursors. The Cp-compounds, first synthesized in the 1950s,44,45 are generally volatile 

and highly reactive, and thus suitable as ALD precursors.46 Cp-compounds have been 

previously applied for various ALD processes (see the recent review by Putkonen and 

Niinistö46), but not extensively for high-k gate oxide depositions. They have also been 

applied as catalysts,47 and thus the commercial availability in many cases is good. Often, 

however, thermal stability is limited, but a wide variety of different substituents exists as 

seen in Figure 6.   
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Figure 6. Examples of volatile cyclopentadienyl complexes for possible use as precursors 

in ALD. The R’s represent alkyl groups such as Me or Et.  

1.3.2 Oxygen sources 

A long list of oxygen sources has been applied in the ALD of metal oxide thin films. They 

include H2O, O3, O2, N2O, H2O2, oxygen radicals, and metal alkoxides.9,30 However, by far 

the most common oxygen source used is water. In the ALD of high-k oxides, one should 

consider also the oxidation power the oxygen source has towards the bare Si surface. This 

is crucial due to the fact that in order to achieve low EOT values, additional growth of low 

permittivity layers, e.g. SiOx interfacial layer, should be minimized. When considering the 

oxidation power of commonly used oxygen sources, the following sequence can be 

written: Oxygen radicals > ozone > hydrogen peroxide > water. Unfortunately, the 

selection of oxygen precursor is in practice more complicated. A strong oxidizer, like 

ozone, can cause the formation of a fairly thick interfacial layer on H-terminated Si, viz. 
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approximately or usually more than 1 nm,48-50,II,V which may preclude ozone-processing as 

a long-term solution for gate dielectric fabrication. On the other hand, when compared to 

water, ozone can produce denser films with lower impurity levels and enhanced electrical 

properties.50,51 Water-based processes rely on hydroxyl groups on the starting surface and 

high reactivity of the chemisorbed metal precursor towards the water pulse, otherwise the 

initial nucleation of the deposited films may be inhibited resulting in poor electrical 

properties of the deposited film.52,53 In many cases, the metal precursor is not reactive 

enough towards the oxygen source and a stronger oxygen source must be used to deposit 

good quality film.54 Until recently, comparative studies on the use of different oxygen 

sources in ALD of high-k oxides were seldom performed. One aim of this study was to 

evaluate the usability of ozone in ALD of high-k oxides and the results obtained will be 

discussed in detail in Chapter 3. 

1.4 ALD of high-k dielectrics 

As mentioned in Section 1.1, the leading candidates for alternative high-k dielectrics are 

the oxides, silicates, and silicate oxynitrides of Zr and Hf, as well as the oxides of the rare 

earths. As the selection of the precursor has an effect on the characteristics of the deposited 

film, this section emphasizes processes for the binary oxides, such as ZrO2 and HfO2, that 

are deposited with different types of precursors, and describes the current status of these 

materials. In this context, the Zr and Hf-based silicates are only briefly mentioned. Also, 

the less studied field of rare earth oxides by ALD will be discussed. 

1.4.1 ZrO2 

The first ALD study on ZrO2 published was the ZrCl4/H2O process.55 In that study, the 

growth temperature applied was 500°C, yielding a growth rate of 0.53 Å/cycle. Since then 

several groups have applied the same process in a wide temperature range of 180 to 

600°C.52,56-60 The optimized temperature found in most studies is 300°C, showing well-

saturated growth with a growth rate of 0.5-1.0 Å/cycle, the exact value depending on the 

reactor set-up. Hydrogen and chlorine impurity levels at 300°C have been reported to be 

0.6-0.8 and 1.5 at-%, respectively.57 The chlorine level could be reduced by annealing at 

high (900-1050°C) temperatures.61 However, annealing caused crystallization even in very 

thin layers.62 The chlorine residues tend to accumulate at the interface region between the 

film and Si substrate.63 Problems related to the ZrCl4/H2O process include also the fact that 
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the metal precursor, being a fine solid, can generate particle contamination and the ALD 

reaction by-product is corrosive HCl.64 In addition, the inhibited growth of zirconia on H-

terminated Si, leading to an island-type growth,52,65 remains as a challenge. A common 

solution to overcome this problem is to use thin thermal or chemical SiO2 or nitrided SiO2 

as a starting layer. However, as lower k interfacial layer is introduced, to achieve sub-1.0 

nm EOT values with low leakage becomes more difficult. For these obvious reasons 

alternative chemistries for the ALD of ZrO2 has been the subject of much research. The 

reported ALD processes of ZrO2 are listed in Table 2, including details of growth 

temperatures and impurities. 

 

An option instead of using ZrCl4 is to employ another Zr halide, namely ZrI4.66-69 

Unfortunately especially for the high-k dielectric applications, ZrI4 does not bring about 

any significant remedy to the problems mentioned above. The halide content remained at 

least at the same level as in the case of ZrCl4 but presumably due to the weaker metal-

halogen bond strength the annealing reduced the halide content more effectively.70 On the 

other hand, it was observed that desorption of iodine caused problems for saturation of 

growth at 300°C.67 

 

A distinct benefit of using Zr alkylamides, such as Zr(NMe2)4, Zr(NEtMe)4, and Zr(NEt2)4 

is that they are liquid at the evaporation temperature eliminating the particle contamination 

problem.71 Furthermore, the alkylamides are reactive towards water and give impurity 

levels that are at least for C and N reasonably low, e.g. below 1 at-% for C.71 However, 

higher C contents have been reported when oxygen or oxygen plasma was used as the 

oxygen source.72-75 The problematic issue in the use of alkylamides is their thermal 

stability; e.g. for the Zr(NMe2)4/H2O process, the precursor decomposition limits the 

maximum growth temperature to 250°C. Furthermore, the growth temperature must be low 

if smooth films are desired.76  

 

From the family of silylamide precursors, ZrCl2[N(SiMe3)2]2 has been applied together 

with H2O to process zirconia yielding films with a few at-% of Si but low contents of C, H, 

and Cl.77 

 

The limited thermal stability of Zr alkoxides represents a problem for their use in ALD. 

For instance, Zr(OtBu)4 has been employed with several oxygen sources78-80 and even with 
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oxygen plasma,72,81,82 but true ALD growth could not be achieved due to thermal 

decomposition of the metal precursor.78,82 The decomposition behavior correlated with the 

impurity contents; 5-8 at-% of C has been reported for films deposited even at very low 

temperatures. Other approaches, like replacing two -OtBu ligands with 

dimethylaminoethoxide (dmae) ligands only slightly improved the thermal stability and 

self-limiting growth was not achieved.83,84 Other solutions using the dmae-ligands were not 

successful, either.83  

 

From the β-diketonate precursor group, Zr(thd)4 has been used to grow ZrO2 films.85 

Because of the low reactivity of the precursor, ozone was required as the oxygen source, 

but still a growth rate of only 0.24 Å/cycle was reported at deposition temperature of 375-

400°C. ALD-type growth was confirmed and the contents of impurities were low, 0.2 and 

0.3 at-% for C and H, respectively.  

 

The use of cyclopentadienyl derivatives of Zr for ZrO2 film growth was introduced quite 

recently.85,I,II Depositions from either Cp2ZrCl2 or Cp2ZrMe2 together with ozone showed 

an ALD-type growth with H and C residues less than 0.5 at-% and ZrO2 growth rate of 

0.55 Å/cycle within the ALD window regime, 300-350°C.85 Cp2ZrMe2 could also be 

applied together with waterI and this process, including reaction mechanism studiesIII and a 

comparison of structural and dielectric properties between the ozone- and water-processed 

filmsII is discussed in more detail in Section 3.1.  
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Table 2. Published ALD processes of ZrO2 including growth temperatures and impurity 

characteristics. 

Precursors Tgrowth
 Impurities (at preferred Tgrowth) 

Metal precursor 
 

Oxygen 
source 

Range,  
oC 

Preferred,
oC 

C, 
 at-% 

H, 
 at-% 

Other, 
 at-% 

Analysis 
method 

Ref. 
 

halides         

ZrCl4  H2O 180-600 300  1.5 Cl: 0.6-0.8 TOF-ERDA 55,57

 

H2O + 

H2O2 

180-600 

 

300 

  

N.R. 

 

N.R. 

  

57,58 

 

 O2
* 500 500   N.R.  86 

ZrI4 

 

H2O + 

H2O2 

230-500 

 

275-325 

  

3-8 

 

I: 0.5-1.2 

 

TOF-ERDA, 

XPS 

66,68,69 

 

amides         
Zr(NEtMe)4 H2O < 250 < 250 < 1 N.R. N: < 0.25 RBS 71 

 O2 
a 110-250 200-250 1.6-3 N.R. N: 0.3-3.5 AES, RBS 73 

Zr(NMe2)4 H2O < 300 < 300 < 1 N.R. N: < 0.25 RBS 71 

Zr(NEt2)4 H2O < 350 < 350 < 1 N.R. N: < 0.25 RBS 71 

 O2 a 250 250 1-3 N.R. N.R. AES 72 

 O2 250 250 3-5 N.R. N.R. AES 72 

ZrCl2[N(SiMe3)2]2 H2O 150-350 250 N.R. N.R. Si: 4 RBS, SIMS 77 

alkoxides         
Zr(OtBu)4 O2 250 250 6-8 N.R. N.R. AES 72 

 O2 a 250 250 3-5 N.R. N.R. AES 72,81

 H2O 150-300 < 250 8 2 N.R. TOF-ERDA 78 

 N2O 150-300 < 250 N.R. N.R. N.R.  79 

Zr(dmae)4 H2O 190-340 190-340 5 30 N: < 4 TOF-ERDA 83 

Zr(OtBu)2(dmae)2 H2O 190-340 190-340 1.7-3 8-13 N: 0.3-1.3 TOF-ERDA 83,84  
Zr(OiPr)2(dmae)2 H2O 190-340 190-340 N.R. N.R. N: < 1 TOF-ERDA 83 

β-diketonates         
Zr(thd)4 O3 275-500 375 0.2 0.3 F: < 0.1 TOF-ERDA 85 

cyclopentadienyls         
Cp2ZrMe2 H2O 200-500 350 < 0.1 < 0.1 N.R. TOF-ERDA I 

 O3 250-500 310-365 0.2 0.1 F: 0.1 TOF-ERDA 85 

Cp2ZrCl2 O3 200-500 300 0.5 0.5 Cl: < 0.07  TOF-ERDA 85 

* atmospheric pressure, a plasma, N.R. = not reported 
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1.4.2 HfO2  

One of the most thoroughly studied ALD processes is the HfCl4/H2O process, first 

introduced some 10 years ago.87,88 Clearly, the interest in this process stems from the fact 

that in recent years HfO2 has been identified as and continues to be considered one of the 

most promising high-k dielectrics.3 Similarly as in the case of the ZrCl4/H2O process, the 

obvious drawbacks of HfCl4/H2O are well identified. The chlorine content, which is more 

pronounced near the HfO2 film/silicon interfacial region,89 has been reported to cause 

etching of the silicon substrate during post-deposition annealing, which contributes to void 

defect formation.11 Additional problems include poor nucleation of HfO2 when deposited 

directly on Si,90 and formation of particles from the precursor in the gas phase. To 

overcome the problems related to the poor nucleation on HF-etched Si, the use of a thin 

chemically or thermally grown SiO2, nitrided SiOx, or interfacial layer of Al2O3 made by 

ALD has been suggested.90 Nevertheless, additional interfacial layer increases the EOT 

value and in an ideal case a sharp interface between the Si and HfO2 would be desirable. 

Despite the problems listed above, the HfCl4/H2O process has many attractive features: the 

growth temperature range is wide, deposition temperatures ranging from 160 to 940°C 

have been reported,91,92 the film quality and uniformity can be optimized over a large 

surface area,90 carbon incorporation from the precursor into the films can be ignored, and 

good electrical properties, such as substantial leakage current reduction with respect to 

SiO2, are well understood.90 Due to the fact that HfCl4/H2O growth process is so well 

optimized and established, finding a significantly better process is a challenging task.  

 

The reported ALD processes for HfO2 are listed in Table 3, where the alternative 

processes, as expected, are very similar to the previously described alternative ZrO2 

processes (Table 2). However, the influence of oxygen source has been studied in more 

detail in the case of HfO2. Interestingly, replacing H2O with O3 in the HfCl4-based process 

improves most of the dielectric properties, including fixed charge, interface trap densities, 

and the leakage current characteristics, as well as decreasing the Cl-content in the bulk of 

the film.51 On the other hand, after rapid thermal annealing (RTA) at 750°C, higher oxygen 

content in the ozone-processed films resulted in thicker interfacial layer and thus increased 

CET. Commonly, the interfacial layer thickness in HfCl4/H2O process at 300°C on HF-

etched Si has been reported to be about 1.0-1.2 nm.93  
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A feasible route to Cl-free films is the use of HfI4 instead of HfCl4. The HfI4/H2O process 

yields slightly lower halide content in the films than the conventional HfCl4 process when 

applied at 300 °C but the difference is not significant.94 Using the iodide precursor with 

molecular oxygen eliminates hydrogen residues but the process requires rather high 

temperatures (500-750°C).95,96  

 

The use of volatile, liquid hafnium alkylamides, especially Hf(NEtMe)4, with water can 

provide excellent thickness uniformity and conformality71 and excellent nucleation without 

significant interfacial layer formation on H-terminated Si,97 but also yields films with 

considerable impurity content; e.g. 0.3-0.6 at-% of C and 2-3 at-% of H when 

Hf(NEtMe)4/H2O ALD-process was applied at 250 °C.98 The suitable ALD growth 

temperature range for the Hf(NEtMe)4/H2O process is reported to be below 350°C71 but 

slight decomposition of the precursor was probably affecting the growth rate already at 

temperatures around 300°C.98 In another report, where the Hf(NEtMe)4/O3 process was 

applied, the maximum growth temperature suitable for good quality HfO2 was 275°C.99 

The thickness of the interfacial layer between HfO2 and H-terminated Si has been reported 

to be exceptionally low, ~0.5 nm for the Hf(NEtMe)4/H2O process and problems in 

nucleation at early stages of the growth were not detected.97 Interestingly, reaction with 

surface Si-H is initiated by the metal precursor, and not by the oxygen source.100 It is worth 

noting that hydroxyl groups are incorporated into the HfO2 film.100 The interfacial SiO2 

then forms during annealing. Ozone as the oxygen source instead of water has gained 

considerable interest also in the case of Hf(NEtMe)4 precursor to grow HfO2
49,93,99,101,102 

and especially together with a suitable Si-source, Hf-silicate.22,102,103,104 However, in some 

studies the use of ozone did not significantly reduce impurities nor enhance electrical 

properties as compared to the use of water.93,101 As compared with Hf(NEtMe)4, higher 

impurity levels were detected in films obtained from Hf(NMe2)4 and water105 or ozone.115 

Signs of thermal decomposition of the Hf(NMe2)4 precursor were detected already at 

250°C.105 In addition, the surface roughness increased rapidly at temperatures around 

250°C.76 When using the Hf(NMe2)4/H2O process, it was recently proposed that during the 

early stages of HfO2 growth on H-terminated silicon, a SiNx interfacial layer is formed 

instead of SiO2, thus yielding a very promising CET of 1.8 nm with low leakage current 

density.107 However, in another study a relatively thick 1.5-2.0 nm interfacial silicon oxide 

layer was observed between Si and amorphous HfO2.105 Using ozone instead of water at a 

relatively high growth temperature of 300°C reduced the impurity contents and the films 
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showed a more amorphous structure leading to better leakage current characteristics.108,109 

A third Hf-alkylamide precursor, Hf(NEt2)4, has been used occasionally, together with 

either water,71,110 oxygen,111 or oxygen plasma111-114 as the oxygen source. Especially in 

the case of oxygen plasma, the growth of interfacial Hf-silicate layer can be 

significant.111,112 

 

As in the alternative ZrO2 processes, the alkoxide-based processes of HfO2 generally suffer 

from poor thermal stability of the Hf-precursor.81,82,115-119 Due to the decomposition of the 

precursor, carbon and hydrogen impurities remain high, e.g. the ALD process employing 

hafnium tetrakis(1-methoxy-2-methyl-2-propanolate), Hf(mmp)4 with H2O at 360 °C 

resulted in as-deposited films with 12 and 6 at-% of C and H, respectively.118  

 

Anhydrous volatile Hf(NO3)4 has also recently been applied as an ALD precursor for the 

deposition of oxygen-rich hafnium oxide films.33,120 A promising CET value of 2.1 for a 

5.7 nm film deposited directly on H-terminated Si was reported, but the precursor 

decomposition limits its use to only very low temperatures of 180 °C or lower.33 

 

Another precursor family exhibiting both high reactivity and volatility are the 

cyclopentadienyl compounds of hafnium, which have recently been introduced in ALD for 

high quality HfO2 film growth.IV,V Section 3.2 describes the growth characteristics and 

HfO2 film properties obtained with the Cp-based hafnium processes. For comparison, 

compositional data of the films deposited with the Cp-precursors are also included in the 

Table 3.   
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Table 3. Published ALD processes for HfO2 with reported impurities. 

* atmospheric pressure, a plasma, N.R. = not reported 

 

Precursors Tgrowth Impurities (at preferred Tgrowth) 

 
Metal precursor 

 
Oxygen 
source 

Range, 
 oC 

Preferred,
oC 

C,  
at-% 

H,  
at-% 

Other, 
 at-% 

Analysis 
method Ref. 

halides         

HfCl4  H2O 160-940 300  0.5-1.5 Cl: 0.4 TOF-ERDA 51,88,90-92,94 

 O3 300 300  N.R. N.R.  51 

 O2
* 250-650 550-650   Cl: 0.1 XPS, SIMS 121 

 Hf(NO3)4 150-190 150-190  N.R. N.R.  122 

HfI4 H2O  225-500 300  1.5 I: 0.4 TOF-ERDA 94 

 O2 400-755 570-755  < 0.1 I : < 0.1 TOF-ERDA 95,96 

amides         

Hf(NEtMe)4 H2O 100-450 250 0.3-0.6 2-3 N: < 0.2 TOF-ERDA 71,98 

 O3 100-400 250-300 1.5 N.R. N.R. AES 115 

Hf(NMe2)4 H2O 100-500 250 1.5 6 N: < 0.7 TOF-ERDA 71,105,123 

 O3 160-420 200-300 4.5 N.R. N.R. AES 115 

Hf(NEt2)4 H2O 100-500 <450 < 1 N.R. N: < 0.25 RBS 71 

 O2 250 250 5 N.R. N.R. AES 111 

 O2
a 250 250 2.5 N.R. N.R. AES 111 

HfCl2[N(SiMe3)2]2 H2O 150-250 200 < 1  < 1 N: < 1 AES 124 

alkoxides         

Hf(OtBu)4 O2 350-480 350-480 N.R. N.R. N.R.  116 

 O3 300-450 300 6 N.R. N.R. AES 115,125,126 

 O2
a 200-250 200 N.R. N.R. N.R.  82 

Hf(OtBu)2(mmp)2
 H2O 275-400 360 2.7 11 N.R. TOF-ERDA 117 

 
Hf(mmp)4 

 
H2O 

 
225-450 

 
225-360 

 
0.8-6 

 
12 

 
N.R. 

TOF-ERDA, 
AES 

 

118,127 

Hf(ONEt2)4 H2O 250-350 300 6 11 N: < 1 TOF-ERDA 119 

cyclopentadienyls         

Cp2HfMe2 H2O 300-500 350 0.4 0.2 N.R. TOF-ERDA IV,V 

 O3 275-450 350 < 0.1 < 0.1 N.R. TOF-ERDA V 

Cp2HfCl2 H2O 350 350 1.2 0.5 Cl: 0.4 TOF-ERDA V 

 O3 350 350 < 0.3 < 0.3 Cl: < 0.1 TOF-ERDA V 

Other         

Hf(NO3)4 H2O 160-190 180  N.R. N: 1.2 XPS 33,120 
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1.4.3 Rare earth oxides 

The ALD of rare earth oxides generally suffers from the lack of suitable precursors. The 

first ALD processes for RE oxides were reported in the early 1990s, introducing β-

diketonate precursors together with a strong oxygen source, ozone, to grow Y2O3
128 and 

CeO2
129 films. Since then new classes of precursors have been introduced which can be 

conveniently divided into three categories according to the ligand donor atom; namely 

oxygen-, carbon-, and nitrogen-coordinated precursors. Here the reported RE oxide 

processes are considered only briefly, a more detailed survey has been recently reported by 

Päiväsaari et al.130 For more specialized reviews emphasizing gate dielectrics in 

microelectronics, see also Leskelä et al.131,132 

 

Typically the existing RE oxide ALD processes have been based on the oxygen- 

coordinated β-diketonate precursors, such as the thd-complexes (thd=2,2,6,6-tetramethyl-

3,5-heptanedione) from which almost all RE binary oxides, except the oxides of Pr, Pm 

and Tb, have been grown.24,48,128,129,133-138,VIII As thd-compounds are not reactive enough 

towards water, ozone was required as oxygen source. Typically the deposition temperature 

for an optimized RE oxide ALD process has been 300°C.24 Interestingly, it was reported 

that growth rate at 300°C increased linearly as a function of the ionic radius of the 

lanthanides, suggesting the same growth mechanism regardless of the metal.24 The 

RE(thd)x/O3 processes generally produce oxygen deficient films with C and H impurities 

around 1-5 and 1-2 at-%, respectively.24 Deviations in the carbon content are caused by the 

difference in basicity of the RE oxides, resulting in large content of carbonate-type 

impurities for the larger ions, e.g. La2O3 contained up to 10-12 at-% of carbon,134 but 

Sc2O3 only less than 0.1 at-%.133 The growth rates in thd-based RE oxide processes are 

generally low, caused by the considerable steric hindrance and low reactivity. To increase 

the growth rates radical enhanced ALD has also been applied.139,140 Unfortunately, carbon 

content was thereby further increased, up to 26 at-% in Er2O3 films.139 Oxygen-coordinated 

precursors other than those based on the thd ligand have been only occasionally applied, 

e.g. ALD of Gd2O3 and PrOx from Gd(mmp)3 and Pr(mmp)3 with water as oxygen source 

was recently reported.127 Unfortunately, self-limiting growth was not achieved due to 

precursor decomposition.   
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Among the nitrogen-coordinated precursors, silylamides and amidinates have especially 

gained recent interest as potential ALD precursors. Silylamide compounds of La, Gd and 

Pr may provide a feasible route to grow high-k La2O3,123,141-143 Gd2O3,35,36 and PrOx
144 

films. At least in the case of Ln[N(SiMe3)2]3/H2O (Ln=Gd,Pr) processes, self-limiting 

growth could not be observed due to the precursor decomposition, resulting also in 

considerable impurity contents.35,36,144 The La[N(SiMe3)2]3/H2O process, however, was 

reported to be saturative at 200-275°C, but about 10 at-% of Si was determined to be 

present in the deposited films.142 In another recent study, the thermal decomposition of 

La[N(SiMe3)2]3 could not be excluded as a possible factor affecting the growth behavior.145 

 

Another interesting approach to ALD of RE oxide films is based on the use of amidinate 

complexes of the composition RE[RamdR]x (R=alkyl group, amd=NC(CH3)N). The 

[iPramdiPr]3 complexes of Y, Sc, La have been applied by Gordon and coworkers using 

water to form Y2O3,146 Sc2O3,147 and La2O3
41 films. In a more detailed report, the Y2O3 

process was found to be promising, as the conformality and dielectric properties were 

good.146 Thermal stability may call for attention, as Y[iPramdiPr]3 decomposition became 

evident at temperatures exceeding 280°C.146 In another study, Er2O3 films were grown 

using Er[tBuamdtBu]3 and ozone.42 Water was not reactive enough as an oxygen source, 

because of higher steric hindrance caused by the tert-butyl groups compared to the iso-

propyl groups. On the other hand, tert-butyl groups should be more protective towards 

decomposition of the complex and thus the thermal stability should be better.148 However, 

self-limiting growth of Er2O3 could not be achieved due to the probable partial 

decomposition of Er[tBuamdtBu]3, considering that upon increasing the precursor pulse 

length the growth rate also increased.42 One possible reason for this behavior was 

suggested: In the Y[iPramdiPr]3/H2O process, the adsorption of some water during the 

water pulse followed by desorption of water could result in a water-rich ambient above the 

film. This would lead to a CVD-type growth if purging times are not very long.146 

Therefore, purge time for water used in the Y[iPramdiPr]3/H2O study was 60 s.146 

However, a 5-fold increase in purge times in the Er[tBuamdtBu]3/O3 process did not have 

any effect.42 On the other hand, in ozone processes the growth mechanism is different than 

in water processes. Generally, very long purge times would make a process practically 

unfit for applications, but at the same time, dielectric properties could be enhanced due to 

the annealing effect achieved during the deposition. 
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Interest in true organometallic compounds for application in ALD of RE oxides is 

currently focused on the cyclopentadienyl compounds. As suitable metal alkyls do not 

exist for rare earths, volatile and reactive Cp-compounds have been applied in several RE 

oxide growth studies.133,VII-IX,149 More detailed discussion on the applicability of RE Cp-

compounds as well as an introduction to various REScO3 processes are presented in 

Section 3.3. 
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2. EXPERIMENTAL 

This chapter briefly presents the methods used for film growth studies and for the 

characterization of the deposited films, as well as explains how the in situ reaction 

mechanism studies were performed. More detailed descriptions including, when relevant, 

precursor synthesis, properties and pulsing sequences can be found in the original 

publications I-IX. For the processes not reported earlier, the growth characteristics are 

described in chapter 2.1. 

2.1 Precursors and film growth  

High-k oxide films were deposited in a commercial flow-type hot-wall ALD reactor (ASM 

Microchemistry F-120). As precursors, thd- or cyclopentadienyl-type compounds were 

applied together with the oxygen source (O3 or H2O). Because of their air and moisture 

sensitivity, the cyclopentadienyl precursors were handled in an Ar glove box and inertly 

inserted into the reactor. The metal precursors were evaporated from an open glass crucible 

inside the reactor. Ozone was generated from O2 (99.999%) in an ozone generator (Fischer 

model 502). The ozone concentration as determined by iodometric titration was about 4 

%.133 Water was evaporated from a container kept at 25°C. Precursors used in this study 

are listed in Table 4, where also their origin and the evaporation temperatures are shown. 

Depositions were carried out at 2-3 mbar pressure. Nitrogen (99.999%) was used as a 

carrier and purging gas except in the reaction mechanism studies, where Ar (99.999%) was 

used. As substrates, p- or n-type Si(100) (Okmetic, Finland) and sodalime glass were used. 

The substrate area was 10 x 5 cm2. HF-etching of the Si-substrate immediately prior to the 

deposition was applied in selected experiments in order to remove the native SiO2. The 

standard pulsing sequence for the binary water-based processes where as follows: 1.0-1.5 s 

metal precursor pulse, 1.5 s purge, 1.5 water pulse, 1.5 s purge. When ozone was applied, 

the oxygen source pulse time and the following purge time were both 2.0 s. The metal 

precursor pulse time was varied between 1.0 and 3.0 s in order to study the saturation 

characteristics. For the novel ternary processes, GdScO3 and ErScO3, the pulsing sequence 

was similar as that used for YScO3.IX  
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Table 4. The sublimation/evaporation onset temperatures and the source of the precursors 

applied for ALD studies of oxide materials. The precursors are solid at 

sublimation/evaporation temperature, unless indicated otherwise. 

Film material Precursor 

Sublimation/ 
Evaporation T at 2-3 
mbar, °C Precursor source 

ZrO2 Cp2ZrMe2 70  150 

HfO2 Cp2HfMe2 70  
150 

 Cp2HfCl2 135-140  Strem Chemicals Inc. 
Y2O3, YScO3 Y(thd)3 125  151 

 (CpMe)3Y 110 (partly liq.) 
Russian Academy of 
Sciences* 

 Cp3Y 150  Strem Chemicals Inc. 
 Sc(thd)3 115  151 

 Cp3Sc 150-155  
Russian Academy of 
Sciences* 

La2O3 Cp3La 250  Strem Chemicals Inc. 

 (CpMe)3La 165-170  
Russian Academy of 
Sciences* 

 (CpMe4)3La 175  Sigma-Aldrich, Inc. 
 (CpiPr)3La 140 (liquid) Strem Chemicals Inc. 
PrOx (CpMe4)3Pr 175 (liquid) Sigma-Aldrich, Inc. 
 (CpiPr)3Pr 140-145 (liquid) Sigma-Aldrich, Inc. 
Gd2O3, 
GdScO3 Gd(thd)3 140  151 

 (CpMe)3Gd 110  
Russian Academy of 
Sciences* 

 (CpMe4)3Gd 175-178  Sigma-Aldrich, Inc. 

Er2O3, ErScO3 (CpMe)3Er 115  
Russian Academy of 
Sciences* 

* Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia 

2.2 Film characterization 

The oxide thin films were analyzed by various techniques for their composition, thickness, 

morphology, structure, and electrical properties. Table 5 lists the techniques used in this 

thesis and also summarizes the information obtained. 

 

The thickness of the deposited films was determined by measuring the optical reflectance 

spectra (Hitachi U-2000 double beam spectrophotometer) in the wavelength range of 190 

to 1100 nm and fitting a theoretical spectrum to the measured spectrum.152 In addition, the 
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thickness, roughness, density and crystal structure of selected ultrathin films were 

evaluated by X-ray reflectometry (XRR) and by grazing incidence X-ray diffraction (GI-

XRD) using a Bruker D8 Advance X-ray diffractometer. Crystallite orientations and 

crystallinity of the deposited films were determined by X-ray diffraction with Cu Kα 

radiation in a Philips MPD 1880 diffractometer. High-resolution transmission electron 

microscopy (HR-TEM) was also applied in order to examine the cross-section of an 

ultrathin sample as well as the interfacial layers between selected deposited films and the 

silicon substrate. The high-resolution images were obtained with a field emission gun 

TECHNAI F30 ST or Hitachi: H9000NAR, both operated at 300 kV. To investigate the 

composition of the interfacial layer, X-ray photoelectron spectroscopy (XPS) was applied. 

The measurements were carried out in an AXIS 165 spectrometer (Kratos Analytical) 

using monochromated Al Kα irradiation at 100 W. Surface morphology was studied with a 

Nanoscope III atomic force microscope (AFM), by Digital Instruments, operated in 

tapping mode. Roughness values were calculated as root mean square (rms) values. 

 

Film compositions were measured by time-of-flight elastic recoil detection analysis (TOF-

ERDA)153 at the Accelerator Laboratory of the University of Helsinki, Finland and at 

IMEC (Interuniversity Microelectronics Center), Leuven, Belgium. For these TOF-ERDA 

studies, 53 MeV 127I10+ or 16 MeV 63Cu7+ ion beams were used. Metal to metal ratio in 

scandate films were also analysed by XRF (Philips PW 1480) using Rh excitation. In order 

to obtain more information on residual carbon and hydrogen impurities, the films were also 

analyzed by Fourier-transform infrared (FTIR) spectroscopy. The FTIR single-beam 

transmission spectra were collected from the samples deposited on Si with Nicolet Magna-

IR 750 spectrometer.  

 

For electrical characterizations, aluminum gate electrodes for ohmic contact were formed 

by e-beam evaporation onto the HF-etched backside of the substrate as well as through a 

shadow mask onto the film surface. The resulting capacitor structures were then measured 

with a HP 4284A precision inductance-capacitance-resistance-meter and Keithley 2400 

source meter to obtain capacitance-voltage (C-V) and leakage current density-voltage (I-V) 

characteristics, respectively. The effective permittivity values were calculated from the 

accumulation capacitance using equation (1) and thus the CET values and the permittivity 

for the high-k layer only from equations (2) and (3). 
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Table 5. Film characterization techniques used. 

Technique Information obtained  Publication 

AFM Surface morphology I, II, IV-IX 

Electrical measurements   

C-V Dielectric properties I, II, IV-IX 

I-V Leakage current I, II, IV-IX 

FTIR Carbonate and hydroxide 

impurities I, VI, VIII, IX 

GI-XRD Crystallinity I, II 

HR-TEM Interfacial layer, microstructure  I, II, V 

QMS Reaction mechanism III 

Spectrophotometer Thickness I, IV-IX 

TOF-ERDA Impurities, stoichiometry I, IV-IX 

XPS Interfacial layer composition II 

XRD Crystallinity, crystalline phases I, II, IV-IX 

XRF Stoichiometry IX 

XRR Thickness, density, interface I, II, IV, V, IX 

 

2.3 Reaction mechanism studies 

Experiments to resolve the reaction mechanism for the ZrO2 process from Cp2ZrMe2 

precursor were carried out in a commercial, but specially modified, flow-type F-120 ALD 

reactor. The reaction chamber was loaded with glass substrates in order to form narrow gas 

flow channels between them with large substrate area. To maximize the amount of reaction 

by-products, the total area of glass substrates was about 3500 cm2. The gas phase species 

were measured with a Hiden HAL/3F 501 RC quadrupole mass spectrometer (QMS) using 

an electron multiplier detector, mass range of 1 - 510 amu and ionization energy of 70 eV. 

The sampling and the pressure reduction from about 2 mbar to below 10-6 mbar were 

accomplished through a 200 µm opening. Instead of H2O as the oxygen source, D2O was 

used in order to better distinguish the reaction by-products from the species formed in the 

ionizator. 
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Weak background signals arise also even when no exchange reactions should take place, 

i.e. when subsequent pulses of only one precursor are given. This background signal, 

suggested to be caused by a condensation effect of the metal precursor, pressure change 

effects, insufficient mass resolution of the QMS or possible rearrangement reactions during 

ionization,154 is subtracted from the signals obtained during the actual ALD process. The 

thermal stability of the Cp2ZrMe2 precursor was studied also with the QMS by pulsing 

only the precursor and monitoring the ligand decomposition products detected as a 

function of deposition temperature.  
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3. RESULTS AND DISCUSSION 

This chapter summarizes the main results of ZrO2, HfO2, and rare earth oxide film growth 

and characterization. Details for the published processes can be found in the corresponding 

publications.I-IX 

3.1 ZrO2 from cyclopentadienyl precursor 

ALD-type self-limiting growth was achieved by applying Cp2ZrMe2 and H2O as 

precursors.I The growth rate increased as a function of deposition temperature and a 

distinct ALD window was not observed. At the optimized deposition temperature of 350°C 

the growth rate was 0.43 Å/cycle resulting in polycrystalline films. The monoclinic phase 

was the dominant one, but minor intensity reflections belonging to the orthorhombic phase 

were also observed. At growth temperatures lower than 300°C the growth rate remained 

low, indicative of insufficient thermal energy to promote fast surface reactions. At 

temperatures exceeding 400°C, poor uniformity of the films was observed due to precursor 

decomposition. Interestingly, the roughness of 100-130 nm thick films decreased when the 

deposition temperature was increased from 375 to 400°C. At 350°C the impurity contents 

for the stoichiometric ZrO2 films were below the detection limit (~0.1 at-%) of TOF-

ERDA for both C and H. The impurity levels were lower than most of the other known 

ZrO2 ALD processes (see Table 2). It is worth noting, that the present Cp2ZrMe2/H2O 

process results in films with good thickness uniformity over large substrate areas, as 

demonstrated in scale-up tests on 200 mm Si wafer (Figure 7). 
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Figure 7. The variation of thickness in ZrO2 thin film deposited by ALD at 300°C by the 

Cp2ZrMe2/H2O process on 200 mm Si-wafer. The mean thickness of the ZrO2 layer is 38.2 

nm and the standard deviation 0.80 %. (Courtesy of ASM Microchemistry Ltd.)  

 

When ozone was applied as the oxygen source, the growth rate of ZrO2 films increased to 

0.55 Å/cycle.II Ozone, being a more aggressive oxidant than water, had a strong effect on 

the growth behavior, structure, and electrical properties, especially when ZrO2 was 

deposited on H-terminated (HF-etched) Si. When water was used as the oxygen source, a 

strong inhibition of film growth at the early stages of the deposition process was clearly 

detected. As seen in Figure 8, ozone oxidizes the bare Si surface, creating an interfacial 

SiOx layer, which is a suitable surface for the film growth to proceed. Water, however, is 

not able to form OH-saturated surface for the metal precursor to react with and thus 

retarded nucleation leads to island-like growth and reduced density (Figure 8).II  
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Figure 8. HR-TEM images of the ZrO2 films deposited onto HF-etched Si(100) by the 

(top) Cp2ZrMe2/O3 (ZrO2 thickness 3.8 nm, IL thickness 1.9 nm) and (bottom) 

Cp2ZrMe2/H2O (ZrO2 thickness: 2.1 nm, IL thickness 2.9 nm) process.II 

 

Inhibition of growth has also been detected with the other ZrO2 processes where water is 

used as the oxygen source.52 The interfacial layer formed in the water-processed films, 

according to the electrical and XPS measurements, is suggested to be a mixture of SiOx 

and ZrO2 rather than Zr-silicate.II Similar intermixing in the interfacial layer has been 

observed previously, when ZrCl4/H2O process was applied on chemical SiO2.56 

 

The oxygen source and substrate pretreatment had a distinct effect on the electrical 

properties of the Al/ZrO2/native SiO2 or HF-etched/n-Si(100) capacitor structures. The 

hysteresis width was extremely low for both H2O- and O3-processed HfO2 films on HF-

etched Si (Figure 9). With both processes, the as-deposited films showed flatband voltage 

(VFB) shift; in O3-processed films towards negative bias and in H2O-processed films 

towards positive bias. Forming gas annealed (5 % H2, 400°C, 30 min) O3-processed 

samples exhibited almost the ideal value of VFB. Annealing also reduced the interface state 

density values. The permittivity of an 8.8 nm O3-processed film was approximately 20. 
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The Cp2Zr(CH3)2/H2O process on native oxide-free Si resulted in structures with high but 

not completely saturative accumulation capacitance (Figure 9). For example, the as-

deposited insulator structure with a 5.9 nm ZrO2 film had a CET value of 2.0 nm and an 

effective permittivity of 11.4. As mentioned previously, the interfacial layer is thought to 

be a mixture of ZrO2 and SiO2 having a greater permittivity than that of SiO2. However, an 

inhomogeneous microstructure arising from the inhibited growth on the H-terminated 

surface resulted in higher leakage current for the water-processed films (Figure 9b). 

Figure 9. The C-V (a) and I-V (b) curves of Al/ZrO2/HF-etched Si structures. Labels 

indicate the oxygen precursor used and the ZrO2 layer thickness.II For Al/insulator/n-

Si(100) structure, the VFB should be around -0.2 V.155 

 

Figure 10 shows the capacitance equivalent oxide thickness as a function of the ZrO2 film 

physical thickness for the different precursor and surface pre-treatment combinations. The 

CET values were comparable for films deposited with water or ozone onto native oxide 

covered Si as well as for those deposited with ozone onto HF-etched Si. The CET of the 

interfacial layer is obtained from the plot of CET vs. ZrO2 thickness as the y-intercept and 

assuming the IL to have constant permittivity of 3.9, the intercept with the y-axis equals 

the physical thickness of the IL. The determined IL value of 2 nm is supported well by the 

HR-TEM results (Figure 8 top). From the slope, permittivity values of about 20 can be 

calculated for the ZrO2 layer. However, for the H2O process on HF-etched Si, low CET 

values were obtained and the intercept can occur below 2 nm. The HR-TEM results 

showed considerably thicker IL (Figure 8 bottom). This indicates again that the interfacial 

oxide has a greater permittivity than SiO2 due to the intermixing of SiO2 and ZrO2 as 

discussed above.II 
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Figure 10. Calculated capacitance equivalent oxide thickness as function of the physical 

oxide thickness measured by XRR. Inset labels denote the oxygen precursor. HF indicates 

a surface pre-treatment with HF-etching. Otherwise, the films were grown onto Si 

substrates covered by native oxide.II 

3.1.1 Reaction mechanism studies 

The in situ QMS data of the Cp2ZrMe2/D2O process suggest that the reaction byproducts 

observed were CpD and MeD.III As well established for the ALD growth of oxide thin 

films, the number of –OH groups left on the surface after the water pulse is an important 

factor for controlled growth.9 Thus, it can be suggested that ZrO2 grows in the present 

Cp2ZrMe2/D2O process via exchange reactions with OD-terminated surface as the starting 

surface:   

 

(x+y)-OD (s) + Cp2ZrMe2 (g)  

→ (-O-)(x+y)ZrCp2-xMe2-y (s) +y MeD (g) + x CpD (g)    (4) 

 

(-O-)(x+y) ZrCp2-xMe2-y (s) + 2 D2O (g)  

→ (-O-)2Zr(OD)x+y(s) + (2-x) CpD (g)+ (2-y) MeD (g)    (5) 
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In the present study, nearly all (~90 %) MeD was released during the Cp2ZrMe2 pulse in 

the exchange reactions with the surface OD groups. In addition, about 40 % of the Cp 

ligands were released during the metal precursor pulse. The following D2O pulse converted 

the surface back to an OD-saturated one by releasing the remaining CpD and MeD. After 

this cycle the OD-saturated surface is regained and ready for the next deposition cycle. The 

proposed mechanism at 350°C is presented in Figure 11.III  

 

Figure 11. Proposed reaction mechanism of Cp2ZrMe2/D2O ALD process at 350°C.III 
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The reaction mechanism is only weakly dependent on the deposition temperature until the 

thermal decomposition of Cp2Zr(CH3)2 started which then played a role in the mechanism 

at deposition temperatures exceeding 400°C. First signs of partial decomposition of the 

Cp2ZrMe2 could be observed at 375°C. 

3.2 HfO2 from cyclopentadienyl precursors 

By applying cyclopentadienyl-type precursors for HfO2, similar growth characteristics 

were observed as in the ZrO2 film deposition from the Cp2ZrMe2 precursor. The growth 

rate of the polycrystalline HfO2 films by the Cp2HfMe2/H2O process was 0.42 Å/cycle at 

optimized growth temperature of 350°C.IV The growth rate increased to 0.54 Å/cycle when 

O3 was applied as the oxygen source.V These values can be compared to those obtained for 

ZrO2: 0.43 and 0.55 Å/cycle.I,II Saturation of the growth rate was confirmed at 350°C. At 

that temperature alkylamide- and alkoxide-based alternative HfO2 processes suffer from 

precursor decomposition (Table 3). In the present case, promoted by the stronger oxidation 

power of O3, films could be deposited with reasonable growth rates at 300°C while with 

water the growth rate was low, or 0.1 Å/cycle. Above 400°C, the precursor decomposition 

degraded the film uniformity over the substrate area. At 350°C, films grown by the Cl-

containing Cp-precursor, Cp2HfCl2 exhibited comparable growth rates to those provided 

by Cp2HfMe2.V Generally, the growth rate of HfO2 in the current Cp-based processes is 

somewhat lower than that of 0.7-1.0 Å/cycle obtained by the alkylamide-based 

processes.98,105 

 

According to the TOF-ERDA studies, films deposited from Cp2HfMe2 were stoichiometric 

with low levels of C and H as impurities (Figure 12).IV,V However, due to the different 

growth mechanism, and ozone being more aggressive oxidizer than water, the surface 

reactions seem to be more complete with ozone resulting in lower impurity contents: viz. 

below 0.1 at-% for C and H at growth temperatures of 350 and 400°C. In the films 

deposited with the Cp2HfCl2, some chlorine was detected. As the Cp2HfCl2 precursor 

caused Cl-contamination into the films, a drawback also recognized in the well-studied 

HfCl4-based ALD-processes,89,94 further studies with the Cp2HfCl2 precursor were 

discontinued. It can be concluded here that the current approach using Cp-based precursors 

seems to result in films with higher purity than the other precursor combinations studied 

(Table 3).  
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Figure 12. Observed Hf/O ratio at different deposition temperatures in the HfO2 films 

deposited from Cp2HfMe2 and water (a) or ozone (b). In addition, the hydrogen contents 

using water (c) or ozone (e) as well as the carbon content using water (d) or ozone (f) are 

plotted at different deposition temperatures.V 

 

An inhibition of growth at the early stages of the deposition on H-terminated Si similar to 

that detected for the water-based processes using HfCl4
90 or Cp2ZrMe2,II was also observed 

in the current Cp2HfMe2/H2O process.V Si-H bonds are not effectively replaced by water to 

create an OH-terminated surface suitable for oxide film growth, a behavior which lead to 

island nucleation, and thus, decreased film density and increased surface roughness (Figure 

13).V Such a retarded growth was not observed, however, when ozone was used as an 

oxygen source, for which a linear relation between thickness and number of deposition 

cycles applied was observed. In addition, film roughness remained very low (Figure 13) 

and the density was close to the bulk value (9-10 g/cm3). The interfacial layer thickness 

between the H-terminated Si and HfO2 layer was about 0.5 nm and 1 nm for the H2O- and 

O3-based processes, respectively. It should be noted that the interfacial layer obtained by 

the H2O-based process is similar to that obtained by the Hf(NEtMe)4 and H2O97 ALD 

process, but significantly thinner than in many other processes for HfO2, e.g. Hf(NMe2)4 

and H2O,105 HfCl4 and H2O,70 or HfI4 and O2.95 The 1 nm thick interfacial layer grown 

during the O3-process is similar to that obtained with the Hf(NEtMe)4/O3 process on H-

terminated Si.48 However, it should be noted that thick interfacial layer obtained by the 
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ozone process will prevent obtaining very low CET values and thus the ozone-based 

processes may not be suitable for gate oxide deposition for MOSFETs but can have 

valuable impact on DRAM technology. 

 

Figure 13. AFM and corresponding cross-sectional HR-TEM images of HfO2 films 

deposited at 350°C on H-terminated Si(100) by (a) Cp2HfMe2/H2O (500 cycles, HfO2 

thickness: 8.4-8.7 nm, rms-roughness: 1.8 nm) and (b) Cp2HfMe2/O3 (200 cycles, HfO2 

thickness: 9.1 nm, rms-roughness: 0.4 nm) ALD processes. The interfacial layer thickness 

was 0.5 nm (a) and 0.9-1.1 nm (b). AFM image size: 2 x 2 µm2.V 

 

C-V curves for the capacitor structures, where the native oxide was removed prior to the 

deposition, are presented in Figure 14.V When water was used as an oxygen source, a 

rather stable C-V curve was observed. The VFB shift and hysteresis were small and CET 

value of 4.1 nm was obtained for an 8.6 nm HfO2 film. Similar dielectric properties but a 

slightly larger VFB shift and a higher CET value, contributed by the thicker interfacial 

layer, were obtained for the ozone-processed film with 9.1 nm HfO2 layer thickness. The 
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inset of Figure 14 illustrates the leakage current density vs. applied voltage curves for 

various Al/HfO2/HF-etched/p-Si capacitor structures where HfO2 was deposited with the 

ozone or water-based process. The island like nucleation in the water-processed films, lead 

to decreased density, as analyzed by XRR, which strongly affected the leakage current 

density values and breakdown voltages. The use of ozone has been reported to improve 

leakage current densities relative to water in ALD processes using HfCl4
51 or 

Hf(NMe2)4
108,109 as the metal precursors. In the present case, more than an order of 

magnitude higher leakage current density values were obtained for the water-processed 

films than for the ozone-processed films. However, the thicker IL in the case of the ozone-

processed film also contributed to the lower leakage current density. In addition, the 

breakdown voltage shifted to higher values when ozone was used. 

Figure 14. Capacitance-voltage curves of Al/HfO2/p-Si structures grown at 350°C from 

Cp2Hf(CH3)2 onto HF-etched substrate using ozone or water. Labels indicate the oxygen 

source used and the HfO2 thickness measured. The inset depicts the leakage current 

density-voltage curves for these structures.V For Al/insulator/p-Si(100) structure the VFB 

should be around –1.0 V.155 
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3.3 Rare earth oxide thin films from cyclopentadienyl precursors  

3.3.1 Y2O3 

ALD-type growth of Y2O3 was achieved with two precursor combinations, applying either 

Cp3Y/H2O or (CpMe)3Y/H2O processes.VI ALD-type growth was confirmed in both 

processes at 250°C and 300°C. The growth rate obtained by the (CpMe)3Y/H2O process 

was 1.2-1.3 Å/cycle in a wide temperature range, with the ALD window regime being 200-

400°C. This growth rate is about six times higher than that obtained by the conventional 

Y(thd)3/O3 process.135 The growth rate was further increased to 1.6 Å/cycle by using the 

Cp3Y/H2O process at 300°C, but an ALD window could not be detected with this precursor 

system. Generally, the Y2O3 films obtained with both Cp-based processes were 

stoichiometric and contained less than 0.5 at-% of carbon as an impurity. Hydrogen 

content was dependent on the deposition temperature being lowest at 0.9 at-% for the films 

deposited with the (CpMe)3Y/H2O process at 400°C. Notably, the Y2O3 film crystallinity 

was strongly dependent on the precursor combination and the deposition temperature 

applied (Figure 15). The Cp3Y as precursor yielded a significantly higher growth rate than 

(CpMe)3Y and in addition, the crystallinity of the Y2O3 films with the Cp3Y/H2O process 

was more pronounced, exhibiting (222) as the preferred orientation in the entire deposition 

temperature range of 175 to 400°C studied. In the case of the (CpMe)3Y precursor, more 

thermal energy was needed to achieve the (222) as the dominant orientation; the change 

from (400) to (222) as the preferred orientation occurs only around 400°C. When 

comparing the current Cp-based processesVI to the Y(thd)3/O3 ALD process,135 the 

crystallinity was strongly enhanced (Figure 15). The increase in crystallinity as deposition 

temperature is increased also correlated with the surface morphology; both Cp-based 

processes the smoothest films were deposited at temperatures of 250°C or below. 
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Figure 15. XRD patterns of Y2O3 films deposited at 250°C by the Cp3Y/H2O (a) and 

(CpMe)3Y/H2O (b) processes. Y2O3 film thicknesses were 150 (a) and 125 nm (b).VI For 

comparison, an XRD pattern of a 125 nm thick Y2O3 film, deposited at 350°C by the 

Y(thd)3/O3 ALD process is presented (c).   

3.3.2 LaOx 

In total, four different Cp-type precursors were tested with water as the oxygen source for 

the ALD of LaOx. As seen in Table 6, where the results of ALD studies are summarized, 

the thermal stability of the applied La-precursors is limited. The Cp3La decomposes at its 

sublimation temperature, excluding a self-limited growth mode. Introducing bulkier 

ligands, with methyl or isopropyl substitution on the Cp-ring, slightly improves the thermal 

stability and thereby uniform films on planar substrates could be obtained, but only at very 

low temperatures. However, it is obvious that partial decomposition lead to a CVD-type 

growth mode as lengthening of the precursor pulse also increased the growth rate and 

nonuniformity of the films. Because the ALD-type growth mode was not achieved, the 

experiments were not continued and detailed film characterization was omitted.  
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Table 6. Summary of ALD experiments carried out with various Cp-type La-precursors 

and water as the oxygen source. The standard La-precursor pulse length was 1.2 s. 

 

 

 

 

  

3.3.3 PrOx 

High-k PrOx films have been successfully deposited by PVD methods18 but employing 

ALD has been problematic.144 Among the RE β-diketonates, Pr(thd)3 used with ozone 

yielded nonuniform films, caused by the decomposition of the β-diketonate precursor.138 

Experiments with Cp3Pr and water suffered from similar problems.138 The thermal stability 

of the Cp-based precursor was improved through the use of an isopropyl substituent on the 

Cp ring. This resulted in high growth rate of about 1.6 Å/cycle at a deposition temperature 

of 175°C. The thickness uniformity over the 5 x 10 cm2 substrate area was about 2 %. 

However, increasing the pulse length from 1.2 to 2.0 s resulted in films with a clearly 

higher growth rate (2.3 Å/cycle), and thus an ALD-type growth mode was not achieved. 

This is believed to have been caused by the partial decomposition of the (CpiPr)3Pr 

molecule in the gas phase or on the surface of the Si-substrate. At a still higher temperature 

of 225°C, precursor self-decomposition was evident as thickness nonuniformity was 

severe. Due to the insufficient thermal stability of the (CpiPr)3Pr precursor, a full 

characterization of the films was not performed. 

 

 

 

 

 

La-precursor 
Subl./evap. T 
at 2-3 mbar, 
°C 

Deposition 
temperature 
tested, °C 

Complete 
decomposition 
observed, °C 

Growth rate 
(T), Å/cycle 

Cp3La 250 (solid) 260-300 >260 Dec. 

(CpMe)3La 165 (solid) 165-300 >170 2 (170°C) 

(CpMe4)3La 175 (solid) 200 200 Dec. 

(CpiPr)3La 140 (liquid) 190-250 250 4.6 (190°C) 
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3.3.4 Gd2O3 

With (CpMe)3Gd and water in the temperature range of 175-300°C, ALD growth mode 

was not achieved (Figure 16).VII However, the thickness variation of the deposited films 

along the gas-flow direction was acceptable or less than 2 %. The growth rate of 

stoichiometric, polycrystalline Gd2O3 films was high, increasing from about 1.0 Å/cycle up 

to about 3.2 Å/cycle when growth temperature and pulse length were increased. In addition 

to the thickness variation also the impurity levels remained quite low, even below 1 at-% 

for C in the films deposited at 250°C. These characteristics indicate a low decomposition 

rate of the metal precursor.  

Figure 16. The growth rate of Gd2O3 films at different deposition temperatures plotted as a 

function of the (CpMe)3Gd precursor pulse length.VII 

 

A comparison of the Gd2O3 films grown by the Cp-based process with the films obtained 

by the Gd(thd)3/O3 process reveals notable differences in growth characteristics. ALD-type 

growth was confirmed for the Gd(thd)3/O3 process, but the growth rate is significantly 

lower and the impurity levels higher than those obtained with the Cp-based process. 

Smoother films were obtained with the thd-based process (Figure 17), however. 
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Figure 17. AFM images for 100 nm thick Gd2O3 films deposited at 250 °C by the 

Gd(thd)3/O3 (a) and (CpCH3)3Gd/H2O (b) processes. The rms-roughness values were 1.2 

(a) and 2.5 nm (b), respectively.VII  

 

While true ALD-type growth was not achieved by the (CpMe)3Gd/H2O process, the more 

bulky (CpMe4)3Gd precursor was tested in an attempt to overcome the partial 

decomposition problem. However, already at the deposition temperature of 250°C signs of 

precursor decomposition could be detected, and consequently the thickness uniformity was 

poor. Increasing the pulse length of the (CpMe4)3Gd precursor from 1.2 s to 2.0 s enhanced 

the growth rate from 1.2 to 1.8 Å/cycle, which confirmed the absence of ALD-type growth 

mode. 

3.3.5 Er2O3 

A constant and high growth rate of 1.5 Å/cycle was achieved by the ALD process of Er2O3 

employing (CpMe)3Er and H2O as precursors at 250-350°C.VIII This well-behaving process 

yielded films with good uniformity and high purity. The impurity levels were lower than in 

the erbia films deposited by the thd- or amidinate-based processes.42,136 The ALD-type 

growth mode was confirmed at 250 and 300°C where for complete saturation a pulse 

length of 1.5 s was required. The decomposition of the metal precursor affected the film 

growth behaviour at temperatures above 350°C. The rms-roughness increased as the 

deposition temperature was increased. The increase in crystallinity and, at temperatures 

above 350°C, the partial decomposition of the precursor is believed to cause the observed 

increase in roughness. Because of its thermal stability and reactivity, this Cp-precursor 
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offers clear advantages for Er2O3 film growth over the β-diketonate or amidinate-type 

erbium precursors.42,136  

3.3.6 Rare earth scandates 

Amorphous, high-permittivity rare earth scandates, namely YScO3, GdScO3 and ErScO3, 

can be deposited by ALD using either Cp-type precursors and water or β-diketonate-type 

precursor and ozone as precursors.IX,156 Considering that the ALD processes of the binary 

RE oxides are well-established and function in a self-controlled manner, RE scandates 

having a range of stoichiometries were straightforwardly deposited using different pulsing 

ratios in the RE processes, e.g. with pulsing ratio of 6:5 ((CpMe)3Y + H2O: Cp3Sc + H2O), 

a stoichiometry of Y1.03Sc0.96O3.01 was achieved.IX By applying the same pulsing ratio but 

using (CpMe)3Er instead, the Er1.02Sc0.98O3 composition was obtained. As expected, 

considerably higher growth rates were obtained with the Cp-based processes than with the 

β-diketonate-based processes. All the films were amorphous as deposited and 

crystallization upon annealing was dependent on the precursors used. The YScO3 films 

deposited by the thd-precursors and ozone remained amorphous even after rapid thermal 

annealing at 800°C under N2 ambient. In contrast, the YScO3 films from the Cp-precursors 

became crystalline after RTA treatment at 800°C. It should be noted that the YScO3 films 

crystallized as a solid solution of Y2O3 and Sc2O3 rather than forming a crystalline YScO3 

phase.IX In the case of GdScO3 grown from thd-precursors and ozone, the Gd-scandate 

phase was observed to form after RTA treatment at 1000°C.156 Stoichiometric GdScO3 was 

deposited with a pulsing ratio of 5 : 11 (Gd(thd)3 + O3: Sc(thd)3 + O3). 

3.3.7 Dielectric properties of the RE oxide films 

Due to the thermal instability of the La- and Pr-precursors studied, thin La- or Pr-oxide 

layers for electrical measurements were not deposited. However, Al/RE oxide/native 

SiO2/p- or n-Si/Al capacitor structures, where RE oxide layer was Y2O3, Gd2O3, Er2O3, 

YScO3, ErScO3, or GdScO3, were measured for C-V and I-V characteristics. High positive 

fixed charges were detected in the Y2O3 films grown with both Cp-precursors.VI In 

addition, breakdown fields were rather low, likely caused by high crystallinity of the 

relatively thick films where the grain boundaries offer pathways for leakage current. 

Effective permittivity of the films was about 10, which is slightly lower than that obtained 
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with the Y[iPramdiPr]/H2O ALD process.146 It should be noted that annealing was not 

performed for these Y2O3 films,VI while in the study by de Rouffignac et al.146 very long 

deposition times (>12 hrs for 50 nm film) were used, thus actually having an annealing 

effect during the deposition. Despite the fact that a true ALD-type growth mode was not 

achieved for the (CpMe)3Gd/H2O process, the Gd2O3 films showed well-behaved C-V 

curves.VII The permittivity was in the range of 13-14, which is considerably higher than the 

values obtained for the Gd2O3 films grown by the thd-based process. However, flatband 

voltage shift, also reported for other RE oxides,24 was significant. Similar to the case of 

Y2O3, leakage current was affected by the polycrystalline nature of the films.VI,VII Er2O3 

films seemed to possess a reduced amount of fixed charge and their hysteresis was 

negligible.VIII The effective permittivity of a 12.5 nm Er2O3 film and native SiO2 stack was 

about 10, but if the native SiO2 interfacial layer is not taken into account, a value of 14 can 

be calculated for the erbia film. 

 

The rare earth scandates, because of their amorphous structure seem to be better 

alternatives for gate dielectric applications than the more often studied RE binary 

oxides.IX,156 Figure 18 depicts the C-V curves for capacitor structures where the insulator, 

YScO3 or GdScO3, is deposited by the thd-precursors and ozone. An effective permittivity 

of 14-15 could be calculated which is considerably higher than that (9-10) obtained for 

Y2O3, Gd2O3 and Sc2O3 binary oxides deposited from the thd-precursors. When Cp-

precursors were applied for the deposition of YScO3 and ErScO3 the effective permittivity 

was high but considerable hysteresis was detected, indicating positively charged ions in the 

films. Because of the amorphous nature of the films, leakage current density remained low 

(e.g. 1 x 10-8 A cm-2 at V=VFB - 1 V for 40 nm YScO3 film). Upon annealing at 1000°C, the 

crystallization as a solid solution of binary oxides leads to lower permittivity values as well 

as increased leakage current density. This pioneering study on ALD of RE scandates 

appears to offer an interesting starting point for further investigations aiming at high-k 

applications. 
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Figure 18. Capacitance-voltage curves of Al/YScO3 or GdScO3/native SiO2/p-Si(100) 

capacitor structures with YScO3 and GdScO3 films deposited from Y(thd)3 or Gd(thd)3 and 

Sc(thd)3 with O3 as the oxygen source. Labels indicate the insulator thickness and effective 

permittivity values.IX,156 For Al/insulator/p-Si(100) structure the VFB should be around –1.0 

V.155 

3.3.8 Rare earth precursor selection 

In the ALD of RE oxide thin films from Cp-type precursors, the limited thermal stability of 

the precursor seems to be the major problem. The correlation of the rare earth ionic radius 

and the ligand size on the thermal stability was previously introduced.46 This prediction 

can now be complemented by the present results (Table 7). It clearly seems that 

introducing the bulkier Cp-ligands, e.g. with methyl or isopropyl substitution, thermal 

stability can be increased, but for large ions such as Pr3+ and La3+, achievement of ALD-

type growth mode at reasonable temperatures still remains a very challenging task.  
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Table 7. The suitability of different Cp-compounds applied/tested in the ALD processes 

for the growth of selected RE oxide films. Mixed-ligand compounds which contain Cp and 

some other ligands are omitted. 

Ligand 
Rare 

earth 

Ionic 

(+III) 

radius, Å Cp CpMe CpiPr CpMe4 

Sc 0.75 Suitable    

Er 0.89  Suitable   

Y 0.90 Suitable Suitable   

Gd 0.94  Partial dec.  Partial dec. 

Pr 0.99 Not suitable  Partial dec. Not suitable 

Ce 1.02  Not suitable   

La 1.03 Not suitable Partial dec. Partial dec. Not suitable 
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4. CONCLUSIONS 

The suitability of cyclopentadienyl-type precursors in ALD has earlier been established for 

noble metals,157 alkaline-earth metal containing oxides158,159 and sulfides160 as well as for 

scandium oxide133 deposition. For high-k oxide deposition the possibilities to modify the 

precursor chemistry are extensive. For the controlled ALD of ZrO2 and HfO2, the methyl-

substituted Cp-type precursors, Cp2ZrMe2 and Cp2HfMe2, clearly have some advantageous 

features: The obtained film purity is high and the suitable deposition temperature is higher 

(up to 375-400°C) than in many other alternative halide-free processes. However, when 

water is used as the oxygen source the observed retarded growth on H-terminated Si can be 

considered as a drawback. With ozone, on the other hand, the roughness, impurity content, 

and leakage current density can be decreased. In general, the electrical characterization 

showed promising dielectric properties for high-k applications. The growth of ZrO2 from 

Cp2ZrMe2 and deuterated water was studied in situ by QMS revealing that nearly all the 

methyl ligands and less than half of the Cp-ligands were released during the metal 

precursor pulse. The remaining ligands were released during the subsequent surface 

reaction with deuterated water, leaving the surface OD-terminated, and thus ready for the 

next cycle. The in situ studies showed that the decomposition onset temperature for 

Cp2ZrMe2 precursor was around 375°C. 

 

A number of Cp-type precursors were applied for the deposition of RE oxides. Cp3Y, 

(CpMe)3Y, and (CpMe)3Er were found to have sufficient thermal stability in water-based 

processes for self-limiting, ALD-type growth of the corresponding RE oxide thin films. 

The growth rate was about six times higher than with the conventional β-diketonate 

precursors reacting with ozone.24,135,VI,VIII High purity, better stoichiometry as well as 

higher permittivity of the resulting oxide films can also be counted among the benefits of 

the current Cp-precursor approach. However, the thermal stability of the Cp-compounds is 

limited especially for larger RE ions, such as Gd, Pr and La. Stability can be improved by 

introducing bulkier ligands, such as isopropyl substitution, but in many cases partial 

decomposition destroys the preferred ALD-type growth mode resulting in films with poor 

uniformity. However, with the (CpMe)3Gd/H2O process, high quality films on planar 

surfaces with promising dielectric properties were obtained despite the fact that partial 

decomposition prevented the surface-saturative growth mode.  
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Finally, ternary RE scandates, YScO3, GdScO3, and ErScO3 were successfully grown by 

ALD as solid solutions of the individual binary oxides. These scandates were amorphous 

as-deposited and, depending on the precursor combination used, RTA at 800 or 1000°C 

was required for their crystallization. In addition to the amorphous structure, clearly 

beneficial to minimize leakage current, the effective permittivity (15-16) was considerably 

higher than that of the binary oxides (10).    

 

The results obtained in this work show that Cp-type compounds are suitable for high-k 

depositions by ALD. Precursor chemistry is the key factor in the development of novel 

ALD processes and there Cp-type precursors offer a viable route to achieve high-quality 

oxide films not previously successfully processed by ALD. In addition, Cp-type precursors 

together with a proper oxygen source selection, can improve the film properties of 

important materials, such as ZrO2 or HfO2.  
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