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Abstract 
 
Mutual coupling and other non-idealities are a typical source of problems in small arrays. 
The element patterns are perturbed, which causes difficulties in standard array pattern 
synthesis. One common way to avoid the problems is to correct the element patterns 
computationally before array pattern generation. However, a complex-valued array 
pattern can be generated also directly without the use of a set of corrected complex-
valued element patterns. When the desired array pattern is an amplitude pattern with an 
arbitrary phase pattern, an iterative process is needed to find the input coefficients. Here 
it is demonstrated how to generate simple box-type amplitude patterns for a six-element 
microstrip array. The main focus is in wide null generation and in the comparison of the 
null region weighting in pattern generation with the standard procedure without 
weighting. The results show, that the used direction-dependent weighting in array 
amplitude pattern generation gives generally better agreement of the resulting amplitude 
pattern with the desired pattern in the dB scale. 
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1  Introduction 
 
Inside an antenna array, mutual coupling and other non-idealities cause element pattern 
distortion which is problematic in small arrays [1], [2]. The element patterns can be 
corrected partially with a matrix operation after which the array can be used more 
realistically as an ideal array. The matrix correction of element patterns is defined for 
complex-valued element pattern vectors, and the corrected inputs (or outputs) are defined 
multiplying the uncorrected inputs with the correction matrix. The linear least square 
error (LSE) solution for array correction can be found using the matrix pseudoinverse, 
which is widely used in practical array problems [2]–[5]. However, for any physically 
realized array, the feed coefficients that give the best fit with a wanted complex array 
pattern can also be found without a preceding element pattern correction to a desired 
array [6]. In this work the weighting function depends on the wanted array pattern and the 
resulting correction matrix is different for each case of wanted array patterns. Thus the 
correction matrix itself is not in the focus of interest. In the cases considered in this paper, 
only the wanted array amplitude/power pattern is predetermined when the array phase 
pattern is arbitrary, and an iterative process needs to be performed to find the optimal 
array input/feed coefficients [7], [8]. 
 
In mobile communications the generation of nulls in the array pattern is important [9]–
[13], [14]. The nulls can be narrow or wide nulls. The directions of desired nulls can be 
emphasized, which is the proposed method in this work. It causes the array pattern 
outside the emphasized region to agree less with the wanted pattern. In null-pronounced 
weighting the pattern amplitudes of the wanted null directions are multiplied with a 
pronouncing weighting factor or cost function. In the robust weighting presented here, all 
the amplitude values of the measured array element pattern vectors and also the desired 
array pattern vector itself are multiplied component-wise with the inverse values of the 
desired array amplitude pattern before the array input vectors are calculated. This 
weighting used with iteration gives a criterion similar to LSE on the dB scale. The effect 
of weighting is examined in this paper from a practical point of view, by characterizing 
the fitting accuracy of wanted and generated array amplitude patterns in the dB scale.  
 
When the number of users exceeds the element number in a base station array, simplified 
array patterns become more useful. The classic method to optimize signal to noise and 
interference ratio [15] needs updated information on noise and interference and can be 
not optimal when extended to downlink direction and take too match resources to be used 
in mobile communications. In mobile communications the smart sectorization is a 
challenge for future networks [16]. Wide angular regions with lowered radiation level 
(nulls) are generated for directions, where interferers can be located. The reason of 
uncertainty of the interferer localization can be the rapid movement [17]−[20]. Another 
reason for wide nulling can be the nulling on the frequency band [21]. The simple 
patterns having regions with different constant gains can be useful also when there are 
groups of users at different distances from the base station or with different service 
levels. In this paper, the pattern generation is tested using box-type array patterns for a 
six-element array. Mainly the difference between pattern generation with and without 
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weighting is compared. However, the presented data can be used at the same time to 
characterize what is the practical accuracy for box-type array pattern generation with a 
real six-element array. There is a growing interest to small adaptive arrays in mobile 
radio communications but the literature concerning pattern synthesis is still mainly 
available for large arrays used in static radio links, where the accuracy requirements and 
resources to reach them are much higher than in mobile communications. 
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2 Theory  
 
When the array element patterns and the complex-valued desired array pattern are 
known, the input coefficients can be calculated using matrix inversion [22]. When the 
number of elements is less than the number of pattern measurement points, the array 
patterns can be generated to match the desired ones using the matrix pseudoinverse, 
which is widely used due to simplicity and because it gives the best agreement in terms of 
the LSE criterion [2], [3], [5]. The array element weights or input coefficients optar  can be 
calculated accordingly [6] with 
 

[ ]{ }1−
= H

measmeas
H
measdesired

T
opt FFFΨa

r
,                     (1) 

 
where the complex vector of wanted array field pattern desiredΨ

r
 is multiplied by the 

pseudoinverse [ ] 1−H
measmeas

H
meas FFF  of the matrix measF  containing all the measured or 

computed element patterns of the array. In this work matrix measF  is a complex value 
N×M matrix of N = 6 element patterns and with M = 359 observation directions. When 
weighting is used in the input coefficient calculations, all the single patterns in the 
matrices or vectors are multiplied component-wise with a weighting vector wΨ

r
 having 

the length equal to that of the element pattern, yielding  
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where the rows of the weighting matrix wF  are all equal to the pattern weighting vector 

wΨ
r

 and ⊗  denotes component-wise multiplication. With this kind of weighting when all 
the responses in a given direction are multiplied with the same factor, the exact solution, 
if it exists, does not change. Usually, the solution of (2) is a LSE solution and when it is 
done with weighting for measF  and wΨ

r
, the final error in each direction is a statistical LSE 

error divided by the corresponding weighting factor. This means, that in some directions 
the accuracy is increased or lowered with weighting. 
 
In many cases a solution with a small relative error is wanted. If the amplitudes in the 
matrix desiredΨ

r
 in (1) are equal, then the complex LSE error is the relative error for a 

complex valued desiredΨ
r

.  With weighting vector inverted to amplitudes of desiredΨ
r

 in (2) 
we can have equal amplitudes. In this work the nulls of the wanted array pattern are 
pronounced with the weighting vector 
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where ( )θdesiredΨ

r
 is the wanted array pattern, Nw is a weighting exponent, and ∆ is a 

positive number, which defines the upper limit of weighting. If Nw = 0, then there is no 
weighting and the pattern matching is the usual LSE presented in (1). If Nw = 1, then the 
LSE correction done for weighted patterns decreases the linear error in the low level 
region and minimizes the mean relative error over the whole calculation region. Mainly 
the values Nw = 0 and Nw = 1 are used here in the comparison, but also the cases Nw < 0, 0 
< Nw < 1 and Nw > 1 are presented briefly. When the desired array pattern contains zero 
values the parameter ∆ is necessary to avoid division by zero. The value of ∆ should not 
be chosen below the noise/uncertainty level to avoid the sensitivity of the pattern 
generation on pattern measurement errors or noise. The desired array patterns used here 
have “zeros” with a given dB value of radiation intensity; they are not exactly zeros and 
thus the parameter ∆ is chosen ∆ = 0 if not mentioned otherwise.  Here is demonstrated 
the array pattern generation without any noise added, which also allows this parameter to 
equal zero. 
 
In (1) the pseudoinverse matrix is the same for different desired array patterns and can be 
stored. In (2) the calculation should be repeated for each desired array pattern and thus 
the element patterns should be stored. Equation (2) differs mainly by notation from the 
one presented in [7], where a diagonal matrix for the power weighting is used instead of 
component-wise multiplication, and where the real and imaginary components of patterns 
are separated and weighted independently. When the general reference phase for an array 
is arbitrary, there is no need for different weighting vectors for real and imaginary parts. 
The phase information of the weighting vector in (2) has no effect and the weighting 
vector can be given as an amplitude vector. The form in (2) helps to see, that the solution 
for the case with weighting remains a basic LSE solution like (1), but for modified 
pattern vectors, which is not seen as well in the reduced form used in [23]. 
 
The presented Equations (1) - (3) are for complex-valued patterns. In the case of a desired 
amplitude-only array pattern, the phase is simply allowed to vary freely during the 
iteration to ensure best matching of desired and generated array amplitude patterns. Here, 
in the iteration process the first desired complex array pattern is the desired box-type 
amplitude pattern combined with a phase pattern of zeros. The use of simplified desired 
array pattern of this kind leads into computational efficiency [24]. In the following 
iteration the desired array phase pattern at each iteration step is set to be the obtained 
array phase pattern of the previous iteration cycle 
 

)arg()arg( T
1,, measKoptKdes FaΨ −=

rr
,      (4) 

 
where K is the number of the current iteration cycle. The idea to accept the reached phase 
pattern as the next desired phase pattern in iteration process was used earlier in [8], where 
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also the practical question of the possible convergence to a local error minimum, which 
can lead to a poor iteration result, is mentioned. 
 
The criterion used to characterize the validity of the generated array amplitude pattern 
could be simply the mean square error, mse, between the wanted and generated array 
amplitude patterns, because it is in accordance with the used pseudoinverse LSE method. 
The preliminary results, however, showed that this criterion is not always suitable. The 
wanted array amplitude patterns are in this work box-type patterns with fixed high and 
low radiation intensity levels at certain angular regions. Therefore, it was decided to use 
the quadratic sum of mse’s from the corresponding amplitude levels as the validity 
criterion. This joint error (JE) is calculated by  
 

( ) { } ( ) { })low""(or  high""    ,

11

T
) (  

1

2
,

1

2
,

22

∈−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=+= ∑∑

==

me

e
M

e
M

msemseJE

mdesiredmmeasmloworhigh

M

m
mlow

low

M

m
mhigh

high
lowhigh

low

l

l

high

h

h

θθ ΨFa
rr

,       (5) 

 
where Mhigh and Mlow are the number of measurement points in high and low radiation 
intensity levels. When the error is defined to characterize the dB-scale fitting of curves, 
the corresponding error ehigh (or low)(θm) is the difference between the dB-scale values for 
azimuth direction θm. When the obtained and desired amplitude patterns are compared 
with (5) they need to have the same mean value. On linear and dB scales we get different 
equations defining the rescaling factors rlin and rdB 
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where index m is the order number of the direction angle and aopt is the iterated input 
vector which should be rescaled for mse calculation. On the linear scale in the case 
without weighting the resulting array pattern and the wanted array pattern have 
automatically the same mean value as a property of the pseudoinverse but in other cases 
(weighting or logarithmic scale) the rescaling is needed before error calculation. For 
linear scale comparison the scaling factor rlin is a multiplication factor. When the patterns 
are compared with (5) on the scale of relative shift, i.e. on the dB scale the resulting input 
vector is normalized with a shift rdB in order to have the same mean dB-value for the 
desired and obtained array patterns. In the following the joint errors calculated by (5) are 
denoted by JE and JEdB for linear scale and dB-scale errors, respectively. The pattern 
correlation without mean extraction used in [4], [5] could be used also here to 
characterize the amplitude pattern in the case of linear scale, but not in the case of dB-
scale, where power scaling is defined as a shift of the curve. For simplicity the MSE 
criterion is used for both, linear and dB-scale, when the resulting array pattern is 
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validated. Also the sum of correlations calculated independently for different levels 
would not be as meaningful as the final fitting criterion in (5) calculated as joint two-
level mse. 
 
The final joint two-level MSE validity criterion in (5) is not to be confused with the LSE 
criterion for complex-valued vectors included in the pseudoinverse method. When the 
pseudoinverse is combined with (4) in the iteration process we can expect this to lead to 
the LSE criterion for amplitude vectors. The joint two-level MSE is used after the pattern 
synthesis to validate the resulting pattern. It is a counterpart for sharp beam or null region 
underweighting in the calculations; the result pattern can be optimal with respect to the 
mean squared error calculated for the whole amplitude pattern, but this optimum does not 
always have practical meaning and therefore some additional characterization as (5) is 
needed. Equation (5) does not basically depend on the number of sampling points at the 
high and low radiation levels and thus lowers the underweighting of a narrow sector in 
calculation. Because the final joint two-level MSE validity criterion is not the criterion 
included in the step of the iteration completed by (2) and (3), it is not obvious, that the 
result is good enough in the terms of this final validity criterion calculated by (5). 
Whether weighting is the better method or not with the chosen validity criterion is to be 
clarified within this work.  
 
The pure statistical LSE criterion as used in the array pattern synthesis in [25] is a general 
criterion useful for array patterns that contain many details. The minimax criterion used 
in [26] is closer to the traditional standard pattern synthesis with minimized sidelobe 
level for a given half power beam width, where the radiation intensity values between 
high and low intensity levels should be mainly “forbidden”. The final two-level criterion 
in (5) is a compromise between the pure LSE criterion and the minimax criterion and it is 
practical also when an angular sector with lowered radiation power is defined for other 
reasons than just to obtain as low level as possible. It should be noted for completeness, 
that instead of the square sum of deviations in (5) also the stronger criterion of absolute 
sums of deviations could be used as well as a measure of level separations. 
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3 Results 
 
The array used in this study is a small linear 5.2 GHz microstrip array with six elements 
described in more details in [5]. The element spacing is 0.5λ. The ground plane 
dimensions are 0.9λ × 3.3λ. The array pattern optimization is done for pattern values at 
azimuth angles from –90° to 90° at 0° elevation. Array patterns in the horizontal plane 
were measured with an increment of one degree in the main polarization. 
 

3.1 Basic example of array pattern generation and pattern weighting 

Box-type array patterns were generated both for wide nulls and for wide beams. In Fig. 
1(a) an example for a wide null in forward direction with a null depth ND = –40dB and a 
null width NW = 60° is presented. In Fig. 1(b) the generation of a beam in the forward 
direction with a beam width BW = 60° and a side lobe level SLL = −40dB is presented. In 
subfigures (a) and (b) of Fig. 1 the patterns presented on dB scale are normalized to   
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Figure 1.    Generated box-type array patterns a) with a wide null and b) with a beam. 
The desired array patterns (thick gray solid line) and the array patterns generated using 
iteration are without weighting (solid line) and with weighting of the null regions (thick 
solid line). The evolution of iteration is presented in figures c) - f) below the 
corresponding array patterns. In c) and d) is the evolution of the linear scale joint two-
level mse, JE and in e) and f) is the evolution of the joint dB-scale two-level mse, JEdB, 
where the thin line is for the non-weighted and the thick line for the weighted case. The 
first 5 cycles of iteration are marked separately. 
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have the same linear scale amplitude mean. The presented final array patterns have been 
obtained after 500 iteration cycles. We can see that the null-pronouncing weighting 
causes stronger defined nulls and sidelobes compared to the case without weighting. The 
cost for better curve matching on null/sidelobe levels is worse matching on the high 
levels. Both the joint two-level mean square errors, in linear (JE) and in dB (JEdB) scale, 
are presented as a function of iteration cycles to indicate the curve fitting and thus the 
convergence of the iteration process. With one exception, the final matching is obtained 
with only a few iteration cycles. In the pattern generation example of Fig. 1 we get after 
500 iteration cycles in the case without weighting JE = 0.24 and in the case with 
weighting JE = 0.38. The joint two-level mse of dB scale values is in the case without 
weighting JEdB = 16.2 dB-units and with weighting JEdB = 8.9 dB-units. The 
corresponding values for the beam generation are, JE = 0.22, JE = 0.54, JEdB = 13.1 dB-
units and JEdB = 11.6 dB-units, respectively. The limiting linear scale JE is lower (i.e. 
better) for the case without weighting than for the case with weighting. On the dB scale 
the limiting JEdB behaves the opposite way: the limiting JEdB’s are lower in the case 
with weighting than without weighting. For wide null generation the joint two-level mse 
for the case with weighting is, however, at the beginning of iteration lower on both linear 
and dB scales. In Fig. 1 the iteration converges in a few cycles, which is a characteristic 
detected also in [7] for iterative pattern synthesis using weighting.   
 
Mutual coupling affects the element patterns and thus the input vector generated using 
idealized model element patterns gives in reality only approximately the wanted array 
pattern. For more exact array pattern generation the real element patterns are needed, 
unless the element patterns are corrected beforehand using the matrix method [1], [2], [5]. 
The effect of using an inadaptable set of element patterns, e.g. ideal patterns instead of 
real or corrected element patterns, can be demonstrated, if the weights found for real 
element patterns are used for ideal element patterns. Using the same input vector as in 
Fig. 1(a) the array pattern is now generated using ideal element patterns. Here, the ideal 
element pattern is the mean complex-valued element pattern, where the phase shift due to  
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Figure 2.    Array patterns with a wide null for an array with ideal element patterns. The 
array patterns are generated using port weights found for measured element patterns. 
The desired array pattern is denoted by a thick gray solid line, the array pattern without 
weighting by a thin black solid line and for the case using weighting by a thick black 
solid line. 
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element position is extracted before computing the mean element pattern. In Fig. 2 we see 
the array patterns both with and without weighting. The increase of the null level and loss 
of accuracy in the wide null region is seen in both cases. The null depth increase is of the 
same magnitude as if noise at a level 25 dB below the wanted signal level is added to the 
array output.  
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Figure 3.    The mean signal-to-interference ratio S/I as a function of signal arrival 
direction, when the signal and interferer sources are of equal strength. The interferer is 
located in the sector −30° to +30° and the signal source outside this sector. The array 
patterns with a wide null are the same as in Fig. 1(a), the mean S/I is denoted by a thick 
gray solid line for the desired array pattern,  by thin black solid line for the array pattern 
generated without weighting and by a thick black solid line when using weighting. 
 
 
Sectors with a decreased received power level are useful for interference cancellation, for 
which the signal-to-interference ratio S/I is of interest. As an application example we 
consider the case when an interferer has a broad angular-domain distribution and the 
same power level as the wanted signal. The interferer is canceled with spatial filtering 
using the array pattern with wide null in the same sector. The signal to interference ratio 
S/I is calculated and averaged for the same array pattern as in Fig. 1(a). The mean S/I is 
presented in Fig. 3 as a function of the angle of arrival. Outside the wide null sector that 
is cancelled, the shape of the directional dependency is the same as for the corresponding 
array pattern in Fig. 1(a). We can see that using directional weighting in array pattern 
calculation, the mean of the signal-to-interference ratio S/I is in the presented case on a 
wide angular region about 20 dB higher than in the case without weighting. The 
maximum of the mean S/I is 36 dB when the 40 dB level was set as the goal. It is 
preferable to use the weighting for the spatial filtering of the interferer as long as it can be 
ensured, that the noise level is at the array ports low enough e.g. in this example it needs 
to be less than the maximum of S/I level without weighting (about −18 dB of the signal 
level).  
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3.2 Comparison of array pattern generation with and without robust weighting 
for different array patterns 

 
As was mentioned in Chapter 2, the robust weighting is not always the optimal method in 
array pattern generation, especially when the obtained array pattern is characterized on 
the dB scale. In this part of the work it is examined, which robust method, with weighting 
or not, is the better one for different null widths NW (or BW), null depths ND (or SLL) 
and null (or beam) center positions. When the null depth ND is altered while the null 
center is in forward direction and NW = 60°, the result in Fig. 4(a) shows, that the 
weighting is always better compared to the case without weighting. However, the 
difference between these methods is not as significant when ND > −20 dB. This means, 
that with signal-to-noise ratio SNR < 20 dB there is no practical difference between the 
methods for the examined array. In the case when ND = −50 to −30 dB the result for the 
case with weighting is about 5 to 8 dB-units better than without it.  
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Figure 4.    The dependency of the joint two-level dB-scale mse (JEdB) on the null dept 
for 60° null width (NW) and a) with center at 0° and b) with center at  –40°. The number 
of iterations is 200.  
 
When the null center position is shifted −40° from the forward direction the error in the 
patterns increases. The result presented in Fig. 4(b) shows that the weighting is also in 
this case better compared to the case without it. As in previous cases there is almost no 
difference between these methods, when ND > −20 dB. When ND = −40 to −30 dB the 
difference is from 2 to 3 dB-units. 
 
The dependency of the JEdB on the wide null center position is presented in Fig. 5(a) and 
in Fig. 5(b) for null widths of 60° and 30°, respectively. We see that the fitting errors 
depend strongly on the null width and position, and that the direction for which the wide 
null results in the best fitting is the forward direction. In the case of NW = 30° the 
weighting has good characteristics over a wider region than in the previous case. In these 
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cases weighting is the better method for any position of the null center. As can be seen in 
Fig. 5(a) the difference between the methods is not as significant for wider null widths.  
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Figure 5.    The dependency of the JEdB on the null position for null depth ND =  –35 dB 
and with null width a) NW = 60° and b) NW = 30°. The number of iterations is 200. 
  
 
In Fig. 6(a) the effect of the null width (NW) is presented for a wide null in the forward 
direction. We can see that weighting gives better results when NW < 70°, but the method 
without weighting is better when NW > 80°. However, for NW > 100° in the case without 
weighting the realized gap between the points of the two levels (absolute value of the 
desired ND plus joint two-level dB-mse) is decreased to values < 20dB,  which is far 
from the absolute value of the wanted ND of 35 dB-units. When the null center is shifted  
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Figure 6.    The dependency of the joint two-level dB-scale mse (JEdB) on the null width 
(NW) for null depth (ND) of  –35 dB and a) with center position in the forward direction, 
and b) in the direction of –40°. The number of iterations is 200. 
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to –40° in Fig. 6(b) the result becomes worse for both methods, but weighting remains 
better. 
 
The considerations that were done for nulls, are also applied to beam generation by 
simply inverting the corresponding desired array amplitude pattern. This leads to beam 
patterns with beam direction, beam width and SLL that are the same as the corresponding 
wide null direction, NW and ND as in Fig. 1. The results show, that weighting is optimal 
when generating wider beams (BW > 50°) in the forward direction −40° to +40° and is 
also somewhat better for beams with lower sidelobes (SLL < −35 dB). However, the 
beam generation without weighting is better for sharp beams (BW < 30°) and for 
directions close to the endfire. The beam generation is basically complementary to null 
generation: good parameters for null generation without weighting are good parameters 
for beam generation with weighting, and vice versa. 
 
In realistic arrays the effects of mutual coupling are always present. In the array under 
test the scattering matrix is measured and the eigenvalues and -vectors of the matrix SHS 
are computed. The eigenvalues are the same as the relative reflected power with the 
corresponding eigenvectors as voltage wave inputs to the array. At 5.2 GHz the mean 
eigenvalue of  SHS is 3.1%, when the minimum and maximum eigenvalues are 0.2% and 
6.7%. The array patterns generated with the pure eigenvectors are somewhat exotic and 
not similar to the box-type patterns considered here. The radiated power stability is 
proven by generating array patterns with the computed best input coefficients concerning 
the cases presented in Fig. 4, Fig. 5 and Fig. 6. The radiated power to the pattern azimuth 
regions of −180° to 180° and −90° to 90° are compared with the corresponding radiated 
power with input vector [1 1 1 1 1 1]. The comparison shows, that the radiated power to 
the given regions is 95% to 120% as compared with the reference and does not have any 
abrupt change when the wanted array pattern is changing. This means that the instability 
of the radiated power is not a problem in broad null generation for array with spacing d = 
0.5λ, as it is e. g. in superdirective beam generation for an array with spacing 0.5λ or less 
[27].  
 
The cases with and without weighting can be examined also by the closeness of the final 
iterated input vectors. The input vectors war  and na

r  generated for a wanted array pattern 
with and without weighting, are compared with help of the correlation function 
 

( ) ( )( )n
H
nw

H
wn

H
wnwc aaaaaaaa rrrrrrrr

=, .      (8) 

 
The comparison of the input coefficients with the correlation function in (8) is presented 
in Fig. 7.  The presented cases of desired patterns are the same as in Fig. 4(b) and 6(a). 
These experiments show that when the final error for the used criterion is low enough, the  
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Figure 7.    The correlation between the input coefficients iterated with and without 
weighting. The dependency on a) the depth and b) the width of the wide null. Number of 
iterations is 200. 
 
iterated input coefficients of different cases are close to each other. When the error is not 
close to zero, the solutions of the input coefficients can be close or far from each other. 
This shows that the weighting method does not in general mean only fine tuning of the 
coefficients found without weighting. 
  

3.3 Advanced  pattern weighting 

Different values of the pattern weighting vector exponent Nw in (3) and also some 
additional pattern weighting vectors are analyzed next. The basic weighting vector wΨ

r  in 
(3) is produced by components of the additional weighting vector aΨ

r
 to obtain the 

modified weighting vector  
 

wam ΨΨΨ
rrr

⊗= .        (9) 
 
The corresponding modified weighting matrix contains in each row the modified 
weighting vector. To avoid sharp beam or null underweighting, the high level and low 
level pattern regions can be weighted additionally with the inverses of their sampling 
point number Mlow and Mhigh  
 

{ } ( ) pN
levellevelia M/1)(     =∈θΨ

r
,      (10) 

 
where level = “low” or “high” and Np is the exponent of the additional weighting. The 
case Np = 1 is similar to the equalization of the effective number of calculation/sampling 
points in array pattern high and low level regions. To pronounce steep change from low 
to high radiation intensity level, the points at the boundary region can also be additionally 
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weighted. Also when a sharp null/beam is close to the calculation area limit, this 
additional weighting can be needed.  
 
 The influence of the phase pattern changes on the iteration convergence was also 
analyzed. In iterations with (4) the desired pattern phase change is the shift from the 
previous to the latest reached phase pattern. This shift can be included also with other 
ratios than one. It was noticed for examples with untypical pattern parameters, that in 
order to improve final results the last reached phases should be accepted only partly as 
the new desired phases with a phase shift ratio < 1. Additionally, defining a too low 
desired null/sidelobe dB-level causes the final array pattern to lose validity when using 
the robust weighting method with Nw = 1. This is due to the fact that the dB-scale has no 
lower limit, and taking the low level closer to zero leads to poorer relative fitting at the 
high intensity level. The parameter ∆ in (3) can be used also to define the lowest level, 
which should be taken into account in calculations, to stabilize the algorithm if too low 
null levels are chosen. Here any practical need to use ∆ ≠ 0 for stabilizing was not 
detected for nulls with ND > −80 dB for Nw = 1, which is practically a very low level. It 
was noticed, that for stabilizing a low level parameter ∆, which takes into account the 
mean element pattern, give better results in the case of very deep wide zeros or sidelobes, 
namely 
 

∆=∆
ND/low

high
corr L

L
,        (11) 

 
where Lhigh is the mean value of element pattern amplitude in array pattern high level 
region and Llow the corresponding low level region mean value, when element pattern 
amplitude maximum is normalized to 1. With a correction (9) a constant ∆ can be used 
for different array patterns with different high and low level radiations in the case of very 
deep nulls.  
  
In Fig. 8 the JEdB is shown as a function of null width and null center position, when the 
weighting exponent Nw in (3) is varied from –0.5 to 2 in 0.5 steps. The basic cases 
without weighting (Nw = 0) and with weighting (Nw = 1) are the same as in Fig. 6(a) and 
3(b), respectively. We see, that using quadratic joint two-level MSE-criterion defined in 
(5) Nw = 1 results in the best pattern. In general, the values Nw ≈ 0.5 to 1 seem to be the 
best for wide null/beam generation, when the wanted array pattern is varied within the 
most realistic ranges, but also minima for JEdB with Nw = −1.5 to 1.5 are detected. The 
negative values are better in the case of very sharp beams (which on the other hand can 
generally not be satisfactorily generated with few array elements).  
 
In Section 3.2 the two regions (low and high) were weighted independently. In principle, 
there are three separated radiation intensity regions: left high/low radiation intensity 
sector, null/beam sector and right high/low radiation intensity sector and they can be 
weighted individually. All the presented box-type array patterns belong to amplitude 
patterns containing three sectors with different levels of radiation intensity. Sectorization  
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Figure 8.    The effect of the weighting exponent Nw. In a) the wide null width is altered 
and in b) the wide null position is altered. Null depth is ND=−35dB and null width 
NW=30°. Number of iterations is 200.  
 
has advantages in mobile communications [11], [28], [29]. A weighting example with 3 
sectors with different desired radiation intensity levels is presented in Fig. 9. A narrow 
sector or narrow sectors close to the calculation region limit are typically difficult to 
match. Also it is not easy to find the optimal matching criterion to reach satisfactorily the 
desired pattern from the practical point of view. The criterion for the matching in the 
three-level case is taken as 
 

( )2
3,

2
2,

2
1,3 32 dBdBdBL msemsemseJEdB ++= ,     (12) 

 
where the square root of 2/3 of the sum of level errors is used to have a criterion with 
values comparable to the two-level matching criterion.  
 
In Fig. 9(a) the basic weighting exponent Nw is altered. For the case without weighting 
JEdB3L = 13.0 dB-units (Nw = 0). The lowest error without additional weighting is JEdB3L 
= 11.3 dB-units with Nw = 0.5. For Nw = 1 JEdB3L = 12.7 dB-units. In Fig. 9(b) the 
exponent Np of additive weighting is altered, when the basic weighting exponent Nw = 1. 
The sectors are weighted additionally multiplying by ( ) pN

iM/1 , where Mi are the numbers 
of sampling points for sectors with i = 1,2,3. The joint tree-level dB-mse’s, JEdB3L’s, are 
11.9, 11.0 and 11.8 dB-units for additional exponent values Np = 1, Np = 2 and Np = 4, 
respectively.  
 
We see in the example of Fig. 9 that the weighting with Nw = 1 can be used also well in 
this problematic case without additional weighting with Np = 0, because the differences in 
fitting errors are not significant, varying less than 10% in the dB-scale. We can also see 
that for this case none of the presented solutions is very good. The region close to the 
calculation area limit could be weighted even more. In general a better weighting could 
be obtained by taking into account the evolution of error during the iteration as was 
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proposed in [7] and done in [8], forcing the maximum errors closer to zero. As in [23] the 
weighting could be more sensitive to direction and also take into account the error sign, 
as proposed in [30] to obtain an array pattern with fewer points between the two levels. 
This is the usual goal of pattern synthesis for link arrays. The increasing weighting for 
problematic directions during the iteration [31] is also an alternative which can to be 
added to the basic algorithm. 
 
 
  

-135 -90 -45 0 45 90 135
-35

-30

-25

-20

-15

-10

-5

0

5

direction angle [deg]

[d
B

]

desired        
N

w
 = 0  

N
w

 = 0.5
N

w
 = 1  

N
p
 = 0 

-135 -90 -45 0 45 90 135
-35

-30

-25

-20

-15

-10

-5

0

5

direction angle [deg]

[d
B

]

desired      
N

p
 = 1

N
p
 = 2

N
p
 = 4

N
w
 = 1 

(a) (b) 
  
Figure 9.    The matching of generated array patterns with the desired 3-level pattern, 
when different weighting exponents are used. The weighting is realized a) varying the 
weighting exponent Nw and b) varying additional weighting exponent Np related to 
effective sampling point number on a sector. 
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4 Conclusions 
 
The generation of box-type array patterns with wide nulls using an amplitude only 
criterion has been verified. The basic two cases, the one without and the other with 
weighting, are compared. Which one is better in the sense of LSE depends on the choice 
of the amplitude scaling, i.e. in this work the logarithmic, relative shift scale fitting has 
been preferred over the linear scale. It has been shown, that the robust null-pronouncing 
weighting in wide null generation results in the best fitting on the dB-scale for a wide 
range of pattern parameters. The results also show, that the basic LSE criterion on linear 
or on logarithmic scale is not always enough for evaluating the pattern generation. 
Additional case-sensitive criteria, such as the joint two-level mse (JE or JEdB), presented 
here as a final validity criterion, could be used to improve the iteration results, as well as 
the different additional weightings described in Section 3.3. However, the presented 
iteration with the robust weighting is easier to implement and could be compared in terms 
of computational complexity with the iteration using relative-error sensitive weighting 
presented in [8]. 
 
In this approach, all the adaptivity is used to optimize the wide null generation. Usually 
the wide sector nulling problem is a part of a more complicated adaptive array pattern 
generation [32], [33] and in order to have adaptivity left for other purposes the wide null 
matching with 6-element arrays cannot be in general as good as presented here. The used 
method with and without weighting can be used to generate beams and is a simple 
alternative for standard pattern synthesis particularly for small arrays in which the 
element patterns can differ a lot from each other and the standard synthesis with idealized 
patterns gives poor fitting for wide zeros. The need to store the measured patterns for 
each element as well as somewhat time-consuming additional calculations in the iteration 
process are disadvantages of the presented pattern weighting method, however, the 
advantage of improved dB scale fitting can at least compensate the disadvantages. 
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