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Abstract 
 
Smart antenna technology is a challenging area in the development of wireless communications. 
Using smart antennas the quality of a radio link can be improved by many ways. Smart antennas are 
active antenna arrays or groups with changeable complex-valued weights at inputs and outputs. 
Good electrical matching of the array and the similarity and ideality of element patterns is usually 
expected. This dissertation focuses on the problems in the smart antenna arrays caused mainly by 
mutual coupling. Mutual coupling causes reflected power in the feeding system, input/output signal 
correlation and corruption of the element patterns. The arrays used in this thesis are small microstrip 
arrays. The used frequency is about 5.3 GHz. For several arrays the element patterns and scattering 
matrices are measured and used in calculations and measurements. Also simulated patterns and 
scattering matrices are used. 
 
Due to mutual coupling the element patterns in an array are usually corrupted and therefore pattern 
correction should be used in smart antennas to improve the use of adaptive algorithms. In linear 
pattern correction the element patterns are reshaped using all antenna elements in the array. It is a 
computational method using a correction matrix between true and idealized inputs/outputs of array 
branches. For this pattern correction two basically different methods are used. The least squares error 
method can be used to find the correction matrix if the actual element patterns and the wanted 
element patterns are known, whereas in the scattering matrix method the correction matrix is defined 
only with the scattering matrix. These methods are compared in this thesis and the least squares error 
method is found to result in clearly better array patterns. The disadvantage of the scattering matrix 
method is that it does not compensate ground plate diffraction. However, the scattering matrix is 
easier to obtain than the element patterns and its use can give better understanding of the coupling 
mechanisms and therefore help the antenna design. Thus its use in pattern correction is examined 
more accurately. An extension of the least squares pattern correction method is done by correcting 
the array to a virtual array with different element spacing. The results show, that the element spacing 
in the virtual array should not differ significantly from the spacing in the real array.  
 
In addition to the pattern correction with a correction matrix the use of the real patterns for 
beamforming is examined. In a modified least squares method for beamforming the weighting (cost 
function) is used. The beamforming with and without robust weighting is compared on the relative 
scale and the use of weighting give better results. 
 
When antenna elements in an array are placed closer to each other, mutual coupling increases. At the 
same time the correlation between received signals increases. However, the signal correlation is 
usually caused by the signal propagation, and the effect of mutual coupling is minor. But, when 
signals arrive from many different directions, the pattern correlation caused by mutual coupling 
gives a realistic estimate of the signal correlation. The pattern correlation is a pure array 
characteristic and can be found easily. In this thesis the connection between pattern correlation and 
mutual coupling is examined. Equations are derived for this connection using scattering parameters 
or reflected power. These equations allow estimate mutual coupling from pattern correlation and 
vice versa, which is important for antenna array development. A more detailed formulation of the 
connection is done for lossless two-element arrays. In practice, when there are losses in the array, 
mutual coupling is not necessarily usable in estimation of pattern correlation.  
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+V
r

  vector of input voltage waves of the array 
−V

r
  vector of output voltage waves of the array 
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*  complex conjugate, c* is the complex conjugate of c 
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1 Introduction 
 
The effect of mutual coupling and other non-idealities in antenna arrays is examined in this thesis. 
Different methods to compensate for the effect of mutual coupling on the element patterns of an 
antenna array are examined. In addition the connection between mutual coupling and pattern 
correlation is examined in detail and is applied in simulations that are useful for smart antenna 
development. 
 

1.1 Background 
 
A smart antenna is typically an antenna array with a signal combining unit where the RF signals 
received or transmitted by the antenna elements can be combined in different manners. In the most 
general case the amplitude and phase (delay) can be arbitrary for each antenna element. Smart 
antenna technology is developing and it is expected to be in wide use in the near future. MIMO links 
between smart antenna arrays are nowadays under active development. The theoretical background 
is well established [1]. 
 
Mutual coupling in antenna arrays has been investigated and discussed several decades. It 
complicates the use of antenna arrays. It causes mismatch (reflected power), signal correlation, and 
corruption of the element patterns. Usually, mutual coupling is not taken into account perfectly and 
simplified patterns are used in algorithms. In traditional arrays with tens of elements under the effect 
of mutual coupling, only the elements near the array edges “see” the environment differently than 
other elements with neighboring elements at both sides. In small arrays with 2-8 elements each 
antenna element is in a different environment. The only realistic possibility for simplification of 
antenna patterns is in the symmetry of the array. One example for the usual simplification for 
antenna array is the Toeplitz structure (equal subdiagonal elements) of the correlation matrix [2], [3], 
[4], [5], [6], which is not accurate due to the differences between the antenna element patterns [7], 
[8], [9], [10], caused by the different surrounding for each element in the array. 
 
The effect of mutual coupling on antenna patterns can be compensated partially with different 
methods. In [11] the least squares error (LSE) method is used to correct the mutual coupling effect in 
element patterns. Usually, in adaptive algorithms equal and ideal element patterns are expected [12]. 
The array correction/calibration gives a way to use these algorithms with better accuracy. 
 
Mutual coupling and pattern correlation are connected to each other. The correlation of signals 
received by the antenna elements is caused both by the correlation of the incoming signals and by 
mutual coupling. When signal is coming from many different directions, signal correlation can be 
estimated with mutual coupling [13]. 
 

1.2 Objectives of the work 
 
The objective of the thesis is to find countermeasures for non-idealities in the antenna array and to 
increase the understanding of the effect of mutual coupling. Pattern correction provides the 
possibility to improve the performance of the antenna array in adaptive use. The corrected arrays can 
be directly used in the adaptive algorithms, where ideal behavior of the element patterns is assumed. 
On the other hand, pattern correlation gives an estimate of signal correlation, e.g. if signals arrive 
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from many different directions. Scattering parameters can be easily measured. Thus the connection 
between mutual coupling and pattern correlation is interesting, when the correlation properties of an 
array need to be determined. Also the array matching is important and in this thesis it is shown, for 
example, that the pattern correlation defines the lowest limit for mutual coupling. 
 

1.3 Contents of the thesis 
 
This work consists of a summary of a work presented in papers [P1]-[P9]. Element patterns and 
scattering matrices are measured for microstrip arrays with different element spacings. The pattern 
correction is examined in papers [P1]-[P4]. In [P1] the basic LSE method is used and compared with 
the correction with the scattering matrix. In [P2] the LSE method is developed to find with an 
iteration procedure a corrected array (virtual array) with arbitrary element spacing and high 
similarity of the element patterns. In [P3] the measured, perturbed patterns are used in beamforming 
of an array power pattern and a weighting function is developed to find a LSE solution on the 
relative scale. In [P4] the scattering matrix correction method is used with an input circuit extraction 
procedure and compared with the use of the reference plane shift done in [P1]. In [P5]-[P8] the 
connection between reflected signal/power (scattering matrix, reflected power matrix) and pattern 
correlation (correlation matrix) is presented and used in different estimations, examining the 
connection between mismatch and pattern correlation. In [P9] an adaptive antenna group with four 
inputs is developed as a prototype of a smart antenna, which can be placed in a corner of a laptop-
type device. The goal was to develope a wide band antenna group. In the development process the 
use of the connection between scattering matrix and pattern correlation was in a practical test; i.e. 
can the connection help the practical antenna development process. 
 
The summary part is organized as follows: Chapter 2 contains basics of adaptive array, mutual 
coupling and pattern correlation and describes the basic equations for the connection between mutual 
coupling and pattern correlation. Chapter 3 considers pattern correction and beamforming with real 
element patterns. Pattern correction has two modifications; the use of measured patterns and the use 
of measured scattering matrix. In Chapter 4 the connection of mutual coupling and pattern 
correlation is analyzed with different examples and finally the development of a new multiantenna 
structure for mobile communications is described.  
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2 Adaptive array and mutual coupling  
 

2.1 Adaptive arrays 
 
Adaptive arrays are arrays with adjustable inputs or outputs [14]. In the most general case, the 
weights (amplitude and phase) of each antenna element can be set to any value. Traditionally 
adaptivity is used to combine the signals received with different antenna elements in an optimal 
manner to reach a better signal to noise ratio (SNR) [15], [16]. An adaptive array is one type of 
smart antenna [17]. Smart antennas enable signal processing. The usual algorithms for signal 
processing in a smart antenna are direction of arrival (DOA) detection algorithms (named also angle 
of arrival detection (AoA)) and digital beamforming (DBF). In adaptive beamforming a desired 
array pattern is formed with maximum radiation towards the signal of interest and nulls towards the 
signal not of interest [14], [15], [17]. In Fig. 1 we see an example of an array with changeable 
weights wi. A new category of the use of smart antenna technology using adaptive array is a link 
between two multielement arrays, named a MIMO link [14], [18].  
 
 

wN-1 wNw3w2w1

 
 

Figure 1.   Adaptive array with N antenna elements. 
 
Mutual coupling is a problem in antenna arrays. It causes, for small antenna arrays, element pattern 
distortion, so that the element patterns become different. Mutual coupling can be compensated with a 
matrix method [12]. Another problem caused by mutual coupling is the reflected power. 
Furthermore, mutual coupling causes correlation between signals received by different antenna 
elements. 
 

d E
 
Figure 2.   A microstrip antenna array used in [P1]-[P6]. Element spacing d and orientation of 
the induced electric far field E are shown for the given microstrip element orientation. 
Metallization is black and the substrate is white. The backbone metallization is with the substrate 
dimensions. 
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2.2 Experimental arrays and other antenna groups 
 
One type of antenna array used in this work is microstrip array with six antenna elements. A 
principal explanation of the seven used microstrip arrays with different element spacings and 
antenna element orientations is in [7], [11] and [P1]. Microstrip arrays were used in [P1]-[P6]. In 
Fig. 2 is shown the general structure of a microstrip array. Another multiantenna system used in this 
thesis is a compact antenna group with two stacked dual-polarized antennas used in [P9]. Its 
principal structure is described in more detail in Chapter 4.4. For all used antenna arrays, the 
scattering matrix and the element patterns are measured. For the antenna group, the scattering matrix 
and the element patterns are measured and also simulated. The measurements of the antenna patterns 
were carried out in the large anechoic chamber of Radio Laboratory of TKK, for the main 
polarization in the frequency range around 5.3 GHz.  
 

2.3 Mutual coupling  
 
Mutual coupling in an antenna array causes the input signal at one array port appear at the other 
ports as reflected power and as apart of the output signal and in the case of reception the received 
signals are correlated. 

2.3.1 Scattering, impedance, and admittance matrices 
 
Because the input to an antenna port can be a voltage wave, a voltage or a current, there are three 
different definitions of mutual coupling [19]: 
 
 +− = VSV

rr
         (2.2.1) 

           (2.2.2) IZV
rr

=
          (2.2.3) VYI

rr
=

 
Scattering matrix S gives a linear relation between incoming voltage waves  and outgoing, 

reflecting voltage waves 

+V
r

−V
r

. The impedance matrix Z and admittance matrix Y give both linear 
relation between the port voltages and the port currents and they are inverse matrices of each other. 
The scattering matrix depends on the system impedances, which can be given as a diagonal matrix 
Zg. The system impedances are the impedances of the loads or generators connected to the antenna 
ports. In the measurements for this work the system impedances are always equal to the standard 
impedance Z0 = 50 Ω, and the system impedance matrix Zg is denoted as Z0. In this case the 
scattering matrix, the impedance matrix and the admittance matrix are related with equations [19]  
 

( ) ( ) 1−−⋅+= SISIz         (2.2.4) 
11

00
−− === zZYy ZZ        (2.2.5) 

 
The matrices z and y are the relative impedance and admittance matrices. An important matrix 
related to the scattering matrix is the matrix of reflected power  
 

SSP H
refl =0, .         (2.2.6) 
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Matrix of reflected power is a dimensionless Hermitian matrix and it has been named in this thesis 
and in the included papers also unusually as reflected power rate matrix and the matrix of relative 
reflected powers. The eigenvalues and the eigenvectors Sλ Sxr of the scattering matrix are defined by 
 
 ,         (2.2.7) SS xxS rr

Sλ=
 
where the eigenvalues are complex numbers. The corresponding eigenvalues of the relative 
reflected power matrix S

pλ
HS are defined 

 
 PP

H xxSS rr
Pλ= ,        (2.2.8) 

 
where the eigenvalues have real positive values equal to the relative reflected power, the amount of 
the reflected power, when using the corresponding eigenvector as the array input. The basic property 
of the eigenvectors of the relative reflected power matrix eigenvalues is their orthogonality  [7] 
 

ijjp
H

ip σ=,, xx rr ,         (2.2.9) 
 

where is the Kronecker symbol equal to unity if i = j and otherwise equal to 0. It is important to 
note, that for a lossless array the corresponding eigenbeams or –patterns are also mutually 
orthogonal [7]. The mean relative reflected power 

ijσ

inrefl PP /  can be calculated 

  
 P Pinrefl PP λ=/         (2.2.10) 

 
or  

 ∑
=
=

=
elN

j
i

ij
el

inrefl S
N

PP

1
1

21/ ,       (2.2.11) 

 
but only when there is no preferred input at the array ports [7], [P7]. This is not the usual case. This 
is the case of the general adaptive use of the array when the mean relative reflected power does not 
depend on any special propagation situation and can be easily calculated and used as an array 
characteristic. 
 

2.4 Pattern correlation in an antenna group and mutual coupling 
 
Pattern correlation in the antenna array or in the antenna group is a quantitative characteristic of the 
correlation between antenna elements. Pattern correlation gives the signal correlation in the case 
when signals are arriving from many different directions. Basically, the signal arrival directions 
should cover the antenna element patterns [20]. For the future MIMO antenna links the multipath 
propagation caused by a rich scattering environment is a precondition for high data rates [1]. Thus, 
there is an interest in pattern correlation for diversity and MIMO applications [21].  
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The pattern correlation matrix R is defined as 
 
 ,         (2.3.1) H

00 FFR =
 
where F0 is the matrix of the normalized element patterns. In the case of the used six-element 
microstrip arrays, R is a 6x6-element matrix with unity values in its diagonal and F0 contains 
discretized, vectorized element patterns in its rows. Each element pattern is defined with an input 
voltage wave present at one array port, when the other ports are terminated with matched loads. 
These are so called active element patterns, element patterns in the array environment, corrupted due 
to mutual coupling [22], [23], [24], [25], [26]. Each row i,0f

r
, i  = 1 to Nel, in the matrix F0 is 

normalized to unity norm 
 

 
i

H
i

i
i

ff

ff rr

r
r

=,0 ,         (2.3.2) 

 
where the row vectors  are the rows of the measured pattern matrix F. In the case of the used six-
element microstrip arrays F is a 6x359 matrix with a 1° increment in the direction angle. With 
completely defined array element patterns (all directions, both polarizations) the radiated power 
matrix is defined as 

if
r

 
 .         (2.3.3) H

rad FFP =

 
The matrix F can be scaled with the input power, and then  changes to relative radiated power 
matrix P

radP
rad,0. In the general case the relation between input power, radiated power and lost power 

can be presented in matrix form [P7] 
 

H
LL

H
raddissL

H
Lrefl FFLLPPSSIPI +=+=−=− 0,0,0, ,    (2.3.4) 

 
where , and are the dimensionless matrices of reflected power, dissipated power 
and radiated power, respectively. The subscript L means losses. In certain cases the losses can be 
ignored and we get the lossless case 

0,refP 0,dissP 0,radP

 
H

rad
H

refl FFPSSIPI ==−=− 0,0, .     (2.3.5) 
 
The connection between mutual coupling and pattern correlation is presented in matrix form in [7] 
and in [P5] 
 

( ) HHH
pat 00

1111 FFFDFDDSSIDR ==−= −−−−  ,    (2.3.6) 
 
where the diagonal matrix D contains the square roots of the diagonals of  matrix FFH or I−SHS. For 
a two-element array with reciprocity we can write using (2.3.6) the dependency of pattern correlation 
r12 on scattering parameters 
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12
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r
SSSS

SSSS
r =

−−⋅−−

+
−= .    (2.3.7)  

 
This is the basic equation for the connection between pattern correlation and scattering parameters in 
lossless two-element arrays derived in [7] and presented in [P5]. In [P5] a symmetric antenna pair is 
considered. Equation (2.3.7) is presented also in [27] for the envelope correlation , for which we 
can write  

eρ

 
2

12re ≈ρ .         (2.3.8) 

 
Equation (2.3.8) is based on the well-known relation between signal envelope correlation and cross-
correlation [28], which are time-dependent. According to [13], [29] it has some requirements of 
ideality for the antennas, which are fulfilled, for example, for a small dipole in free space. Also the 
signal should arrive from many directions in the antenna beam region. Equation (2.3.5) for power 
balance between input power, reflected power and radiated power seems trivial. However, it was 
derived in [7]. The rescaling of the radiation patterns to unity norm done in (2.3.2) giving pattern 
correlation matrix with unity autocorrelation components on the diagonals in (2.3.7) is trivial. Often 
the mathematical expression of correlation contains also the mean value [13]. In the case of arbitrary 
phase the mean complex value is zero and can be omitted [7], [30]. Equation (2.3.7) is used in [P5] 
and [P7] were pattern correlation in two-element arrays is considered. In [P5] and [P6] Equation 
(2.3.6) is used with measured data for microstrip arrays. In [P6] also the corresponding equations of 
pattern correlation for voltage-driven and current driven arrays are given. 
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3 Mutual coupling compensation and beamforming with real patterns 
 
The array element patterns can be corrected computationally before they are used in signal 
processing algorithms [12]. The accurate placement of array pattern nulls is important. The basic 
method of pattern correction used in this thesis is the LSE method presented in [P1], [31], [32], [33], 
[34], [35], [36]. It requires the measured element patterns. The scattering matrix method on the other 
hand does not require measured element patterns and is thus interesting and also examined in this 
thesis. In the third presented method of virtual element patterns the idea is to find array element 
patterns that are as similar as possible. Those are searched using the LSE method and iteration 
without any predetermined desired element patterns, but only the measured patterns. The 
beamforming with measured element patterns is presented here together with the pattern correction, 
because the element patterns are typically perturbed by mutual coupling. Usually, when mutual 
coupling is not taken into account, idealized patterns are used in beamforming algorithms and in this 
case with real patterns we can view the correction be included in the beamforming. 
 

3.1 Mutual coupling compensation with the LSE method 
 
In the LSE method of the linear pattern correction that correction matrix is searched, which gives the 
minimum squared error between wanted and corrected array patterns. In the ideal case the correction 
is exact 
 
 .        (3.1.1) measwanted KFF =
 
The measured element patterns Fmeas used in this thesis are the so called active element patterns [22], 
[23], [24], [25], [26], measured for each element in the array, when the others are terminated with 
matched loads. In practice, solution can be found only approximately. Therefore, with the 
pseudoinverse LSE method we get 
 

( ) measLSEmeas
H
measmeas

H
measwantedcorrectedwanted FKFFFFFFF =⎥⎦

⎤
⎢⎣
⎡=≈

−1
. (3.1.2) 

 
The pattern correction undertaken using (3.1.2) is examined in [P1] for seven different array 
configurations with varying spacings and element orientations. The results show, that after linear 
pattern correction the array patterns are very close to ideal array patterns: They are smooth and with 
exact positions of the nulls. In the case of greatest element spacing the correction is less optimal due 
to more pronounced ground plate edge diffraction. In other cases with smaller substrate plate and 
especially with stronger coupling the correction results are very good. 
 

3.2 Virtual element pattern iteration in mutual coupling compensation 
 
When we apply pattern correction, the usual goal is to get identical element patterns [12]. If there is 
no other requirements for the corrected element patterns, the method of virtual elements can be used. 
In this method the searched ideal and similar element patterns can be presented as 
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where ( )θg  is the common element pattern, also called the element factor [37], identical for all 
elements and the exponent term is the array factor for element number n in an array with Nel 
elements. Array factor depends on the displacement of the element from the array center. 
Unfortunately the element factors in a real array differ from each other due to mutual coupling [12], 
[38], and also the corrected element patterns differ from each other [P1]. An optimal solution is 
searched using iteration. The virtual spacing dvirt is not necessarily the same as the real spacing in the 
array. With a fixed virtual distance dvirt the element factor ( )θg  is the centralized element pattern, 
where the element is placed at the center of the virtual array. For a given ( )θg  with fixed dvirt the 
idealized, wanted element patterns ( )θid

nf  can be calculated using (3.2.1) and the corresponding 
correction matrix can be found with (3.1.2). The wanted element factor ( )θg  and the corresponding 
wanted element patterns ( )θid

nf  change during iteration. The current element factor is in each 
iteration cycle the complex-valued mean <gn(θ)> of the element factors of the last corrected element 
patterns. For element patterns  the corresponding different g( )θnf n(θ ):s can be found with (3.2.1). 
According to [P2] the iteration converges well and leads finally to a good agreement between the 
final centralized corrected element patterns gn(θ). For an iteration round  i → i+1 we can write 
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It is shown in [P2] that good correction results can be achieved even in cases when the virtual 
element spacing differs significantly from the real one. However, a decreased virtual spacing 
changes the element patterns to more directive ones so, that in an array scan the beam is not moving 
as quickly as expected by the direction angle of the array factor. Another point with practical 
importance mentioned in [P2] is that the little larger metallic ground plate can allow an increase in 
the virtual array spacing. This is interesting for conformal arrays mounted on devices with a metallic 
cover; a virtual array with greater spacing can have better resolution.  
 

3.3 Beamforming with a real array 
 
The practical application of beamforming is examined with a real array in [P3]. The real array is an 
uncorrected array with measured element patterns. The beamforming is performed for an array with 
the typical spacing of about 0.5λ. In the beamforming an array pattern  
 
 meas

T FaΨ rr
=          (3.3.1) 

 
is generated.  The problem is to find the corresponding input coefficients ar . If the desired complex 
valued array pattern is known, then the LSE solution can be found with the pseudoinverse of 
the measured array pattern matrix [P3], [39], [40] 

desiredΨ
r
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The different directions are not always equally important in array patterns and thus a direction-
dependent cost function, directional weighting, is used. In [P3] the optimal input coefficients in the 
case of the directional weighting are found with 
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where the direction-dependent weighting function wΨ

r
 is a cost function, a real-valued vector with 

the same number of components as the pattern vectors, and called the weighting pattern in [P3]. 
Matrix contains in all its rows the same weighting pattern wF wΨ

r
. Equation (3.3.3) used in [P3] is in 

accordance with the more usual power weighting in [41]. Equation (3.3.3) written with amplitude 
weighting shows simply, that the method is the same LSE, as in (3.3.2). In [P3] the inverse of the 
wanted amplitude pattern of the array is used as the weighting pattern. In this case of weighting the 
LSE method results in complex-valued array pattern with the LSE error in phase direction and 
relative error in the amplitude direction.  
 
Often only the amplitude value of the array pattern, the power pattern, is of interest. In this case the 
best solution is searched among array patterns with different phase patterns. Iteration is used in [P3] 
to find the optimum amplitude pattern. In the iteration, the phases are allowed to change freely. A 
basic case with box-type array amplitude patterns is examined in [P3] focusing mainly in wide null 
generation. Preliminary work on box-type array pattern generation was published in [42] and [43]. 
Wide nulls are important when interfering signals are arriving from a sector, which is typical case in 
multipath propagation scenario.  
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Fig. 3. In a) is presented array patterns with a wide null using input coefficients obtained for a 
realistic array with measured element patterns. In (b) array patterns with the same input 
coefficients are presented for an array with idealized element patterns. In c) are array patterns 
perturbed with noise at the antenna ports. The desired array pattern is denoted by thick gray solid 
line and the array pattern obtained using weighting is denoted in a) and b) by thick black solid line. 
By a thin black solid line in a) and b) is denoted the case without weighting and in c) the cases with 
array pattern perturbations caused by Gaussian noise added independently to antenna port, when 
the unperturbed input coefficients are found using weighting. 
 
The information on perturbations and uncertainties in the element patterns and input port values is 
important for beamforming. In Fig. 3a) we see an example, when accurate measured element 
patterns are used. The width of the wide null is 60° and its depth is –40 dB. That kind of deep wide 
null is possible for the given array only in the forward direction. In Fig. 3b) the perturbations in 
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element patterns caused by mutual coupling are not taken into account and in Fig. 3c) the effect of 
noise at the antenna ports is presented. The noise level is taken to give perturbations in the array 
pattern of about the same magnitude as mutual coupling. Fig. 3 demonstrates well the need of pattern 
correction or the use of realistic element patterns. Fig. 3c) shows that the desired wide null level 
should be not lower than the noise level, as pointed out in [P3]. As well the other perturbations 
caused by near field effects affect the choice of the desired null depth.  

3.3.1 Comparison of beamforming with weighting and without it 
 
The weighting method is compared with finding the input coefficients without weighting in [P3]. 
The wanted array amplitude patterns are box-type patterns with wide nulls used for interference 
cancellation of widely located interferers. The basic difference between array pattern generation with 
weighting using the inverses of the wanted amplitude pattern values and the method without 
weighting is that weighting gives a solution with minimum relative (i.e. in dB’s) amplitude error, 
while the usual LSE method gives the minimum error of amplitude on the linear scale.  
 
In [P3] the methods are compared in the relative scale. It is not surprising, that the method with 
weighting is in general better on dB scale. In a wide region of array pattern parameters (null width, 
depth and position) it behaves better than the pure LSE solution. However, in some extreme cases it 
is not better: the solution, even though it is the best in the LSE sense, it is not usable in interference 
reduction. Thus a modified LSE criterion in relative scale is used in [P3] for the comparison of the 
final results. It takes into account the high and low levels in the radiation patterns separately. If the 
fitting is bad for the high or low region, the result is not good, even if the fitting is good on the other 
region. This can happen for example when a null or a beam is close to the limit of the calculation 
area and also when there is a very high narrow beam (which means that there is a very wide null as 
well). In the case of extreme depths of null or sidelobe level the lack of the limitation of the relative 
scale for the values near to zero is one explanation for the instability of the method with weighting. 
Some modifications to the weighting function in respect to the extreme cases are presented in [P3] 
and they show that the method can be developed further with more sensitive weighting. 
 

3.4 Mutual coupling compensation using scattering matrix 
 
The method using the scattering matrix in pattern correction is evaluated in [12]. The same 
correction method can be found in [44] using the impedance matrix presentation of mutual coupling, 
and also as a minor result in [45], where the element pattern in open circuit condition is defined as 
the original, unperturbed pattern.  In [P1] the use of the scattering matrix in pattern correction is 
examined by comparing it with the basic LSE method discussed in Chapter 3.1. The scattering 
matrix is easier to be obtained than the measured element patterns and therefore the information on 
its validity in pattern correction is important. The correction in [P1] is based on the finding of the 
suitable reference plane for scattering matrix. In [P4] the extraction of the equivalent input circuit 
was examined in the scattering matrix-based correction.  

3.4.1 The correction matrix in the scattering matrix-based correction 
 
For a voltage driven array the radiation is defined with input voltages and in the case of mutual 
coupling compensation the input voltage waves are manipulated to give the wanted input voltages. 
The scattering matrix method of pattern correction is used in [P1] and [P4]. The used correction 
matrix is 
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where subscript S refers to pattern correction using scattering matrix, V means that the array is a 
voltage driven array, for which the array input voltages defines the radiation and are thus the correct 
input type. For a current driven array we can write respectively 
 
 ,        (3.4.2) ( ) 1
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where the subscribe I denotes a current-driven array, as for example a dipole array, for which the 
current feed is the correct input, which defines the radiation of the single element. When the wanted 
feeds for the ideal antenna elements are multiplied with the correction matrix we get the required 
input voltage wave vector.  
 
The corrections with inverses of I+S and I−S are the same as the corrections with (I+y)/2 and 
(I+z)/2, respectively [7], [46]. Papers using correction with I+z are for example [44], [46], and [47]. 
In the widely cited case of correction in [44] the correction is with –S. The case of correction with 
+S is used in [44]. The simple array correction with the impedance matrix has been shown to 
improve the signal-to-noise-ratio in [44], [47] and the MIMO link capacity in [48].  

3.4.2 Reference plane adjustment 

 
The reference plane adjustment is important in the scattering matrix method of pattern correction. In 
(3.4.2) we see, that the correction matrix changes, when the scattering matrix phases change with 
changing reference plane. As well change the impedance and admittance matrices. In [P1] the 
scattering matrix was measured with the reference plane adjusted to the free side of the SMA 
connector of the antenna element. Further it was moved to the antenna side of the SMA connector, to 
the lower end of  the feed probe of the patch antenna. In Fig. 4 we see the measured resonators (Sjj:s)  

90°

270°

180° 0°

Sii 

 
Figure 4.   Measured Sjj:s  of 6-element microstrip array with element spacing of 0.4λ. The perfect 
circle is for ideal parallel resonator with constant capacitance and inductance and with a 
resistance matched to 50Ω. 
 
for the array with spacing d = 0.4λ and the ideal admittance circle when the reference plane is in the 
lower end of the feed probe. The phase change with reference plane change is frequency dependent. 
According to [P1] it should be moved further 23° in the direction of the antenna at the center 
frequency, which gives a 45° counterclockwise rotation on the Smith diagram (see errata in this 
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thesis). This reference plane shift moves the diagonal elements to the location of an ideal admittance 
resonator. It is important to note, that this reference plane adjustment gives good results for a number 
of arrays as examined in [P1] and the shift of 23° can be used for correction of the microstrip arrays 
with the same feed structure. In [P1] only array patterns were shown. In Fig. 5 we see how the 
correction using scattering matrix done in [P1] affects the amplitude patterns of the array elements. It 
makes the element patterns smoother.  As well it corrects the phase perturbations (not shown). 
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Figure 5.   The effect of the pattern correction on power patterns of the antenna elements using 
scattering matrix correction method with the reference plane shift done in [P1] in the case of the 
strongest coupling. 
 

3.4.3 Input circuit extraction 
 
According to [P1] the same reference plane shift of 23° applied computationally in the reference 
plane adjustment can be done also with an inductance of about 0.7 nH. In the case of an input circuit, 
which in the simplest case can be the probe inductance, the pattern correction should be defined after 
the extraction of the (equivalent) input circuit [P4]. To extract the input circuit its impedance should 
be subtracted from the diagonals of the impedance matrix and its admittance from the diagonals of 
the admittance matrix [P4]. This is similar to working on the Smith diagram in the single-antenna 
case. The transformations between different matrices were presented in Equations (2.2.4) and 
(2.2.5).  
 
When the input circuit is extracted and the wanted input, the vector of the array input voltages, is 
defined on the antenna side of the input circuit, the reference point for the correction should be 
moved again to the generator side of the input circuit. For microstrip antennas the wanted input at 
the antenna side is a voltage vector, because microstrip antenna elements can best be modeled as an 
admittance resonator [49], [50], [51], [52]. The voltages at both sides of an admittance component 
are the same whereas the currents on both sides of an impedance component are the same. Thus only 
transformations between currents and voltages, i.e. impedance or admittance matrices, are needed 
when the reference point is moved to the generator side of the input circuit.  
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The simplicity of the final resonances and smooth frequency dependency of mutual impedances and 
admittances are used as criteria to find the input circuit in [P4]. Corresponding scattering parameters 
are always sensitive to resonant behavior and not used. In Fig. 6 we see the uncorrected, measured 
mutual impedance z16 and mutual admittance y16 in one examined array. We see that the mutual 
admittance is more corrupted than the mutual impedance and it indicates that the impedances 
dominate in the input circuit. 
 
Paper [P4] is basically the same as [53], but with a table of most suitable component values of the 
input circuit with one or two components. The components of the input circuit considered in [P4] are 
presented in Fig. 7 and the table of the values of the lumped elements presented in [P4] is in Table I. 
In the case of the input circuit in Fig. 7 with reference points a, b, and c the corresponding correction 
matrix, giving the needed input voltage waves or generator voltages is  
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where diagonal matrices  and  contain on the diagonals the input circuit admittances and 
impedances, respectively. Extraction of input inductance L

in
aby in

bcz
2 moves the resonant circle (see Fig. 4) 

with counterclockwise rotation to the position of the ideal resonator and removes the peak in the 
mutual admittance, for example, the peak in |y16| in Fig. 6. Extraction of input capacitance C2 rotates 
the resonant circle clockwise and removes an additional peak at about 3.8 GHz caused with the 
extraction of L2 (not shown). The same additional peak at about 3.8 GHz appears also with the 
reference plane shift of 23° considered in Section 3.4.2. The parallel capacitance C1 in the input 
circuit removes partially the peak in mutual impedance as, for example, the peak in |z16| in Fig. 6. In 
the case of an admittance resonator the effect of resonance (at about 5.2 GHz) is seen in mutual 
impedances, which explains that the peak in |z16| is not fully removed. In principle this method could 
be used to find the input circuit for any radiator merely based on measured scattering parameters. 
The order of admittances and impedances in input circuit is arbitrary, if their values are low 
compared with the antenna radiation admittance or impedance.  
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FFiigguurree  66..   Mutual components |y16| and |z16| in the 6-element array with d = 0.4λ before input 
circuit extraction.  
  
Because the electrical length of the probe is not small, there is a distributed impedance and thus the 
lumped circuit is not exact when using only few elements [P4]. Also the complexity and the 
uncertainty problem of this method are noticed in [P4]. One problem with uncertainty is the size of 
the final more ideal resonant circle on the Smith diagram. Even in the case of two lumped circuit 
components the correction method with input circuit extraction is complicated and gave only a small 
increase in correction compared with the use of the reference plane shift [P4]. However, the input 

 22



circuit extraction helps to find better universal correction of element patterns, and also to understand 
better the electromagnetic behavior of the antenna under research.  
 

C1

L2 C2

a b c

 

Table I    Input circuit component values 
 C1 L2 C2
I − 0.60 nH − 
II − 0.79 nH 5 pF 
III 0.5 pF 0.50 nH −  

Figure 7.   Components of the input circuit.  
 
Measurements were done in the frequency band from 3 GHz to 6 GHz. Increasing the upper limit 
would give more information on mutual components decreasing the uncertainty. Taking into account 
more electric model components in addition to the components related to the feed structure can 
complicate the situation further. For example, the end capacitance of the microstrip radiator can have 
an effect as well on the radiation, coupling and equivalent input circuits, and they can be included in 
the equivalent circuit of the antenna also with partially inductive character due to the distance from 
the reference point. The ground plate edge diffraction is obviously even more complicated to model 
with lumped elements and is thus not possible in practice.  
 
According to [12] the good matching of the antenna element is a criterion for the simplicity of the 
use of the scattering matrix method. This is true for simple antennas and feeds, but even if antenna 
element is self-matched, then in the case of matching circuit or discontinuities the situation is 
complicated for the correction. In the case of complicated antenna feed structure this is a serious 
disadvantage of the scattering matrix method of correction. 

3.4.4 Comparison of mutual coupling compensation with LSE method and based on 
scattering matrix 

 
The comparison of mutual coupling compensation with the LSE method and with the scattering 
matrix method is done in [P1]. The array correction with the impedance matrix has been noted to 
improve the signal-to-noise-ratio in [44], [47] and the MIMO link capacity in [48]. In [P1] the effect 
of correction only on array patterns was studied. In the case of pronounced coupling the effect of 
correction using the scattering matrix presented in Fig. 5 is visually clear. However, as noted in [P1] 
this method of correction gives much poorer results than the LSE method even in this case. 
According to [P1] the difference in correction capability is due to the fact, that the scattering matrix 
method does not correct the edge diffraction. The role of the edge diffraction is greater in arrays with 
a large metallic ground plate. The advantage of the scattering matrix method is that it does not need 
measured element patterns, i.e. scattering matrix measurements are simpler to perform, as they do 
not require the use of a large anechoic chamber. 

3.4.5 Correction over the frequency band 
 
The effect of the correction over the frequency band is examined in [P1] and [P2]. The correction 
can be done for each frequency independently. This is not so convenient as to have a common 
correction matrix across the whole frequency band. The only correction method, which needs 
measurements over the frequency band is the scattering matrix method, if the needed reference plane 
shift or the input circuit to be extracted are not known, even when the correction itself is used at a 
single frequency. The frequency dependency of the scattering matrix is as easy to obtain as the 
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scattering matrix at the certain frequency, when the measurements are carried out with a vector 
analyzer. Over the frequency band only the capability of the LSE correction method was considered 
in the publications of this thesis.  
 
In paper [P1] the correction matrix found for the center frequency defined using an isotropic desired 
array was tested over the whole frequency band. The correction for the array pattern with a forward 
beam became poorer for frequencies far from the center frequency, but was very satisfactory over 
the frequency band from 5.0 to 5.4 GHz, for arrays with spacings d = 0.3 λ and d = 0.5λ.  In [P2] the 
correction using the virtual array method described in Section 3.3.2 was tested with a common 
correction matrix over the same frequency band for an array with virtual spacing equal to the real 
spacing of d = 0.5λ and the results were good over the frequency band.  
 
Comparing the results presented in [P1] and [P2] we can find that using the common correction 
matrix over the frequency band, the correction with the virtual array method with optimized desired 
pattern done in [P2], is better, than when the desired element pattern is fixed to isotropic, as in [P1]. 
In Fig. 8 we see the comparison of these two cases of correction as the correlation of the forward  
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Figure 8.   Correction with predetermined desired element pattern and iterated desired element 
pattern over a frequency band. The input is [1 1 1 1 1 1]. The generated array patterns are 
compared with the desired array pattern at the center frequency. The correction is evaluated by 
calculating the pattern correlation r of the uncorrected array pattern and corrected array pattern 
with the desired array pattern of the corresponding case. The uncorrected array is with solid line 
and the corrected array is with dashed line. The element spacing in this array is d = 0.5λ. 
  
beam with the wanted beam at the center frequency when the beam is with input [1 1 1 1 1 1]. The 
effect of beam scan was examined in the case of an iterated wanted element pattern. During a 30° 
scan of the beam (not shown) the correlation with desired iterated patterns is more than 0.998 only 
over frequency band 5.15 GHz … 5.25 GHz, but is still not less than 0.99 at the highest frequency of 
5.4 GHz [P2]. For the case with iterated desired element patterns the uncorrected case for the 
forward beam correlates also well with the final desired array pattern and is a consequence of 
increased directivity and the average character of the corresponding desired element pattern, which 
is, unfortunately, not known previously. One important point is that the correlations of array patterns 
like in Fig. 8 are often very close to one. In [P1] even in the case when the uncorrected patterns are 
heavily corrupted the correlation is higher than 0.9.    
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3.4.6 Multiport model for mutual coupling 
 
For a two-element array, impedance and admittance matrices can be presented with a two-port 
electrical circuit with elements, which can be calculated simply with impedance or admittance 
matrix values [P4]. For multielement arrays only the equivalent circuit based on admittance matrix 
components is possible [P4]. However, this fundamental limitation does not mean that the correction 
with the impedance matrix for arrays with current inputs could make no sense or that it could give 
worse results than the correction with the admittance matrix for arrays with voltage inputs. It means 
only, that we cannot find any multiport circuit with electric parameters describing exactly the 
impedance matrix of a multiport array. 

3.4.7 The effect of mutual coupling compensation on the signal processing  
 
The pattern correction with the scattering matrix (or mutual coupling compensation) provides a 
method to find the perfect feed, which is needed at the array input. According to [P4] this method 
removes the effect that internal reflections have on the element patterns. One might think, that it 
removes also mutual coupling, but this is not possible, because mutual coupling is a phenomenon 
caused by the proximity of the antenna elements. The mismatch remain and the correlation at least 
partly also after the pattern correction. Thus the array matching circuit is of interest [54], [55]. Also 
the stronger correlation between smooth and more identical corrected element patterns can be 
expected, when the elements are close to each other. However, the question whether the voltages or 
the currents are the less corrupted signals at the array input is important [P4], [P6]. From this point 
of view we can say, that mutual coupling compensation can in practice remove the effect of 
additional internal mismatch on the signal correlation within the antenna array caused by wrong 
input type. 
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4 Mutual coupling and element pattern correlation in antenna arrays 
 
In this chapter mutual coupling and pattern correlation are considered in order to help the design of a 
compact antenna array or group. The connection between mutual coupling and pattern correlation is 
examined in papers [P5]-[P8]. In [P9] a compact multiantenna group with low coupling and low 
correlation between antenna elements was presented. 
 

4.1 Experimental and simulated values of mutual coupling 
 
The scattering matrix was measured for the different arrays [7], [11]. The absolute value of the 
scattering parameter Sij between neighboring elements is in the examined arrays from −35 dB to –8 
dB, when the self-matching, the diagonal element of the scattering matrix Sjj is from −35 dB to –15 
dB at resonant frequencies from 5.14 GHz to 5.36 GHz. The resonant frequencies of the different 
arrays vary due to mutual coupling. Using Equation (2.2.8) the minimum, mean and maximum 
values of the relative reflected power are defined at the center frequency in [7] for the examined 
arrays. The square roots of the mean values of the relative reflected power calculated with the 
scattering matrix eigenvalues using Equation (2.2.7) are presented in [56] for different arrays. The 
mean relative reflected power is for all arrays lower than 10% with an exception of the array with the 
closest spacing of 0.3λ for which the mean value of the relative reflected power is 35% and the 
maximum value more than 90%. For the other arrays the maximum reflected powers are 4%-30% of 
input power at the resonant frequency. The coupling is lowest for the array with spacing of 0.7λ. The 
worst case with the highest eigenvalue of the relative reflected power matrix is somewhat exotic: the 
experiments with a beam scans in [7] and [11] show that during beam scans the worst cases do not 
occur. The maximum value for the power reflection from one port exceeds the mean of total 
reflected power for all the examined arrays [7]. 
 

4.2 Experimental and simulated values of pattern correlation 
 
The pattern correlations are calculated in [7], [P5], [P9] based on the measured/simulated scattering 
parameters. A value less than 0.2 is typical for the examined arrays and groups. This means, that the 
corresponding estimate for envelope correlation, when a signal is arriving from many directions, is 
very low, ρenv = 0.22 = 0.04 << 0.7, where ρenv << 0.7 is a widely used criterion for the use of an 
antenna pair in diversity systems [13]. A stronger criterion ρenv << 0.5 commonly used for a mobile 
terminal in mobile communications [13] is also well fulfilled.  
 

4.3 Connection between mutual coupling and pattern correlation  
 
In papers [P5]-[P8] the connection between mutual coupling and pattern correlation presented in 
equations (2.3.6) and (2.3.7) is used to estimate pattern correlation in an antenna pair and in antenna 
arrays. In recent years the interest has increased in the connection between mutual coupling and 
pattern correlation due to development of multiantenna systems [21]. The traditional way to correct 
the element patterns of a dipole antenna array is to find how to feed one element while the other 
elements are open circuited, without feed currents [44]. This can be done with all generator voltages 
or input wave voltages [P4]. The input voltage vector in an array depends only with a certain phase 
factor on the reference plane position and the input voltage waves are with a certain delay factor the 
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same as the generator voltages [P4], [P6]. The input voltages in the reference plane of the scattering 
matrix can be expressed with the corresponding input voltage waves 
 
 ( ) ++= VSIV

rr
.        (4.3.1) 

 
When only one component of the voltage input vector V

r
 is different from zero, we get the radiation 

of only that element, i.e. the radiation pattern of that element in the case of voltage feed. Because for 
a constant V

r
 the corresponding voltage wave vector +V

r
 depends on the reference plane of the 

scattering matrix, as we can see in Equation (4.3.1), we get that the element pattern for a certain 
voltage input is also dependent on the reference plane. Thus it is not surprising that the pattern 
correlation depends as well on the reference plane for voltage and current feeds [57], [P6]. For the 
scattering matrix presentation with voltage wave feeds the pattern correlation, presented in Equation 
(2.3.6) does not depend on the reference plane, because the complex conjugation in SHS removes the 
effect of a phase factor.  
 
The dependency of pattern correlation on input type and reference plane is examined in the case of 
microstrip arrays in [P6]. In the impedance and admittance matrix presentations the dependency of 
pattern correlation on the reference plane has a clear minimum and the difference between minimum 
and maximum values is also significant. For arrays with strong coupling the minimum pattern 
correlation was less than the pattern correlation in the scattering matrix presentation. If the reference 
plane is adjusted to the minimum correlation we get the pattern correction to minimum pattern 
correlation. To correct the element patterns at the same time to regular ones and with low 
correlation, would be of interest [44]. The required reference plane shift varies for different arrays, 
and, unfortunately, it is not the same as required for the pattern shape correction, presented in 
Chapter 3.4.2.  
 
In the other papers [P5], [P7], [P8], [P9] in this thesis the scattering matrix presentation with voltage 
wave inputs is used. It is the most natural presentation because antenna input voltage wave vectors 
are the same as the generator or load voltage vectors [P6].  

4.3.1 Two-element array 
 
In two-element lossless arrays the connection between mutual coupling and pattern correlation is 
given by Equation (2.3.7). An estimation of pattern correlation and mutual coupling is presented in 
[P5] for a symmetric antenna pair. In the case of antenna pair symmetry the pattern correlation is  
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where ϕdiff is the difference of the phase angles of S11 and S12. In [P5] the cosine is taken to be one 
and the dependency of envelope correlation on scattering parameter |S12| with fixed |S11| in the case 
of many paths is shown. In [P7] the optimum case, where the matching is the best for a given 
correlation (i.e. S11 = ±S12 = S22)[58], is presented. The connection between mutual coupling and 
pattern correlation allows us also to estimate coupling in a two-element array. For a lossless two-
element array the minimum of the mean relative reflected power can be calculated when the patterns 
and the difference in gains are known [P7]. Asymmetry in the antenna pair can increase the 
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asymmetry in the relative reflected power matrix, which increases the minimum value of the mean 
relative reflected power. 

4.3.2 Multi-element array 
 
In multi-element arrays the connection between mutual coupling and pattern correlation is given by 
Equation (2.3.6). In [P5] the pattern correlation values are presented for arrays with different 
spacings calculated, on the other hand, using scattering matrix, and on the other hand measured 
element patterns with a two-dimensional horizontal plane approximation. The conclusion in [P5] is 
that these two correlations are so close to each other that the pattern correlation calculated with 
scattering parameters can approximate well the signal correlation also when signals are arriving only 
in the horizontal plane from many directions. A tendency to have true pattern correlations somewhat 
lower than those predicted with idealized patterns is detected in [7], [59] and [60]. It can be 
compared also with results showing that mutual coupling can decrease the signal correlation [29], 
[61], [62]. One explanation is, that the rippled structure of element patterns caused by mutual 
coupling leads to lower correlation than expected, i.e. when the element patterns remain unchanged 
[62], [63], [64].   

4.3.3 Effect of element spacing in arrays 
 
For small array design, there is an interest in the dependency of pattern correlation and mutual 
coupling on the element spacing. The pattern correlation is easy to calculate if the patterns are 
known. The pattern correlation is known as a function of element distance for different arrays and 
antenna pairs [7], [54], [55], [60], [65], [66], [67], [68], [69], [70], [71]. The connection between 
mutual coupling and pattern correlation in [13] allows obtain more information on pattern 
correlation, when simulating the dependency on element spacing. The effect of termination is 
presented in [29], [30], [54], [55], [57], [68], [72], [73]. The effect of input type and reference plane 
shift is examined in [P6] for arrays with different spacings. In [67] the dependency of pattern 
correlation on scattering parameters in Equation (2.3.7) is used for simulation of pattern correlation 
in a pair of monopoles for element spacings from 0 to 2λ. In [P7] the connection between pattern 
correlation and mutual coupling is used to estimate the dependency of the reflected power on the 
element spacing for different antenna pairs with different fixed element patterns, assuming that they 
are not changed when the elements are moved closer to each other. It is obvious that coupling can be 
low if the beams are directed away from each other. In [P7] is demonstrated that the coupling can be 
lowered also when beams are directed to the same direction, when the beams are different, as for 
example, with different widths. 

4.3.4 Lower limits for correlation and coupling 
 
The connection between mutual coupling and pattern correlation gives an opportunity to define the 
maximum level of pattern correlation for a lossless antenna pair when the absolute values of the 
scattering parameters are known. The minimum possible value of pattern correlation is always zero. 
As well the connection gives the opportunity to give a minimum level of mismatch, when antenna 
pattern correlation is known. In [P7] the limiting case is presented. For array with known element 
patterns (fixed pattern correlation) the limiting value helps to characterize the optimality of the array 
matching. Unfortunately, in the case of (strong) mutual coupling any matching network affects the 
patterns [P5], which should be taken into account, when matching circuits are used [54], [55], [57], 
[74], [75]. While only the mean of relative reflected power and the absolute values of the scattering 
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parameters are estimated from patterns in the general case in [P7], it is shown in the specific case of 
an array with small aperture elements that also the complex scattering parameters can be estimated 
[24]. 

4.3.5 Angle of arrival spread 
 
When an array is used in a traditional scheme of diversity with a narrow angle of arrival the element 
spacing is several wavelengths [13], [76] and mutual coupling has no effect. The effect of the spread 
of the angle of arrival for signal correlation is presented in [77]. With increasing angular spread of 
the incoming signals their correlations become closer to the pattern correlation. In [P5] the allowed 
level of mutual coupling is simulated for a symmetric two-element array (S11 = S22) with horizontal 
uniform patterns when the angular spread of the incoming signal is given. The criterion ρenv ≤ 0.7 is 
used. We can find, for example, that for 30° uniform distribution of spread of arrival angle the 
scattering parameter |S12| should be less than –12 dB if |S11| = −6 dB. The best matching with the 
same level of correlation is obtained, however, for the case, when S11 = S12 [P8], and to have a more 
optimal matching |S11| and |S22| could be better and |S12| worse. The effect of the antenna element 
directivity on the allowed mismatch level is obvious. In addition the allowed mismatch level 
depends also on the direction of arrival [P5]. Thus this method to find the allowed mismatch level 
should be used for each array and propagation environment separately, without generalizing. 

4.3.6 Array with losses 
 
When power dissipation in the antenna array is taken into account, Equation (2.3.4) needs to be used 
for power balance. When the relative radiated power matrix is multiplied left and right with a 
normalizing diagonal matrix the pattern correlation matrix diagonal elements of unity results. In the 
case with losses the pattern correlation is [P8]: 
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where subscript L denotes losses and the diagonal normalizing matrix DL contains the roots of the 
diagonals of the radiated power matrix . In two-dimensional case we can write for the square 
of pattern correlation amplitude  
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The sign of {LHL}12 is in discrepancy with that in [78]. Parameters η1 and η2 are the radiation 
efficiencies of antenna 1 and 2 [78], [79]. They are radiated powers related to the generator power, 
when the other antenna is with matched load. Their square roots are the components of the 
corresponding diagonal scaling matrix DL. They give possibility to write the equations more 
compactly. However, in the case of losses their values are difficult to obtain comparing with the 
scattering parameters. There is also a discrepancy with the definition of the radiation efficiency 
between [78], [79] and that in [80], where the efficiency is related to the coupled power. Mutual 
component of losses seems to be very difficult to obtain, if it can’t be neglected as done in [78]. The 
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lack of exact information on losses leads to uncertainty problem in pattern correlation calculations 
[P8], [78], [79], [80].  
 
One important difference between the cases with and without losses is that when there are losses in 
the array, the ideal matching with a scattering matrix with only zero components does not lead to 
absence of the pattern correlation [P8]. In [P8] is simulated a case with an antenna pair, when losses 
are present. The effect of the reflected power rate matrix and matrix of relative losses is similar to 
the pattern correlation matrix and if the mismatch and the losses are of equal strength, the maximum 
pattern correlation can be up to twice the pattern correlation in the case without losses. This is 
important for handheld devices, for which there are usually considerable near-field losses. An 
interesting possibility is noticed in [P8]: the off-diagonal elements both of the reflected power rate 
matrix and the matrix of losses can compensate each other resulting in zero cross-correlation 
between the elements. However, by the robust simulation for a two-element array, it is not the usual 
case [P8]. 

4.3.7 Mutual coupling and array performance in MIMO systems 
 
Mutual coupling between antenna elements affect the signal correlation. For MIMO systems a 
decrease of link capacity due to mutual coupling is detected in [64], [69], [81]. On the other hand, 
some contrary observations are reported in [62], [82], [83] and [84]. According to [69] the total 
effect of decreased correlation caused by mutual coupling and increased mismatch is the lower 
MIMO capacity. In [82], [85] higher capacity caused by mutual coupling is noted for cases with 
close spacing, when compared to the case without mutual coupling. In [83] the increase of capacity 
is noted when the element spacing is reduced while increasing at the same time mutual coupling. 
The tendency to have lower pattern correlation than expected with decreasing element spacing is 
reported in [7], [85], but without taking into account the changes in element patterns. The different 
contradictory observations on the effect of mutual coupling can be explained with the character of 
the dependency between pattern correlation and mutual coupling. Pattern correlation can have 
different values with a fixed level of mismatch and be even zero with mutual coupling present [7], 
[P5]. Thus the increase of mutual coupling does not always mean higher pattern correlation, which 
in MIMO systems with several paths is about the same as the signal correlation. The decorrelation 
effect of increased pattern distortions (beam direction changes and ripples) can be one practical 
explanation in cases, when the correlation increase is less than expected, when the antenna element 
spacing in an array is decreased [7], [29], [64].   
 

4.4 Antenna configuration for MIMO terminals 
 
A new antenna group was developed for a compact multielement smart antenna to be mounted on a 
laptop type device. The goal was to have a wideband antenna group with low coupling and with two 
polarizations. The basic solution is a two-layer microstrip patch element structure with two ports for 
different polarizations (see Fig. 9). The two-layer structure has been used to widen the frequency 
band [86], [87], [88], [89], [90]. Two identical dual-polarized antennas were stacked in such a way 
that they radiate to opposite directions [P9]. They were planned to be mounted on different sides of a 
device corner and having in total four connectors only on two edges of the antenna structure. Further 
the element patterns were used in simulations with measured channel data to find the performance of 
the developed structure; it was compared with usual dipoles in MIMO channel simulations with a 
good performance in [P9] and [91], [92]. The compactness and inexpensiveness of the microstrip 
structure are advantages.  
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Figure 9.   Dual−polarized patch antenna examined in [P9]. 

 
In the development process of the antenna group in [P9] the low pattern correlation was easier to 
realize than the low mutual coupling. Because the group is a prototype for laboratory experiments it 
has SMA connectors and thus skew microstrip lines were used at the antenna feeds to give place for 
the connectors at the opposite sides of the model of the laptop. The skewed feed lines decreased the 
orthogonality of the dual-polarized structure and it was compensated by optimizing the dimensions 
and locations of the patches. Widening the bandwidth of the dual-polarized antenna structure is more 
complicated than in the single-polarized case examined for example in [93]. The main problem is to 
keep the coupling low between the ports over the whole frequency band.  
 
In the development process the goal was to minimize the mean reflected power over a wide 
frequency band. The mean reflected power is usually not characterized. Instead usually the scattering 
parameters |S11|, |S12|, and |S22| are characterized, as for example in [94]. In this thesis it is shown in 
[P9], that these parameters give an exact value for the mean reflected power but do not provide any 
information on the worst case, i.e. the maximum reflected power. In Fig. 10a) and Fig. 10b) we see 
the frequency behavior of the scattering parameters compared to that of the reflected power rate 
eigenvalues. It is very easy to see, that in this case the scattering parameter does not give a holistic 
view on the mismatch.  
 
For multielement arrays the worst case is the eigenvector with the greatest eigenvalue of the 
reflected power rate matrix SHS at the array input. For multielement groups the largest eigenvalue of 
the reflected power rate matrix should be known to find the worst case. On the other hand, in the 
case of two-element arrays the largest value can not exceed the mean value by more than 3 dB, 
which can be used in practical validation of the two-antenna structures worst matching using 
Equation (2.2.11) with absolute values of the scattering parameters. In a critical case with matching 
difficulties, the eigenvalue analysis is important, as seen in Fig. 10. Because in the development 
process of a compact group a low value of the pattern correlation can be easily obtained, the 
emphasis should be in the enhancement of the matching. 
 
In the development process of wide band antennas the resonant behavior on the Smith diagram is of 
interest [93]. Mutual coupling corrupts the resonant behavior of the scattering matrix eigenvalues. In 
[7] the scattering matrix eigenvalues presented on Smith chart were close to ideal resonances even in 
the case of strong coupling, when the reference plane was adjusted for pattern correction as 
described in Chapter 3. The reference plane shift might help to find more regular resonances, which 
could help in the development process of the compact antenna group. However, the feed structure in 
the case of the adaptive group is more complicated and a more complicated input circuit extracting 
work might be required to reach the ideal resonators.  
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Figure 10.   Dual-polarized antenna resonance behavior (simulated parameters). In a) is the 
frequency behavior of the absolute values of scattering parameters and b) the behavior of the 
eigenvalues of the relative reflected power.  
 
In Fig. 11 we see the frequency behavior of the reflected power rate eigenvalues and pattern 
correlation for the measured dual-polarized antenna. Measurements are provided for one of the dual-
polarized antennas in the stacked structure. In Fig. 11 we see a 600 MHz band with matching better 
than 5 dB and 1000 MHz band with correlation lower than 0.2. The low correlation is usually 
detected in simulations with scattering parameters [7], [P5], [P9], [95], [96]. The situation can be 
changed, when losses are taken into account [P8], [78]. The differences between simulated and 
measured results in Fig. 10b) and Fig. 11a) are due to the limitation of the computing power and 
practical limitations in the connecting cables to the antenna group, and finally, additional losses in 
the prototype. The coupling between the opposite directed dual-polarized antennas is very low, 
which means, that the radiation towards the edge direction of the laptop can be increased to improve 
the coverage of the whole 3D space. For low correlation a significant overlapping of beams is 
allowed [97]. This kind of compact multielement antenna structure is of interest for modern 
communications systems [94], [95]. The designed antenna system has not as good wideband 
matching as the one presented in [94] for a PDA device, but it is more compact. All four radiators 
are placed in a rectangular volume of 0.8x0.8x0.2 wavelengths.  
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Figure 11.   Eigenvalues of reflected power rate matrix (left) and pattern correlation (right) for the 
realized antenna pair as a function of frequency. Calculations are performed with measured 
scattering parameters. 
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5 Summary of publications  
 
Paper [P1] presents the LSE method in linear pattern correction for a 6-element microstrip antenna 
array for arrays composed with the same radiating element and with different element orientations 
and spacings. The LSE method in pattern correction is compared with the correction performed by 
using the measured scattering matrix. For microstrip arrays the LSE method is better than the 
scattering matrix method. The reason is that the scattering matrix method is suitable for antennas 
with small aperture and does not take into account the substrate edge effect. The basic material for 
the publication is from [11]. However, more accurate calibration of the scattering matrix 
measurement was needed. Also the number of measured arrays was increased to seven. The element 
spacing in these arrays was from 0.3λ to 0.9λ. The center frequency was about 5.2 GHz. Due to 
mutual coupling it varied between different arrays and depended also on antenna element position. 
The effect of correction was that the array pattern nulls were located more exactly. The correction 
works best for beams in the forward direction. With a beam scan towards endfire the accuracy of the 
correction decreases. Compared with the results of pattern correction with single frequency the 
correction accuracy is lowered over a frequency band, when a common correction matrix is used 
over the whole frequency band. 
  
Paper [P2] continues the research of linear pattern correction in real microstrip arrays using the same 
arrays as in [P1]. The linear pattern correction with a correction matrix used in [P1] requires desired 
complex-valued field patterns of the antenna elements. In [P2] another LSE method with iteration is 
presented. A desired element pattern, which gives good agreement with the corrected element 
pattern, is searched. For the desired array the element spacing is predetermined. The final corrected 
complex-valued element patterns (field patterns) are equal to each other when the reference point of 
each element is in its virtual, computational point of position. The element spacing in the corrected 
virtual array can alter and differ significantly from the real spacing. Thus it is called as virtual 
spacing. In the iteration the desired element pattern is varied, it is the mean of the corrected element 
patterns found in the previous iteration cycle. With this method the final element patterns are closer 
to each other than when using the method in [P1] and in the case of examined arrays they are also 
smooth and with a wide beam. The validity of the correction was studied also over a wider frequency 
band. With larger frequency bands the correction results become poorer when a common correction 
matrix over the whole band is used. 
 
In [P3] the LSE method in pattern correction done in [P1] was developed further using pattern 
weighting. The basic LSE method gives a correction matrix, which can be used to find a complex-
valued field pattern. Often the phase of the array pattern is arbitrary. The LSE method was used with 
iteration to generate an array amplitude/power pattern. When all the patterns (or rows in the pattern 
matrices) in the LSE method are multiplied component-wise with a weighting vector (usually called 
a cost function) the accuracy in different pattern directions changes. When a solution of relative error 
is needed, the inverse of the wanted array amplitude pattern should be used as the weighting vector.  
This robust weighting was presented in [P3]. The generation of box-type array patterns with wide 
nulls was examined and the array amplitude pattern generation with weighting was compared with 
the array amplitude pattern generation without weighting. The method with weighting was in general 
better for wide nulls from 0° to 60° and with the null depth of −20 dB to −40 dB for an array with 
element spacing of 0.5λ.  
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Paper [P4] deals with linear pattern correction using the scattering matrix. The scattering matrix 
method in pattern correction was presented in [P1], where it was compared with the LSE correction. 
The main advantage of pattern correction with scattering matrix is that it does not require measured 
element patterns. In [P1] the reference plane was shifted from the beginning of a coaxial probe 
towards the antenna to achieve better correction while in [P4] an equivalent input circuit consisting 
of up to three lumped elements was extracted from the array to achieve a more relevant scattering 
matrix for the correction. This correction improves slightly the scattering matrix method using 
reference plane shift done in [P1], but it is more complicated to perform.  
 
In [P5] the connection between array mutual coupling and correlation between the array element 
patterns is established. The pattern correlation matrix of an array can be calculated if the scattering 
matrix is known and the array is lossless. For the examined arrays the pattern correlations were 
calculated using element patterns and also using measured scattering matrices. Results showed a 
good agreement between the two different ways to calculate the pattern correlation, even the patterns 
were defined only in the horizontal plane. For a two-element array a relation for scattering 
parameters [S11, S12, S21, S22] and pattern correlation r12 was presented. Using the dependency 
between the scattering parameters and pattern correlation the level of acceptable coupling was 
estimated as a function of the angular spread of the incoming signal.  
 
In papers [P6], [P7] and [P8] the connection between mutual coupling and pattern correlation is 
examined further. In [P6] the influence of the input signal type is studied. The input of the antenna 
group can be a vector of voltages, voltage waves or currents. These inputs are connected to each 
other with the scattering (or impedance) matrix. An important fact is that the antenna array element 
patterns are different for different input types when mutual coupling is present and if they are known 
in one of the three different presentations (scattering matrix, impedance matrix or admittance matrix 
presentation) they can be calculated in other presentations using the scattering matrix (or other 
coupling matrices). Because the element patterns are different in different presentations the pattern 
correlations are also different. In [P6] an example with a microstrip array is presented showing that 
the minimum pattern correlation can be reached with the reference plane shift in impedance and 
admittance presentations and it can be lower than the correlation in the scattering matrix 
presentation, which does not depend on the position of the reference plane. In paper [P7] the 
connection between mutual coupling and pattern correlation is presented in the most general 
formulation for lossless two-element arrays. The limiting case of lowest pattern correlation, when 
mutual coupling is given, is found, and also the lowest limit for mutual coupling is found, when the 
element patterns are given. This allows the antenna designer to estimate the level of pattern 
correlation or mutual coupling, when one of those is known. In paper [P8] the theory connecting 
mutual coupling and pattern correlation is generalized for antenna groups with losses and an 
example of a two-element array is presented. Losses complicate the estimations and in practice (the 
matrix of lost power is not trivial to obtain) the estimations can have only qualitative character. 
 
In [P9] a dual-polarized antenna is used in MIMO channel analysis. The antenna was designed and 
manufactured so that two antennas of that kind could be stacked on different sides of a laptop type 
device. The center frequency was 5.3 GHz and a bandwidth of 400 MHz with 5 dB return loss was 
reached using a layered structure of patches. A band of 1000 MHz with a low pattern correlation of 
0.2 was reached. When the signal is coming from many different directions the envelope correlations 
of the signals in the branches do not exceed ρe = 0.22 = 0.04, which is a very low value. The return 
loss of 5 dB was defined for the maximum possible reflected power (the worst case).  
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6 Conclusions 
 
The effect of mutual coupling was examined for various antenna arrays with 6 elements and for an 
antenna group of 2 or 4 elements. For compensating the mutual coupling two basic methods for 
pattern correction were tested. The method using the measured scattering matrix was used in two 
modifications. In the first modification only one parameter, the reference plane of the scattering 
matrix was used. In the second case an equivalent input circuit of up to 3 lumped elements was 
extracted and the remaining scattering matrix was used for correction. The LSE method for pattern 
correction was tested using different modifications: The correction of element patterns when the 
desired element patterns were predetermined; finding a suitable element pattern and the 
corresponding correction matrix for a virtual array with arbitrary element spacing; and correction 
with weighting. In the last case of pattern correction the array patterns were generated directly from 
measured patterns without computing the corresponding correction matrix. The connection between 
mutual coupling and pattern correlation was examined with the manufactured antennas including the 
linear arrays and the dual-polarized antenna group, as well as with theoretical calculations. Basic 
relations were derived: For multielement antenna groups a matrix equation connecting the reflected 
power rate matrix and the pattern correlation matrix was presented. The reflected power rate matrix 
is a derivative of the scattering matrix. For a two-element array the equation was presented and 
analyzed with scattering parameters. 
 
The LSE pattern correction method without predetermined element patterns was developed and 
examined for different arrays. In this method the element spacing in the ideal array is given and it 
can differ from the real spacing in the array. For a given element spacing an ideal array with equal 
element patterns is searched with iteration. Comparing with the basic LSE method with 
predetermined wanted element patterns this method gives element patterns that are very similar. The 
variation of virtual spacing gives a possibility for fine tuning of the pattern correction. Best results 
are detected when the virtual spacing is not far from the real spacing. The total length of the array 
can be extended to the dimensions of the ground plane, as was shown for an array with element 
spacing of 0.3λ. This property is an example on the possibility to use the array surroundings to 
extend the virtual array spacing to achieve better resolution for conformal arrays and arrays which 
are mounted on devices. 
 
The pattern correction with the LSE method using weighting was tested for a 6-element microstrip 
array with element spacing of 0.5λ at 5.2 GHz. With weighting the expectation of the fitting 
accuracy is varied as a function of the direction angle. Correction with weighting was examined 
generating box-type amplitude/power patterns for the array. Thus an iteration of input coefficients 
was used with the pseudoinverse LSE method. The robust weighting was done using the inverse of 
the desired array amplitude pattern as a weighting vector. In this case the solution gives a LSE 
solution on the relative scale minimizing the relative error. The LSE method with robust weighting 
was compared with the basic LSE method without weighting by characterizing the error with a 
special error function for box-type desired array patterns. The main point of view was in wide null 
generation. The results showed that the method of robust weighting was better for the examined 
array when a wide null with a depth of −20 dB … −40 dB and with a width < 60° is needed.  
 
The basic pattern correction with the LSE method was compared to the method using the scattering 
matrix. The comparing criterion was LSE, for which the LSE method is definitely the best possible. 
The scattering matrix method gave only a small correction compared to the correction with the LSE 
method. When the more complicated method using a scattering matrix with input circuit extraction 
was used, then the results became only a little better. This shows that the LSE method is preferable 
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when pattern correction is needed. However, the scattering matrix method does not require measured 
or calculated element patterns, and is thus, due to its simplicity, potentially interesting. Also, it can 
give helpful model information for the antenna design. The main reason for the poor results using 
the scattering matrix method can be explained so that the scattering matrix method needs spatially 
constant aperture field which is realistic only for an electrically small antenna element. Additionally, 
it does not take into account the backplate edge diffraction. 
 
Low element pattern correlation enables independent reception/transmission with the array branches. 
When the signals of interest are correlated in the array branches the received/transmitted information 
rate can be decreased. This is an actual problem in MIMO links which are predicted to be in wide 
use in the mobile communications in the near future. But also in the more traditional diversity use of 
the antenna groups the independence of the antenna reception/transmission is important. Mutual 
coupling can cause additional correlation between signals in array branches. However, the signals in 
the array branches are usually correlated also when there is no mutual coupling when a certain nearly 
plane wave is incoming. The pattern correlation is a pure array characteristic and gives a realistic 
estimate for the signal correlation, when signal arrive from many different directions. The calculated 
pattern correlation values are low in the examined cases. This shows that the problems with the 
signal correlation can arise mainly from the signal propagation environment, when the incoming 
signals are readily correlated, when impinging to antenna array.  
 
To find out the pattern correlation level has a practical value also due to its connection to the array 
matching. When the array is lossless, the connection gives the opportunity to estimate the best 
possible matching with known pattern correlation and the highest value of pattern correlation with 
known matching. This connection can be used to estimate the matching when an antenna element for 
the array is planned and its pattern is known. When the array is lossy, in addition to the reflected 
power matrix also the matrix of lost power should be taken into account when the pattern correlation 
is calculated. Because the matrix of lost power is in practice difficult to find, the method to estimate 
pattern correlation should be used only in cases, when the mean of the lost power does not exceed 
the mean of the reflected power. 
 
In antenna technology the antenna matching is a basic characteristic. In the multielement antenna 
groups mutual coupling causes that the matching is not trivial, because the antenna array matching 
cannot be achieved by matching each element independently to the system impedance. Pattern 
correlation always causes mutual coupling in the array. Thus, to avoid mutual coupling the element 
patterns should be changed. On the other hand, pattern and signal correlations can be zero with 
mutual coupling present. An antenna pair with a low pattern correlation and with moderate coupling 
over a wider frequency band was synthesized and manufactured. For the examined microstrip groups 
the matching seems to be a more complicated and challenging question than to obtain the low 
correlation. The use of the scattering matrix and relative reflected power matrix eigenvalues help to 
characterize the matching with more realistic way under the antenna group development process 
than the scattering parameters taken individually. 
 
In this thesis non-idealities caused by mutual coupling in antenna groups were considered, namely 
the distortion of the patterns, mismatch and correlation between antenna elements. Different novel 
methods for estimation and compensation of these problems were developed and tested. A remaining 
challenge is to realize better matching and better space covering in the compact wideband 
multiantenna structures. The presented methods help in the design of small smart antennas for 
modern communications terminals.  
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