
TKK Dissertations 31
Espoo 2006

SOFTWARE DEVELOPMENT CONTROL PANELS
Concepts, a Toolset and Experiences

Doctoral Dissertation

Helsinki University of Technology
Department of Computer Science and Engineering
Software Business and Engineering Institute

Casper Lassenius

TKK Dissertations 31
Espoo 2006

SOFTWARE DEVELOPMENT CONTROL PANELS
Concepts, a Toolset and Experiences

Doctoral Dissertation

Casper Lassenius

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission
of the Department of Computer Science and Engineering for public examination and debate in
Auditorium T2 at Helsinki University of Technology (Espoo, Finland) on the 22nd of May, 2006, at
12 noon.

Helsinki University of Technology
Department of Computer Science and Engineering
Software Business and Engineering Institute

Teknillinen korkeakoulu
Tietotekniikan osasto
Ohjelmistoliiketoiminnan ja -tuotannon laboratorio

Distribution:
Helsinki University of Technology
Department of Computer Science and Engineering
Software Business and Engineering Institute
P.O. Box 9210
FI - 02015 TKK
FINLAND
URL: http://www.soberit.tkk.fi
Tel. +358-9-451 4851
Fax +358-9-451 4958
E-mail: reports@soberit.tkk.fi

© 2006 Casper Lassenius

ISBN 951-22-8196-1
ISBN 951-22-8197-X (PDF)
ISSN 1795-2239
ISSN 1795-4584 (PDF)
URL: http://lib.tkk.fi/Diss/2006/isbn951228197X/

TKK-DISS-2135

Otamedia Oy
Espoo 2006

AB
HELSINKIUNIVERSITYOF TECHNOLOGY
P. O. BOX 1000, FI-02015 TKK
http://www.tkk.fi

ABSTRACT OF DOCTORAL DISSERTATION

Author Casper Lassenius

Name of the dissertation

Date of manuscript 23.4.2006 Date of the dissertation 22.5.2006

Monograph Article dissertation (summary + original articles)
Department
Laboratory
Field of research
Opponent(s)
Supervisor
(Instructor)

Abstract

Keywords software measurement, software engineering, case studies, measurement tool support

ISBN (printed) 951-22-8196-1

ISBN (pdf) 951-22-8197-X

ISBN (others)

ISSN (printed) 1795-2239

ISSN (pdf) 1795-4584

Number of pages 148 p.

Publisher Software Business and Engineering Institute, TKK

Print distribution Software Business and Engineering Institute, TKK

!e dissertation can be read at http://lib.tkk.fi/Diss/2006/isbn951228197X/

Software Development Control Panels: Concepts, a Toolset and Experiences

X
Department of Computer Science and Engineering
Software Business and Engineering Institute
Software Engineering
Dr. Adele Goldberg, Neometron Inc.
Professor Reijo Sulonen
Professor Reijo Sulonen

X

!is thesis discusses concepts and a toolset for as well as experiences with defining and implementing on-line visual displays
of software development progress, control panels. Control panels group sets of measurement visualizations providing a
multi-dimensional, integrated view of development status. Control panels are developed at various organizational levels,
serving the information needs of different stakeholders. Navigation between different control panels enables users to drill
down to view more detailed information on, e.g., a particular project or on the progress of a particular development activity.
In the constructive part of the work, I describe concepts, and a toolset that can be used for defining and implementing
control panels. In addition, I provide guidelines for grouping measures into control panels, and discuss how measurement
programs can be partitioned into control panels. !e toolset, built as a “proof-of-concept” consists of a central measurement
database, a visualization client, and a set of data importers that transfer data from external corporate repositories into the
measurement database.
!e empirical part discusses our efforts to define and implement control panels in four high-technology companies in
Finland. Framed in the context of “constructive action research”, the cases are first described individually, according to the
main steps of the action research cycle, then compared in a cross-case analysis. Our results—we succeeded in implementing
control panels in only one of four organizations—indicate that the development of control panels requires a substantial
investment and commitment by the organization, but that it can be feasible even in small organizations. !e main
obstacles hindering the implementation were organizational and human in nature, more related to measurement program
implementation in general than to tool support per se. Interestingly, the organizations did not consider measurement
definition, i.e., the selection of “metrics” to be problematic. Success factors identified included management commitment,
sufficient resourcing, and personnel involvement.
While limited, our experiences with the use of control panels show that they were felt to be more valuable by management
than by the collocated project personnel. We hypothesise that the usefulness of control panels increases with project size
and geographical distance. !us, in the future it would be interesting to develop control panels for distributed software
development projects, in which informal status communication is more difficult.

AB
TEKNISKA HÖGSKOLAN
PB 1000, FI-02015 TKK
http://www.tkk.fi

SAMMANFATTNING (ABSTRAKT)
AV DOKTORSAVHANDLING

Författare Casper Lassenius

Titel

Inlämningsdatum för manuskript 23.4.2006 Datum för disputation 22.5.2006

Monografi Sammanläggningsavhandling (sammandrag + separata publikationer)
Avdelning
Laboratorium
Forskningsområde
Opponent(er)
Övervakare
(Handledare)

Sammanfattning (Abstrakt)

Ämnesord (Nyckelord) programvaruutveckling, mätning, fallstudie, kontrollpanel, mätverktyg

ISBN (tryckt) 951-22-8196-1

ISBN (pdf) 951-22-8197-X

ISBN (övriga)

ISSN (tryckt) 1795-2239

ISSN (pdf) 1795-4584

Sidantal 148 s.

Utgivare Laboratoriet för programvaruaffärsverksamhet och -produktion, TKK

Distribution av tryckt avhandling Laboratoriet för programvaruaffärsverksamhet och -produktion, TKK

Avhandlingen är tillgänglig på nätet: http://lib.tkk.fi/Diss/2006/isbn951228197X/

Kontrollpaneler för programvaruutveckling: koncept, verktyg och erfarenheter

X
Avdelningen för databehandling
Laboratoriet för programvaruaffärsverksamhet och -produktion
Mjukvaruproduktion
Dr. Adele Goldberg, Neometron Inc.
Professor Reijo Sulonen
Professor Reijo Sulonen

X

Avhandlingendiskuterar koncept, datatekniska verktyg samt erfarenheter av definition och implementering av kontrollpaneler
för programvaruutveckling. Kontrollpaneler grupperar visualiseringar av mätdata och kan sålunda erbjuda en flerdimensio-
nell och integrerad insyn i programvaruvaruutvecklingens tillstånd. Kontrollpaneler utvecklas på olika organisationsnivåer
för att på så sätt kunna tillfredsställa olika intressenters informationsbehov. Navigering mellan panelerna möjliggör detalj-
studie, t.ex. av information om ett specifikt project eller tillståndet av en utvecklingsaktivitet.
Arbetets konstruktiva del beskriver en konceptuell ram och datatekniska verktyg som kan användas för att definiera och
implementera kontrollpaneler. Den konceptuella ramen definierar grundläggande begrepp för definiering av kontrollpaneler
samt presenterar principer för partitionering av panelerna. De datatekniska verktygen implementerade som proof-of-concept,
innefattar en central mätdatabas, en visualiseringsklient samt ett antal importmodulermed vars hjälpmätdata kan importeras
från externa databaser.
Den empiriska delen diskuterar våra erfarenheter av att definiera och implementera kontrollpaneler i fyra högteknologifö-
retag i Finland. Forskningsmetodiskt presenterat som konstruktiv aktionsforskning, fallstudierna beskrivs först individuellt,
enligt aktionsforskningens huvudfaser, varefter de jämförs i en korsfallsanalys. Våra resultat—vi lyckades implementera
kontrollpaneler endast i en av fyra organisationer—indikerar att utveckling av kontrollpaneler kräver en substantiell inve-
stering och organisationellt engagemang, men att det kan genomföras med framgång till och med i små organisationer.
De värsta hindren för implementeringen var relaterade till organisationella och mänskliga faktorer, mera förknippade med
implementation av mätprogram i allmänhet än specifikt med kontrollpanelimplementation eller verktygsstöd. Intressant var
att organisationerna inte fann val av mätare svårt. Vi identifierade också framgångsfaktorer såsom ledningens engagemang,
tillräcklig resursering samt personalens medverkan.
Våra erfarenheter visade att kontrollpanelerna upplevdes mera värdefulla av ledningen än av personalen som arbetade i
samma kontor. Vi tror att kontrollpanelers utilitet ökar med project storlek och ökat geografiskt avstånd. Sålunda kunde det
i framtiden vara intressant att utveckla paneler för distribuerade project, i vilka informell statuskommunikation är svårare.

To U!a (&) Maria2

Acknowledgements

Unprovided with original learning, unformed in the
habits of thinking, unskilled in the arts of compos-
ition, I resolved to write a book.

EDWARD GIBBON

TH+ practical work for this thesis was conducted in the Lucos research project
at the TAI Research Institute at Helsinki University of Technology dur-

ing the years 1997–2000. The members my team were instrumental in perform-
ing the work. Thank you Maarit Nissinen and Kristian Rautiainen for sharing
your thoughts and ideas and the wonderful work you did in the company pilots.
The measurement toolset was developed by four extremely competent individu-
als. Thank you Kai Risku, Jari Vanhanen, Pekka Kilponen and Jarno Vähäniitty
for the outstanding work.

Without the interest and support of the case organizations, we would not have
been able to get any empirical experiences in trying out our approach. I am deeply
grateful for the time and effort you all put into the project, and for all comments,
ideas and wisdom you conveyed to me and my research team during the three
years we worked together.

Writing this dissertation has not been easy. Without the strong support and
guidance of my teacher and good friend, professor Reijo “Shosta” Sulonen, this
thesis would never have seen the lights of day. His belief in me and my abilities
has been extremely valuable during the periods of self-doubt and intense self-
critisism that I have gone through. The final write-up would probably never have
taken place, had he not “strongly encouraged” me to do it. For that, I am eternally
grateful.

Finally, without the loving support of my wife Maria, my parents, and the
supporting attitude of a large number of people, too many to mention here, I
would never have managed to finally get my thoughts sorted out and written
down. Thank you all!

Hattula, April 2006
Casper Lassenius

vii

Abstract

This thesis discusses a concepts, guidelines, a toolset and experiences with defin-
ing and implementing on-line visual displays of software development progress,
control panels. Control panels group sets of measurement visualizations providing
a multi-dimensional, integrated view of development status. Control panels are
developed at various organizational levels, serving the information needs of dif-
ferent stakeholders. Navigation between different control panels enables users to
drill down to view more detailed information on, e.g., a particular project or on
the progress of a particular development activity.

In the constructive part of the work, I describe concepts, and a toolset that
can be used for defining and implementing control panels. In addition, I provide
guidelines for grouping measures into control panels, and discuss how measure-
ment programs can be partitioned into control panels. The toolset, built as a
“proof-of-concept” consists of a central measurement database, a visualization
client, and a set of data importers that transfer data from external corporate re-
positories into the measurement database.

The empirical part discusses our efforts to define and implement control pan-
els in four high-technology companies in Finland. Framed in the context of “con-
structive action research”, the cases are first described individually, according to
the main steps of the action research cycle, then compared in a cross-case ana-
lysis. Our results—we succeeded in implementing control panels in only one of
four organizations—indicate that the development of control panels requires a
substantial investment and commitment by the organization, but that it can be
feasible even in small organizations. The main obstacles hindering the implement-
ation were organizational and human in nature, and more related to measurement
program implementation in general than to tool support per se. Interestingly,
the organizations did not consider measurement definition, i.e., the selection of
“metrics” to be problematic. Success factors identified included management
commitment, dedicated measurement personnel, and organizational change man-
agement.

While limited, our experiences with the use of control panels show that they
were felt to be more valuable by management than by the collocated project per-
sonnel. We thus hypothesise that the usefulness of control panels increases with
project size and geographical distance. In the future it would be interesting to
develop control panels for distributed software development projects, in which
informal status communication is more difficult.

ix

Table of Contents

Table of Contents xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Research Goal and Objectives . 4
1.3 Scope . 7
1.4 Assumptions . 8
1.5 Contributions . 9
1.6 Thesis Structure . 9

2 Theoretical Background 11
2.1 Introduction . 11
2.2 A Note on Measurement Terminology 11
2.3 Measurement Program Development 14
2.4 Measurement Visualization and Control Panels 19
2.5 Tool Support . 25
2.6 Conclusions . 28

3 Research Design 31
3.1 Introduction . 31
3.2 Research Methodology in Software Engineering 31
3.3 Design Research . 33
3.4 Action Research as a Validation Approach 34
3.5 Research Process: “Constructive Action Research” 37
3.6 Conclusions . 42

4 Software Development Control Panel Concepts and Guidelines 45
4.1 Introduction . 45
4.2 Requirements . 45

xi

4.3 Concepts for Software Development Control Panels 46
4.4 Defining Control Panels . 47
4.5 Control Panel Implementation Activities 54
4.6 Conclusions . 55

5 A Measurement Toolset 57
5.1 Introduction . 57
5.2 Motivation . 57
5.3 Architecture . 59
5.4 ViCA - The Visualization Client Applet 60
5.5 The Metrics Server . 62
5.6 External Data Modules . 64
5.7 Conclusions . 65

6 Case Studies 67
6.1 Introduction . 67
6.2 Case 1: SoftCorp . 67
6.3 Case 2: ElectroCorp . 86
6.4 Case 3: SecuriCorp . 92
6.5 Case 4: TeleCorp . 95
6.6 Cross-case Analysis . 103
6.7 External Evaluation . 108
6.8 Conclusions . 112

7 Conclusions 115
7.1 Introduction . 115
7.2 Summary . 115
7.3 Contributions . 116
7.4 Evaluation of the Research . 116
7.5 Future Work . 123

Bibliography 125

xii

List of Figures

1.1 The Software Project Manager’s Control Panel (Anonymous, 2000b) . 2
1.2 An Example Control Panel Hierarchy 4

2.1 Measurement Related Processes . 13
2.2 The GQM Approach . 17
2.3 The GQ(I)M indicator template (Goethert and Hayes, 2001; Goethert

and Siviy, 2004). 22
2.4 The Software Project Manager’s Control Panel (Anonymous, 2000b) . 23
2.5 Tools Reviewed by Münch and Heidrich (2004) 26

3.1 Design Research Framework (Hevner et al., 2004) 33
3.2 The Action Research Cyclical Process (Susman and Evered, 1978) . . . 36
3.3 Research Process . 37
3.4 Case Study Timeline . 44

4.1 Control Panel Concepts . 47
4.2 A Logical View of a Project-Oriented Software Development Organ-

ization . 50
4.3 The SoftGuys Ltd. Control System 52
4.4 The Control Panel Hierarchy at SoftGuys Ltd. 53

5.1 The Lucos Toolset Architecture . 60
5.2 Navigation in ViCA . 61
5.3 The Excel Data Module—EMIX . 65

6.1 The panel hierarchy for Trade2000 development at SoftCorp 73
6.2 SoftCorp measurement infrastructure 74
6.3 Trade2000 developer ViCA Usage at SoftCorp 75
6.4 Reading the Panel Usage Figures . 76
6.5 Developer ViCA Usage at SoftCorp 77
6.6 Management ViCA Usage at SoftCorp 78
6.7 Management ViCA Usage at SoftCorp 79
6.8 Trade2000 Project Manager ViCA Usage at SoftCorp 81

xiii

6.9 Administrator ViCA Usage at SoftCorp 82
6.10 Chart Editing Effort and Times at SoftCorp 83
6.11 Panel Editing Effort and Times at SoftCorp 84
6.12 The Goal-Measure Mapping at the Divisional Level 100
6.13 An Example Panel showing Inspection Data 102

xiv

List of Tables

1.1 Requirements for conceptual framework and guideline development . 6
1.2 Requirements for toolset development 7

2.1 SPMN Control Panel Measures . 16
2.2 Measurement Development Approaches 20
2.3 Related Measurement Tools and Experiences 27

3.1 Guidelines for Design-Science Research (Hevner et al., 2004). 35
3.2 Case company overview . 39
3.3 Cases and activities performed . 40
3.4 Cases and Data collection methods 40
3.5 Summary of Empirical Studies . 43

4.1 Requirements for framework and guideline development 46

6.1 SoftCorp Case Summary . 69
6.2 Initial set of maintenance measures at SoftCorp 72
6.3 “Effort” for Chart and Panel Building at SoftCorp 82
6.4 ElectroCorp Case Summary . 88
6.5 SecuriCorp Case Summary . 93
6.6 TeleCorp Case Summary . 96
6.7 Main results of TeleCorp Goal-Measure Mapping 101
6.8 Summary of Empirical Studies . 104
6.9 Success factors . 106
6.10 Obstacles . 107
6.11 Impact of the Lucos project . 110
6.12 Pilot companies’ evaluation of the visualization tool 111
6.13 Pilot companies’ evaluation of maintenance effort 112

7.1 Evaluation of developed framework vs. requirements 118
7.2 Evaluation of developed toolset vs. requirements 119

xv

Chapter 1

Introduction

The beginning is the half of every action.

GR++K PROV+RB

1.1 Background and Motivation

WHAT is the state of our current software development project? Will we
meet the goals regarding content, schedule, cost and quality? Is our

software process improving? Will we complete the project on time? Is the quality
of the software adequate? How much have the requirements changed compared
to the original specification?

Questions like these are commonly asked by software practitioners, and being
able to answer them using objective data whenever possible, is clearly preferable
to guessing. To be able to do this, a company must define and install a software
measurement program (e.g., Kitchenham, 1996; Fenton and Pfleeger, 1997).

1.1.1 Software Measurement

Measurement is a general tool that can be used to help us understand software
development, to monitor status, to build models that help predict what will happen
in development, to control development1, and to improve our software development
processes. (Briand et al., 1996)

In the field of software engineering, measurement has been an active area of
research since the 1970s. Literally thousands of measures have been proposed, or
at least so has been claimed (Fenton and Neil, 2000), case studies and experience
reports testifying to the successful implementation of measurement programs in
industry have been written (e.g., Daskalantonakis, 1992; Grady and Caswell, 1987;
Grady, 1992)), and lots of advice on defining and setting up corporate measurement

1The term control is in this work understood in the sense of managers using feedback to ensure that
inputs,processes and outputs are aligned to achieve organizational goals (Simons, 2000, p.52) as opposed to the
use of the term in its statistical process control sense.

1

2 Introduction

programs is available in the literature (e.g., Basili, 1984; Kitchenham, 1996; Pulford
et al., 1996; Park et al., 1996; Florac et al., 1997)). Process improvement approaches
such as the Capability Maturity Model (Humphrey, 1989; Paulk, 1995) and the
Experience Factory (Basili and Rombach, 1988) also include measurement as a
required component of high-quality software processes. In short, measurement
can be considered a cornerstone of modern software engineering management, as
evidenced, e.g., by its inclusion as a knowledge area in the software engineering
body of knowledge (Abran et al., 2004).

1.1.2 Measurement Control Panels

In practical use of measurement for decision making and control, visual displays,
such as graphs and charts are commonly used. It has even been proposed (Meyer,
1994; Brown, 1996) that management of development could be a “simple” as driv-
ing a car or flying an airplane if the person in the “driver’s seat” had the same
constant view of critical status information as provided by the control panel in cars
and planes. Such a control panel for software engineering is shown in Figure 1.1.

Figure 1.1: The Software Project Manager’s Control Panel (Anonymous, 2000b)

While it is clear that managing software development is in many ways strik-
ingly different from driving a car or an airplane2, I believe that providing instant
visual feedback on the status of software development is interesting, and might
have several benefits, including:

• it may increase the commitment and motivation for practitioners regarding
measurement,

• it may facilitate fact-based discussions and management of software engin-
eering, and

2For example, I agree with Kitchenham (1996) that we are not dealing with simple parameters
that are directly controllable.

1.1. Background and Motivation 3

• it may, combined with suitable mechanisms for measurement target setting,
help an organization better achieve its goals

While the examples given by Meyer (1994) and Brown (1996) focus on a single
control panel available at the team level, the idea easily lends itself to extension.
In this work, I discuss our experiences in applying the control panel idea with
three extensions: the definition of role specific visualizations, and subsequently the
application of the idea on different organizational levels and to different processes; and
finally, the ability to link control panels together.

The first extension is natural, since different stakeholders have varying needs
for information. For example, senior managers need more aggregated informa-
tion giving an overview of development status, while software practitioners need
detailed information, e.g., regarding defects or modifications to the modules they
are working on.

While having a control panel at the project level probably is the natural place
to start, the idea can also be applied at other levels, from strategic measurement
to portfolio and process monitoring and control. We thus propose to utilize the
control panel idea at different organizational levels, and to different processes
within the organization.

Having a set of control panels instead of a single one also leads to the ques-
tion of linkages between the measures visualized in a panel and other panels, or
between panels themselves. For example a “process panel” could show aggreg-
ate information on all projects executed according to a specific process, e.g., by
showing an aggregate project plan (Kaplan and Norton, 1992). From this, one
could open another, project-specific panel by clicking on a project in the aggreg-
ate view. Thus we can envision both linkages between specific measures visualized
in a panel and another panels, and between panels themselves. An example of the
second case could be a project panel containing a button to a “Test phase” panel.

We thus envision a software development organization using a set of inter-
linked control panels developed according to the needs of various stakeholders.
This vision is depicted in Figure 1.2.

1.1.3 The Lucos Research Project

The work discussed in this thesis was carried out between September 1997 and
March 2000 in a research project called Lucos and performed jointly by the TAI
Research Center at Helsinki University of Technology and five participating com-
panies. In the Lucos project, we aimed at improving the companies’ ability to
control their product development efforts.

The work we did with the companies included defining and modeling their
development strategies and processes. In that work, our overarching goal was to
develop control panels and the underlying measurement systems and tool support
that they required. In this thesis, I focus on our efforts to develop and implement
control panels, and as such it represents but a small part of the actitves we did in
the research project.

4 Introduction

Figure 1.2: An Example Control Panel Hierarchy

Having discussed the motivation and background of the research, we are now
ready to turn to the objectives and research questions of this thesis.

1.2 Research Goal and Objectives

The main objective of the research is:

To explore the design, implementation and use of control panels for software
development in industrial settings.

To do this, we basically need to tackle three issues and their related questions:

1. The design of control panels: what panels and for whom should they be
developed? What measures should be included in the panels? How should
the measures be visualized? How should the panels be linked together?

2. The “foundations”:. Visualizing the status and goals of an organization is
only the “tip of the iceberg”. Getting to the point where control panels can
be implemented requires that the organization has measurable goals with
defined targets, and a working measurement system that captures the data
in a form suitable for use in control panels. In this work, when I talk about

1.2. Research Goal and Objectives 5

“foundations”, I refer to this large area of all organizational practices and
processes that make the measurement data needed in the control panels
available.
In organizations without clearly defined processes and working measure-
ment systems, building the foundations for control panels can be a major
undertaking. Fortunately, the literature can provide lots of help in process
and measurement system development. Thus, in this work, I merely try
to identify the necessary foundation, and provide examples of approaches
from the literature that can be used when working to build the needed
foundation.

3. Tool Support: While certainly possible to implement most of the ideas
using manual labor, in practice it by necessity requires automation. Thus,
the final issue that must be dealt with is tool support both for the foundation
and for the control panels themselves.

To tackle these issues, I break down the problem into the following three sub-
objectives:

1. to develop a conceptual framework and guidelines for the development of
control panels for software development

2. to develop a toolset supporting control panel development and deployment
in order to enable testing the ideas in practice

3. to test the concepts, guidelines and toolset in industrial environments

Each objective is further described and motivated below.

1.2.1 Development of Conceptual Framework and Guidelines

While the development of control panels is intimately related to the development
and maintenance of the corporate software measurement program, it is useful
to view them as separate processes that can be integrated in various ways. For
example, it is possible to build control panels on top of an existing measurement
system, without defining new measures; as is an approach in which the control
panel development drives the development of the measurement system itself.

There are, as reviewed in Chapter 2, several approaches available for the devel-
opment of measures and measurement systems. However, the systematic devel-
opment of visualizations and their collection into control panels is typically not
included in these. Since our focus is on the development of control panels, we
are not interested in proposing yet another approach for measurement program
development, but instead focus on the development of the visualizations and their
combination into control panels. To this end, this work develops a framework for
control panel development that identifies the main concepts needed. In addition,
I try to provide tentative guidelines that can help practitioners when defining con-
trol panels. The requirements for this are listed in Table 4.1 and further discussed
in Chapter 4.

6 Introduction

Table 1.1: Requirements for conceptual framework and guideline development

No Requirement

FR-1 Concepts: The framework should define the central concepts needed for the
development of control panels.

FR-2 Guidance: Guidelines for control panel development should be developed.

FR-3 Method independence: Control panel development should be independent of
measurement paradigm or methodology.

FR-4 Organizational independence: It should be possible to develop control panels
for different organizations and environments.

FR-5 Technological independence: Control panel development should be independent
of the particular technological tools deployed.

FR-6 Usability: The framework should be easy to learn and use.

FR-7 Feasibility: Control panel development should be feasible in practice.

As discussed in Chapter 4, to satisfy these requirements, we developed a con-
ceptual framework defining the main concepts needed for the development of
control panels, as well as developed guidelines for the development of panels.

1.2.2 Toolset development

For measurement to be effective, especially when aiming at instant feedback of
measurement results, automation is crucial (Grady and Caswell, 1987; Tian et al.,
1997; Basili and Rombach, 1988; Lavazza, 2000; Parviainen et al., 1997; Kempkens
et al., 2000). We derived a set of requirements for a toolset capable of supporting
control panel development and deployment. The requirements are summarized
in Table 1.2. At that point in time, we did not find any existing tools that con-
tained the functionality needed, and we therefore set out to build our own tool
for supporting the definition and display of measurement data. Later, tools such
as MetricCenter and its successor DataDrill (Distributive, 2005) by Distributive
Management3 and recently HackyStat (Johnson et al., 2005) have implemented
similar ideas. These, as well as the tools available at the time of our work are
further discussed in Scetion 2.5

The toolset we developed to satisfy these requirements, as well as the rationale
behind both the requirements and the toolset are further discussed in Chapter 5.

1.2.3 Empirical Testing

The final objective was to test the our concepts, guidelines and toolset in in-
dustrial environments. In practice, the research did not follow a strict linear
“research-then-transfer” (Potts, 1993) model in which we first developed the con-
cepts, guidelines and toolset and then tested them empirically. Instead, we worked

3http://www.distributive.com

1.3. Scope 7

Table 1.2: Requirements for toolset development

No Requirement

TR-1 Stakeholder customizability: The system should support the definition and dis-
play of different, customizable views for different stakeholders.

TR-2 Navigation: The system should support navigation between different panels.

TR-3 Access control: The system should support authentication and access control.

TR-4 Data source compatibility: The system should be compatible with existing cor-
porate measurement systems and data sources.

TR-5 Multi-method approach: The system should support different approaches to
the definition and application of measurement.

TR-6 Ease of use: Basic system usage should be easy and not require special skills or
training.

TR-7 Multi-platform compatibility: The system should work in both Windows and
Unix environments, and must support both the Netscape and Internet Ex-
plorer browsers.

TR-8 Distributedness: The system should support people working in physically sep-
arate locations.

TR-9 Low-cost: The system must be cheap to acquire and should not contain any
costly third-party components.

TR-10 Lo(ing: The system should support logging of user actions.

closely together with our industrial partners for a period of three years, during
which we gained both feedback and ideas for improvement. Working this way
ensured the practical relevance of the work, as well as allowed the researchers to
gain a deeper understanding of the problems and issues of measurement develop-
ment in industry than possible if we had adopted a linear research model. The
research approach used is described fully in Chapter 3.

1.3 Scope

The focus of this work is on the development and implementation of control panels for
software development. Thus, the main focus is on the design and implementation
of the control panels themselves.

In a perfect world, companies would have working measurement systems to
which we could utilize an experimental research design (Campbell and Stanley,
1963), essentially “plugging in” our ideas and tools and then compare the post-
treatment results with the pre-treatment ones. Unfortunately, as explained in
Chapter 6, only one of the case companies had a working measurement system.
Therefore, we will, on several occasions, have reason to touch upon general issues
of measurement and measurement system design, i.e., the “foundations”, though
a thorough discussion of them is outside the scope of this work.

8 Introduction

Furthermore, since the focus is on software development, the literature review
does not cover other fields, such as manufacturing or management that routinely
use measurement for status information and control. The one exception to this
is a short discussion on the Balanced Scorecard (BSC) (Kaplan and Norton, 1992),
which several of our partners either were using, or were adopting. While strictly
viewed not in the focus of the work, the BSC is briefly discussed in the literature
review chapter in order to make it easier for the reader to follow the discussions
on our empirical experiences in Chapter 6.

The validation efforts in this work must be considered very tentative, since
the companies also participated in and influenced the design of the conceptual
framework, the guidelines and the toolset. Likewise, as discussed in Chapter 3,
this kind of research also has a high risk for researcher bias. Thus, conclusions
regarding the superiority or inferiority of our proposed approach as compared
to other ones are not possible based upon the data of this study, but left for
future research. However, most research in software engineering proposing new
frameworks and approaches typically suffer from the same weaknesses.

1.4 Assumptions

In our work, we made the following assumptions. They are stated here to com-
municate the measurement “philosophy” taken in this work, not as a complete
list.

Assumption 1 Management decision making should be based upon facts rather than opin-
ion whenever possible and feasible.

The first assumption states that we think that management should be based upon
hard facts rather than opinion also in software development, despite the prob-
lems related to getting this information. This fact-based view of management, as
opposed to intuitive or informal management is the prevalent view in the field of
software engineering.

Our second assumption is related to the application of measurement to organ-
izations:

Assumption 2 Software measurement can be successfu!y implemented in organizations.

In addition to success stories, empirical evidence on the application of meas-
urement to organizations also contain warning examples of measurement dysfunc-
tion leading to problems like gamesmanship and invalid data. In this work we take
the stance that measurement dysfunction is not an inherent property of organ-
izational measurement, but an accidental property resulting from, e.g., defining
meaningless measures or misuse of measurement data.

The third assumption deals with human behavior:

Assumption 3 Software developers and development managers have a positive and con-
structive attitude to their work and strive to perform we! even under suboptimal circum-
stances.

1.5. Contributions 9

In his book on performance measurement, Simons (2000, p. 13) makes five points
about humans working in organizations in “modern economies”. First, they want
to contribute to an organization of which they can be proud. Second, they know
the difference between right and wrong, and choose to do right. Third, people strive
to achieve even in the absence of external inducements, such as rewards and bo-
nuses. Fourth, people like to innovate, and fifth, they want to do competent work and
take pride in their accomplishments. Though, as admitted by Simons, somewhat
heroic, these assumptions well capture the positive attitude to software developers
taken in this work.

1.5 Contributions

This thesis makes three distinct contributions to knowledge. First, the conceptual
framework and guidelines for control panel development presented in Chapter 4
presents a way of conceptualizing and structuring the presentation of measure-
ment results in software development organizations. While the focus in this re-
search has been on software development, the concepts and development process
is likely to be applicable also to other fields, like new product development.

Second, the toolset discussed in Chapter 5 provides a platform that can be
used both for developing and supporting control panels, as well as for analysing
their use, thus deepening our understanding of benefits and drawbacks. While
now somewhat technologically outdated, the toolseťs value is probably more in
its set of features and design than in the actual implementation.

Finally, our empirical experiences, discussed in Chapter 6, show that imple-
meting control panels is viable, but challenging. In particular, tool deployment
and integration into existing measurement programs and tools is difficult and de-
mands a high level of organizational commitment and a substantial investment.
We identified tentative success factors and issues that must be dealt with when
trying to implement control panels.

1.6 Thesis Structure

This initial chapter has discussed the motivation, goals and objectives, scope and
central terminology used in this research, as well as the research approach used
and its central contributions. The rest of the thesis is structured in the following
way:

Chapter 2 contains review of the literature on software measurement focusing
on the main issues from the point of view of developing tool supported
software development control panels.

Chapter 3 presents the research design employed.

Chapter 4 discusses the conceptual framework and guidelines that we developed
and used.

10 Introduction

Chapter 5 presents a toolset we built to support the design and implementation
of software development control panels.

Chapter 6 discusses our empirical experiences in applying the framework,
guidelines and toolset in industry.

Chapter 7 contains the conclusions, discusses the contributions of the research,
and outlines directions for future work.

Chapter 2

Theoretical Background

When you can measure what you are speaking
about, and express it in numbers, you know some-
thing about it; but when you cannot measure it,
when you cannot express it in numbers, your know-
ledge is of a meager and unsatisfactory kind: It
may be the beginning of knowledge, but you have
scarcely in your thoughts advanced to the stage of
science.

LORD K+LVIN, 1824–1904

2.1 Introduction

IN this chapter I present an overview of software measurement literature relev-
ant to the development and implementation of software development control

panels. Since the existing body of knowledge on software measurement is vast1,
I focus on three aspects: approaches to development of industrial measurement
programs, the use and development of visualizations and control panels, and meas-
urement tool support. Before this, I present the central terms used. Since general
overviews and historic descriptions of the software measurement field are avail-
able elsewhere (Fenton and Neil, 2000; Zuse, 1995, e.g.), I have not included such
discussions here, but refer the interested reader to the above references.

2.2 A Note on Measurement Terminology

This section presents the key concepts and central terminology used in the thesis.
This is necessary, since the terminology still is confusing and authors even use
the same word in completely different meanings, making it necessary to infer the
meaning from the context2.

1A search in INSPEC on the term “software metric” gives over 5000 hits.
2As an example, the term metric has been used to refer to both the instrument used for measurement,

as well as the result of that measurement, and its presentation. Thus the term “metrics reuse” could mean

11

12 Theoretical Background

2.2.1 Measurement

I have adopted the definition of measurement coined by Fenton and Pfleeger (1997,
p. 5): the process by which numbers or symbols are assigned to attributes of entities in the real
world in such a way as to describe them according to clearly defined rules. The resulting
entities are referred to as measures.3

The important point about this definition is that when defining measures, we
need to explicitly identify the objects of measurement in the real world, as well as
their attributes that we intend to measure, and define the rules for assigning these
values. The measurement rules are typically documented in a measurement plan.
These rules, are important, e.g., for the purpose of interpreting the results of
measurement. In organizational measurement, these rules need to define both
the raw data to collect, as well as how to transform this data into measurement values

2.2.2 Visualizations and Control Panels

For the purpose of this work, the term control panel refers to “a co!ection of meas-
ure visualizations or textual displays of software measurement data grouped into a two-
dimensional display”. Measure visualizations refer to the “visual display of software
measurement data in the form of a chart, graph or other non-textual display”. Textual
displays include the use of text, numbers and tables to show measurement data.4

2.2.3 Measurement Processes

Organizational measurement can best be understood as a collection of measure-
ment related processes. I understand measurement as consisting of three distinct
activities: data co!ection, processing, and presentation, as shown in Figure 2.1.

Data collection consists of collecting and storing raw data from the organiza-
tion. Even though it could be philosophically argued that this in itself constitutes
measurement, we have found it useful to define this as a separate activity when
dealing with organizational measurement. The processing phase (sometimes re-
ferred to as analysis) consists of converting the raw data into measurement values
according to defined rules, and presentation consists of presenting the measure-
ment values by using charts, graphs and tables.

that the same measurement instrument should be applied in a different context, that the measurement
results could be reused, perhaps for another purpose than originally envisioned, or that similar charts
of graphs could be drawn in another context, even though, e.g., the details of data collection or analysis
had changed.

3I have chosen to use the term measure instead of the often widely used (and poorly defined) term
metrics, since I have found no compelling reason to adopt the term metric. Making the same decision,
Park et al. (1996) states “The problem with “metric” is not that no one knows what it means, but that everyone
thinks it means something different. Measurement, on the other hand, has a genera!y accepted definition”.

4Initially, we developed control panels without textual displays. However, our practical experi-
ences showed that users of control panels often were interested not only in the graphical view of a
measure, but also in knowing the specific numeric result of a particular measure. Thus, I later expan-
ded the definition of control panels to include textual display. In our toolset, for example, these were
implemented both by allowing text fields, and by tooltips that show a particular measurement value
when the cursor “hovers” over, e.g., a particular bar of a bar chart.

2.2. A Note on Measurement Terminology 13

Figure 2.1: Measurement Related Processes

The figure also shows other measurement related processes. Here, an import-
ant distinction is made between the process that defines the measures and proced-
ures to be used for measurement, and the actual process of carrying them out,
the measurement process. Some authors, e.g. Fenton and Pfleeger (1997) consider
both of these to be part of the same overall measurement process. This is, how-
ever, confusing in the context of organizational measurement, as the processes
have different instantiation characteristics. Finally, the measurement system us-
age process is the interface to the measurement process that defines the target
values (plans) for the various measures, as well as uses the presentations produced
by the measurement.

From the point of view of developing and using control panels, their definition
should be integrated into the measurement system definition process. The display
of control panels is done in the presentation activity of the measurement process.
As discussed later, the measurement process is a good candidate for automation,
in particular the presentation activity.

2.2.4 Controlling and Monitoring

Measurement is a general mechanism that can be used for various purposes, such as
understanding, prediction, control and motivation (Briand et al., 1996; Kerssens-
van Drongelen, 1999). In this work, I focus on the use of measurement for the
purpose of control and monitoring.

14 Theoretical Background

Control can be defined as the process of comparing actual performance with planned
performance, analyzing variances, evaluating possible alternatives, and taking appropriate
corrective action as needed (Anonymous, 2000a). Thus, when measuring for the
purpose of control, it is crucial that we have a plan that indicates the intended
target values of our measures. The plan typically includes a temporal aspect, i.e.
a statement of what value the measure should behave at a certain point in time.
This connection to a plan distinguishes this kind of measurement from monitoring,
in which case we only are interested in following up some attribute, but lack the
intention of making it meet a predefined goal.

Control panels can contain visualizations both of measures used for control,
in which case the target values are typically shown in the same visualization as the
measurement results (actuals), and of measures used for monitoring, in which case
the target values are not shown.

Next, we will turn our attention to the development of control panels and their
constituent visualizations, as discussed in the software engineering literature.

2.3 Measurement Program Development

While lots of individual measures have been proposed5, it is clear that for practical
purposes any single measure is not enough, but a set of measures is needed. Thus,
a company wanting to measure its software development effort needs to develop
a measurement program that addresses what measures to collect, and how to collect
and report them. We will next look at available approaches to do this.

During the 80s and 90s, several approaches for the development and imple-
mentation of software measurement in industry were developed. The approaches
can basically be grouped into three philosophical schools: the fixed-set of measures
school, the goal-based measurement school, and the statistical process control school.

2.3.1 Fixed Sets of Measures

The first school takes the basic point of view that there is a set of measures that
can be developed, validated, and subsequently applied everywhere. Being the most
traditional approach, it has led to the software engineering community being very
active in developing a large number of measures for various purposes. Fenton and
Neil (2000) states that the literature contains thousands of proposed measures,
most of which have not been validated and have never been used in practice.
While the statement might be intentionally provocative and exaggerated, there
is no doubt that the number of proposed measures is very large, and the use of
many of them outside the environment in which they were developed have not
been reported.

Proponents of this approach includes consultants, such as Putnam and Myers
(1997) and the Airlie council, a set of software engineering experts that developed a
set of project management measures for application to any and all projects (Brown,

5E.g., Fenton and Neil (2000) claims that thousands of measures have been proposed in the field
of software engineering.

2.3. Measurement Program Development 15

1996; Anonymous, 1998b). Table 2.1 shows the measures included in the Arlie
council project control panel. Carefully constructed, the panel contains measures
grouped into five groups: progress, change, staff, risk, and quality, and provide a
balanced view of the state of a project. Early reports of measurement success in
industry, in particular (Grady and Caswell, 1987) might be classified as belonging
to this group; however later reports from the same authors clearly belong to the
goal-based measurement school (Grady, 1992).

Despite having many benefits, and widely used in other fields, in particular
quality management of manufacturing, this approach is problematic when applied
to software development since it assumes that all development efforts are similar
and thus can use the same measures. While all software development undetakings
share characteristics, such as the reliance upon a skilled workforce and a creative
component, I strongly believe that factors such as the type of software, team
characteristics, process characteristics, and organizational characteristics all affect
the set of measures that should be applied. For example, I find it unlikely that
a five-person project developing a simple Web application using, e.g., php would
need and use the same measures as a 300 person project developing real-time
critical software for a telecommunications switching system.

However, there are many clear benefits from having a predefined, fixed set of
measures. For example, building tool support is much simpler, and it does make
it possible to compare and benchmark. It is also beneficial from an organizational
point of view, since measures do not have to be redeveloped for each new develop-
ment effort, but instead relies on heavy measure reuse. Taking the SPMN control
panel as an example of this point, deploying it as is over a large number of organ-
izations and projects is in many ways much simpler than any approach or toolset
that requires both the definition of new measures and supporting such arbitrary
measures. After successful deployment, projects might be easily benchmarked
using a panel such as the one by SPMN6.

Thus, while probably an impossible goal to achieve at the general level, I think
it is worthwhile to strive for a set of standardized set of measures that can be re-
used, with qualification, within the same organization. Then the crucial question
becomes at what level measures and sets of measures can be reused.

2.3.2 Goal-based Measurement

Despite the striking benefits of having a fixed set of measures that could be applied
to all situations, the second approach, goal-based measurement, has been much
more successful in practice. Goal-based measurement relies upon the idea that
measures must be tied to the organizational context, in particular to organizational
goals, and that there is no set of measures that can be standardized and universally
applied.

The academically most influential work developing industrial measurement
programs was performed by Basili and his colleagues at the University of Maryland
by developing the Goal-Question-Metric (GQM) approach (Basili and Rombach,

6Given that the users are able to correctly interpret the measures.

16 Theoretical Background

Table 2.1: Measures in the SPMN Project Control Panel(Anonymous, 1998b)

Group Measure Explanation /Comments

Progress Earned value Budgeted cost of work performed (BCWP) compared with
total budgeted cost (BAC) and budgeted cost of work per-
formed (BCWS)

Actual cost Actual cost of work performed (ACWP) compared with
total estimated cost (EAC)

Elapsed time End of current reporting time period vs. total budget (SAC)

Cost performance
index (CPI)

BCWP/ACWP

To-complete
performance index

BAC BCWP
EAC ACWP

Total program
performance efficiency

Abba chart

Quality gate task
status

Number of tasks due, completed on time, completed late,
and total overdue tasks last month

Quality gate tasks
completed

Cumulative number of tasks planned and completed over
time

Change Configuration
management churn
per month

of modified CI’s rechecked
into CM last month

of CI’s in CM system

−
−

·

Requirements change
per month

of new and changed
requirements last month

of original requirements

100

·

Staff Voluntary turnover per
month

of staff voluntarily leaving
last month

of staff at beginning of month

100

·

Overtime per month # overtime hours last month
of base hours

100

·

Risk Risk exposure Each risk plotted as a dot

Risk reserve Cost: risk exposure cost vs. risk reserve cost. Time: sched-
ule risk reserve vs. schedule risk cost

Metrics problem Metrics warning indicator

Anonymous warning Bad news from staff

Quality Defects by activity Critical and severe defects open and closed

100

2.3. Measurement Program Development 17

1988; Basili et al., 1994). This approach, which is grounded in the authors’ experi-
ence with software measurement at the NASA Software Engineering Laboratory7,
is based upon the idea that measures must be developed based upon an organiza-
tion’s explicitly stated measurement goals. The authors’ experiences with collect-
ing measurement data (Basili, 1984), showed that collecting data without a clear
view of what it will be used for is likely to be counterproductive and lead both to
missing data and the collection of data that will never be used, but stored in “data
graveyards”.

Using the GQM, measures are defined top-down by first stating formal meas-
urement goals, then asking questions that need to be answered in order to meet the
goal, and finally, define measures that answer the questions. This exercise helps
build a GQM tree that makes implicit the mental models people have of the object
under study. This knowledge is important when interpreting the results of the
measures. Figure 2.2 shows the goal tree, and a goal template used by the GQM
approach. While not originally part of the GQM approach, the goal template
was developed to help formulate measurement goals. As shown in the figure, each
measure can be tied to several questions, and several questions to each goal.

Goal

Q1 Q2 Q3 Q4

M7M1 M2 M3 M5 M6M4

D
e
fi
n
it
io
n

In
te
rp
re
ta
ti
o
n

Question

Metric

(a) A GQM Tree (Basili, 1984)

Dimension Description

Purpose To (characterize, evaluate, predict, motivate etc.) the (process,
product, mode, metric, etc.) in order to (understand, assess, man-
age, engineer, learn, improve, etc.) it

Perspective Examine the (cost, effectiveness, correctness, defects, change, product
metrics, reliability, etc.) from the point of view of the (developer,
manager, customer, corporate perspective, etc.)

Environment The environment consists of the following: process factors,
people factors, problem factors, methods, tools, constraints
etc.

(b) The GQM Goal Template (Basili and Rombach, 1988)

Figure 2.2: The GQM Approach

While intuitively nice and simple, the GQM has not been without its critics.
More specifically, it has been deemed to be more an approach for brainstorming
than a real method (e.g. (Card, 1993)), due in particular to its lack of a guiding

7Card (1993) mentions that it is a generalization of the Factor/Criteria/Metric framework de-
veloped at Rome Laboratories and reported by McCall (1977).

18 Theoretical Background

process and the gap between the definition of goals and the selection of measures.
Partly addressing this problem, subsequent work on GQM has developed exten-
sions to the approach, such as the abstraction sheet (Briand et al., 1996), as well
as documented the GQM process in greater detail (Solingen and Berghout, 1999).

The GQM approach has also become popular in industry – many of the exist-
ing experience reports, like (Grady, 1992; Daskalantonakis, 1992; Fuggetta et al.,
1998) have based their measurement programs on the GQM, albeit the earlier
ones quite informally.

In addition to the work expanding upon the GQM, the most well-known
approaches to building industrial measurement programs, including the ami ap-
proach (Pulford et al., 1996), and the GQ(I)M approach (Park et al., 1996) are
goal-driven. Common to these approaches is the identification of business goals
that are further broken down into GQM measurement goals, thus adding another
layer of abstraction to the process.

Goal-based measurement is also widely adopted in fields outside software
measurement. Many performance measurement approaches rely on the definition of
goals and deriving related measures. In particular the popular Balanced Scorecard
(BSC) approach for strategic measurement (Kaplan and Norton, 1992) belongs to
this group. The BSC requires companies to define measurable objectives in at
least four perspectives: the customer, internal business process, learning and growth,
and financial perspectives. This is claimed to help management get a “balanced”
view of the organization replacing purely financial management with other com-
plementing perspectives8. The BSC and GQM can also be naturally combined,
as proposed both by us (Lassenius et al., 1999) and others (Goethert and Fisher,
2003, e.g.).

The main problem with goal-based approaches like the GQM and its relatives
lies in the idea of context-based measurement itself. Blindly subscribing to the
idea of always developing new measurements for each new undertaking might,
while perhaps given the right expertise and infinite resources, produce the best
possible set of measures for each situation. However, this can lead, in addition
to high measurement development costs, to challenges with benchmarking, tool
support, and training the personnel. In practice, however, goals and related meas-
ures can often be reused, and new measures do not have to be developed from
scratch each time.

2.3.3 Statistical Process Control

One of the key factors in increasing productivity in manufacturing has been the
introduction of statistical process control (SPC), in particular the work of Juran,
Shewart and Deming. While SPC is intended for controlling highly repetitive pro-
cesses, typically of short duration, which means that one can quickly get a large
number of runs, its application to software development, or any development

8While the BSC basically is outside the scope of this work since it belongs to the field of per-
formance management, it is included here since many organizations at the time of our research had
implemented, or were in the process of implementing scorecards.

2.4. Measurement Visualization and Control Panels 19

activity, is not without problems. Development efforts in general, and software
development in particular, is typically more or less one-of-a-kind and thus inher-
ently non-repetitive, has long runs, and uses processes that hardly are in statistical
control.

This has not put the proponents of SPC down. Instead, they claim, the non-
repetive nature of software development at, e.g., the project level, does not mean
that, e.g., certain subprocesses, such as testing or inspections are not highly re-
petitive. And, the goal, of course is to make software development as a whole in
statistical control, using the classic quality tools.

The work on SPC for software development by Florac et al. (1997); Florac and
Carleton (1999) is, in addition to laying out the SPC ideas, also philosophically
related to the goal-based measurement school, since it contains the idea of devel-
oping organizationally specific measures that are explicitly related to the business
goals of the organization. Since the main point, however, is to apply SPC, I
have classified it as belonging to the SPC schoool. Other work on statistical pro-
cess control in software engineering include Burr and Owen (1996) and Weller
(2000).

Despite their best efforts, it seems that statistical process control in software
engineering, and indeed the discipline of software engineering itself still have
a long way to go before SPC can become mainstream practice. Despite this,
the quality tools and visualizations used by the SPC community might have a
lot to offer to software engineering, and can be useful even if statistical process
control is not achieved. In particular, the basic charts and graphs used in quality
management are interesting and mostly applicable to software development.

2.3.4 Summary

Summarizing the above discussion, we can conclude that there is a large body of
knowledge on software measurement in general, and that there are several ap-
proaches available for the development of industrial software measurement pro-
grams. The existing approaches can be classified into three groups: those based
upon defining and applying a fixed set of measures cross organizations and pro-
jects, those based upon deriving measures based upon organizational goals, and
those based upon statistical process control. Of these, the goal-based school is
undoubtedly the most popular. Table 2.2 lists the main measurement approaches
developed in the field and their main ideas.

From the point of view of visualizing software development status, all of the
reviewed schools can be useful.

2.4 Measurement Visualization and Control Panels

In this section, I discuss the literature on software visualizations. First, I look
at the use and development of single measurement visualizations, followed by a
discussion on how these can be combined into control panels.

20 Theoretical Background

Table 2.2: Measurement Development Approaches

Approach Main ideas Example references

SPMN • Use a fixed set of measures and related “best
practices” at the project level

• Make development visible using a “control panel”

Brown (1996);
Anonymous (1998b)

Pfleeger • Measurement must be tied to process maturity.
• Different measures can be introduced at different

maturity levels

Pfleeger and McGowan
(1990)

GQM and
its
extensions

• Measures must be derived based upon clearly stated
measurement goals

• Three level conceptual hierarchy: Goals,
Questions, and Metrics

• All levels are needed both for measure
development and interpretation

• Arrange feedback sessions with developers

Basili (1984); Basili and
Rombach (1988);
Fuggetta et al. (1998);
Solingen and Berghout
(1999, 2001)

ami • Four activities: assess, analyze, metricate, improve
• Uses business (primary) goals to derive

measurement goals, from which questions and
measures are derived

• 12-step method
• Developed by European consortium of academia

and industry

Debou et al. (1994);
Pulford et al. (1996)

M P
(Model-
Measure-
Manage
Paradigm)

• Recognizes stakeholders at different corporate
levels

• Includes success factors obtained by studying
software measurement programs

• Uses risk as a killing factor to avoid explosive
growth of goals, subgoals, questions and measures

Offen and Jeffery (1997)

GQ(I)M • Extends the GQM by introducing business goals at
a higher level of abstraction than measurement
goals

• Adds the notion of indicator that is developed prior
to the actual measure

Park et al. (1996);
Goethert and Hayes
(2001)

Statistical
Process
Control

• Based upon the ideas of Shewart and Deming
• Apply basic SPC tools to software development

processes
• Goal is statistical control using control charts

Florac et al. (1997);
Florac and Carleton
(1999); Burr and Owen
(1996)

3

2.4. Measurement Visualization and Control Panels 21

2.4.1 Single visualizations

The idea of visualizing the state of software development using visual displays is
not new. Most papers on software measurement, from the early days on, include
example charts or graphs depicting the visualization of proposed measures. Books
on software measurement, as well as published case-studies also routinely illustrate
the measures used by showing charts and graphs. (e.g. Gilb (1977); Fenton and
Pfleeger (1997)).

Visualizing data has several benefits, as opposed to using statistical analysis.
Software engineering data is, e.g., typically not normally distributed, the data
sets are small, and might have been collected in a manner that does not meet
the requirements for experimental setups. Applying statistical tests randomly to
such data might show spurious correlations. On the other hand, graphs are robust,
because they do not require any statistical assumptions, and are more user friendly
than statistical analyses. The visualizations must still be made with care, and the
interpretation carried out carefully (Pulford et al., 1996; Park et al., 1996).

The fact that most software measurement articles contain example graphs
means that literature contains a large set of proposed visualizations, some used
only by the developers of a particular measure, others widely used. Despite this
abundance of visualizations, I have not been able to find any systematic discussion
on their use, or their “goodness” in the software engineering field. This is unfor-
tunate, since one way of attacking the development of visualizations is to have a
collection of “good” ones from which one could pick the ones that are appropriate,
or at the least use as a basis for further customization. An informal study of case
articles and software measurement books shows that most visualizations are based
upon simple graphs of the kind that a modern spreadsheet program can draw. In
addition, more exotic visualizations have been proposed, but do not seem to have
become widely used (Curtis and Scarfone, 1992). The field of software visualiza-
tion has developed ways of visualizing software artifacts, but these do not seem to
be used in typical software measurement programs. However, there is literature
on development of visualizations in general. In particular the work by Tufte (2001,
1997) might be helpful when developing software development control panels.

Of the reviewed measurement program development approaches, only
GQ(I)M and ami included guidelines for developing visualizations. In the
discussion on indicators in the GQ(I)M method, Park et al. (1996) state that “As
you can see, constructing useful indicators is a highly creative process. Unfortunately, it is
often easy to construct nifty indicators that mislead both the creators and their audiences”.

From our point of view, the work at the Software Engineering Institute (SEI)
is particularly interesting, since it is the only one of the reviewed approaches that
includes the development of visualizations (called indicators) in the design phase
of the measurement program. The approach, named GQ(I)M (Park et al., 1996)
is, as the name suggests, based upon the GQM approach, with the addition of
an extra level—the indicator level—between the questions and the measures. To
aid in developing indicators, the GQ(I)M method includes an indicator template,
the use of which has later been discussed by Park et al. (1996); Goethert and
Hayes (2001); Goethert and Siviy (2004). According to this report, the indicator

22 Theoretical Background

template has been used successfully both to develop new measurement programs,
as well as to focus and improve existing ones.

While undoubtedly useful, the indicator template does not provide any actual
guidance for the selection of visualization type, i.e., type of graph for a certain
measure. Instead, it focuses on motivating the need for the indicator, as well as
on documenting the necessary measurement program details, such as what data to
collect, defining data collection and analysis responsibilities and reporting. Thus,
the template is more a general template for visualization-driven measurement pro-
gram development than actually an aid when developing the visualizations. The
indicator template is shown in Figure 2.3 below. Indicating the authors’ practical
experience, template customization is encouraged.

Date

Indicator Name/Title

Questions

Objective

Visual Display

Perspective

Input(s)
Data Elements

Definitions

Data Collection

How

When/How Often

By Whom

Form(s)

Data Reporting

Responsibility

By/To Whom

How Often

Data Storage

Where

How

Security

Algorithm

Assumptions

Interpretation

Probing Questions

Analysis

Evolution

Feedback guidelines

X-reference

Figure 2.3: The GQ(I)M indicator template (Goethert and Hayes, 2001; Goethert
and Siviy, 2004).

More practical advice is given in the ami method (Pulford et al., 1996), step 10
of which is “Presenting and distributing the data”. The description of this step
contains a list of graphical presentations, as well as some simple guidelines for
developing graphs. These guidelines discuss the use of simple data plots, such as
X-t plots, pie charts, scatter plots, and histograms, and give examples of data sets
and measures to which these are applicable.

Practically useful is also the work on SPC. Florac and Carleton (1999), as well as
other books pushing the use of statistical process control in software engineering
(e.g. (Burr and Owen, 1996)) discuss the use of traditional SPC tools, including
control charts.

2.4. Measurement Visualization and Control Panels 23

2.4.2 Control Panels

For a complex activity like software development it is unlikely that any single
measure could be developed that would contain enough information for various
stakeholders. Instead, measurement programs consist of sets of measures. It is
well understood that focusing on any single measure and excluding everything else
can have unexpected and unwanted effects. Thus, the literature typically stresses
the need to have a balanced set of measures to get a good picture of what is going
on. For example, Park et al. (1996, p. 59) approaches this through the concept
of unexpected data, stressing the importance of understanding a problem from
various viewpoints, and in particular the importance of looking at other variables
too, when seeing something “strange”. If using the GQM approach, a single goal
and question typically leads to several measures, that together help answer the
question.

From the point of view of presenting the results of measurement, getting such
a balanced view requires sets of visualizations. As discussed previously, these
can be combined into a compound display, a control panel. The perhaps most
widely published control panel is the one developed for software projects by the
Software Project Manager’s Network (SPMN). This panel contains a predefined
set of measures, described in the Program Manager’s Guide to Software Acquisition
Best Practices (Anonymous, 1998b), and the context of which is discussed in (Brown,
1996). The visual appearance of the panel is shown in Figure 2.4.

Figure 2.4: The Software Project Manager’s Control Panel (Anonymous, 2000b)

As shown in the figure, the control panel displays project status in five di-
mensions: progress, change, staff, risk, and quality. Most dimensions contain
several measures, giving a good overview of project status. While clearly depend-
ent upon a particular process and reporting cycle, the measures in the panel seem
well conceived, and in particular the dimensions are likely to be applicable to

24 Theoretical Background

most software development efforts. The control panel has been implemented as
a freely available Excel application9.

While an intuitively nice idea, the control panel concept is not without its
critics. In particular, Kitchenham (1996, pp. 1–4) discusses both the underlying
ideas of the control panel, as well as the specific measures, and identifies two main
problems that she thinks are rooted in the “control panel” analogy:

• The visual presentation using speedometer dials and odometers gives the
impression that all indicators are simple objective measures, and

• The implication that the measures are under control

The first problem is particularly evident when looking at measures based upon
estimates, which in software engineering tend to be both subjective and poor.
Evidence suggests that the best early estimates (done, e.g., in the requirements
phase) are off by up to 100%, and that estimates made later in the process still
may miss the target by as much as 30%. Thus, e.g., earned value tracking which
is based upon original estimates might be grossly misleading.

Another problematic area related to the first issue, according to Kitchenham,
is the use of quality gates. These are (preferrably objective) conditions that must
be met before a task is considered complete. Kitchenham identifies two problems
with such gates: the fact that a task might turn out not to have been completed
after all, e.g., due to deficient execution; and that important tasks might be miss-
ing from the original plan. These problems can lead to the gauge winding both
backwards and forwards, and even to unexpectedly change its value. While this
observation most certainly is true, I am not sure that it poses such a problem—if
we understand the issues involved, i.e., that it is not a linear or straight trip to the
goal.

The problem of the assumption of the measures being under control is that,
Kitchenham claims, it means that “good project managers, like good drivers” are
expected to know what to do when a measure changes. However, what actions to
take, and under what conditions to take them is not clear, and the control panel
provides no guidance in this respect.

While there certainly is some truth in the critique, I don’t totally agree. First, I
don’t think at all that simply having a nice visual layout resembling a control panel
implies that the measures are neither objective nor in control. However, I agree
that this is implied in the conceptual whole as presented by the report. However,
since people in software engineering organizations typically are well aware of the
problems in controlling software development, I don’t think this threat is that
big.

A more serious problem, I think, is the the idea that the same panel can
be applied to all projects and organizations. While the SPMN report and Airlie
council do not recognize the need to customize the control panel, the user manual
for version 2.0 of the application shows that practical use seems to raise the need

9The application can be downloaded from the homepage of the Software Program Managers
Network at .http://www.spmn.com/

2.5. Tool Support 25

for customization: “Based on requests ,om users for more adaptable control panels that can
be modified to reflect individual project metrics, Project Control Panel provides the option
of creating additional custom control panel worksheets. These worksheets can be tailored
to display metrics appropriate for your project that are not represented on the main control
panel.(Anonymous, 2000b). However, the viewpoint taken is that the measures
included on the main control panel are applicable to and relevant for all projects.
.

Later work has developed more general frameworks for control panels as well
as discussed problems of developing customized control centers. (Münch and
Heidrich, 2004). In particular, this work proposes the use of roles as the basis
for control panel development, and notes the lack of existing methodological
support for eliciting information requirements from the roles. While I agree
with the idea of defining role-based control panels, I think that, e.g., the GQ(I)M
might be useful from the point of view of eliciting role visualization requirements,
thus at least partly refuting the lack of methodological support. However, to my
knowledge the literature does not contain any discussion on how to meaningfully
combine single visualizations into control panels, either based upon stakeholder
roles, or any other criteria. We will return to this issue in Chapter 4.

2.5 Tool Support

While it is possible to manually perform all necessary tasks when developing and
drawing control panels, this is hardly feasible in practice. To make control panels
implementation feasible in practice, typically both the control panels themselves,
and their underlying measurement foundation requires tool support. In this sec-
tion, I give a short presentation of related work.

A general classification and discussion of measurement related tools is out of
the scope of this discussion. The interested reader is referred to the work by
Dumke (1996); Dumke and Grigoleit (1997); Dumke and Winkler (1997). The
focus here is on tools that can provide measurement analysis and presentation in
the form of control panels.

In a recent article, looking at tool support for the development of role-based
and purpose-oriented software project control centers, Münch and Heidrich
(2004) reviewed seven academic environments and found support lacking—the
tools included in their review and the main results is shown in Figure 2.5.
The review classified tools into categories based upon the support for data
presentation and visualization, as well as their support for data processing. On
the data presentation axis, the tools are classified into those providing only a
static set of visualizations, those that have the possibility to vary the visualization
based upon intended usage purpose (e.g., monitoring, prediction), and those that
in addition support role-based visualizations. On the data processing axis, the
tools are classified into those providing support only for predefined functions,
those adding context-oriented adaptation (e.g. for a particular project), and
those providing variable functions and context-oriented adaptation. As can be
seen in the figure, none of the reviewed environments supported role-based

26 Theoretical Background

visualizations using variable functions. The toolset that we developed, and which
is discussed in Chapter 5 could, with some qualifications, be put in the uppermost
right square, the main problem being that it per se does not support data analysis,
but relies on other tools to provide data in a format suitable for visualization.

SME (Hendrick

et al 1992)

WebME

(Tesoriero and

Zelkowitz 1997)

Lucos tool

Amadeus

Selby et al.

1991

PPM (IDF

Scheer AG

2000)

Ginger2

(Torii et al. 1999)

Provence

(Krishnamurthy

and Barghouti

1993)

PAMPA

(Simmons et

al. 1998)
P

u
rp

o
s
e

 a
n

d

R
o

le
-o

rie
n

te
d

P
re

s
e

n
ta

tio
n

a
n

d

V
is

u
a

liz
a

tio
n

P
u

rp
o

s
e

-

o
rie

n
te

d

P
re

s
e

n
ta

tio
n

a
n

d

V
is

u
a

liz
a

tio
n

Predefined

Functions

Predefined

Functions and

Context-oriented

Adaptation

Variable

functions and

Context-oriented

Adaptation

Data Processing

D
a

ta
 P

re
s
e

n
ta

tio
n

 a
n

d
 V

is
u

a
liz

a
tio

n

S
ta

tic

P
re

s
e

n
ta

tio
n

a
n

d

V
is

u
a

liz
a

tio
n

Figure 2.5: Tools Reviewed by Münch and Heidrich (2004)

Deciding not to repeat the same review here, I have omitted the tools reviewed
in that article, and have added related tools that (Münch and Heidrich, 2004) did
not include in their review. These tools and the reported experiences with their
use is listed in Table 2.3.

The table lists three tools that were developed at the same time as our own re-
search, and two recent developments. The software project control management
consortium’s project panel was one of the main motivations for our work, and was
implemented as an Excel application. The initial version of the control panel did
not support tailoring of project measures of their timing, but later versions added
this, upon request from users. From the point of view of our goal, the SPMN
control panel can be seen as one possible instantiation of a control panel for the
project manager role. Unfortunately I have not been able to find any reported
experiences with the use of the tool.

MetriFlame (Parviainen et al., 1997) is a tool providing support for the whole
GQM measurement process, including measurement definition, data collection,
analysis and presentation. The reported case study shows preliminary feasibil-
ity of adopting and using the tool, and more importantly, the need to tailor the
presentations to the needs of various stakeholders.

The GQM Tool (Lavazza, 1998, 2000) is another tool supporting GQM-based
measurement. The case study showed benefits such as increased acceptance of

2.5. Tool Support 27

Table 2.3: Related Measurement Tools and Experiences

Tool Measurement
School

Features and Benefits Reported Experiences

Software Project
Manager’s
Control Panel
(Brown, 1996;
Anonymous,
1998b, 2000b)

Fixed set of
measures

• Simple Excel application
with fixed measures

• Requires manual data entry
• Later versions added

measure customizability

• ?!

MetriFlame
(Parviainen
et al., 1997)

Goal-based
measure-
ment

• Support for metrics
definition, collection and
result presentation

• Connections to different
data sources

• Tailoring of presentations
to the needs of different
stakeholders

• Case study at ABB showed
feasibility of approach,
cost-effectiveness for
feedback sessions, and need
to tailor reports to specific
stakeholder needs

GQM Tool
(Lavazza, 1998,
2000)

Goal-based
measure-
ment

• Eased management of
GQM plans (reuse,
ensuring structural
consistency, keeping track
of large number of goals)

• Linking GQM plan to
corporate database (Access)

• Data analysis (running
queries) and display

• Link to external
measurement tools

• Case study at Pirelli Cavi
showed low cost of
automated data collection,
prompt goal verification
and evaluation, faster and
cheaper GQM feedback
sessions, and increased
acceptance of metrics.

MetricCenter &
DataDrill
Dashboard
(Distributive,
2005)

Paradigm
independ-
ent?

• Definition of dashboards at
several organizational levels

• Role-based dashboards
• Support for measurement

data collection, analysis and
visualization

• Implements alerts to help
focus attention

• Several companies listed as
customers, including
Booz-Allen Hamilton,
Accenture, BAE Systems

• Some press-releases
published containing
success stories. Very little
useful information
included.

HackyStat
(Johnson et al.,
2005)

Fixed set of
measures

• Integrated into Eclipse
platform

• Automatic data collection
• Simple analysis aiming at

in-process monitoring and
short-term prediction

• Data drill-down supported

• Used with success on own
development project

• No industrial experiences
as of yet

28 Theoretical Background

measurement, lower data collection and feedback costs, and reuse possibilities for
measurement plans.

The commercial tool DataDrill dashboard provides multiple-level drill-down
capabilities, hierarchical dashboards that can be customized, secure role-based
visualizations and data access, and relies upon a web-based architecture. It indeed
looks very similar to the tool we developed, as discussed in Chapter 5. However,
it also provides some additional features, e.g., alarms that help focus management
attention to important events or data. I was unfortunately not able to find any
case studies reporting on the use of the tool. The press releases provided by the
company which describe success stories, as well as the number of reference clients
listed can be interpreted to show the feasibility of the approach.

The most recent tool based upon similar ideas is probably HackyStat (Johnson
et al., 2005). HackyStat is integrated into the Eclipse development environment10,
and supports automatic data collection and simple analysis. The tool is extensible,
i.e., it is possible to add new data collection modules and graphs, and aims at
project-level support for in-process monitoring and short-term prediction. The
tool has not yet been used in industrial environments, though the experiences
with the development team using it for their own project has provided promising
outlooks. Since the addition of new measures requires coding new data collection
and presentation modules, I have classified HackyStat as belonging to the fixed
set of measures school.

In 1997 when we started our work, we did not find any tool that met our re-
quirements, and therefore we decided to develop our own tool. In addition, one
of our pilot companies had performed a study of existing measurement systems on
the market, and considered our approach superior to existing commercial systems.
This hypothesis is further strengthened by the fact that other contemporary re-
search projects developed tools in a similar vain, and that the review by Münch
and Heidrich (2004) did not find tool support for role-based measurement.

Summarizing the discussion on tool support for control panels, we can see that
several tools are available, but none (with the exception of DataDrill Dashboard,
and possibly HackyStat) that explictly supported the definition and implement-
ation of role-based, customizable control panels. However, the published case
studies help us establish both the need for tool support, as well as the expected
benefits of it.

2.6 Conclusions

This chapter reviewed the software measurement literature from the point of
view of building a set of linked control panels visualizing the state of software
development in an organization. The review was divided into three parts, each of
which identified gaps in the literature.

The review on measurement program development methodologies concluded
that there are a number of approaches available for developing industrial soft-
ware measurement programs. The approaches, which were classified into three

10www.eclipse.org

2.6. Conclusions 29

schools all have something to contribute to the development of control panels,
but they typically lack support for developing the actual visualizations, as well as
for grouping them in a meaningful way into control panels. Finally, the section
on tool support found that there are several frameworks and tools avilable for
supporting software measurement. However, the reviewed tools did not support
customizable control panels, with the exception of one commercial tool which has
been developed subsequent to our efforts. The literature does, however, support
the use of measurement, measurement visualizations, their grouping into control
panels, and the need to support the control panels with suitable tools.

Thus, while detailed information on how to build the control panels is not
available, the idea should be sound, at least according to the literature. We will
next discuss the research design we deployed for trying out the control panel idea
in our partner companies.

Chapter 3

Research Design

It is not worthwhile to go round the world to count
the cats in Zanzibar.

H+NRY DAVID THOR+Au

3.1 Introduction

THIS chapter discusses the research design employed in this thesis. First,some
general observations on research in software engineering are presented,

Second, the approaches of design research and action research are presented, fol-
lowed by the presentation of the approach used in this thesis, called “constructive
action research” . The methodological evaluation is not presented here, but, in
the interest of reader convenience, in Section 7.4 after the case study write-ups.

3.2 Research Methodology in Software Engineering

Software engineering is a young, immature science, which has even been charac-
terized as being in a crisis (Glass, 1994). Researchers have attacked their own field
in various ways: it has been described as “unscientific” (Fenton et al., 1994), not
fulfilling the criteria for an engineering science (Shaw, 1990), being an “advocacy
science” (Glass, 1994), relying too little on empirical validation of proposed ideas
and constructs (Curtis, 1980; Basili et al., 1986; Tichy et al., 1995; Tichy, 1998; Glass
et al., 2002), using an extremely narrow set of research methodologies (Glass et al.,
2002), and having little or no impact on how software actually is developed in real-
world organizations (Potts, 1993; Glass, 1994; Glass et al., 2002).

Critisizing is, however, easy. Fortunately several authors have also proposed
solutions for improving the maturity of the field. These include:

• to use an industry-as-laboratory mode of research instead of the prevalent
research-then-transfer mode, i.e., for researchers to work in close co-operation
with industrial practitioners. This helps ensure research relevance, and can

31

32 Research Design

help improve the impact of software engineering research. (Potts, 1993;
Shaw, 1990; Glass, 1994)

• to focus on empirical validation of proposed ideas, concepts, models and
methodologies (Curtis, 1980; Basili et al., 1986; Tichy et al., 1995; Tichy,
1998; Basili et al., 1986). This helps overcome the problem of “advocacy
science”, provided that the empirical validation is adequately performed.

• to learn and apply research methodologies and approaches from other fields,
such as medicine and sociology. Kitchenham has particularly focussed on
using analogies from research in medicine. (Kitchenham, 2004; Kitchen-
ham et al., 2002).

Some researchers, perhaps most notably Victor Basili (Basili, 1996; Basili et al.,
1999, 1986) have advocated applying the scientific paradigm used in the natural
sciences to software engineering, pushing for more empirical research and exper-
imentation. This seems to have been at least partly successful: there is now a
more of less established community around “empirical software engineering”, and
there is at least one academic journal focusing on the subject. However, a study
of software engineering journals over the years 1996–2001 showed that still only
about 20% of published papers included empirical validation of their results. The
majority of the papers were, not unexpectedly, in the category “design research”.
This is along the same lines as earlier studies, such as (Tichy et al., 1995; Zelkowitz
and Wallace, 1998). Thus, looking at papers published in software engineering,
the field is clearly constructive in nature, with empirical validation of constructs
becoming increasingly common.

However, the knowledge on how to validate constructs, and how to do empir-
ical studies in software engineering is still quite scarce. The field still lacks clear
guidelines and approaches, though more work is constantly done in this respect
(Wohlin et al., 2000, e.g.). Researchers have both classified different approaches
to empirical studies (Zelkowitz and Wallace, 1998), and provided guidelines for
doing empirical research (Kitchenham et al., 2002; Seaman, 1999; Juristo and
Moreno, 2001). Much of this work has its roots in other fields, such as sociology
or medicine. From this, we can learn that the appropriate strategy for construct
testing is contingent on many things, e.g., the nature of the solution and its inten-
ded application domain (Zelkowitz and Wallace, 1998). In the product innovation
literature, testing of constructs has been likened to Beta-testing, commonly per-
formed in the software industry (Dolan and Matthews, 1993; Chiesa et al., 1996).
In practice, the innovation and testing phases tend to overlap, as feedback from
early testing can and should improve the product, i.e., the construct the researcher
is developing.

In empirical research one typically strives for settings in which the researcher
is detached from the object of study, ideally taking the role of an outside observer,
intentionally keeping the interaction between the researcher and the object under
scrutiny at a minimum, with zero being the goal. In software engineering research,
in particular if the researcher has developed a new construct that needs to be

3.3. Design Research 33

tested, this is often not possible. In practice, the researcher often needs to take
the construct into an organization for testing, thus being heavily involved. Thus,
the risk of researcher bias is significant. In addition, organizations that sign up
for early studies might be classified as “early adopters” according to the model
by Moore (1991), and consequently are more positive towards the approach than
future mainstream organizations. Thus, early results can easily be overly positive.

3.3 Design Research

Good constructive, or design, research, requires more than knowing how to val-
idate a construct. One framework that can be helpful, though not published in
the field of software engineering, but in the information systems field, is the one
by Hevner et al. (2004). Since IS and SE are related fields (Glass, 1992), I think
that the framework can be applied quite straightforwardly to software engineer-
ing. The framework, shown in Figure 3.1, shows the two environments of design
research: the environment (on the left), needed to ensure the practical relevance of
the work, and the knowledge base, containing theoretical foundations and method-
ologies that the design research can use and should contribute to. Design research
in itself is viewed as consisting of two processes: build, and justify/evaluate. It also
shows the iterative nature of most design research: the artifacts are improved
based upon the feedback from the justify/evaluate process.

Research Framework

People

- Roles

- Capabilities

- Characteristics

Organizations

- Strategies

- Structure & Culture

- Processes

Technology

- Infrastructure

- Applications

- Communications

 architecture

- Development

 capabilities

Environment

Develop/Build

- Theories

- Artifacts

Justify/Evaluate

- Analytical

- Case study

- Experimental

- Field study

- Simulation

Assess
Refine

Research

People

- Roles

- Capabilities

- Characteristics

Organizations

- Strategies

- Structure & Culture

- Processes

Technology

- Infrastructure

- Applications

- Communications

 architecture

- Development

 capabilities

Knowledge Base

Applicable

Knowledge
Business

Needs

Relevance Rigor

Application in the

Appropriate Environment

Additions to the

Knowledge Base

Figure 3.1: Design Research Framework (Hevner et al., 2004)

While Hevner et al. (2004) don’t present any specific research process for
doing design research, the six steps of constructive research, a term used in a similar

34 Research Design

meaning, presented by Kasanen et al. (1991, 1993) provide a useful outline for our
purposes. Constructive research is presented as consisting of six steps:

1. Searching for a problem which is both practically relevant and interesting
from a research point of view

2. Gaining a preliminary understanding of the research problem

3. Innovation phase, in which the solution is created

4. Practical testing of the solution, i.e., verification of the construct

5. Exposition of the theoretical underpinnings of the solution and statement
of the contribution to scientific knowledge

6. Examination of the scope of applicability of the solution

As explained in Section 3.5 below, these steps well describe the approach taken
in this work. However, as indicated in the framework by Hevner et al. (2004)
construction and testing were intimately interconnected, and done in close co-
operation with our corporate partners during our research. A way of framing this
is through the lens of action research, which is discussed in the next section. Be-
fore that, however, we shall take a short look at the guidelines for design research
that Hevner et al. (2004) present, since they are useful for later evaluating the
research. These guidelines are shown in Table 3.1 below. Since the guidelines are
mostly self-explanatory, I refer the reader to the original text for a more in-depth
discussion of them. The guidelines are also discussed in more detail in Section 7.4
where I evaluate the research of this thesis.

3.4 Action Research as a Validation Approach

Since we worked in a small number of companies, using the classifications shown
in the framework discussed above, we used a case study approach to validation.
(Yin, 1994, p. 13) defines case study as “an empirical inquiry that investigates a con-
temporary phenomenon within its real-life context, especia!y when the boundaries between
phenomenon and context are not clearly evident”. Such an approach is appropriate
when the researcher is unable to control behavioral events, and the focus is on
contemporary events. Furthermore, Yin (1994) states that the case study inquiry
is suitable when there are more variables of interest than data points, and there-
fore relies on multiple sources of evidence and triangulation, and that case study
research benefits from the prior development of theoretical propositions to guide
data collection and analysis.

This characterization well fits a situation in which one wishes to test a new
construct. When, as in our case, testing of the construct demands that the test
environment (i.e., company) adopts a new way of working, a case study approach is
appropriate. Action research can employ various methodologies, both qualitative
and quantitative. In this research, the case studies are, as described earlier, best
framed in the context of action research.

3.4. Action Research as a Validation Approach 35

Table 3.1: Guidelines for Design-Science Research (Hevner et al., 2004).

Guideline Explanation

1. Design as
an Artifact

Design science must produce a viable artifact in the form of a con-
struct, a model, a method, or an instantiation

2. Problem
Relevance

The objective of design-science research is to develop technology-
based solutions to important and relevant business problems.

3. Design
Evaluation

The utility, quality, and efficacy of a design artifact must be rigor-
ously demonstrated via well-executed evaluation methods.

4. Research
Contribu-
tions

Effective design-science research must provide clear and verifiable
contributions in the areas of the design artifact, design foundations,
and/or design methodologies.

5. Research
Rigor

Design-science research relies upon the application of rigorous
methods in both the construction and evaluation of the design ar-
tifact.

6. Design as a
Search
Process

The search for an effective artifact requires utilizing available means
to reach desired ends while satisfying laws in the problem environ-
ment.

7. Commu-
nication of
Research

Design-science research must be presented effectively both to
technology-oriented as well as management-oriented audiences.

Action research is a qualitative research method that has its roots in the work
of Kurt Lewin, and aims at bridging the gap between science and the practical
affairs of the world (Stringer, 1999). Simultaneously and independently developed
in England by a group working with World War II victims, action research combines
theory and practice (and researchers and practitioners) through change and reflection in an
immediate problematic situation within a mutua!y acceptable ethical ,amework (Avison
et al., 1999).

Action research has three distinct characteristics (Baskerville and Wood-
Harper, 1996):

• The researcher is actively involved, with expected benefit for both researcher
and organization.

• The knowledge obtained can be immediately applied. There is not the sense of
the detached observer, but that of an active participant wishing to utilize
any new knowledge based on an explicit, clear conceptual framework.

• The research is a cyclical process linking theory and practice.

There are, however, challenges with such an approach. Baskerville and Wood-
Harper (1996) mention the lack of impartiality of the researcher and that the
process easily leads to a lack of research discipline. Gummesson (2000) notes
that action research sometimes is critisized as “consulting masquerading as re-
search”. Overcoming these problems, requires—in addition to lobbying research

36 Research Design

colleagues—the establishment of a formal research agreement, provision of a the-
oretical problem statement, using planned measurement, to maintain collabora-
tion and subject learning, to promote iterations and to be careful when generaliz-
ing findings.

Action research has not been widely used in software engineering—in their
survey of software engineering research, (Glass et al., 2002) found that 0% of the
sampled articles used it as the dominant research method. Since the statistics
are based on a sample, while not showing the total absence of action research,
they clearly show that it is not common in our field. This is perhaps somewhat
surprising, since action research can be used to alleviate the problems of practical
relevance, validation, and naturally supports the iterative nature of design work.
However, having read several articles in the field of software engineering that
contain “case studies” validating various approaches, I tend to agree with Avison
et al. (1999) that much research reported as “case studies” seem to have “action
research characteristics”, even if the actual term action research is not used.

The action research process has been described by Susman and Evered (1978)
as consisting of five steps, as shown in Figure 3.2.

DIAGNOSING

Identifying or

defining a problem

SPECIFYING LEARNING

Identifying general findings

ACTION TAKING

Selecting a course of action

EVALUATING

Studying the

consequences of an action

ACTION PLANNING

Considering alternative

courses of action for solving a

problem
Development of
a client-system
infrastructure

Figure 3.2: The Action Research Cyclical Process (Susman and Evered, 1978)

Central to the research process is the establishment of the client-system infra-
structure, in which mutually agreed upon rules and forms for the collaboration are
defined between the researcher and the subject of the research (“client”). The cyc-
lical process starts with a joint diagnosis of the problem to be addressed, followed
by action planning considering various ways of attacking the problem. Then, a
course of action is selected and taken, after which the consequences are evalu-
ated. Finally, general findings are identified, after which the cycle restarts from
a diagnosis of the new situation. As discussed in the next section, this process
closely described the way we worked, the main difference being the central role
the constructs we were developing played in the research.

3.5. Research Process: “Constructive Action Research” 37

3.5 Research Process: “Constructive Action Research”

The research discussed in this thesis basically followed the process for construct-
ive research discussed above, with the construction and validation taking place
in action research cycles, of which there typically was several in each case study.
Figure 3.5 illustrates the steps.

Research Process
PROBLEM IDENTIFICATION

Identifying a problem that is

theoretically and practically

important

INITIAL CONSTRUCT

Preliminary construct

PARTNER IDENTIFICATION

Finding interested corporate

partners for joint development

EXTERNAL EVALUATION

Evaluation of impact and

utility by external body

DIAGNOSING

Identifying or

defining a problem

SPECIFYING LEARNING

Identifying general findings

ACTION TAKING

Selecting a course of action

EVALUATING

Studying the

consequences of an action

ACTION PLANNING

Considering alternative

courses of action for solving a

problem
Development

and refinement
of construct

Construction and Evaluation

(Action Research)

REPORTING

"Final construct"

Lessons learned

Figure 3.3: Research Process

38 Research Design

3.5.1 Problem Identification

As previously explained, we started the research with a preconceived idea: to
help companies improve their ability to control their software development op-
erations by instituting visual, on-line feedback of status information in the form
of control panels to different stakeholders, including both management and prac-
titioners. We motivated this initial idea with the success of measurement-based
approaches in manufacturing, the already quite widespread use of process man-
agement techniques in both product and software development, and our own
earlier observations of the low practical industrial utilization of measurement in
management of software development. An initial literature survey of the main
approaches of measurement and process improvement in software engineering
found no directly applicable framework or method or tool to use in our efforts.
We thus think that the identified problem fulfills the criteria of both theoretical
and practical relevance.

3.5.2 Initial Construct

Based on a literature study and our previous experience in working with Finnish
software development companies, we developed a preliminary vision consisting of
the idea proposed in the previous chapter: we envisioned software development
status information being continuously available to all relevant stakeholders in role-
specific and tailorable visual displays, so called control panels that were accessible
from anywhere, automatically updated, and applied at all organizational levels.
We recognized at this point that such control panels would only be the “tip of
the iceberg”, i.e., that their development would require substantial investments in
measurement program development, implementation and tool support.

3.5.3 Partner Identification

In order to get corporate partners to work with, we approached twelve companies
that we thought would be interested in working with us in defining and imple-
menting visual control panels for their software development activities. We thus
used what Patton (1990) would call purposeful sampling.

We approached the companies with a preliminary project plan and a presenta-
tion in which we outlined the main idea: to develop stakeholder-customized visual
“control panels” for monitoring their development activities. The companies were
to sign up for a three-year joint project, which was to be financed by the Finnish
Funding Agency for Technology and Innovation (TEKES) and the participating
companies. TEKES was to finance 75% of the project costs, and the companies
25%. In addition to providing project funding, we asked the companies to provide
adequate resources, which we at this stage interpreted as meaning one full-time
equivalent.

Of the contacted companies, all agreed that the problem we intended to solve
was important, and that the proposed ideas were face valid. After negotiations,
we had five companies that agreed to work with us. Since one of the companies

3.5. Research Process: “Constructive Action Research” 39

did not have any software development activities but wanted to apply the ideas to
its project business1, I have decided to exclude it from this work.

Table 3.2 presents the case companies and some basic characterizations. The
business areas ranged from security systems development to telecom and busi-
ness software, and the size of the companies ranged from 45 to 600 employees.
Two of the companies, TeleCorp and SecuriCorp were subsidiaries of interna-
tional groups. For these, the numbers reported in the table express the size of
the Finnish subsidiary. The number in parentheses represent the whole group.
Most of the development organizations (departments) were quite small, with the
exception of TeleCorp’s, which employed 130 persons.

Table 3.2: Case company overview

Case company SoftCorp TeleCorp Electro-
Corp

Securi-
Corp

Business Business
software

Telecom Ind.
electronics

Security

Total # of employees 45 1000a 250 50
Size of development org. 7+3 130 (600b) 60 11
of simultaneous projects 1 / 10 3 20–30 5
Formal process / process age N Y/>10 Y/2 N
Typical project size 2 mm 30000h ? ?
Typical project duration
(months)

6 9–12 6 24–36

Typical schedule adherance +100% +0–8% +0–200% +0–100%

aFinnish subsidiary
bTotal in Finland

The number of simultaneous projects also varied greatly, with ElectroCorp
having the most difficult situation, in which a small department tried to juggle an
enormous amount of projects at the same time.

Two of the companies had a formal, institutionalized new product develop-
ment process, whereas the others were in the process of defining and implement-
ing formal processes. TeleCorp’s process culture was well established, whereas
the process at ElectroCorp was developed purely for the need to satisfy ISO-
certification, and seemed to have little impact on the actual work performed.

The typical project size and duration varied a lot—both between and within
companies, due both to differences between the companies, and to different pro-
ject types within a single company. The projects with the longest duration were
found at ElectroCorp, where the development of completely new products typ-
ically took up to three years, whereas the planned duration was between one and
two years. The schedule adherance was poor in all companies except TeleCorp,
in which the projects typically kept their schedules extremely well. Management
at TeleCorp attributed this to the long-term focus on process improvement and

1The company developed physical prototypes using rapid prototyping technology.

40 Research Design

measurement both in the Finnish subsidiary and at the group level. On process
maturity, only TeleCorp had assessed its process, to level 2 of the Capability Ma-
turity Model. The other partners had not made assessments, but were clearly at
level 1.

In summary, the companies we worked with consisted of three relatively im-
mature SME’s that lacked, or were in the process of institutionalizing, formal
processes and measurement systems, and one subsidiary of a large telecommunic-
ations group with a quite mature process culture. Thus, we had the opportunity
to try out our ideas in a fairly wide set of situations. Next, we will look at the
action research cycle used in the companies.

3.5.4 Action Research Cycle

The practical work in each company was tailored to the specific situation and
needs of the firm in question, and followed a general action research cycle. From
the point of view of developing control panels, we performed the related activities
listed in Table 3.3. The activities were performed in one or several action research
cycles, as described more fully in Chapter 6.

Table 3.3: Cases and activities performed

Case Current
state

analysis

Meas.
system

def.

Meas.
syst.
impl.

Tool
piloting

Post-
mortem

SoftCorp X X X X X
TeleCorp X X X
ElectroCorp X X X X X
SecuriCorp X X X X X

In the case studies, we used a variety of data collection methods, as shown in
Table 3.4. This is common in case study research, and is a basis of triangulation,
which increases the reliability of the findings (Jick, 1979; Patton, 1990; Yin, 1994).

Table 3.4: Cases and Data collection methods

Case Inter-
views

Obser-
vation

Work-
shops

Docu-
ments

Survey Tool
logs

SoftCorp X X X X X
TeleCorp X X X X
ElectroCorp X X X X
SecuriCorp X X X

Next, I briefly describe how we approached the general action research activ-
ities during our work.

3.5. Research Process: “Constructive Action Research” 41

3.5.4.1 Diagnosis

We started each cycle by analysing the current state of the object selected for study.
The analysis was done mainly by interviews and document analysis, but when
appropriate, we also used observation. In the initial cycle for each of the cases, the
researchers typically spent several days on-site gathering information and getting
familiar with the company, its culture and processes. The current state analysis
of each company was written down and checked by corporate representatives.
Typically the reports also contained suggestions for improvement in addition to
the analysis. These initial analyses led us to the development of the “general
control system” framework as a way of viewing the “big picture”, discussed further
in Chapter 4.

Subsequent cycles used similar data collection methods, and typically focussed
on some specific part of the above mentioned framework. As typical for action
research, the exact data collection and dissemination practices varied according to
the needs of the situation and the specifics of the client-researcher infrastructure.

3.5.4.2 Action Planning

In the action planning phase the researchers and company management jointly
considered the results of the diagnosis phase, and evaluated what actions to take.
Typically this consisted of deciding the particular parts of the organization or
stakeholders for which control panels should be developed. In this stage, also the
necessary actions were planned, i.e., whether to simply install the toolset or to
additionally define measures, and data collection procedures.

3.5.4.3 Action Taking

The action taking step consisted of carrying out the actions decided upon in
the previous phase. In the cases where we developed measures, we used mainly
two approaches for measurement development: the GQM approach (Basili and
Rombach, 1988) and the Balanced Scorecard (Kaplan and Norton, 1992). Where
needed, we also developed the data collection procedures and forms, typically
using MS Excel. In addition, we installed the toolset and built the necessary data
transfer modules. The action taking phase was typically conducted jointly by the
researchers and corporate stakeholders.

3.5.4.4 Evaluating

During the evaluation phase, the stakeholders involved in the action taking phase
evaluated the actions taken, and their results and/or effects. The evaluations
typically took place in workshop settings with all relevant stakeholders present.

3.5.4.5 Specifying Learning

Based upon the evaluation step, we as researchers identified lessons learned dur-
ing the action research cycle. These lessons were fed into the next step and
subsequently incorporated into our constructs.

42 Research Design

3.5.4.6 Development and Refinement of Constructs

Finally, the lessons learned were considered from the point of view of the con-
structs that were developed. Where appropriate, we changed or added toolset
features, or adjusted our approach for developing control panels.

3.5.5 External Evaluation

At the end of the action research case studies, we evaluated the practical impact
of the research. Both we and an external consultant interviewed the companies
we had worked with. The use of an external consultant can be viewed as one way
of minimizing researcher bias.

3.5.6 Reporting

The final stage of the research consisted of write-up, the final version of which is
this document.

3.5.7 Summary of Case Studies

The empirical studies are summarized in Table 3.5, which shows their respective
objectives and main results. As shown in the table, the case studies had slightly
different goals, and the activities performed were tailored to the particular situ-
ation of the company.

The case studies were not performed in synch: as shown in Figure 3.4, the
SoftCorp and ElectroCorp cases started one year earlier than the SecuriCorp and
TeleCorp cases. The timeline shows the various cycles in the case studies. These
are discussed in more detail in Chapter 6.

3.6 Conclusions

This chapter presented the research approach used. First, I discussed at a general
level approaches to research in software engineering. Following this, I presented
the approach used in this work,“Constructive Action Research”, which combines
elements of design research and action research. Finally, I described the research
performed in this thesis according to this process, as well as presented a general
overview of the steps taken and the contributions of the case studies.

3.6. Conclusions 43

Table 3.5: Summary of Empirical Studies

Study Objectives Results/Contributions

Case 1:
SoftCorp

• Explore the control panel idea
in an SME setting

• Build and test control panels at
the project, and strategic levels

• Analysis framework
• Approach feasible also in small

companies/projects
• Data and experiences on toolset

deployment
• Data and experiences on

small-scale control panel usage

Case 2:
ElectroCorp

• Analyze the product
development process

• Develop and install visual
control panels for product
development

• Explosive growth of number of
goals and measures

• Experiences with corporate
resistance, politics and fear of
measurement

• Understood need for
visualization libraries

Case 3:
SecuriCorp

• Build and install control panels
and measurement system for a
small software development
organization within a large
company

• Experience with project
classification and portfolio
management

• Toolset piloting experiences
• Understood need for

visualization libraries

Case 4:
TeleCorp

• Analysis of existing
measurement system

• Piloting of toolset using existing
measurement infrastructure

• Goal-measure mappings
• Toolset features: remote queries

and proactive caching
• Toolset piloting experiences

44 Research Design

Activity Name
9/97 10/9711/9712/97 1/98 2/98 3/98 4/98 5/98 6/98 7/98 8/98 9/98 10/9811/9812/98 1/99 2/99 3/99 4/99 5/99 6/99 7/99 8/99 9/99 10/9911/99

1997 1998 1999

SoftCorp Case

Cycle 1: Familiarization

Cycle 2: Trade+

Cycle 3: Trade2000

Cycle 4: Strategic Measurement

ElectroCorp Case

Cycle 1: Familiarization

Cycle 2: NPD Measurement in Finland

Cycle 3: Project measurement in

Finland

SecuriCorp Case

Cycle 1: Familiarization

Cycle 2: Portfolio Management

Cycle 3: Toolset piloting

TeleCorp Case

Cycle 1: Familiarization

Cycle 2: Measurement system study

Cycle 3: Toolset piloting

Figure 3.4: Case Study Timeline

Chapter 4

Software Development Control
Panel Concepts and Guidelines

You cannot control what you don’t measure.

TOM D+MARCO

4.1 Introduction

WH+N developing control panels, we basically need to tackle three issues:
what panels to develop, for whom to develop them, and how to integrate

the development effort with a corporate measurement program. In this chapter, I
first restate the requirements for framework development and define the concepts
used. Then, I discuss ways of partitioning the control panel development effort.
Finally, I discuss how to integrate the control panel development effort with the
corporate measurement program.

The discussion in this chapter presents the “final” version of the constructs,
which as such has yet to be validated. As described earlier, the concepts were
developed iteratively using several concurrent action research cycles in the case
companies. This chapter thus reflects our understanding, based on the empirical
experiences, on how to structure and develop control panels. Earlier versions of
the constructs have been published in (Lassenius et al., 1999) and (Lassenius and
Rautiainen, 1999).

4.2 Requirements

As mentioned in the introductory chapter, we developed a list of requirements for
the guiding conceptual framework. These are shown in Table 4.1.

The first requirement states that the central concepts for developing control
panels should be developed. The idea was to develop a minimal sets of concepts
needed, and as far as possible use existing terminology from the literature.

The second requirement calls for guidelines for developing control panels.

45

46

Table 4.1: Requirements for framework and guideline development

No Requirement

FR-1 Concepts: The framework should define the central concepts needed for the
development of control panels.

FR-2 Guidance: Guidelines for control panel development should be developed.

FR-3 Method independence: Control panel development should be independent of
measurement paradigm or methodology.

FR-4 Organizational independence: It should be possible to develop control panels
for different organizations and environments.

FR-5 Technological independence: Control panel development should be independent
of the particular technological tools deployed.

FR-6 Usability: The framework should be easy to learn and use.

FR-7 Feasibility: Control panel development should be feasible in practice.

Requirements FR-3, FR-4 and FR-5 refer to the generality of the constructs.
We envisioned developing control panels in various organizations with different
levels of existing measurement systems and tool support. Thus, we aimed for
methodological, organizational and infrastructural independence.

The final two requirements are related to implementation concerns: we
wanted to make our ideas easy to implement by keeping them as simple as
possible, and to make them as cheap to implement as possible.

In practice, we addressed the concerns for developing control panels using
three constructs: a conceptual framework linking the concepts of visualizations
and control panels to concepts typically found in corporate measurement programs,
a discussion about what panels to build and for whom, and a set of activities that
needs to be performed when developing control panels. The following sections
describe these constructs.

4.3 Concepts for Software Development Control Panels

We developed a simple conceptul framework tying the control panel idea to the
concept of a measure. The concepts and their relationships are depicted in Fig-
ure 4.1.

As shown in the figure, a control panel consists of one or more visualizations. A
visualization is a graphical representation of one or more measures and its possible
target values. Each measure can be depicted in several visualizations, and each
visualization can be used in several panels. Visualizations can also contain links
to panels, enabling navigation between panels. Links can be parameterized to
enable context-dependent navigation. This makes it possible, e.g., to link a certain
activity in a Gantt-chart to a panel showing more detailed info on that particular
activity. Non-context sensitive navigation can be implemented using buttons that
simply provide a static link to a predefined panel.

4.4. Defining Control Panels 47

Control Panel

Visualization

Chart/Graph OtherText

Measure

0..*

1..*

0..*1..*

link

link

0..*

0..1

Figure 4.1: Control Panel Concepts

Measurement is always related to something that is being measured, a meas-
urement object. A typical classification given in the software engineering literature
divides measurement objects into processes, products, and resources, i.e., we can
measure the processes and activities related to software development, the actual
products (artifacts) being developed, and we can measure the resources (people,
machines etc.) doing the development. In the case of resource measurement, the
object of measurement typically at the same time represents a role and a stake-
holder to measurement.

From the point of view of developing control panels, taking into account the
requirement for measurement paradigm independence, our conceptual framework
does not go deeper into the contents of the measurement program itself, but
interfaces at the measure concept. We thus expect that a measure that can be
visualized has defined and instantiated data collection, validation, and analysis
procedures.

4.4 Defining Control Panels

4.4.1 Deciding What Panels to Build

Having described the simple conceptual framework for control panel develop-
ment, we are now ready to discuss the difficult question of what panels to develop
and for whom. This questions is intimately tied to the development of the cor-
porate measurement program, since the measures available dictate what can be
included in the panels.

In most practical cases though, the process is likely to be iterative, with control
panel definition and development also influencing the measurement program.

When deciding upon what panels to develop, one must strike a balance
between on the one hand the need for customization to the needs of various

48

stakeholders and characteristics of, e.g., a particular development effort, and on
the other hand the need for cost effectiveness and ability to benchmark between
measurement objects.

I think that the development of completely universal control panels, like the
one by the software project manger’s network, is unlikely to be successful1, since
the details of process, context, resources and products tend to be specific to a par-
ticular organization. This, I think, means that the specific visualizations and their
combinations into control panels need to be customized to the organization for
which they are developed. In addition, there is likely a need to customize panels
even within one single organization, e.g., depending on the type of development
being done.

The answer to the question of what panels to develop is intimately intertwined
with the question of how many, and which, measurement programs to develop.
There is a wide variety of possibilities for structuring a measurement program.
The conceptual separation between visualizations, control panels and measures
gives us some additional leeway. For example, one could imagine a situation in
which the same measure is taken, but visualized differently to different stake-
holders, e.g., showing aggregate visualizations to top management and details to
software practitioners. In a typical situation in which measurement development
and data collection might require some manual labor, but in which visualizations
and control panels are automatically generated by tools, this means that we can
build customized visualizations and control panels that can be used without ex-
cessive additional cost.

The following list provides different ways of partitioning measurement into
control panels:

• Roles. Separate control panels are developed for each role, such as project
manager, process developer, software developer, tester, process owner, etc.

• Stakeholders. Each person with a vested interest in some aspect of soft-
ware development gets his or her own panels. In many organizations, this
effort can start with developing panels based upon stakeholder roles, that
later can be customized to individual stakeholder interests

• Organizational level. Different panels are developed for different or-
ganizational levels: etc. strategic, operational, process, project, team, indi-
vidual.

• Process Phases or Activities. Panels are developed that highlight par-
ticular steps or activities in a process, e.g., design or testing.

• Project types. Different panels are developed for different project types,
such as maintenance, new product development, or bugfix (service-pack)
projects.

1This is in line with both the more general viewpoint taken by the Goal-based measurement
school, as discussed in Chapter 2, and the experiences with the SPMN control panel (Anonymous,
2000b), the manual of which states that the most significant change to the tool in its subsequent
versions has been the addition of possibilities for customization of the panels.

4.4. Defining Control Panels 49

• Purpose. Panels can be developed for different purposes: for monitoring,
for learning, prediction, etc.

I do not claim the above list to be exhaustive, and its elements are certainly not
orthogonal. I do, however think that it covers the most typical scenarios. In prac-
tice, any particular effort is likely to use a combination of the listed possibilities.

In addition to the above list, we developed a framework of a generic control
system2 for project organizations, which is depicted in Figure 4.23. We found
it easy to communicate this framework to our corporate partners, and found it
fruitful when discussing what panels to build, and for what purpose.

Figure 4.2 shows one way of viewing a project-oriented software development
organization. In the software engineering literature, much focus has been given to
the software process, and software project management. Much less—if any—attention
has been paid to the higher-level views of strategy, portfolio management and
competence management. While, e.g., competence management is outside the
scope of this work, I have included it in the framework, since we have found
the discussions on competence management and measurement to be fruitful in
the organizations we have worked with, and because software development is an
activity that is strongly linked (or should be) to competence management. The
purpose of this presentation is not to go into any detail on any of the topics
mentioned, but to serve as an illustration of one way to partition the world when
planning the development of control panels.

As indicated by the references in the subsequent paragraphs, that describe the
framework, the body of knowlegde on which the concepts rely is not from the
field of software engineering, but from new product development management, a
field which is typically infrequently referred to in software engineering literature,
but with which there clearly is room for cross-learning and cross-fertilization of
ideas (Nambisan and Wilemon, 2000).

4.4.1.1 Software/Product development strategy

By strategy we refer to the product development strategy of the company, which
should be derived from the overall corporate strategy. An important issue is to
understand that there are different types of product development projects that
need to be staffed and managed in different ways. For example, developing a new
piece of software is different from making incremental maintenance releases to
an already existing product. If product maintenance is considered part of devel-
opment, it is also managed differently. The development strategy can be sum-
marized as one or multiple roadmaps (product, service, marketing, etc.), where for
instance the product roadmap should show the different types of projects and a
rough resource allocation. This is used as an input to project portfolio manage-
ment and competence management. (e.g. Cooper (1993); Cooper et al. (1998)).

2I use the term control system to mean the formal,information-based routines and procedures managers use
to maintain or alter patterns in organizational activities (Simons, 1995)

3A previous version of the generic control system shown here has been published in (Rautiainen
et al., 2002). In this article, the framework is mentioned as having been developed earlier. I developed
the initial version of the framework, as well as made the changes resulting in the one shown here.

50

Project types

Project Class N
Project Class 2

Project Class 1

Strategy

- Long-term view of product portfolio
- Measures, e.g., using the Balanced
Scorecard
- Spending buckets

Portfolio management

- Resourcing decisions
- Project startup
- High-level measures of projects in portfolio

Multi-project management

Project management

Process management

- Day-to-day management of projects
 in class
- Measures mainly aggregated from
 projects in process

- Process development and
 improvement

- Project planning and control
 according to defined process,
 tailoring as needed

Competence management

- Acquiring and developing needed competences

Figure 4.2: A Logical View of a Project-Oriented Software Development Organ-
ization

For examples of project classifications, see e.g. Shenhar (1998) and Wheelwright
and Clark (1992).

4.4.1.2 Portfolio management

Portfolio management refers to the management of the whole set of development
projects. The input to portfolio management is the product roadmap, especially
the project type classification and the rough resource allocation. To be successful
in portfolio management, one must also know the existing resources and compet-
ences in the organization. Another input is, of course, the feedback from ongoing
projects. The purpose of portfolio management is to specify in more detail the
projects needed to fulfil the strategic goals of the organization, thus linking pro-
jects to strategy and operationalizing the product roadmap. An important task

4.4. Defining Control Panels 51

is to prioritize projects and select the order and mix of projects to be executed.
The output of portfolio management is an aggregate project plan or a project
roadmap. The plan has to be updated at regular intervals to reflect the current
situation. For example, many projects can be interrelated and if one project is
lagging in its schedule, other projects can be influenced. This may lead to replan-
ning and reprioritizing the order and mix of projects. For more reading, see for
example (Englund and Graham, 1999) or (Cooper et al., 1998).

4.4.1.3 Process management

Process management is about managing the development process. It relies on a
process model that works as a map for the development projects providing the
stages, milestones, roles, etc. It provides a common vocabulary and the “rules
of the game”, i.e., how things are supposed to be done in the organization. The
process model should also be a tool, providing, e.g., templates and checklists for
the projects. It is important to realize that one process model cannot accom-
modate the needs of all different project types. Therefore, some thought has to
be put into choosing appropriate models. Some examples of issues affecting the
choice of process model are the speed of change in technology or the markets,
the size and length of the projects, the size and complexity of the product being
developed, and the initial uncertainty of the project, i.e. how well we know the
requirements up front. One part of process management is collecting data and
feedback from projects for process improvement purposes.

4.4.1.4 Multi-project management

The purpose of multi-project management is to balance and allocate resources
between projects at a regular and short-term basis. Having people work on mul-
tiple projects and moving them around between projects is not easy, though, and
can cause more harm than gain (Brooks, 1995; Smith and Reinertsen, 1998). Multi-
project management is, naturally, closely linked to project portfolio management,
and could even be considered part thereof.

4.4.1.5 Project management

Project management is about executing the individual projects in a systematic
way, using the guidelines provided from the process models. Software project
management is a subject well covered in the software engineering literature, and
is taught in most software engineering programs. Software project measurement
experiences have also been reported in the literature, e.g. (Grady and Caswell,
1987; Grady, 1992; Daskalantonakis, 1992).

4.4.2 Applying the control system framework: A Fictive
Example

As an illustration of applying the control panel framework, consider Figure 4.3.
The figure shows the control system and Figure 4.4 related panels for a fictive com-

52

pany, SoftGuys Ltd. Product strategy is visualized using a roadmap for product
introductions. Portfolio management is visualized using a Gantt-chart depicting
the aggregate project plan.

Portfolio management

Strategy

Competence management

Service-pack -projects

Project management

Process management:

Synch-and-Stabilize

Multi-project mgmnt:

Project office

Platform-projects

Project management

Process management:

Stage-Gate

Multi-project mgmnt:

Project office

ID T ask Name

1 Platforms and Majo r Re l e ases

2 HypeSoft

3 HypeSoft v. 2.0

4 DupeSoft

5 DupeS o ft v. 1.0

6 DupeSoft v. 2.0

7 Service Packs

8 HypeSo f t

9 HS v. 1.197

10 HS v. 1.198

11 HS v. 1. 199

12 HS v. 1.2 0 0

13 HS v. 1.201

14 HS v. 1.202

15

16 HS v. 2.001

17 HS v. 2. 00 2

18 HS v. 2.0 0 3

19 HS v. 2.004

20 HS v. 2.005

21 HS v. 2.0 0 6

22 Du pe Sof t

23 D S v. 1.1

24 D S v. 1.2

25 D S v. 1.3

26 DS v. 1. 4

27 DS v. 1.5

28 DS v. 1.6

29 DS v. 1.7

30 DS v. 1. 8

31 D S v . 1. 9

32

33 D S v . 2. 1

34 D S v . 2.2

35 D S v . 2.3

36 D S v . 2. 4

Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3

1999 2000 2001 2002 2003 2004 2005

2000 2001 2002 2003

Hypesoft

Dupesoft

HS v. 2.0

1.197

1.198

1.199

1.200

1.201

1.202

2.001

2.002

2.003

2.004

2.005

2.006

DS v. 1.0

DS v. 2.0

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

2.1 2.2 2.3 2.4

Service Packs

(time-driven)

Platforms

(requirements-driven)

optimistic

release date

pessimistic

release date

Figure 4.3: The SoftGuys Ltd. Control System

The company has two distinct project types: one for developing new product
platforms, and one for delivering incremental changes (“service-packs”) to existing
platforms. The platform project process has a fixed scope, and follows a typical
Stage-Gate (Cooper, 1993) model, which is similar in many ways to the waterfall
model for software engineering (Royce, 1970). The service-pack process follows
the synch-and-stabilize model (Cusumano and Selby, 1995). Multi-project man-
agement for both processes is handled by a joint project office.

Figure 4.4 shows one possible set of control panels that could be developed
for the company. The panels have been developed according to the control sys-
tem model, and shows one strategic panel, and different panels for multi-project
management, and project management respectively, depending on which process
one wants to look at.

The arrows in the figure indicate navigation. In the strategic panel, one can
select one of the processes for further study. This illustrates the use of static
navigation using buttons. The multi-project panels allow for parameterized nav-
igation: they both contain a Gantt-chart. By clicking a bar—which represents a
project—one can open a detailed view of that particular project.

4.4. Defining Control Panels 53

Figure 4.4: The Control Panel Hierarchy at SoftGuys Ltd.

4.4.3 Guidelines for Control Panel Construction

Having made a high-level decision regarding what panels to develop, we can next
turn our attention to the development of a single panel. While the measurement
literature contains methods and advice for developing and implementing measure-
ment programs, little advice is available on the grouping of measures into panels,
I here present three guidelines that might provide useful.

1. Aim for a balanced panel, considering different perspectives. In
the same way as overemphasizing a single measure can be dangerous, so
can considering only a single perspective. When building panels, it can be
worthwhile to consider including measures of different perspectives. The
field of software measurement contains several classifications of measures,
e.g., into product, resource and process measures (Fenton and Pfleeger,
1997). The SPMN project control paneľs (Brown, 1996) five perspectives
is probably often more than sufficient. Likewise, the Balanced Scorecard
(Kaplan and Norton, 1992) contains perspectives that can be useful.

2. Use the same aggregation level. Many control panels will contain meas-
ures of a single object of interest, e.g. a project or a single process. Others
can contain, e.g., views of several different processes in one panel. Since the

54

aim is to build a panel hierarchy, it is mostly a good idea to try to keep the
measures in a single panel at the same aggregation level. For example, de-
tails of particular project activities might be better shown in a “task control
panel” than on a project level panel.

3. Consider single role requirements. A good way of keeping the design
of a single panel focused is to build it to meet the needs of a single role or
stakeholder.

4.5 Control Panel Implementation Activities

The final question that we need to address, is how to go about defining the meas-
ures and control panels. Since control panel development is tightly related to
measurement system development, the detailed process for developing them and
the related measurement program is highly dependent upon the chosen measure-
ment system approach. Therefore it is hard to provide a clear-cut process for the
development of control panels. Instead, I here try to identify and at a high level
describe the activities that must be performed in order to build a working set of
control panels. The way activities get instantiated and performed is likely to vary
for each organization.

4.5.1 Define Panels and Panel Hierarchies to Build

The first activity that must be performed is to decide what control panels to build.
As discussed above, there are several ways to partition the effort.

4.5.2 Define Panel Visualizations

After selecting the panels, each panel must be defined. This is best done by having
a measurement expert work together with the stakeholders for whom the panels
will be built. While there is a lack of elicitation methods (Münch and Heidrich,
2004), a discussion or brainstorming centered around the information needs of
various roles and stakeholders can be effective. It is useful to have the future
control panel users draw candidate visualizations. Following this, the visualiza-
tions can be grouped into panels. This can be done, e.g, using post-it notes on a
whiteboard or wall. Navigation can also be illustrated using, e.g., arrows between
the panels.

When the panels have been designed, their information (data) needs should
be defined. The indicator template of Goethert and Hayes (2001); Goethert and
Siviy (2004) can be useful to this end.

4.5.3 Consolidate and Integrate with Existing Measurement
Program

When the control panels have been designed and their information needs de-
termined, the information needs should be consolidated. The consolidated data

4.6. Conclusions 55

requirements and their possible mismatch with the existing measurement pro-
gram must be reconciled. For example, if some data needed by the planned panels
is not available, new measures must be defined and implemented, or the panels
changed.

4.5.4 Build Infrastructure

The control panels demand a working support infrastructure. In addition to the
measurement program’s tools, it is probably necessary to install specific tools for
automatic generation and visualization of control panels, e.g., the Lucos toolset
described in the next chapter. This entails selecting and installing the needed
tools, and instituting the necessary technology to make data from the measure-
ment program’s databases visible to the control panel tools. This can require
installation, or implementation of tailored data transfer tools, like the EDAMs
discussed in conjunction with our toolset.

4.5.5 Implement Control Panels

When the infrastructure is in place, the control panels need to be implemented
and tested. Our experiences, discussed in Chapter 6 show that particular care
needs to be taken with making sure that individual visualizations get and show
correct data. It is also suggested that the control panels be piloted before taken
into large-scale use.

4.6 Conclusions

This chapter presented a conceptual framework for developing control panels,
presented ways of partitioning a measurement program into control panels, in-
cluding a framework showing a high-level view of a typical software development
organization, and finally identified the activities that need to be performed when
developing control panels for software development.

Chapter 5

A Measurement Toolset

Don’t Automate—Obliterate!

MICHA+L HAMM+R

5.1 Introduction

IN ORD+R to get experiences with the implementation and use of control pan-
els, we implemented a prototype toolset for use in our client companies. This

chapter presents the motivation, architecture and functionality of this toolset.
The chapter is partly based upon previously published articles that I have coau-
thored (Vanhanen et al., 1999, 2000).

5.2 Motivation

In the software engineering literature, the need to support organizational meas-
urement with suitable tools is often stressed (e.g. Grady and Caswell (1987); Ba-
sili and Rombach (1988); Tian et al. (1997); Kempkens et al. (2000)). Proposed
and realized benefits of supporting measurement with tools include lower cost
and increased reliability of data collection, faster feedback cycles, easier reuse of
measurement related procedures and metrics; and increased acceptance of meas-
urement. Since our approach to visual control relied on fast feedback with tailored
visualizations to the needs of different stakeholders, we felt that tool support was
necessary in order for the approach to be feasible.

5.2.1 Tool Requirements

Based upon our initial vision, and discussions with our case companies, we derived
a set of initial requirements for the toolset. The first three requirements followed
directly from the vision as explained earlier:

Requirement 1 The system should support the definition and display of customizable
control panels for different stakeholders.

57

58

Requirement 2 The system should support navigation between different panels.

Requirement 3 The system should support authentication and access control

The need for classifying data into private and public is stressed by Grady (1992)
and viewed as a requirement for successful measurement program implementa-
tion. Therefore, access control is necessary. Software process approaches, such
as the Personal Software Process (Humphrey, 1995, 2000a) and the Team Software
Process (Humphrey, 2000b) also suggest this.

Requirement 4 The system should be compatible with existing corporate measurement
systems and data sources.

Although not incorporated into systematic data collection and validation pro-
cedures in measurement programs, corporate data is today largely stored in elec-
tronic form in existing databases and information systems, e.g., spreadsheets and
configuration management systems (Crnkovic and Willfor, 1998; Sprague, 1991;
Lavazza, 2000). Much of this data can often be—either directly, or by applying
suitable transformations—be used when developing software measurement pro-
grams, and—in our case—control panels. From the point of view of implementing
measurement, it is important to be able to interface to these systems since data
collection and storage tend to be the most expensive measurement activities (Fug-
getta et al., 1998) and requiring the organization to enter the same data into several
systems is unfeasible.

Requirement 5 The system should support different approaches to the definition and
application of measurement.

Since the system is intended to support measurement at various corporate
levels, and in a variety of settings, tying it strictly to any specific measurement
paradigm is limiting. For example, whereas GQM (Basili, 1984) is widely touted
as the best paradigm for developing software engineering measures, other ap-
proaches, such as the Balanced Scorecard (Kaplan and Norton, 1992) are popular
at the strategic level. In order to support corporate wide measurement it is there-
fore necessary to support different paradigms, as forcing the whole organization
to use a single measurement paradigm in our view is unfeasible in practice.

We also envisioned a system which would work independently of physical
location, a requirement important in particular to TeleCorp and ElectroCorp,
which both had several development offices.

Requirement 6 The system should support people working in physica!y separate loca-
tions.

Since we envisioned that the system be used by lots of people at various cor-
porate levels and with various degrees of computer literacy, we required that

Requirement 7 Basic system usage should be easy and not require special ski!s or training

5.3. Architecture 59

Our partners also worked on different computing platforms, leading to the
need for a cross-platform solution.

Requirement 8 The system should work in both Windows and Unix environments,and
must support both the Netscape and Internet Explorer browsers.

Since some of our clients were SME’s, we had to make sure that the toolset
would not be too costly.

Requirement 9 The system must be inexpensive

This final requirement excluded, e.g., the use of expensive commercial data-
bases. Finally, it is worth noting that the purpose of the development of the
toolset was primarily to do a proof-of-concept prototype useful as a research tool
for deepening our understanding on designing and implementing control panels
in industry. To this end, we added a requirement that is mainly of interest from a
research point of view:

Requirement 10 The system should support lo(ing of user actions

We envisioned that we could, by analysing the logs, get more information on
both normal and administrative usage. Regarding basic usage, we were mainly
interested in knowing, e.g. what panels were used, by whom, and how often.
Administrative usage was interesting in the sense that we could get information
on the amount of time administrators spent on building single visualizations and
control panels.

Based upon the requirements, we defined an architecture, which is discussed
in the next section. Subsequent sections describe the architectural components
in more detail.

5.3 Architecture

While there are several possible architectures that can help meet the requirements
decribed in the previous section, we opted for a three-tier architecture using Web-
technologies, as a simple and cost-efficient way of meeting the requirements. We
decided to circumvent the difficult problem of making a generic design for a
measurement database (see e.g. Foltin and Dumke (1998)) by deciding to use a
replication strategy; we simply provide an application program interface (API)
using which the organization can develop tool that replicate data from existing
sources into a central database used by our visualization system. Thus, issues of
data replication strategies, data consolidation etc. are scoped out and left to the
organization.

The tool architecture that we designed, shown in Figure 5.1, consists of external
data transferring and replication modules (EDAMs), the metrics server (MESS)
and applications utilizing the collected data, e.g., the Visualization Client Applet
(ViCA). MESS stores collected data, performs user authentication and access con-
trol, and provides services for manipulating metadata. All client programs, i.e.,

60

EDAMs and client applications, communicate with MESS over an Intranet or
the Internet using an HTTP based protocol (Berners-Lee et al., 1996). As the
communications protocol is based on HTTP, the system is essentially location
independent, and easily extensible, e.g. to provide secure transport using built-in
or third-party solutions, such as SSL or SSH.

The next sections describe the components of the toolset in greater detail.

Java-capable�

Web browser�

Java-capable�

Web browser�

EDAM�EDAM�EDAM�

MESS�

ViCA�

Data� Data�Data�

Replicated�
data &�

meta-data�

End-user and�
administrator�

applications�

Metrics Server with�
Replicated Data�

External Data�
Repositories�

Administrator� End-user�

Figure 5.1: The Lucos Toolset Architecture

5.4 ViCA - The Visualization Client Applet

From a user or administrator point of view, the most visible component is the
Visualization Client Applet (ViCA), which is used both for defining and creating
visualizations and control panels. We implemented ViCA in Java in order to be
able to support various operating system platforms. ViCA was designed to be as
browser independent as possible, which at the time meant supporting both the
Netscape and the Internet Explorer browsers.

There are basically two user categories using ViCA: ordinary users, and admin-
istrators. Ordinary users use ViCA to display measurement data, to create new
control panels using existing visualizations, and to tailor the own control panels.
Administrators use ViCA to create new visualizations.

5.4. ViCA - The Visualization Client Applet 61

5.4.1 Basic Usage

Viewing predefined control panels is similar to browsing the Web. ViCA is ac-
cessed by clicking a link on a Web-page, or simply by navigating to a specific page,
if the application is run in Applet-mode.

ViCA’s displays consists of control panels that contain visualizations, such as
graphs and charts, as well as navigation buttons and images. The charts are graph-
ical displays of data fetched from the server. ViCA supports fourteen chart types,
including line, bar, area, pie and Gantt charts. The contents of a chart can be
scrolled, which allows users to display large data sets in a single chart without
cluttering it. Visualizations can also be navigable, which means that clicking on
them (or a dataset in a chart) opens a new control panel, typically showing more
detailed information about the selected item. Figure 5.2 illustrates the concept of
navigation. In the figure, the source panel “All Projects” contains a Gantt-chart
view of a set of projects. By clicking on one of the bars in the Gantt-chart, the
user has opened a more detailed view of the selected project.

 �
Figure 5.2: Navigation in ViCA

In addition to viewing charts, ordinary users can tailor attributes of existing
panels according to their own needs. For example, changing the coloring, location
in the panel, or the sizes of the charts is easy. Constructing new panels from
predefined charts is simple, and can be done by normal users. Users are also
allowed to make new charts, though this is somewhat involved since it requires
SQL knowledge, and in our experience more suitable for administrators. In the
small-scale practical use of our toolset, no user in practice developed any own

62

visualizations. On the other hand, they made small changes to both panel and
chart layouts in a matter of seconds, as discussed in Section 6.2.5.4.

5.4.2 Administrative Usage

Administrators use ViCA to create new visualizations. This requires a working
knowledge of ViCA, the structure of the MESS database, and SQL. Data for the
charts is fetched from MESS using standard SQL queries. The mapping of a
query result to a chart is flexible and allows the visualizion of several data sets,
e.g., information on several projects, in a single chart.

Navigation is facilitated by parameterized queries, which allows the insertion of
variables in SQL queries. The query is parsed during navigation. This alleviates
the need to create several similar panels for the same purpose. For example, a
general parameterized project panel may be constructed that shows information
on a project that was selected for navigation in a project portfolio panel, as shown
in Figure 5.2.

5.4.3 Visualization Libraries

Our initial experiences with industrial application of the toolset indicated that
chart definition using SQL was difficult and required special skills not necessarily
found in the companies. We therefore decided to implement collections of pre-
defined visualizations, visualization libraries that contained common visualizations
for use in various organizational settings.

The visualization libraries contain common domain specific visualizations and
data requirement definitions. The libraries are added to ViCA as external com-
ponents depending on the needs of the users. A domain specific library allows a
user organization to know the minimum set of data required for practical visual-
izations and get the basic visualizations in use immediately. All chart definitions
in a library are built on an SQL view interface.

The installation of a library requires this interface to be mapped to the corpor-
ate database. Thereafter a simple “Chart Wizard” can be used to create new charts
based on the templates in a library. Charts are typically grouped into proper pan-
els providing information on, e.g., a process or a project, or some aspect of them
such as schedule monitoring.

5.5 The Metrics Server

The Metrics Server (MESS) is a central component in the framework, providing
client programs with a variety of services. The services can be divided into basic
services, logging, and remote queries and proactive caching.

5.5.1 Basic Services

The basic services provided by MESS include persistent storage facilities, user
authorization, and data querying and manipulation. In addition it can operate as

5.5. The Metrics Server 63

a simple www-server. MESS stores and manipulates both the data collected from
the data sources and metadata such as users, groups, schemas, views, charts and
panels. User and group information is required for authentication and for limiting
access to any object in the database on a group level. Schemas describe the field
names and data types of database tables in the server database. The collected
data is stored in these tables.Views are user generated virtual table descriptions
typically used for simplifying complex queries. Charts and panels are objects
generated and used by the Visualization Client Applet. Charts objects contain
the SQL queries, data mappings and appearance of visualizations. Panels group
related charts together.

In addition to entity specific attributes, each framework data entity contains
also common metadata: name, description, and read, write and admin group
name. MESS allows client programs to create, read, update, and delete entities
and manipulate their metadata. Data can be dumped to user created tables and
SQL queries executed to read the data. MESS can store and return files, thus
serving as a simple www-server.

5.5.2 Logging

MESS also provides logging facilities that can log both client requests as well as
internal events.

User actions can be logged at a detailed level—all requests from a client to
the server can be put into the log file. This data is useful for several purposes.
First, it can be used to get usage profiles for various users, making it possible to
better understand how the system is used in real life: which visualizations are
most popular, which paths are followed, how long various tasks take to complete
etc. The use of logfiles for this purpose is illustrated in Chapter 6 in which we
discuss our empirical experiences in using the toolset. ViCA also contains a panel
visualizing the use of the tool itself. Second, the information in the log file can be
used as an aid in enhancing the usability of ViCA, since also events like “Cancel”
are logged. User events might even be reverse-engineered for the purpose of
better understanding typical usage scenarios.

Logging of internal events are used by the proactive query caching mechanism
described in the next section, as well as for debugging and performance improve-
ment purposes.

5.5.3 Remote Queries and Proactive Caching

Sometimes source databases may be so huge that data replication to MESS is
unfeasible. If this is the case, replication can be avoided by connecting MESS to a
database management system that is capable of accessing remote, heterogeneous
data servers, such as the Enterprise Data Studio from Sybase Inc. (Anonymous,
1998a). From the viewpoint of MESS, the difference is noticed only in slower
response times to SQL queries.

Remote queries can, however, be prohibitively slow, as discussed in the Tele-
Corp case in Chapter 6. To help alleviate this problem, we implemented a tech-

64

nique we called proactive caching (Risku and Rinta-Aho, 1999) of commonly used
SQL queries to minimize waiting times. Usage logs are used to find out usage pat-
terns such as which are the most common SQL queries, how long they typically
take to execute, and when they are executed. Based on this information, MESS
tries to maintain valid results for common queries in its cache by executing the
queries using processor idle time. Because MESS relays SQL queries from clients
to the server database, it can return the result from its cache, if available. A prob-
lem with this technique is that without implementing push-technology (i.e. using
triggers) in the source database, the cached query result might be out of date.
In practice, since measurement data updates take place infrequently (i.e. not for
example several times per second), this is unlikely to pose problems. It is always
possible to manually update the queries to ensure that the latest data is used.

5.6 External Data Modules

Measurement data is transferred into the system by external data modules, or
EDAMs. These are typically company-specific programs that connect to an
existing corporate data source (such as a database, log file, spreadsheet, config-
uration management system, etc.), perform some optional data transformation,
e.g., filtering, cleaning and reformatting, and then copy the relevant data to the
server. Since an EDAM must connect to a company data source, the choice
of architecture and programming tool or language is limited by the methods
of access to the data source. Different EDAMs can be developed on different
architectures with different programming tools as needed.

Typically, an EDAM performs the following steps when executed: First it es-
tablishes a connection to MESS and authenticates itself to gain access to target
tables on the server database. It checks if the required database tables are present
in MESS, and if needed, creates the missing tables and gives them reasonable ac-
cess rights. After initialization, the EDAM connects to one or several data sources
and fetches (or parses) the data and performs optional filtering, transformation or
aggregation of the data. If possible, the EDAM only reads the new or changed
data thus minimizing the amount of data to transfer to MESS. Finally, the source
data that has been read and processed is dumped to the corresponding tables in
MESS. It is worth noting that since measurement programs and thus also the
visualizations and control panels used typically are dynamic in nature, i.e. new
measures are introduced and old ones dropped, EDAMS should if possible be im-
plemented with this in mind. Otherwise they might generate significant inertia
to necessary measurement program changes.

Usually administrators of the system should write EDAMs to solve the organ-
ization’s specific data transformation needs. However, we have implemented a
programming library and a couple of EDAMs to help minimize the initial effort
in deploying the system.

We implemented a C-language utility library that provides high-level func-
tions to communicate with MESS. These include, e.g. initializing and closing
connections, creating and deleting tables, and dumping data to a table. We also

5.7. Conclusions 65

implemented “CSVTool”, a sample program for using the library that is also a
useful generic EDAM that reads files containing data in CSV (comma separated
value) format and dumps it to a specified table in MESS. CSV is a format that
many applications, including MS Excel and MS Project, can generate.

Because most of our pilot users used Microsoft Project and Microsoft Excel for
project management purposes we developed plug-ins for them as well. The Excel
Metrics Information Exchange (EMIX) plug-in, shown in Figure 5.3 and the re-
spective MS Project counterpart Project Metrics Information Exchange (PMIX)
automate data transfer from the applications to MESS. They can be configured
for each document separately to dump selected data in the document to specific
tables in MESS. Thereafter they can make the dump automatically whenever a
user modifies and saves the document. For example, when a new spreadsheet
document template is created, the author marks in Excel all areas containing data
to be transferred and specifies for each data area the table where the data is to
be dumped. After this any user may make a copy of the document template
for personal use and EMIX will transfer the data automatically when saving the
document.

 �
Figure 5.3: The Excel Data Module—EMIX

The mapping between the columns of a data area and the target table fields is
automatic if the header line of each area contains the respective table field names.
Otherwise, the user can manually configure the mapping for each data area. A
data area may be appended with constant value columns. A constant is defined
either as a reference to a worksheet cell or as a literal value. The constants can,
e.g., be used to qualify time reporting hours by a person without the need to have
the username duplicated on each row in the worksheet.

5.7 Conclusions

This chapter presented the Lucos toolset: its motivation, requirements, architec-
ture, functionality and implementation. For more information on the toolset, I

66

refer the reader to its technical and user documentation, available from the project
website1. In the next chapter we turn our attention to our experiences in defining
and implementing control panels using the toolset and framework described so
far.

1http://www.soberit.hut.fi/lucos/

Chapter 6

Case Studies

I mistrust laboratory methods because what hap-
pens in a laboratory is contrieved and dictated. The
evidence is manufactured: the cases are what re-
porters call frame-ups. If the evidence is unexpec-
ted or unaccountable it is re-manufactured until it
proves what the laboratory controller wants it to
prove.

G+ORG+ B+RNARD SHAW

6.1 Introduction

THIS CHAPT+R presents our experiences in building control panels and applying
our toolset in four Finnish high-technology companies. For each case, I first

give a short overall view, describing the action research cycles that took place in the
case. Then, I describe each case according to three themes: control panel design
and implementation, work on measurement foundations, and toolset installation
and use. Each case description ends with a discussion of the lessons learned, and
the impact the case study had on our constructs.

After the single case studies, I present a cross-case analysis, organized accord-
ing to the same themes as the single case studies. In addition, I discuss overall
lessons learned, success factors for, and obstacles to control panel implementa-
tion.

Finally, I discuss the evaluation of the industrial cooperation done by an ex-
ternal consultant, and contrast the results of that evaluation with those we ob-
tained.

6.2 Case 1: SoftCorp

6.2.1 Company Description

SoftCorp was a small, privately owned company providing IT solutions to whole-
sale businesses. The company was founded in 1982 and employed about 45 people.

67

68

The original founder still held the majority of the company shares and worked as
President and CEO. SoftCorp was a one-product company whose business re-
volved around a software product, Trade+, that the company had acquired. The
product, a COBOL-based ERP system for wholesalers, was installed at about 250
sites, most of which had their own, tailored version of the program.

The product was fairly complex—it consisted of over 900 separate modules,
several of which existed in many versions, due to the company having a policy of
tailoring, essentially never turning down customer requests for custom changes.

Product development was organized functionally and unseparable from main-
tenance. All in all seven persons worked on maintenance and development of the
software product. The interface to customers was handled with the help of a cus-
tomer support function. Customer support handled simple customer problems,
training and installation services, as well as screen and report customization which
could be done without programming. In the case of a delivery to a new customer
or an update that demanded programming, the customer support persons took
the role of project manager.

The company fought with two major issues when we started working with
them: a chaotic development and maintenance process for the existing product,
and a large decline in the sales to new customers. Company management felt that
the first problem was due to the lack of defined and followed processes and project
management practices. The vice president in charge of product development
explained:

“Our projects are without exception late. We do project plans for
larger projects, but they are not updated during the project. It is not
uncommon for a four month project to be delivered four months late.
Sometimes it is also a deliberate business decision: we have to promise
short lead times to get the deal.”

The second problem was attributed to the technical outdatedness of the
product: most competitors had products with graphical user interfaces running
under Windows, and SoftCorp’s product was still text-based and worked on dumb
terminals or on PCs under a terminal emulator.

6.2.2 Client Infrastructure

The cooperation with SoftCorp was close and active. In addition to the author,
one additional researcher worked with the case. On the company side, one per-
son worked full-time on process improvement and measurement development.
In addition, the vice president responsible for product development was heav-
ily involved in the cooperation, as was the product development manager. The
owner-president participated in meeting and workshops as needed, typically about
once a month. The cooperation was intensive, with weekly or biweekly visits.

6.2.3 SoftCorp Action Research Cycles

A summary of the SoftCorp case is shown in Table 6.1 below.

6.2. Case 1: SoftCorp 69

Table 6.1: SoftCorp Case Summary

Cycle theme Actions taken Results

1. Familiariza-
tion

• Interviews with management
and development personnel

• Document analysis
• APKa data analysis

• Increased understanding of
current processes and their
deficiencies

• Decision to improve product
maintenance

• Decision to develop new
process and measures for
Trade2000

2. Trade+
development
&
maintenance
(existing
product)

• Measurement proposal
developed

• Toolset installed
• EDAMs (csvtool) developed

• Personnel resistance
• Toolset installed
• EDAMs (csvtool) developed

and installed

3. Trade2000
development
(new product)

• Incremental process developed
and instantiated

• Project level measures and
control panels defined and
implemented

• Simple project management
practices defined and deployed

• Process and project
management practices found to
work well

• Experiences on defining and
implementing visualizations

• Data on visualization usage

4. Strategic
measurement

• Strategic measures defined
using the Balanced Scorecard
(Kaplan and Norton, 1992).

• Measures reported to be “good”
• Implementation left for the

future

ain-house developed workflow system

6.2.3.1 Cycle 1: Familiarization

During the first cycle, we familiarized ourselves with the company by interviewing
both management and product development personnel, and by studying corporate
documentation and existing data. One could basically characterize SoftCorp as a
CMM Level 1 company with almost no Level 2 practices in use.

The company had no explicit development strategy, and had no identifiable
strategy process. Corporate management had used an external consultant a few
times to help them do long-term planning for the company. This was, however,
mostly focussed on sales and other financial aspects. At the strategic level, product
development was not systematically measured and monitored. The goals related
to development were indirect, and mainly related to customer retention and sales
growth.

70

Portfolio management was not explicitly recognized or handled in the organiz-
ation. Instead, resourcing and other decisions were made ad-hoc as part of normal
day-to-day management.

In product development, one could identify two distinct processes: the
product maintenance process, which was concerned with maintaining and further
developing the Trade+ product, and the Trade2000 new product development
process, which the company was in the process of instantiating. In the Trade+
development process, no clear distinction was made between new feature
development and bug fixing efforts.

Project management was ad-hoc, with project plans being written only if re-
quired by customers. No systematic process for project planning or control exis-
ted, and the division of work between developers, customer support and company
management was unclear. Software configuration management was not institu-
tionalized, and no tool was used.

The existing measurement infrastructure was based upon the company’s APK
system, an in-house developed workflow system used by development and cus-
tomer service to manage their day-to-day work. In addition, spreadsheets and a
reporting product, Crystal reports were used. The existing measures were mainly
financial in nature and included, in addition to normal corporate financials, cus-
tomer profitability and tracking of new sales prospects. For the development and
customer support functions, only time sheets were used, with hours being logged
by work type and customer. The company had, e.g., no quality measures.

6.2.3.2 Cycle 2: Trade+ Development

The first priority set by management was to get more insight into the Trade+
development process. To aid in this, we interviewed the developers working
in the process, made a simple project classification, classifying the projects into
three categories: new customer projects, in which the software was tailored for
and delivered to a new customer; version update projects, in which the installation
of an existing customer was updated, and bugfix projects in which critical errors
were fixed.

To help increase visibility into development, we studied the existing data in
the APK system, and developed a measurement proposal that utilized the existing
data. In addition, we made a proposal for software configuration managment that
included both procedures and a proposal for a suitable tool.

We installed a preliminary version of the visualization toolset, and developed
the csvtool (see Section 5.6) to enable data transfer from APK and the existing
spreadsheets into our measurement database.

Finally, we implemented a few pilot visualizations to demonstrate the feasibil-
ity of our toolset. At this point in time, the toolset did not yet log access events,
so I have no data on the exact number of accesses to various visualizations. The
visualizations were not at this point taken into production use, but merely used
for demonstration purposes.

In this cycle, we encountered severe resistance from product development
personnel regarding both the introduction of measurement and software config-

6.2. Case 1: SoftCorp 71

uration management. Despite efforts to show problem spots and involve person-
nel, they remained convinced that SCM and measurement would only introduce
more overhead to their already stressful work environment. Unfortunately, but
perhaps understandably, management adhered to the principle “If it ain’t broken,
don’t fix it.”, and froze further efforts to improve the process. The motivation
was that Trade+ development, while perhaps broken from a software engineering
point of view, was the process that brought in almost all of the company revenue,
and therefore was best left in peace. An additional reason was that management
wanted to focus the researchers’ efforts on helping their new product development
effort, Trade2000. This is discussed next.

6.2.3.3 Cycle 3: Trade2000 Development

During the third research cycle, we focused on the company’s new product de-
velopment efforts. The effort, named Trade2000 was related to the need for
renewing the product to improve its position in the market, in particular with
respect to new customers. Before the program started, a candidate technology
had been selected, and a tentative architectural level plan had been developed.
The next step, in which we were involved, was to pilot the new technology and
architecture, at the same time defining and implementing a simple measurement
system for the program.

During this cycle, we defined and implemented an incremental software de-
velopment process with weekly checkpoints, as well as instituted basic project
planning practices and defined and implemented simple measures for monitoring
progress. In addition, we defined and implemented the needed tool support, in-
cluding data collection, analysis, and presentation via control panels. During our
cooperation with SoftCorp, the Trade2000 process was followed for two internal
release iterations. In these, the measures and data collection system were piloted
during the first release, and in normal “production use” during the second release.

Contrary to the problems with the maintenance process, the people working
on the new product did not resist measurement, but viewed it constructively. We
think that there are two main factors that can help explain this. First of all, the new
project was mostly staffed with newly recruited personnel, who viewed their job
positively, and had not yet learned the “bad habits” of the company. Second, the
project was a high-visibility undertaking getting lots of top management attention,
resulting in a “leťs show the others how to do things right” mentality in the project.

6.2.3.4 Cycle 4: Strategic Measurement

The strategic measurement system was considered least important by manage-
ment, and therefore it was decided to implement it last. As described earlier,
no explicit strategy for product development existed, and the existing measures
at the strategic level were mainly financial in nature. Management did, however,
consider strategic measurement interesting enough to warrant its implementation.

The final action research cycle focused on product development strategy and
strategic measurement. In this cycle, we worked together with corporate manage-

72

ment to define measurable strategic goals, and related measures. For this, we used
the Balanced Scorecard approach (Kaplan and Norton, 1992). During a one-day
workshop, which included a short presentation on the BSC, an initial scorecard
was defined.

Though management felt that the development of the scorecard was useful
as an exercise, they did not feel that it was worth the effort to implement the
measures and add them to the visualization system. Instead, they decided to use
the measures infrequently, and do the calculations using the existing systems in the
company. Certain measures, e.g., regarding customer satisfaction would require
the development of new data collection instruments. No immediate plans to do
this were, however, developed. The reason for this was that management felt
that a BSC would contain “nice-to-know” information, but that they still had a
good grasp of the corporate situation, and it as a management tool in such a small
company would not really bring much value.

The main lesson learned from the fourth cycle was that implementation of
measurement—as any corporate improvement effort—must tackle a real and ac-
knowledged need. In this case, development of the strategic measures were felt
to be useful, but the implementation effort—based, e.g., on the experiences with
the Trade2000 projects—was felt to be too big compared to the expected benefit.

Management also thought that the fact that most strategic measures are up-
dated quite infreqently decreases the need for the kind of online support that our
toolset provides.

6.2.4 Control Panel Design and Implementation

At SoftCorp, we designed two sets of control panels: a set of pilot visualizations
of Trade+ development using existing APK data, a set of panels for the Trade2000
development effort. The control panel development was at this point not system-
atic, but based upon brainstorming sessions with management, and an analysis of
available data that could be most easily visualized.

6.2.4.1 Trade+ Panels

For Trade+ development, we designed one main panel, containing visualizations
of shown in Table 6.2. This panel was in pilot use only.

Table 6.2: Initial set of maintenance measures at SoftCorp

Measure Explanation / Comments

Effort / Cost driver Plotted as a bar chart for both individuals and groups, e.g.,
programmers

Hours / Customer Grouped by cost drivers, plotted as a bar chart

Delivery precision Plotted as a scatter diagram

Schedule adherance Plotted as a bar chart grouped according to days late/early

6.2. Case 1: SoftCorp 73

6.2.4.2 Trade2000 Panels

The control panel hierarchy for the new product development effort consisted of
one project main panel, from which more detailed panels for specific tasks, effort
estimation accuracy, and time reporting statistics were available. The hierarchy
of panels is shown in Figure 6.1.

Figure 6.1: The panel hierarchy for Trade2000 development at SoftCorp

74

6.2.4.3 Additional Panels

In addition, the person responsible for measurement and process improvement
at the company developed additional panels both during our pilot project and
subsequent to it. During the pilot, he developed panels for a specific project
aimed at adapting the Trade+ product for the healthcare business, “HealthProj”,
as well as for monitoring customer update projects. After the pilot project ended,
he defined and implemented panels for monitoring the customer support function.

6.2.5 Toolset Installation and Use

We installed the toolset, and defined data collection procedures and measures for
the Trade2000 project. The structure of the measurement system is shown in
Figure 6.2. As can be seen in the figure, data was collected from three sources:
the software configuration management system, an Excel table in which the de-
velopers logged their work hours, and Microsoft Project, which was used for pro-
ject planning. In addition, data on Trade+ development was transferred from the
APK system using an EDAM based upon the csvtool.

Lucos

server

APK
SCM

System

 csvtool

WWW Browser /

ViCA

MS Excel

E
M

IX

MS Project

P
M

IX

WWW Browser /

ViCA

MS Excel

E
M

IX

WWW Browser /

ViCA

Figure 6.2: SoftCorp measurement infrastructure

ViCA was in real usage at SoftCorp for three weeks, after which the project
was cancelled due to the company being acquired.

The short usage of the visualizations means that it is very hard to draw con-
clusions on the usefulness and hypothesize about what usage profiles would look
like if the visualizations had been in real use for a longer time. It is, e.g., entirely

6.2. Case 1: SoftCorp 75

possible that the usage was more active when the toolset was newly installed, for
reasons of curiosity.

Despite this, I think that studying the usage statistics available in the ViCA log
files—combined with qualitative data from workshops, interviews and meetings
with the staff—provide us with some insight into how much, and how visualiza-
tions can be used.

We will next look at ViCA usage from four points of view: the de-
velopers’, managemenťs, project managemenťs, and the measurement system
administrator’s.

6.2.5.1 Developer Toolset Usage

First, looking at the usage by the developers in the Trade2000 project team, illus-
trated in Figure 6.3, the first two weeks of deployment shows 13 and 17 sessions
respectively, and the third week shows a drop to seven. The session length was
on average 9 and 7 minutes during the first and third week, and 80 minutes during
the second. The difference was due to a developer keeping the panel open in the
background during the second week. However, the important point is that the
developers used ViCA on a daily basis during the time it was in use.

0

2

4

6

8

10

12

14

16

18

Week

#
 o

f
 s

e
s
s
io

n
s

0,0

5,0

10,0

15,0

20,0

25,0

h
o

u
r
s

Sessions 0 0 0 0 0 0 0 0 0 0 0 13 17 7

Hours 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 2,0 23,1 0,9

26 27 28 29 30 31 32 33 34 35 36 37 38 39

Figure 6.3: Trade2000 developer ViCA Usage at SoftCorp

We will next look at how the developer usage maps to the different panels. I
have drawn figures of the usage statistics using the notation shown in Figure 6.4.
Using this notation, each panel is depicted as a bar chart with the pilot study
timeline on the category axis, and the number of times the panel was accessed

76

on the y-axis. The gridlines on the y-axis are spaced 5 units apart. The bar on
the left of the bar chart visualizes the total number of times the panel has been
accessed. Finally, the arrows between panels indicate the direction and number
of times navigation has been used to move from one panel to another. Though
the toolset was in real use only for the last three weeks, I have opted to show
the whole timescale for which we have usage data on the category axis. This way,
comparing the usage profiles visually is easier, since they all use the same scale.

9

total # of times panel accessed

panel name

navigation (direction & # of times used)

panel usage over time

5

10

15

20

25

#
 o

f
ti
m

e
s
 a

c
c
e
s
s
e
d

pilot week t

Panel BPanel A

37

5

Figure 6.4: Reading the Panel Usage Figures

Figure 6.5 shows the panels accessed both by the Trade2000 developers, and
the developers involved in Trade+ development. For the latter, only a specific
project, referred to here as HealthProj, was subject to control panel installation.

Looking first at the Trade2000 development team, we can see that they act-
ively looked at the project level panel, Trade2000 project, which was accessed 37
times during the pilot, and which some in the team opened at least daily. From
this panel, they navigated nine times to the task info panel, and one single time to
the panel showing finished vs. unfinished tasks. When asked, the developers in-
dicated that they navigated to the task info panel to look at some task that looked
“strange” in the overall project panel, and that the navigation to the finished vs.
unfinished task panel was “just a test”.

The panels the Trade2000 team accessed a lot, and that they indicated they
were mostly interested in were the Trade2000 reporting panel, which showed the
overall time reporting status of the project, and the Employee hours panel, which
showed a breakdown of the reported hours on an individual level. The reason
for this was made very clear when we talked to them: When asked about the
usefulness of the visualizations, the developers indicated that they merely were
checking that the data they entered in their time sheets were correctly transferred
to the system, and that it showed up correctly in the panels. The reason for this
was that they knew management was looking at the panels, and that they therefore
wanted to make sure that the information shown was as correct as possible.

Interesting though, is their access to the panels showing estimation accur-
acy. All estimates were made by the project manager, after discussions with the
team. The fact that the team members accessed these panels can be interpreted
as indicating their interest in estimation accuracy.

Regarding the overall usefulness of the visualizations, the team indicated that
since the project was so small, and all developers were in the same room, they
knew the status of the project without looking at the control panels. They did,

6.2. Case 1: SoftCorp 77

Employee hours

Trade2000 reporting

Health Reporting

Task Info

Health Project Completed >25%
over estimate

Completed >25%
below estimate

1

9

12 7

Trade2000
Release 2

HealthProj

41

21

21

11

1

5

1 2 3

Completed >25%
above estimate

Completed >25%
below estimate

Task Info Finished / Unfinished
tasks

Trade2000 project

37

1

9

Figure 6.5: Developer ViCA Usage at SoftCorp

however think that the usefulness would increase as the project would grow, and
the close contact no longer would be as easy to maintain.

In HealthProj, we had a similar, but less active situation. As the figure shows,
the developers accessed the panels only sporadically, with the exception of the
main panel, Health Project, which they looked at a few times a week during the last
weeks of our co-operation. The control panels and data collection for this pro-
ject was defined and implemented by SoftCorp without our help. We were also
not able to interview the HealthProj personnel, and cannot therefore comment
further upon the possible benefits of or the personnel attitude to the control pan-
els. However, remembering their earlier resistance to measurement and control
panels, and looking at the quite passive usage, there is little reason to believe that
there had been any change of attitude or opinion.

78

6.2.5.2 Management Usage

The vice president in charge of software development was the person most in-
terested in the deployment of measurement and visualizations. Figure 6.6 shows
basic statistics of management ViCA usage.

0

1

2

3

4

5

6

Week

#
 o

f
 s

e
s
s
io

n
s

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

h
o

u
r
s

Sessions 0 0 0 0 0 0 1 0 1 2 4 3 2 5

Hours 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 7,4 0,1 3,0 0,3 5,0 0,9

26 27 28 29 30 31 32 33 34 35 36 37 38 39

Figure 6.6: Management ViCA Usage at SoftCorp

This was the first time in the company’s history in which he had real data on
development projects available at his leisure. As the statistics show, he used the
visualization system on average three times a week to check on the Trade2000
project. When asked, he indicated that having hard data on a project available
made him feel more at ease with the project, since he did not have to live in
constant fear about the status of it.

Next, looking at the vice presidenťs use of various panels, shown in Figure 6.7,
we can see that he viewed data for all three measured projects.

For the Trade2000 project, he looked at the main project panel 10 times during
the pilot, about twice a week. During the second release of the Trade2000 project,
in which the system was in production use, he looked at specific task information
24 times. He also studied the status of time reporting and once checked the
breakdown of employee time reports. Monitoring the progress of the project, he
looked at the “troubled” and “successful” tasks six and five times, respectively.

The vice president told us that he had only looked at the Trade+ panels to
check that they worked. For the HealthProj project, he looked at the defined
visualizations about once a week, “enough to get a feel for the project”. This

6.2. Case 1: SoftCorp 79

Completed >25%
under estimate

Health ReportingHealth Project

Task Info

Hours by worktype

Employee hours Customer billable

Update customer

Completed updates

Work by customer

Trade+ Project

4

24

6 5

Trade2000
Release 2

Trade+

HealthProj

5

Trade2000 reporting

Employee hours

6

1

1

2

4

4

7

2

1

3

6

1

1

7

4

5

2

Completed >25%
over estimate

2 1

Trade2000 project

10

Finished / Unfinished
tasks

3

Task Info

20

Completed >25%
above estimate

Completed >25%
below estimate

Figure 6.7: Management ViCA Usage at SoftCorp

80

statement is well supported by the data, which shows a regular weekly access
pattern to the main project control panel during the last six weeks of data.

All in all, the vice president expressed his satisfaction with having a working
measurement and visualization system that made it easy for him to check up on
projects, getting “real data instead of explanations”. He also indicated that he
used the data to ask targeted questions to project personnel. The measurement
system showed its usefulness in a “moment of thruth”, at one of the Trade2000
projecťs steering group meetings1, as the following anecdote illustrates:

During a meeting of the projecťs steering group, the status of the project was inspected
using the visualizations provided by ViCA. The system showed that the project was
badly behind its planned schedule, and had no chance of delivering all the planned
functionality within the time frame planned for the ongoing development cycle.

When confronted with this, the project manager claimed that the information in
the panels must be wrong, and that it probably was due to all data not having been
entered in the system. The time reporting statistics, also available through the system,
did, however indicate that this was not the case. On the project manager’s request, the
meeting was adjourned while he checked the situation.

When he returned, the project manager, a bit embarrassed, admitted that the visual-
izations and measures were right. The meeting decided to postpone a major part of the
planned functionality to the next development cycle. The old culture of unwarranted
optimism followed by disappointment and desperate explanations was broken.

This, simple but still important experience had several effects. First, it was ana-
lyzed after the meeting, and especially top management felt that it was a major
turning point for the management of product development.

6.2.5.3 Trade2000 Project Manager Usage

The project manager used ViCA only sporadically, as shown in Figure 6.8. The
panels that he viewed the most, were the time reporting panel, and the main
project panel. The peaks shown in the task info and project panel charts are
related to the incident described above. Otherwise, the project manager indicate
that he did not find the visualizations, or project planning or monitoring practices
very beneficial.

The project manager’s lack of interest can perhaps be explained by the fact
that the decision to institute project planning practices and measurement was
taken by senior management. Thus, it is possible that he did not feel ownership
of them, and therefore was not as committed as he could have been.

6.2.5.4 Administrator Usage

The data for the administrative usage allows us to get a preliminary indication of
the amount of effort needed to successfully build and test visualization panels.

As the figure shows, the administrator had the visualization application run-
ning on his workstation between half- and full time during the fall.

The effort that goes into building charts and panels is interesting. Unfor-
tunately we did not ask the administrator to record the time he spent on this.

1At which the researcher was present

6.2. Case 1: SoftCorp 81

0

0,5

1

1,5

2

2,5

Week

#
 o

f
 s

e
s
s
io

n
s

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

h
o

u
r
s

Sessions 0 0 0 0 0 0 0 0 0 0 0 1 2 0

Hours 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 5,5 5,8 0,0

26 27 28 29 30 31 32 33 34 35 36 37 38 39

Figure 6.8: Trade2000 Project Manager ViCA Usage at SoftCorp

Instead we have to rely on the log data from ViCA. Each time a user saves a panel
or a chart, ViCA logs this. In addition to the event, timestamp and user, ViCA
also records the duration for each event. For save events, this duration is the time
elapsed between opening the object saved, and the actual save operation. Thus in
the following discussion, when discussing “effort”, I refer to the time charts and
panels have been open in ViCA, and use it as a proxy for real effort. It is very likely
that this underestimates the time used to develop the panels and charts, since the
administrator did not necessarily keep the visualizations open all the time while
working, e.g., on research related to them.

Table 6.3 shows basic statistics on the effort used to create charts and panels.
All in all, SoftCorp has 89 charts, grouped into 34 panels.

Chart Creation Effort On average, charts have been saved 2,8 times, and the
average total time a chart has been open per session is about six minutes. On
average, the time to create a chart is seventeen minutes, ranging from extremely
quick saves (3 seconds) to long 114 minutes.

Figure 6.10, shows the total editing time for each chart at SoftCorp, as well as
how many times it has been saved. The bars show the editing time in minutes,
on the primary y-axis, and the line shows the number of times each chart has
been saved on the secondary y-axis. Note that the scale on the primary axis is
logarithmic.

The distribution of editing time is close to logarithmic, with a few charts
taking up the majority of the editing time. The three top charts stand for 39% of

82

Administrator ViCA Usage

0

5

10

15

20

25

30

35

40

45

50

Week

#
 o

f
s
e
s
s
io

n
s

0,0

10,0

20,0

30,0

40,0

50,0

60,0

h
o

u
r
s

Hours

Sessions

Hours 9,2 3,6 13,4 39,3 19,6 22,2 12,1 3,6 5,6 1,8 19,7 57,1 22,3 8,5

Sessions 7 1 8 15 6 8 8 6 17 8 24 46 16 34

26 27 28 29 30 31 32 33 34 35 36 37 38 39

Figure 6.9: Administrator ViCA Usage at SoftCorp

Table 6.3: “Effort” for Chart and Panel Building at SoftCorp

Panels Charts

Number of objects 34 89

Minutes, range 0,09–259 0,05–114

Minutes, average/object 81,7 17,0

Minutes, average/session 10,8 6,0

Times saved, range 1-33 1–16

Times saved, avg 7,6 2,8

6.2. Case 1: SoftCorp 83

0,1

1

10

100

1000

Chart

M
in
u
t
e
s

0

2

4

6

8

10

12

14

16

18

Minutes

Saved

Figure 6.10: Chart Editing Effort and Times at SoftCorp

total editing time, and the top six for 50%. These charts were “new” ones in the
sense that their SQL queries have had to be developed from scratch. The ones
that have required less time, but still substantially more than the “quickies” are
either new charts that are based on very simple queries, or simple modifications
of existing charts. The charts with very short editing times are typically direct
copies of existing charts. Interestingly, I could find no clear “learning effect”—the
development time for new charts of similar difficulty2 did not require less effort
later in the case study. When I talked to the administrator, he confirmed this
observation, and noted that basically everything that had required him to develop
own SQL queries either early or late in the pilot had required lots of time, patience
and effort. He did, however, say that copying existing charts or making small
modifications to them became easier as his familiarity with the system grew.

Panel Editing Effort Figure 6.11 shows the editing time and number of saves
for the panels at SoftCorp. This distribution is also approximately logarithmic.
Looking at the top five panels, they are in order: the HealthProj project panel, a
Trade+ customer breakdown, the Trade2000 project panel for the second release,
the Trade+ project panel, and the Trade2000 project panel for the first release.

2As measured subjectively by my interpretation of the involved SQL queries.

84

What these panels have in common, is that they are the most complicated ones
in the system in the sense that they have the largest number of visualizations. It
is interesting that so many of the project panels are here at the top, since they
basically are very similar. Thus, it seems that learning has not played a big role
regarding the panel development either. When we talked to the administrator, he
told us that he typically kept the panels open when struggling with defining the
individual charts. This possibly explains most of the data.

1

10

100

1000

Panel

M
in
u
t
e
s

0

5

10

15

20

25

30

35

Minutes

Saved

Figure 6.11: Panel Editing Effort and Times at SoftCorp

As for charts, I did not see any learning effect for the development of panels
or charts. Instead, more important seemed to be the reuse, in particular of charts.
While one would expect similar results for panels, as since the reused panels were
later modified, this effect is not detectable in the data. For example, one of the
last panels to be developed was the project panel for the HealthProj project, which
the administrator developed on his own, without assistance from the researchers.
This is the panel that has the largest logged effort (682 minutes), and has been
saved the most times (33 saves). The administrator told us that the reason for the
large effort was that he had problems with writing and debugging the SQL queries
for the charts in the panel.

Not having received formal training in SQL, the hardest part of making the
visualizations work was defining the SQL queries needed to define the charts.

6.2. Case 1: SoftCorp 85

On several occasions, we provided SQL training, and helped define and/or debug
queries. These problems, which also the other companies suffered from, led us
to think about the idea of building visualization libraries, i.e. a set of predefined
charts and related queries that only would need to be “mapped” to the measure-
ment database structure of the company.

6.2.6 Lessons Learned

The SoftCorp case was one of our most successful ones when it comes to imple-
menting and testing our ideas in practice. While it is hard to generalize from the
limited experiences with designing measures and visualizations, as well as the tool-
set usage, I think that some of the experiences are interesting also form the point
of view of other companies. Understanding the inherent problems of generaliza-
tion from a short single case study, I nevertheless below present some conclusions
that might be interesting more generally than in this single case.

First, the usefulness of a toolset like the one used here from the point of view
of single developers seems to be marginal, since the status is easily communicated
without tools in small collocated projects. The institutionalization of a simple
measurement system was, however, found useful as it made estimation and track-
ing possible, as well as discussions about project status possible based upon real
data instead of opinion.

Second, the project manager also found measurement good, but again, since
he was in close contact with the developers on almost a daily basis3, he also in-
dicated that the measurement toolset was of little direct benefit to him. This
observation supports the obvious conclusion that the usefulness of visualization is
smaller when it is otherwise easy to communicate status information. Thus, one
could hypothesize that the usefulness of tools such as the ones used here increases
when communication is harder, e.g., when the project is bigger or the physical dis-
tance between project participants grow, such as in distributed or subcontracted
projects.

Third, management, which normally was not in daily contact with the project
manager or developers experienced the highest subjective benefit of the toolset.
The largest benefit was for management, whom did not previously in the history of
the company have had real-time (or any whatsoever) project status data available.
Again, this more shows the benefits of estimation and measurement than the
visualizations. However, the manager indicated that he found the tool useful and
intuitive to use.

Institutionalizing measurement in a company with an immature software en-
gineering culture requires a major “cultural” change in a company. In this case, it
required a “moment of truth” before the measurement system was accepted.

We learned to appreciate the problems of measurement system imple-
mentation. While measurement development was not felt to be a real
problem—contrary to what one would expect when reading the software
measurement literature—the intricacies of defining working data collection and

3The project manager also had other duties.

86

visualizations made themselves known. While the literature contains tips for
building data collection systems, as well as examples of forms for collecting data
(Basili, 1984; Park et al., 1996), one would be led to believe that this is “a small
matter of implementation”, while it actually turned out to be the hardest part.
Since we mainly worked with very simple and basic measures, issues like measure
validation did not come up.

Finally, we learned that measurement definition is not as straightforward as
one could expect when studying available methodologies. In particular, manage-
ment did not like the GQM, which they considered too hard to understand, an
observation made also in another case study (TeleCorp).

In practice, both measures and control panels were developed iteratively, and
mainly by drawing the visualizations different stakeholders were interested in.

While, in comparison with our other cases, the SoftCorp case was very suc-
cessful, it suffers from several limitations. First, the collected data was related
only to schedule and effort. Thus, we did not fulfil the criteria of simultaneously
measuring several dimensions. We had planned to institute product level meas-
ures after the first iteration, but since the project was cancelled, we did not get that
far. Second, the usage experience is from such a short time period and gives us so
little data that it is hard to draw any strong conclusions regarding measurement
or the use of control panels in other settings based upon these experiences.

6.2.7 Impact on constructs

The SoftCorp case impacted our framework and toolset in several ways.
From the framework point of view, having started out as “GQM converts”, this

case, as well as the ElectroCorp case taught us several problems with the approach,
which a later literature survey showed were already known. In particular, we made
many observations discussed by Card (1993).

Regarding the toolset, the struggles the company had with defining and de-
bugging the SQL queries made us think about how to ease the development of
visualizations for use in the control panels. This led to the introduction of the
idea of “visualization libraries”, i.e., predefined visualizations that could be de-
livered together with the tool and “connected” to the data store for the company
in question. In addition, we got lots of feedback regarding the usability of the
toolset, mainly regarding the administrator interface. Many of these suggestions
were incorporated in later versions of the toolset.

6.3 Case 2: ElectroCorp

6.3.1 Company Description

ElectroCorp is a privately owned company in the electronics industry. It was
founded roughly 80 years ago, and is one of the largest privately held manufac-
turers of electrical and electronic products in Finland. It has a global presence
with worldwide sales offices. Its operations are located in Finland and the UK.
The company has about 450 employees, and its turnover in 1997 was ca 65 M€.

6.3. Case 2: ElectroCorp 87

ElectroCorp develops and manufactures a large array of products related to light-
ing, some of which consists of both hardware and software. Product development
is functionally organized, and carried out at both main locations — in Finland and
the UK. It is internally organized into three groups, two located in Finland, and
one in England. The newly appointed owner-president was worried about serious
schedule overruns in NPD. The company also had some historical problems with
developing products that the market did not buy. Feeling that there were lots of
room for improvement, the president initiated the cooperation between Electro-
Corp and us, and delegated the responsibility to his also newly appointed product
development manager.

6.3.2 Client Infrastructure

Initially, the owner-president took an active interest in the joint project, in partic-
ular during the first action research cycle. He then delegated the project to the
product development manager. During the initial phases, the product develop-
ment manager worked hard on the project. The cooperation was close and active,
with weekly or biweekly meetings between researchers and corporate personnel.

During the second cycle, the company hired a person to work full time on
improving product development processes and to institute measurement. Dur-
ing this time, the client infrastructure was similar to the SoftCorp case with the
exception that meetings with management were held much more seldom. Man-
agement also had very little time for the project, since a new corporate strategy,
and several other improvement efforts demanded management attention. Thus,
most of the work in this cycle was done by the new person, with only sporadic ac-
cess to management. As discussed later, this turned out to be close to catastrophic
from the cooperation point of view.

In the late stage of the project, when simple measures were developed for
the Finnish development organization, the cooperation reintensified, with the
product development manager again taking an active interest in the project.

6.3.3 ElectroCorp Action Research Cycles

The initial analysis was, again, conducted by interviewing general management,
product development management and personnel, as well as people from the main
functions interfacing with product development, i.e., sales/marketing and manu-
facturing. We also studied corporate documentation and available performance
data. A summary of our findings is shown Table 6.4.

6.3.3.1 Cycle 1: Familiarization

At the strategic level, top management was just beginning to direct attention to
product development, and the development of a product strategy for the various
product lines of the organization was under way. The roadmap under formation
identified new product lines as well as existing ones, and attempted at tying them

88

Table 6.4: ElectroCorp Case Summary

Cycle theme Actions taken Results

1. Familiariza-
tion

• Interviews with management
and NPD personnel

• Database analysis

• Status report on product
development at ElectroCorp

• Increased understanding of
current processes and their
deficiencies

• Decision to develop NPD
measures

2. Product
Development
Measurement
in Finland

• Stakeholder identification
• Stakeholder interviews
• Goal definition

• Goal explosion
• Prioritization difficult

3. Project
Level
Measurement
and Toolset
Piloting in
Finland

• Defined basic project
management measures

• Defined basic project control
panel

• Basic time measurement
instantiated

• Toolset pilot implemented

to a timeline. Management did, however feel that this was hard as the schedule
adherence of product development traditionally had been very poor.

Portfolio management turned out to be a serious problem in both Finland
and the UK, with the situation being subtly better in Finland. In Finland, the
concept of a business plan that identified the market potential for a new product
to be developed was being introduced, but did still not work. In England, projects
seemed to be started almost randomly, and several respondents indicated that they
did not know who decided if and when to start a new project; also the manager
in charge recognized this to be a weakness of the current system. The business
plan concept introduced in Finland was also applied on a project-by-project basis
only: there was no clear oversight of the whole set of projects under way. There
were no guidelines for project prioritization and resources were commonly com-
mitted to a large number of projects at the same time for some people leading to a
“thrashing” situation: they spent lots of time switching between projects. When
confronted with this analysis, respondents indicated that the actual situation is
much worse—the designers only report the main issues they work on each day.
In addition they indicated that there were lots of interrupts from the interfacing
organizations, like marketing and manufacturing. The situation was better in Fin-
land, where a separate group was formed to deal with product maintenance and
manufacturing support.

The other main issue was a constant feeling of a lack of resources leading
to cutting corners in the process. The product development process was docu-
mented in the form of a quality system in both England and Finland, however, it

6.3. Case 2: ElectroCorp 89

appeared to be a write-only version of the process. Respondents both in Finland
and England indicated that the process was adhered to “in the spirit” but existed
more for marketing purposes. In England, the interfaces between product devel-
opment and other departments were very weak; a classical case of functional silos.
This lack of internal integration seemed to lead to a lack of customer input in
product development, as well as problems in manufacturing.

There was also a clear lack of trust and respect between the manufacturing and
development organizations in England. Product development personnel felt the
people in manufacturing were not doing their job properly, since they demanded
attention for, e.g., finding replacement components due to availability problems.
Manufacturing personnel indicated that the product developers did not under-
stand manufacturing; as an example they mentioned that they had over 600 dif-
ferent types of screws for a small number of products. In Finland, the integration
with manufacturing worked slightly better; simple component replacements were
handled by a component engineer, and manufacturing was involved in product
development before finalizing the design.

The functional organization of product development was also visible through
the low level of project identification both in Finland and England. There was no
clear project ownership in either country. The project management culture could
be classified as one based upon scheduling, external deadlines, and hope. The
schedules were typically not based on earlier experiences with similar projects,
nor did the company separate effort from schedule. This was one probable reason
for the over-commitment of resources. At the individual level, product developers
complained about a lack of time to do their job properly, and the fact that they
had to work on a large number of projects at any one time. Also, interrupts from
other departments, such as manufacturing, customer support and marketing were
felt to be irritating.

Based on the analysis we made several suggestions to management for improv-
ing the state of product development. We also attended a board meeting and
presented the results, which were well received. However, unfortunately, no ac-
tion was taken to improve the situation. When we evaluated the findings together
with corporate management, they felt that our analysis gave a good and honest
picture of their product development efforts. They indicated that they intended
to start improving the processes and in particular portfolio management. For the
next cycle, however, they wanted us to start working on measures for the Finnish
product development organization.

After the overall analysis, it was decided that we would concentrate our efforts
on improving the measures in the Finnish development organization—as a pilot
to be rolled out also in the UK if successful. A closer analysis of the product
development efforts in Finland showed that the only thing tracked was delivery
dates. This, as well as project planning was done on a project-basis, without con-
sidering the overall workload of the organization. Thus, the process was trashing,
and projects typically never finished on time.

90

We decided to take two actions: get an overview of the project porfolio,
classified into project types, and to build a simple project planning and monitoring
system to help the company get improvement started.

6.3.3.2 Cycle 2: Product Development Measurement in Finland

In the second cycle, we started together with corporate management to define
organizational goals from which to derive measures for product development.
We identified and interviewed stakeholders, and had them fill in goal-measure
forms. Unfortunately, this led to an enourmous number of goals, and an even
greater number of candidate measures. This experience was similar to what Card
(1993) reports, when noting that the GQM approach is non-terminating.

The rational thing to do, of course, is to prioritize the goals and select a small
subset of measures. However, we were unable to convince management to attend
a workshop in which this could be done. The exercise thus ended as a failure, and
I guess ElectroCorp is still counting goals…

While the problem of the explosive growth in the number of goals and can-
didate measures partly can be attributed to our own inexperience with practical
development of measurement systems, it is a known problem with in particular
GQM. In addition to Card (1993), other approaches have been developed to help
alleviate this problem. For example. Offen and Jeffery (1997) discusses the M P
approach, in which risk is used to help prioritize and “trim” the goal-measure tree.
Since ElectroCorp’s strategy and goal state was mostly unclear, it is possible that
this explains managemenťs reluctance to participate in goal prioritization.

6.3.3.3 Cycle 3: Project Level Measurement

Following the “failure” of the general product development measurement devel-
opment, it was decided that the next step was to focus on the project level in one
development group in Finland. As the selected group had no existing measures,
and performed a large number of simultaneous projects that had no clear plans,
we instantiated simple project planning practices, developed a basic time report-
ing system, and developed a pilot control panel. The effort met with resistance
from product development personnel, and since the product development man-
ager did not champion the development, the control panel and measures were
discontinued after a short pilot period.

6.3.4 Measurement Foundations

Together with management we defined a set of goals and related measures that
could be implemented in the product development teams in Finland. Again,
similarly to the SoftCorp case, when it came down to actually implementing the
measures, we run into problems.

Management feared that implementing data collection would disturb and up-
set development personnel that already worked under high-stresss conditions.
There are two other factors that I think can help explain the product development

3

6.3. Case 2: ElectroCorp 91

manager’s reluctance to actually implement measurement: lack of commitment
and organizational politics. His lack of commitment was due to the fact that it
was top-management who had brought in the researchers to aid the NPD organ-
ization. Since his boss had brought in the project, the product development man-
ager gave lip service to the project, but never actually showed commitment when
it came down to actually implementing suggested measures or changes. Since he
was quite recently appointed, the product development manager also wanted to
look good: at one point he mentioned that he feared that measures might make
things visible that he did not want higher level managers to see. Thus, he felt, it
was better not to implement measures for NPD.

6.3.5 Control Panel Design and Implementation

At ElectroCorp we developed one single pilot control panel at the project level.
Since we were able only to institute some simple time reporting for a few weeks,
the panel contained nothing else. Data was collected using Excel sheets, and
transferred to MESS using the emix plugin. Technically, the system worked well.

6.3.6 Toolset Installation and Usage

We also installed the toolset at ElectroCorp, as a demonstration. We developed
some simple example visualizations using data available in spreadsheets. How-
ever, the toolset was not taken into use, though no technical problems surfaced.
However, the liaison was extremely critical to having to learn SQL in order to be
able to build visualization. This was a major reason for us starting to look at the
idea of building “visualization libraries” containing pre-defined visualizations that
could simply be “connected” to the corporate measurement database using views.

6.3.7 Lessons Learned

The ElectroCorp case was disappointing and sobering. Most problems that we
run into were related to corporate culture and lack of management support. In
addition, the liaison, who was the product development manager had an own polit-
ical agenda into which making the details of what happened in his development
organization did not fit. In addition, trust was severely damaged due to the prob-
lem of the generation of the enormous number of goals and measure candidates
that were never prioritized or selected. Thus, our inexperience in using goal-based
measurement probably also played a role. Since the problems were mostly related
to measurement in general, and not control panels per se, the case does not refute
the idea as such, but indicates the challenges of building control panels for an
organization that is not ready and willing to make its processes visible.

6.3.8 Impact on Constructs

The ElectroCorp case was rich in learnings regarding problems of developing and
installing measurement systems. From the point of view of our constructs, the

92

feedback on the problems of SQL queries was perhaps most important, since it
made us consider building visualization libraries.

6.4 Case 3: SecuriCorp

6.4.1 Company Description

At SecuriCorp, we worked with the product development organization, which
was responsible for developing and maintaining technical products related to the
security business. In particular, the organization developed and maintained two
major software systems that were market leaders in their field in Finland, with,
e.g., most large Finnish corporations as customers.

The product development department had been going through some rough
times, and the new manager, who previously had been the owner of a competitor
that had been acquired by SecuriCorp considered the situation “critical”. The
product development organization had a personnel strength of 11 persons, and
were currently responsible for maintaining one software system, and developing
a next generation system for the company’s advanced real-time products. Previ-
ously, the department had been responsible also for hardware development, but
this had now been outsourced. Due to the downscaling of the in-house develop-
ment, the manager noted that the best people had left the organization, and he
felt he had a difficult competence management challenge. In addition, SecuriCorp
was a heavily sales-oriented company. From the point of product development,
this meant that features and small changes and related schedules were promised
to customers without proper consulting with development. This, in turn, meant
that there were an enormous number of simultaneous on-going development ef-
forts that had never really been planned, resourced and scheduled. The problem,
the manager explained, was that sales personnel knew the developers, and made
them promise features and schedules with no regard for the formal organization.

The development organization had a history of missing schedules; for example,
the major upgrade project for the old software system was over one year late when
we started working with the company. Consequently, moral was quite low when
discussing goals and schedules.

From the point of view of the cooperation, the product development manager
expressed his wishes that instantiating control panels and measurement for the
organization would help him get the “chaos” under control, and give him real facts
that he could use when trying to persuade marketing people to deal with product
development in a “professional way”.

6.4.2 Client Infrastructure

At SecuriCorp, our main contact person was the product development manager,
who was responsible for the cooperation. He worked on the joint efforts only
part-time. Other employees were involved as needed, including the CEO and
marketing personnel. From the point of view of actually implementing measure-
ment, the lack of resources turned out to be a problem.

6.4. Case 3: SecuriCorp 93

6.4.3 SecuriCorp Action Research Cycles

At SecuriCorp, we performed three action research cycles, which are summarized
in Table 6.5.

Table 6.5: SecuriCorp Case Summary

Cycle theme Actions taken Results

1. Familiariza-
tion

• Document analysis
• Interviews with management

and NPD personnel

• Decision to focus on portfolio
management

• Presentation of diagnosis to
corporate management

2. Portfolio
management

• Project classification developed
• Compound project plan

compiled

• Project classification helped
structure the “chaos”

3. Toolset
piloting

• Toolset installed and pilot
visualizations developed and
demoed

• Corporate foundations do not
yet support the use of control
panels

6.4.3.1 Cycle 1: Familiarization

In the first research cycle, we familiarized ourselves with the organization. The
picture that the product development manager had given us in the initial discus-
sions turned out to be largely correct.

The organization had neither a clear strategy for product development, nor
any defined process or defined interfaces between sales and development. The
organizational culture was all about “bringing money in”, which put development
in a bad light, since it basically was considered a cost generating organization.

Portfolio management was non-existent, with a multitude of on-going projects
leading to a chaotic working environment for the development personnel. We
also found that the high number of small, already sold features that needed to
be developed quickly, and thus overrun any long-term development efforts, was a
very probable reason for the large schedule slippages on the major development
projects.

Based upon the results of the first cycle, we decided together with the product
development manager and CEO to focus our efforts on portfolio management.

6.4.3.2 Cycle 2: Portfolio Management

We decided together with the product development manager to concentrate on
“sorting out the mess” of new product development. In order to do this, we
planned to list all existing product development activities, and tried to make a

94

project classification. Following this, we planned to implement a simple multi-
project view of development.

We developed a project classification together with the product development
manager, and helped develop an aggregate project plan showing all projects
planned and under way in the organization.

6.4.3.3 Cycle 3: Toolset Piloting

In the final action research cycle, we installed and piloted the toolset. Due to
lack of resourced from SecuriCorp and the on-going chaos in the organization,
we were unable to elicit much help from the organization. Instead, we ourselves
developed some example visualizations based upon simple time sheets and the
aggregate project plan developed in the portfolio management cycle. We were
able to install a running demonstration of these, but the system was never taken
into use.

6.4.4 Control Panel Design and Implementation

As discussed above, we implemented only one simple demonstration project con-
trol panel that was not taken into production use.

6.4.5 Measurement Foundations

SecuriCorp had no working measurement system for product development. In ad-
dition to helping the product development manager to build an aggregate project
plan, we also helped design a simple time recording sheet.

6.4.6 Toolset Installation and Usage

At SecuriCorp, we installed the toolset using a setup similar to the one at Soft-
Corp. However, in this case we were only able to develop some simple demon-
stration visualizations of the project portfolio, and some time reporting graphs.
The measures were not taken into production use. Again, we did not run into any
technical problems with the tool.

6.4.7 Lessons Learned

The main value of the SecuriCorp case was that it provided us with an oppor-
tunity to do a project classification. We also learned, again, the importance of
management support, and of involving the practitioners.

The product development manager indicated that he felt that the project
classification was beneficial and that it would make it easier for him both to plan
and monitor the status of his development organization, as well as to communicate
with theimprot CEO and the sales organization.

6.5. Case 4: TeleCorp 95

6.4.8 Impact on Constructs

Since we did not get much practical experiences in the SecuriCorp case, it had
no impact on our constructs, with the exception that it confirmed the need for
visualization libraries.

6.5 Case 4: TeleCorp

6.5.1 Company Description

TeleCorp is a product development site of a large multinational communications
technology company. The site, which is situated in Finland, employs around 1000
people, of which around 600 work in product development. We worked with a
unit within the site that developed embedded software for complex communica-
tions systems. At the time, there were ca 130 people working in the unit. In the
following, TeleCorp refers to this one unit unless otherwise stated.

Product development at TeleCorp is organized as a matrix; line management
is responsible for hiring, training of personnel, as well as for allocating them to
projects. Project management is responsible for achieving the project goals util-
izing the resources allocated by the line organization. At any one time, TeleCorp
had one to three simultaneous active projects. A typical project lasts from nine to
twenty months, and there is a constant need to shorten cycle times. TeleCorp has
a fairly old process culture; the corporate product development process is defined
in detail, and has been used for over 10 years. The process was not only accepted
by all personnel; it is seamlessly integrated into how things were performed in
practice. The process is fairly stable, and the organization has a good record on
meeting project budgets and deadlines.

The divisional level at TeleCorp had a few years earlier received the Finnish
quality award, which is awarded according to the Malcolm Balridge criteria, for its
excellence in product development. TeleCorp also has a long history of measure-
ment, both at the global corporate level, and at the national and unit levels.

Lots of measurement data was collected into various databases, and for vari-
ous uses. Despite both an old process culture, TeleCorp had identified problems
both in applying its “one-size fits all” process to all kinds of projects; and in the
effective and efficient usage of measurement data. The first problem had already
resulted in developing an alternative process that was more iterative in nature
than the old, sequential process. Our case study, however, focused on the second
problem, measurement. In particular, there were problems in both communic-
ating and using measurement data, and a problem with a measurement system to
which new measures were constantly added without removing old ones. This led
management to believe that not all existing measures were relevant in the current
situation.

96

6.5.2 Client Infrastructure

In the TeleCorp case, there was initially two persons working part-time on the
project, and later one full-time person was added. In addition, project office,
quality organization and other personnel participated in joint activities and work-
shops as needed. The commitment of TeleCorp was thus excellent. However,
when the project champion, who was the division manager, moved to head an-
other TeleCorp development unit, commitment dropped, as his successor did not
share his enthusiasm and interest in organizational measurement.

6.5.3 TeleCorp Action Research Cycles

A summary of the TeleCorp case is displayed in Table 6.6.

Table 6.6: TeleCorp Case Summary

Cycle theme Actions taken Results

1. Familiariza-
tion

• Document analysis
• Personnel interviews

• Complex, fragmented
measurement system

• Need to simplify, study relation
of current measures to
organizational goals

2.
Measurement
system study

• Document analysis
• Workshops with division and

project management

• Measures identified
• Goal-measure mapping done at

divisional and project levels

3. Toolset
piloting

• Toolset installed
• Pilot visualizations developed

and demonstrated

• Toolset development
suggestions

• Pilot visualization works
• Difficulties getting access to

and understand the corporate
databases

• Need for caching query results

6.5.3.1 Cycle 1: Familiarization

In the initial cycle, we familiarized ourselves with the measurement programs
and infrastructure at TeleCorp. As part of a large international group, the meas-
urement system had during the years become complex and fragmented. Many
measures were collected as part of corporate wide policies, and others were locally
defined. There was no clear understanding of the measures and their links to the
explicit goals of the unit under study. As a result, it was decided to study the
measurement system in more detail. This was the theme of the second research
cycle.

6.5. Case 4: TeleCorp 97

We also performed a study of exisiting measurement infrastructure, and found
that measures were collected into seven different databases, some of which the
local organization had no control over, and only limited access to. The databases
were from different vendors, and we were not able to get data dictionaries for all
of them. Due to this, it was decided to start the tool piloting using only local
databases that were easily accessible. Toolset piloting was the theme of research
cycle 3.

6.5.3.2 Cycle 2: Measurement System Study

In the second research cycle we studied the existing measurement system by more
detailed document study, and by trying to identify links between measures and
organizational goals. This was done in workshops with company personnel, and
is discussed in more depth below.

6.5.3.3 Cycle 3: Toolset Piloting

In the third research cycle, we piloted the toolset. Due to the heterogeneous
and distributed nature of the corporate measurement programs and measurement
databases, the organization had communicated a clear need for control panels
that could help integrate different measures into simple visual displays. In the
prevailing situation, different systems generated a variety of measurement reports,
but there was no consolidation or integration activities. In this cycle, we installed
the toolset and implemented a few pilot visualizations at the project level.

6.5.4 Control Panel Design and Implementation

In the TeleCorp case, control panels were not systematically defined. Instead,
simple visualizations that could be build based upon existing data were developed
by the corporate personnel on their own. The idea was to first pilot connections
to the most important databases, and when that worked, start building control
panels. Unfortunately, we did not get to that stage.

6.5.5 Measurement Foundations

The work on measurement foundations at TeleCorp focused on analysing the
existing measurement system. The organization explicitly stated that it was not
interested in new measures, since it was felt that the current number of measures
was more than adequate.

In an effort to better understand which measures were important and useful
for the organization, we performed a goal-measure linking exercise, in which we
together with corporate personnel tried to link existing measures to explicit cor-
porate goals. As the measurement programs had grown over the years, based on
various efforts, there was no clear view of the whole and its relation to the actual
goals of the organization.

We started the goal-measure mapping by interviewing the division’s quality
manager about the existing measurement system. The measurement system was

98

newly created, and based upon the Balanced Scorecard (Kaplan and Norton, 1992).
The measures were grouped into four dimensions: customer, people, process, and
product. Since, according to the Balanced Scorecard, the measures should be
derived from the company strategy (Kaplan and Norton, 1993), we expected the
goal-measure mapping to be easy to do; ideally, it should already exist and be docu-
mented. It turned out, however, that the measures in the balanced scorecard were
derived in management workshops by brainstorming and discussions , without ex-
plicitly linking them to objectives of the organization. The balanced scorecard
was used only as a template guiding the discussions and giving a format to the final
outcome. Consequently, we had to do the mapping afterwards. We initially tried
a “reverse-GQM”4 trying to apply the Goal-Question-Metric paradigm (Basili and
Rombach, 1988) in the opposite direction, but it turned out to be artificial to de-
rive the questions this way. We therefore decided to leave out the question-level,
and to do a direct goal-measure mapping.

The mapping was done in a workshop with the quality manager of the divi-
sion, acting as a representative for the management team that had developed the
measures. It would have been better to include the whole team, but unfortunately
we did not have that possibility; also, the division manager heading the effort had
transferred to another organization within TeleCorp. Before the workshop, we
had prepared small paper notes, one for each measure, and one for each goal.
The measures included both the key performance indicators from the balanced
scorecard, and other institutionalized measures, which we called performance in-
dicators. The measures were taken from the official documentation found in
the division’s quality system. The goals were taken partly from the quality sys-
tem, partly from the official documented strategy. The process of finding goals
and measures was easy since they were well documented. All in all we found
18 goals and 20 measures. The actual mapping was done in two phases, using a
“wall-technique”. We first simply asked the quality manager to take one goal or
measure, stick it to the wall, and then find the corresponding measure(s) or goal(s)
and stick it (them) next to the first paper. This turned out to be almost impossibly
hard; we therefore first asked the quality manager to cluster goals and measures
together, making the amount of goals smaller. When this was finished, he was
asked to name the clusters. Finally, he was asked to link the measures with the
goal clusters, and when possible with a specific goal.

The results were interesting and eye-opening to the quality manager: of the 18
goals, only four had strong links to measures, and three others had weak links. Of
the 22 measures, four had strong links to some goal, and two had weak links, giving
a total of 18 measures that were not linked to any explicit goal of the division. In
addition to the linking of goals and measures, we asked the quality manager to
give an overall “goodness” rating for each measure on a scale from one to five. He
was furthermore asked to prioritize the goals, but since the goals were not prior-
itized when the strategy was defined, we decided to leave the goals unprioritized.
Finally, he was asked to group the measures into three groups based upon their

4The idea to try to do a GQM tree post fact was our own, and is not part of the GQM approach.

6.5. Case 4: TeleCorp 99

importance as a means of control. The groups were: a) strong/directly controlling,
b) weak/indirectly controlling, and c) no control function.

After the workshop, the researchers documented the results in a matrix, a
modified version of which is shown in Figure 6.12, which was given to the quality
manager for comments and corrections.

In the figure, the rows contain the corporate goals, listed in order of priority.
The columns list the measures, in order of “goodness”, as evaluated by the work-
shop participants. A yellow box indicates that there was a weak linkage between
the goal and the measure; a green box indicates a strong link, and a white box
indicates that no link was identified. In a well designed measurement system,
one would expect each important goal to be linked to a measure. In the case of a
one-to-one linkage in which the goodness or importance of the measures perfectly
matches that of the goals, the matrix would contain a diagonal line of green boxes
from the upper left to the lower right corner.

In additional to the divisional level, we performed goal-measure mappings at
the unit level, and for two projects. The observations and main recommendations
for improvement made by the personnel are listed in Table 6.7.

The linking of existing goals and measures proved to be both much tougher
and more revealing than we had initially expected. First, even finding the measures
and goals to map was challenging; they had to be dug out of a large set of various
documentation. Second, performing the mappings in a workshop setting proved
to be valuable also for the participants — ideas and assumptions came out clearly
perhaps for the first time; lots of improvement suggestions came out, and many
were acted upon by the organization.

6.5.6 Toolset Installation and Use

The measurement toolset was installed at TeleCorp at two sites; in two separate
European countries. In Finland, the toolset was connected to several databases,
including the inspection, time reporting, the corporate measurement database,
the modification handling system, and the test progress support system. The
main expected benefit was to be able to view up-to-date data from several sources
in one single panel. Previously managers and personnel had had to rely on various
reports, typically in paper format.

Toolset deployment, even for testing purposes, was made more difficult by
the heterogeneous nature of, and geographical distribution of the measurement
databases. The heterogeneous nature of the databases meant that connection
modules for different databases had to be written individually, since the databases
were from different vendors. The geographical and related organizational distri-
bution limited the possibilities to get documentation of, and access to remote
databases. As such, the large number of connections that was made possible was
a big success.

When working with remote databases, some of which responded to queries
very slowly, we decided to start caching query results in order to have control
panels update more rapidly. The caching mechanism did not only store the results

100

Figure 6.12: The Goal-Measure Mapping at the Divisional Level

6.5. Case 4: TeleCorp 101

Table 6.7: Main results of TeleCorp Goal-Measure Mapping

Object of
study

Findings Comments and proposals

Division • Measures mostly operational, not
strategic

• Strategy not clear enough to
make measurable goals

• Implicit strategic goals reflecting
the corporate culture were not
explicit in the documentation

• Improve the strategy process and
documentation

• Clarify the role of the division
versus the operational units

Develop-
ment
Unit

• Some goals not made explicit
• Many action type goals
• No competence measures
• Almost half of the measures are

used only for monitoring, and
they therefore lack target values

• Measurement definition process
only indirectly driven by goals

• Some target values are goals in
themselves

• Make link between goals and
measures clearer

• Use levels in the scorecard
• Make hidden assumptions

explicit — discuss and agree
• Make explicit action type goals

and measures only for major
actions

• Keep number of goals small

Project • Basics in order — the most
important goals were measured

• Many goals were not measured
• Only 2 good measures (as assessed

by the project manager) found

• Improve goal-setting
• Make higher-level goals more

concrete
• Reduce number of goals
• Follow-upa vs. measurement
• Reconsider the use of low-scored

measures

Subproject

α

α
• Only most important goals

connected to measures
• Some measures not within the

tester’s scope

• Improve goal-setting and
documentation

• Make clear who monitors which
goals

• Test reports have lots of
measures — which of them are
really needed?

aMonitoring vs. control?

1

102

of old queries, but actively polled the remote databases. Therefore, we referred to
it as “proactive caching”, the details of which has been described elsewhere (Risku
and Rinta-Aho, 1999).

Unfortunately, however, despite working database connections, we did not
during the project get to defining and implementing control panels. The main
reason for this was personnel changes—the divisional manager who was the driving
champion of the project transferred to another unit. His successor was not at all
interested, and consequently lower levels of the organization also showed less
commitment. In addition, the organization expressed concern over the fact that
our toolset was a research prototype, and therefore unsuitable for production use.

Instead, we ended up with only a handful of working pilot visualizations, one
of which is shown in Figure 6.13.

Figure 6.13: An Example Panel showing Inspection Data

6.5.7 Lessons Learned

Installing the toolset into an organization with lots of existing measures and meas-
urement databases proved to be a valuable experience that gave lots of input for
the further development of the tools. The actual building of working visualiza-
tions from several databases proved to be more involved than we had expected.
Also, unexpected problems with the database of an external vendor slowed the
visualization implementation down. It was therefore a bit disappointing that we
did not get any real data on the use of the visualization tool. This was especially
unfortunate in this case, since TeleCorp provided a fairly stable environment into
which the tool could be installed; thus it would have been easier to try to get at
the possible benefits of the introduction of visualizations in this case than in the
others, in which other large changes were simultaneously made.

Also in this case we learned the value of management commitment, and of
having a champion for such an undertaking. The complexity of measurement
programs and databases in a large organization was enlightning.

6.6. Cross-case Analysis 103

6.5.8 Impact on Constructs

The main impact the TeleCorp case had on our constructs was the addition of
“proactive caching” (Risku and Rinta-Aho, 1999) to our toolset. In addition, we
had to add support for an additional database, but this can be seen only as a small
technical issue that, however, indicates the need for flexibility in database support,
since organizations might resist investing in database technologies from several
vendors.

The original tool architecture was based on the idea of replicating measure-
ment data to our centralized server. This approach was unfeasible at TeleCorp
because of the prohibitive amount of data in some corporate-wide databases that
we needed to integrate into the system. Therefore, we changed the system to
allow for running queries to other databases, to avoid having to replicate the
data. This lead to a new problem: some queries to these large databases took
several minutes to run, leading to unacceptably long times for opening visualiz-
ation panels. We therefore introduced caching of queries with a mechanism we
called proactive caching , which aimed at providing the newest available data even
though we did not have any mechanism for identifying when data had changed
in the remote databases. We also had unexpected technical problems with one
external vendor’s database that delayed the implementation. Partly due to this,
we were not able to develop visualization panels for production use during this
pilot. The company, however, continued the efforts to implement and use the
toolset after our pilot project ended. An example of a panel developed during the
pilot and depicting inspection related measures is shown in Figure 6.13.

6.6 Cross-case Analysis

In this section, I draw together the lessons learned in the case studies. I have
structured the discussion into three themes: lessons learned, success factors, and
obstacles. The lessons learned are further structured into lessons regarding the
actual design and implementation of control panels, and lessons regarding work
on the measurement foundations necessary Finally, I comment upon how the case
studies impacted the constructs, and thus how I think that they in their present
form can help overcome some of the challenges that we encountered. Table
Table 6.8 shows a short summary of the case studies.

6.6.1 General Lessons Learned

The perhaps most important overall lesson we learnt was that implementing a vis-
ion like the one discussed in this thesis, while intuitively appealing and simple,
is doable, but not at all simple in practice. In particular, the importance of
the “foundations” behind the panels: processes, measurable goals, and working
measurement is emphasized. Getting this foundation working to the level that
meaningful control panels can be developed is a difficult task that can take several
years, especially if aiming at organization-wide control panel development and
deployment.

104

Table 6.8: Summary of Empirical Studies

Study Objectives Results/Contributions

Case 1:
SoftCorp

• Explore the control panel idea in
an SME setting

• Build and test control panels at
the project, and strategic levels

• Analysis framework
• Approach feasible also in small

companies/projects
• Data and experiences on toolset

deployment
• Data and experiences on small-

scale control panel usage

Case 2:
ElectroCorp

• Analyse the product develop-
ment process

• Develop and install visual control
panels for product development

• Goal and measure number ex-
plosion when using goal-based
measurement

• Experiences with corporate res-
istance, politics and fear of
measurement

• Understood need for visualiza-
tion libraries

Case 3:
SecuriCorp

• Build and install control panels
and measurement system for a
small software development or-
ganization within a large com-
pany

• Experience with project classi-
fication and portfolio manage-
ment

• Toolset piloting experiences
• Understood need for visualiza-

tion libraries

Case 4:
TeleCorp

• Analysis of existing measurement
system

• Piloting of toolset using existing
measurement infrastructure

• Goal-measure mappings
• Toolset features: remote queries

and proactive caching
• Toolset piloting experiences

6.6.2 Control Panel Design

As is clear from the case studies, we did not design and implement control panels
to the degree we had expected. The development was also quite unsystematic and
much based upon trial and error. We found it easy to sell the idea of control panels,
to identify stakeholders, and to have them sketch the things they were interested
in seeing. However, we did not get enough experience in systematically defining
and implementing control panels to be able to give authoritative guidelines for it.

6.6.3 Control Panel Foundations

Building the necessary foundations for the control panels turned out to be much
more demanding and time-consuming than we had expected.

In the ElectroCorp case, we were unable, despite several attempts, to get
clearly specified strategic goals that could have provided a foundation for both

6.6. Cross-case Analysis 105

strategic control panels and derivation of lower level goals. Instead, we experi-
enced “goal-explosion” (Card, 1993), a known problem with goal-based measure-
ment. On the other hand, the goal-measure analysis at TeleCorp was considered
valuable by the organization5

At SoftCorp and SecuriCorp, we found project classification valuable. It
helped organizations in three distinct ways: by making it easier to grasp the over-
all situation in the project portfolio, by making it easier to allocate and share
resources between projects, and by making project progress monitoring easier.
We found no single way or dimensions that were useful in all organizations, but
did the classifications on a case-by-case basis.

In order to succeed in measurement system implementation (which proved to
be much harder than measurement system definition), it is important to create
a positive and constructive athmosphere. This helps improve the reliability of
the data, improves the use of the measurement results, as well as helps tackle
resistance to change. We found that the most crucial phase is the first usage
experiences. Having to deal with facts instead of opinions can be difficult to
people not used to it. Measurement data might expose surprising facts that some
people have invested a lot in denying.

We also found that making data collection work is no easy task. Some or-
ganizations collect lots of data, but the control aspect (i.e., target values, either
time-based or not) are lacking. Implementing working data collection procedures
can be quite cumbersome and demand lots of time and effort. It can be challen-
ging to motivate product developers to collect data, since they might not easily
understand the benefit from their own point of view. We found it useful to gradu-
ally implement data collection, and to start with simple solutions, such as using
Excel spreadsheets for collecting some very basic data.

6.6.4 Toolset

Our experiences with the toolset was on the whole positive. We found ViCA
to be a good tool for motivating the personnel to enter data, since they immedi-
ately could view the data and its use in the tool. ViCA was found to be easy to
use—at least from the perspective of basic users. Implementing the visualizations
did, however, demand an understanding of both SQL and the internal corporate
measurement databases. All case organizations, with the exception of TeleCorp,
which had dedicated technical support personnel for measurement, deemed this
the biggest problem with the toolset.

6.6.5 Success Factors and Obstacles

In this section I try to identify success factors for and obstacles to control panel
development. Since the number of cases studies is limited, and much work went

5The goal explosion we encountered in the ElectroCorp case was much due to events out of our
control: we several times asked management to prioritize the goals to help select a subset, but were
unable to get that prioritization. Management did also not take the time to work jointly with us, e.g.,
in a workshop on prioritizing goals.

106

into measurement foundations, the discussion here must be considered tentative,
not authoritative.

Table 6.9 show the success factors we identified, and how important they were
to the different cases. As success factors, I have included factors that I, based upon
our experiences, consider necessary, but not sufficient for succeeding in building
control panels. In the table, a plus sign (+) indicates the the factor affected the case
positively, and a minus sign (-) that it (or the lack of it) contributed in a negative
way.

Table 6.9: Success factors

Obstacles Soft-
Corp

Electro-
Corp

Securi-
Corp

Tele-
Corp

Management commitment at all levels +/- - - -

Resourcing + + - +

Selling and involving personnel -/+ - - +

Trusting relationship with researcher(s) + - + +

The most salient success factor was, perhaps not surprisingly, management
commitment. Strong management commitment both from the CEO and the VP
responsible for the joint project at SoftCorp helped us solve many problems both
with resourcing and personnel motivation. The case is particularly interesting in
the sense that strong management commitment regarding Trade2000 develop-
ment helped drive the effort forward, and the lack of it for Trade+ development
resulted in failure for that effort. At ElectroCorp, the CEO was committed, but
delegated the project to the NPD manager who was committed in words but not
in deeds. At SecuriCorp, the situation was the opposite: the NPD manager was
strongly committed, but his CEO did not show real commitment, but respected
his subordinate’s wish to participate in the joint project. At TeleCorp, initial
commitment was strong, but faded when the division’s head moved to another
subsidiary. In all these cases, I think that the failures or very partial successes can
be tied to the lack of sustained management commitment.

In addition to management commitment, the development of control panels
and related measurement foundations is a substantial undertaking, requiring ad-
equate resourcing from the company’s side. While the effort is smaller if targeted
properly and if the organization has a working measurement foundation, it still
requires a clear commitment of resources to succeed.

The need to sell and resell the measurement effort, and to involve the person-
nel is crucial to success, as has been noticed in the literature on software meas-
urement program implementation. This is particularly important in companies
in which the measurement culture is new or non-existent.

Finally, having a high degree of trust between the researcher/consultant is
important. In particular in the ElectroCorp case, lack of trust was salient.

6.6. Cross-case Analysis 107

6.6.5.1 Obstacles

There are several organizational factors that must be dealt with in order to succeed
in implementing tool supported measurement programs. Table 6.10 shows the
most salient ones. These include fear of measurement, organizational change,
organizational inertia, organizational politics, organizational culture, resistance
to change, and researcher related factors.

Table 6.10: Obstacles

Obstacle Soft-
Corp

Electro-
Corp

Securi-
Corp

Tele-
Corp

Organizational change + + + +

Organizational inertia + - + +

Organizational politics - + + +

Organizational culture - + + -

Inexperience of researcher(s) regarding
substance

- + - -

Inexperience of researcher(s) regarding
collaboration with industry

- + + +

Implementing measurement programs is resource and time-consuming, as dis-
cussed in the previous chapter, and it is easy to underestimate both the calendar
time and effort needed before the measurement system is up and running. During
the time we worked with our cases, ElectroCorp faced at least three major reor-
ganizations, SoftCorp was sold and subsequently reorganized. Management at
TeleCorp did also change during the case, severely decreasing the commitment of
the organization. Reorganizations and personnel changes are a fact in corporate
life, but this can lead to significant extra work. Each organizational change can,
e.g. require the reselling of an improvement effort.

Organizations on the other hand also have inertia, making change hard. In
particular in large organizations, like TeleCorp, seemingly simple things like get-
ting access to databases can be very difficult and time-consuming.

Organizational politics can also stifle measurement program implementation.
In the ElectroCorp case, the NPD manager did not want to implement measure-
ment because he seemed to fear giving his superiors additional visibility into his
department. In the SecuriCorp case, top management was very sales oriented, and
therefore not very interested in developing measures and processes for product
development, since they felt that it anyhow was too slow to react and that imple-
menting more measures and processes could give the already problematic NPD
manager more weapons to fight with against their wishes and whims.

The success of measurement programs is also affected by the corporate culture.
For example, at TeleCorp, the process culture was over 10 years old and could be
considered fairly mature. Measurement was already a part of the daily life, and

108

little resistance was felt. In the less mature companies, like ElectroCorp, Securi-
Corp and SoftCorp, measurement was both feared and openly critisized.

In action research, the researcher is intimately involved in the work carried
out to improve the clienťs situation. Thus, the researcher’s knowledge,“present-
ation of self” and other researcher related factors can affect the outcome of the
relationship, similarly to what has been discussed regarding qualitative evaluation
research. (Patton, 1990).

The fact that we as researchers got our first experiences with measurement
system implementation during this project meant that we, at least in the begin-
ning, were as inexperienced as the people in the case companies in defining and
implementing measurement. Due to this, we made several mistakes that in, e.g.,
the ElectroCorp case led to a loss of trust6.

We also lacked training in research methodology, a fact that is discussed in
Section 7.4, and not further considered here, since it possibly did not significantly
affect the outcome of the industrial collaboration.

Summarizing the discussion of success factors for, and obstacles to control
panels, they are well in line with what is known for development and installation
of measurement program in general (Goldenson et al., 1999; Berry and Jeffery,
2000). This makes it no doubt a challenging undertaking, the success factors for
which are much related to organizational change and commitment of adequate
resources. All in all, our experiences in working with the foundations, is much
along the lines of what one could expect based upon studies of success factors for
software measurement.

6.7 External Evaluation

After the end of the action research cycles, an external consultant evaluated the
research project together with the participating companies (Tallqvist and Saranen,
2000). The purpose of this evaluation was to assess the potential for commer-
cialization of the toolset. Since the results are interesting also from the point of
evaluating the end-result of the research and provide an “unbiased” evaluation of
the outcome of the research discussed in this thesis, I have decided to include the
partial results of that study that are interesting from the point of view of imple-
menting control panels, and leave, e.g., the analysis of markets and pricing out. To
this end, I next discuss the results of the external evaluation with respect to the
overall impact of the cooperation, the quality of the toolset, and the estimated
maintenance effort needed if deploying the tool. Methodologically we did not
have any control over the work of the external consultant. The results discussed
below were obtained by interviewing the key stakeholders in the companies, which
typically were the same people that we had worked closely with during three years.

6As discussed in the case description: the efforts at defining corporate goals for derivation of
measurement led to an “explosion” of the number of goals, that we together with the company were
not able to prioritize.

6.7. External Evaluation 109

6.7.1 Post-Project Control Panel Usage

As previously discussed, only SoftCorp, deployed the toolset, and continued to
use it after the end of the joint project. The three other companies did not use
the tools, and reported various reasons for not doing so. TeleCorp considered the
toolset technically unfinished, and expressed concern regarding future support
and development. ElectroCorp reported that they did not take the tool into use
due to a lack of resources and the lack of future support for the toolset. Securi-
Corp,finally, reported that they did not have the resources to deploy the tool. The
concern regarding future support for the toolset was mentioned by all companies,
and is of course legitimate, but is outside the scope of this study, since we focussed
on validating the idea of control panel definition and implementation, and did not
aim for wide-scale deployment.

The concern regarding lack of resources might be understood as reflecting a
multitude of concerns. First, the development and implementation of control
panels turned out to be much more resource demanding than expected by both
researchers and corporate partners. Furthermore, in most companies we were
not able to develop control panels that were felt to be useful and worthwhile to
take into use. Thus, the comment also reflects an underlying assumption that the
cost-benefit ratio of implementing control-panels is not good enough to merit the
investments needed.

When asked about the obstacles to deployment, respondents identified four
factors: corporate bureaucracy, management commitment, lack of ideological background
information and marketing, and organizational change.

Corporate bureaucracy, a factor particularly salient in the TeleCorp case can be
a difficult obstacle to overcome when trying to implement control panels. In Tele-
Corp, we had difficulties getting access to corporate level databases, due to this.
Also, due to the change of management and level of bureaucracy, the organization
was not ready to deploy control panels. In the smaller organizations, bureaucracy
was less of a problem.

Management commitment was problematic in the ElectroCorp, TeleCorp and
SecuriCorp cases. In ElectroCorp, the CEO was committed to the project, but
the person responsible for it was not. In TeleCorp, we had a similar situation—the
person who wanted the control panel idea to work, and who also recently had
headed the organization’s balanced scorecard effort was promoted to head of a
different division. His successor never showed any interest in the project. In
the SecuriCorp case, the development manager was committed, but he did not
manage to secure real support from the CEO or the marketing organization. The
lack of management commitment was reported to lead to problems like lack of
strategic direction and resources.

Lack of ideological background information and marketing, is a factor closely
related both management commitment and organizational change, and in our
own analysis, I did not present it separately. By this, the respondents meant that
the idea of control panels and their implementation had not been sufficiently
disseminated in the organizations. In all organizations, we did, however, have

110

both workshops and talks to personnel about the project. Thus, as such, this
comment was interesting.

Organizational change, finally, affected the work in all pilots. SoftCorp was
sold, a fact that later ended the deployment of control panels. ElectroCorp under-
went two organizational reorganizations during our pilot, and SecuriCorp decided
to downsize its development team. In TeleCorp, the divisional manager who ori-
ginally decided to participate in the project moved to head another subsidiary. In
all cases, this led to a need for reselling and re-establishing management commit-
ment. As can be seen in the above comments, this was only partly successful. Also,
organizational change draws a lot of the energy in an organization, which can make
improvement projects like the one described here relatively less important than
other ones. Also, since measurement ties directly into organizational processes
and organizational structure, instituting a measurement system for an organiza-
tion might be more appropriate during a period of relative stability. However,
one could also take the point of view that a working measurement infrastructure,
which can be used to measure whatever organizational structures, processes and
products currently are operational could be a valuable asset even during periods
of organizational instability. However, our experiences do not support this view.

These results, fit closely with our own analysis, discussed in the previous sec-
tion. We will next turn to the impact of the cooperation, as evaluated by the
corporate partners.

6.7.2 Impact

The pilot companies were asked to evaluate the impact of our collaboration on a
five-point Likert scale with 1 representing “no impact” and 5 representing “major
impact”. The results are shown in Table 6.11.

Table 6.11: Impact of the Lucos project

Characteristic Evaluation (mean)

Availability of internal information 4,0
Goal-orientation 3,8
Efficiency 3,0
Image 3,0
Bureaucracy 2,5
Customer satisfaction 2,4
Cost awareness 2,3
Quality awareness 2,0
Sales and profit 1,7

Respondents considered, unsurprisingly, that the areas in which there was the
most potential for impact was the quality of company-internal information and
goal-orientedness. As expected, the companies also felt that there was some im-
pact on efficiency, as well as on corporate image. Having a measurement system
that works well and is effectively and efficiently communicated to all stakeholders

6.7. External Evaluation 111

should indeed improve efficiency. The impact on corporate image is explained by
the fact that the companies early on indicated that they would clearly communic-
ate their modern way of managing development to both partners and customers.

Of the evaluations on the other dimensions listed in Table 6.11, two were
surpirising and worth further comments: cost awareness and quality awareness.
I was surprised that they were evaluated so low: one would think that having
cost and quality information available on-line at any time would help increase the
awareness. Unfortunately, I do not have explanatory data. One could hypothesize
that it is due to the fact that cost and quality awareness already are at such high a
level in the companies that they cannot, or need not, be further raised. Alternat-
ively, measurement and visualization were not considered important mechanisms
for this purpose.

6.7.3 Toolset

During the evaluation by the external consultant, the pilot companies were asked
to evaluate several properties of the visualization tool on a five-point Likert scale,
with 1 representing an evaluation of “poor”, 3 representing “neutral”, and 5 “excel-
lent”. The results are shown in Table 6.12.

Table 6.12: Pilot companies’ evaluation of the visualization tool

Characteristic Evaluation (mean)

Development potential 4,4
Versatility 3,9
Progressivity 3,8
Tailorability 3,8
Technical quality 3,2
Complexity 3,0
Ease of use 3,0

As can be seen in the table, the pilot companies felt that the tool had a good
potential for being evolved into a genuinely useful tool. The most critical success
factor was considered to be the understanding of and integration with existing cor-
porate data storage. The tool was also considered to be both versatile, progressive
and tailorable. Thus, these objectives seem to have been well achieved. The tech-
nical quality was rated slightly positive, with one company giving a negative rating
due to database interface problems.

Complexity received a neutral mean. This is explained by the fact that com-
panies felt that the basic tool was easy enough to understand, but that the imple-
mentation of new measures and new visualizations was considered overly difficult.
The same explanation also goes for usability: basic usage of the tool, i.e., look-
ing at predefined panels and navigating between them, was considered easy. The
process of defining and implementing measures was considered hard. Thus, the
usability goal can be considered partly achieved.

112

As previously shown in Table 3.3, the tool was taken into real usage in only one
company. In that company, the usage was reported to have a large impact, both
on the pilot software development project in which it was initially used, as well as
in the customer service function, where it was later deployed. In the other cases,
the impact of the work was neglible, as the tool and ideas never made it into real
use. However, the single successful case can be considered to show the feasibility
of defining and implementing control panels, at least in small organizations, in
highly visible projects.

Table 6.13 shows the pilots’ evaluation of the need for maintenance and support
related activities in case of toolset rollout. The evaluations were made on a five-
point Likert scale with 1 standing for “high” and 5 standing for “low”. Thus, the
lower the mean, the better. The table is therefore sorted according to ascending
mean.

Table 6.13: Pilot companies’ evaluation of maintenance effort

Characteristic Evaluation (mean)

Documentation effort 2,2
Administration effort 2,6
Day-to-day support effort 2,8
Training effort 3,2
Maintenance costs 3,8

The highest costs were considered to be those related to tool administration
and documentation. Several companies felt that usage of the tool would require
one full-day administrator. In addition, the detailed company-specific need for
documentation was felt to be important. This was no surprise — implementing
any tool in an organizational context requires adequate support, and any measure-
ment program needs to be well documented. Also the need for day-to-day support
was considered crucial, and therefore to incur non-neglible cost. However, this
finding is not completely supported by our experiences; in the SoftCorp case, the
actual effort for administering the tool after the measures and control panels had
been developed and tested was very small.

Of less concern was the cost needed for training and technical maintenance
of the tool. The pilot companies considered external technical maintenance to
be crucial, since they did not want to start maintaining and developing the tool
themselves. Since using the visualization tool to view existing panels or to develop
own panels from existing visualizations was considered easy, the costs for training
were estimated to be small.

6.8 Conclusions

This chapter discussed our experiences in defining and implementing control pan-
els in four Finnish companies. The toolset was successfully piloted in all compan-
ies, however only one company used the toolset in production use, and this only

6.8. Conclusions 113

for a short period of three weeks. The cross-case analysis discussed these, some-
what disappointing results, and tentatively identified success factors and obstacles
to control panel implementation. Most saliently, problems were related to the
building of a working measurement foundation upon which control panels can
be built. Constructing such a foundation requires substantial commitment from
the organization, but is possible even in small companies, as the SoftCorp case
showed. Organizational inertia, and organizational change also pose challenges
to control panel implementation. We also identified success factors, the most
critical of which was sustained management commitment.

Chapter 7

Conclusions

The more research I do the more I find everything
is at random. Somebody goes off in this direction,
somebody in that, and who knows what the end
result is going to be?

HARRISON E. SALISBuRY

7.1 Introduction

THIS chapter summarizes the work presented, identifies the contributions
made in the thesis, evaluates the work, as well as presents topics for fur-

ther research.

7.2 Summary

This dissertation has presented concepts, guidelines and a toolset for developing
visual displays of software development status, “control panels”, as well as dis-
cussed our empirical experiences in applying them in four Finnish high-technology
companies.

The conceptual framework identifies a minimal set of concepts needed to
build hierarchies of navigable control panels and via the measure concept, provides
a linkage to corporate measurement programs without tying into any particular
measurement development approach. The framework is evaluated below.

In addition to the framework, the work identified basic activities that needs to
be performed in addition to normal measurement program development activities,
when defining and implementing software development control panels.

The toolset discussed provides support both for building visualizations and
control panels and for gathering data upon their use. This data can be used to
better understand usage patterns for measurement systems.

Finally, the empirical experiences show the initial feasibility of implementing
software development control panels, but also show that it is a major undertaking
that require a substantial degree of commitment as well as adequate resourcing.

115

116 Conclusions

Successful control panel implementation is shown to be able to provide value to
an organization, though we are unable to separate the value of visualizations from
measurement program implementation.

7.3 Contributions

This thesis makes three distinct contributions to knowledge. First, the vision
and framework presented in Chapter 4 presents a way of conceptualizing and
structuring the presentation of measurement results in software development or-
ganizations. While the focus in this research has been on software development,
the concepts and development process is likely to be applicable also to other fields,
like e.g. new product development.

Second, the toolset discussed in Chapter 5 provides a platform that can be used
both for developing and supporting control panels for software development, as
well as for analysing their use, thus deepening our understanding of the benefits
and drawbacks.

Finally, our empirical experiences, discussed in Chapter 6, show that imple-
menting control panels is viable, but challenging. In particular, tool deployment
and integration into existing measurement programs and tools is challenging and
demands a high level of organizational commitment and easily a substantial in-
vestment. We identified tentative success factors and issues that must be dealt
with when trying to implement control panels.

7.4 Evaluation of the Research

In this section, I evaluate the research discussed in the thesis. When evaluating
research, one can use general criteria for science, such as objectivity, criticality,
autonomy and progressivity (Niiniluoto, 1984). While these general criteria can
be useful, particular research approaches and scientific fields typically use more
practical guidelines. Since the research in this thesis is mainly constructive, but
there is little guidance for research evaluation in the field of software engineering,
I have opted to use a combination of the criteria presented by (Kasanen et al.,
1993) and the guidelines for design research presented by Hevner et al. (2004)
and discussed in Section 3.3. The discussion is structured according to the design
research guidelines, with aspects added from other sources as needed.

7.4.1 Design as an Artifact

The first design research guideline states that “Design science is supposed to
produce a viable artifact in the form of a construct, a model, a method, or an
instantiation”. Since the overall goal of design research is to product an artifact,
the evaluation of the actual artifacts is a logical place to start the evaluation.

In the research presented in this thesis, several artifacts were described. First,
an overall idea of software development control panels was described, and the concepts
needed to develop these, as well as a,amework that can be helpful when identifying

7.4. Evaluation of the Research 117

what kind of panels to build was described. A tentative process for developing and
evolving a corporate set of control panels was also described. Finally, a measurement
toolset was described. I next evaluate each of these as research artifacts, first
discussing, as is typically done when evaluating constructive research, how well
the requirements regarding their development was met, and then their viability.

7.4.1.1 Conceptual Framework and Guidelines

We had seven requirements for the conceptual ,amework and guidelines as discussed
in Chapter 4, and relisted in Table 7.1 together with an evaluation of how well we
achieved them.

When working in the case organizations, we found it to be harder than we
had expected to systematically address the development of control panels. As
described in the previous chapter, using the action research cycle, we ended up
working in ways that often were quite specific to the individual organizations.
The theoretical constructs that received the most “testing”—though they partly
can be seen as an outcome since I did not make them explicit until the end of
the project—were the basic concepts and the logical view of a software development
project organization. In particular, we found the concepts simple and natural to use,
and the logical organizational view to be useful both when trying to understand
the “big picture” of what goes on in a software development organization, and for
structuring the development of control panels.

7.4.1.2 Toolset

We had ten initial requirement for tool development. These, as well as how they
have been met is summarized in Table 7.2. As shown in the table, we can consider
tool development a success with respect to the requirements, since we were able
to meet all of them. Our empirical experience with the toolset showed its viability
in the sense that we were able to develop and deploy control panels in one of the
four case organizations, and develop example visualizations using corporate data
in all of them.

Finally, the toolset also helped show the viability of the vision since it can
be considered an instantiation of it, and thus works as “proof by construction”
(Nunamaker et al., 1991).

7.4.2 Problem Relevance

In addition to producing a viable artifact, design research should work on import-
ant problems. Kasanen et al. (1993) suggests that the relevancy of the problem
should be evaluated both from a practical and a theoretical point of view.

In Chapter 2 I discussed the theoretical relevance of the problem and showed
that while there is a lot of literature on software measurement in general, and on
measure and measurement program development in particular, issues of measure-
ment presentation, presentation grouping, and tool support have received quite
little research attention. Thus, there is a clear theoretical space for frameworks,

118 Conclusions

Table 7.1: Evaluation of developed framework vs. requirements

No Requirement Achievement

FR-1 Concepts: The framework should
define the central concepts needed
for the development of control pan-
els.

Achieved. The conceptual frame-
work discussed in Section 4.3 does
this.

FR-2 Guidance: Guidelines for control
panel development should be de-
veloped.

Partly achieved. The list of pos-
sible partitionings, the logical view of
a software development organization
as well as the tentative development
process (sections 4.4 and 4.5 respect-
ively) address this.

FR-3 Method independence: Control panel
development should be independent
of measurement paradigm or meth-
odology.

Partly achieved. The conceptual
framework for control panels does
not tie into any particular meas-
urement paradigm. However, we
strongly believe in stakeholder and
goal-oriented measurement as evident
from the discussion.

FR-4 Organizational independence: It should
be possible to develop control panels
for different organizations and envir-
onments.

Partly achieved/Unverified. We im-
plemented control panels in one or-
ganization only, but piloted the idea
in the others as well.

FR-5 Technological independence: Control
panel development should be inde-
pendent of the particular technolo-
gical tools deployed.

Achieved. It is possible to use, e.g.,
a spreadsheet tool to develop control
panels.

FR-6 Usability: The framework should be
easy to learn and use.

Unverified. The final versions of the
constructs have not been tested in
practice. However, they reflect the
lessons learned during our work with
the case organizations.

FR-7 Feasibility: Control panel develop-
ment should be feasible in practice.

Partly achieved. We succeeded in de-
veloping very simple control panels in
one organization.

7.4. Evaluation of the Research 119

Table 7.2: Evaluation of developed toolset vs. requirements

No Requirement Achievement

TR-1 Stakeholder customizability: The sys-
tem should support the definition
and display of different, customizable
views for different stakeholders.

Achieved. Stakeholders can both
build own charts, as well as build and
configure own control panels.

TR-2 Navigation: The system should sup-
port navigation between different
panels.

Achieved. Both static navigation
(from charts, using buttons), and dy-
namic navigation (from datasets to
panels) supported.

TR-3 Access control: The system should sup-
port authentication and access con-
trol.

Achieved. The system supports
both.

TR-4 Data source compatibility: The system
should be compatible with existing
corporate measurement systems and
data sources.

Achieved. The system stores rep-
licated measurement data in its own
database.

TR-5 Multi-method approach: The system
should support different approaches
to the definition and application of
measurement.

Achieved. The system does not sup-
port or require any particular meas-
urement paradigm or method.

TR-6 Ease of use: Basic system usage should
be easy and not require special skills
or training.

Achieved. Users reported that basic
usage is easy.

TR-7 Multi-platform compatibility: The sys-
tem should work in both Windows
and Unix environments, and must
support both the Netscape and In-
ternet Explorer browsers.

Achieved. The system was developed
in a mixed environment, and piloted
on both Unix (Linux) and Windows
machines.

TR-8 Distributedness: The system should
support people working in physically
separate locations.

Achieved. The Usage of WWW pro-
tocols and Java technology makes loc-
ation into a non-issue. Bandwidth
and firewalls can worsen the user ex-
perience.

TR-9 Low-cost: The system must be cheap
to acquire and should not contain any
costly third-party components.

Achieved. The system relied only
on a cheap relational database engine
that with some work can be replaced
with databases from other vendors,
and on a visualization library that did
not have any distribution fees.

TR-10 Lo(ing: The system should support
logging of user actions.

Achieved. The system supports both
user and system event logging.

120 Conclusions

tools and experiences in this area, establishing the theoretical relevance of the
work discussed in this thesis.

The practical relevance of the problem solved was shown by using both literature
and our experiences in contacting companies and discussing the idea of control
panels with them. The practical relevance was further shown during the course of
the research, and even after the project, when we have had several contacts from
several interested companies.

7.4.3 Design Evaluation

The third guideline states that the utility, quality and efficacy of the design artifact
should be rigorously demonstrated via well-executed evaluation methods. Since
rigor, i.e., the way research is conducted, is discussed under its own guideline, here
we are interested in the use of appropriate evaluation methods.

First, it is worth noting that, following the guideline, the research discussed
here has been evaluated in industry. In fact, as discussed in Chapter 3, the con-
structs were simultaneously developed and evaluated in close cooperation with
the industrial partners. Next, we need to discuss the appropriateness of the evalu-
ation methods employed. When developing a new construct, the process is often
(and should be) iterative (Kasanen et al., 1993; Hevner et al., 2004). Working
closely with companies is a way of ensuring practical relevance of the problem and
solution, and it helps weed out unfeasible solutions (Hevner et al., 2004). Thus,
I think the case studies described can be considered appropriate for preliminary
evaluation of the presented constructs.

Another issue worth discussing is whether the idea of combining design and
action research in the way presented was a good strategy. Most case studies in
software engineering seem to focus only on arguing in favor of the proposed con-
struct, with little attention paid to the empirical set-up, the client-infrastructure,
the role of the researcher, the research process and methodology or to problems
and dead-ends met. While it can be argued that it is beneficial to the reader to fo-
cus only on the interesting thing—the construct and how novel it is and how well
it works—it can rarely be said to fulfil general criteria for scientific reporting, in
which, e.g., the possibility for other researchers to replicate the experience based
upon the report is stressed. I think that framing the research using the process
described in Chapter 3 was beneficial in that it makes explicit the context and
process used in the case studies. This makes it easier for the reader to appreciate
the results and experiences gained during the research. However, a problem with
this kind of structure is the lengthy reporting it generates, in particular when do-
ing multiple case studies, each containing several action research cycles. I tried
to alleviate the problem by using summary tables, but this invariably leads to less
enticing case study descriptions.

In our case studies, the researchers were intimately involved in developing,
implementing and deploying the constructs. Thus, the researchers have a vested
interest in showing that the constructs work (in the fear of otherwise appearing
stupid). This researcher bias is made worse by the fact that most companies also

7.4. Evaluation of the Research 121

had people assigned to the joint project, making positive results important for the
companies as well. Thus, in this research, as other research that presents pre-
liminary validation case studies performed by the researcher who has developed a
new construct, there is a clear risk of overstating the contributions and results.

We have tried to alleviate this problem by involving several people in the
organizations in the evaluations, and by having external consultants do a follow-
up study, as discussed previously. Despite these measures, there is a clear need for
further validation of the ideas, concepts and toolset discussed in this thesis before
any strong conclusions can be made.

7.4.4 Research Contributions

The research should provide clear and verifiable contributions in the areas of the
design artifact, design foundations, and/or design methodologies. As discussed
above, this research presented several artifacts that can be considered contribu-
tions. These were discussed above in Section 7.3, and are not reiterated here.

7.4.5 Research Rigor

As all science, design science relies upon the application of rigorous methods in
both the construction and evaluation of the design artifact. Rigor is achieved
by using appropriate research methods in rigorous ways. The literature contains
several suggestions for how to achieve this.

Patton (1990), for example, presents techniques for enhancing the quality of
case studies, including the testing of rival explanations, the search for negative
cases, triangulation (mixing methods, usage of several sources, multiple analysts,
theory triangulation). In his often cited book on case study research, Yin (1994,
pp.32–38) argues for the use of four criteria for evaluating the quality of case study
research designs: construct validity, internal validity, external validity, and reliab-
ility. Yin also presents criteria for improving the quality of the case study: to have
informants as well as peers review the study. Also, when evaluating a case study,
he suggests the use of the following criteria: significance, completeness (which is
hard to describe operationally), the consideration of alternative perspectives, the
display of sufficient evidence, composed in an engaging manner. For improving
construct validity, he suggests the use of multiple sources of evidence, to establish
a chain of evidence, and to have key informants review draft case study reports.
All of these take place in the data collection phase. Internal validity, an issue
related to data-analysis, can be improved by doing pattern matching, explanation
building, and time-series analysis. External validity, which is related to the re-
search design, can be improved by the use of replication logic in multiple-case
studies. Reliability, finally, can be improved by the use of a case study protocol,
as well as by developing a case study database, both in the data collection phase.

In action research, the role of the researcher and his relationship to the client
is crucial. In at least two cases, we failed to build the long-term trusting relation-
ships with mutual respect that are necessary to successfully carry out this kind
of research. As such, this is not a weakness of the framework, but the research

122 Conclusions

process, and the inexperience of the researchers both regarding the subject matter
and regarding the process of doing research itself.

Methodologically, the research quite well conforms to the principles and pro-
cess for constructive research presented in Chapter 3, in which also the data col-
lection methodologies were discussed. We used several ways of improving the
quality of the empirical work, including:

• Triangulation. We used both source and method triangulation (Jick, 1979).
Source triangulation meant that we used several informants and company
documentation. In particular in the initial analysis phase (diagnosis in the
first action research cycle), we mixed qualitative (i.e. interviews and docu-
ment analysis) and quantitative (document and database analysis) methods.
In the SoftCorp case, in which we succeeded in deploying the tool, we also
combined quantitative data (analysis of the MESS logs) with qualitative in-
terviews.

• Informant review. Our informants were shown the reports we had written
based upon their interviews and asked to correct them. This technique can
be used to increase construct validity (Yin, 1994).

• Replication logic. While each case had distinguishing characteristics, they
all aimed at the same goal, and thus can be considered—at a high level—as
utilizing a replication logic that can help increase the construct validity of
the work.

However, we also made some mistakes that proved expensive, especially from
the point of writing this thesis. In particular, we did not keep research diaries
or structured case notes, and we did not debrief ourselves after e.g. workshops
or company meetings. Neither did we tape record the interviews we did with
company personnel. All of these activities, while demanding little additional effort
at the time of data collection, would have provided invaluable data from the point
of view of analysing the case studies. Fortunately, we wrote reports and kept
minutes at the meetings in the companies, which I used when analysing the cases.

Most of these weaknesses could have been overcome by basic training in re-
search methodology. In the software engineering field, this has, at least up till
now, not been considered important. Fortunately, this is changing, and more and
more software engineering programs provide training in performing empirical re-
search.

7.4.6 Design as a Search Process

The sixth, guideline deals with the fact that design typically is a search process,
in which one aims at bridging the gap between a current state and a goal state by
designing a construct. During this process, several possible design alternatives,
or alternative solutions might exist, and it might be hard to evaluated which of
them is optimal. It is, however important to use explicit criteria for assessing the
goodness of a solution, and to look for an optimal solution if one exists.

7.5. Future Work 123

In the research discussed here, there is likely to be a vast number of solutions
for fulfilling the requirements for both the framework and the toolset construc-
tion. I do not claim optimality, but note that the developed solutions represent
possible solutions to the stated problems. According to Kasanen et al. (1993), a
major criteria for evaluating the goodness of constructive research, is the practical
utility of the constructs, i.e., how well (effectively and efficiently) they work in real
life. As stated earlier, I cannot claim more regarding practical utility than that the
proposed ideas were feasibly implemented and taken into use in one single case
company. Thus, they are not totally unfeasible.

7.4.7 Communication of Research

While perhaps not directly applicable to a thesis written as a monograph, the
final guideline states that the research should be reported to both managerial and
technical audiences. Various aspects of the research reported in this thesis has
been published in conference papers, both from a technical point of view (e.g.
Vanhanen et al. (1999)) and from a managerial point of view (e.g. Lassenius et al.
(1999); Lassenius and Rautiainen (1999)). Thus, I consider that the demands of
this guideline have been met sufficiently for a doctoral thesis. In addition to
the publications, the research was disseminated through seminars for industrial
audiences.

7.4.8 Evaluation Summary

To summarize the above discussion, the research presented in this work quite well
fulfills the criteria suggested for design research: it has presented a novel solution
to a problem that is both theoretically and practically relevant. The solution has
been empirically evaluated as part of the design process, and the artifacts and
evaluation reported. The main limitations of the research are related to research
rigor, and the lack of empirical validation of the final constructs. Also, the lack of
deployment experiences limit the ability to draw conclusions regarding the use-
fulness of the concepts and toolset. As always, a case study approach provides
limited opportunities for generalization. In addition, in this kind of “constructive
action research”, the role of the researcher and his or her interactions with the cli-
ent play and important role that in addition to the actual constructs can influence
the results paramountly. Despite these weaknesses, I think that the concepts
and framework as such can at least provide some guidance to other researchers
and companies who might be interested in developing control panels for their de-
velopment efforts. The toolset, as an instantiation of the constructs, provides a
“proof-by-construction” of the ideas and therefore also can be considered a con-
tribution.

7.5 Future Work

The research presented in this thesis can be continued in several ways. Existing
visualizations in the field of software engineering could be systematically classified

124 Conclusions

and analyzed. An empirical investigation could assess the subjective value of
different visualizations to various stakeholders. The information from such a
study could be used to develop guidelines for what kinds of visualizations different
stakeholders are interested in.

Gaining more empirical experience with the use of on-line visual feedback
would be valuable. The tool presented can be used to empirically study the use of
panels in real life.

Despite the importance of visual presentations for communicating measure-
ment results, the field contains almost no guidance on how to develop good
presentations. Such guidelines accompanied with examples, could provide valu-
able help to practitioners implementing measurement programs. Such knowledge
could also be used to develop visualization libraries.

The ideas and tools presented here could be applied to other processes and
situations. The ideas are quite general, and very little confine their usefulness
to software engineering. Thus, they could be applied to the development and
implementation of performance measurement systems in general.

Distributed and outsourced software development is becoming increasingly
common. In such projects, monitoring progress and getting up-to-date inform-
ation is even harder than in traditional software development. Augmenting the
work to accomodate definition and implementation of cross-organizational meas-
urement systems might provide worthwhile. The tool architecture as such already
supports distribution.

Additional clients could be developed, e.g., for mobile phones or PDAs. Mod-
ern wireless technology could be utilised to make development status available
“anywhere” and “anytime”.

Finally, the discussion on the activities for developing control panels defined
in Chapter 5 could be expanded and concrete guidelines for performing them
developed. Further empirical experiences could provide interesting illustrations
to such guidelines.

Bibliography

A. Abran, J. W. Moore, P. Borque, and R.Dupuis, editors. Guide to the Software En-
gineering Body of Knowledge: 2004 Edition — SWEBOK. IEEE Computer Society,
2004.

Anonymous. Sybase Enterprise Data Studio Feature Guide. Sybase Inc., 1998a.

Anonymous. A Guide to the Project Management Body of Knowledge (PMBOK)Guide.
Project Management Institute, Newtown Square,PA, 2000a.

Anonymous. The program manager’s guide to software acquisition best practices.
Handbook Version 2.31, Computers & Concepts Associates, 1998b.

Anonymous. The software project manager’s control panel, v. 2.31.
, 2000b.

D. Avison, F. Lau, M. Myers, and P. A. Nielsen. Action research. Communication of
the ACM, 42(1):94–97, January 1999.

V. Basili. A methodology for collecting valid software engineering data. IEEE
Transactions on Software Engineering, SE-10(6):728–738, 1984.

V. Basili. The role of experimentation in software engineering: Past, current, and
future. In Proceedings of ICSE-18, page 442–449. IEEE Computer Society Press,
Los Alamitos, CA, 1996.

V. Basili and H. Rombach. The tame project: Towards improvement-oriented
software environments. IEEE Transactions on Software Engineering, 11(6):758–773,
1988.

V. Basili, R. W. Selby, and D. H. Hutchens. Experimentation in software engin-
eering. IEEE Transactions on Software Engineering, SE-12(7):733–743, 1986.

V. Basili, G. Caldiera, and H. Rombach. The goal question metric approach. In
Encyclopedia of Software Engineering. Wiley, 1994.

V. Basili, F. Shull, and F. Lanubile. Building knowledge through families of exper-
iments. IEEE Transactions on Software Engineering, 25(4):456–473, 1999.

R. L. Baskerville and A.T. Wood-Harper. A critical perspective on action research
as a method for information systems research. Journal of Information Technology,
11:235–246, 1996.

T. Berners-Lee, R. Fielding, and H.Frystyk. Hypertext transfer protocol - http/1.0.
Technical report, MIT/LCS, UC Irvine, 1996/05// 1996.

125

http://www.
spmn.com/

126 Bibliography

M. Berry and R. Jeffery. An instrument for assessing software measurement pro-
grams. Empirical Software Engineering, 5(3):183–200, 2000.

L. Briand, C. M. Differding, and H. Rombach. Practical guidelines for
measurement-based process improvement. Software Process - Improvement and
Practice, 2:253–280, 1996.

J. Brooks, F.P. The Mythical Man-Month: Essays on Software Engineering. Addison-
Wesley, Reading, MA, USA, 20th anniversary edition with four new chapters
edition, 1995.

N. Brown. Industrial-strength management strategies. IEEE Software, page 94–
103, 1996.

A. Burr and M. Owen. Statistical Methods for Software Quality: Using Metrics to
Control Process and Product Quality. International Thomson Computer Press,
1996.

D. Campbell and J.Stanley. Experimental and Quasi-Experimental Designs for Research.
Rand McNally College Publishing Company, Chicago, 1963.

D. N. Card. What makes for effective measurement. IEEE Software, 10(6):94–95,
November 1993.

V. Chiesa, P. Coughlan, and C. Voss. Development of a technical innovation audit.
Journal of Product Innovation Management, 13(2):105–136, 1996.

R. Cooper. Winning at New Products. Addison-Wesley, Reading, MA, USA, 2nd
edition, 1993.

R. Cooper, S. Edgett, and E. Kleinschmidt. Portfolio Management for New Products.
Addison-Wesley, Reading, Massachusetts, 1998.

I. Crnkovic and P.Willfor. Change measurements in an scm process. In Proceedings
of SCM–8, the 8th International System Configuration Management Workshop, 1998.

B. Curtis. Measurement and experimentation in software engineering. Proceedings
of the IEEE, 68(9):1144–1157, 1980.

R. Curtis and S. Scarfone. Xface, an x tool for presenting multivariate data, and
its use with software metrics. In Eleventh Annual International Phoenix Conference
on Computers and Communications, page 525–530, 1992.

M. A. Cusumano and R. W. Selby. Microsoft Secrets: How the Worlďs Most Powerful
Software Company Creates Technology,Shapes Markets and Manages People. The Free
Press, 1995.

M.-K. Daskalantonakis. A practical view of software measurement and imple-
mentation experiences within motorola. IEEE Transactions on Software Engineer-
ing, 18(11):998–1010, 1992.

C. Debou, A. Kuntzmann-Combelles, and A. Rowe. A quantitative approach to
software process management. In Proceedings 2nd International Software Metrics
Symposium, page 26–34. IEEE Computer Society Press, 1994.

Bibliography 127

I. Distributive. Datadrill dashboard factsheet, 2005. URL
.

R. Dolan and J. Matthews. Maximizing the utility of customer product testing:
Beta test design and management. Journal of Product Innovation Management, 10
(4):318–330, 1993.

R.-R. Dumke. Came tools-lessons learned. In Proceedings of the Fourth International
Symposium on Assessment of Software Tools, page 113–114, 1996.

R.-R. Dumke and H. Grigoleit. Efficiency of came tools in software quality assur-
ance. Software Quality Journal, 6(2):157–169, 1997.

R.-R. Dumke and A.-S. Winkler. Came tools for an efficient software mainten-
ance. In Proceedings of the First Euromicro Conference on Software Maintenance and
Reengineering, 1997,“(EUROMICRO 97)”, page 74–81, 1997.

R. Englund and R.Graham. From experience: Linking projects to strategy. Journal
of Product Innovation Management, 16(1):52–64, 1999.

N. Fenton and M. Neil. Software metrics: A roadmap. In Proceedings Conference on
the Future of Software Engineering, ICSE-2000, page 357–370. ACM Press, 2000.

N. Fenton and S. Pfleeger. Software Metrics: A Rigorous and Practical Approach.
International Thomson Computer Press, London, 2nd edition, 1997.

N. Fenton, S. L. Pfleeger, and R. L. Glass. Science and substance: A challenge to
software engineers. IEEE Software, 11(4):86–95, July 1994.

W. A. Florac and A. D. Carleton. Measuring the Software Process: Statistical Process
Control for Software Process Improvement. Addison-Wesley, Reading, MA, 1999.

W. A. Florac, R. Park, and A. Cerleton. Practical software measurement: Meas-
uring for process management and improvement. Technical report, Software
Engineering Institute, 1997/04// 1997.

E. Foltin and R.-R. Dumke. Aspects of software metrics database design. Software
Process Improvement and Practice, 4(1):33–42, 1998.

A. Fuggetta, L. Lavazza, S. Morasca, S. Cinti, G. Oldano, and E. Orazi. Applying
gqm in an industrial software factory. ACM Transactions on Software Engineering
and Methodology, 7(4 L1 - c:/Library/Fuggetta98.pdf):411–448, 1998.

T. Gilb. Software Metrics. Winthrop Publishers, Cambridge, MA, 1977.

R. Glass, I. Vessey, and V. Ramesh. Research in software engineering: an analysis
of the literature. Information and Software Technology, 44:491–506, 2002.

R. L. Glass. A comparative analysis of the topic areas of computer science, soft-
ware engineering, and information systems. Journal of Systems and Software, 19
(3):277–289, 1992.

R. L. Glass. The software research crisis. IEEE Software, 11(6):42–47, November
1994.

http://www.
distributive.com/software_dashboard_factsheet.html

128 Bibliography

W. Goethert and M. Fisher. Deriving enterprise-based measures using the bal-
anced scorecard and goal-driven measurement techniques. Technical Report
CMU/SEI-2003-TN-024, CMU/SEI, 2003.

W. Goethert and W. Hayes. Experiences in implementing measurement pro-
grams. Technical Report CMU/SEI-2001-TN-026, Software Engineering Insti-
tute, 2001/// 2001.

W. Goethert and J. Siviy. Applications of the indicator template for measurement
and analysis. Technical Note CMU/SEI-2004-TN-024, CMU/SEI, 2004.

D.-R. Goldenson, A. Gopal, and T. Mukhopadhyay. Determinants of success in
software measurement programs: initial results. In Proceedings Sixth International
Software Metrics Symposium, page 10–21, 1999.

R. B. Grady. Practical Software Metrics for Project Management and Process Improve-
ment. Prentice-Hall, Englewood Cliffs, NJ, 1992.

R. B. Grady and D. L. Caswell. Software Metrics: Establishing a Company-Wide
Program. Prentice-Hall, Englewood Cliffs, NJ, 1987.

E. Gummesson. Qualitative methods in management research. Sage, Thousand Oaks,
CA, 2000.

A. Hevner, S. T. March, J.Park, and S.Ram. Design science in information systems
research. MIS Quarterly, 28(1):75–105, March 2004.

W. Humphrey. A Discipline for Software Engineering. Addison-Wesley, Reading,
MA, USA, 1995.

W. Humphrey. The personal software process (psp). Technical report, Software
Engineering Institute, 2000/// 2000a.

W. Humphrey. The team software process (tsp). Technical report, Software En-
gineering Institute, 2000/// 2000b.

W. Humphrey. Managing the Software Process. Addison-Wesley, Reading, MA, USA,
1989.

T. Jick. Mixing qualitative and quantitative methods: Triangulation in action.
Administrative Science Quarterly, 24(4):602–611, 1979.

P. M. Johnson, H. Kou, M. Paulding, Q. Zhang, A. Kagawa, and T. Yamashita.
Improving software development management through software project tele-
metry. IEEE Software, 22(4):76–85, July-August 2005.

N. Juristo and A.M. Moreno. Basics of Software Engineering Experimentation. Kluwer
Academic Publishers, Boston, MA, 2001.

R. Kaplan and D. Norton. The balanced scorecard - measures that drive perform-
ance. Harvard Business Review, 70(1):71–79, 1992.

R. Kaplan and D. Norton. Putting the balanced scorecard to work. Harvard
Business Review, 71(5):134–147, 1993.

Bibliography 129

E. Kasanen, K. Luukka, and A. Siitonen. Konstruktiivinen tutkimusote liiketal-
oustieteessä. Liiketaloude!inen Aikakauskirja, 40(3):301–327, 1991.

E. Kasanen, K. Lukka, and A.Siitonen. The constructive approach in management
accounting research. Journal of Management Accounting Research, 5(Fall):243–264,
1993.

R. Kempkens, P. Rosch, L. Scott, and J. Zettel. Instrumenting measurement
programs with tools. In Product Focused Software Process Improvement, 2000.

I. C. Kerssens-van Drongelen. Systematic Design of R&D Performance Measurement
Systems. Phd, University of Twente, 1999.

B. Kitchenham. Software Metrics: Measurement for Software Process Improvement.
Blackwell, Oxford, UK, 1996.

B. Kitchenham. Procedures for undertaking systematic reviews. Unpublished
technical report, May 2004.

B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin,
K. E. Emam, and J. Rosenberg. Preliminary guidelines for empirical research
in software engineering. IEEE Transactions on Software Engineering, 28(8):721–734,
2002.

C. Lassenius and K. Rautiainen. An incremental approach for improving the
controllability of product development. In Proceedings 6th International Product
Development Management Conference. EIASM, 1999.

C. Lassenius, M. Nissinen, K. Rautiainen, and R. Sulonen. The interactive goal
panel: A methodology for aligning r&d activities with corporate strategy. In
Proceedings of the 1998 IEEE Conference on Engineering Management. EIASM, 1999.

L. Lavazza. Providing automated support for the gqm measurement process. Tech-
nical report, CEFRIEL, 1998/// 1998.

L. Lavazza. Providing automated support for the gqm measurement process. IEEE
Software, 17(3):56–62, 2000.

McCall. Factors in software quality. Technical report TR-77-369, Rome Air De-
velopment Center, USAF, 1977.

C. Meyer. How the right measures help teams excel. Harvard Business Review, 72
(3):95–103, 1994.

G. Moore. Crossing the Chasm: Marketing and Se!ing High-Tech Products to Mainstream
Customers. HarperCollins Publishers, 1991.

J. Münch and J. Heidrich. Software project control centers: Concepts and ap-
proaches. Journal of Systems and Software, 70(1–2):3–19, 2004.

N. Nambisan and D. Wilemon. Software development and new product devel-
opment: Potentials for cross-domain knowledge sharing. IEEE Transactions on
Engineering Management, 47(2):211–220, 2000.

I. Niiniluoto. Johdatus tieteenfilosofiaan. Otava, Helsinki, 1984.

130 Bibliography

J. F. J. Nunamaker, M. Chen, and T. D. Purdin. Systems development in inform-
ation systems research. Journal of Management Information Systems, 7(3):89–106,
Winter 1990–91 1991.

R.-J. Offen and R. Jeffery. Establishing software measurement programs. IEEE
Software, 14(2):45–53, 1997.

R. Park, W. Goethert, and W. A. Florac. Goal-driven software measurement - a
guidebook. Technical report, Software Engineering Institute, 1996/// 1996.

P. Parviainen, J. Jarvinen, and T. Sandelin. Practical experiences of tool support
in a gqm-based measurement programme. Software Quality Journal, 6(4):283–94,
1997.

M. Q. Patton. Qualitative evaluation and research methods. Sage Publications, New-
bury Park, Calif., 2nd edition, 1990.

M. C. Paulk. The Capability maturity model: guidelines for improving the software
process. Addison-Wesley, Reading, MA, 1995.

S. L. Pfleeger and C. McGowan. Software metrics in the process maturity frame-
work. Journal of Systems and Software, 12(3):255–261, 1990.

C. Potts. Software engineering research revisited. IEEE Software, 10(5):19–28,
1993.

K. Pulford, A. Kuntzmann-Combelles, and S. Shirlaw. A Quantitative Approach
to Software Management: The ami Handbook. Addison-Wesley, Wokingham, Eng-
land, 1996.

L. Putnam and W. Myers. Industrial Strength Software: Effective Management Using
Measurement. Los Alamitos, CA, USA, 1997.

K. Rautiainen, C. Lassenius, J. Vähäniitty, J. Vanhanen, and M. Pyhäjärvi. A tent-
ative framework for managing software product development in small compan-
ies. In Proceedings 35th Annual Hawaii International Conference on the System Sciences.
IEEE Computer Society Press, 2002.

K. Risku and T. Rinta-Aho. Proactive caching of database queries for web use.
Technical report, Helsinki University of Technology, 1999/// 1999.

W. Royce. Managing the development of large software systems. In Proceedings of
the IEEE Westcon, page 1–9. IEEE Computer Society Press, Los Alamitos, CA,
1970.

C. B. Seaman. Qualitative methods in empirical studies of software engineering.
IEEE Transactions on Software Engineering, 25(4):557–572, July/August 1999.

M. Shaw. Prospects for an engineering discipline of software. IEEE Software, 7(6):
15–24, 1990.

A. J. Shenhar. From theory to practice: Toward a typology of project-management
styles. IEEE Transactions on Engineering Management, 45(1):33–48, 1998.

R. Simons. Levers of Control: How Managers Use Innovative Control Systems to Drive
Strategic Renewal. Harvard Business School Press, Boston, MA, USA, 1995.

Bibliography 131

R. Simons. Performance Measurement & Control Systems for Implementing Strategy.
Prentice Hall, Upper Saddle River, NJ, 2000.

P. G. Smith and D. G. Reinertsen. Developing Products in Half the Time: New Rules,
New Tools. Van Nostrand Reinhold, New York, NY, USA, 1998.

v. R. Solingen and E. Berghout. The GoałQuestion/Metric Method. McGraw-Hill
International (UK), Maidenhead, 1999.

v. R. Solingen and E. Berghout. Integrating goal-oriented measurement in in-
dustrial software engineering: Industrial experiences with and additions to the
goałquestion/metric method (gqm). In Proceedings Seventh International Software
Metrics Symposium, page 246–258. IEEE Computer Society Press, 2001.

K.-G. Sprague. The role of software configuration management in a measurement-
based software engineering program. SIGSOFT Software Engineering Notes, 16
(2):62–6, 1991.

E. T. Stringer. Action Research. SAGE Publications, Thousand Oaks, CA, USA,
2nd edition, 1999.

G. I. Susman and R. D. Evered. An assessment of the scientific merits of action
research. Administrative Science Quarterly, 23(4):582–603, December 1978.

K. Tallqvist and H. Saranen. Lucos: Kaupallistamismahdollisuuksien selvittely,
loppuraportti. it.management, unpublished report (in Finnish), 2000.

J. Tian, J. Troster, and J. Palma. Tool support for software measurement, analysis
and improvement. Journal of Systems and Software, 39(2):165–78, 1997.

W. F. Tichy. Should computer scientists experiment more? Computer, 31(5):32–40,
1998.

W. F. Tichy, P. Lukowicz, P. Lutz, and E. A. Heinz. Experimental evaluation in
computer science: A quantitative study. Journal of Systems Software, 1995(28):
9–18, 1995.

E. Tufte. Visual Explanations. Graphics Press, 1997.

E. Tufte. The Visual Display of Quantitative Information. Graphics Press, 2nd edition,
2001.

J. Vanhanen, C. Lassenius, and K. Rautiainen. The visualisation client applet - a
tool for increasing the visibility of product development. In Proceedings of the 6th
International Product Development Management Conference, Cambridge, UK, 1999.

J. Vanhanen, C. Lassenius, and K. Rautiainen. Combining data from existing
company data sources: Architecture and experiences. In Knowledge Management
Systems: Theory and Applications. Kluwer, 2000.

E. F. Weller. Practical applications of statistical process control. IEEE Software,
17(3):48–55, 2000.

S. Wheelwright and K. Clark. Revolutionizing Product Development. The Free Press,
New York, 1992.

132 Bibliography

C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in Software Engineering. Kluwer Academic Publishers, Boston,
MA, 2000.

R. K. Yin. Case Study Research: Design and Methods. SAGE Publications, Thousand
Oaks, CA, USA, 2nd edition, 1994.

M. Zelkowitz and D. R. Wallace. Experimental models for validating technology.
Computer, 31(5):23–31, 1998.

H. Zuse. History of software measurement, September 1995. URL
.

http://irb.
cs.tu-berlin.de/~zuse/metrics/History_00.html

ISBN 951-22-8196-1
ISBN 951-22-8197-X (PDF)
ISSN 1795-2239
ISSN 1795-4584 (PDF)

