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Abstract—The classical electrostatic image principle for a perfectly
conducting object consisting of two orthogonally intersecting spheres
is revisited through vector analysis. A method for finding the image
of a given charge distribution by splitting it in three virtual single-
sphere problems is described. Also, a simple relation between the
image charges of a given point charge is found. The method is applied
to finding exact expressions for the polarizability dyadic of the object
to be used as a bechmark for testing computing schemes on a nontrivial
geometry. Application of the present object as a model for an oblong
particle in a composite dielectric is also discussed.

1 Introduction

2 Intersecting Spheres

2.1 Image Sources

2.2 Method of Virtual Spheres

2.3 Vanishing Total Charge

2.4 Polarizability

3 Special Cases

3.1 Axial Excitation

3.2 Transverse Excitation

4 Applications

5 Conclusion

References

This article was originally published in JEMWA without a few corrections

made to the proofs. This reprint includes the corrections.



1644 Lindell, Wallén, and Sihvola

-

Do

QoQa

a

0 ra ro

Da

Figure 1. Kelvin’s image principle for a point charge Qo in front of a
PEC sphere at zero potential can be seen from the geometry.

1. INTRODUCTION

The image principle offers one of the simplest methods to solving
boundary-value problems both in static and dynamic electromagnetics.
The problem of a point charge Qo at the distance ro from the center of
a perfectly conducting (PEC) sphere of radius a was solved by William
Thomson (later Lord Kelvin) as a young Cambridge graduate in 1845
[1]. He showed that the potential could be solved in replacing the
sphere by a single point charge Qa located at a certain distance ra,
Figure 1. The principle can be simply found from the geometry. In
fact, because the potential is inversely proportional to the distance
from the charge point, if the potential created by the charge Qo on
the spherical surface should equal the negative of that from the image
charge Qa, the ratio of the distances Do and Da should be constant
for all points on the surface. From Figure 1 it is seen that this is so
if the two triangles with the same angle at the center of the sphere
are similar in which case their corresponding sides must be in the
proportion a/ro whence ra = a2/ro. The total potential vanishes when
the image charge is chosen in the same proportion with opposite sign,
Qa = −(a/ro)Q.

This simple principle led Thomson to a transformation (later
called the Kelvin transformation) which states that if a potential
function φ(r) is a solution to the Poisson equation with the charge
density function %(r) as its source,

∇2φ(r) = −1

ε
%(r), (1)
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the transformed potential and source functions

φK(r) =
a

r
φ(rK), %K(r) =

a5

r5
%(rK) (2)

also satisfy the Poisson equation for the same ε [2] with

rK(r) =
a2

r2
r. (3)

For the proof see, e.g., [3]. Because PEC boundary conditions remain
valid in the transformation, it gave Thomson a method to find a
great number of solutions to new boundary-value problems through
transformations of known solutions to old problems. For example, the
problem of a point charge between two PEC planes making an angle
π/n for n = 1, 2, 3 . . ., solvable in terms of 2n − 1 image charges,
could be transformed to one with two PEC spheres intersecting at the
same angle, as shown by Thomson already in 1845 [1]. Since then,
the basic case n = 2 corresponding to two orthogonally intersecting
spheres has been treated in many books [2,5–8] as well as articles, e.g.,
[9–12]. Because the approach in all of these references is based on the
Kelvin transformation, bipolar coordinates or some other more exotic
principle, it appears worth while to rederive the solution in terms of
the basic Kelvin’s image principle. Using vector calculus, this can be
done with little effort.

2. INTERSECTING SPHERES

Let us now consider the problem of a PEC object made of two
intersecting spheres of radii a and b. Let the axis of symmetry
coincide with the z axis and the plane of intersection coincide with
the xy coordinate plane. The centers of the spheres are defined by the
respective vectors da = −uzda, db = uzdb, Figure 2. uz is the unit
vector in the positive z direction and d = −da +db denotes the vector
between the centers of the spheres. One can show that if the image of
a given point charge consists of three point charges, the spheres must
intersect orthogonally. This is also obvious from the Kelvin inversion
of an orthogonal PEC corner. Assuming orthogonal spheres we have
from the geometry of Figure 2

da =
a2

d
, db =

b2

d
, d = da + db =

√

a2 + b2. (4)

The radius c of the circle of intersection is

c =
ab

d
=

ab√
a2 + b2

=
√

dadb. (5)
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Figure 2. Image problem of a conducting object made of two
orthogonally intersecting spheres. The exciting point charge Qo and
three image charges Qa, Qb, Qc in free space make zero potential on
the surface of the object.

2.1. Image Sources

The original charge Qo is assumed to be at the point ro outside the
object. It is now required that the potential from this charge at the
surface of the double sphere is canceled by that from three image
charges Qa, Qb, Qc located at the respective points ra, rb, rc.

The image charges and their locations are found by applying the
image principle four times, twice for both spherical surfaces, to produce
zero potential on the spherical surfaces. The potential is zero on the
a-sphere if Qa is required to be the image of Qo, and Qc the image of
Qb, with respect to the a-sphere. On the other hand, the potential is
zero on the b-sphere if Qb is required to be the image of Qo, and Qc the
image of Qa, with respect to the b-sphere. In this way the images Qa

and Qb become fully defined. For Qc there are two conditions which
are compatible when the spheres are orthogonal.

Starting from the images Qa and Qb, their respective points ra

and rb can be easily found by temporarily shifting the origin to the
sphere centers:

ra − da =
a2

|ro − da|2
(ro − da), rb − db =

b2

|ro − db|2
(ro − db), (6)
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Qa = − a

|ro − da|
Qo, Qb = − b

|ro − db|
Qo. (7)

The main problem is to find the third image Qc and its location rc.
Let us first define it as the image of Qb in the a-sphere. The condition
for the image location rc is

rc − da =
a2

|rb − da|2
(rb − da). (8)

Inserting from (6)

rb − da =
b2

|ro − db|2
(ro − db) + d, (9)

and expanding through some algebraic steps

|rb − da|2 =
r2
od

2

|ro − db|2
, (10)

we obtain

rc − da =
a2b2

r2
od

2
(ro − db) +

a2|ro − db|2
r2
od

2
d. (11)

From this we can solve the location of the image Qc as

rc =
a2b2

d2r2
o

(ro − 2uzuz · ro) =
c2

r2
o

r′o, r′o = (I − 2uzuz) · ro. (12)

The dyadic I − 2uzuz has the property of reflecting any vector q to
its mirror image q′ = q − 2uz(uz · q) with respect to the plane of
intersection z = 0. Thus, r2

o = r′o
2.

The magnitude of the image Qc is obtained as

Qc = − a

|rb − da|
Qb =

ab

|rb − da||ro − db|
Qo =

ab

rod
Qo =

c

r′o
Qo. (13)

Since the expressions (12), (13) obtained for the charge Qc and its
location rc are symmetric functions of a and b, the result does not
change if we consider it as the image of Qa in the b-sphere. Thus, the
two sets of conditions are compatible.

2.2. Method of Virtual Spheres

From the previous results we see that the three images of the point
source Qo at ro in the PEC object can be found very simply through
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Figure 3. The third image charge Qc and its location rc for two
orthogonally intersecting PEC spheres can be found simply by applying
Kelvin’s image principle to a virtual origocentric PEC sphere defined
by the circle of intersection with radius c. The original charge Qo is
replaced by the virtual source −Qo at r′o which is the mirror image of
ro in the plane of intersection.

the basic Kelvin image principle. The image Qa and its location ra

are found as the Kelvin image of the original source when only the
PEC a-sphere is present. Similarly, the image Qb and its location rb

are found when only the PEC b-sphere is present. From (12) and (13)
we see that the third image Qc and its location rc are found as the
image of −Qo at the mirror image location r′o = ro − 2uz(uz · ro) in a

virtual origocentric PEC sphere with radius c = ab/
√

a2 + b2, Figure 3.
Although the idea of the third PEC sphere with the radius ab/d has
been referred to previously [12], the procedure for the image source
could not be found from the available literature. However, the method
of virtual PEC spheres gives a convenient method to find the images of
any given charge density function %(r) as a combination of three image
sources, Figure 4,

%a(r) = −a5

r5
%(

a2

r2
r), (14)

%b(r) = − b5

r5
%(

b2

r2
r), (15)

%c(r) =
c5

r5
%(

c2

r2
(I − 2uzuz) · r). (16)
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Figure 4. Method of virtual spheres gives the image of a charge
density function %(r) as a sum of three image functions. %c is the
image of reflected source %′(r) in the virtual PEC sphere of radius
c = ab/d.

This method can also be understood through the Kelvin transforma-
tion which maps the two spheres to two orthogonal planes. Of the three
images in the transform space the two negative ones are obtained as
images in the two planes. The third positive charge cannot be obtained
as an image in a single PEC plane but it needs two steps, being an
image of an image. Now this is not a unique procedure and the two
PEC planes can be chosen in infinitely many ways. Choosing one of
the planes so that it transforms to a plane, the process is simplified in
the sphere problem because, instead of finding two images in spheres,
one has to take a simple image in a plane (mirror reflection with sign
change) and just one image in a virtual sphere. Two plane reflections
could be reduced to one by choosing a virtual PMC plane with the
Neumann condition n · ∇φ = 0. However, a PMC plane is not trans-
formed to a PMC sphere but to a sphere with a special impedance
boundary condition. This method of virtual spheres can obviously be
generalized to two spheres intersecting at any angle π/n and the re-
sulting images can be obtained either in one virtual PEC sphere (the
negative images) or through a reflection in a PEC plane and as an im-
age in a virtual PEC sphere (the positive images). The generalization
will be considered in a forthcoming paper.

There is also an interesting relation between the four point
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charges,
1

Q2
a

+
1

Q2
b

=
1

Q2
c

+
1

Q2
o

, (17)

which can be derived from the expressions (7) and (13). It can be
used as a check after finding the image charges. Such a relation is also
valid in the limiting case Qo → ∞ and ro → ∞ for the three charges
Qa, Qb, Qc on the z axis making constant potential at the surface of the
object. Because a similar formula can also be derived between the five
axial point charges associated with the problem of two PEC spheres
intersecting at an angle π/3, it can be a special case of a more universal
relation. (17) may have some novelty since it could not be found from
the literature available to these authors. Its physical significance is
still an open question.

2.3. Vanishing Total Charge

If the original charge Qo recedes to infinity, ro → ∞, the image charges
vanish as 1/ro. If simultaneously the charge grows Qo → ∞ so that
Qo/ro is finite, the potential from Qo at the object is constant,

φo → Qo

4πεoro

. (18)

The image charges then become finite

Qa → −aQo

ro

, Qb → −bQo

ro

, Qc →
cQo

ro

(19)

and their locations are

ra → da, rb → db, rc → 0. (20)

This kind of charges create a potential which cancels φo at the surface
of the object. More generally, charges of the form

Qa = αa, Qb = αb, Qc = −αc, (21)

positioned on the z axis as (20), create a potential which has a constant
value on the surface of the two spheres,

φα =
α

4πεo

. (22)

Thus, the capacitance of the object is [2, 4–7]

C =
Qa + Qb + Qc

φα

= 4πεo(a + b − c) = 4πεo

(

a + b − ab√
a2 + b2

)

.

(23)
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In the original problem the aim was to find image sources in a grounded
PEC object, i.e., an object whose potential is zero. This requires that
the total charge in the object

Qt = Qa + Qb + Qc = − aQo

|ro − da|
− bQo

|ro − db|
+

c

ro

Qo (24)

is not zero and its value depends on the original charge and its location.
If we wish to have zero total charge on the object, the charge −Qt must
be added so that the potential on the surface of the object is constant.
This means that the factor α in (21) must be chosen as

α = − Qt

a + b − c
(25)

and the balancing charges must be positioned as defined by (20).

2.4. Polarizability

The PEC object made of two intersecting spheres can be used as a
model for a non-spherical inclusion in a mixture and its polarization
properties are of interest. For a dilute mixture the distance between
the objects is large enough so that we can approximate the local electric
field by a constant vector Eo. The field from the original point charge
Qo at the origin is

Eo = − Qro

4πεor3
o

(26)

when the distance is large, ro � a, b. When the obstacle has no net
charge, its effect can be approximated by a dipole moment p, which
depends on the local field through a polarization dyadic α,

p = α · Eo. (27)

Let us define a numerical parameter, the relative polarizability αr by

αr =
α

εoV
, (28)

where V is the volume of the obstacle. The expression for the volume
of a spherical cap given in [14], p. 315, subtracted from the volume of
the a-sphere gives

Va =
4πa3

3

(

1

2
+

3a

4d
− a3

4d3

)

(29)
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Figure 5. Axial excitation of the PEC object. The virtual source −Qo

giving the image charge Qc lies now at the point r′o = −ro = −uzro.

and similarly for the b-sphere. In the symmetric case a = b, d = 2c =
a
√

2, the total volume becomes

V = Va + Vb =
8 + 5

√
2

8

4πa3

3
≈ 1.884

4πa3

3
. (30)

Because of rotational symmetry of the object, the polarizability dyadic
consists of axial and transverse components,

α = uzuzαz + (I − uzuz)αt, (31)

and, similarly, the relative polarizabilities are αrz, αrt. The two scalar
components can be found by considering two special cases for the
original charge point ro.

3. SPECIAL CASES

3.1. Axial Excitation

Let us consider the case when the original charge Qo lies on the z axis,
ro = uzro. Because of symmetry, all images also lie on the z axis and
their locations differ from the centers of the spheres as

ra = −uz(da − ∆a), ∆a =
a2

ro + da

, (32)

rb = uz(db + ∆b), ∆b =
b2

ro − db

, (33)
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rc = −uz∆c, ∆c =
c2

ro

. (34)

The corresponding image charges are

Qa = − aQo

ro + da

, Qb = − bQo

ro − db

, Qc =
cQo

ro

. (35)

The total image charge becomes

Qt = − aQo

ro + da

− bQo

ro − db

+
cQo

ro

. (36)

In the symmetric case the problem becomes simpler. Substituting

b = a, d = a
√

2, db = da = c = a/
√

2, (37)

the image locations and charges are now defined by

∆a =
a2

ro + a/
√

2
, ∆b =

a2

ro − a/
√

2
, ∆c =

a2

2ro

, (38)

Qa = − aQo

ro + a/
√

2
, Qb = − aQo

ro − a/
√

2
, Qc =

aQo

ro

√
2
. (39)

The dipole moment due to these image charges with respect to the
origin is

p = uz

(

da −
a2

ro + da

)

aQo

ro + da

− uz

(

da +
a2

ro − da

)

aQo

ro − da

− uzc
d2

aQo

r2
o

= uzpz. (40)

The total image charge is now

Qt = −
2
(

2
√

2 − 1
)

r2
o + a2

√
2ro(2r2

o − a2)
aQo. (41)

The balancing charge −Qt is distributed symmetrically according to
(21), (25) as

Qb = Qa = −1

7

(

4 +
√

2
)

Qt, Qc = −Qa/
√

2 =
1

7

(

2
√

2 + 1
)

Qt.

(42)
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However, because of symmetry, it does not contribute to the dipole
moment at the origin. Letting the charge recede to infinity, ro → ∞,
the magnitude of the axial dipole moment (40) approaches the limit

pz → −1

4
(12 +

√
2)

a3Qo

r2
o

. (43)

The axial polarizability αrz can now be computed from (28) by
inserting the electric far field expression (26)

Eo = −uz

Qo

4πεor2
o

(44)

and the volume (30) to give

αrz =
6

7
(43 − 26

√
2) ≈ 5.340383467. (45)

This result gives a useful benchmark for testing the accuracy of
numerical computation schemes for an object with nontrivial geometry.
Forming the integral equation for the surface charge density on the
object and using the boundary-element method with high-order basis
functions, a numerical computation has been made which reproduced
the first four digits of (45), [15]. Same result was obtained by evaluating
numerically an integral expression given in [13].

3.2. Transverse Excitation

Let us consider another special case with the point charge Qo lying
at the plane of intersection outside the two orthogonally intersecting
spheres, ro · da = ro · db = 0, Figure 6. In this case the virtual source
−Qo stays at the original source point ro and, thus, the image Qc lies
in the xy plane.

In the symmetric case a = b the images are

Qa = Qb = − a
√

2
√

2r2
o + a2

Qo, ra = rb =
a2
√

2
√

2r2
o + a2

, (46)

Qc =
c

ro

Qo =
a

ro

√
2
Qo, rc =

c2

ro

=
a2

2ro

. (47)

Because of symmetry, for transverse excitation the dipole moment is
transverse to the z axis. Like in the axial excitation case, the balancing
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Figure 6. Image problem of a conducting object made of two
orthogonally intersecting spheres when the exciting point charge Qo

lies on the plane of intersection. The virtual source −Qo lies at the
point of Qo and the image charge Qc lies on the plane of intersection.

charge on the z axis does not contribute to the polarization moment.
From the geometry or ro → ∞ the transverse dipole moment becomes

pt → −2a3Qo

r2
o

+
c3Qo

r2
o

= −1

4
(8 −

√
2)

a3Qo

r2
o

. (48)

Normalized this gives the transverse polarizability

αrt =
|pt|

εo|Et|V
=

4πr2
o |pt|

QoV
=

6

7
(37 − 24

√
2) ≈ 2.6218924, (49)

which, like (45), could be used as a benchmark [15].

4. APPLICATIONS

In many applications of electromagnetics, the polarizability and dipole
moments of material particles play a very essential role. This
is the case, for example, in the study of wave interaction and
scattering from heterogeneous media in remote sensing, geophysical,
and nondestructive measurement applications, and in the design of
composites and complex metamaterials [16, 17].

The electromagnetic response of a mixture where inclusions are
embedded in host medium is strongly determined by the polarizability
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of the inclusions. In addition to contributing to the effective
permittivity of the material [18], also the absorption characteristics of
the composite are dependent on the polarizabilities. This is especially
the case when metallic inclusions are mixed into nonconducting host
material with the objective of enhancing the response of the medium.
The imaginary part of the permittivity of the composite describes the
effective absorption of the homogenized mixture. Metallic inclusions
have also an important use in percolating mixtures [19] where small
changes in the volume fractions of the components or other structural
parameters may lead to strong variations in macroscopic response.

Consider a mixture where conducting inclusions are randomly
distributed within a host (background) material. Let the inclusions
be of the double-sphere shape that has been treated in the previous
sections. For simplicity, let the permittivity of the background material
be εo and the number density of the inclusion particles n. The
effective permittivity of the mixture can be calculated according to
the Maxwell Garnett theory [20]. Because the double spheres are
not spherically symmetric, the macroscopic response of the mixture
depends on the orientation distribution of the inclusions. In the
extreme case all inclusions are aligned in the global coordinate system,
and then the mixture is uniaxially anisotropic with the optical axis
along the rotation axis of the inclusions. On the other hand, the case
where the orientation distribution is random, the effective medium is
isotopic. In this case the effective permittivity of the mixture is

εeff = εo +
n αav

1 − n αav/(3εo)
(50)

where the average polarizability is

αav =
1

3
tr {α} =

αz + 2αt

3
(51)

For dilute mixtures, the effective permittivity reads

εeff/εo ≈ 1 + nαav/εo = 1 + f
αrz + 2αrt

3
(52)

and here f = nV is the volume fraction of the inclusions. Inserting
the values for the polarizability components ((45) and (49)) for the
double sphere, we have εr ≈ 1 + 3.53f . This means that the effective
susceptibility is about 18 percent higher than in the case if the
inclusions were metal spheres having the same volume fraction. In the
spherical-inclusion case, the relative permittivity would be εr ≈ 1+3f .
The spherical geometry is known to be an extreme shape in the sense
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that any deviation from it only can increase the average polarizability
of the inclusion [21].

This type of Maxwell Garnett model for a mixture with metallic
sphere doublets is the first approximation. For denser mixtures
where the inclusions are in a more near-field contact with each other,
the disturbing field of one inclusion on the neighbor is no longer
homogeneous. But then the interaction effect and induced dipole due
to the inhomogeneous incidence can be modelled by applying the image
principles of Section 2 where a point-source excitation was allowed to
be anywhere in the neighborhood of the inclusion.

5. CONCLUSION

Image theory was reviewed for a perfectly conducting object made of
two orthogonally intersecting spheres. Instead of applying the Kelvin
transformation, the simple Kelvin image principle and vector analysis
was used to arrive at the image expressions. It was shown that the
three image charges of a given point charge can be found through a
very straightforward method of virtual spheres which applies only the
single-sphere image method to three PEC spheres and can be applied
to any given original charge distribution. For a point charge Qo, two
of the images are Kelvin images in each of the two PEC spheres. The
third image is obtained as the Kelvin image of a virtual charge −Qo

at another point in space in a virtual PEC sphere whose radius equals
that of the circle of intersection. In the analysis a simple relation
between the original and image point charges was found which appears
to be a special case of a more general relation. Axial and transverse
polarizabilities of the PEC object set in a homogeneous field were
obtained which, being exact results, can be used to test the accuracy
of numerical procedures. Finally, use of the object as a model for an
inclusion in a composite material was discussed.
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