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Preface

This thesis is the result of my research at the Electromagnetics Laboratory
of the Helsinki University of Technology. Thanks to the Graduate School of
Applied Electromagnetics for funding my research in 2002–2005.

When I started my graduate studies in November 2001, I didn’t have a
clear research plan. In the beginning, I concentrated on passing the needed
courses, and thereafter, I worked on quite varying topics (electromagnetics
using differential forms, canonical electrostatic problems and fast multipole
methods) in collaboration with all four professors in the laboratory. In the
end, to get a thesis with just two different topics instead of three, I decided to
exclude the papers on differential forms.1

I would like to thank my instructors, Prof. Jukka Sarvas, Prof. Keijo
Nikoskinen, Prof. Ismo Lindell and Prof. Ari Sihvola, who all have provided
guidance and support. Furthermore, I would like to thank Dr. Seppo Järvenpää
and Docent Pasi Ylä-Oijala for the collaboration in preparing [P5,P6]. Warm
thanks also to the rest of the personnel of the Electromagnetics Laboratory.

Finally, I would also like to thank the pre-examiners, Prof. Karl F. Warnick
and Docent Jouni Peltoniemi, whose comments substantially improved the
summary part of my thesis.

1I. V. Lindell and K. H. Wallén, Journal of Electromagnetic Waves and Applications,
vol. 16, no. 11, pp. 1615–1635, 2002; vol. 18, no. 7, pp. 957–968, 2004; and vol. 18, no. 8,
pp. 1045–1056, 2004.
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initial ideas came from Prof. Jukka Sarvas, but many of the new ideas were
mine, and I worked out all the details to get a working algorithm.

In the papers [P5, P6], we accelerated two previously developed iterative
solvers using a broadband MLFMA based on [P4]. I developed the basic field
representations and translation procedures, but most of the actual code for the
solvers was written by Dr. Seppo Järvenpää. I wrote the manuscripts, while
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1 Introduction

Analytical or closed-form solutions, when available, may offer the most efficient
way to compute electromagnetic or acoustic fields. However, those solutions
sometimes consist of slowly converging infinite series or difficult integrals, and
from a computational point of view the path from a closed-form solution to
efficient computation of the fields may be surprisingly long. In the general
case, the solution is not known in closed form, and we must resort to numerical
methods.

This thesis consists of two major topics: closed-form solutions in electro-
statics and the fast multipole method.

The first topic, consisting of some introductory material in Section 2 and
the papers [P1–P3], is about Kelvin’s inversion and image theory for obtaining
new or improved closed-form solutions in electrostatics. In all three cases the
solution is expressed using images, but in [P2] the images form an infinite series
and in [P3] one image is an infinite line charge. Therefore, the computational
aspect is considered in some detail in [P2,P3], to obtain solutions that are also
efficient from a numerical point of view.

The second topic, consisting of the introduction in Section 3 and the pa-
pers [P4–P6], is about the fast multipole method (FMM) and more specifically
how to avoid the sub-wavelength breakdown using a plane-wave expansion of
the Green’s function. One key point in the FMM is the efficient representation
of fields outside of a source region. Conceptually, this bears some resemblance
to image theory, where we seek an image source to efficiently represent the
secondary field outside an obstacle.

The main purpose of the summary part of this thesis is to present some
introductory material and motivation in Section 2 and Section 3, related to
the papers [P1–P3] and [P4–P6], respectively. Sections 3.5.1 and 3.5.2 also
contain supplementary material related to the error controllability and com-
putational complexity of the proposed broadband FMM. Finally, Section 4
contains a summary of the results and novel aspects of each paper, and also
some additional remarks on the papers.
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2 Electrostatics

2.1 Background

The field of electrostatics is old and well documented in several classical text-
books, such as [1–3]. Although most new electromagnetic publications consider
time-dependent electromagnetics, such as high-frequency wireless communica-
tion, electrostatics is still an important topic.

Regardless of the frequency, if we look at a sufficiently small length scale—
smaller than the wavelength—then the fields are essentially static or quasistatic
in nature. Therefore, each new electrostatic solution also provides some insight
into the local behavior of dynamic electromagnetic fields. The static behavior
is especially important if we consider the field singularities near sharp edges
and corners.

From a computational electromagnetics point of view, new analytical or
closed form solutions are also important—not only as benchmark solutions for
testing new computational methods, but also when designing special purpose
basis functions or mesh refinements for a specific geometry.

Prof. Ari Sihvola has been very interested in modeling composite materials
using mixing theory [4]. A very fundamental concept in this material modeling
is the polarizability of the particles or inclusions of a mixture. The polarizabil-
ity α of an object is defined as the ratio between the induced dipole moment
p and the external static field E0. In general, the polarizability is a linear
mapping that can be expressed using a dyadic α as

p = α · E0. (1)

The ongoing quest for accurate values of the polarizability of canonical shapes
has, among other things, resulted in one PhD dissertation [5].

The case of two conducting spheres, either intersecting or non-intersecting,
seemed like an easy problem when Prof. Ari Sihvola wanted to know the po-
larizability with high accuracy. However, the solution turned out to be sur-
prisingly complicated and this seemingly easy problem gave rise to the pa-
pers [P1,P2].

2.2 Formulation

Consider the following very classical electrostatic problem: Into an empty
space with permittivity ε0, we place a point charge Q at r0 near a grounded
conducting object that is bounded by the surface S, as shown in Figure 1. The
task is to compute the electric field outside the conductor.

As shown in many textbooks [1–3], we can express the electric field E in
terms of a scalar potential as

E(r) = −∇φ(r), (2)

11



Q

ε0
PEC

S

Figure 1: A point charge Q at r0 near a conductor bounded by the surface S
in an otherwise empty space with permittivity ε0.

where the potential φ satisfies the Poisson equation

∇2φ(r) = −
Q

ε
δ(r − r0), (3)

everywhere outside the conductor. Furthermore, the potential is zero on the
conducting surface and at infinity, i.e.,

φ(r) = 0 when r ∈ S, and lim
r→∞

φ(r) = 0. (4)

Without the conductor, the solution would be simple. For a point charge
Q at r0 in free space, the potential is

φ0(r) =
Q

4πε0 |r − r0|
. (5)

Unfortunately, we cannot solve the problem, (3) and (4), in closed form for
an arbitrary surface S. We have to either use purely numerical techniques or
restrict the shape of the conductor to simple or canonical shapes.

In the papers [P1–P3], we take the latter approach and consider some
canonical geometries using image theory and Kelvin’s inversion.

2.3 Image Theory

The image principle, or image theory, offers elegant and efficient solutions for
several electrostatic problems. The basic idea is to replace the conductor with
an image-charge distribution %i and express the potential as

φ(r) = φ0(r) + φi(r), (6)

where φ0 is the potential due to the original point charge in free space (5), and

φi(r) =

∫

spt %i

%i(r
′)

4πε0 |r − r′|
dV ′ (7)

is the potential due to the image charge in free space. The potential (6) satisfies
the Poisson equation (3) outside of the conductor and is zero at infinity for any

12



image charge %i located in the region previously occupied by the conductor.
Therefore, the remaining problem is to choose the image charge so that the
PEC boundary condition is satisfied.

In general, the image charge is not unique, although the potential outside
the conductor is. In many simple cases, it is obvious that the simplest image
consists of one point charge, as in Figures 2 and 3, or a collection of point
charges, as in Figures 4 and 5.

The two most basic cases, which can be found in many classic books, such
as [1, 3, 6], are the half-space and the sphere. If we place a point charge Q
above a grounded conducting plane, as shown in Figure 2, then we can satisfy
the PEC boundary condition by removing the conductor and placing a point
charge −Q at the mirror point below the plane.

Q

PEC
⇒ φ = 0

Q

−Q

Figure 2: Mirror image principle for a half-space.

For a grounded conducting sphere, Kelvin’s image principle [7] states that
we can replace the sphere with an image point-charge, as shown in Figure 3,
where the charge Qi and the inverse point di are

Qi = −
a

d
Q and di =

a2

d
, (8)

if the original point charge Q is placed at the distance d from the center of a
sphere with radius a.

Q

PEC
d

a

⇒

φ = 0

QQi

di

Figure 3: Kelvin’s image principle for a sphere.

These two basic cases can be combined in different ways. For instance, for
a conducting corner whose angle is π/n, with n = 2, 3, . . . , the image consists
of 2n − 1 point charges that can be found using multiple reflections, as in
Figure 4 for the case n = 3. As a second example, the combination of a sphere
and a half-space gives us the solution for the geometry in Figure 5.
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Q

PEC
⇒ φ = 0

φ
=

0

Q

−Q
Q

−Q

Q
−Q

Figure 4: Image solution for a π/3 corner.

Q

⇒ φ = 0

Q

Qi

−Q

−Qi

Figure 5: Image solution for a half-space with a half-spherical boss.
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A system of two spheres can also be considered using Kelvin’s image prin-
ciple: First we use the image principle to compensate for the original charge,
then we use the image principle again to compensate for the first images in
the opposite spheres, and so on. If the spheres intersect at an angle π/n,
with n = 2, 3, . . . , we get 2n − 1 images, similarly as for a π/n corner. This
case is considered in [P1] for two orthogonally intersecting spheres. If the two
spheres are separated, we get infinite series of images. This latter case is in
turn considered in [P2].

2.4 Kelvin’s Inversion

Kelvin’s inversion [8] is a space transformation that maps the inside of a sphere
to the outside and vice versa. If we, for simplicity, choose the origin of the
coordinate-system to coincide with the center of the inversion sphere, then the
transformation r → K(r) is

K(r) =
a2

r2
r, (9)

where a is the radius of the inversion sphere and we use the notation r = |r|.
Geometrically, the inversion maps spheres and planes not intersecting the

inversion origin into spheres, while spheres and planes intersecting the inversion
origin are mapped into planes. Furthermore, the inversion is a conformal
mapping, that is, any angle is mapped into an equal angle [10].

If we apply the transformation (9) to the Poisson equation (3), we get a
new solution φK satisfying

∇2φK(r) = ∇2
(r0

r
φ(K(r))

)
= −

Q

ε0

δ(r − K(r0)). (10)

The transformation also preserves the PEC boundary condition,

φ = 0 on S ⇔ φK = 0 on SK, (11)

where SK is the transformed boundary. Therefore, if we know the potential φ
due to a point charge Q at r0 near a conducting surface S, then we get the
solution φK due to the shifted point charge Q at K(r0) near the transformed
boundary SK using Kelvin’s inversion.

Kelvin’s inversion and Kelvin’s image principle for a sphere are closely
related. In fact, we could derive the image principle for a sphere by applying
the inversion on the half-space solution of Figure 2, as sketched in Figure 6.
The potential before inversion can be expressed using one mirror-image charge.
After transforming the potential using (10), we can identify the same Kelvin
image inside the sphere as in Figure 3.

In [P3], we start from the image theory for a conducting wedge [11] and
apply Kelvin’s inversion on the resulting potential. In this way we get the
potential due to a point charge near a conducting object bounded by two
spherical surfaces intersecting in any angle. Two examples of the obtained
geometries are shown in Figure 7.

15



Q

PEC

(a) before inversion

Q

PEC

(b) after inversion

Figure 6: Kelvin’s image principle using Kelvin’s inversion. The dotted circle
shows the location of the inversion sphere.

Q

→
Q

(a) 90◦ wedge → half-space with hole

Q

→
Q

(b) 45◦ wedge → circular wing-like object

Figure 7: Kelvin’s inversion of a conducting wedge. The potential in these two
example geometries are considered in [P3].
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3 The Fast Multipole Method

3.1 Background

Most of the general purpose methods in computational electromagnetics can
be divided into two categories: methods based on differential equations and
integral equations.

In the differential equation methods—such as the finite element method
(FEM) [12–14], and the finite-difference time-domain method (FD-TD) [15,
16]—the whole computational domain is discretized and the fields are used as
unknowns. This leads to a sparse system matrix (FEM) or even to no system
matrix at all (FD-TD). However, the needed number of unknowns is typically
large. Furthermore, for scattering and antenna applications the computational
domain must be artificially truncated.

In the method of moments (MoM)2 or integral equation methods [17–20]
(equivalent) sources are used as unknowns instead of the fields. This leads
to a full system matrix, and the elements of the system matrix must be com-
puted from (weakly) singular integrals. However, especially for surface integral
equations, the needed number of unknowns is typically much smaller than for
a comparable differential equation solution.

Surface integral equation methods are well suited for scattering and ra-
diation problems involving conducting and piecewise homogeneous dielectric
structures, especially if we are interested only in one or a few frequencies. In
many other cases, some other method may be preferable. My colleagues at
the TKK Electromagnetics Laboratory have been extensively researching the
surface integral equation methods, resulting in several important contributions
to the field, such as [21–24].

The major bottleneck in integral equation methods is the full system ma-
trix. For N unknowns, the memory consumption is O(N2) to store the system
matrix and O(N3) to solve the matrix equation using a direct solver. Iterative
solvers lowers the computational cost to O(N2) per iteration, but this is still
too much for very large N . To be able to use very large numbers of unknowns,
we need to use an iterative fast solver, where the needed matrix-vector multi-
plications with the system matrix are performed efficiently, without assembling
the actual system matrix. Popular fast solvers include the FFT-based method,
the adaptive integral method and the fast multipole method (FMM)—see, for
instance [14, Ch. 14], for a nice overview and comparison.

Many FMM-solvers suffer from two kinds of sub-wavelength breakdowns:
neither the underlying integral equation formulation nor the (high-frequency)
FMM works flawlessly when the discretization is very fine compared with the
wavelength. Recently, my colleagues have invented new surface integral equa-
tion formulations that overcome the first sub-wavelength breakdown [24, 25],

2Harrington’s MoM [17] is actually a very general concept, but in electrical engineering
the term usually refers to integral equation methods.
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and the particular contribution of this thesis is a new variant of the FMM that
overcomes the second sub-wavelength breakdown in a fairly straightforward
manner using evanescent plane-wave expansions.

3.2 FMM and MLFMA

The original fast multipole method (static FMM) was presented for the Laplace
equation in two and three dimensions by Greengard and Rokhlin [26,27]. One
early application in electrical engineering was to speed up the capacitance
extraction of conducting structures [28,29].

Later, Rokhlin developed a version of the FMM (HF-FMM) that is suitable
for the Helmholtz equation at high frequencies [30–32]. One-level implementa-
tions of the algorithm was presented in 2-D [33] and 3-D [34, 35], and shortly
thereafter multilevel versions in 3-D [36–40]. Meanwhile, the mathematical
theory of the FMM and its error analysis was studied in [41, 42]. Today, the
multilevel fast multipole algorithm (MLFMA) for computational electromag-
netics, by Chew et al. [37,38,43,44], can be considered well established.

The FMM, in its various incarnations, can be used for gravitational N-
body problems and, in particular, for solving various electrostatic, acoustic
and electrodynamic problems with integral equation methods.

In an N-body problem, a direct computation of the interactions between
N particles has a computational cost of O(N2). Similarly, for the iterative
solution of an integral equation that is discretized using N basis functions,
the computational cost of each iteration is also O(N2), since the interactions
between all N basis functions need to be computed. For the Laplace equation,
the static FMM lowers the cost to O(N). For the Helmholtz equation, the
HF-FMM using one level lowers the cost to O

(
N3/2

)
and the MLFMA further

to O(N log N).

3.3 Short Overview of the Algorithm

To illustrate the basic concepts of the FMM and MLFMA, let us consider the
following N-body problem. Assume that we have N point sources qn at rn, for
n = 1, . . . , N . The task is to compute the scalar field Fm at each point source
due to all other point sources, given by

Fm = F (rm) =
N∑

n=1
n 6=m

G(rm − rn) qn, for m = 1, . . . , N, (12)

where G is the Green’s function

G(r − r′) =
eik|r−r′|

4π |r − r′|
(13)

that satisfies the Helmholtz equation (∇2 + k2)G(r − r′) = −δ(r − r′).
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A direct computation of all the N(N − 1) interactions becomes expensive
if N is large enough. The basic idea of the FMM is to group the sources
and compute most of the interactions between the groups instead of directly
between the sources.

To get an efficient implementation, the key building blocks are the field
representations (both for the field outside a group due to the sources inside
the group and for the local field inside a group due to sources outside) and
the translation procedures between the different representations. The imple-
mentation details of the representations and translations are different in the
static case and the high-frequency case, but the basic algorithm consists of the
following steps.

Preprocessing

To begin, we enclose all point sources in a large cube at level 0. Then, we
recursively subdivide the cube into eight sub-cubes, or children cubes, at
level 1, 2, . . . , lmax. Each cube is then either a childless cube containing
a modest number of point sources, say between 10 and 100, or else a
parent cube with one to eight children cubes. We store all (non-empty)
cubes in a tree.

Two cubes are nearby if they are at the same level and share at least
one boundary point (a cube is then nearby itself). Two cubes are well
separated if they are at the same level and not nearby each other. The
interaction list of a cube consists of all well-separated cubes that are con-
tained in nearby cubes at the parent level. It follows that the interaction
list of a cube can contain up to 63 − 33 = 189 cubes.

Aggregation

In the first, up-tree3 pass, we recursively compute and store the outgoing
representation for each cube at level 2, . . . , lmax.

For a childless cube, we compute the outgoing representation from the
sources contained in the cube. For a parent cube, we combine the out-
going representations from its children cubes.

Translation and disaggregation

In the second, down-tree pass, we translate the fields from outgoing to in-
coming representations at the coarsest possible level, and also distribute
the incoming field from parent cubes to their children cubes. By travers-
ing the tree in depth-first order, we do not need to store more than one
incoming representation per level.

At levels 0 and 1 there are no well-separated cubes, and thus the incom-
ing representation for each cube is zero. For a cube at level 2, we get
the incoming representation by translating the outgoing representation

3A computer science tree is typically drawn with the root at the top (the level 0 cube)
and the leaves at the bottom (the level lmax cubes).
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from each cube in the interaction list into a incoming representation in
the cube under consideration. For a cube at level 3, . . . , lmax, we dis-
tribute the incoming representation from the parent cube and add the
representation translated from the cubes in the interaction list.

Finally, for a cube at level lmax, we have an incoming representation of
the field due to all sources in well-separated cubes. Then, we compute
the field Fm at each point in the cube using this incoming representa-
tion, and add the field due to the sources in nearby cubes using a direct
computation.

As a simple example, let us assume that we have N = 20000 point sources
that are uniformly distributed in a cube. Then, four levels gives us 83 = 512
cubes at level lmax = 3, with about 39 point sources in each cube. The up-tree
pass is illustrated in Figure 8 and the down-tree pass in Figures 9 and 10.

Figure 8: Aggregation from level 3 (small cubes) to level 2 (large cubes). For
each cube at level 2, we combine the outgoing representations from its children
cubes. For the cubes at level 3, we compute the outgoing representations from
the point sources.

3.4 Plane-Wave Expansions and the Sub-Wavelength

Breakdown

In the static FMM (k = 0), the fields are represented using multipole expan-
sions. The HF-FMM and MLFMA are instead based on a plane-wave expan-
sion of the Green’s function (13) due to Rokhlin [31, 32]. This plane-wave
expansion can be written in the general form

G(D + d) =
eik|D+d|

4π |D + d|
≈

∫

S2

T (k,D) eik·d dk̂, D > d, (14)

where the integration is with respect to k̂ over the unit sphere, k = k k̂,
and T (k,D) is the translation function. Written out explicitly, Rokhlin’s
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Figure 9: Translation on level 2 from all the gray cubes to the white cube in
the upper left corner.

Figure 10: Translation on level 3 from all the gray cubes to the white cube in
the upper left corner. The contribution due to the cubes in the hatched region
is distributed from the parent cube.
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translation formula is

G(D + d) ≈

π∫

−π

π∫

0

TL(θ, ϕ)eik(θ,ϕ)·d sin θ dθ dϕ, D > d, (15)

where the wave-vector k and the translation function T = TL are expressed as
functions of the spherical coordinates θ and ϕ as

k(θ, ϕ) = k
(
(x̂ cos ϕ + ŷ sin ϕ) sin θ + ẑ cos θ

)
and (16)

TL(θ, ϕ) =
ik

(4π)2

L∑

n=0

in(2n + 1) h(1)
n (kD) Pn

(
k(θ, ϕ) · D

kD

)
. (17)

Here, h
(1)
n is the spherical Hankel function of the first kind and degree n, and

Pn is the Legendre polynomial of degree n.

A

B

rn

D

r

qn

F = ?

Figure 11: Field inside the cube B due to point sources in the cube A.

Consider the field F (D + r) inside the cube B, centered at D, due to the
point sources inside the well-separated cube A, centered at the origin, as shown
in Figure 11. Using (14), we get the plane-wave expansion

F (D + r) =
∑

n

G(D + r − rn) qn

=

∫

S2

(
∑

n

qn e−ik·rn

)
T (k,D) eik·r dk̂

=

∫

S2

v(k) eik·r dk̂,

(18)

where
v(k) = u∞(k) T (k,D) (19)

is the incoming-wave pattern of the plane-wave expansion, and

u∞(k) =
∑

n

qn e−ik·rn (20)
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is the radiation pattern due to the point sources in the cube A. The summation
in (20) is over all point sources that are inside the cube.

The basic strategy to implement the MLFMA, is to use samples of the ra-
diation patterns to represent outgoing fields and samples of the incoming-wave
patterns to represent incoming or local fields. A translation from an outgoing
representation into an incoming one is given by the point-wise multiplication
in (19) for each sample point. A shift of origin for a radiation or incoming-wave
pattern is a point-wise multiplication with eik·p for each sample point, with
p being a vector from the old origin to the new one. In addition, since the
needed sample rates are different for different levels, we also need interpolation
and anterpolation procedures between the sample points at adjacent levels.

When k → 0, the radiation pattern (20) degenerates into a constant,

u∞ →
∑

n

qn. (21)

Therefore, without even looking at the expression for the translation function
T (k,D), we can conclude that the radiation pattern does not contain enough
information to represent the outgoing field for a cube that is too small compared
with the wavelength. This is the well-known sub-wavelength or low-frequency
breakdown of the HF-FMM and MLFMA.

Another way to explain the sub-wavelength breakdown is to look at the
the translation function (17). The order L must be large enough to get good
accuracy, but the sum is divergent as L → ∞. The spherical Hankel function
h

(1)
n (kD) grows exponentially with increasing degree when the degree n is larger

than the argument kD. Therefore, L cannot be much larger than kD.
In practice, the side length of the cubes must be around one quarter of a

wavelength or larger to ensure acceptable accuracy.

3.5 Broadband MLFMA

To overcome the sub-wavelength breakdown, and get a broadband algorithm
that works for all frequencies or cube sizes, we have two basic options. One
possibility is to combine the (high-frequency) MLFMA with a low-frequency
one based on dynamic multipole-expansions as in [45–47]. The other option
is to use a low-frequency stable plane-wave expansion, instead of Rokhlin’s
translation formula, to get a broadband algorithm as in [48–50].

To use plane-wave expansions in the sub-wavelength scale we need to in-
clude evanescent waves (with complex k) in addition to ordinary propagating
waves. The wave vector must satisfy k · k = k2, so that the plane waves sat-
isfy the Helmholtz equation, but if the wave vector is complex, it can remain
non-zero when the frequency goes to zero (k → 0). The approach in [48, 49]
is based on the spectral representation of the Green’s function, while the ap-
proach in [50] is based on a more heuristic way to include evanescent waves.

The spectral representation of the Green’s function, which seems to be the
most promising low-frequency stable plane-wave expansion, can be written in
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the form (14) as

G(D + d) =

π∫

−π

∫

Γ

T (k,D) eik·d sin θ dθ dϕ, ẑ · (D + d) > 0, (22)

where wave vector k = k(θ, ϕ) is given by (16), the path Γ = Γp + Γe in the
complex θ-plane is given in Figure 12, and the translation function is

T (k,D) = T (θ, ϕ) =
ik

8π2
eik(θ,ϕ)·D. (23)

Re θ

Im θ

Γp
Γe

π
2

Figure 12: The integration path Γ = Γp + Γe in the complex plane.

The spectral representation of the Green’s function can be split in two parts
by considering the integration paths Γp and Γe separately. For the propagating
part, corresponding to Γp, the wave-vector k is real4 and the integration is

over the upper half (z > 0) of the unit sphere with respect to k̂(θ, ϕ). For the
evanescent part, corresponding to Γe, k is complex, that is, the representation
is based on evanescent plane-waves.

The spectral representation (22) is in principle exact for any k including
k → 0, but the the representation is direction dependent. Moreover, we need
to efficiently evaluate a semi-infinite integral in the complex θ-plane.

For the propagating part, we embed the direction dependency into the
translation function so that we can use exactly the same propagating repre-
sentations as with Rokhlin’s translation formula. This makes the combination
of the spectral representation and Rokhlin’s translation formula nearly trivial,
but the downside is that we get a non-smooth translation function, leading to
somewhat complicated translation procedures.

For the evanescent part, we need six expansions, but we can use a highly
efficient generalized Gaussian quadrature rule for the semi-infinite integral in
σ = −ik cos θ.

The fundamental translation procedures are explained in detail in [P4],
and actual broadband MLFMA implementations for acoustic and electromag-
netic scattering are presented in [P5,P6], using a combination of the spectral

4Here we assume that the wave-number k is real, i.e., that the surrounding free space is
lossless.
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representation and Rokhlin’s translation formula. Two outstanding questions
regarding the error controllability and the computational complexity are con-
sidered in some details in the following to supplement the findings reported
in [P4–P6].

3.5.1 Error Controllability

The error controllability of the translation procedures, using the spectral rep-
resentation of the Green’s function, is claimed to be good for up to at least
four digits accuracy in [P4]. However, the error controllablity seems to be
slightly worse in the actual implementations in [P5,P6]. So, what is causing
this inaccuracy and is it a serious problem?

• The error controllability of the propagating part is excellent—by adjust-
ing the sample rates or degrees as described in [P4] the error can be made
as small as wanted.

• The new quadrature rules that we use for the evanescent part is accurate
and error-controllable, which means that there cannot be any problems
with the outer-to-inner translations of the evanescent part, at least when
considered separately.

• Therefore, any unexpected inaccuracy must be due to the interpolations
and anterpolations of the evanescent part.

To get some numbers to support this conclusion, consider a similar source
cube as in the benchmark case in [P4], shown in Figure 13. The cube is
centered at the origin and its side length is a = 2. The cube contains 100
point sources qn = 1 at the points rn, whose Cartesian coordinates are






xn = zn =
(n − 1) % 10

5
−

9

10

yn =
b(n − 1)/10c

5
−

9

10

(24)

for n = 1, 2, . . . , 100, where % denotes the modulus or reminder after integer
division and b·c denotes the floor function.

Using the same level numbering as in [P4,P5], we choose the wave-number
k so that ka = 2`π if the initial level number is `. This means that the side
length a is 2`−1 wavelengths.5 As described in [P4], the evanescent radiation
pattern for this cube is

F e
∞(σ, ϕ) =

100∑

n=1

e−ik(σ,ϕ)·rnqn, (25)

5Note that the level numbering using the symbol `, used in the following, is the same as
in [P4,P5] but different from the one using l in Section 3.3.
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x̂

ŷ

ẑ

Figure 13: Geometry of the source cube. The cube, at level `, is centered at
the origin and its side length is 2. The shaded source plane contains 10 × 10
point sources of unit amplitude.

where σ = −ik cos θ.
Now, the numerical test is the following. First, we compute the sample

matrix [P4, Eq. (49)] of the evanescent radiation pattern (25). Then, we
perform successive aggregation steps, exactly as described in [P4], to get the
sample-matrices of ever larger parental cubes containing only this single initial
cube. We shift the origin so that the original level ` cube is in the same corner
of all parent cubes, as shown in Figure 14. Finally, we compute the exact
sample matrix for the parent cubes, directly from the sources, and use the
relative L2-error of the aggregated sample matrix as an error estimate.

x̂

ŷ

ẑ

Figure 14: Geometry at level ` + 2, that is, after two interpolations and shifts
of origin. The original level ` cube and the sources are in one corner of the
level ` + 2 cube.

The result of this numerical test is shown in Table 1 for two digits target
accuracy and in Table 2 for four digits target accuracy. The errors in the
sample matrices are mainly due to the interpolation in the complex θ-variable,
since the shifts of origin and interpolations in ϕ are accurate. Although we
cannot draw too sharp conclusions based on this test, the results clearly suggest
three things:

1. The accuracy in one interpolation is good. (This is also evident from the
numerical test in [P4], using only two levels.)

2. The accuracy degrades somewhat with increasing number of interpola-
tions, that is with increasing number of levels.

3. The accuracy is better for lower levels, that is, for cubes that are small
compared with the wavelength. This can also be intuitively expected,
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` + 1 ` + 2 ` + 3 ` + 4 ` + 5 ` + 6
-2 3.32e-04
-3 8.76e-05 9.29e-04
-4 5.26e-05 5.78e-04 9.42e-04
-5 1.23e-05 8.53e-04 1.20e-03 1.59e-03
-6 5.11e-06 5.86e-04 1.54e-03 2.14e-03 2.52e-03
-7 4.74e-06 2.46e-04 9.38e-04 2.01e-03 2.87e-03 3.31e-03
-8 4.72e-06 7.38e-05 3.71e-04 1.13e-03 2.30e-03 3.34e-03
-9 4.72e-06 1.91e-05 1.11e-04 4.37e-04 1.24e-03 2.48e-03

-10 4.72e-06 5.21e-06 3.15e-05 1.36e-04 4.81e-04 1.31e-03
-11 4.72e-06 4.85e-06 1.57e-05 5.15e-05 1.65e-04 5.23e-04
-12 4.72e-06 4.92e-06 1.43e-05 3.78e-05 7.96e-05 2.01e-04
-13 4.72e-06 4.94e-06 1.41e-05 3.62e-05 6.37e-05 1.16e-04
-14 4.72e-06 4.95e-06 1.41e-05 3.59e-05 6.10e-05 9.85e-05
-15 4.72e-06 4.95e-06 1.41e-05 3.58e-05 6.04e-05 9.45e-05
-16 4.72e-06 4.95e-06 1.41e-05 3.58e-05 6.03e-05 9.36e-05
-17 4.72e-06 4.95e-06 1.41e-05 3.58e-05 6.03e-05 9.34e-05

Table 1: Relative L2-errors in the sample matrices of the evanescent radiation
pattern at levels ` + 1, . . . , ` + 6, for different starting levels ` = −2, . . . ,−17.
The target accuracy is d0 = 2, and thus we do not need to use the evanescent
part for levels ` ≥ 0.

` + 1 ` + 2 ` + 3 ` + 4 ` + 5 ` + 6
0 1.15e-05

-1 1.51e-05 5.31e-06
-2 4.89e-05 2.65e-05 1.65e-05
-3 7.04e-05 3.58e-05 4.40e-05 5.02e-05
-4 2.08e-05 1.83e-04 5.02e-05 1.46e-04 2.14e-04
-5 4.28e-06 2.46e-04 1.38e-04 2.02e-04 3.97e-04 7.11e-04
-6 7.84e-07 1.51e-04 1.86e-04 1.61e-04 1.80e-04 3.82e-04
-7 8.35e-08 6.86e-05 1.40e-04 1.93e-04 2.16e-04 2.54e-04
-8 4.23e-08 2.40e-05 7.15e-05 1.45e-04 2.15e-04 2.47e-04
-9 4.13e-08 6.76e-06 2.52e-05 7.19e-05 1.50e-04 2.25e-04

-10 4.13e-08 1.75e-06 7.09e-06 2.49e-05 7.19e-05 1.51e-04
-11 4.13e-08 4.39e-07 1.83e-06 6.96e-06 2.46e-05 7.16e-05
-12 4.13e-08 1.08e-07 4.61e-07 1.79e-06 6.84e-06 2.43e-05
-13 4.13e-08 2.63e-08 1.15e-07 4.51e-07 1.76e-06 6.76e-06
-14 4.13e-08 1.95e-08 3.43e-08 1.13e-07 4.39e-07 1.73e-06
-15 4.13e-08 1.99e-08 3.28e-08 6.57e-08 1.64e-07 4.36e-07
-16 4.13e-08 2.01e-08 3.28e-08 6.58e-08 1.66e-07 2.87e-07
-17 4.13e-08 2.01e-08 3.28e-08 6.59e-08 1.67e-07 2.92e-07

Table 2: As Table 1, but using d0 = 4 digits target accuracy and levels up to
` = 1.
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since the situation is (quasi)static for small cubes, while the dynamic
properties dominate for large cubes. Hence, there is a transition region,
say at levels ` = −4, . . . , 1, where the properties of the evanescent radi-
ation pattern changes significantly. This is also, at least approximately,
the region where the interpolation errors are largest.

To understand the reason for the error accumulation with increasing levels,
it is illuminating to look at the condition number (defined as the the largest
singular value divided by the smallest singular value) of the interpolation ma-
trices El, computed as in [P4, Section 3.2.2]. Table 3 shows the sizes and
condition numbers of the interpolation matrices for two and four digits target
accuracy. The condition number increases with increasing number of samples
in the complex θ-variable, and the interpolation eventually becomes unstable.
Using the present interpolation scheme, it is not useful to increase the target
accuracy beyond four digits.

d0 = 2 d0 = 4
` size cond size cond
0 7×9 2.88e+02

-1 9×10 1.06e+05
-2 5×5 5.01e+02 10×11 1.26e+06
-3 5×6 7.81e+01 11×11 6.53e+08
-4 6×6 8.92e+03 11×11 7.18e+08
-5 6×6 8.96e+03 11×11 7.30e+08
-6 6×6 8.96e+03 11×11 7.30e+08
-7 6×6 8.96e+03 11×11 7.30e+08

Table 3: Size and condition number of the intepolation matrices E` at different
levels ` and d0 = 2, 4 digits target accuracy.

In conclusion, the weakest point in the error controllability is the inter-
polation in the complex θ-variable. The errors are largest in the transition
region at levels −4 ≤ ` ≤ 1, that is when the side lengths a of the cubes are
λ/32 ≤ a ≤ λ, with λ being the wavelength.

However, for many practical purposes it seems sufficient to obtain one or
even a few percents accuracy in the MLFMA, and then the above inaccuracy
should not be a significant problem. The actual computations in [P5,P6] also
suggest that the accuracy is sufficient, at least for practical accuracy demands.

Note also that in the usual (high-frequency) MLFMA, the accuracy is quite
limited if we insist on using cubes whose side lengths are somewhat smaller
than the wavelength, as is usually done. If the smallest cubes have side lengths
λ/4 ≤ a ≤ λ/2, which seems to be close to the current state-of-art, then the
maximum obtainable accuracy is approximately one percent (or at least not
much better) when using Rokhlin’s translation formula.

Finally, there is also one additional source of inaccuracy in our point-based
MLFMA implementation in [P5,P6] that is not dependent on the actual trans-
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lation procedures: Each interaction between two basis functions must be com-
puted either directly or using the MLFMA, but partial interactions are in-
evitably computed in a point-based MLFMA. These partial interactions are
approximately computed using the MLFMA, but the correction terms are com-
puted using the exact Green’s function. If the cubes are too small compared
with the basis functions, these correction terms actually increase the memory
consumption and the additional errors could also be significant—especially
since the errors are in near interaction terms of the system matrix.

3.5.2 Computational Complexity

The computational complexity of the proposed broadband MLFMA is depen-
dent both on the discretization, i.e., the number of unknowns, and on the size
of the computational domain in terms of wavelengths. We can, however, eas-
ily get rough estimates of the computational complexity in the high-frequency
case and in the quasistatic limit.

For the high-frequency case, assume that the discretization is fixed with
respect to the wavelength and that we increase the number of unknowns N , so
that we have a fixed (small) number of unknowns in each childless cube at level
` = 0. Then, we essentially use the FFT-based MLFMA of [51] without any
evanescent representations. In that case, the computational complexity is in
theory slighly worse than in the MLFMA by Chew et al. [37,38,43], since the in-
terpolations using FFT are asymptotically less efficient than sparse Lagrangian
interpolations. However, as shown in [51], the FFT-based implementation can
be more efficient for cubes whose side lengths are up to 16 wavelengths. The
memory consumption should also be smaller in the FFT-based MLFMA, since
we can use smaller sample rates for the radiation patterns and incoming wave
patterns.

For the quasistatic limit, we assume that all cubes are small compared
with the wavelength. Then, we can ignore the propagating part and assume
that we use the same sample rate to represent the evanescent part for each
cube. Furthermore, if we again assume that we have a fixed (small) number of
unknowns in each childless cube, then we get O(N) cubes and both the memory
consumption and computational cost is fixed for each cube. Therefore, both the
computational cost and memory consumption are asymptotically O(N) as in
the static FMM. In the static FMM, the fields are represented using multipole
series of degree p, needing (p + 1)2 coefficients. For two digits accuracy we
should choose p = 7 or maybe p = 6, which gives 64 or 49 coefficients to store
one expansion. As listed in [P4, Table 2], we need 6 × 10 = 60 samples to
store one evanescent radiation pattern (and 6 × 18 = 108 samples to perform
the outer-to-inner translation). We need 6 evanescent representations to cover
all translation directions, but it is not necessary to consider all directions at
the same time. To reduce the memory consumption, we could consider one of
the six directions at a time, and reuse the same memory for all six radiation
patterns for each cube. Then, our memory consumption could optimally be
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quite close to the static FMM in the quasistatic limit, aiming at two digits
accuracy.

Our present implementations in [P5,P6] are unfortunately not as optimal
as the above theoretical rough estimate. However, looking at [P5, Table 4]
and comparing the adaptive subdivision cases, we can observe that both the
memory consumption and the execution time for one iteration scales roughly
linearly when increasing the number of unknowns from 2229 to 22124, keeping
the size of the object compared with the wavelength fixed.

4 Summary of the Publications

The first three papers [P1–P3] treat closed-form solutions of classical electro-
static problems.

In the first paper [P1], we derive the image principle for two orthogonally
intersecting conducting spheres using vector calculus and Kelvin’s image prin-
ciple for a sphere. This classical problem has been considered many times
before, but there are still novel aspects in the paper. The derivation is new
and the resulting method of virtual spheres, which gives a convenient way to
find the images of an arbitrary charge distribution, is also new. Furthermore,
the relation [P1, Eq. (17)] seems to be new. Also, the novelty of the exact
values of the polarizability [P1, Eqs. (45) and (49)] is perhaps small, but the
exact values are not easily found in the literature.

The second paper [P2] is again about the electrostatics of two spheres, but
this time we consider the non-intersecting case. Using Kelvin’s image princi-
ple, it is straightforward to derive the infinite series of images. By solving the
corresponding recurrence equations, we get closed-form expressions for the po-
larizability of the sphere doublet. Althought this classical problem has earlier
solutions, there are several new aspects of the paper. Again, the derivation
is new. In particular, one new idea is to solve the recurrence equations to
obtain new expressions for the polarizability. The resulting expression for the
transversal polarizability [P2, Eq. (31)] is equivalent with an earlier result,
but the expression for the axial polarizability [P2, Eq. (39)] is new. Another
novel aspect of the paper is the efficient numerical computation of the po-
larizability. The quoted 15 digits precision in the transversal polarizability is
perhaps massive overkill for most practical purposes, but it is clearly excellent
for benchmarking purposes.

In the third paper [P3], we apply Kelvin’s inversion on the image solution
for a conducting wedge. We obtain new closed-form solutions for the potential
due to a point charge near a conducting object bounded by two intersecting
spheres. The solution, using one line image in complex space and a finite num-
ber of point images in real space, is efficient also from a purely computational
point of view. The line image is smooth and exponentially decaying, and we get
an accurate and computationally efficient solution by approximating the line
image using a modest number of point images in complex space. There are two
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significant novel aspects of the paper. First of all the numerical treatment of
the line charge [P3, Sec. 3] and the resulting numerically efficient point-charge
approximation are new. Second, the closed form formulas [P3, Eqs. (30)–(32)]
are new. The computed examples show that both the exact line image and
the point-charge approximation are useful.

The last three papers [P4–P6] are about the fast multipole method (FMM)
for electromagnetic and acoustic scattering problems.

In the first of the FMM papers [P4], we consider ways to avoid the sub-
wavelength breakdown by using evanescent plane waves in addition to ordinary
propagating plane waves. We propose an implementation based on the spectral
representation of the Green’s function, and provide some benchmark results
for the basic translation procedures. Our approach is different from [45,49] as
we use the samples of the radiation and incoming-wave patterns to represent
the fields. This makes the implementation more straightforward, and we can
more easily switch to the ordinary (high-frequency) MLFMA for larger cubes.
On the other hand, we use different and more efficient quadrature rules than
in [48], and also our interpolation procedures are different.

There are several new features in our proposed broadband MLFMA. Both
the propagating and evanescent translation procedures are new. Most of the
implementation details are based on previously published ideas, but the ideas
are developed further and the resulting combination is clearly new. Also the
comparison with the UMLFMA [50] is new. The UMLFMA looks promising,
but according to our benchmark, its accuracy is poor.

In the last two papers [P5,P6], we apply the broadband MLFMA of [P4] on
scattering problems in acoustics and electromagnetics. In both cases, the novel
aspect is the combination of a well-conditioned integral equation formulation
and a broadband MLFMA solver.

To get a broadband solver, it is not sufficient to only have a broadband
MLFMA, but we must also have an integral equation formulation that is well-
behaved for all frequencies. In the acoustic case [P5], the formulation is based
on the Burton–Miller boundary integral equation, as described in detail in [52].
In the electromagnetic case [P6], we use the well-conditioned Müller formu-
lation that is presented in [25]. In both cases, we show that the proposed
combined method avoids the sub-wavelength breakdown.

For the sound-hard plate with holes, using N = 22124 unknowns in [P6],
we could not solve the problem using a conventional MLFMA. The sparse part
of the system matrix would simply have been too large. This particular test
case was selected to motivate the need for a broadband MLFMA. In practical
problems, a broadband MLFMA could be anything between unnecessary and
indispensable depending on the specific geometry and frequency.

The paper [P6] is quite short for two reasons. The used Müller-formulation
is described in detail in [23, 25], where the formulation is also compared with
other well-conditioned formulations. Therefore, the formulation is just given
in [P6] without any further analysis. The second reason is that the fundamen-
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tal translation procedures of the broadband MLFMA are given in [P4]. The
purpose of [P6] is to show that the combination really gives a broadband solver
that avoids the sub-wavelength breakdown in practice. The sphere is a conve-
nient test case, as we know the analytical solution in terms of Mie-series. As
such the benchmark only proves with some certanity that the method works
for smooth dielectric scatterers with modest dielectric contrast. The surface
integral equation formulation has, however, been studied in detail in [23, 25].
In combination with the validations of the broadband MLFMA in [P4–P6],
this clearly suggest that the method works also for other dielectric scatterers.

The new broadband MLFMA is usable as implemented in [P5, P6], but
there would clearly be room for further improvements. The present imple-
mentations are not so well optimized, which results in an unnecessary high
memory consumption compared with the theoretical analysis in Section 3.5.2
above. Also the computation times could probably be significantly reduced.

Another potential problem is the error controllability. The errors seems
to be slightly worse in practice in [P5,P6] than what is claimed in [P4]. The
weakest point is the interpolation and anterpolation scheme in the complex θ-
variable, as described in Section 3.5.1. However, the error-accumulation does
not seem to be severe, and for many practical purposes the method should be
accurate enough.

Finally, even if the interpolation scheme in the complex θ-variable would
need to be replaced, the other parts of the proposed translation procedures are
still useful.
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formulations for solving electromagnetic scattering problems with itera-
tive methods,” Radio Science, vol. 40, no. 6, Nov. 2005, RS6002.
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