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An Upper Bound on the Ergodic Mutual
Information in Rician Fading MIMO Channels

Jari Salo, Filip Mikas, and Pertti Vainikainen

Abstract— We consider Rician fading Multiple-Input Multiple-
Output (MIMO) channels where the transmitted signal has
complex Gaussian distribution, iid across the transmit antennas.
Based on expected values of elementary symmetric functions
of complex noncentral Wishart matrices, we derive an upper
bound on the average (ergodic) mutual information for arbitrary
SNR, arbitrary rank of the deterministic line-of-sight matrix, and
arbitrary number of transmit/receive antennas. The Rayleigh
fading signal component is allowed to have spatial correlation at
one end of the link. Upper bounds for the cases of rank-1 line-
of-sight component and pure Rayleigh fading emerge as special
instances of the general result.

Index Terms— MIMO, Rician fading, mutual information,
elementary symmetric functions, noncentral Wishart.

I. INTRODUCTION

E CONSIDER Multiple-Input Multiple-Output radio

channels with n; transmit and n, receive antennas. For
a given channel input signal the highest achievable information
rate is given by mutual information, which, for a random
channel, is itself a random variable. Throughout this paper
we assume that the channel input is isotropically distributed
Gaussian signal. One is typically interested finding the dis-
tribution or the mean value of the mutual information. The
distribution is useful for determining the maximum achievable
information rate (for a given outage probability) of a commu-
nication system employing signal encoding over a single chan-
nel realization. The mean (ergodic) mutual information gives
the maximum achievable information rate when encoding over
a large number of channel realizations.

For Rayleigh channels the computation of exact or ap-
proximate distribution of mutual information has been con-
sidered in e.g. [1], [2], [3], while various expressions for
the mean mutual information can be found in [4], [5], [6],
[7]1. However, the more general case of Rician fading has
not been as thoroughly analyzed. The outage properties of
mutual information from antenna design point of view have
been studied by simulations in [8] and [9]. In [10] lower
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and upper bounds for the mean of the mutual information
are derived, [11] provides a high-SNR approximation for its
density, while in [12] the exact density for dual MIMO systems
is derived; all these papers concentrate on Rician MIMO
channels with rank-1 deterministic component. It should also
be mentioned that all the aforementioned references, [8], [9],
[10], [11], [12], assume a Gaussian isotropic channel input
signal, which does not, in general, achieve channel capacity;
the capacity-achieving input distribution for Rician MIMO
channels, assuming that the transmitter knows the channel
probability distribution, is characterized in [13] and [14], see
also [15][16]. The water-filling capacity, which assumes that
the transmitter knows the instantaneous channel matrix, has
been considered in [4][17]. To our knowledge, there are no
studies of ergodic mutual information addressing the case of
Rician fading with arbitrary-rank deterministic component and
spatially correlated stochastic (Rayleigh) component. Added in
proof: Recent results that have appeared after the acceptance
of this paper include [18] and [19].

In this paper we derive a closed-form analytical upper bound
for the mutual information of Rician fading MIMO channels
whose random (non-line-of-sight) signal component is semi-
correlated' Rayleigh fading, and the deterministic component
has arbitrary rank. The bounds are asymptotically tight at low
SNR’s and their difference to the exact mutual information
tends to a constant at high SNR’s.

The paper is organized as follows. In Section II we give the
system model. The main results are in Section III. In Section
IV the tightness and computational complexity of the bound
are discussed. Numerical examples are given in Section V.
Section VI concludes the paper. Some derivations can be found
in the appendix.

II. SYSTEM MODEL

Throughout the paper we shall denote determinant, trace,
Frobenius norm, conjugate transpose, and rank of a matrix A
with |A], tr(A), ||A||r, AH, and rank(A), respectively. The
n X n identity matrix is denoted by I,,. We shall also use the
shorthand notations K = min(n,,n;) and L = max(n,,n;).
Expected value of a random variable X is denoted by E[X].

Assume that the transmitted signal has complex circularly
symmetric zero-mean multivariate Gaussian distribution with
correlation matrix n—PtInt (isotropic complex Gaussian channel
input), where P is the total transmitted signal power. Then,
if the receiver knows the given n, X n; channel matrix

By “semicorrelated” we mean that correlation is allowed only at one end
of the link [2].
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H perfectly, the mutual information is given by Iy =
log, [Ix + W|, where the K x K matrix

LHHAT, ifn, <n
w={"

P yrH ;

—H"H, ifn,>ns,

Ny

and p is the average SNR at the output of each of the n,
receiving antennas [4]. For Rician fading a channel realization
can be written H = aHy 4+ DH, , where

T
K, +1’ K, +1°

Here K, = ‘;—j is the Rician K-factor. The line-of-sight
component H; is modelled as a deterministic constant. For
n, < ng (n, > n¢) the columns (rows) of the stochastic com-
ponent H are iid complex multivariate zero-mean Gaussian
random variables with n, X n, (n; X n;) correlation matrix
¥, = n,'EHHY] (Z, = n'E[HIH,]). Following
the convention from [2] we call this semicorrelated fading.
We adopt the usual power normalization E[|H||%] = n,n;.
Complex isotropic Gaussian noise is assumed throughout the
paper.

In what follows, we derive an upper bound for E[[y]
when H is Rician fading. The result allows estimation of
the highest achievable information rates with uniform transmit
power allocation, which is typically used in open loop systems
where transmitter has no channel state information. Note that,
for the Rician channel the Gaussian isotropic input does not, in
general, achieve channel capacity. However, it has been shown
that it is the asymptotically optimal channel input for high
SNR'’s [15]. Furthermore, in [13] it is demonstrated that the
channel state feedback delay must be fairly short with respect
to the channel coherence time for the capacity to be signifi-
cantly higher than the information rates achieved with uniform
power allocation. However, assuming that the instantaneous
channel state information is available at the transmitter side,
the uniform power allocation (for K, > p) may be inferior to
the optimal water-filling strategy [17]. Nevertheless, the results
in the next section provide a convenient means for estimating
channel capacity in many cases of practical interest.

III. MAIN RESULTS
A. The Basic Idea of Derivation

The derivation of the upper bound is essentially based on
two key components: Jensen’s inequality and expected values
of elementary symmetric functions of a complex noncentral
Wishart matrix. This becomes apparent from the following
development:

E[lu] = FEllogyIx+ W]

K
H1+A

K
ZE[trp(W)]] : (1)
p=0

< log, |E

= log,

where Jensen’s inequality and the concavity of log,(-) was
used in the second line, and tr,(W), p = 0,..., K, is the
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pth elementary symmetric function”> of W [21]. The function
tr, (W) depends only on the eigenvalues of W, which are de-
noted with Ay, ..., Ax. For instance, tro(W) = 1,tr1 (W) =
fo 1 )\p = tr(W) and trxg W = |W|. In general, tr,(W) =
3" Aiy -+ Ai,, where the sum is over all (%) combinations of
the p indices with ¢; < ... < 4, . Interestingly, the expected
values of elementary symmetric functions are known for many
different statistics of W [22]. However, for complex-valued
distributions results are considerably more scarce. In the case
of Rician fading the distribution of W is complex noncentral
Wishart[23]. Therefore, in order to compute the bound (1),
we need to evaluate the expected values of the elementary
symmetric functions of W over this distribution. Deferring
the details of the derivation to appendix, we now jump to the
main result of the paper.

B. The Upper Bound in the General Case

Denote T = HdHlIf (or T = HfHd if n, > n), and
with A"P the ¢th p X p principal submatrix [21] of the K X
K matrix A, i = 1,..., (I;) The Pochhammer symbol is
denoted (a)p, =a(a+1)---(a+p—1). We have

Theorem 1: Let H be Rician fading. Denote K =
min(nr,nt) L = max(n,,n), K, = bj’ a? = £ and

= K1
2 _
b = o +1 The average mutual information can be upper
bounded as

Elle] < log, [1+Z(%)p@—p+np ()

b2 p P )
+Z( ) K} (L—=p+1)4j)
j=1
G) ‘ ‘
> [y (i) @
i=1
Proof: See appendix. [ ]

The first sum can be seen to be the contribution of the
stochastic Rayleigh fading channel component (see Corollary
3), while the latter summation entails the effect of the LOS
component.

C. The Upper Bound in Special Cases

1) Rayleigh iid Hy: In this case 33 = I and Theorem 1
simplifies to the following form.

Corollary 1: Let H be Rician fading with 35 = Ix. Then
Theorem 1 becomes

K pb2 p P .
Ellu] < Ing{Z(—) YKL —p+ 1)y
=0

p=0 e
b))
X tr;(T)| . (3)
(p —J (0
Proof: See appendix. [ ]

Note that, for ¥ = Ik, the upper bound depends only on
T = H HY through the elementary symmetric polynomials
of its eigenvalues. This is in agreement with the findings in
e.g. [16].

>We remark that the generating function of the elementary symmetric
functions of W is Z;}f:o trp (W)tP = Hfle(l + Apt) [20]. This coincides
with [Ix +tW]| and provides an alternative view on the capacity determinant.
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2) Rayleigh iid Hs; and rank-1 H,; : In practice, the
deterministic component H, often has rank one, since in a
line-of-sight scenario with linear transmit and receive arrays
it is an outer product of two array response vectors [17], see
also [9]. In this case we can further simplify Corollary 1 to
yield

Corollary 2: Let H be Rician fading with 3, = Ix and
let rank(Hy) = 1. Then the upper bound (2) reduces to

Ella] < logQ{l—l—ZZ( ) (K. KL)’

p=1 j=0

K
x(L—p+1)(,,j)<p_jJ)]. &)

Proof: See appendix. ]

Note that in this case the average mutual information does
not depend on the actual entries of the line-of-sight matrix
H,, since, due to the power normalization, the only nonzero
eigenvalue of T equals K L; hence tr1(T) = tr(T) = KL
and tr;(T) =0 for j > 1.

3) Semicorrelated Rayleigh Fading: This special case re-
sults by setting K, = 0 in Theorem 1.

Corollary 3: Let H be Rayleigh fading with correlation
matrix . Theorem 1 becomes

K P
E[Iy] < log, {Z <nﬁt) (L—p+1), try(Z,)] . (5)
p=0
The case of Rayleigh iid fading results by replacing tr, ()
with ( ) (since all eigenvalues are one). This results in an
alternatlve form of the bounds [6, Eq. (22)][24, Eq. (8)] (see
also [24, Eq. (28)]).

IV. DISCUSSION
A. Tightness of the Bound

Denoting the random variable X = [Ix + W/| and its mean
myx = FE[X], the exact ergodic mutual information can written
as

E[Ig] = logy(mx) —e, (6)

where e is the positive bounding error that depends on the
spread of X; roughly speaking, the larger the variance, the
larger the bounding error. In the sequel, we first consider the
case with K, =0 and 3, = Ix (Corollary 3). We show that
at high SNR’s the relative error of the bound tends to zero,
and at low SNR’s the absolute error tends to zero. We then
argue heuristically that the bounding error € cannot increase
if X5 # I or K. > 0. The case ¥, # I and K, > 0 will
be examined by Monte Carlo simulations.

1) Relative error of the upper bound tends to zero as p —
oo: Assume that p > n;. Then we can further upper bound

(5) as K
w (2) S0

p=0
- KlogQIgnﬁt)
+ log, [Z(L —p+1), (IZ)] : (7)

p=0

E[lu]

IN
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Now consider the mutual information lower bound [24]

Ella] > Klog2< ) ID2Z¢ —i), (8

where ¢ (z) is the digamma function. By subtracting (8)
from (7) we can upper bound the error as

()1 me —i), 9)

which is a constant (for fixed n, and n;) not depending on
p. Therefore, for p > ny, there is a constant upper bound on
€ in (6). This means that as p — oo, the relative error of the
upper bound (2) tends to zero, i.e., the ratio of upper bound (5)
and the exact mutual information tends to one. We remark that
for fixed L, (9) is maximized for K = L, and becomes smaller
as % — 0. For example, (9) gives 4.79 and 1.25 bits/s/Hz for
4 x4 and 4 x 2 systems, respectively. This is obviously related
to the fact that variance of mutual information decreases as
the MIMO system becomes asymmetric [25], hence making
the error term in (6) smaller.

2) Absolute error tends to zero as p — 0: Assume that
p < ny. We can upper bound (5) as

K

Z(L —p+1)p

p=0

e < log,

IN

Bl log, (1 + nﬁtKL)

pKL
ng In 2

(10)

by using In(1+ ) < x. Using the lower bound from [25] and

In(1 4 ) >z — 22% we can write

Flfa) > F [logz (1+ 21z )|
> 2| ]—#(”)QE[HHH]
= n 1n2 Fl 22 £
_ ﬁﬂ_(ﬁ)zKL(KL+1) an
n: In2 nt 21n2 ’
since E[|H||%] = KL(KL + 1). Subtracting (11) from (10)

shows that the error of the mutual information upper bound
is at most (n ) % Hence, as p — 0, the bounding
error tends to zero. The mutual information itself decreases
linearly with p as p — 0.

3) The Upper Bound Becomes Sharper as K, > 0 or X5 #
Iy Assume first that K, = 0. The results in [2] and [25]
indicate® that the variance of the mutual information does not
increase for X3 # Ix. Hence, the bounding error ¢ cannot
increase as the level of spatial correlation increases. Finally,
we remark that as K, increases (for a fixed H; and X, =
Ix) the variance of the mutual information decreases, since
the stochastic component H vanishes [11]. For K, =
the term inside log,(-) becomes deterministic and the mutual
information upper bound holds trivially with equality.

3Since [25, Eqgs. (35)-(37)] are based on truncated sum of random variables
(see [25, Eq. (13)]) they provide upper bounds on the variance of mutual
information for the spatially semicorrelated Rayleigh fading case.
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B. Computational Complexity

It can be shown that, for K large, the computational
complexity of the general bound (2) scales as O(25 K?) with
K = min(n,,n:). This means that the computation time more
than doubles when K is increased by one. Hence, using the
general result becomes quickly impractical for K > 10. The
complexity arises from the inner summation where a hermitian
eigenvalue problem with cubic complexity needs to be solved
2K — 1 times. The complexity decreases dramatically for the
Corollaries 1-2, where it is assumed that 323 = Ix. For (3), the
complexity increases as O(K?3), since it is enough to compute
the eigenvalues of T = HyH4 only once. Computational
complexity of Corollary 2 scales as O(K), while that of
Corollary 3 scales as O(K?) for X, # 1. However, none of
Corollaries 1- 3 should present any computational complexity
problems for any practical value of K.

Note that the elementary symmetric polynomials can be
computed recursively with low cost as follows. Let {\,},
denote the eigenvalues of the K x K matrix A. Then the
power sums S,, = Zle A, and the elementary symmetric
polynomials of A are related by the Newton formula as
[20] trp(A) = 30 _(=1)""'Sutr,—n(A). Hence the
summation over the (I; ) monomials in the definition of tr,(A)
is avoided.

V. NUMERICAL EXAMPLES

In the examples we consider a 4 x 4 MIMO system. We
choose two 4 x 4 LOS matrices: Hy; = 214, and Hyo =
a(h,)a(0;)7, where a(f) = [1 e/7sn(O0) ... eim3sin@OT g —
30°, and 0; = 0°. Note that Hy; corresponds to four parallel
equal-gain AWGN channels*, whereas Hy, is a rank-1 LOS
matrix arising from the outer product of the responses of linear
transmit and receive arrays with zero degree angle of departure
and 30 degree angle of arrival. In all cases, the exact values
for mutual information have been estimated from Monte Carlo
simulation with 10° realizations. Note that we have plotted
the worst case results in the sense that the bound is tighter
for L > K, as can be seen from (9) and from numerical
experiments (not shown due to space limitations).

A. Effect of SNR and K-factor with Spatially Uncorrelated
Fading (X5 =14)

In Fig. 1, we plot the exact and bounded ergodic mutual
information (right), and the estimated bounding error (left).
For large SNR’s, the error of the upper bound tends to a
constant; for a 4 x 4 system (9) predicts this constant to be
at most 4.79 bits/s/Hz, whereas the true error is below 1.8
bits/s/Hz in all examined cases. The bounding error becomes
quite small for p < K,. The bound is loosest for K, =
—oo dB as is to be expected, since the variance of mutual
information in (9) is largest in this case. We also plot the
result due to Hosli and Lapidoth [15], which upper bounds the
rate loss between Gaussian isotropic inputs and the optimal
power allocation, assuming that the transmitter knows only

“For this LOS matrix the uniform power allocation achieves capacity, when
the transmitter knows only the probability distribution of the MIMO channel
[13].
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Fig. 1. Comparison of bounds to exact MI (Monte Carlo simulated) for
4 x 4 MIMO system. Dashed line: Hy; = 214 computed with bound (3).
Solid line: Hyo (rank-1) computed with bound (4). Left: Error of the upper
bounds in bits/s/Hz. Dash-dot line: Hosli-Lapidoth bound [15, Th. 1]. Right:
Comparison of bounds and exact MI. Crosses: Exact MI for H ;. Dots: Exact
MI for H;o. Dotted line: Hansen-Bolcskei approximation [11, Th. 2].

the channel distribution® (instead of the instantaneous H as
in the water-filling scheme). This illustrates the optimality of
uniform power allocation for p > K,. In comparison to the
result in [11, Th. 2] the error of the bounds in the present paper
are smaller at low SNR’s, whereas the lower bound therein is
tighter for p > K.

B. Effect of Spatial Correlation and K -factor

We consider the simple exponential correlation introduced
in [26] and subsequently used as a test case in a number of
diversity and capacity studies, e.g. [2] [7]. The entries of 3,
are 0;; = rI"=Il with » € [0,1). In Fig. 2, the effect of
correlation is plotted for varying K, and p = 30 dB. The
results are computed with the general bound (2). It is clear that
the bound becomes tighter as spatial correlation increases. The
results also confirm the intuition that high K factor provides
robustness against spatial correlation.

VI. CONCLUSION

We have derived a general upper bound for the ergodic
mutual information in Rician fading MIMO channels with
uniform power allocation at the transmitter. The bound was
shown to be asymptotically tight for low SNR’s with a
vanishing relative error at high SNR’s. It provides practical
means for estimating achievable information rates in many
practical MIMO scenarios. The cases of rank-1 line-of-sight
matrix and spatially correlated Rayleigh fading are special
instances of the general result.

SDue to different power normalization, comparison to this result requires

replacing p in [15, Eq. (3)] with perr = M, where in this case
2

K, = % Otherwise, the upper bound on rate loss is independent of

the Rician K-factor.
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Left: Error of the upper bounds in bits/s/Hz. Right: Comparison of bounds
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APPENDIX |
A. Notation
(@,  ala+1)...(a+p—1), (a)o=1
etr(X) exp [tr(X)]
I'(t) Jo et e da
Pg(L) aKE-D2TEE T(L—p+1)

B. Fartitions and Complex Zonal Polynomials

Let k = (k1, ko, ..., kg) be a Q-partition® of positive inte-
ger p such that ky > ko > ... > kg > 0 and 2?21/% =p.
The generalized complex hypergeometric coefficient associated
with the @Q-partition « is defined as [23]

Q
[a], = H(a —i4 1), .

=1

12)

The complex zonal polynomial of a K x K hermitian
positive definite matrix A can be defined as C,(A) =
X (1)xx(A) [27] where the scaling constant is given by

B P! [Hﬁ<n(km -
e (b + K —m)!

and the polynomial in the eigenvalues of A is

kn —m+n)

X« (1) ; 13)

/\lf1+K*1 /\fferK*? )\Ich

(A) B A?{l"rK*l A%+K72 )\IIC(K
TN R
K—1 \K-2 '

SFor instance, the 2-partitions of p = 2 are x = (2,0) and x = (1, 1).
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Consider a partition x; with k;, = 1,2 = 1,...,p, and
k; =0,i=p+1,..., K. To conclude this section we outline

the derivation of the fact that Cy, (A) = tr,(A), ie., the
pth elementary symmetric function of A. The result differs
from the case of real-valued zonal polynomials and will be
needed in the sequel. To compute the scaling constant we note
that’ where some of the details can be verified by the reader.
From a result on Vandermonde determinants [28, Eq. (4.9)] it
readily follows that x,, (A) = tr,(A), therefore establishing
the desired result.

C. Proofs

We next outline the derivation of E[tr,(W)]. For the real-
valued noncentral Wishart W the result has been proven in
[29]. The corresponding proof for the complex-valued W
appears to be unavailable, so we outline the main steps here.

Let S be complex noncentral Wishart matrix with parame-
ters (L, X;, ®), where © = £ 'H,H is the noncentrality
parameter. Using the pdf of S from [23] the expected value
of its determinant can be written as

E(S|] = / _Islr(s)is

etr[—©
= 7FK(L[)|EJ|L /s>0 |S|E—EH etr[ -3 18]
x oFy (L; ©%;'S) dS
etr[—O] |X| Tk (L + 1)
k(L)

where (F1(b; A) and 1 Fy(a;b; A) are hypergeometric func-
tions of complex matrix argument and we also used a definite
integml8 from [27]. From the Kummer relation [30, Eq. (2.8)]
1F1(a;b; A) = etr(A) 1 F1(b — a; b; —A). Furthermore, since
%L(Zl) =(L— K + 1)k we can write E[|S|] = (L — K +
1)k |2s|1F1 (—1; L; —O©). By definition [27, p. 369]

e [ Cu(—©
P ) W

The key observation is that (—1), = 0 for p > 1 and
hence we can restrict to partitions k1 = (1,1,...,1) with

1F(L+1,L;09),

(14)

p=0all Kk

p ones. From (12) it follows that [—1],, = (—1)?p! and
[L]x, = (L —p+1),. Hence we have
S

FA(-1,L-0)=S —— ¢ (-@). (5

11( ) I;J(L_p+l)p 1( ) (15)

In Appendix IB, it was shown that the zonal polynomial
Cy, (—O) = (—=1)P trp(©®). Hence, after noting that

(L—K+1)g
—~ R (L-K+1)k_p),
L—p+1), ( D)
we arrive at
K
E[S[] = [Za Y (L= K +1)(k—p) trp(O©). (16)
p=0

TThe first equality follows after straightforward, but somewhat tedious,
examination of (13) and the k;:s.

8The integral can be evaluated by using the zonal polynomial definition of
oF1(b; A) [27, p. 369] and integrating the sum term by term using [27, Eq.
(6.1.20)].
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)HK PPHE —p— ) T (4 1) (k—p)

X (1) = e

(K 1= TG (K )

p ITZ

Lo - > [P N (K —p— i) T

(i + 1)(K7p) _ Hle(K +1-— Z)'

P K+ 1= [P (K —p—j)!

DK+

Denote with A®P the ith p x p principal submatrix of a
K x K matrix A. The pth elementary symmetric function,
(1 <p < K), can be written [21]

o
> la

=1

trp(A) =

The principal submatrix S®? is distributed as complex
noncentral Wishart with parameters (L, X4P (X6P)~1THP),
where T = HdHf. We can use (16) and write

P

+ > (L=p+ 1Dy
j=1

E[trp(S)] =(L—p+1)p trp(Xs)

G) _ '

X 3Bt [(BEP) TP
=1

a7

Theorem 1 follows from (17).
The special case X3 = cli: If ¥, = clg, for some
positive scalar ¢, this reduces to (|X%P| = cP)

E[trp(S)]—Z L—p+1)p_jc™ Ztrj THP)

7=0
K — 9
= (L=p+1) gy <p_]?) tr;(T). (18)

p
j=0
K

The second equality follows because Zl(:”l) tr;(T"P) is a
sum of (K ) (%) 4 j principal minors where each term appears
(Ip( Jj) times. Corollary 1 follows by noting that tr,(cA) =
P trp(A).

The special case X3 = clx and Hy has rank one :
tr;(T) = 0 for j > 1 we have from (18)

ZI:O(L —pH Ly (K B ]) (KLY

P p—J

Since

Eltry(S)]

Corollary 2 follows by noting that tr;(H,HY) =
KL, which, in turn, results from the power normalization
E[|H[3] = KL.
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