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Some Insights into MIMO Mutual Information:
the High SNR Case

Jari Salo, Pasi Suvikunnas, Hassan M. El-Sallabi and Pertti Vainikainen

Abstract— We consider mutual information of Multiple-
Input Multiple-Output (MIMO) wireless channels with complex
isotropic Gaussian input in the case where the receiver has
perfect channel knowledge. For arbitrary fading statistics, a
mutual information lower bound is decomposed in a sum of three
terms involving: a) average SNR; b) channel fading; c) a term
characterizing the “effective rank”, or eigenvalue dispersion,
of the channel matrix. The decomposition suggests that spatial
multiplexing efficiency of a MIMO channel can be characterized
by the so-calledellipticity statistic. Distribution functions, means
and variances of the random terms in the decomposition for the
case of Rayleigh fading are also derived.

Index Terms— MIMO, Rayleigh fading, mutual information.

I. I NTRODUCTION

Mutual information (MI) defines the highest achievable rate
of information transmission for a given channel input signal
and channel realization. Consider a multiple-input multiple-
output (MIMO) system where thent × 1 channel inputx ∼
CN ( P

nt
, nt), with P denoting the total power of the transmitted

signal1. An nr × nt matrix H relates the channel input and
output via y = Hx + n, where thenr × 1 noise vector
n ∼ CN (σ2, nr). Assuming that the receiver knows a given
realization of H perfectly, the MIMO mutual information
betweenx andy is [1]

IH = log2

∣
∣
∣
∣
IK +

ρ

nt
W

∣
∣
∣
∣
, (1)

where ρ = P
σ2 is the average SNR at the output of each

of the nr receiver antennas, andW = HHH if nr ≤ nt,
and W = HHH otherwise. ForH a random variable,
two definitions of mutual information arise: ergodic mutual
information and outage mutual information.Ergodic mutual
information is a meaningful channel measure in the case
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1We denote determinant, trace, Frobenius norm, conjugate transpose, and
rank of a matrixA with |A|, tr(A), ‖A‖F, AH , andrank(A), respectively.
An n × n identity matrix is denoted withIn. Symbolsnr andnt denote the
number of receive and transmit antennas, respectively, withK = min(nr, nt)
and L = max(nr, nt). Expected value and variance of a random variable
X are denoted withE[X] andvar[X], and the probability of eventA with
Pr(A). Complexn-variate Gaussian random variable with a zero mean vector
and covariance matrixaIn, for a some positive constant, is denoted with
CN (a, n), and synonymously called a complex isotropic Gaussian random
variable.

where the transmitted codeword spans over a large number
(infinite, in theory) of channel realizations. It is defined as
E[IH], with the expectation taken overH. If the columns of
H are distributed asCN (1, nr) (“Rayleigh iid”), the complex
Gaussian isotropic input achieves the ergodic channel capacity
[1]. Some analytical expressions for the ergodic MI are derived
in [1]–[3] among others. In the case where the infinite-length
codeword spans over one random channel realization only,
the outage (non-ergodic) mutual informationt is a more
suitable measure [4]. For an outage probabilityp, it is defined
as Pr(IH < t) = p, the evaluation of which requires the
knowledge of the distribution ofIH. For the Rayleigh fading
case, exact and approximate results on the distribution canbe
found in [5]–[8].

In this paper, instead of new formulas or bounds for MI,
we follow an alternative approach, and show that in the high
SNR regime the MIMO MI can be, in both ergodic and outage
formulations, decomposed as a sum of SNR and (soft)rank-
dependent terms, thus shedding some insight into the structure
of MI. Assuming that the elements of the channel matrix are
iid Rayleigh flat fading, we then analyze the statistics of the
individual terms in the decomposition, thereby providing a
fairly complete statistical characterization of MIMO mutual
information in the high SNR regime, complementing the
results in [9].

II. A DECOMPOSED LOWER BOUND FORMIMO MI

The Grant-Gauthier lower bound for the mutual information
(1) is [10], [11]

IH > log2

∣
∣
∣
∣

ρ

nt
W

∣
∣
∣
∣

. (2)

For a given realization ofH, the bounding error can be shown
to be

IH − log2

∣
∣
∣
∣

ρ

nt
W

∣
∣
∣
∣

=

K∑

k=1

log2

(

1 +
nt

ρλk

)

. (3)

From (3) it is clear that, for fixednr andnt, the bounding error
can be made arbitrarily small by selectingρ large enough,
provided that all eigenvalues ofW (denoted{λk}

K
k=1) are

nonzero. For the random channels considered in this paper,
we assume thatPr[rank(W) = K] = 1. Thus, we can
always select SNR “sufficiently” large, so that the bounding
error is “sufficiently” small with high probability in the case
of outage MI. Similarly, the error in the ergodic MI can be
made arbitrarily small at high SNR. To give an idea of the
practical applicability range of the Grant-Gauthier boundwe
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Fig. 1. Relative error of the Grant-Gauthier lower bound (2)for 2 × 2 and
8 × 2 MIMO systems (nr × nt) over Rayleigh iid fading channel. Error is
given for ergodic MI and outage MI (p = 0.1).

plot the relative bounding error in Fig. 1 for the Rayleigh
iid fading channel. It can be seen that for the2 × 2 and
8 × 2 systems the bound is useful for aboutρ > 20 dB
and ρ > 5 dB, respectively. In general, the bound becomes
tighter as the ratioK

L becomes smaller, and looser as the
number of antennas increases (withK

L held constant). For
small outage probabilities (p) the bound may be loose at low
SNR, particularly for square MIMO systems (K = L).

Definition 1: Consider the set of all channel probability
distributions with the average power constraintE[‖H‖2

F] ≤
nrnt. For a givenρ the supremum of ergodic mutual infor-
mation maximized over all suchchannelprobability laws is
Isup = K log2

(
1 + ρnr

K

)
. We call Isup the supremum mutual

information. Note thatIsup is the mutual information ofK
parallel decoupled AWGN channels, each having constant
power gain nrnt

K [12]. In the sequel, we shall refer to this
channel as the ‘K-AWGN channel’, for short.

Consider a sequence of channel matrices,{H(i)}∞i=1, where
associated with theith channel realizationH(i) areW(i), its
eigenvalues{λ(i)

k }K
k=1, geometric meanm(i)

g = |W(i)|
1
K =

(
∏K

k=1 λ
(i)
k

)1/K

, arithmetic meanm(i)
a = 1

K tr(W(i)) =

1
K

∑K
k=1 λ

(i)
k , and the ratioγ(i) = m

(i)
g /m

(i)
a . We assume

that each member of the sequence is independently generated
from a probability distribution that satisfiesE[‖H(i)‖2

F] =
nrnt = KL, and Pr[rank(W(i)) = K] = 1. By noting that
E
[
m

(i)
a
]

= L and tr(W(i)) = ‖H(i)‖2
F, we can approximate

MI at high SNR as

IH(i) ≈ log2

∣
∣
∣
ρ

nt
W(i)

∣
∣
∣

= log2

[(

ρ

nt

nrnt

KL

)K K∏

k=1

λ
(i)
k

]

= log2

[(

ρ

nt

nrnt

K

)K(

m
(i)
a

L

)K(

m
(i)
g

m
(i)
a

)K]

= K log2

(ρnr

K

)

︸ ︷︷ ︸

≈Isup

+K log2

(
‖H(i)‖2

F

E[‖H(i)‖2
F]

)

︸ ︷︷ ︸

I
(i)
fad

+ K log2

(

γ(i)
)

︸ ︷︷ ︸

I
(i)
mux

(4)

≈ Isup+ I
(i)
fad + I(i)

mux . (5)

In the ergodic formulation,{H(i)}∞i=1 should be interpreted as
a temporal sequence of matrices, whereas in the non-ergodic
one they are simply iid random variables from the channel
distribution. Although the statistical analysis itself isthe same,
the cases differ in the assumptions about the coherence time
of the channel. When the transmitted codeword spans over
a large number of independent channel realizations, only the
ergodic MI makes sense. Thus, one would be interested in
the (time) averagesE[I

(i)
fad] andE[I

(i)
mux]. Similarly, one should

bear in mind that in the case where the codeword spans over
one channel realization only, the outage values, and possibly
higher order moments, ofI(i)

fad and I
(i)
mux would be of interest.

Some general remarks:
• The first term of (4) is a lower bound for the supremum

MI and can be used to approximateIsup at high SNR.
• I

(i)
fad is the effect of channel fading on MI. By channel

fading we mean the fluctuation of the sum of thenrnt

channel gains about its mean.
• In the third term,γ(i) is a well-known measure of elliptic-

ity of the hyperellipsoid whose axis lengths correspond
to the eigenvalues ofW(i) [13, p. 427]. In [14], it is
calledellipticity statistic. It also arises in the formulation
of several model order estimators used in array signal
processing [15]. Geometrically, one can interpret MI
as the log-volume of the hyperellipsoid, that can be
decomposed as the product of a SNR dependent (fading)
scaling factor and its ellipticity measured by the scalar
γ(i).

• The ellipticity statistic provides a natural scale-invariant
(wrt ρ) measure for dispersion of the channel eigenvalues.
Note that0 < γ(i) ≤ 1; the maximum value is attained if
and only if all eigenvalues are equal (i.e.m

(i)
g = m

(i)
a ),

that is, when there areK parallel equal-gain AWGN
channels in operation. Therefore,I

(i)
mux is always non-

positive and can be interpreted as MI penalty due to
eigenvalue dispersion from supremum MI.

In the non-ergodic case, the maximum spatial multiplexing
gain afforded by a channel realization is defined in [16] as
limρ→∞

I
H

(i)

log2(ρ) . From (4) it is clear that the spatial multi-
plexing gain of any full-rank channel is equal to that of the
K-AWGN channel, that is,limρ→∞

I
H

(i)

log2(ρ) = K. As a large
class of MIMO channels are equivalent in this sense, one can
ask how can we classify spatial multiplexing properties of
practical MIMO channels, a question that arises frequently
in channel measurement studies where rank deficient channels
are practically never encountered. The ellipticity statistic is one
possible SNR independent measure for the spatial multiplexing
capability of a MIMO channel, which, unlike the spatial
multiplexing gain, is applicable also in the ergodic case2. Its
benefit over the condition number, defined as the ratio of

2As mentioned, in the ergodic case, one would computeE[I
(i)
mux], or some

normalized version of it.



3

maximum and minimum eigenvalues ofW, is that it depends
on all eigenvalues, and also has the interpretation as the rate
loss from theK-AWGN channel due to eigenvalue dispersion.

III. STATISTICAL ANALYSIS IN THE RAYLEIGH IID CASE

Throughout this section we assume, with slight simplifica-
tion of terminology, that “H is Rayleigh iid”, i.e, the columns
of H ∼ CN (1, nr). Then the distribution ofW is complex
Wishart with identity correlation matrix [10]. For brevity, we
drop the indexi; it should be clear that all quantities depending
on H (i.e., W, Ifad, Imux, ma, γ) are random variables.

A. Statistical independence ofIfad and Imux

Result 1: Let H be Rayleigh iid. ThenImux andIfad in (5)
are statistically independent.

Proof: It can be shown thatma andγK are statistically
independent whenW is complex Wishart [17]. The result
follows, sinceIfad depends only onma, andImux depends only
on γK .

Hence, MI is a sum of independent contributions from chan-
nel fading and eigenvalue dispersion. It is an open problem,
whether the result will hold under more general assumptions
on the statistics ofH, or what are its implications, if any, for
information optimality of communication systems operating at
high SNR.

B. Distributions ofIfad and Imux

We report below the distribution functions ofIfad andImux

as these may become handy, for example, when their empirical
distributions (e.g. from simulations or channel measurements)
need to be compared to the Rayleigh iid case. We remind
the reader that the distributions ofIfad and Imux are relevant
quantities only with the outage formulation of MI, where the
channel is constant during each transmitted code word (ideally
of infinite length).

Result 2: Assume thatH is Rayleigh iid. The distributions
of Ifad andImux in (5) are given by

fIfad(w) =
(KL)KL ln 2

K Γ(KL)
2wL

[
exp

(
2

w
K

)]−KL
(6)

FIfad(t) = [Γ(KL)]−1 Γ
(

KL,KL 2
t
K

)

(7)

with Γ(α, t) =
∫ α

0
xt−1e−x dx, Γ(t) = Γ(∞, t), and

fImux(z) = A(K,L)2(L−K)z

× GK−1,0
K−1,K−1

(

2z
∣
∣
a1,...,aK−1

1,...,K−1

)

, z ≤ 0 , (8)

FImux(t) =
A(K,L)

ln 2
2(L−K)t

× GK,1
K,K

(

2t
∣
∣
K−L+1,a1,...,aK−1

1,...,K−1,K−L

)

, t ≤ 0 ,(9)

whereGm,n
p,q

(

u
∣
∣
a1,...,ap

b1,...,bq

)

is the Meijer G-function [18],aj =

K + j
K , and the normalization factor

A(K,L) =
(2π)

K−1
2 Γ (LK) ln 2

KLK− 1
2

∏K
i=1 Γ(L + 1 − i)

.

Proof: For proof of (6) and (8), see [17]. The proof of (7)
is elementary, while that of (9) requires a fairly straightforward
integration of (8).

It is worth remarking, that using various properties of
the Meijer G-function [19], the pdf (8) and cdf (9) may
be expressed using less general functions for the practically
important special cases ofK = 2 andK = 3.

The pdf of Ifad has been plotted forK = 2 and varyingL
in Fig. 2. It can be seen that asL increasesIfad concentrates
about the origin. This makes sense intuitively, since increasing
the number of antennas at one end of the link should decrease
the effect of fading on MI.

In Fig. 3, the pdf ofImux is plotted for the fixedK = 3 and
varying L. We see how the probability mass concentrates, or
channel ‘hardens’, asL increases. The result is quite natural
and intuitive, since the eigenvalue dispersion should, of course,
decrease asL becomes larger thanK sinceL−1W tends to
identity matrix. We remark that from the results in [20], it
follows that, forL � K, the random variable−2L ln 2 Imux

is approximately chi squared distributed withK2 − 1 degrees
of freedom.

Examining the large-KL behavior of (6) results in the
following observation.

Result 3: For largeKL, the random variableIfad converges
in distribution to a Gaussian random variable with zero mean
and variancevar[Ifad] = K

L(ln 2)2 .
Proof: We use the following result from [21, Proposi-

tion 6.4.1]. Let Xn be an asymptotically Gaussian random
variable with meanmX and assume that the variance ofX
is asymptotically zero, i.e.limn→∞ var[Xn] = 0. If y = g(x)
is a continuously differentiable function, thenY = g(X) is
also asymptotically Gaussian with meang(mX) and variance
var[Xn]g′(mX)2. Result 3 follows, since it can be shown that
‖H‖2

F
E[‖H‖2

F ]
is asymptotically Gaussian withE

[
‖H‖2

F
E[‖H‖2

F ]

]

= 1,

var
[

‖H‖2
F

E[‖H‖2
F ]

]

= (KL)−1 and g′(x) = d
dx [K log2(x)] =

K
ln 2

1
x . The fact that ‖H‖2

F
E[‖H‖2

F ]
is asymptotically Gaussian is im-

mediate from the central limit theorem, see e.g. [21, Theorem
6.4.1].

In practice the Gaussian approximation is good already
for fairly small number of antennas, e.g. forKL > 6. In
general, the variance ofIfad depends only on the ratioKL ,
and the maximum variance,var[Ifad] = (log2 e)2 ≈ 2.08,
is attained forK = L. Interestingly, in [22, Eq. (200)]
the “amount of fading” is defined for MIMO channels as
AF = E[‖H‖4

F]/E[‖H‖2
F]

2 − 1. AF is a general measure of
channel fading; a large AF indicates more severe fading. We
immediately note the relation AF= var

[
‖H‖2

F
E[‖H‖2

F ]

]

. As the
proof of Result 3 is based on the central limit theorem,Ifad

will be asymptotically Gaussian (withvar[Ifad] = AF·K2

(ln 2)2 , in
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general) for any channel distribution, for which‖H‖2
F

E[‖H‖2
F ]

is
asymptotically Gaussian with vanishing variance (or AF).

C. Means and variances ofIfad and Imux

Denoting withΨ(x) = d
dx{ln[Γ(x)]} the digamma function

and with Ψ′(x) = d2

dx2 {ln[Γ(x)]} the trigamma function, we
provide the following result, that complements the analysis in
[9].

Result 4: Let H be Rayleigh iid. Then the means and
variances ofIfad andImux in (5) are given by

E[Ifad] =
K

ln 2

[
Ψ(KL) − ln(KL)

]
, (10)
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E[Imux] =
K

ln 2

[

1

K

K−1∑

k=0

Ψ(L − k)

−Ψ(KL) + ln(K)

]

, (11)

var[Ifad] =

(
K

ln 2

)2

Ψ′(KL) , (12)

var[Imux] =

(
K

ln 2

)2
[

1

K2

K−1∑

k=0

Ψ′(L − k)

−Ψ′(KL)

]

. (13)

Proof: Straightforward by using [10, Lemma A.2] and,
with var[Imux], Result 1. The basic approach is a modification
of the proofs in [9].
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The means and variances ofIfad and Imux have been
plotted in Figs. 4–7 for varyingnr and nt. We make some
observations:

• From Fig. 4 it is obvious that the channel fading has
a negligible effect on ergodic mutual information. This
can be interpreted as a MIMO equivalent of a general
result for single-input single-output channels [4], and is
intuitively justified by the fact that by transmitting a
codeword over a large number of channel realizations
the optimum transceiver should be able to average over
channel fading.

• Unique to MIMO systems is the effect of eigen-
value dispersion on the ergodic mutual information. For
SIMO/MISO systems, the ergodic mutual information
approaches that of the AWGN channel as the number
of antennas increases. For MIMO channels, MI does
not, however, approach that of theK-AWGN channel,

since there will be a rate loss defined by the average
eigenvalue dispersion loss,E[Imux]. However, asImux

does not depend on SNR, the relative rate loss will be
negligible at the high-SNR limit, i.e., the ratio ofIsup

and the ergodic MI,E[IH], will approach one.
• It can be verified that by summing the means ofIfad and

Imux we arrive at the lower bound reported in [9, Eq.
(12)]. Similarly, adding their variances results in [9, Eq.
(31)].

• Comparing Figs. 6 and 7 we note that while forK =
L most of the variance of MI is due to eigenvalue
dispersion, the situation is reversed asK

L → 0, where
channel fading dominates the variance.

• Due to Result 1, the variance of mutual information
is a sum of variances ofIfad and Imux. This clarifies
the two-fold nature of diversity in MIMO channels.
The diversity, defined as the system’s resilience towards
signal fading, comes in two forms in MIMO systems.
First, as reduced channel fading and, second, as reduced
eigenvalue dispersion. The latter form is unique to MIMO
systems.

IV. CONCLUSION

We showed that, at high SNR, mutual information can be
approximated as a sum of terms incorporating the effects
of average SNR, channel fading, and eigenvalue dispersion.
The decomposition is independent of channel distribution
and illustrates the two-fold effect of diversity in MIMO
systems; the resilience towards fading of received power, and
the decrease in the spread of eigenvalues captured by the
so-called ellipticity statistic from multivariate analysis. We
derived means, variances and distribution functions for the
random terms in the mutual information decomposition under
Rayleigh iid fading channel statistics.
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