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Some Insights into MIMO Mutual Information:
the High SNR Case

Jari Salo, Pasi Suvikunnas, Hassan M. El-Sallabi and Pertti kamen

Abstract—We consider mutual information of Multiple- ~ where the transmitted codeword spans over a large number
Input Multiple-Output (MIMO) wireless channels with complex  (infinite, in theory) of channel realizations. It is defines a
isotropic Gaussian input in the case where the receiver has E[Iy], with the expectation taken ov&l. If the columns of

perfect channel knowledge. For arbitrary fading statistics, a L . e
mutual information lower bound is decomposed in a sum of three H are distributed a8\ (1, nr) (*Rayleigh iid”), the complex

terms involving: a) average SNR; b) channel fading; c) a term Gaussian isotropic input achieves the ergodic channektgpa
characterizing the “effective rank”, or eigenvalue dispersion, [1]. Some analytical expressions for the ergodic Ml arewvaeti

of the channel matrix. The decomposition suggests that spatial jn [1]-[3] among others. In the case where the infinite-langt
multiplexing efficiency of a MIMO channel can be characterized  .,qeword spans over one random channel realization only,
by the s_o-calledelllptlcny statistic. D|§tr|but|on functlon§, means h ) di | inf o

and variances of the random terms in the decomposition for the t G_’ outage (non-ergodic) mutual in ormatl_o_ﬂ_ 'S_ a more
case of Ray|e|gh fadmg are also derived. suitable measure [4] For an Outage probabyhlyt is defined
as Pr(Ig < t) = p, the evaluation of which requires the
knowledge of the distribution ofy. For the Rayleigh fading
case, exact and approximate results on the distributiorbean

I. INTRODUCTION found in [5]-[8].

Mutual information (MI) defines the highest achievable rate In this paper, instead of new formulas or bounds for M,

of information transmission for a given channel input slgné(ve fOHOV\_’ an alternative approach,_ and show th_at in the high
and channel realization. Consider a multiple-input migtip SNR regime the MIMO Ml can be, in both ergodic and outage

output (MIMO) system where the, x 1 channel inputx ~ formulations, decomposed as a sum of SNR and (soft)rank-

CN(Z ., my), with P denoting the total power of the transmittedjependem terms, thus shedding some insight into the stauct

signal. An n, x n, matrix H relates the channel input and.Of MI. Assuming that the elements of the channel matrix are

output viay = Hx + n, where then, x 1 noise vector iid Rayleigh flat fading, we then analyze the statistics & th
o~ CN(UQynr)' Assumir;g that the recr:eiver Knows a give'ndividual terms in the decomposition, thereby providing a

realization of H perfectly, the MIMO mutual information airly complete statistical characterization of MIMO matu
betweenx andy is [1] ' information in the high SNR regime, complementing the

results in [9].

Index Terms— MIMO, Rayleigh fading, mutual information.

, Q) Il. A DECOMPOSED LOWER BOUND FORMIMO MI

The Grant-Gauthier lower bound for the mutual information
where p = 0—1’2 is the average SNR at the output of eacfl) is [10], [11]

of the n, receiver antennas, anw = HHY if n, < ny,

and W = HYH otherwise. ForH a random variable, I > log,
two definitions of mutual information arise: ergodic mutual

information and outage mutual informatioBrgodic mutual For a given realization off, the bounding error can be shown
information is a meaningful channel measure in the casg pe

Iy = log,

Ix+ 2w
Nt

ﬁw’ . )
Nt
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1We denote determinant, trace, Frobenius norm, conjugatepose, and Provided that all eigenvalues &V (denoted{\.},_,) are

rank of a matrixA with |A|, tr(A), ||A|lr, AT, andrank(A), respectively. nonzero. For the random channels considered in this paper,
An n X n identity matrix is denoted witll,,. Symbolsn, andn: denote the \we assume thaPr[rank(W) —_ K] = 1. Thus. we can

number of receive and transmit antennas, respectively, Kits min(nr, nt) « . " .
and L = max(nr,nt). Expected value and variance of a random variabl@lwayS select SNR “sufficiently” large, so that the bounding

X are denoted witfE[X] and var[X], and the probability of event with  error is “sufficiently” small with high probability in the sa
Pr(A). Complexn-variate Gaussian random variable with a zero mean vectgyf outage MI. Similarly, the error in the ergodic MI can be
and covariance matrixI,,, for a some positive constant, is denoted with . . . . .

CN (a,n), and synonymously called a complex isotropic Gaussian randomade arbitrarily small at high SNR. To give an idea of the
variable. practical applicability range of the Grant-Gauthier bounel
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Fig. 1. Relative error of the Grant-Gauthier lower boundf2)2 x 2 and
8 x 2 MIMO systems fir x nt) over Rayleigh iid fading channel. Error is
given for ergodic Ml and outage Mip(= 0.1).

plot the relative bounding error in Fig. 1 for the Rayleig
iid fading channel. It can be seen that for thex 2 and
8 x 2 systems the bound is useful for abowt> 20 dB

and p > 5 dB, respectively. In general, the bound becomes e

tighter as the ratio% becomes smaller, and looser as th
number of antennas increases (Wi%l held constant). For

small outage probabilitieg) the bound may be loose at low

SNR, particularly for square MIMO system& (= L).

Definition 1: Consider the set of all channel probability

distributions with the average power constralfif| H||Z] <
nent. For a givenp the supremum of ergodic mutual infor-
mation maximized over all sucbhannelprobability laws is
Isup = Klog, (14 22¢). We call Isyp the supremum mutual
information. Note thatls,, is the mutual information ofi’

parallel decoupled AWGN channels, each having constant
power gain =t [12]. In the sequel, we shall refer to this

channel as theK-AWGN channel’, for short.

Consider a sequence of channel matridd(*)}°, , where
associated with théth channel realizatio®I") are W, its
eigenvalues{\\"}X |, geometric meanny’ = |[W(H)|x —

K O\YE , (i) 1 (i)
(szl )\k) , arithmetic meanmy’ = + tr(W)

K 7
L

), and the ratioy® = méi)/méi). We assume

+ Klog, (%”) (4)
N—————
i
~ Tsupt Iog + Ty (5)

In the ergodic formulation{ H("}2°, should be interpreted as

a temporal sequence of matrices, whereas in the non-ergodic
one they are simply iid random variables from the channel
distribution. Although the statistical analysis itseltle same,

the cases differ in the assumptions about the coherence time
of the channel. When the transmitted codeword spans over
a large number of independent channel realizations, omy th
ergodic MI makes sense. Thus, one would be interested in
the (time) averageE[Igj] and E[I,gfﬂx]. Similarly, one should
bear in mind that in the case where the codeword spans over
one channel realization only, the outage values, and dgssib
higher order moments, @;} and I3« would be of interest.

I,§ome general remarks:

« The first term of (4) is a lower bound for the supremum
MI and can be used to approximatg,, at high SNR.

Igg is the effect of channel fading on MI. By channel
fading we mean the fluctuation of the sum of the
channel gains about its mean.

In the third term;y (") is a well-known measure of elliptic-
ity of the hyperellipsoid whose axis lengths correspond
to the eigenvalues oW [13, p. 427]. In [14], it is
calledellipticity statistic It also arises in the formulation

of several model order estimators used in array signal
processing [15]. Geometrically, one can interpret Ml
as the log-volume of the hyperellipsoid, that can be
decomposed as the product of a SNR dependent (fading)
scaling factor and its ellipticity measured by the scalar
NOS

The ellipticity statistic provides a natural scale-ineauti
(wrt p) measure for dispersion of the channel eigenvalues.
Note that0 < v(¥) < 1; the maximum value is attained if
and only if all eigenvalues are equal (img(f) o,

e

= ma
that is, when there aréd parallel equal-gain AWGN
channels in operation. Thereforé,(,@x is always non-
positive and can be interpreted as Ml penalty due to

that each member of the sequence is independently generated eigenvalue dispersion from supremum MI.

from a probability distribution that satisfieB[|H®"|2] =
niy = KL, and Prlrank(W(®)) = K] = 1. By noting that
E[m{’] = L andtr(W®) = |[H®|12, we can approximate
MI at high SNR as

T

) ()]
)

[HO |2

|
Koz (E[IH“)II%]

(4)
Ifad

In the non-ergodic case, the maximum spatial multiplexing
gain afforded by a channel realization is defined in [16] as
lim, o kff_;((“p). From (4) it is clear that the spatial multi-
plexing gain of any full-rank channel is equal to that of the
K-AWGN channel, that islim,_ o IOI;(E’;) = K. As a large
class of MIMO channels are equivalent in this sense, one can
ask how can we classify spatial multiplexing properties of
practical MIMO channels, a question that arises frequently
in channel measurement studies where rank deficient creannel
are practically never encountered. The ellipticity statis one
possible SNR independent measure for the spatial multigex
capability of a MIMO channel, which, unlike the spatial
multiplexing gain, is applicable also in the ergodic Cades
benefit over the condition number, defined as the ratio of

2As mentioned, in the ergodic case, one would comitftg], or some
normalized version of it.



maximum and minimum eigenvalues W, is that it depends

on all eigenvalues, and also has the interpretation as the ra K1

loss from theK-AWGN channel due to eigenvalue dispersion. A(K, L) = (2m) = T(LK)In2 )
KEE=3 [, T(L+1—14)

I11. STATISTICAL ANALYSIS IN THE RAYLEIGH IID CASE Proof: For proof of (6) and (8), see [17]. The proof of (7)

Throughout this section we assume, with slight simplificas elementary, while that of (9) requires a fairly straigit¥ard
tion of terminology, that H is Rayleigh iid”, i.e, the columns integration of (8).
of H ~ CN(1,n). Then the distribution oW is complex [ |
Wishart with identity correlation matrix [10]. For brevjtywe It is worth remarking, that using various properties of
drop the index; it should be clear that all quantities dependinghe Meijer G-function [19], the pdf (8) and cdf (9) may
on H (i.e., W, Itad, Imux, ma, ) @re random variables. be expressed using less general functions for the prdgtical
important special cases & =2 and K = 3.

The pdf of I,y has been plotted fo = 2 and varyingL
o ) in Fig. 2. It can be seen that dsincreased,q concentrates
Result 1:Let H be Rayleigh iid. Thennux and Iag in (5)  apout the origin. This makes sense intuitively, since iasirg

are statistically independent. o the number of antennas at one end of the link should decrease
Proof: It can be shown thatn, and+* are statistically the effect of fading on MI.

independent wherW is complex Wishart [17]. The result |, Fig. 3, the pdf offmux is plotted for the fixeds = 3 and

foIIov]\és, sinceltag depends only oma, and/mux depends only \arving 7. We see how the probability mass concentrates, or

ony™. , _ o B channel ‘hardens’, a& increases. The result is quite natural
Hence, Ml is a sum of independent contributions from chagnq intuitive, since the eigenvalue dispersion shouldpafse,

nel fading and eigenvalue dispersion. It is an open probleghcrease ag becomes larger thai since L~'W tends to

whether the result will hold under more general assumptio[b%ntity matrix. We remark that from the results in [20], it

on the statistics oH, or what are its implications, if any, for ¢g1ows that, for L > K the random variable-2L 102 I

information optimality of communication systems opergtat g approximately chi squared distributed wilf? — 1 degrees

A. Statistical independence &fy and Imux

high SNR. of freedom.
Examining the larges L behavior of (6) results in the
B. Distributions ofltag and Inux following observation.

Result 3: For largeK L, the random variablé;,q converges

We report below the distribution functions & anq Tmux ..in pistribution to a Gaussian random variable with zero mean
as these may become handy, for example, when their empirica

distributions (e.g. from simulations or channel measurés)e and Va“ar_]ce’ar[jfad} - L(ll:l<2)2 . .
need to be compared to the Rayleigh iid case. We remind Proof. We use the following re_sult from [2.1’ Proposi-
the reader that the distributions &g and Iy are relevant 10" 6.4.1]. Let.X,, be an asymptotically Gaussian random
guantities only with the outage formulation of MI, where t

hé(ariable with meannx and assume that the variance &f
channel is constant during each transmitted code worditjdedS 2SYmptotically zero, i.aim,, ., var[ X, [ = 0. If y = g(x)
of infinite length).

Is a continuously differentiable function, thén = g(X) is
Result 2: Assume thalH is Rayleigh iid. The distributions also asymptotically Gaussian with megfinx ) and variance
of Itag and Iy in (5) are given by

var[X,,]¢g’ (mx)?. Result 3 follows, since it can be shown that

IH|2 i i i [ I|EL2 } _
E[|\H|TE] |s;2 asymptotically Gaussian witliy E[HHlTE] =1,
H _
Fro () (KL)KL1n22wL o p(2%)]7KL ©) var EI[‘HT”HFE]} = (KL)™! and ¢'(z) = L [Klogy(z)] =
= B —— e — X -
s KT(KL) &1 The fact that% is asymptotically Gaussian is im-
Fr,(t) = [O(KL)]7'T (KL,KL 2%) (7) mediate from the central limit theorem, see e.g. [21, Theore
6.4.1].
with D(a,t) = [ ' 'e™® dx, T'(t) = I'(c0,t), and u
In practice the Gaussian approximation is good already
(L—K)z for fairly small number of antennas, e.g. féfL > 6. In
Jron(2) = A(K, L)2 general, the variance af,q depends only on the rati%,
> Gg:i?{q (22 ‘1“K“f1*1) ,2<0, (8 and the maximum variancesar(lag] = (logye)® ~ 2.08,
AK L is attained for K = L. Interestingly, in [22, Eqg. (200)]
Fr () = (7’)2<L—K>t the “amount of fading” is defined for MIMO channels as
L (1)
1“}(21 K Itlar . AF = E[|H||}]/ E[|[H||3]* — 1. AF is a general measure of
x Gy (2t 1}__47K_’1,};:’LK71) , 1<0,(9) channel fading; a large AF indicates more severe fading. We
. immediately note the relation AE var [%} As the
whereG}'" (U|b11bf) is the Meijer G-function [18]a; = proof of Result 3 is based on the central limit theorefgy

. . . . . 2 .
K + <, and the normalization factor will be asymptotically Gaussian (withar[lzg = %, in
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Fig. 4. Mean of mutual information due to channel fading.

Fig. 2. Probability density functions df,q for MIMO systems with Rayleigh
iid Hwith K =2 and L = {2,3,5,10,20,50}. mean of Imux

pdf of Imux for Rayleigh iid channels (K=3)

L=34,5,6,8,10,20 L=20 .
27 |
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7 [bitS/S/HZ] Fig. 5. Mean of mutual information due to eigenvalue dispersio
Fig. 3.  Probability density functions ofmux for MIMO systems with K |1 K-1
Rayleigh iidH, K = 3. L = {3,4,5,6,8, 10,20, 50}. E(1 — | = VU(L -k
{ } [ mux] mn2 | K kz:;] ( )
general) for any channel distribution, for whi ‘H}IIFIHHE] is —U(KL) +ln(K)] ; (11)
asymptotically Gaussian with vanishing variance (orFAF). )
K
var[lad] = (m) V(KL), (12)
C. Means and variances df,g and Imux a2 K
Denoting with¥(z) = -4 {In[T'(z)]} the digamma function var[lmuy] = (m) 7l > V(L —k)
and with ¥/ (x) = %‘;{ln[l‘(x)]} the trigamma function, we k=0
provide the following result, that complements the analysi V(KL) (13)
[9]. - '

Result 4:Let H be Rayleigh iid. Then the means and
variances 0flfag and Imux in (5) are given by Proof: Straightforward by using [10, Lemma A.2] and,
with var[Imuy], Result 1. The basic approach is a madification
of the proofs in [9].

Blled = C[U(KL)~W(KL)],  (10) .
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Fig. 7. Variance of mutual information due to eigenvalue disjo®.

The means and variances dfyq and I, have been
plotted in Figs. 4—7 for varying:, and n;. We make some
observations:

since there will be a rate loss defined by the average
eigenvalue dispersion los$;[Im]. However, aslmux
does not depend on SNR, the relative rate loss will be
negligible at the high-SNR limit, i.e., the ratio dfp
and the ergodic MIE[/], will approach one.

« It can be verified that by summing the meansigf and
Imux We arrive at the lower bound reported in [9, Eq.
(12)]. Similarly, adding their variances results in [9, Eq.
(31)1.

o Comparing Figs. 6 and 7 we note that while far =
L most of the variance of MI is due to eigenvalue
dispersion, the situation is reversed %s—> 0, where
channel fading dominates the variance.

o Due to Result 1, the variance of mutual information
is a sum of variances ofi,q and I This clarifies
the two-fold nature of diversity in MIMO channels.
The diversity, defined as the system'’s resilience towards
signal fading, comes in two forms in MIMO systems.
First, as reduced channel fading and, second, as reduced
eigenvalue dispersion. The latter form is unique to MIMO
systems.

IV. CONCLUSION

We showed that, at high SNR, mutual information can be
approximated as a sum of terms incorporating the effects
of average SNR, channel fading, and eigenvalue dispersion.
The decomposition is independent of channel distribution
and illustrates the two-fold effect of diversity in MIMO
systems; the resilience towards fading of received powet, a
the decrease in the spread of eigenvalues captured by the
so-called ellipticity statistic from multivariate analys We
derived means, variances and distribution functions fer th
random terms in the mutual information decomposition under
Rayleigh iid fading channel statistics.
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