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Ellipticity statistic as measure of MIMO
multipath richness

J. Salo, P. Suvikunnas, H.M. El-Sallabi and P. Vainikainen

‘Multipath richness’ characterises the capability of a propagation

environment to support parallel communication modes. The so-

called ellipticity statistic is proposed as a measure of multipath

richness of a MIMO radio channel. A measurement example clarifies

the proposed figure of merit.

Introduction: It is well known that multipath propagation in a radio

channel has a beneficial effect on the capacity of a multiple-input

multiple-output (MIMO) communication system, especially at high

SNR [1]. For example, a MIMO transceiver operating in a rich

scattering radio propagation environment can employ some form of

spatial multiplexing in order to approach its theoretical spectral

efficiency. In another setting, in the analysis of radio channel

measurements it is often of interest to investigate how multipath

richness depends on the propagation environment, antenna properties,

carrier frequency, or some other parameter. However, the very ques-

tion of how to quantify multipath richness is still in many ways an

open problem. In this Letter, we show that a parameter from multi-

variate statistical analysis, the ellipticity statistic, is a natural measure

for multipath richness and illustrate its use with a real-world measure-

ment example.

Mutual information (MI): The concept of multipath richness provides

a propagation-based explanation for parallel information channels in a

MIMO system. Therefore, to quantify multipath richness, we focus on

the mutual information of the MIMO radio channel. Consider a set of

nr� nt random channel matrices, {H(i)}i¼1
1 , where each channel

realisation is independently drawn from a probability distribution

that satisfies E[kH(i)
k

2
F]¼ nrnt. For the ith realisation, MI between the

nt� 1 channel input and the nr� 1 noisy channel output is IH(i) ¼

log2jInrþ r=ntH
(i)H̄(i)

j [1], where r is the average SNR at the output

of each of the nr receiver antennas, and H̄ is the conjugate transpose

of H. The channel input and the additive noise are assumed to be

isotropic complex Gaussian random variables of appropriate dimen-

sions [1]. For this channel input distribution IH(i) is the upper bound on

the highest achievable rate of error-free communication over the

channel realisation H(i), which is assumed known by the receiver.

For the set {H(i)}1i¼1, the probability that a randomly drawn channel

matrix does not support rate Ip, called outage mutual information [1],

is Prob(IH(i) < Ip)¼ p.

Ellipticity statistic: It is well understood that spatial multiplexing –

facilitated by multipath richness – is a useful technique mainly at high

SNR, where the channel eigenvalues are above the receiver noise

power level. Thus, to find a measure for multipath richness it seems

logical to examine mutual information in the high-SNR regime. We

denote K¼min(nr , nt) and assume, for now, that rank(H(i))¼K.

Further, we denote the nonzero eigenvalues of H(i)H̄(i) with

{l(i)
k }Kk¼1, their geometric mean with m(i)

g ¼ (
Q K

k¼1l
(i)
k )1=K, their

arithmetic mean with m(i)
a ¼ 1=K

PK
k¼1l

(i)
k , and their ratio with

g(i)
¼m(i)

g =m(i)
a . It has been shown that MI can be decomposed at

high SNR as [2]

IHðiÞ ’ Isup þ I
ðiÞ
fad þ I ðiÞmux ð1Þ

where

Isup ¼ K log2 1 þ
rnr
K

� �
’ K log2

rnr
K

� �
ð2Þ

I
ðiÞ
fad ¼ K log2

kHðiÞk2
F

nrnt

� �
ð3Þ

I ðiÞmux ¼ K log2ðg
ðiÞÞ ð4Þ

Here Isup is the mutual information of the ideal channel with equal

eigenvalues, and I (i)
fad is the MI owing to the SNR variation of the ith

channel realisation, given with respect to the average channel power

gain nrnt. The parameter g(i)
2 [0, 1], i.e. the ratio of arithmetic and

geometric means of the channel eigenvalues, is called the ellipticity

statistic [3]. It measures the ellipticity of the hyperellipsoid the axis

lengths of which are the eigenvalues of H(i) H̄(i), or, equivalently, the

power gains of the K parallel information pipes of the MIMO channel.

Note that I(i)mux is nonpositive, which at first seems counter-intuitive for

an information measure. However, I(i)mux can be interpreted as MI

degradation from the ideal case (Isup) owing to eigenvalue dispersion.

If all eigenvalues are equal, then g(i)
¼ 1, and consequently I (i)

mux ¼ 0

with no MI loss. This information theoretic relation of I (i)
mux to spatial

multiplexing capability of a MIMO channel makes g(i) a natural

measure for multipath richness.

Properties: The ellipticity statistic g(i) satisfies the following desir-

able properties:

– Its logarithm has the appealing interpretation as the mutual informa-

tion loss from the ideal unitary channel owing to eigenvalue dispersion.

– It is scale-invariant with respect to average SNR (r) and fading of

SNR (kH(i)
k

2
F). One would expect multipath richness to be a property

of propagation environment, and therefore independent of average or

instantaneous SNR.

– It does not require the selection of subjective parameters, such as

SNR or a dynamic range window for the eigenvalue spectrum.

Multipath richness can also be measured using the condition number

[4]. The condition number, however, depends only on the largest and

the smallest eigenvalue, and also lacks an operational meaning. In

contrast, g(i) is a function of all eigenvalues, and its logarithm has the

interpretation as the MI loss relative to the ideal environment. Another

measure of multipath richness is the effective degrees of freedom

(EDOF) [5]. EDOF, however, depends on SNR, which has to be

selected subjectively. Moreover, at high SNR, all full rank channels

have the same EDOF, i.e. limr!1 EDOF¼K. Therefore, all rank-K

channels are equal in this sense, which is a drawback of EDOF.

Like any multipath richness measure based on mutual information,

the ellipticity statistic is also a function of channel eigenvalues and

hence it depends on nr and nt. As an extreme example, when one

eigenvalue is exactly zero, the channel is rank deficient and conse-

quently g(i)
¼ 0 and I (i)

mux ¼ �1. The interpretation in this case is that

the channel cannot support K parallel modes of communication.

However, this does not mean that the channel mutual information

itself is zero, but simply indicates that one cannot approximate it

using (1), even at the high SNR limit. In practice, this has little

significance since real-world MIMO channels are rarely, if ever, strictly

rank deficient. Further, practical channel models produce channel

matrices that have full rank with probability one. For the Rayleigh

channel statistics, the distribution of I(i)mux has been derived in [2].

Measurement example: To illustrate the use of ellipticity statistic, we

provide a measurement example in an urban microcell scenario. The

measurements, which were conducted in the centre of Helsinki at

2.1 GHz, are documented in [6], where the measurement route used

here is designated by ‘Rout’. The custom-build spherical receiver

array enables estimation of the 3D polarimetric channel response and

embedding of arbitrary 3D antenna patterns at the receiver during

post-processing, as detailed in [7]. Dipole antennas are used at the

receiver. We denote a cross-dipole with vertically (V) and horizontally

(H) polarised feeds with ‘þ ’, while an array of two vertically

polarised dipoles is denoted ‘j j’. The transmit antennas are dual-

polarised patch antennas, also with V and H feeds [6]. For all antenna

configurations the element spacing is half a wavelength both at the

receiver and the transmitter. The total number of channel snapshots

was 2500, corresponding to about 86 m measurement distance. The

receiver moved along a street perpendicular to the line-of-sight (LOS)

street, crossing it in the middle of the route. Results for three nr� nt
MIMO systems are shown in Fig. 1: two 2� 2 systems with ortho-

gonally polarised (þ,þ ) and co-polarised (j j,j j) transmit and receive

antennas, and a 4� 4 system with two orthogonally polarised anten-

nas at both ends (þþ, þþ). Fig. 1 shows the sliding mean (6 m) of

{log2(g(i))}2500
i¼1 , which is the MI loss normalised by K, i.e. the

dimension of the MIMO system. In LOS, eigenvalue dispersion

decreases for the 2� 2 system with (þ,þ ) polarisations. With ideal

cross-polarisation discrimination Imux would be zero, but in practice

the signal is depolarised in reflections, which induces crosstalk

between the channels. In contrast, in the other two cases the multipath
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richness is considerably reduced owing to high correlation. After the

receiver again enters NLOS there is a decreasing trend in the multi-

path richness, which illustrates the well-known fact that the number of

significant propagation paths decreases in the deeply shadowed region

of the street canyon [6]. Fig. 2 shows empirical distributions of

log2(g(i)) for the NLOS parts of the route. In all cases the transmitter

and the receiver arrays consist of cross-polarised elements; e.g. the

2� 8 system has the (þ, þþþþ) configuration. The 2� 8 system has

the smallest MI penalty per dimension; this exemplifies how adding

more antennas in one end of the link mitigates the effect of channel

fading on the spatial multiplexing properties of a MIMO system. The

theoretical result shown for the 2� 2 channel indicates that the

multipath richness of the examined measurement scenario is clearly

worse than that of the Rayleigh IID fading case analysed in [2].

Fig. 1 K�1I(i)mux against measurement distance

Fig. 2 Empirical CDF of K�1I(i)mux for various nr� nt systems

Conclusion: Ellipticity statistic, which quantifies the dispersion of

the channel eigenvalues, is proposed as a yardstick for measuring

multipath richness. A measurement example illustrates its use in

comparison with the spatial multiplexing capability of MIMO antenna

systems.
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