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The Distribution of the Product of Independent
Rayleigh Random Variables

Jari Salo, Hassan M. El-Sallabi, and Pertti Vainikainen, Member, IEEE

Abstract—We derive the exact probability density functions
(pdf) and distribution functions (cdf) of a product of indepen-
dent Rayleigh distributed random variables. The case = 1 is
the classical Rayleigh distribution, while 2 is the -Rayleigh
distribution that has recently attracted interest in wireless propa-
gation research. The distribution functions are derived by using
an inverse Mellin transform technique from statistics, and are
given in terms of a special function of mathematical physics, the
Meijer G-function. Series forms of the distribution function are
also provided for = 3, 4, 5. We also derive a computationally
simple moment-based estimator for the parameter occurring in
the distribution, and evaluate its variance.

Index Terms—Fading channels, radio propagation, Rayleigh dis-
tributions.

I. INTRODUCTION

RECENTLY, the so called multiple Rayleigh (cascaded
Rayleigh, -Rayleigh) distribution has been found to

explain well the amplitude behavior in certain type of mea-
sured radio channels [1]–[5]. The physical explanation for
the -Rayleigh model follows by considering a cascade of
statistically independent Rayleigh fading processes connected
via narrow pipes; this model has been shown to agree very well
with measurements made in a forest environment [2], [3]. The
amplitude model arises also in keyhole propagation with
keyholes [6], and propagation via diffracting street corners [1].
The probability density and distribution functions for the case
of (double-Rayleigh) have been given in [1]. However,
for general , the distribution functions appear to be absent in
the literature. Consequently, empirical distribution functions
obtained from Monte Carlo simulations have been used in
previous studies. In this paper we derive the exact probability
density and distribution functions of a multiple Rayleigh, or

-Rayleigh, random variable. The functions are derived by
using an inverse Mellin transform technique from statistics and
given in terms of the Meijer G-function. Series forms of the
distribution functions are also provided. Based on the method
of moments we also derive a computationally simple parameter
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estimator for the distribution. In addition to [2]–[6], our results
may be useful in studies such as [7], where distributions of
products of Rayleigh random variables were studied using a
Monte Carlo simulation study (due to lack of analytical ex-
pressions) in context of investigating fading distributions. They
cannot be found even in the advanced handbook [8] hence,
completing the available literature in the field. Our results are
also a prerequisite for analyzing the more general multiple
scattering models proposed in [2], [3]. Further, in order to
assess the impact of -Rayleigh fading on the performance of
radio communication systems, analytical expressions of signal
amplitude are needed.

II. BASIC DEFINITIONS

A. Product of Independent Rayleigh Random Variables

Consider a product of independent random variables

(1)

where is a Rayleigh distributed random variable with prob-
ability density function (pdf)

(2)

Because of the way is defined we call it an “ -Rayleigh”
random variable.

The th moment of , i.e., , is

(3)

where we used the definition of the gamma function
.

B. Meijer G-Function

In the sequel, the density and distribution functions of will
be given in terms of the Meijer G-function, which is a general-
ization of the generalized hypergeometric function and can be
defined using the contour integral representation [9]

(4)
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where , , and are, in general, complex-valued.
The contour is chosen so that it separates the poles of the
gamma products in the numerator [9]. The Meijer G-function
has been implemented in some commercial mathematics soft-
ware packages.

III. EXACT DENSITY AND DISTRIBUTION FUNCTIONS

In this section we derive the distribution functions of
-Rayleigh random variables. Although the Mellin transform

technique is known from advanced texts on statistics, we shall
outline the key steps in order to convey to the reader the main
idea, which may also be useful in other similar distribution
problems.

A. Distribution Functions Using the Meijer G-Function

We can find the pdf of as the inverse Mellin transform1 of
, defined by the contour integral [10]

(5)

Denoting we have from (1) and (3)

(6)

From (6) it is possible to compute central moments and func-
tions of them, like skewness and kurtosis. For example, the mean
is , while the variance is given by

(7)

The special case gives the variance of Rayleigh distri-
bution .

By substituting in (5), setting , and using
the definition of the Meijer G-function from (4) we obtain the
density of as

(8)

which is the density function of an -Rayleigh random variable.
Notice that the density depends only on the parameter

. This implies that, in theory, the clusters interacting
in cascade affect the -Rayleigh distribution only through the
product of their “size” parameters, the ’s.

Different values of lead to different normalization. We
consider two examples.

• The case is equivalent to the case where the
underlying real-valued Gaussian variables have vari-
ance 1/2. This is the usual definition of “standard”
complex Gaussian variable with zero mean and unit
variance. Also with this setting ,
which is the usual normalization for the radio channel.

• Setting results with having unit mean,
i.e., .

1The Mellin transform y f (y)dy, y > 0, is just the (h � 1)th
moment of Y . Here we work the other way round: we solve the density f (y)
from its moments using the inverse transform.

Note that the pdf (8) gives also the joint pdf of angle and
amplitude, , of a product of circularly symmetric
zero-mean complex Gaussian random variables as

.
Cumulative distribution function is ob-

tained by integrating (8) with respect to inside contour integral
by using

setting , and again using
the definition of the Meijer G-function (4). This results in

(9)

B. Distribution Functions in Series Form

As the Meijer G-function is implemented only in few math-
ematical software packages, in what follows, we provide series
forms of the distribution functions for , 4, 5 for the conve-
nience of the reader. These expressions are easy to program and
result also in simple approximations for small argument values.
They are also faster to evaluate numerically than the Meijer
G-function. The series forms are derived by evaluating the con-
tour integral in the definition of the Meijer G-function using cal-
culus of residues [11]. This results in an infinite series represen-
tation for the densities, since the integrand has th order poles
at zero and at negative integer values of its argument. Since the
procedure is standard, we omit derivation, and simply state the
results. For further details, see [9] or [12].

We denote and for brevity.
The distribution functions are as follows:

For

(10)

(11)

For

(12)



SALO et al.: DISTRIBUTION OF THE PRODUCT OF INDEPENDENT RAYLEIGH 641

TABLE I
COMPARISON OF ANALYTICAL cdf TO MONTE CARLO SIMULATION, � = 2

(13)

For

(14)

(15)

We have denoted and .
The function , for , is given by

where is
the th polygamma function. Similarly, we have denoted

The series forms of the distribution functions are very fast to
compute, since the difference of polygamma functions

is given by a finite sum [9].

To verify the derived analytical expressions, we conducted
Monte Carlo simulations and estimated few points of the em-
pirical cdfs. The results, given in Table I, were computed with
the series forms of the distribution functions. The number of
samples for each was . The agreement between empirical
values is excellent, which is to be expected, since the derived ex-
pressions are not approximations, and can, in principle, be used
to compute numerical values with arbitrary precision.

C. Special Cases

We now show that, for and , the G-function form
(8) reduces to the well-known cases of Rayleigh and double-
Rayleigh distribution.

1) : From the identity [13, (Eq.
§07.34.03.0228.01)] we obtain the Rayleigh distribu-
tion.

2) : From identity
, where is a mod-

ified Bessel function of the second kind
[13, (Eq. §07.34.03.0605.01)], it follows
that . This is the
double-Rayleigh distribution [1].

D. Numerical Examples and Discussion

In Fig. 1 densities for varying and are shown. As
increases the probability mass concentrates close to the origin.

On the other hand both tails of density become heavier as in-
creases. This is better illustrated in Fig. 2 where the cumulative
distribution function for different values of with is
shown. The Rayleigh cdf appears as a straight line in
both subplots, and curvature from straight line indicates devia-
tion from the Rayleigh distribution. It can be seen that the slope
of the left tail of the cdf deviates from the Rayleigh cdf only
slightly. In fact, from the series forms given in the previous sec-
tion we note, that the small- slopes are not equal to that of the
Rayleigh distribution, i.e., they are not straight lines in the prob-
ability plot of Fig. 2, although for small and they may well
be approximated as such. The right tail of the -Rayleigh cdf
becomes heavier than that of the Rayleigh cdf for increasing .
For practical measurement data analysis this means that differ-
ence between two -Rayleigh distributions with different is
mostly contained in the tails of the empirical cdf. Hence, a rel-
atively large number of stationary amplitude samples may need
to be recorded in order to reliably detect a difference between
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Fig. 1. Probability density functions (8) for different values of n with � =
2 .

Fig. 2. Rayleigh probability plots of the cdfs (9) for different values of n with
� = 2 . The Rayleigh distribution (n = 1) appears a straight line in both
plots. Left: the left tail of the cdfs. Right: the right tails of the cdfs.

two -Rayleigh distributions when compared to an empirical
data sample.

It is evident that multiple scattering increases the dynamic
range of the fading signal. This fact will also have to be taken
into account in design of measurements to ensure that the mea-
surement system has sufficient linear dynamic range. For ex-
ample, assuming that , the required linear dynamic
range required for undistorted signal reception 99% of time2 is
20.1, 41.8, 50.7, 58.3, and 65 dB for , 2, 3, 4, 5, respec-
tively. A receiver with a smaller linear dynamic range will dis-
tort the observed amplitude. Obviously, detecting a subtle phe-
nomenon such as multiple scattering in radio channels requires
paying some attention to the characteristics of the measurement
device.

A simple figure characterizing the severity of fading is the
“amount of fading” defined as [14]

2In this case, by dynamic range we mean the ratio t =t , given in dB.
The thresholds are obtained from Pr(Y < t ) = 0:005 and Pr(Y <
t ) = 0:995.

A larger number indicates more severe fading, which translates
to greater degradation in communication system performance.
For -Rayleigh distributed amplitude we obtain the simple ex-
pression , i.e., the amplitude fading is more se-
vere than for any other classical small-scale fading distribu-
tion, including Nagakami-m and Rice pdfs, whose AF values
are and , respectively.3 This obser-
vation is not only of great philosophical importance, but also
lends some motivation for the study of multiple scattering in
mobile radio channels. The key question remains: under which
environmental conditions does such severe fading occur in na-
ture? Approaching the problem by blindly measuring and ana-
lyzing radio channels may lead to false conclusions, since great
care should be put to considerations of sufficient receiver dy-
namics, measurement SNR, effect of signal nonstationarity, and
estimation of the amplitude pdf parameters from a measured
data record of limited length. The results in this paper present
necessary groundwork to facilitate such measurement studies.

IV. A MOMENT-BASED ESTIMATOR FOR

As already mentioned, the -Rayleigh distribution is fully
characterized by the parameter . A typical problem in radio
propagation research is how to estimate from measurement
data. For a maximum-likelihood estimator may be used.
However, for general the optimization of the likelihood func-
tion becomes awkward due to the G-function appearing in the
density. Therefore, it is desirable to seek alternative estimators.
In the following, we present a computationally simple estimator
for based on the method of moments [15].

A moment-based estimator is obtained by solving from
(6) and replacing the theoretical th moment with its sample
estimator . Here is the number of indepen-
dent, identically distributed samples from -Rayleigh distribu-
tion. In this paper we choose so that the resulting estimator of

is unbiased. It is easily shown that for an unbiased estimator
is required. Hence, a moment-based based estimator of

is given by

(16)

We remark that (at least) for the moment-based esti-
mator coincides with the maximum-likelihood estimator.

The variance of (16) is ,
where the second term is just , and the first term can be eval-
uated as

where we used the independence of the samples. Substituting
from (6) and it can be shown that

3Here m denotes the parameter of the Nagakami-m pdf and K denotes the
Rician K factor.
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Hence, the variance of (16) is

Therefore, the moment-based estimator (16) also has the de-
sirable property that its variance decreases inversely propor-
tional to also in the small-sample regime.

Note that there remains the fundamental question of how to
select the best for a given set of measurement data. This is, in
general, a difficult statistical modeling problem. Here we merely
remark that the derived distribution functions can also be used
in construction of statistical hypothesis tests for fading model
selection purposes.

V. CONCLUSION

We have derived the exact probability density and distribution
functions for a product of Rayleigh distributed random vari-
ables. The functions were given in terms of the Meijer G-func-
tion, for which numerical values can be computed using easily.
Series forms of the distribution functions were also supplied for
small values of . A computationally simple unbiased param-
eter estimator for the distribution was also derived and its vari-
ance was evaluated. The results of the paper are expected to be
useful for researchers studying fading models for multiple scat-
tering radio propagation scenarios that may occur, for example,
in forests and urban microcells via diffracting street corners.
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