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Statistical Analysis of the

Multiple Scattering Radio Channel

Jari Salo, Hassan M. El-Sallabi and Pertti Vainikainen

Abstract

The concept of multiple scattering radio propagation cleénr in contrast to the conventional
single (Rayleigh) scattering — has been proposed and faubé & fitting model in certain propagation
scenarios. Except for some special cases, expressionbdaanplitude distribution of such channels
are unknown. In this paper we derive distribution functidosthe amplitude of the general multiple
scattering radio channel. Rice, Rayleigh and double-Rglylelistributions are special cases of the
general result. We also derive a computationally simple entrbased estimator for the parameters of
the distribution. In addition to the measurement analy$isaltiple scattering propagation channels,
our results can also be applied in the performance evalhuatfocommunication schemes over such

media.

I. INTRODUCTION

The Rayleigh distribution is the classical amplitude faddigtribution of wireless communi-
cations channels. It has stood the test of time due to itslgitypand has been experimentally
shown to be a good probability model for received signal Epein a wide variety of prop-
agation conditions [1]. From a physical modelling point aéw, the Rayleigh distribution is
well justified, as the received signal can be assumed to beerosition of a large number
of randomly phased waves. It then follows from the centraditlitheorem that the real and
imaginary parts of their sum have approximately Gaussiatridution, which, in turn, leads to

Rayleigh-distributed magnitude. Numerous generalizatafrihe Rayleigh distribution have been
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suggested, including the Rice, Nakagami-and Suzuki distributions [2]. All these distributions
are well motivated physically and include the Rayleigh piolitg model as a special case.

Recently, yet another generalization, the so-called malspattering model, has been proposed

[3], [4]. To explain the idea, we first consider the speciaecaf double scattering, shown in Fig.
la, where the transmitted signal can propagate to the exaaiy through an electromagnetically
small aperture, a keyhole. If the transmitter is moving, sfgnal envelope at the keyhole will
have Rayleigh fading amplitude due to summation of multijéee waves, say,,, = >, a,ei%

for a given time instant. Assuming that the receiver is alswing, each wave propagating though
the keyhole,a,e?%, will multiply another, independent sum of plane wavis, = 5, bre/%.

If the number of scatterers on both sides of the screen i ldig envelope of the resulting
narrow-band impulse response= h;.h.., will have the double-Rayleigh distribution [5] when
sampled over time. (In this simple example we have assunedllk transmitter, the keyhole,
and the receiver all operate on the same polarization.)

The notion of keyhole, introduced in [6], is only a conceptaa@, whose role is in reality

played by some more worldly item. Examples of real-worldhags are shown in Fig. 2.

. Fig. 2a2 When two rings of scatterers are separated by a large disfanee R), all
propagation paths travel via the same narrow “keyhole” [3],

. Fig. 2b: Propagation in amplify-and-forward wireless relay netgorAn amplify-and-
forward node is essentially a keyhole. Here we assume tlattialogue repeater node
(A-F) has fixed gain, which will result in double-Rayleigh 1s&y amplitude (however, noise
of the A-F node will affect receiver noise and hence bit eanalysis [8]). The wireless
peer-to-peer concept has recently received a great dedlesitian in the communications
community [9]. Amplify-and-forward is one example of a rgfanctionality that have been
proposed to be used in relay networks [8] [10].

« Fig. 2c: Propagation via diffracting wedges, such as street commersoftops. The street
corner essentially functions as a multiplier for the two Rayth processes [11].

It should be noted that in multiple-input multiple-outptIMO) channels the existence of

a keyhole in the signal path will, in principle, cause randuetion in the channel matrix [6],
[7]. It is currently a much debated question in radio prop@agaresearch community whether
keyholes exist. Intuition and results from controlled lediory experiments [12] suggest that

pure keyholes — even if they exist — are difficult to find due tactical measurement problems.
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Fig. 1. Conceptual explanation of: (a) double scattering propagatymikture of single and double scattering due to unideal
keyhole (“leaky keyhole” channel).

Therefore it is reasonable to turn attention to more realistodels, that might better explain
the apparent rare occurrence of keyholes and double-Rayéaigplitude in measurements.

In a real world propagation scenario it is a somewhat ursgalassumption that the received
signal would be a result of a pure double scattering prodessrsin Fig. 1a. It is more probable
that the transmitted signal undergoes a combination oflesiagd double scattering, shown in
Fig. 1b, where the single scattering (Rayleigh amplitudghai bypasses the keyhole [13]; we
call this the “leaky keyhole” channel, for short. More gealt the model can be generalized
to include multiple scatterers and line-of-sight compdres proposed in [3], [4]. The general
multiple scattering model therein yields as special caseg,RRayleigh and double-Rayleigh
channels, arguably making it the most general physicalljivated propagation model proposed

so far.
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Fig. 2. Three propagation scenarios with a keyhole: (a) keyhole crégtéwo rings of scatterers separated by large distance

[7]; (b) amplify-and-forward relay; (c) propagation via diffractistreet corner [11].

The number of available experimental studies of the m@tguattering channel is limited. It
has been found to provide a good explanation for the signalepe in certain types of radio
channels, both in simulation [11] and measurements in yrkaourban and forest environments
[3], [4], [14], [15]. In order to facilitate further studiest is important to derive analytical
tools and as well as to try to understand its fundamentalipalyand statistical characteristics.
Certain properties of the multiple scattering process — tdibeussed later in the paper — make
its measurement and data analysis somewhat difficult.

In this paper, instead of embarking on a channel measuretoentwe execute an analytical
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flank attack on the topic, and focus on the statistical chiaraation of the multiple scattering

channel model. As our main contribution we derive the amgét distribution functions of the

generalized multiple scattering radio channel. To the béstur knowledge, these distributions
have been unknown, and consequently Monte Carlo simulati@ave been used in earlier
studies. We also supply a computationally simple momesethaestimator for the parameters
of the multiple scattering amplitude distribution. The lgtieal results in this paper can be
used in processing of radio channel measurement data,atealof the error performance of

communication schemes, computation of SNR outage praotebiktc.. The results generalize
our earlier work reported in [16], [17].

The paper is organized as follows. In Section Il we preseattultiple scattering signal
model. In Section Il the distribution functions are dedvéor the amplitude of the general
multiple scattering signal, whereas in Section IV we focustlee special case of second-order
scattering. Section V discusses moment-based estimattreoflistribution parameters. Some
numerical examples are presented in Section VI. Sectioncyihicludes the paper. Throughout
the paper we shall use various special functions, whosdiootand definitions are summarized
in Table I. For alternative definitions and further details the special functions, we refer to
standard references, e.g. [18]-[20].

Remark on terminology: As in [3], [4], by multiple scattering we mean a radio signait
can be described as a linear combination of signal compsmeth constant, Rayleigh, double-
Rayleigh etc distributed amplitude; the mathematical digmadel will be defined in Equations
(2)—(4). In radio channel modelling the terms single andbd®wscattering are sometimes also
used to refer to singleeunce and doublésounce interactions, especially in the context of
geometric channel models. However, it should be noted thatléiple-bounce signal does not in
general have multiple-Rayleigh amplitude distributionfas tequires the existence of a keyhole
in the signal path (but see Fig. 2a).

[l. SIGNAL MODEL

We model a realization of the narrow-band impulse respomgkeomultiple scattering radio

channel as [3], [4]
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TABLE |

NOTATION AND DEFINITIONS

Name Notatiorf Definition

Upper incomplete gamma I'y(a, ) [t teTt dt

Lower incomplete gamma T'(a, =) Jot et At

Gamma I'(a) Iu(a,0) =TI'(a, o)

Pochhammer symbol (a)r [1F_(a+m—1), (a)o=1
Exponential integral E.(z) [tvet dt

Bessel function {st kind) | J, () 7" [ cos(vf — xsin 0) df

Meijer G-function G (UC i:ﬁ) 2= e Hkk n1+1 bk;ﬁg’ﬁ: iiirlarkusli 1) ds
Hypergeometric function | 2Fi(a,b;c; z) Y oreo <“)(’;)<:>’° ”,”c,

Laguerre polynomial L () S (=R %

Expected value E[X] Expected value ofX

kth moment Sy E[X", 1’ = ux

Variance var[X] var[X] = ug? (ux)?* = Mg?) ux

® v, m, n, p, ¢ andk are non-negative integers.is an integration contour that depends on the

parameters of the Meijer G-function [19].

Crx = wee’® +w Hy +wyHyHs + up to (N + 1)th summand

N
n=0

where Cy = wye’? is the line-of-sight component with constant magnitudgand uniformly

distributed phasé over [0, 27), and

_wnHHZ, n>0, 2)

i€l(n)
whereI(n) = {“%1 1 ji» | is the index set, andl;’s are independent, identically distributed
(iid) isotropic zero-mean Gaussian random variabdeh thats[| 7;|%] = 1. It follows thatC?; is

an isotropic random variable with[|C%|?] = 32" w?. The weights{w, }\\_, are non-negative

lLet Z = X + jY be a complex random variable. # and Ze?? have the same distribution for arbitrary reéklthen Z is
called an isotropic random variable. ¥ andY are iid Gaussian, thefd is called an isotropic Gaussian random variable, or,

equivalently, circularly symmetric complex Gaussian random variable.
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real-valued constants that determine the mixture weighteeomultiple scattering components.
We call the integetV in (1) the scattering order, and the underlying physicatpss/Nth order

multiple scattering. For example, third-order scattering= 3) results in

C; = w0€j9 + w1H1 + w2H2H3 + w3H4H5H6 .

Conventionally, only the first-order scattering is assumed,w, = 0, for all n > 1; this results
in the conventional Rician fading signal magnitude (or Raeif w, = 0).

We adopt the following notation:

Ry = |C}] 3)
R, = ’Cn| (4)

The +’ notation in (3) indicates summation of the firdt multiple scattering components and
the constant-magnitude component, whilg is an n-Rayleigh’ random variable defined as the
product ofn independent Rayleigh random variables. The double-Raytigfhbution has been
derived in e.g. [5], [14], [21]. The distribution ok, for arbitraryn is a special case of the
general result in [22], and was recently independentlyeevdd in [17]. Other closely related
special cases of [22] include the products of independemtadmisn [23] and generalized

gamma variables [24].

I1l. DISTRIBUTION FUNCTIONS OFRY%,

In this section we shall derive the probability density aistribution functions ofRy = |C}/|

for the generalVth order scattering model in (1). Both integral and seriemare provided.

A. Distribution functions in integral form

We first introduce some notation. The characteristic fumctdf a complex-valued random
variableZ = X + ;Y with uniform phase ovej0, 27) is denotedb;(w), wherew = \/w% + w3
and X < wyx andY « wy are variable pairs in the Fourier transform relationshipveen
probability densities and characteristic functions. Daieutiformly distributed phase af, the

integral kernel in the two-dimensional Fourier transfosmadially symmetric, which allows us
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to write the characteristic function of two real variablesng only a single “radius” parameter
w. It follows that the pdf of| Z| and ®,(w) are related by a Hankel transform [25]. To be more
precise, the scalar variable functidry(w) should be called the characteristic generator [26].
We shall, however, slightly misuse the terminology and tigitput the paper refer @, (w) as
the characteristic function of a circular random variable

SinceCY, is isotropic, its phase is uniformly distributed oviér27) and independent aR%,.

The pdf of R} is given by the inverse Hankel transform [25]

Frs(r) =7 / 0@y () Jo(rw) dw 5)

where®c is the radially symmetric characteristic function of themgex random variablé€’y,
and Jy(z) is the Bessel function of the first kind. The same general igdenhas been applied
earlier for deriving the distribution of a sum of random Soids with and without Gaussian
noise [27], [28].

Due to independence af;,’s the characteristic function o'y in (1) is the product of the

characteristic functions of the summands:

by, (w) = [ [ Pen(w). (6)

In order to compute the general integral form of the densityction (5) it remains to find an
expression ford., (w). Based on the inverse relationship of (5) the characterfstiction of
any circularly symmetric complex random variable can bentbas the Hankel transform of its

amplitude distribution function, and therefore
Oo, (w) = / fr, (1) Jo(wr) dr. (7
0
For the line-of-sight componentg, (r) = d(r — wy), leading to

ey (w) = Jo(wow) . (8)

For generah > 0, it turns out, the characteristic function can be state@ims of generalized

hypergeometric functions. The density of theRayleigh random variable is [17]
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) =263 ()15 ©

whereGu"(-) is the Meijer G-function [19], and we denoted

{a}, = {a,....,a}.
n times
Inserting (9) to (7) we obtain from the Meijer G-function rdety [20, §07.34.21.0091.01]
2 2 \2 4
e, (w) = wan1,n_1 ((wn_w> |{%}n1) ; (20)

which is the characteristic function of arrRayleigh distribution for arbitrary. > 0. From (5)
and (6), it follows that the probability density function tife amplitude forNth order multiple

scattering case is

fR* —?"/ wHCI)C )Jo(rw) dw, (11)

where®¢, (w), for n =0 andn > 0 are given in (8) and (10), respectively.

Although the Meijer G-function has been implemented in mamathematical software pack-
ages, the integral (11) is in general computationally egpento evaluate numerically. To
alleviate the problem, fon < 4 the characteristic function can be expressed in terms of les
general functions using various Meijer G-function idaastavailable in literature [20], [29],

[30]. In particular, we have

e, (w) = exp (—“’f ) (12)
P, (w) = %w%w?’ (13)
ve) = () ¢ E () (14)

whereE,; (z) is the exponential integral defined in Table I. The case 1 is the characteristic
function of an isotropic complex Gaussian random variadohel, hence well-known from literature
[28]. Interestingly®, (w) is the characteristic function of the Laplace distributiahich implies
that the real and imaginary parts of double-Rayleigh fadimagnoel are Laplace distributed; this
has been noted also in [10].
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With (14), numerical problems may arise with finite preams@rithmetic for small values of

w. These can be circumvented by using the smadipproximation

2, 2
Dy (w) = 1 - wzw : (15)
which, in turn, results from the large-approximation
Ei(z) = o te (1 —a). (16)
As a sanity check, we note that in all cases
lim &¢ (w) =1, a7

wp—0

as it should for any pdf with all probability mass in the ongi.e., w,, = 0. Therefore, the
contribution of®- (w) in (11) vanishes as),, approaches zero. In the generaRayleigh case
given in (10) verification of (17) requires study of the asyatig behavior of the Meijer G-
function; for details we refer to [19].

The corresponding cumulative distribution function (cdf) (11) is defined asfy; (t) =
fo frs, (r) dr. Changing the order of integration and noting that [§8,56.2]

t
t
/ zJy(az) de = —Jy(at),
0

a

we have from (11) the cdf oR}, for arbitrary N as

Fpy (t :/ WH% )J1 (tw) dw (18)

Evaluation of the distribution functions (11) and (18) reqs, in general, numerical integra-
tion, which is made more difficult by the oscillation of the Bekfunction forr or ¢ larger
than, say, one. For this reason, using an adaptive integratdine intended for oscillating
integrands is recommended. In numerical experiments wd tlee Clenshaw-Curtis method,
which is implemented in e.g. QUADPACK [31], and was able to pate the integral reliably.
Alternatively, numerical Hankel transform [32] or othefi@knt numerical algorithms may also
be used [33].

We remark that while in this paper we focus on the signal m@tlelvhosenth component

has ann-Rayleigh amplitude, the results herein can be extended te general signal models
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by simply replacingb¢, (w) in (11) with another characteristic function, e.g. that gfraduct of
n Nakagamim [23] or n generalized gamma variables [34]. These more general alasdic
functions can be expressed in terms it and G-functions functions using the results and
identities in [20], [22], [29], [35]. However, the practicaalue of such highly generalized and
bulky probability distributions is questionable as measuent evidence or physical justification

to support their use is currently lacking.

B. Distribution functions in series form

Based on the general theory of positive random variables #lso possible to derive the
distribution functions in series forms, that result in cartgtionally simpler implementations that
do not require numerical evaluation of the generalized hygmametric functions. In particular,
it is known that the density of a positive random variable barexpressed in a series involving

its moments and Laguerre polynomials [21], [27]. With thipeoach the density aky, is given
by

Frs (1) = 28 3 Cou L (%), (19)

m=0

where L,,(z) is themth order Laguerre polynomial defined in Table I, and

m (B [m )
e (20)

2
(2k) k N, (20) 2k—21

HRy,

E

l N
=0

The parameted < § < oo Is a freely selectable constant that tunes the convergdribe series
[27]. The even moments dk}, can be computed recursively with initial val 26’“) = wik. The
proof of the recursion formula (21) is given in the appendix.

The corresponding series form of the cdf can be obtained tggiating (19) from0 to ¢.

Using the definition of the Laguerre polynomial from Tablallittle effort reveals that

/t 28re ™" L (6r?) da = i (_k1|)k (TZ) 0\(k+1,6t%), (22)
0 !
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whereT'|(a, z) is the lower incomplete gamma function. The distributiondiion for arbitrary

N is therefore given by

Fro() =YY" (_kll) (7;) Co T(k + 1, 5t (23)

m=0 k=0
whereC,,, was given in (20).

IV. SPECIAL CASE SECOND-ORDER SCATTERING

The Laguerre-type series expansions from the previougsamtow computation of numerical
values for the amplitude distribution a¥th order scattering. However, optimum selection of
the free parametepf is not obvious, and the formulas also involve multi-fold suoations.
Furthermore, from the general series form it is difficult e ghe asymptotic behavior of the
distribution near origin, which is of importance when caesing fading outage probabilities
or high-SNR performance of communications schemes [36gr8fore it is of interest to seek
simpler forms for the distribution functions in special €ssIn this section, using a different
approach, we derive alternative series expressions fodigtgbution functions of second-order
scattering, of which Rice, Rayleigh and double-Rayleigh thgtions are special cases. The

second order scattering model results by setfing- 2 in (1):

R; = ‘woeje + w1H1 + /LUQHQHg‘ .

We shall consider the cases > 0 andw, = 0 separately.

A. The case with line-of-sight component (w, > 0)

In the appendix it is shown that an alternative series formNo= 2 is given by

oo (—1)mw3mfu( —m,

mgwl»—‘gm

)

wgm|>§ o

* = 2
Jrs(7) e 7“7;) ml (wd)mH
T \2
X 2F1 (_mv —m; 1a <_) ) , W1 > Oa (24)
Wo

where ,F(-) is the Gauss’ hypergeometric function, aiid—m, x) is the upper incomplete
gamma function. It can be shown that fog — 0, fr:(r) reduces to the Rician density function.

The upper incomplete gamma function can be computed reelysising [18,68.356.2]
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Fu(n+1,2) =nly(n,z) + 2", (25)

which is valid also for negative integer values f The hypergeometric function in (24) is

defined by a finite sum due to negative integer input argumients; (-). More specifically,

m 2
oFy (—m,—m; 1) = Z <77k?> zk . (26)

k=0
The corresponding distribution function is obtained byegrating (24) from0 to ¢, and

re-interpreting the resulting sum in terms of hypergeomdtinctions using the Pochhammer

symbol notation [note that2), = (k + 1)!]. The result is

> 02
Fri(t) = 6’722527;) ol (w2) 2
X oy <—m, —m;2; (wio)Q) L wy >0, (27)
where, F(-) is given by the finite sum
oy (—m, —m; 2;7) = zm: (m)2 il . (28)
o7 ~\k) k+1

B. The case without line-of-sight component (w, = 0)

This special case (“leaky keyhole”) has been derived earig¢16] using a Bessel function
expansion similar to (51). In the following, we show that ttlesired distribution functions
emerge as special cases of the more general results in (84)2ah This is readily verified,

since at the limitwy — 0, (26) multiplied byw?™, i.e.,

m 2
wa™ o Fy (—m, —m; 1; (wL)Q) = Z (7;) rqpim—2k (29)

k=0
clearly approaches®”. Therefore, as in [16],
w? 00 mI —m w_f)
-1 —1 u ) w2 m
ng(T) = 2e™2 Z ( m|) (w2)m+12 7“2 +1, wy > 0. (30)
2
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In the special case, — 0, (30) reduces to the Rayleigh pdf. This can be shown by applyin
an asymptotic expansion far,(—m, %)’ and noting that the leftover is a series representation
of the exponential function.

The distribution function can be obtained by integrating series (30) term by term, or by a

limit operation similar to (29). The resulting cdf in serilesm is

2
w1

gy N(-m)

— pw w2 m-+

Fri(t)=e¢ E T D (wly t , wy > 0. (32)
m=0

N

The series forms and (24), (27), (31) and (30) converge fofirate » andt. However, the
speed of convergence depends heavily @ndt; for large values it can be slow. The convergence
also depends on the values of the parameters. It can be shaivfot largem the convergence
of (24) and (27) slows down as the ratig /w?, i.e., the RicianK factor, increases (for fixed
r or t). Similarly, with (30) and (31) more terms are required foneergence as; — 0. In
practice, the series forms are most useful for asymptotikw&uch as numerical or analytical
evaluation of outage SNR. For< 1 or r < 1, it is enough to take only one or two first terms in

the series expansions. Retaining only the first term in (36)(8@) results in the approximations

fry(r) =~ s——= 1, w; >0, (32)
wy
wi
ev FU(O, %)
Fri(t) = —22t2,w1>0. (33)
wy

Here (33) is useful for evaluating outage probabilitiesevet < 1.

An interesting observation can be made from (32). In [36fhas been shown that the the
diversity order of a modulation scheme depends only on tiaber of the amplitude density
function near origin. For example, the Rayleigh density canapproximated agg, (r) ~ 3}—’%
for r < 1, which leads to unit diversity order singg;, () can be approximated with a first-
degree polynomial [36]. What is surprising here is that al3®) (s a first-degree polynomial,
which implies that second-order scattering leads to theesdiversity order as the Rayleigh
channel. Therefore the diversity order seems to be dondnlyethe lowest order scattering

(excluding the LOS component). This clearly has some imfibms on communication system
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performance over multiple scattering channels as well agsorement data analysis. We shall

give some further remarks on this issue in Section VI.

V. ESTIMATION OF MIXTURE WEIGHTS BASED ON THE METHOD OF MOMENTS

For radio propagation studies the key task is to verify, byanseof radio channel mea-
surements, how often and under what conditions multipldtestag appears in nature. To
facilitate such studies it is important to derive methods dstimating the mixture weights
{w,}N_, from measurement data. While maximum likelihood estimatiauld be the optimal
estimation method, the complicated form of the probabdiysity function renders this approach
impractical. Simple estimators can be obtained by applyiregmethod of moments [37]. The
basic idea is to equate sample moments with the theoretmadents to form a group of equations
from which the unknown mixture weights can be solved. In wibiows, we provide estimation
formulas forN = 2. The estimators for higher order scattering can be obtamedsimilar way.

We shall denot&) independent noiseless samplesiigfwith {rq}?zl. In this section we shall

also use the following short-hand notation for the theoattand sample moments &f;:

Mok = u%k) (34)

Q
1
Sop = =) 12k (35)
2 5 ; ;
There should be no confusion with other notation in the pagiace all results in this section

apply to the special cast’ = 2.

A. Second-order scattering with LOS component (wq > 0)

To estimate{wy, wy, w} We need to compute three theoretical moments. It is usuadifep
able to select low-order moments, as their estimates haeflesrwariance. From (21), we have

for the first three even moments:
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po = wp+wi 4w, (36)
pa = dwy + 4(wg +wi)w;
+ 2wy + dwiw? + wy (37)
pe = 36wS + 6w 4+ wd + 36wy (wi + wi)
+ 9w3 (2w] + dwiw? + wy)
+ 18wgw + Jwywy . (38)
Estimates for the squared mixture weights?}2_, can be solved numerically by replacing the
theoretical moments o, }3_, with the sample moment§Sy,.}3_, in (36) — (38), and solving
for {w?}2_,. Due to randomness of the sample moments, for fiQitehe system of nonlinear
equations may have non-positive solutions; this problemase evident for smalf). Instead of

attempting to solve the system exactly, one may opt for sglthe associated non-linear least

squares minimization problem, where the solutions aretcaingd to be non-negative.

B. Second-order scattering without LOS component (wy = 0)

For the leaky keyhole channel, LOS component mixture weiglgero, and the system of
equations can be solved from the second and fourth sampleentoy settingw, = 0 in (36)

and (37), the resulting closed-form estimator appears as

W = Sy —b3 (39)

1
Wy = 5&—%. (40)

The estimates are very simple to compute from a given datglsam
For measurement data analysis, it is of practical impoddanchave an estimate of the mean
square error (MSE) of the estimator. In the appendix it isnsh¢hat the MSE ofio2 can be

upper bounded as

)
—~
>
NN
~—
>
=
L
—~
S
NN

|

>
[N}
~—
[\
| S

(41)

VAN
S
[N}
So
— &
S

|
oo
N
_l’_
=
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where

v = (é—%)m—(l—%)u%, (42)
§ = a—b+c—97, (43)
and
a = % s +(Q = 1) i3] (44)
b = é{us Q12
(Q — V)pia[ 206+ (Q — 2ppapc] } , (45)
c = & [Més +4(Q — 1) g piz
+3(Q — 1)z +6(Q — 1)(Q — 2)papss
L@@ -2(@Q- 3)»@*] | (46)

The even moments ak; can be computed using (21). The upper bound is quite tighlafge
Q, as will be illustrated in the next section. A bound for theamesquare error ofy? can be
derived in a similar way. However, from numerical experitsein is found that the MSE of?
is roughly the same as that af, and therefore to save paper we omit the result.

Taking expectation of (40) and applying Jensen’s inequdtlits clear that, for finiteQ), (40)
underestimates?. Consequentlyw? will be overestimated. However, as with most moment-
based estimators;? and«w3 are asymptotically unbiased, i.e., the bias diminishehastumber

of samples increases [37]. This is also evident from (4&mfwhich

lim px = 1wy,
Q—o0

and hence

w3 — QIEI;O E[w3] =0

indicating thatw3? is a consistent estimator a@f2. It then follows thati? is also a consistent

estimator.
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VI. NUMERICAL EXAMPLES

In all numerical examples that follow the mixture weighte aormalized so thakb[(R})? =
Zflv:o w? = 1. For examplew? = 1 then implies that mixture weights other thanare zero,

i.e., Ry = R,, has then-Rayleigh distribution.

A. Pdfs and cdfs of R},

In Figs. 3—4 we plot the distribution functions for a few weduof {w?}. In Fig. 3n-Rayleigh
densities (i.e.w? = 1) are shown fom = 1,...,5. We also show two examples of third-order
scattering:w? = 0.909, w? = w2 = wi = (1 — w?)/3, andw = 0, w? = w3 = 0.1, w3 = 0.8.

The figures confirm the well-known fact that multiple scattgrwidens the tails of the
amplitude distribution compared to single scattering (Rayl) amplitude pdf [3]. Therefore,
the fading is more severe because of the multiple scattgadg propagation environment,
and consequently communication will require higher aver&NR to achieve the same error
performance than over a Rayleigh channel. The thick tails alay complicate radio channel
measurements. Special attention should be placed on thar ldlynamic range of the measure-
ment equipment so that the measured amplitude is not it the measurement system. For
example, with the double-Rayleigh distribution the ampléuange betweef.5% and 99.5%
percentiles has dynamic ranged@fdecibels, which is considerably larger than the corresignd
value of 30 dB for Rayleigh distributed amplitude. By dynamic range we maare the ratio
ZZ—” where Fg, (tmin) = 0.005 and Fr, (t,m4:) = 0.995.

Fig. 4 is a Rayleigh probability graph where the Rayleigh thation shows as a straight line,
whereas other distribution functions appear curved. Frwrctfs in Fig. 4 we note that the decay
rates of then-Rayleigh distributions for. > 1 near origin are slightly slower than that of the
Rayleigh cdf. This implies that diversity order (high-SNR of error probability curve [36])
of the puren-Rayleigh channel is less than one, i.e., worse than the Rgwtbversity order. The
slopes of third order scattering with nonzeurg, on the other hand, show the same decay rate as
the conventional Rayleigh cdf. This could be one reason whifiphei scattering is difficult to

detect in channel measurements, since it is unlikely thegahworld radio propagation channels
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3 solid: w?=0, w2=w?=0.1, w2=0.8 |
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N dash-dot: 0—0.909, wl—wz—w3—(1 WO)/S
1 e . - _
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Fig. 3. Probability densities aR% plotted for varying{w?2}. In all casesy."_ w2 = 1.

the single scattering component would be exactly Zedd course, a horizontal shift can still be
seen in the cdf. From communication system point of viewg thould mean that the diversity
order of a multiple scattering channel withy > 0 would be the same as that of the Rayleigh

channel. Detailed examination of these issues, howevertapic for further study.

B. Moment-based estimation of parameters

We consider the case of second-order scattering with= 0. In Fig. 5 we plot the MSE of
w? and w3 obtained using (39) and (40). The results have been estinfiede a Monte Carlo
simulation with10° trials for each value of). For small@ it sometimes happens thaf from
(40) is negative. In this case we s@$ = 0. From Fig. 5 we note that the MSE is larger for
w3. Also, MSE decreases inversely proportional to the numlbexamples as predicted by the
general theory of moment-based estimation. We also plotigiper bound (41) on MSE af.

It can be seen that the bound is tight f@r > 100 and can hence be used in evaluation of

the number of samples required for reliable estimation ef tixture weights. Based on Fig.

2In practical measurement, Gaussian measurement noise is addednbeabkared impulse response hence always resulting

in positive w; .
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Fig. 4. Cumulative distribution functions @t} plotted in a Rayleigh probability plot for varyinfw?}.

5 we can say that, with the present estimator, about a thdusamore stationary samples are

required for reliable estimation of the mixture weightsnfraneasurement data.

VIlI. CONCLUSION

We have derived the distribution functions (pdf and cdf) ofpditude of multiple scattering
radio channel in integral and series forms. The special odsgecond-order scattering was
discussed in detail. We also derived a computationally Ernegtimator for the mixture weights
of a second-order scattering process. The most interespeg problems and future work are
related to the verification of the environmental conditiamsler which the multiple scattering
radio propagation occurs in nature. This is likely to requaarefully planned radio channel
measurements and meticulous measurement data analysigheAropic for future work is the
evaluation of the impact of multiple scattering on commatian system performance. The

results presented in this paper serve as necessary grocktiwtacilitate these studies.
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MSE of estimates of wi and wg

10 T T T
2
Wy
10" ——w ]
—+— pbound
L 10_2 2 3
)
=

10 °+ True values: V\?1:W§:0.5

10° trials for each value of Q

10" 10° 10° 10" 10°

number of samples (Q)

Fig. 5. Mean square error ab? and?. True values arev? = w? = 0.5, w3 = 0. Estimates are computed with (39) and
(40). The upper bound (41) is also shown.

APPENDIX I

MISCELLANEOUS PROOFS

In this appendix we sketch some of the intermediate stepsimgisn the main text.

A. Eqg. (21)

Applying a general recursion formula for the modulus of a sofrindependent circularly

symmetric random variables [38] we obtain

k 2
2k k 2m 2k—2m
i) = 3 () e @7)

m=0

Moments of am-Rayleigh random variable are [17]

ugg = wZ [F (g + 1)]" . (48)
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From (48), the even moments &f, read as
pS = w2k, k=0,1,2,... . (49)
Hence, plugging (49) to (47), we arrive at (21).

B. Eqg. (30)

Inserting (8), (12) and (13) into (11) we have to evaluate

4w _wie?
Jrs(r) = r/o me T Jo(wow) Jo(rw) dw . (50)
Using the identity [1858.442.2]
> wow)2
Jo(wow) Jo(rw) Z
=0
xF, (—m, (). 51)
Wo
with 5 F} (a, b; c; z) denoting the Gauss’ hypergeometric function, we can wb® @s
(—1)mwim T2
fR;( = TZWZFl (_mv_m;l; (w_o) )
00 2m+l )
T dw . 52
. /0 1+ 02 “ (52)

I
wherea = “’T%, b= ‘”T% for brevity. The integrall,,, which appears as a coefficient in the series,

can be evaluated by substituting= 1 + bw?, resulting in

I R U Vi
I, = St /1 ; e oY dy. (53)

This is a standard integral [183.383.9] given by

eb a
T E>’ a>0), (54)

whereI'y(n, z) is the upper incomplete gamma function, which is defined alkenn is a

I, =

T(m + 1)Fu< —m,

negative integer, unlike the gamma functibfr), which is singular at these points. After some

simplifications, we arrive at the desired result.
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C. Eq. (41)

We denote for brevity

X:%&—g, (55)

and its mean and variance withy = E[X] and var[X], respectively. Note thak = ;. The

MSE of w3 is given by

c(y) = E[(w; —d3)’]
= wy — 2ws Bl?] + E[)]
= wé‘—?ng[\/Y} + px (56)

Expandingy/X in a Taylor series aboyty and taking expectation we arrive at the lower bound

var| X
B[VX] > vix - (57)
iy
where we truncated the series after the third term. Using {7 can upper bound (56) as
N var| X
ap) <t 28 (v - 0] ) )
Sy
Formulas foruxy andvar[X| are needed for computing the bound (41). The mean valug of
can be shown to be
1 1 1
=(=-—-—= —(1—-=) 2. 59
Hx (2 Q) Ha ( Q) Ho (59)

To computevar[X], it suffices to findE[X?], sincevar[X]| = E[X?] — 4. This is in principle

straightforward, but quite tedious. Omitting details, #red result is

EX=a—b+e, (60)

wherea,b, andc are given in (44)—(46). Denoting = py and¢ = E[X?] — u%, the desired

result follows.
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