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Statistical Analysis of the

Multiple Scattering Radio Channel

Jari Salo, Hassan M. El-Sallabi and Pertti Vainikainen

Abstract

The concept of multiple scattering radio propagation channels – in contrast to the conventional

single (Rayleigh) scattering – has been proposed and found to be a fitting model in certain propagation

scenarios. Except for some special cases, expressions for the amplitude distribution of such channels

are unknown. In this paper we derive distribution functionsfor the amplitude of the general multiple

scattering radio channel. Rice, Rayleigh and double-Rayleigh distributions are special cases of the

general result. We also derive a computationally simple moment-based estimator for the parameters of

the distribution. In addition to the measurement analysis of multiple scattering propagation channels,

our results can also be applied in the performance evaluation of communication schemes over such

media.

I. I NTRODUCTION

The Rayleigh distribution is the classical amplitude fadingdistribution of wireless communi-

cations channels. It has stood the test of time due to its simplicity, and has been experimentally

shown to be a good probability model for received signal envelope in a wide variety of prop-

agation conditions [1]. From a physical modelling point of view, the Rayleigh distribution is

well justified, as the received signal can be assumed to be a superposition of a large number

of randomly phased waves. It then follows from the central limit theorem that the real and

imaginary parts of their sum have approximately Gaussian distribution, which, in turn, leads to

Rayleigh-distributed magnitude. Numerous generalizations of the Rayleigh distribution have been
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suggested, including the Rice, Nakagami-m, and Suzuki distributions [2]. All these distributions

are well motivated physically and include the Rayleigh probability model as a special case.

Recently, yet another generalization, the so-called multiple scattering model, has been proposed

[3], [4]. To explain the idea, we first consider the special case of double scattering, shown in Fig.

1a, where the transmitted signal can propagate to the receiver only through an electromagnetically

small aperture, a keyhole. If the transmitter is moving, thesignal envelope at the keyhole will

have Rayleigh fading amplitude due to summation of multiple plane waves, say,htx =
∑

k ake
jθk

for a given time instant. Assuming that the receiver is also moving, each wave propagating though

the keyhole,ake
jθk , will multiply another, independent sum of plane waves,hrx =

∑

k bke
jφk .

If the number of scatterers on both sides of the screen is large, the envelope of the resulting

narrow-band impulse response,h = htxhrx, will have the double-Rayleigh distribution [5] when

sampled over time. (In this simple example we have assumed that the transmitter, the keyhole,

and the receiver all operate on the same polarization.)

The notion of keyhole, introduced in [6], is only a conceptual aid, whose role is in reality

played by some more worldly item. Examples of real-world keyholes are shown in Fig. 2.

• Fig. 2a: When two rings of scatterers are separated by a large distance(r � R), all

propagation paths travel via the same narrow “keyhole” [3],[7].

• Fig. 2b: Propagation in amplify-and-forward wireless relay networks. An amplify-and-

forward node is essentially a keyhole. Here we assume that the analogue repeater node

(A-F) has fixed gain, which will result in double-Rayleigh signal amplitude (however, noise

of the A-F node will affect receiver noise and hence bit erroranalysis [8]). The wireless

peer-to-peer concept has recently received a great deal of attention in the communications

community [9]. Amplify-and-forward is one example of a relay functionality that have been

proposed to be used in relay networks [8] [10].

• Fig. 2c: Propagation via diffracting wedges, such as street cornersor rooftops. The street

corner essentially functions as a multiplier for the two Rayleigh processes [11].

It should be noted that in multiple-input multiple-output (MIMO) channels the existence of

a keyhole in the signal path will, in principle, cause rank reduction in the channel matrix [6],

[7]. It is currently a much debated question in radio propagation research community whether

keyholes exist. Intuition and results from controlled laboratory experiments [12] suggest that

pure keyholes – even if they exist – are difficult to find due to practical measurement problems.
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Fig. 1. Conceptual explanation of: (a) double scattering propagation; (b) mixture of single and double scattering due to unideal

keyhole (“leaky keyhole” channel).

Therefore it is reasonable to turn attention to more realistic models, that might better explain

the apparent rare occurrence of keyholes and double-Rayleigh amplitude in measurements.

In a real world propagation scenario it is a somewhat unrealistic assumption that the received

signal would be a result of a pure double scattering process shown in Fig. 1a. It is more probable

that the transmitted signal undergoes a combination of single and double scattering, shown in

Fig. 1b, where the single scattering (Rayleigh amplitude) signal bypasses the keyhole [13]; we

call this the “leaky keyhole” channel, for short. More generally, the model can be generalized

to include multiple scatterers and line-of-sight component as proposed in [3], [4]. The general

multiple scattering model therein yields as special cases Rice, Rayleigh and double-Rayleigh

channels, arguably making it the most general physically motivated propagation model proposed

so far.
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Fig. 2. Three propagation scenarios with a keyhole: (a) keyhole created by two rings of scatterers separated by large distance

[7]; (b) amplify-and-forward relay; (c) propagation via diffractingstreet corner [11].

The number of available experimental studies of the multiple scattering channel is limited. It

has been found to provide a good explanation for the signal envelope in certain types of radio

channels, both in simulation [11] and measurements in urban, suburban and forest environments

[3], [4], [14], [15]. In order to facilitate further studies, it is important to derive analytical

tools and as well as to try to understand its fundamental physical and statistical characteristics.

Certain properties of the multiple scattering process – to bediscussed later in the paper – make

its measurement and data analysis somewhat difficult.

In this paper, instead of embarking on a channel measurementtour, we execute an analytical
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flank attack on the topic, and focus on the statistical characterization of the multiple scattering

channel model. As our main contribution we derive the amplitude distribution functions of the

generalized multiple scattering radio channel. To the bestof our knowledge, these distributions

have been unknown, and consequently Monte Carlo simulationshave been used in earlier

studies. We also supply a computationally simple moment-based estimator for the parameters

of the multiple scattering amplitude distribution. The analytical results in this paper can be

used in processing of radio channel measurement data, evaluation of the error performance of

communication schemes, computation of SNR outage probabilities etc.. The results generalize

our earlier work reported in [16], [17].

The paper is organized as follows. In Section II we present the multiple scattering signal

model. In Section III the distribution functions are derived for the amplitude of the general

multiple scattering signal, whereas in Section IV we focus on the special case of second-order

scattering. Section V discusses moment-based estimator ofthe distribution parameters. Some

numerical examples are presented in Section VI. Section VIIconcludes the paper. Throughout

the paper we shall use various special functions, whose notation and definitions are summarized

in Table I. For alternative definitions and further details on the special functions, we refer to

standard references, e.g. [18]–[20].

Remark on terminology: As in [3], [4], by multiple scattering we mean a radio signal that

can be described as a linear combination of signal components with constant, Rayleigh, double-

Rayleigh etc distributed amplitude; the mathematical signal model will be defined in Equations

(1)–(4). In radio channel modelling the terms single and double scattering are sometimes also

used to refer to single-bounce and double-bounce interactions, especially in the context of

geometric channel models. However, it should be noted that amultiple-bounce signal does not in

general have multiple-Rayleigh amplitude distribution as this requires the existence of a keyhole

in the signal path (but see Fig. 2a).

II. SIGNAL MODEL

We model a realization of the narrow-band impulse response of the multiple scattering radio

channel as [3], [4]
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TABLE I

NOTATION AND DEFINITIONS

Name Notationa Definition

Upper incomplete gamma Γu(a, x)
∫∞

x
ta−1e−t dt

Lower incomplete gamma Γl(a, x)
∫ x

0
ta−1e−t dt

Gamma Γ(a) Γu(a, 0) = Γl(a,∞)

Pochhammer symbol (a)k

∏k

m=1(a + m − 1), (a)0 = 1

Exponential integral Eν(x)
∫∞

x
t−ν e−t dt

Bessel function (1st kind) Jν(x) π−1
∫ π

0
cos(νθ − x sin θ) dθ

Meijer G-function Gm,n
p,q

(

x
∣
∣{ak}

{bk}

)
1

j2π

∫

L

∏m
k=1

Γ(bk+s)
∏n

k=1
Γ(1−ak−s) x−s

∏p

k=n+1
Γ(ak+s)

∏q

k=m+1
Γ(1−bk−s)

ds

Hypergeometric function 2F1(a, b; c; x)
∑∞

k=0
(a)k(b)k

(c)k

xk

k!

Laguerre polynomial Lm(x)
∑m

k=0(−1)k
(

m

k

)
xk

k!

Expected value E[X] Expected value ofX

kth moment µ
(k)
X E[Xk], µ

(1)
X = µX

Variance var[X] var[X] = µ
(2)
X − (µX)2 = µ

(2)
X − µ2

X

a ν, m, n, p, q andk are non-negative integers.L is an integration contour that depends on the

parameters of the Meijer G-function [19].

C?
N = w0e

jθ + w1H1 + w2H2H3 + up to (N + 1)th summand

=
N∑

n=0

Cn , (1)

whereC0 = w0e
jθ is the line-of-sight component with constant magnitudew0 and uniformly

distributed phaseθ over [0, 2π), and

Cn = wn

∏

i∈I(n)

Hi , n > 0 , (2)

whereI(n) = {n(n−1)
2

+ j}n
j=1 is the index set, andHi’s are independent, identically distributed

(iid) isotropic zero-mean Gaussian random variables1 such thatE[|Hi|2] = 1. It follows thatC?
N is

an isotropic random variable withE[|C?
N |2] =

∑N
n=0 w2

n. The weights{wn}N
n=0 are non-negative

1Let Z = X + jY be a complex random variable. IfZ andZejθ have the same distribution for arbitrary realθ, thenZ is

called an isotropic random variable. IfX andY are iid Gaussian, thenZ is called an isotropic Gaussian random variable, or,

equivalently, circularly symmetric complex Gaussian random variable.
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real-valued constants that determine the mixture weights of the multiple scattering components.

We call the integerN in (1) the scattering order, and the underlying physical processN th order

multiple scattering. For example, third-order scattering(N = 3) results in

C?
3 = w0e

jθ + w1H1 + w2H2H3 + w3H4H5H6 .

Conventionally, only the first-order scattering is assumed,i.e., wn = 0, for all n > 1; this results

in the conventional Rician fading signal magnitude (or Rayleigh, if w0 = 0).

We adopt the following notation:

R?
N = |C?

N | (3)

Rn = |Cn| . (4)

The ‘?’ notation in (3) indicates summation of the firstN multiple scattering components and

the constant-magnitude component, whileRn is an ‘n-Rayleigh’ random variable defined as the

product ofn independent Rayleigh random variables. The double-Rayleighdistribution has been

derived in e.g. [5], [14], [21]. The distribution ofRn for arbitrary n is a special case of the

general result in [22], and was recently independently re-derived in [17]. Other closely related

special cases of [22] include the products of independent Nakagami-m [23] and generalized

gamma variables [24].

III. D ISTRIBUTION FUNCTIONS OFR?
N

In this section we shall derive the probability density and distribution functions ofR?
N = |C?

N |
for the generalN th order scattering model in (1). Both integral and series forms are provided.

A. Distribution functions in integral form

We first introduce some notation. The characteristic function of a complex-valued random

variableZ = X +jY with uniform phase over[0, 2π) is denotedΦZ(ω), whereω =
√

ω2
X + ω2

Y

and X ↔ ωX and Y ↔ ωY are variable pairs in the Fourier transform relationship between

probability densities and characteristic functions. Due to uniformly distributed phase ofZ, the

integral kernel in the two-dimensional Fourier transform is radially symmetric, which allows us
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to write the characteristic function of two real variables using only a single “radius” parameter

ω. It follows that the pdf of|Z| andΦZ(ω) are related by a Hankel transform [25]. To be more

precise, the scalar variable functionΦZ(ω) should be called the characteristic generator [26].

We shall, however, slightly misuse the terminology and throughput the paper refer toΦZ(ω) as

the characteristic function of a circular random variableZ.

SinceC?
N is isotropic, its phase is uniformly distributed over[0, 2π) and independent ofR?

N .

The pdf ofR?
N is given by the inverse Hankel transform [25]

fR?
N
(r) = r

∫ ∞

0

ω ΦC?
N
(ω)J0(rω) dω , (5)

whereΦC?
N

is the radially symmetric characteristic function of the complex random variableC?
N ,

andJ0(x) is the Bessel function of the first kind. The same general technique has been applied

earlier for deriving the distribution of a sum of random sinusoids with and without Gaussian

noise [27], [28].

Due to independence ofCn’s the characteristic function ofC?
N in (1) is the product of the

characteristic functions of the summands:

ΦC?
N
(ω) =

N∏

n=0

ΦCn
(ω) . (6)

In order to compute the general integral form of the density function (5) it remains to find an

expression forΦCn
(ω). Based on the inverse relationship of (5) the characteristicfunction of

any circularly symmetric complex random variable can be found as the Hankel transform of its

amplitude distribution function, and therefore

ΦCn
(ω) =

∫ ∞

0

fRn
(r) J0(ω r) dr . (7)

For the line-of-sight componentfR0(r) = δ(r − w0), leading to

ΦC0(ω) = J0(w0ω) . (8)

For generaln > 0, it turns out, the characteristic function can be stated in terms of generalized

hypergeometric functions. The density of then-Rayleigh random variable is [17]

June 3, 2006 DRAFT
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fRn
(r) =

2

wn

Gn,0
0,n

(( r

wn

)2∣
∣

−

{ 1
2
}n

)

, (9)

whereGm,n
p,q (·) is the Meijer G-function [19], and we denoted

{a}n = {a, . . . , a
︸ ︷︷ ︸

n times

} .

Inserting (9) to (7) we obtain from the Meijer G-function identity [20, §07.34.21.0091.01]

ΦCn
(ω) =

2

wnω
Gn−1,1

1,n−1

(( 2

wnω

)2∣
∣

1
2

{ 1
2
}n−1

)

, (10)

which is the characteristic function of ann-Rayleigh distribution for arbitraryn > 0. From (5)

and (6), it follows that the probability density function ofthe amplitude forN th order multiple

scattering case is

fR?
N
(r) = r

∫ ∞

0

ω

N∏

n=0

ΦCn
(ω)J0(rω) dω , (11)

whereΦCn
(ω), for n = 0 andn > 0 are given in (8) and (10), respectively.

Although the Meijer G-function has been implemented in manymathematical software pack-

ages, the integral (11) is in general computationally expensive to evaluate numerically. To

alleviate the problem, forn < 4 the characteristic function can be expressed in terms of less

general functions using various Meijer G-function identities available in literature [20], [29],

[30]. In particular, we have

ΦC1(ω) = exp

(

−w2
1ω

2

4

)

, (12)

ΦC2(ω) =
4

4 + w2
2ω

2
, (13)

ΦC3(ω) =

(
2

w3ω

)2

e
( 2

w3ω
)2

E1

(

(
2

w3ω
)2

)

, (14)

whereE1(x) is the exponential integral defined in Table I. The casen = 1 is the characteristic

function of an isotropic complex Gaussian random variable,and hence well-known from literature

[28]. Interestingly,ΦC2(ω) is the characteristic function of the Laplace distribution, which implies

that the real and imaginary parts of double-Rayleigh fading channel are Laplace distributed; this

has been noted also in [10].
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With (14), numerical problems may arise with finite precision arithmetic for small values of

ω. These can be circumvented by using the small-ω approximation

ΦC3(ω) ≈ 1 − w2
3ω

2

4
, (15)

which, in turn, results from the large-x approximation

E1(x) ≈ x−1e−x(1 − x−1) . (16)

As a sanity check, we note that in all cases

lim
wn→0

ΦCn
(ω) = 1 , (17)

as it should for any pdf with all probability mass in the origin, i.e., wn = 0. Therefore, the

contribution ofΦCn
(ω) in (11) vanishes aswn approaches zero. In the generaln-Rayleigh case

given in (10) verification of (17) requires study of the asymptotic behavior of the Meijer G-

function; for details we refer to [19].

The corresponding cumulative distribution function (cdf)of (11) is defined asFR?
N
(t) =

∫ t

0
fR?

N
(r) dr. Changing the order of integration and noting that [18,§5.56.2]

∫ t

0

xJ0(ax) dx =
t

a
J1(at) ,

we have from (11) the cdf ofR?
N for arbitraryN as

FR?
N
(t) =

∫ ∞

0

ω
N∏

n=0

ΦCn
(ω)J1(tω) dω . (18)

Evaluation of the distribution functions (11) and (18) requires, in general, numerical integra-

tion, which is made more difficult by the oscillation of the Bessel function forr or t larger

than, say, one. For this reason, using an adaptive integrator routine intended for oscillating

integrands is recommended. In numerical experiments we used the Clenshaw-Curtis method,

which is implemented in e.g. QUADPACK [31], and was able to compute the integral reliably.

Alternatively, numerical Hankel transform [32] or other efficient numerical algorithms may also

be used [33].

We remark that while in this paper we focus on the signal model(1) whosenth component

has ann-Rayleigh amplitude, the results herein can be extended to more general signal models
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by simply replacingΦCn
(ω) in (11) with another characteristic function, e.g. that of aproduct of

n Nakagami-m [23] or n generalized gamma variables [34]. These more general characteristic

functions can be expressed in terms ofH- and G-functions functions using the results and

identities in [20], [22], [29], [35]. However, the practical value of such highly generalized and

bulky probability distributions is questionable as measurement evidence or physical justification

to support their use is currently lacking.

B. Distribution functions in series form

Based on the general theory of positive random variables, it is also possible to derive the

distribution functions in series forms, that result in computationally simpler implementations that

do not require numerical evaluation of the generalized hypergeometric functions. In particular,

it is known that the density of a positive random variable canbe expressed in a series involving

its moments and Laguerre polynomials [21], [27]. With this approach the density ofR?
N is given

by

fR?
N
(r) = 2βre−βr2

∞∑

m=0

CmLm(βr2) , (19)

whereLm(x) is themth order Laguerre polynomial defined in Table I, and

Cm =
m∑

k=0

(−β)k

k!

(
m

k

)

µ
(2k)
R?

N
, (20)

µ
(2k)
R?

N
=

k∑

l=0

(
k

l

)2

[(k − l)!]Nµ
(2l)
R?

N−1
w2k−2l

N . (21)

The parameter0 < β < ∞ is a freely selectable constant that tunes the convergence of the series

[27]. The even moments ofR?
N can be computed recursively with initial valueµ(2k)

R?
0

= w2k
0 . The

proof of the recursion formula (21) is given in the appendix.

The corresponding series form of the cdf can be obtained by integrating (19) from0 to t.

Using the definition of the Laguerre polynomial from Table I,a little effort reveals that

∫ t

0

2βre−βr2

Lm(βr2) dx =
m∑

k=0

(−1)k

k!

(
m

k

)

Γl(k + 1, βt2) , (22)

June 3, 2006 DRAFT
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whereΓl(a, x) is the lower incomplete gamma function. The distribution function for arbitrary

N is therefore given by

FR?
N
(t) =

∞∑

m=0

m∑

k=0

(−1)k

k!

(
m

k

)

Cm Γl(k + 1, βt2) , (23)

whereCm was given in (20).

IV. SPECIAL CASE: SECOND-ORDER SCATTERING

The Laguerre-type series expansions from the previous section allow computation of numerical

values for the amplitude distribution ofN th order scattering. However, optimum selection of

the free parameterβ is not obvious, and the formulas also involve multi-fold summations.

Furthermore, from the general series form it is difficult to see the asymptotic behavior of the

distribution near origin, which is of importance when considering fading outage probabilities

or high-SNR performance of communications schemes [36]. Therefore it is of interest to seek

simpler forms for the distribution functions in special cases. In this section, using a different

approach, we derive alternative series expressions for thedistribution functions of second-order

scattering, of which Rice, Rayleigh and double-Rayleigh distributions are special cases. The

second order scattering model results by settingN = 2 in (1):

R?
2 =

∣
∣w0e

jθ + w1H1 + w2H2H3

∣
∣ .

We shall consider the casesw0 > 0 andw0 = 0 separately.

A. The case with line-of-sight component (w0 > 0)

In the appendix it is shown that an alternative series form for N = 2 is given by

fR?
2
(r) = 2e

w2
1

w2
2 r

∞∑

m=0

(−1)mw2m
0 Γu

(
− m,

w2
1

w2
2

)

m! (w2
2)

m+1

× 2F1

(

−m,−m; 1;
( r

w0

)2
)

, w1 > 0 , (24)

where 2F1(·) is the Gauss’ hypergeometric function, andΓu(−m,x) is the upper incomplete

gamma function. It can be shown that forw2 → 0, fR?
2
(r) reduces to the Rician density function.

The upper incomplete gamma function can be computed recursively using [18,§8.356.2]
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Γu(n + 1, x) = n Γu(n, x) + xne−x , (25)

which is valid also for negative integer values ofn. The hypergeometric function in (24) is

defined by a finite sum due to negative integer input argumentsin 2F1(·). More specifically,

2F1 (−m,−m; 1; x) =
m∑

k=0

(
m

k

)2

xk . (26)

The corresponding distribution function is obtained by integrating (24) from0 to t, and

re-interpreting the resulting sum in terms of hypergeometric functions using the Pochhammer

symbol notation [note that(2)k = (k + 1)!]. The result is

FR?
2
(t) = e

w2
1

w2
2 t2

∞∑

m=0

(−1)mw2m
0 Γu

(
− m,

w2
1

w2
2

)

m! (w2
2)

m+1

× 2F1

(

−m,−m; 2;
( t

w0

)2
)

, w1 > 0 , (27)

where2F1(·) is given by the finite sum

2F1 (−m,−m; 2; x) =
m∑

k=0

(
m

k

)2
xk

k + 1
. (28)

B. The case without line-of-sight component (w0 = 0)

This special case (“leaky keyhole”) has been derived earlier in [16] using a Bessel function

expansion similar to (51). In the following, we show that thedesired distribution functions

emerge as special cases of the more general results in (24) and (27). This is readily verified,

since at the limitw0 → 0, (26) multiplied byw2m
0 , i.e.,

w2m
0 2F1

(

−m,−m; 1;
( r

w0

)2
)

=
m∑

k=0

(
m

k

)2

r2kw2m−2k
0 , (29)

clearly approachesr2m. Therefore, as in [16],

fR?
2
(r) = 2e

w2
1

w2
2

∞∑

m=0

(−1)m

m!

Γu

(

− m,
w2

1

w2
2

)

(w2
2)

m+1
r2m+1 , w1 > 0 . (30)
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In the special casew2 → 0, (30) reduces to the Rayleigh pdf. This can be shown by applying

an asymptotic expansion forΓu(−m,
w2

1

w2
2
), and noting that the leftover is a series representation

of the exponential function.

The distribution function can be obtained by integrating the series (30) term by term, or by a

limit operation similar to (29). The resulting cdf in seriesform is

FR?
2
(t) = e

w2
1

w2
2

∞∑

m=0

(−1)m

(m + 1)!

Γu

(

− m,
w2

1

w2
2

)

(w2
2)

m+1
t2m+2 , w1 > 0 . (31)

The series forms and (24), (27), (31) and (30) converge for all finite r and t. However, the

speed of convergence depends heavily onr andt; for large values it can be slow. The convergence

also depends on the values of the parameters. It can be shown that for largem the convergence

of (24) and (27) slows down as the ratiow2
0/w

2
1, i.e., the RicianK factor, increases (for fixed

r or t). Similarly, with (30) and (31) more terms are required for convergence asw1 → 0. In

practice, the series forms are most useful for asymptotic work, such as numerical or analytical

evaluation of outage SNR. Fort � 1 or r � 1, it is enough to take only one or two first terms in

the series expansions. Retaining only the first term in (30) and (31) results in the approximations

fR?
2
(r) ≈

2e
w2

1
w2

2 Γu

(

0,
w2

1

w2
2

)

w2
2

r , w1 > 0 , (32)

FR?
2
(t) ≈

e
w2

1
w2

2 Γu

(

0,
w2

1

w2
2

)

w2
2

t2 , w1 > 0 . (33)

Here (33) is useful for evaluating outage probabilities, where t � 1.

An interesting observation can be made from (32). In [36], ithas been shown that the the

diversity order of a modulation scheme depends only on the behavior of the amplitude density

function near origin. For example, the Rayleigh density can be approximated asfR1(r) ≈ 2r
w2

1

for r � 1, which leads to unit diversity order sincefR1(r) can be approximated with a first-

degree polynomial [36]. What is surprising here is that also (32) is a first-degree polynomial,

which implies that second-order scattering leads to the same diversity order as the Rayleigh

channel. Therefore the diversity order seems to be dominated by the lowest order scattering

(excluding the LOS component). This clearly has some implications on communication system
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performance over multiple scattering channels as well as measurement data analysis. We shall

give some further remarks on this issue in Section VI.

V. ESTIMATION OF MIXTURE WEIGHTS BASED ON THE METHOD OF MOMENTS

For radio propagation studies the key task is to verify, by means of radio channel mea-

surements, how often and under what conditions multiple scattering appears in nature. To

facilitate such studies it is important to derive methods for estimating the mixture weights

{wn}N
n=0 from measurement data. While maximum likelihood estimationwould be the optimal

estimation method, the complicated form of the probabilitydensity function renders this approach

impractical. Simple estimators can be obtained by applyingthe method of moments [37]. The

basic idea is to equate sample moments with the theoretical moments to form a group of equations

from which the unknown mixture weights can be solved. In whatfollows, we provide estimation

formulas forN = 2. The estimators for higher order scattering can be obtainedin a similar way.

We shall denoteQ independent noiseless samples ofR?
2 with {rq}Q

q=1. In this section we shall

also use the following short-hand notation for the theoretical and sample moments ofR?
2:

µ2k = µ
(2k)
R?

2
(34)

S2k =
1

Q

Q
∑

q=1

r2k
q . (35)

There should be no confusion with other notation in the paper, since all results in this section

apply to the special caseN = 2.

A. Second-order scattering with LOS component (w0 > 0)

To estimate{w0, w1, w2} we need to compute three theoretical moments. It is usually prefer-

able to select low-order moments, as their estimates have smaller variance. From (21), we have

for the first three even moments:
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µ2 = w2
0 + w2

1 + w2
2 , (36)

µ4 = 4w4
2 + 4(w2

0 + w2
1)w

2
2

+ 2w4
1 + 4w2

0w
2
1 + w4

0 , (37)

µ6 = 36w6
2 + 6w6

1 + w6
0 + 36w4

2(w
2
0 + w2

1)

+ 9w2
2(2w

4
1 + 4w2

0w
2
1 + w4

0)

+ 18w2
0w

4
1 + 9w4

0w
2
1 . (38)

Estimates for the squared mixture weights{w2
n}2

n=0 can be solved numerically by replacing the

theoretical moments{µ2k}3
k=1 with the sample moments{S2k}3

k=1 in (36) – (38), and solving

for {w2
n}2

n=0. Due to randomness of the sample moments, for finiteQ, the system of nonlinear

equations may have non-positive solutions; this problem ismore evident for smallQ. Instead of

attempting to solve the system exactly, one may opt for solving the associated non-linear least

squares minimization problem, where the solutions are constrained to be non-negative.

B. Second-order scattering without LOS component (w0 = 0)

For the leaky keyhole channel, LOS component mixture weightis zero, and the system of

equations can be solved from the second and fourth sample moment. By settingw0 = 0 in (36)

and (37), the resulting closed-form estimator appears as

ŵ2
1 = S2 − ŵ2

2 (39)

ŵ2
2 =

√

1

2
S4 − S2

2 . (40)

The estimates are very simple to compute from a given data sample.

For measurement data analysis, it is of practical importance to have an estimate of the mean

square error (MSE) of the estimator. In the appendix it is shown that the MSE ofŵ2
2 can be

upper bounded as

ε(ŵ2
2) , E

[
(w2

2 − ŵ2
2)

2
]

≤ w4
2 − 2w2

2

(√
γ − ξ

8γ3/2

)

+ γ , (41)
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where

γ =

(
1

2
− 1

Q

)

µ4 −
(

1 − 1

Q

)

µ2
2 , (42)

ξ = a − b + c − γ2 , (43)

and

a =
1

4Q

[
µ8 + (Q − 1) µ2

4

]
, (44)

b =
1

Q2

{

µ8 + (Q − 1)µ2
4

+ (Q − 1)µ2

[
2µ6 + (Q − 2)µ4µ2

]
}

, (45)

c =
1

Q3

[

µ8 + 4(Q − 1)µ6µ2

+ 3(Q − 1)µ2
4 + 6(Q − 1)(Q − 2)µ4µ

2
2

+ (Q − 1)(Q − 2)(Q − 3)µ4
2

]

. (46)

The even moments ofR?
2 can be computed using (21). The upper bound is quite tight forlarge

Q, as will be illustrated in the next section. A bound for the mean square error of̂w2
1 can be

derived in a similar way. However, from numerical experiments it is found that the MSE of̂w2
1

is roughly the same as that of̂w2
2, and therefore to save paper we omit the result.

Taking expectation of (40) and applying Jensen’s inequality it is clear that, for finiteQ, (40)

underestimatesw2
2. Consequentlyw2

1 will be overestimated. However, as with most moment-

based estimators,̂w2
1 andŵ2

2 are asymptotically unbiased, i.e., the bias diminishes as the number

of samples increases [37]. This is also evident from (42), from which

lim
Q→∞

µX = w4
2 ,

and hence

w2
2 − lim

Q→∞
E[ŵ2

2] = 0

indicating thatŵ2
2 is a consistent estimator ofw2

2. It then follows thatŵ2
1 is also a consistent

estimator.
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VI. N UMERICAL EXAMPLES

In all numerical examples that follow the mixture weights are normalized so thatE[(R?
N)2] =

∑N
n=0 w2

n = 1. For example,w2
n = 1 then implies that mixture weights other thann are zero,

i.e., R?
N = Rn has then-Rayleigh distribution.

A. Pdfs and cdfs of R?
N

In Figs. 3–4 we plot the distribution functions for a few values of{w2
n}. In Fig. 3n-Rayleigh

densities (i.e.,w2
n = 1) are shown forn = 1, . . . , 5. We also show two examples of third-order

scattering:w2
0 = 0.909, w2

1 = w2
2 = w3

2 = (1 − w2
0)/3, andw2

0 = 0, w2
1 = w2

2 = 0.1, w2
3 = 0.8.

The figures confirm the well-known fact that multiple scattering widens the tails of the

amplitude distribution compared to single scattering (Rayleigh) amplitude pdf [3]. Therefore,

the fading is more severe because of the multiple scatteringradio propagation environment,

and consequently communication will require higher average SNR to achieve the same error

performance than over a Rayleigh channel. The thick tails mayalso complicate radio channel

measurements. Special attention should be placed on the linear dynamic range of the measure-

ment equipment so that the measured amplitude is not distorted by the measurement system. For

example, with the double-Rayleigh distribution the amplitude range between0.5% and 99.5%

percentiles has dynamic range of42 decibels, which is considerably larger than the corresponding

value of 30 dB for Rayleigh distributed amplitude. By dynamic range we mean here the ratio
tmax

tmin
, whereFR2(tmin) = 0.005 andFR2(tmax) = 0.995.

Fig. 4 is a Rayleigh probability graph where the Rayleigh distribution shows as a straight line,

whereas other distribution functions appear curved. From the cdfs in Fig. 4 we note that the decay

rates of then-Rayleigh distributions forn > 1 near origin are slightly slower than that of the

Rayleigh cdf. This implies that diversity order (high-SNR slope of error probability curve [36])

of the puren-Rayleigh channel is less than one, i.e., worse than the Rayleigh diversity order. The

slopes of third order scattering with nonzerow1, on the other hand, show the same decay rate as

the conventional Rayleigh cdf. This could be one reason why multiple scattering is difficult to

detect in channel measurements, since it is unlikely that inreal-world radio propagation channels
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Fig. 3. Probability densities ofR?
N plotted for varying{w2

n}. In all cases
∑N

n=0 w2
n = 1.

the single scattering component would be exactly zero2. Of course, a horizontal shift can still be

seen in the cdf. From communication system point of view, this would mean that the diversity

order of a multiple scattering channel withw1 > 0 would be the same as that of the Rayleigh

channel. Detailed examination of these issues, however, isa topic for further study.

B. Moment-based estimation of parameters

We consider the case of second-order scattering withw0 = 0. In Fig. 5 we plot the MSE of

ŵ2
1 and ŵ2

2 obtained using (39) and (40). The results have been estimated from a Monte Carlo

simulation with105 trials for each value ofQ. For smallQ it sometimes happens that̂w2
2 from

(40) is negative. In this case we setŵ2
2 = 0. From Fig. 5 we note that the MSE is larger for

w2
2. Also, MSE decreases inversely proportional to the number of samples as predicted by the

general theory of moment-based estimation. We also plot theupper bound (41) on MSE of̂w2
2.

It can be seen that the bound is tight forQ > 100 and can hence be used in evaluation of

the number of samples required for reliable estimation of the mixture weights. Based on Fig.

2In practical measurement, Gaussian measurement noise is added to themeasured impulse response hence always resulting

in positivew1.
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Fig. 4. Cumulative distribution functions ofR?
N plotted in a Rayleigh probability plot for varying{w2

n}.

5 we can say that, with the present estimator, about a thousand or more stationary samples are

required for reliable estimation of the mixture weights from measurement data.

VII. C ONCLUSION

We have derived the distribution functions (pdf and cdf) of amplitude of multiple scattering

radio channel in integral and series forms. The special caseof second-order scattering was

discussed in detail. We also derived a computationally simple estimator for the mixture weights

of a second-order scattering process. The most interestingopen problems and future work are

related to the verification of the environmental conditionsunder which the multiple scattering

radio propagation occurs in nature. This is likely to require carefully planned radio channel

measurements and meticulous measurement data analysis. Another topic for future work is the

evaluation of the impact of multiple scattering on communication system performance. The

results presented in this paper serve as necessary groundwork to facilitate these studies.
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2 = 0.5, w2
0 = 0. Estimates are computed with (39) and

(40). The upper bound (41) is also shown.

APPENDIX I

M ISCELLANEOUS PROOFS

In this appendix we sketch some of the intermediate steps missing in the main text.

A. Eq. (21)

Applying a general recursion formula for the modulus of a sumof independent circularly

symmetric random variables [38] we obtain

µ
(2k)
R?

N
=

k∑

m=0

(
k

m

)2

µ
(2m)
R?

N−1
µ

(2k−2m)
RN

. (47)

Moments of ann-Rayleigh random variable are [17]

µ
(h)
Rn

= wh
n

[

Γ

(
h

2
+ 1

)]n

. (48)
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From (48), the even moments ofRn read as

µ
(2k)
Rn

= w2k
n (k!)n , k = 0, 1, 2, . . . . (49)

Hence, plugging (49) to (47), we arrive at (21).

B. Eq. (30)

Inserting (8), (12) and (13) into (11) we have to evaluate

fR?
2
(r) = r

∫ ∞

0

4ω

4 + w2
2ω

2
e−

w2
1ω2

4 J0(w0ω)J0(rω) dω . (50)

Using the identity [18,§8.442.2]

J0(w0ω)J0(rω) =
∞∑

m=0

(−1)m(w0ω)2m

22m(m!)2

× 2F1

(

−m,−m; 1; (
r

w0

)2

)

, (51)

with 2F1(a, b; c; x) denoting the Gauss’ hypergeometric function, we can write (50) as

fR?
2
(r) = r

∞∑

m=0

(−1)mw2m
0

22m(m!)2 2F1

(

−m,−m; 1;
( r

w0

)2
)

×
∫ ∞

0

ω2m+1

1 + bω2
e−aω2

dω

︸ ︷︷ ︸

Im

. (52)

wherea =
w2

1

4
, b =

w2
2

4
for brevity. The integralIm, which appears as a coefficient in the series,

can be evaluated by substitutingy = 1 + bω2, resulting in

Im =
e

a
b

2bm+1

∫ ∞

1

(y − 1)m

y
e−

a
b
y dy . (53)

This is a standard integral [18,§3.383.9] given by

Im =
e

a
b

2bm+1
Γ(m + 1)Γu

(

− m,
a

b

)

, a > 0 , (54)

where Γu(n, x) is the upper incomplete gamma function, which is defined alsowhen n is a

negative integer, unlike the gamma functionΓ(n), which is singular at these points. After some

simplifications, we arrive at the desired result.
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C. Eq. (41)

We denote for brevity

X =
1

2
S4 − S2

2 , (55)

and its mean and variance withµX = E[X] and var[X], respectively. Note thatX = ŵ4
2. The

MSE of ŵ2
2 is given by

ε(ŵ2
2) , E

[
(w2

2 − ŵ2
2)

2
]

= w4
2 − 2w2

2 E[ŵ2
2] + E[ŵ4

2]

= w4
2 − 2w2

2 E
[√

X
]
+ µX (56)

Expanding
√

X in a Taylor series aboutµX and taking expectation we arrive at the lower bound

E
[√

X
]
≥ √

µX − var[X]

8µ
3/2
X

, (57)

where we truncated the series after the third term. Using (57) we can upper bound (56) as

ε(ŵ2
2) ≤ w4

2 − 2w2
2

(

√
µX − var[X]

8µ
3/2
X

)

+ µX . (58)

Formulas forµX and var[X] are needed for computing the bound (41). The mean value ofX

can be shown to be

µX =

(
1

2
− 1

Q

)

µ4 −
(

1 − 1

Q

)

µ2
2 . (59)

To computevar[X], it suffices to findE[X2], sincevar[X] = E[X2] − µ2
X . This is in principle

straightforward, but quite tedious. Omitting details, theend result is

E[X2] = a − b + c , (60)

wherea,b, and c are given in (44)–(46). Denotingγ = µX and ξ = E[X2] − µ2
X , the desired

result follows.
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